Fratta, Pietro; Polke, James M; Newcombe, Jia; Mizielinska, Sarah; Lashley, Tammaryn; Poulter, Mark; Beck, Jon; Preza, Elisavet; Devoy, Anny; Sidle, Katie; Howard, Robin; Malaspina, Andrea; Orrell, Richard W; Clarke, Jan; Lu, Ching-Hua; Mok, Kin; Collins, Toby; Shoaii, Maryam; Nanji, Tina; Wray, Selina; Adamson, Gary; Pittman, Alan; Renton, Alan E; Traynor, Bryan J; Sweeney, Mary G; Revesz, Tamas; Houlden, Henry; Mead, Simon; Isaacs, Adrian M; Fisher, Elizabeth M C
2015-01-01
An expanded hexanucleotide repeat in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Although 0-30 hexanucleotide repeats are present in the general population, expansions >500 repeats are associated with C9ALS/FTD. Large C9ALS/FTD expansions share a common haplotype and whether these expansions derive from a single founder or occur more frequently on a predisposing haplotype is yet to be determined and is relevant to disease pathomechanisms. Furthermore, although cases carrying 50-200 repeats have been described, their role and the pathogenic threshold of the expansions remain to be identified and carry importance for diagnostics and genetic counseling. We present clinical and genetic data from a UK ALS cohort and report the detailed molecular study of an atypical somatically unstable expansion of 90 repeats. Our results across different tissues provide evidence for the pathogenicity of this repeat number by showing they can somatically expand in the central nervous system to the well characterized pathogenic range. Our results support the occurrence of multiple expansion events for C9ALS/FTD. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
In Vitro Expansion of CAG, CAA, and Mixed CAG/CAA Repeats.
Figura, Grzegorz; Koscianska, Edyta; Krzyzosiak, Wlodzimierz J
2015-08-11
Polyglutamine diseases, including Huntington's disease and a number of spinocerebellar ataxias, are caused by expanded CAG repeats that are located in translated sequences of individual, functionally-unrelated genes. Only mutant proteins containing polyglutamine expansions have long been thought to be pathogenic, but recent evidence has implicated mutant transcripts containing long CAG repeats in pathogenic processes. The presence of two pathogenic factors prompted us to attempt to distinguish the effects triggered by mutant protein from those caused by mutant RNA in cellular models of polyglutamine diseases. We used the SLIP (Synthesis of Long Iterative Polynucleotide) method to generate plasmids expressing long CAG repeats (forming a hairpin structure), CAA-interrupted CAG repeats (forming multiple unstable hairpins) or pure CAA repeats (not forming any secondary structure). We successfully modified the original SLIP protocol to generate repeats of desired length starting from constructs containing short repeat tracts. We demonstrated that the SLIP method is a time- and cost-effective approach to manipulate the lengths of expanded repeat sequences.
Cagnoli, Claudia; Michielotto, Chiara; Matsuura, Tohru; Ashizawa, Tetsuo; Margolis, Russell L.; Holmes, Susan E.; Gellera, Cinzia; Migone, Nicola; Brusco, Alfredo
2004-01-01
At least 18 human genetic diseases are caused by expansion of short tandem repeats. Here we describe a successful application of a fluorescent PCR method for the detection of expanded repeats in FRDA1, SCA10, and SCA12 genes. Although this test cannot give a precise estimate of the size of the expansion, it is robust, reliable, and inexpensive, and can be used to screen large series of patients. It proved useful for confirming the presence of large expansions in the Friedreich ataxia gene following an ambiguous result of long-range PCR, as well as rapid pre-screening for large repeat expansions associated with Friedreich ataxia and SCA10 and the shorter repeat expansions associated with SCA12. PMID:15096564
Large-scale assessment of polyglutamine repeat expansions in Parkinson disease
Wang, Lisa; Aasly, Jan O.; Annesi, Grazia; Bardien, Soraya; Bozi, Maria; Brice, Alexis; Carr, Jonathan; Chung, Sun J.; Clarke, Carl; Crosiers, David; Deutschländer, Angela; Eckstein, Gertrud; Farrer, Matthew J.; Goldwurm, Stefano; Garraux, Gaetan; Hadjigeorgiou, Georgios M.; Hicks, Andrew A.; Hattori, Nobutaka; Klein, Christine; Jeon, Beom; Kim, Yun J.; Lesage, Suzanne; Lin, Juei-Jueng; Lynch, Timothy; Lichtner, Peter; Lang, Anthony E.; Mok, Vincent; Jasinska-Myga, Barbara; Mellick, George D.; Morrison, Karen E.; Opala, Grzegorz; Pihlstrøm, Lasse; Pramstaller, Peter P.; Park, Sung S.; Quattrone, Aldo; Rogaeva, Ekaterina; Ross, Owen A.; Stefanis, Leonidas; Stockton, Joanne D.; Silburn, Peter A.; Theuns, Jessie; Tan, Eng K.; Tomiyama, Hiroyuki; Toft, Mathias; Van Broeckhoven, Christine; Uitti, Ryan J.; Wirdefeldt, Karin; Wszolek, Zbigniew; Xiromerisiou, Georgia; Yueh, Kuo-Chu; Zhao, Yi; Gasser, Thomas; Maraganore, Demetrius M.; Krüger, Rejko
2015-01-01
Objectives: We aim to clarify the pathogenic role of intermediate size repeat expansions of SCA2, SCA3, SCA6, and SCA17 as risk factors for idiopathic Parkinson disease (PD). Methods: We invited researchers from the Genetic Epidemiology of Parkinson's Disease Consortium to participate in the study. There were 12,346 cases and 8,164 controls genotyped, for a total of 4 repeats within the SCA2, SCA3, SCA6, and SCA17 genes. Fixed- and random-effects models were used to estimate the summary risk estimates for the genes. We investigated between-study heterogeneity and heterogeneity between different ethnic populations. Results: We did not observe any definite pathogenic repeat expansions for SCA2, SCA3, SCA6, and SCA17 genes in patients with idiopathic PD from Caucasian and Asian populations. Furthermore, overall analysis did not reveal any significant association between intermediate repeats and PD. The effect estimates (odds ratio) ranged from 0.93 to 1.01 in the overall cohort for the SCA2, SCA3, SCA6, and SCA17 loci. Conclusions: Our study did not support a major role for definite pathogenic repeat expansions in SCA2, SCA3, SCA6, and SCA17 genes for idiopathic PD. Thus, results of this large study do not support diagnostic screening of SCA2, SCA3, SCA6, and SCA17 gene repeats in the common idiopathic form of PD. Likewise, this largest multicentered study performed to date excludes the role of intermediate repeats of these genes as a risk factor for PD. PMID:26354989
Dombroski, Beth A; Galasko, Douglas R; Mata, Ignacio F; Zabetian, Cyrus P; Craig, Ulla-Katrina; Garruto, Ralph M; Oyanagi, Kiyomitsu; Schellenberg, Gerard D
2013-06-01
High-prevalence foci of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC) exist in Japanese on the Kii Peninsula of Japan and in the Chamorros of Guam. Clinical and neuropathologic similarities suggest that the disease in these 2 populations may be related. Recent findings showed that some of the Kii Peninsula ALS cases had pathogenic C9orf72 repeat expansions, a genotype that causes ALS in Western populations. To perform genotyping among Guam residents to determine if the C9orf72 expanded repeat allele contributes to ALS-PDC in this population and to evaluate LRRK2 for mutations in the same population. Case-control series from neurodegenerative disease research programs on Guam that screened residents for ALS, PDC, and dementia. Study participants included 24 with ALS and 22 with PDC and 43 older control subjects with normal cognition ascertained between 1956 and 2006. All but one participant were Chamorro, the indigenous people of Guam. A single individual of white race/ethnicity with ALS was ascertained on Guam during the study. Participants were screened for C9orf72 hexanucleotide repeat length. Participants with repeat numbers in great excess of 30 were considered to have pathogenic repeat expansions. LRRK2 was screened for point mutations by DNA sequencing. We found a single individual with an expanded pathogenic hexanucleotide repeat. This individual of white race/ethnicity with ALS was living on Guam at the time of ascertainment but had been born in the United States. All Chamorro participants with ALS and PDC and control subjects had normal repeats, ranging from 2 to 17 copies. No pathogenic LRRK2 mutations were found. Unlike participants with ALS from the Kii Peninsula, C9orf72 expansions do not cause ALS-PDC in Chamorros. Likewise, LRRK2 mutations do not cause Guam ALS-PDC.
MicroRNAs in CAG trinucleotide repeat expansion disorders: an integrated review of the literature.
Dumitrescu, Laura; Popescu, Bogdan O
2015-01-01
MicroRNAs are small RNAs involved in gene silencing. They play important roles in transcriptional regulation and are selectively and abundantly expressed in the central nervous system. A considerable amount of the human genome is comprised of tandem repeating nucleotide streams. Several diseases are caused by above-threshold expansion of certain trinucleotide repeats occurring in a protein-coding or non-coding region. Though monogenic, CAG trinucleotide repeat expansion disorders have a complex pathogenesis, various combinations of multiple coexisting pathways resulting in one common final consequence: selective neurodegeneration. Mutant protein and mutant transcript gain of toxic function are considered to be the core pathogenic mechanisms. The profile of microRNAs in CAG trinucleotide repeat disorders is scarcely described, however microRNA dysregulation has been identified in these diseases and microRNA-related intereference with gene expression is considered to be involved in their pathogenesis. Better understanding of microRNAs functions and means of manipulation promises to offer further insights into the pathogenic pathways of CAG repeat expansion disorders, to point out new potential targets for drug intervention and to provide some of the much needed etiopathogenic therapeutic agents. A number of disease-modifying microRNA silencing strategies are under development, but several implementation impediments still have to be resolved. CAG targeting seems feasible and efficient in animal models and is an appealing approach for clinical practice. Preliminary human trials are just beginning.
Cagnoli, Claudia; Stevanin, Giovanni; Michielotto, Chiara; Gerbino Promis, Giovanni; Brussino, Alessandro; Pappi, Patrizia; Durr, Alexandra; Dragone, Elisa; Viemont, Michelle; Gellera, Cinzia; Brice, Alexis; Migone, Nicola; Brusco, Alfredo
2006-02-01
Large expansions in the SCA2 and SCA7 genes (>100 CAG repeats) have been associated with juvenile and infantile forms of cerebellar ataxias that cannot be detected using standard polymerase chain reaction (PCR). Here, we describe a successful application of the fluorescent short tandem repeat-primed PCR method for accurate identification of these expanded repeats. The test is robust, reliable, and inexpensive and can be used to screen large series of patients, although it cannot give a precise evaluation of the size of the expansion. This test may be of practical value in prenatal diagnoses offered to affected or pre-symptomatic at-risk parents, in which a very large expansion inherited from one of the parents can be missed in the fetus by standard PCR.
Cagnoli, Claudia; Stevanin, Giovanni; Michielotto, Chiara; Gerbino Promis, Giovanni; Brussino, Alessandro; Pappi, Patrizia; Durr, Alexandra; Dragone, Elisa; Viemont, Michelle; Gellera, Cinzia; Brice, Alexis; Migone, Nicola; Brusco, Alfredo
2006-01-01
Large expansions in the SCA2 and SCA7 genes (>100 CAG repeats) have been associated with juvenile and infantile forms of cerebellar ataxias that cannot be detected using standard polymerase chain reaction (PCR). Here, we describe a successful application of the fluorescent short tandem repeat-primed PCR method for accurate identification of these expanded repeats. The test is robust, reliable, and inexpensive and can be used to screen large series of patients, although it cannot give a precise evaluation of the size of the expansion. This test may be of practical value in prenatal diagnoses offered to affected or pre-symptomatic at-risk parents, in which a very large expansion inherited from one of the parents can be missed in the fetus by standard PCR. PMID:16436644
Tan, Rachel H; Kril, Jillian J; McGinley, Ciara; Hassani, Mohammad; Masuda-Suzukake, Masami; Hasegawa, Masato; Mito, Remika; Kiernan, Matthew C; Halliday, Glenda M
2016-02-01
Despite evidence suggesting that the cerebellum may be targeted in amyotrophic lateral sclerosis (ALS), particularly in cases with repeat expansions in the ATXN2 and C9ORF72 genes, the integrity of cerebellar neurons has yet to be examined. The present study undertakes a histopathological analysis to assess the impact of these repeat expansions on cerebellar neurons and determine whether similar cerebellar pathology occurs in sporadic disease. Purkinje and granule cells were quantified in the vermis and lateral cerebellar hemispheres of ALS cases with repeat expansions in the ATXN2 and C9ORF72 genes, sporadic disease, and sporadic progressive muscular atrophy with only lower motor neuron degeneration. ALS cases with intermediate repeat expansions in the ATXN2 gene demonstrate a significant loss in Purkinje cells in the cerebellar vermis only. Despite ALS cases with expansions in the C9ORF72 gene having the highest burden of inclusion pathology, no neuronal loss was observed in this group. Neuronal numbers were also unchanged in sporadic ALS and sporadic PMA cases. The present study has established a selective loss of Purkinje cells in the cerebellar vermis of ALS cases with intermediate repeat expansions in the ATXN2 gene, suggesting a divergent pathogenic mechanism independent of upper and lower motor neuron degeneration in ALS. We discuss these findings in the context of large repeat expansions in ATXN2 and spinocerebellar ataxia type 2, providing evidence that intermediate repeats in ATXN2 cause significant, albeit less substantial, spinocerebellar damage compared with longer repeats in ATXN2. © 2016 American Neurological Association.
The Role of the Immune System in Triplet Repeat Expansion Diseases
Urbanek, Martyna O.; Krzyzosiak, Wlodzimierz J.
2015-01-01
Trinucleotide repeat expansion disorders (TREDs) are a group of dominantly inherited neurological diseases caused by the expansion of unstable repeats in specific regions of the associated genes. Expansion of CAG repeat tracts in translated regions of the respective genes results in polyglutamine- (polyQ-) rich proteins that form intracellular aggregates that affect numerous cellular activities. Recent evidence suggests the involvement of an RNA toxicity component in polyQ expansion disorders, thus increasing the complexity of the pathogenic processes. Neurodegeneration, accompanied by reactive gliosis and astrocytosis is the common feature of most TREDs, which may suggest involvement of inflammation in pathogenesis. Indeed, a number of immune response markers have been observed in the blood and CNS of patients and mouse models, and the activation of these markers was even observed in the premanifest stage of the disease. Although inflammation is not an initiating factor of TREDs, growing evidence indicates that inflammatory responses involving astrocytes, microglia, and the peripheral immune system may contribute to disease progression. Herein, we review the involvement of the immune system in the pathogenesis of triplet repeat expansion diseases, with particular emphasis on polyglutamine disorders. We also present various therapeutic approaches targeting the dysregulated inflammation pathways in these diseases. PMID:25873774
Repeat expansion disease: Progress and puzzles in disease pathogenesis
La Spada, Albert R.; Taylor, J. Paul
2015-01-01
Repeat expansion mutations cause at least 22 inherited neurological diseases. The complexity of repeat disease genetics and pathobiology has revealed unexpected shared themes and mechanistic pathways among the diseases, for example, RNA toxicity. Also, investigation of the polyglutamine diseases has identified post-translational modification as a key step in the pathogenic cascade, and has shown that the autophagy pathway plays an important role in the degradation of misfolded proteins – two themes likely to be relevant to the entire neurodegeneration field. Insights from repeat disease research are catalyzing new lines of study that should not only elucidate molecular mechanisms of disease, but also highlight opportunities for therapeutic intervention for these currently untreatable disorders. PMID:20177426
Herdewyn, Sarah; Zhao, Hui; Moisse, Matthieu; Race, Valérie; Matthijs, Gert; Reumers, Joke; Kusters, Benno; Schelhaas, Helenius J; van den Berg, Leonard H; Goris, An; Robberecht, Wim; Lambrechts, Diether; Van Damme, Philip
2012-06-01
Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) has a familial cause in 10% of patients. Despite significant advances in the genetics of the disease, many families remain unexplained. We performed whole-genome sequencing in five family members from a pedigree with autosomal-dominant classical ALS. A family-based elimination approach was used to identify novel coding variants segregating with the disease. This list of variants was effectively shortened by genotyping these variants in 2 additional unaffected family members and 1500 unrelated population-specific controls. A novel rare coding variant in SPAG8 on chromosome 9p13.3 segregated with the disease and was not observed in controls. Mutations in SPAG8 were not encountered in 34 other unexplained ALS pedigrees, including 1 with linkage to chromosome 9p13.2-23.3. The shared haplotype containing the SPAG8 variant in this small pedigree was 22.7 Mb and overlapped with the core 9p21 linkage locus for ALS and frontotemporal dementia. Based on differences in coverage depth of known variable tandem repeat regions between affected and non-affected family members, the shared haplotype was found to contain an expanded hexanucleotide (GGGGCC)(n) repeat in C9orf72 in the affected members. Our results demonstrate that rare coding variants identified by whole-genome sequencing can tag a shared haplotype containing a non-coding pathogenic mutation and that changes in coverage depth can be used to reveal tandem repeat expansions. It also confirms (GGGGCC)n repeat expansions in C9orf72 as a cause of familial ALS.
Repeat expansion and autosomal dominant neurodegenerative disorders: consensus and controversy.
Rudnicki, Dobrila D; Margolis, Russell L
2003-08-22
Repeat-expansion mutations cause 13 autosomal dominant neurodegenerative disorders falling into three groups. Huntington's disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and spinocerebellar ataxias (SCAs) types 1, 2, 3, 7 and 17 are each caused by a CAG repeat expansion that encodes polyglutamine. Convergent lines of evidence demonstrate that neurodegeneration in these diseases is a consequence of the neurotoxic effects of abnormally long stretches of glutamines. How polyglutamine induces neurodegeneration, and why neurodegeneration occurs in only select neuronal populations, remains a matter of intense investigation. SCA6 is caused by a CAG repeat expansion in CACNA1A, a gene that encodes a subunit of the P/Q-type calcium channel. The threshold length at which the repeat causes disease is much shorter than in the other polyglutamine diseases, and neurodegeneration may arise from expansion-induced change of function in the calcium channel. Huntington's disease-like 2 (HDL2) and SCAs 8, 10 and 12 are rare disorders in which the repeats (CAG, CTG or ATTCT) are not in protein-coding regions. Investigation into these diseases is still at an early stage, but it is now reasonable to hypothesise that the net effect of each expansion is to alter gene expression. The different pathogenic mechanisms in these three groups of diseases have important implications for the development of rational therapeutics.
Metsu, Sofie; Rainger, Jacqueline K; Debacker, Kim; Bernhard, Birgitta; Rooms, Liesbeth; Grafodatskaya, Daria; Weksberg, Rosanna; Fombonne, Eric; Taylor, Martin S; Scherer, Stephen W; Kooy, R Frank; FitzPatrick, David R
2014-11-01
We report de novo occurrence of the 7p11.2 folate-sensitive fragile site FRA7A in a male with an autistic spectrum disorder (ASD) due to a CGG-repeat expansion mutation (∼450 repeats) in a 5' intron of ZNF713. This expanded allele showed hypermethylation of the adjacent CpG island with reduced ZNF713 expression observed in a proband-derived lymphoblastoid cell line (LCL). His unaffected mother carried an unmethylated premutation (85 repeats). This CGG-repeat showed length polymorphism in control samples (five to 22 repeats). In a second unrelated family, three siblings with ASD and their unaffected father were found to carry FRA7A premutations, which were partially or mosaically methylated. In one of the affected siblings, mitotic instability of the premutation was observed. ZNF713 expression in LCLs in this family was increased in three of these four premutation carriers. A firm link cannot yet be established between ASD and the repeat expansion mutation but plausible pathogenic mechanisms are discussed. © 2014 WILEY PERIODICALS, INC.
The evolving genetic risk for sporadic ALS.
Gibson, Summer B; Downie, Jonathan M; Tsetsou, Spyridoula; Feusier, Julie E; Figueroa, Karla P; Bromberg, Mark B; Jorde, Lynn B; Pulst, Stefan M
2017-07-18
To estimate the genetic risk conferred by known amyotrophic lateral sclerosis (ALS)-associated genes to the pathogenesis of sporadic ALS (SALS) using variant allele frequencies combined with predicted variant pathogenicity. Whole exome sequencing and repeat expansion PCR of C9orf72 and ATXN2 were performed on 87 patients of European ancestry with SALS seen at the University of Utah. DNA variants that change the protein coding sequence of 31 ALS-associated genes were annotated to determine which were rare and deleterious as predicted by MetaSVM. The percentage of patients with SALS with a rare and deleterious variant or repeat expansion in an ALS-associated gene was calculated. An odds ratio analysis was performed comparing the burden of ALS-associated genes in patients with SALS vs 324 normal controls. Nineteen rare nonsynonymous variants in an ALS-associated gene, 2 of which were found in 2 different individuals, were identified in 21 patients with SALS. Further, 5 deleterious C9orf72 and 2 ATXN2 repeat expansions were identified. A total of 17.2% of patients with SALS had a rare and deleterious variant or repeat expansion in an ALS-associated gene. The genetic burden of ALS-associated genes in patients with SALS as predicted by MetaSVM was significantly higher than in normal controls. Previous analyses have identified SALS-predisposing variants only in terms of their rarity in normal control populations. By incorporating variant pathogenicity as well as variant frequency, we demonstrated that the genetic risk contributed by these genes for SALS is substantially lower than previous estimates. © 2017 American Academy of Neurology.
Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders.
Lattante, Serena; Millecamps, Stéphanie; Stevanin, Giovanni; Rivaud-Péchoux, Sophie; Moigneu, Carine; Camuzat, Agnès; Da Barroca, Sandra; Mundwiller, Emeline; Couarch, Philippe; Salachas, François; Hannequin, Didier; Meininger, Vincent; Pasquier, Florence; Seilhean, Danielle; Couratier, Philippe; Danel-Brunaud, Véronique; Bonnet, Anne-Marie; Tranchant, Christine; LeGuern, Eric; Brice, Alexis; Le Ber, Isabelle; Kabashi, Edor
2014-09-09
The aim of this study was to establish the frequency of ATXN2 polyglutamine (polyQ) expansion in large cohorts of patients with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), and to evaluate whether ATXN2 could act as a modifier gene in patients carrying the C9orf72 expansion. We screened a large cohort of French patients (1,144 ALS, 203 FTD, 168 FTD-ALS, and 109 PSP) for ATXN2 CAG repeat length. We included in our cohort 322 carriers of the C9orf72 expansion (202 ALS, 63 FTD, and 57 FTD-ALS). We found a significant association with intermediate repeat size (≥29 CAG) in patients with ALS (both familial and sporadic) and, for the first time, in patients with familial FTD-ALS. Of interest, we found the co-occurrence of pathogenic C9orf72 expansion in 23.2% of ATXN2 intermediate-repeat carriers, all in the FTD-ALS and familial ALS subgroups. In the cohort of C9orf72 carriers, 3.1% of patients also carried an intermediate ATXN2 repeat length. ATXN2 repeat lengths in patients with PSP and FTD were found to be similar to the controls. ATXN2 intermediary repeat length is a strong risk factor for ALS and FTD-ALS. Furthermore, we propose that ATXN2 polyQ expansions could act as a strong modifier of the FTD phenotype in the presence of a C9orf72 repeat expansion, leading to the development of clinical signs featuring both FTD and ALS. © 2014 American Academy of Neurology.
Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders
Lattante, Serena; Millecamps, Stéphanie; Stevanin, Giovanni; Rivaud-Péchoux, Sophie; Moigneu, Carine; Camuzat, Agnès; Da Barroca, Sandra; Mundwiller, Emeline; Couarch, Philippe; Salachas, François; Hannequin, Didier; Meininger, Vincent; Pasquier, Florence; Seilhean, Danielle; Couratier, Philippe; Danel-Brunaud, Véronique; Bonnet, Anne-Marie; Tranchant, Christine; LeGuern, Eric; Brice, Alexis; Le Ber, Isabelle
2014-01-01
Objective: The aim of this study was to establish the frequency of ATXN2 polyglutamine (polyQ) expansion in large cohorts of patients with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), and to evaluate whether ATXN2 could act as a modifier gene in patients carrying the C9orf72 expansion. Methods: We screened a large cohort of French patients (1,144 ALS, 203 FTD, 168 FTD-ALS, and 109 PSP) for ATXN2 CAG repeat length. We included in our cohort 322 carriers of the C9orf72 expansion (202 ALS, 63 FTD, and 57 FTD-ALS). Results: We found a significant association with intermediate repeat size (≥29 CAG) in patients with ALS (both familial and sporadic) and, for the first time, in patients with familial FTD-ALS. Of interest, we found the co-occurrence of pathogenic C9orf72 expansion in 23.2% of ATXN2 intermediate-repeat carriers, all in the FTD-ALS and familial ALS subgroups. In the cohort of C9orf72 carriers, 3.1% of patients also carried an intermediate ATXN2 repeat length. ATXN2 repeat lengths in patients with PSP and FTD were found to be similar to the controls. Conclusions: ATXN2 intermediary repeat length is a strong risk factor for ALS and FTD-ALS. Furthermore, we propose that ATXN2 polyQ expansions could act as a strong modifier of the FTD phenotype in the presence of a C9orf72 repeat expansion, leading to the development of clinical signs featuring both FTD and ALS. PMID:25098532
Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target
Krzyzosiak, Wlodzimierz J.; Sobczak, Krzysztof; Wojciechowska, Marzena; Fiszer, Agnieszka; Mykowska, Agnieszka; Kozlowski, Piotr
2012-01-01
This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases. PMID:21908410
Rovozzo, René; Korza, George; Baker, Mei W.; Li, Meng; Bhattacharyya, Anita; Barbarese, Elisa; Carson, John H.
2016-01-01
CGG repeats in the 5’UTR of Fragile X Mental Retardation 1 (FMR1) RNA mediate RNA localization and translation in granules. Large expansions of CGG repeats (> 200 repeats) in FMR1, referred to as full mutations, are associated with fragile X syndrome (FXS). Smaller expansions (55–200 repeats), referred to as premutations, are associated with fragile X tremor ataxia syndrome (FXTAS) and fragile X premature ovarian insufficiency (FXPOI). TMPyP4 is a porphyrin ring compound that destabilizes CGG repeat RNA secondary structure. Here we show that exogenous CGG repeat RNA by itself, lacking the FMRP ORF, microinjected into hippocampal neurons is localized in RNA granules and inhibits translation of ARC RNA, which is localized in the same granules. TMPyP4 rescues translation of ARC RNA in granules. We also show that in human premutation fibroblasts with endogenous CGG repeat expansions in the FMR1 gene, translation of ARC RNA is inhibited and calcium homeostasis is disrupted and both phenotypes are rescued by TMPyP4. Inhibition of granule translation by expanded CGG repeats and rescue of granule translation by TMPy4, represent potential pathogenic mechanism and therapeutic strategy, respectively, for FXTAS and FXPOI. PMID:28005950
Majounie, Elisa; Renton, Alan E; Mok, Kin; Dopper, Elise G P; Waite, Adrian; Rollinson, Sara; Chiò, Adriano; Restagno, Gabriella; Nicolaou, Nayia; Simon-Sanchez, Javier; van Swieten, John C; Abramzon, Yevgeniya; Johnson, Janel O; Sendtner, Michael; Pamphlett, Roger; Orrell, Richard W; Mead, Simon; Sidle, Katie C; Houlden, Henry; Rohrer, Jonathan D; Morrison, Karen E; Pall, Hardev; Talbot, Kevin; Ansorge, Olaf; Hernandez, Dena G; Arepalli, Sampath; Sabatelli, Mario; Mora, Gabriele; Corbo, Massimo; Giannini, Fabio; Calvo, Andrea; Englund, Elisabet; Borghero, Giuseppe; Floris, Gian Luca; Remes, Anne M; Laaksovirta, Hannu; McCluskey, Leo; Trojanowski, John Q; Van Deerlin, Vivianna M; Schellenberg, Gerard D; Nalls, Michael A; Drory, Vivian E; Lu, Chin-Song; Yeh, Tu-Hsueh; Ishiura, Hiroyuki; Takahashi, Yuji; Tsuji, Shoji; Le Ber, Isabelle; Brice, Alexis; Drepper, Carsten; Williams, Nigel; Kirby, Janine; Shaw, Pamela; Hardy, John; Tienari, Pentti J; Heutink, Peter; Morris, Huw R; Pickering-Brown, Stuart; Traynor, Bryan J
2012-04-01
We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years. A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases. Full funding sources listed at end of paper (see Acknowledgments). Copyright © 2012 Elsevier Ltd. All rights reserved.
Proteins containing expanded polyglutamine tracts and neurodegenerative disease
Adegbuyiro, Adewale; Sedighi, Faezeh; Pilkington, Albert W.; Groover, Sharon; Legleiter, Justin
2017-01-01
Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been ten of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post translational modifications on aggregation, and a potential role for lipids membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed. PMID:28170216
Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi.
Meerupati, Tejashwari; Andersson, Karl-Magnus; Friman, Eva; Kumar, Dharmendra; Tunlid, Anders; Ahrén, Dag
2013-11-01
Orbiliomycetes is one of the earliest diverging branches of the filamentous ascomycetes. The class contains nematode-trapping fungi that form unique infection structures, called traps, to capture and kill free-living nematodes. The traps have evolved differently along several lineages and include adhesive traps (knobs, nets or branches) and constricting rings. We show, by genome sequencing of the knob-forming species Monacrosporium haptotylum and comparison with the net-forming species Arthrobotrys oligospora, that two genomic mechanisms are likely to have been important for the adaptation to parasitism in these fungi. Firstly, the expansion of protein domain families and the large number of species-specific genes indicated that gene duplication followed by functional diversification had a major role in the evolution of the nematode-trapping fungi. Gene expression indicated that many of these genes are important for pathogenicity. Secondly, gene expression of orthologs between the two fungi during infection indicated that differential regulation was an important mechanism for the evolution of parasitism in nematode-trapping fungi. Many of the highly expressed and highly upregulated M. haptotylum transcripts during the early stages of nematode infection were species-specific and encoded small secreted proteins (SSPs) that were affected by repeat-induced point mutations (RIP). An active RIP mechanism was revealed by lack of repeats, dinucleotide bias in repeats and genes, low proportion of recent gene duplicates, and reduction of recent gene family expansions. The high expression and rapid divergence of SSPs indicate a striking similarity in the infection mechanisms of nematode-trapping fungi and plant and insect pathogens from the crown groups of the filamentous ascomycetes (Pezizomycotina). The patterns of gene family expansions in the nematode-trapping fungi were more similar to plant pathogens than to insect and animal pathogens. The observation of RIP activity in the Orbiliomycetes suggested that this mechanism was present early in the evolution of the filamentous ascomycetes.
Genomic Mechanisms Accounting for the Adaptation to Parasitism in Nematode-Trapping Fungi
Meerupati, Tejashwari; Andersson, Karl-Magnus; Friman, Eva; Kumar, Dharmendra; Tunlid, Anders; Ahrén, Dag
2013-01-01
Orbiliomycetes is one of the earliest diverging branches of the filamentous ascomycetes. The class contains nematode-trapping fungi that form unique infection structures, called traps, to capture and kill free-living nematodes. The traps have evolved differently along several lineages and include adhesive traps (knobs, nets or branches) and constricting rings. We show, by genome sequencing of the knob-forming species Monacrosporium haptotylum and comparison with the net-forming species Arthrobotrys oligospora, that two genomic mechanisms are likely to have been important for the adaptation to parasitism in these fungi. Firstly, the expansion of protein domain families and the large number of species-specific genes indicated that gene duplication followed by functional diversification had a major role in the evolution of the nematode-trapping fungi. Gene expression indicated that many of these genes are important for pathogenicity. Secondly, gene expression of orthologs between the two fungi during infection indicated that differential regulation was an important mechanism for the evolution of parasitism in nematode-trapping fungi. Many of the highly expressed and highly upregulated M. haptotylum transcripts during the early stages of nematode infection were species-specific and encoded small secreted proteins (SSPs) that were affected by repeat-induced point mutations (RIP). An active RIP mechanism was revealed by lack of repeats, dinucleotide bias in repeats and genes, low proportion of recent gene duplicates, and reduction of recent gene family expansions. The high expression and rapid divergence of SSPs indicate a striking similarity in the infection mechanisms of nematode-trapping fungi and plant and insect pathogens from the crown groups of the filamentous ascomycetes (Pezizomycotina). The patterns of gene family expansions in the nematode-trapping fungi were more similar to plant pathogens than to insect and animal pathogens. The observation of RIP activity in the Orbiliomycetes suggested that this mechanism was present early in the evolution of the filamentous ascomycetes. PMID:24244185
The Pathogenic Role of Low Range Repeats in SCA17.
Shin, Jung Hwan; Park, Hyeyoung; Ehm, Gwan Hee; Lee, Woong Woo; Yun, Ji Young; Kim, Young Eun; Lee, Jee-Young; Kim, Han-Joon; Kim, Jong-Min; Jeon, Beom Seok; Park, Sung-Sup
2015-01-01
SCA17 is an autosomal dominant cerebellar ataxia with expansion of the CAG/CAA trinucleotide repeats in the TATA-binding protein (TBP) gene. SCA17 can have various clinical presentations including parkinsonism, ataxia, chorea and dystonia. SCA17 is diagnosed by detecting the expanded CAG repeats in the TBP gene; however, in the literature, pathologic repeat numbers as low as 41 overlap with normal repeat numbers. The subjects in this study included patients with involuntary movement disorders such as cerebellar ataxia, parkinsonism, chorea and dystonia who visited Seoul National University Hospital between Jan. 2006 and Apr. 2014 and were screened for SCA17. Those who were diagnosed with other genetic diseases or nondegenerative diseases were excluded. DNA from healthy subjects who did not have a family history of parkinsonism, ataxia, psychiatric symptoms, chorea or dystonia served as the control. In total, 5242 chromosomes from 2099 patients and 522 normal controls were analyzed. The total number of patients included in the analysis was 2099 (parkinsonism, 1706; ataxia, 345; chorea, 37; and dystonia, 11). In the normal control, up to 44 repeats were found. In the 44 repeat group, there were 7 (0.3%) patients and 1 (0.2%) normal control. In 43 repeat group, there were 8 (0.4%) patients and 2 (0.4%) normal controls. In the 42 repeat group, there were 16 (0.8%) patients and 3 (0.6%) normal controls. In 41 repeat group, there were 48 (2.3%) patients and 8 (1.5%) normal controls. Considering the overlaps and non-significant differences in allelic frequencies between the patients and the normal controls with low-expansions, we could not determine a definitive cutoff value for the pathologic CAG repeat number of SCA17. Because the statistical analysis between the normal controls and patients with low range expansions failed to show any differences so far, we must consider that clinical cases with low range expansions could be idiopathic movement disorders showing coincidental CAG/CAA expansions. Thus, we need to reconsider the pathologic role of low range expansions (41-42). Long term follow up and comprehensive investigations using autopsy and imaging studies in patients and controls with low range expansions are necessary to determine the cutoff value for the pathologic CAG repeat number of SCA17.
Lattante, Serena; Le Ber, Isabelle; Galimberti, Daniela; Serpente, Maria; Rivaud-Péchoux, Sophie; Camuzat, Agnès; Clot, Fabienne; Fenoglio, Chiara; Scarpini, Elio; Brice, Alexis; Kabashi, Edor
2014-11-01
TMEM106B was identified as a risk factor for frontotemporal lobar degeneration (FTD) with TAR DNA-binding protein 43 kDa inclusions. It has been reported that variants in this gene are genetic modifiers of the disease and that this association is stronger in patients carrying a GRN mutation or a pathogenic expansion in chromosome 9 open reading frame 72 (C9orf72) gene. Here, we investigated the contribution of TMEM106B polymorphisms in cohorts of FTD and FTD with amyotrophic lateral sclerosis patients from France and Italy. Patients carrying the C9orf72 expansion (n = 145) and patients with GRN mutations (n = 76) were compared with a group of FTD patients (n = 384) negative for mutations and to a group of healthy controls (n = 552). In our cohorts, the presence of the C9orf72 expansion did not correlate with TMEM106B genotypes but the association was very strong in individuals with pathogenic GRN mutations (p = 9.54 × 10(-6)). Our data suggest that TMEM106B genotypes differ in FTD patient cohorts and strengthen the protective role of TMEM106B in GRN carriers. Further studies are needed to determine whether TMEM106B polymorphisms are associated with other genetic causes for FTD, including C9orf72 repeat expansions. Copyright © 2014 Elsevier Inc. All rights reserved.
Xu, Chao; Zhang, Rong; Sun, Guangyu; Gleason, Mark L
2017-11-01
Sooty blotch and flyspeck (SBFS) fungi are a distinctive group of plant pathogens which, although phylogenetically diverse, occupy an exclusively surface-dwelling niche. They cause economic losses by superficially blemishing the fruit of several tree crops, principally apple, in moist temperate regions worldwide. In this study, we performed genome-wide comparative analyses separately within three pairs of species of ascomycete pathogens; each pair contained an SBFS species as well as a closely related but plant-penetrating parasite (PPP) species. Our results showed that all three of the SBFS pathogens had significantly smaller genome sizes, gene numbers and repeat ratios than their counterpart PPPs. The pathogenicity-related genes encoding MFS transporters, secreted proteins (mainly effectors and peptidases), plant cell wall degrading enzymes, and secondary metabolism enzymes were also drastically reduced in the SBFS fungi compared with their PPP relatives. We hypothesize that the above differences in genome composition are due largely to different levels of acquisition, loss, expansion, and contraction of gene families and emergence of orphan genes. Furthermore, results suggested that horizontal gene transfer may have played a role, although limited, in the divergent evolutionary paths of SBFS pathogens and PPPs; repeat-induced point mutation could have inhibited the propagation of transposable elements and expansion of gene families in the SBFS group, given that this mechanism is stronger in the SBFS fungi than in their PPP relatives. These results substantially broaden understanding of evolutionary mechanisms of adaptation of fungi to the epicuticular niche of plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murat, Claude; Payen, Thibaut; Petitpierre, Denis
2013-01-01
In the last decade, the genome of several dozen filamentous fungi have been sequenced. Interestingly, vast diversity in genome size was observed (Fig. 2.1) with 14-fold differences between the 9 Mb of the human pathogenic dandruff fungus (Malassezia globosa; Xu, Saunders, et al., 2007) and the 125 Mb of the ectomycorrhizal black truffle of P rigord (Tuber melanosporum; Martin, Kohler, et al., 2010). Recently, Raffaele and Kamoun (2012) highlighted that the genomes of several lineages of filamentous plant pathogens have been shaped by repeat-driven expansion. Indeed, repeated elements are ubiquitous in all prokaryote and eukaryote genomes; however, their frequencies canmore » vary from just a minor percentage of the genome to more that 60 percent of the genome. Repeated elements can be classified in two major types: satellites DNA and transposable elements. In this chapter, the different types of repeated elements and how these elements can impact genome and gene repertoire will be described. Also, an intriguing link between the transposable elements richness and diversity and the ecological niche will be highlighted.« less
Origin, Spread and Demography of the Mycobacterium tuberculosis Complex
Wirth, Thierry; Hildebrand, Falk; Allix-Béguec, Caroline; Wölbeling, Florian; Kubica, Tanja; Kremer, Kristin; van Soolingen, Dick; Rüsch-Gerdes, Sabine; Locht, Camille; Brisse, Sylvain; Meyer, Axel
2008-01-01
The evolutionary timing and spread of the Mycobacterium tuberculosis complex (MTBC), one of the most successful groups of bacterial pathogens, remains largely unknown. Here, using mycobacterial tandem repeat sequences as genetic markers, we show that the MTBC consists of two independent clades, one composed exclusively of M. tuberculosis lineages from humans and the other composed of both animal and human isolates. The latter also likely derived from a human pathogenic lineage, supporting the hypothesis of an original human host. Using Bayesian statistics and experimental data on the variability of the mycobacterial markers in infected patients, we estimated the age of the MTBC at 40,000 years, coinciding with the expansion of “modern” human populations out of Africa. Furthermore, coalescence analysis revealed a strong and recent demographic expansion in almost all M. tuberculosis lineages, which coincides with the human population explosion over the last two centuries. These findings thus unveil the dynamic dimension of the association between human host and pathogen populations. PMID:18802459
Giunti, Paola; Mantuano, Elide; Frontali, Marina; Veneziano, Liana
2015-01-01
Spinocerebellar Ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease characterized by late onset, slowly progressive, mostly pure cerebellar ataxia. It is one of three allelic disorders associated to CACNA1A gene, coding for the Alpha1 A subunit of P/Q type calcium channel Cav2.1 expressed in the brain, particularly in the cerebellum. The other two disorders are Episodic Ataxia type 2 (EA2), and Familial Hemiplegic Migraine type 1 (FHM1). These disorders show distinct phenotypes that often overlap but have different pathogenic mechanisms. EA2 and FHM1 are due to mutations causing, respectively, a loss and a gain of channel function. SCA6, instead, is associated with short expansions of a polyglutamine stretch located in the cytoplasmic C-terminal tail of the protein. This domain has a relevant role in channel regulation, as well as in transcription regulation of other neuronal genes; thus the SCA6 CAG repeat expansion results in complex pathogenic molecular mechanisms reflecting the complex Cav2.1 C-terminus activity. We will provide a short review for an update on the SCA6 molecular mechanism. PMID:25762895
Pms2 Suppresses Large Expansions of the (GAA·TTC)n Sequence in Neuronal Tissues
Bourn, Rebecka L.; De Biase, Irene; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A.; Bidichandani, Sanjay I.
2012-01-01
Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)n sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)n sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)n sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)n sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)n sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway. PMID:23071719
Pms2 suppresses large expansions of the (GAA·TTC)n sequence in neuronal tissues.
Bourn, Rebecka L; De Biase, Irene; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A; Bidichandani, Sanjay I
2012-01-01
Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)(n) sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)(n) sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)(n) sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)(n) sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)(n) sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy
In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase ( DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecularmore » dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less
Ristic, Gorica; Sutton, Joanna R; Libohova, Kozeta; Todi, Sokol V
2018-04-26
Among the nine dominantly inherited, age-dependent neurodegenerative diseases caused by abnormal expansion in the polyglutamine (polyQ) repeat of otherwise unrelated proteins is Spinocerebellar Ataxia Type 3 (SCA3). SCA3 is caused by polyQ expansion in the deubiquitinase (DUB), ataxin-3. Molecular sequelae related to SCA3 remain unclear. Here, we sought to understand the role of protein context in SCA3 by focusing on the interaction between this DUB and Valosin-Containing Protein (VCP). VCP is bound directly by ataxin-3 through an arginine-rich area preceding the polyQ repeat. We examined the importance of this interaction in ataxin-3-dependent degeneration in Drosophila melanogaster. Our assays with new isogenic fly lines expressing pathogenic ataxin-3 with an intact or mutated VCP-binding site show that disrupting the ataxin-3-VCP interaction delays the aggregation of the toxic protein in vivo. Importantly, early on flies that express pathogenic ataxin-3 with a mutated VCP-binding site are indistinguishable from flies that do not express any SCA3 protein. Also, reducing levels of VCP through RNA-interference has a similar, protective effect to mutating the VCP-binding site of pathogenic ataxin-3. Based on in vivo pulse-chases, aggregated species of ataxin-3 are highly stable, in a manner independent of VCP-binding. Collectively, our results highlight an important role for the ataxin-3-VCP interaction in SCA3, based on a model that posits a seeding effect from VCP on pathogenic ataxin-3 aggregation and subsequent toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.
Batty, Elizabeth M; Chaemchuen, Suwittra; Blacksell, Stuart; Richards, Allen L; Paris, Daniel; Bowden, Rory; Chan, Caroline; Lachumanan, Ramkumar; Day, Nicholas; Donnelly, Peter; Chen, Swaine; Salje, Jeanne
2018-06-01
Orientia tsutsugamushi is a clinically important but neglected obligate intracellular bacterial pathogen of the Rickettsiaceae family that causes the potentially life-threatening human disease scrub typhus. In contrast to the genome reduction seen in many obligate intracellular bacteria, early genetic studies of Orientia have revealed one of the most repetitive bacterial genomes sequenced to date. The dramatic expansion of mobile elements has hampered efforts to generate complete genome sequences using short read sequencing methodologies, and consequently there have been few studies of the comparative genomics of this neglected species. We report new high-quality genomes of O. tsutsugamushi, generated using PacBio single molecule long read sequencing, for six strains: Karp, Kato, Gilliam, TA686, UT76 and UT176. In comparative genomics analyses of these strains together with existing reference genomes from Ikeda and Boryong strains, we identify a relatively small core genome of 657 genes, grouped into core gene islands and separated by repeat regions, and use the core genes to infer the first whole-genome phylogeny of Orientia. Complete assemblies of multiple Orientia genomes verify initial suggestions that these are remarkable organisms. They have larger genomes compared with most other Rickettsiaceae, with widespread amplification of repeat elements and massive chromosomal rearrangements between strains. At the gene level, Orientia has a relatively small set of universally conserved genes, similar to other obligate intracellular bacteria, and the relative expansion in genome size can be accounted for by gene duplication and repeat amplification. Our study demonstrates the utility of long read sequencing to investigate complex bacterial genomes and characterise genomic variation.
deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; ...
2014-10-10
In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase ( DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecularmore » dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less
Almeida, Maria Rosário; Letra, Liliana; Pires, Paula; Santos, Ana; Rebelo, Olinda; Guerreiro, Rita; van der Zee, Julie; Van Broeckhoven, Christine; Santana, Isabel
2016-04-01
The C9orf72 expansion is considered a major genetic cause of familial frontotemporal dementia (FTD) in several patients' cohorts. Interestingly, C9orf72 expansion carriers, present also abundant neuronal p62-positive inclusions. Although p62/SQSTM1 mutations were initially associated with Paget disease of bone (PDB), they have been also identified in FTD. We describe an FTD-PDB family in which the proband presented with behavioral FTD phenotype and concomitant Paget disease. The molecular genetic analysis revealed the co-occurrence of 2 mutations; the pathogenic C9orf72 expansion and p.P392L heterozygous missense mutation in SQSTM1 gene. Amongst the 6 family members analyzed, the p.P392L SQSTM1 mutation segregated as expected with PDB, whereas the C9orf72 expansion segregated with frontal cognitive impairment or dementia in all but one carrier. The coexistence of these conditions could be underestimated since neither patients with FTD nor patients with PDB undergo bone scintigraphy or cognitive assessment, respectively. The number of cases with double mutations could also be over looked as the molecular strategy adopted in most laboratories ends with the identification of one pathogenic mutation in one of the known causative genes. Therefore, we advocate for further clinical and molecular evaluation in suspect cases. Copyright © 2016 Elsevier Inc. All rights reserved.
Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes.
Lehti-Shiu, Melissa D; Zou, Cheng; Hanada, Kousuke; Shiu, Shin-Han
2009-05-01
Receptor-Like Kinase (RLK)/Pelle genes play roles ranging from growth regulation to defense response, and the dramatic expansion of this family has been postulated to be crucial for plant-specific adaptations. Despite this, little is known about the history of or the factors that contributed to the dramatic expansion of this gene family. In this study, we show that expansion coincided with the establishment of land plants and that RLK/Pelle subfamilies were established early in land plant evolution. The RLK/Pelle family expanded at a significantly higher rate than other kinases, due in large part to expansion of a few subfamilies by tandem duplication. Interestingly, these subfamilies tend to have members with known roles in defense response, suggesting that their rapid expansion was likely a consequence of adaptation to fast-evolving pathogens. Arabidopsis (Arabidopsis thaliana) expression data support the importance of RLK/Pelles in biotic stress response. We found that hundreds of RLK/Pelles are up-regulated by biotic stress. Furthermore, stress responsiveness is correlated with the degree of tandem duplication in RLK/Pelle subfamilies. Our findings suggest a link between stress response and tandem duplication and provide an explanation for why a large proportion of the RLK/Pelle gene family is found in tandem repeats. In addition, our findings provide a useful framework for potentially predicting RLK/Pelle stress functions based on knowledge of expansion pattern and duplication mechanism. Finally, we propose that the detection of highly variable molecular patterns associated with specific pathogens/parasites is the main reason for the up-regulation of hundreds of RLK/Pelles under biotic stress.
Chen, X B; Velicer, L F
1991-01-01
Marek's disease is an oncogenic disease of chickens caused by a herpesvirus, Marek's disease virus (MDV). Serial in vitro passage of pathogenic MDV results in amplification of a 132-bp direct repeat in the MDV genome's TRL and IRL repeat regions and loss of tumorigenicity. This led to the hypothesis that upon such expansion, one or more tumor-inducing genes fail to be expressed. In this report a group of cDNAs mapping in the expanded regions were isolated from a pathogenic MDV strain in which the 132-bp direct repeat number was found to range between one and seven. Partial cDNA sequencing and S1 nuclease protection analysis revealed that the corresponding transcripts are either initiated or terminated within or near the expanded regions at multiple sites in both rightward and leftward directions. Furthermore, each 132-bp repeat contains one TATA box and two polyadenylation consensus sequences in each direction. These RNAs contain a partial copy or one or more full copies of the 132-bp direct repeat at either their 5' or 3' end. Northern (RNA) blot analysis showed that the majority of transcripts are 1.8 kb in size, while the minor species range in size from 0.67 to 3.1 kb. Together, these data raise the possibility that the 132-bp direct repeat, and indirectly its copy number, may be involved in the regulation of transcriptional initiation and termination and therefore in the generation of four groups of transcripts from the TRL and IRL, although this remains to be demonstrated. Images PMID:1850022
DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells.
Halabi, Anasheh; Ditch, Scott; Wang, Jeffrey; Grabczyk, Ed
2012-08-24
While DNA repair has been implicated in CAG·CTG repeat expansion, its role in the GAA·TTC expansion of Friedreich ataxia (FRDA) is less clear. We have developed a human cellular model that recapitulates the DNA repeat expansion found in FRDA patient tissues. In this model, GAA·TTC repeats expand incrementally and continuously. We have previously shown that the expansion rate is linked to transcription within the repeats. Our working hypothesis is that structures formed within the GAA·TTC repeat during transcription attract DNA repair enzymes that then facilitate the expansion process. MutSβ, a heterodimer of MSH2 and MSH3, is known to have a role in CAG·CTG repeat expansion. We now show that shRNA knockdown of either MSH2 or MSH3 slowed GAA·TTC expansion in our system. We further characterized the role of MutSβ in GAA·TTC expansion using a functional assay in primary FRDA patient-derived fibroblasts. These fibroblasts have no known propensity for instability in their native state. Ectopic expression of MSH2 and MSH3 induced GAA·TTC repeat expansion in the native FXN gene. MSH2 is central to mismatch repair and its absence or reduction causes a predisposition to cancer. Thus, despite its essential role in GAA·TTC expansion, MSH2 is not an attractive therapeutic target. The absence or reduction of MSH3 is not strongly associated with cancer predisposition. Accordingly, MSH3 has been suggested as a therapeutic target for CAG·CTG repeat expansion disorders. Our results suggest that MSH3 may also serve as a therapeutic target to slow the expansion of GAA·TTC repeats in the future.
DNA Mismatch Repair Complex MutSβ Promotes GAA·TTC Repeat Expansion in Human Cells*
Halabi, Anasheh; Ditch, Scott; Wang, Jeffrey; Grabczyk, Ed
2012-01-01
While DNA repair has been implicated in CAG·CTG repeat expansion, its role in the GAA·TTC expansion of Friedreich ataxia (FRDA) is less clear. We have developed a human cellular model that recapitulates the DNA repeat expansion found in FRDA patient tissues. In this model, GAA·TTC repeats expand incrementally and continuously. We have previously shown that the expansion rate is linked to transcription within the repeats. Our working hypothesis is that structures formed within the GAA·TTC repeat during transcription attract DNA repair enzymes that then facilitate the expansion process. MutSβ, a heterodimer of MSH2 and MSH3, is known to have a role in CAG·CTG repeat expansion. We now show that shRNA knockdown of either MSH2 or MSH3 slowed GAA·TTC expansion in our system. We further characterized the role of MutSβ in GAA·TTC expansion using a functional assay in primary FRDA patient-derived fibroblasts. These fibroblasts have no known propensity for instability in their native state. Ectopic expression of MSH2 and MSH3 induced GAA·TTC repeat expansion in the native FXN gene. MSH2 is central to mismatch repair and its absence or reduction causes a predisposition to cancer. Thus, despite its essential role in GAA·TTC expansion, MSH2 is not an attractive therapeutic target. The absence or reduction of MSH3 is not strongly associated with cancer predisposition. Accordingly, MSH3 has been suggested as a therapeutic target for CAG·CTG repeat expansion disorders. Our results suggest that MSH3 may also serve as a therapeutic target to slow the expansion of GAA·TTC repeats in the future. PMID:22787155
Boyer, Karine; Leduc, Alice; Tourterel, Christophe; Drevet, Christine; Ravigné, Virginie; Gagnevin, Lionel; Guérin, Fabien; Chiroleu, Frédéric; Koebnik, Ralf; Verdier, Valérie; Vernière, Christian
2014-01-01
MultiLocus Variable number of tandem repeat Analysis (MLVA) has been extensively used to examine epidemiological and evolutionary issues on monomorphic human pathogenic bacteria, but not on bacterial plant pathogens of agricultural importance albeit such tools would improve our understanding of their epidemiology, as well as of the history of epidemics on a global scale. Xanthomonas citri pv. citri is a quarantine organism in several countries and a major threat for the citrus industry worldwide. We screened the genomes of Xanthomonas citri pv. citri strain IAPAR 306 and of phylogenetically related xanthomonads for tandem repeats. From these in silico data, an optimized MLVA scheme was developed to assess the global diversity of this monomorphic bacterium. Thirty-one minisatellite loci (MLVA-31) were selected to assess the genetic structure of 129 strains representative of the worldwide pathological and genetic diversity of X. citri pv. citri. Based on Discriminant Analysis of Principal Components (DAPC), four pathotype-specific clusters were defined. DAPC cluster 1 comprised strains that were implicated in the major geographical expansion of X. citri pv. citri during the 20th century. A subset of 12 loci (MLVA-12) resolved 89% of the total diversity and matched the genetic structure revealed by MLVA-31. MLVA-12 is proposed for routine epidemiological identification of X. citri pv. citri, whereas MLVA-31 is proposed for phylogenetic and population genetics studies. MLVA-31 represents an opportunity for international X. citri pv. citri genotyping and data sharing. The MLVA-31 data generated in this study was deposited in the Xanthomonas citri genotyping database (http://www.biopred.net/MLVA/). PMID:24897119
Zhang, Yong-Jie; Jansen-West, Karen; Xu, Ya-Fei; Gendron, Tania F; Bieniek, Kevin F; Lin, Wen-Lang; Sasaguri, Hiroki; Caulfield, Thomas; Hubbard, Jaime; Daughrity, Lillian; Chew, Jeannie; Belzil, Veronique V; Prudencio, Mercedes; Stankowski, Jeannette N; Castanedes-Casey, Monica; Whitelaw, Ena; Ash, Peter E A; DeTure, Michael; Rademakers, Rosa; Boylan, Kevin B; Dickson, Dennis W; Petrucelli, Leonard
2014-10-01
The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the "c9RAN proteins" thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases.
PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats.
Yu, Zhenming; Zhu, Yongqing; Chen-Plotkin, Alice S; Clay-Falcone, Dana; McCluskey, Leo; Elman, Lauren; Kalb, Robert G; Trojanowski, John Q; Lee, Virginia M-Y; Van Deerlin, Vivianna M; Gitler, Aaron D; Bonini, Nancy M
2011-03-29
Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27-33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥ 34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1-3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2.
Ezzatizadeh, Vahid; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; Te Riele, Hein; Pook, Mark A
2012-04-01
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions. Copyright © 2012 Elsevier Inc. All rights reserved.
Ezzatizadeh, Vahid; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; te Riele, Hein; Pook, Mark A.
2013-01-01
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions. PMID:22289650
Statistical Enrichment of Epigenetic States Around Triplet Repeats that Can Undergo Expansions
Essebier, Alexandra; Vera Wolf, Patricia; Cao, Minh Duc; Carroll, Bernard J.; Balasubramanian, Sureshkumar; Bodén, Mikael
2016-01-01
More than 30 human genetic diseases are linked to tri-nucleotide repeat expansions. There is no known mechanism that explains repeat expansions in full, but changes in the epigenetic state of the associated locus has been implicated in the disease pathology for a growing number of examples. A comprehensive comparative analysis of the genomic features associated with diverse repeat expansions has been lacking. Here, in an effort to decipher the propensity of repeats to undergo expansion and result in a disease state, we determine the genomic coordinates of tri-nucleotide repeat tracts at base pair resolution and computationally establish epigenetic profiles around them. Using three complementary statistical tests, we reveal that several epigenetic states are enriched around repeats that are associated with disease, even in cells that do not harbor expansion, relative to a carefully stratified background. Analysis of over one hundred cell types reveals that epigenetic states generally tend to vary widely between genic regions and cell types. However, there is qualified consistency in the epigenetic signatures of repeats associated with disease suggesting that changes to the chromatin and the DNA around an expanding repeat locus are likely to be similar. These epigenetic signatures may be exploited further to develop models that could explain the propensity of repeats to undergo expansions. PMID:27013954
C9ORF72 repeat expansion in Australian and Spanish frontotemporal dementia patients.
Dobson-Stone, Carol; Hallupp, Marianne; Loy, Clement T; Thompson, Elizabeth M; Haan, Eric; Sue, Carolyn M; Panegyres, Peter K; Razquin, Cristina; Seijo-Martínez, Manuel; Rene, Ramon; Gascon, Jordi; Campdelacreu, Jaume; Schmoll, Birgit; Volk, Alexander E; Brooks, William S; Schofield, Peter R; Pastor, Pau; Kwok, John B J
2013-01-01
A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in 'non-expansion' patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5-17% of patients (21-41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine 'expansion-positive' patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an 'intermediate' allele with a mean size of only ∼65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of 'non-expansion' FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ∼65 repeats may be sufficient to cause disease.
C9orf72 repeat expansions in rapid eye movement sleep behaviour disorder.
Daoud, Hussein; Postuma, Ronald B; Bourassa, Cynthia V; Rochefort, Daniel; Gauthier, Maude Turcotte; Montplaisir, Jacques; Gagnon, Jean-Francois; Arnulf, Isabelle; Dauvilliers, Yves; Charley, Christelle Monaca; Inoue, Yuichi; Sasai, Taeko; Högl, Birgit; Desautels, Alex; Frauscher, Birgit; Cochen De Cock, Valérie; Rouleau, Guy A; Dion, Patrick A
2014-11-01
A large hexanucleotide repeat expansion in C9orf72 has been identified as the most common genetic cause in familial amyotrophic lateral sclerosis and frontotemporal dementia. Rapid Eye Movement Sleep Behavior Disorder (RBD) is a sleep disorder that has been strongly linked to synuclein-mediated neurodegeneration. The aim of this study was to evaluate the role of the C9orf72 expansions in the pathogenesis of RBD. We amplified the C9orf72 repeat expansion in 344 patients with RBD by a repeat-primed polymerase chain reaction assay. We identified two RBD patients carrying the C9orf72 repeat expansion. Most interestingly, these patients have the same C9orf72 associated-risk haplotype identified in 9p21-linked amyotrophic lateral sclerosis and frontotemporal dementia families. Our study enlarges the phenotypic spectrum associated with the C9orf72 hexanucleotide repeat expansions and suggests that, although rare, this expansion may play a role in the pathogenesis of RBD.
RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility
Frizzell, Aisling; Nguyen, Jennifer H.G.; Petalcorin, Mark I.R.; Turner, Katherine D.; Boulton, Simon J.; Freudenreich, Catherine H.; Lahue, Robert S.
2018-01-01
SUMMARY Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG·CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG·CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. PMID:24561255
RTEL1 inhibits trinucleotide repeat expansions and fragility.
Frizzell, Aisling; Nguyen, Jennifer H G; Petalcorin, Mark I R; Turner, Katherine D; Boulton, Simon J; Freudenreich, Catherine H; Lahue, Robert S
2014-03-13
Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Gijselinck, Ilse; Van Langenhove, Tim; van der Zee, Julie; Sleegers, Kristel; Philtjens, Stéphanie; Kleinberger, Gernot; Janssens, Jonathan; Bettens, Karolien; Van Cauwenberghe, Caroline; Pereson, Sandra; Engelborghs, Sebastiaan; Sieben, Anne; De Jonghe, Peter; Vandenberghe, Rik; Santens, Patrick; De Bleecker, Jan; Maes, Githa; Bäumer, Veerle; Dillen, Lubina; Joris, Geert; Cuijt, Ivy; Corsmit, Ellen; Elinck, Ellen; Van Dongen, Jasper; Vermeulen, Steven; Van den Broeck, Marleen; Vaerenberg, Carolien; Mattheijssens, Maria; Peeters, Karin; Robberecht, Wim; Cras, Patrick; Martin, Jean-Jacques; De Deyn, Peter P; Cruts, Marc; Van Broeckhoven, Christine
2012-01-01
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are extremes of a clinically, pathologically, and genetically overlapping disease spectrum. A locus on chromosome 9p21 has been associated with both disorders, and we aimed to identify the causal gene within this region. We studied 305 patients with FTLD, 137 with ALS, and 23 with concomitant FTLD and ALS (FTLD-ALS) and 856 controls from Flanders (Belgium); patients were identified from a hospital-based cohort and were negative for mutations in known FTLD and ALS genes. We also examined the family of one patient with FTLD-ALS previously linked to 9p21 (family DR14). We analysed 130 kbp at 9p21 in association and segregation studies, genomic sequencing, repeat genotyping, and expression studies to identify the causal mutation. We compared genotype-phenotype correlations between mutation carriers and non-carriers. In the patient-control cohort, the single-nucleotide polymorphism rs28140707 within the 130 kbp region of 9p21 was associated with disease (odds ratio [OR] 2·6, 95% CI 1·5-4·7; p=0·001). A GGGGCC repeat expansion in C9orf72 completely co-segregated with disease in family DR14. The association of rs28140707 with disease in the patient-control cohort was abolished when we excluded GGGGCC repeat expansion carriers. In patients with familial disease, six (86%) of seven with FTLD-ALS, seven (47%) of 15 with ALS, and 12 (16%) of 75 with FTLD had the repeat expansion. In patients without known familial disease, one (6%) of 16 with FTLD-ALS, six (5%) of 122 with ALS, and nine (4%) of 230 with FTLD had the repeat expansion. Mutation carriers primarily presented with classic ALS (10 of 11 individuals) or behavioural variant FTLD (14 of 15 individuals). Mean age at onset of FTLD was 55·3 years (SD 8·4) in 21 mutation carriers and 63·2 years (9·6) in 284 non-carriers (p=0·001); mean age at onset of ALS was 54·5 years (9·9) in 13 carriers and 60·4 years (11·4) in 124 non-carriers. Postmortem neuropathological analysis of the brains of three mutation carriers with FTLD showed a notably low TDP-43 load. In brain at postmortem, C9orf72 expression was reduced by nearly 50% in two carriers compared with nine controls (p=0·034). In familial patients, 14% of FTLD-ALS, 50% of ALS, and 62% of FTLD was not accounted for by known disease genes. We identified a pathogenic GGGGCC repeat expansion in C9orf72 on chromosome 9p21, as recently also reported in two other studies. The GGGGCC repeat expansion is highly penetrant, explaining all of the contribution of chromosome 9p21 to FTLD and ALS in the Flanders-Belgian cohort. Decreased expression of C9orf72 in brain suggests haploinsufficiency as an underlying disease mechanism. Unidentified genes probably also contribute to the FTLD-ALS disease spectrum. Full funding sources listed at end of paper (see Acknowledgments). Copyright © 2012 Elsevier Ltd. All rights reserved.
Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17.
Gao, Rui; Matsuura, Tohru; Coolbaugh, Mary; Zühlke, Christine; Nakamura, Koichiro; Rasmussen, Astrid; Siciliano, Michael J; Ashizawa, Tetsuo; Lin, Xi
2008-02-01
Trinucleotide repeat expansions are dynamic mutations causing many neurological disorders, and their instability is influenced by multiple factors. Repeat configuration seems particularly important, and pure repeats are thought to be more unstable than interrupted repeats. But direct evidence is still lacking. Here, we presented strong support for this hypothesis from our studies on spinocerebellar ataxia type 17 (SCA17). SCA17 is a typical polyglutamine disease caused by CAG repeat expansion in TBP (TATA binding protein), and is unique in that the pure expanded polyglutamine tract is coded by either a simple configuration with long stretches of pure CAGs or a complex configuration containing CAA interruptions. By small pool PCR (SP-PCR) analysis of blood DNA from SCA17 patients of distinct racial backgrounds, we quantitatively assessed the instability of these two types of expanded alleles coding similar length of polyglutamine expansion. Mutation frequency in patients harboring pure CAG repeats is 2-3 folds of those with CAA interruptions. Interestingly, the pure CAG repeats showed both expansion and deletion while the interrupted repeats exhibited mostly deletion at a significantly lower frequency. These data strongly suggest that repeat configuration is a critical determinant for instability, and CAA interruptions might serve as a limiting element for further expansion of CAG repeats in SCA17 locus, suggesting a molecular basis for lack of anticipation in SCA17 families with interrupted CAG expansion.
C9ORF72 Repeat Expansion in Australian and Spanish Frontotemporal Dementia Patients
Dobson-Stone, Carol; Hallupp, Marianne; Loy, Clement T.; Thompson, Elizabeth M.; Haan, Eric; Sue, Carolyn M.; Panegyres, Peter K.; Razquin, Cristina; Seijo-Martínez, Manuel; Rene, Ramon; Gascon, Jordi; Campdelacreu, Jaume; Schmoll, Birgit; Volk, Alexander E.; Brooks, William S.; Schofield, Peter R.; Pastor, Pau; Kwok, John B. J.
2013-01-01
A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in ‘non-expansion’ patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5–17% of patients (21–41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine ‘expansion-positive’ patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an ‘intermediate’ allele with a mean size of only ∼65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of ‘non-expansion’ FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ∼65 repeats may be sufficient to cause disease. PMID:23437264
MutLα Heterodimers Modify the Molecular Phenotype of Friedreich Ataxia
Ezzatizadeh, Vahid; Sandi, Chiranjeevi; Sandi, Madhavi; Anjomani-Virmouni, Sara; Al-Mahdawi, Sahar; Pook, Mark A.
2014-01-01
Background Friedreich ataxia (FRDA), the most common autosomal recessive ataxia disorder, is caused by a dynamic GAA repeat expansion mutation within intron 1 of FXN gene, resulting in down-regulation of frataxin expression. Studies of cell and mouse models have revealed a role for the mismatch repair (MMR) MutS-heterodimer complexes and the PMS2 component of the MutLα complex in the dynamics of intergenerational and somatic GAA repeat expansions: MSH2, MSH3 and MSH6 promote GAA repeat expansions, while PMS2 inhibits GAA repeat expansions. Methodology/Principal Findings To determine the potential role of the other component of the MutLα complex, MLH1, in GAA repeat instability in FRDA, we have analyzed intergenerational and somatic GAA repeat expansions from FXN transgenic mice that have been crossed with Mlh1 deficient mice. We find that loss of Mlh1 activity reduces both intergenerational and somatic GAA repeat expansions. However, we also find that loss of either Mlh1 or Pms2 reduces FXN transcription, suggesting different mechanisms of action for Mlh1 and Pms2 on GAA repeat expansion dynamics and regulation of FXN transcription. Conclusions/Significance Both MutLα components, PMS2 and MLH1, have now been shown to modify the molecular phenotype of FRDA. We propose that upregulation of MLH1 or PMS2 could be potential FRDA therapeutic approaches to increase FXN transcription. PMID:24971578
Byrne, Susan; Elamin, Marwa; Bede, Peter; Shatunov, Aleksey; Walsh, Cathal; Corr, Bernie; Heverin, Mark; Jordan, Norah; Kenna, Kevin; Lynch, Catherine; McLaughlin, Russell L; Iyer, Parameswaran Mahadeva; O'Brien, Caoimhe; Phukan, Julie; Wynne, Brona; Bokde, Arun L; Bradley, Daniel G; Pender, Niall; Al-Chalabi, Ammar; Hardiman, Orla
2012-03-01
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of upper and lower motor neurons, associated with frontotemporal dementia (FTD) in about 14% of incident cases. We assessed the frequency of the recently identified C9orf72 repeat expansion in familial and apparently sporadic cases of ALS and characterised the cognitive and clinical phenotype of patients with this expansion. A population-based register of patients with ALS has been in operation in Ireland since 1995, and an associated DNA bank has been in place since 1999. 435 representative DNA samples from the bank were screened using repeat-primed PCR for the presence of a GGGGCC repeat expansion in C9orf72. We assessed clinical, cognitive, behavioural, MRI, and survival data from 191 (44%) of these patients, who comprised a population-based incident group and had previously participated in a longitudinal study of cognitive and behavioural changes in ALS. Samples from the DNA bank included 49 cases of known familial ALS and 386 apparently sporadic cases. Of these samples, 20 (41%) cases of familial ALS and 19 (5%) cases of apparently sporadic ALS had the C9orf72 repeat expansion. Of the 191 patients for whom phenotype data were available, 21 (11%) had the repeat expansion. Age at disease onset was lower in patients with the repeat expansion (mean 56·3 [SD 8·3] years) than in those without (61·3 [10·6] years; p=0·043). A family history of ALS or FTD was present in 18 (86%) of those with the repeat expansion. Patients with the repeat expansion had significantly more co-morbid FTD than patients without the repeat (50%vs 12%), and a distinct pattern of non-motor cortex changes on high-resolution 3 T magnetic resonance structural neuroimaging. Age-matched univariate analysis showed shorter survival (20 months vs 26 months) in patients with the repeat expansion. Multivariable analysis showed an increased hazard rate of 1·9 (95% 1·1-3·7; p=0·035) in those patients with the repeat expansion compared with patients without the expansion Patients with ALS and the C9orf72 repeat expansion seem to present a recognisable phenotype characterised by earlier disease onset, the presence of cognitive and behavioural impairment, specific neuroimaging changes, a family history of neurodegeneration with autosomal dominant inheritance, and reduced survival. Recognition of patients with ALS who carry an expanded repeat is likely to be important in the context of appropriate disease management, stratification in clinical trials, and in recognition of other related phenotypes in family members. Health Seventh Framework Programme, Health Research Board, Research Motor Neuron, Irish Motor Neuron Disease Association, The Motor Neurone Disease Association of Great Britain and Northern Ireland, ALS Association. Copyright © 2012 Elsevier Ltd. All rights reserved.
From Pathways to Targets: Understanding the Mechanisms behind Polyglutamine Disease
Weber, Jonasz Jeremiasz; Sowa, Anna Sergeevna
2014-01-01
The history of polyglutamine diseases dates back approximately 20 years to the discovery of a polyglutamine repeat in the androgen receptor of SBMA followed by the identification of similar expansion mutations in Huntington's disease, SCA1, DRPLA, and the other spinocerebellar ataxias. This common molecular feature of polyglutamine diseases suggests shared mechanisms in disease pathology and neurodegeneration of disease specific brain regions. In this review, we discuss the main pathogenic pathways including proteolytic processing, nuclear shuttling and aggregation, mitochondrial dysfunction, and clearance of misfolded polyglutamine proteins and point out possible targets for treatment. PMID:25309920
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranum, L.P.W.; Gomez, C.; Orr, H.T.
1995-09-01
The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia, we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 andmore » MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% have SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively. 30 refs., 1 fig., 3 tabs.« less
Disease-associated repeat instability and mismatch repair.
Schmidt, Monika H M; Pearson, Christopher E
2016-02-01
Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological, neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring transmission, and arise at variable rates in specific tissues throughout the life of an affected individual. Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression, targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, including: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR, now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures have been detected in patient tissues, and the size of the slip-out and their junction conformation can determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop structures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, naturally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An increasing grasp of these factors holds prognostic and therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.
Keogh, Michael J; Wei, Wei; Wilson, Ian; Coxhead, Jon; Ryan, Sarah; Rollinson, Sara; Griffin, Helen; Kurzawa-Akanbi, Marzena; Santibanez-Koref, Mauro; Talbot, Kevin; Turner, Martin R; McKenzie, Chris-Anne; Troakes, Claire; Attems, Johannes; Smith, Colin; Al Sarraj, Safa; Morris, Chris M; Ansorge, Olaf; Pickering-Brown, Stuart; Ironside, James W; Chinnery, Patrick F
2017-01-01
Given the central role of genetic factors in the pathogenesis of common neurodegenerative disorders, it is critical that mechanistic studies in human tissue are interpreted in a genetically enlightened context. To address this, we performed exome sequencing and copy number variant analysis on 1511 frozen human brains with a diagnosis of Alzheimer's disease (AD, n = 289), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS, n = 252), Creutzfeldt-Jakob disease (CJD, n = 239), Parkinson's disease (PD, n = 39), dementia with Lewy bodies (DLB, n = 58), other neurodegenerative, vascular, or neurogenetic disorders (n = 266), and controls with no significant neuropathology (n = 368). Genomic DNA was extracted from brain tissue in all cases before exome sequencing (Illumina Nextera 62 Mb capture) with variants called by FreeBayes; copy number variant (CNV) analysis (Illumina HumanOmniExpress-12 BeadChip); C9orf72 repeat expansion detection; and APOE genotyping. Established or likely pathogenic heterozygous, compound heterozygous, or homozygous variants, together with the C9orf72 hexanucleotide repeat expansions and a copy number gain of APP, were found in 61 brains. In addition to known risk alleles in 349 brains (23.9% of 1461 undergoing exome sequencing), we saw an association between rare variants in GRN and DLB. Rare CNVs were found in <1.5% of brains, including copy number gains of PRPH that were overrepresented in AD. Clinical, pathological, and genetic data are available, enabling the retrieval of specific frozen brains through the UK Medical Research Council Brain Banks Network. This allows direct access to pathological and control human brain tissue based on an individual's genetic architecture, thus enabling the functional validation of known genetic risk factors and potentially pathogenic alleles identified in future studies. © 2017 Keogh et al.; Published by Cold Spring Harbor Laboratory Press.
Foiry, Laurent; Dong, Li; Savouret, Cédric; Hubert, Laurence; te Riele, Hein; Junien, Claudine; Gourdon, Geneviève
2006-06-01
The CTG repeat involved in myotonic dystrophy is one of the most unstable trinucleotide repeats. However, the molecular mechanisms underlying this particular form of genetic instability-biased towards expansions-have not yet been completely elucidated. We previously showed, with highly unstable CTG repeat arrays in DM1 transgenic mice, that Msh2 is required for the formation of intergenerational and somatic expansions. To identify the partners of Msh2 in the formation of intergenerational CTG repeat expansions, we investigated the involvement of Msh3 and Msh6, partners of Msh2 in mismatch repair. Transgenic mice with CTG expansions were crossed with Msh3- or Msh6-deficient mice and CTG repeats were analysed after maternal and paternal transmissions. We demonstrated that Msh3 but not Msh6 plays also a key role in the formation of expansions over successive generation. Furthermore, the absence of one Msh3 allele was sufficient to decrease the formation of expansions, indicating that Msh3 is rate-limiting in this process. In the absence of Msh6, the frequency of expansions decreased only in maternal transmissions. However, the significantly lower levels of Msh2 and Msh3 proteins in Msh6 -/- ovaries suggest that the absence of Msh6 may have an indirect effect.
MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells
Gannon, Anne-Marie M.; Frizzell, Aisling; Healy, Evan; Lahue, Robert S.
2012-01-01
Trinucleotide repeat (TNR) expansions cause at least 17 heritable neurological diseases, including Huntington’s disease. Expansions are thought to arise from abnormal processing of TNR DNA by specific trans-acting proteins. For example, the DNA repair complex MutSβ (MSH2–MSH3 heterodimer) is required in mice for on-going expansions of long, disease-causing alleles. A distinctive feature of TNR expansions is a threshold effect, a narrow range of repeat units (∼30–40 in humans) at which mutation frequency rises dramatically and disease can initiate. The goal of this study was to identify factors that promote expansion of threshold-length CTG•CAG repeats in a human astrocytic cell line. siRNA knockdown of the MutSβ subunits MSH2 or MSH3 impeded expansions of threshold-length repeats, while knockdown of the MutSα subunit MSH6 had no effect. Chromatin immunoprecipitation experiments indicated that MutSβ, but not MutSα, was enriched at the TNR. These findings imply a direct role for MutSβ in promoting expansion of threshold-length CTG•CAG tracts. We identified the class II deacetylase HDAC5 as a novel promoting factor for expansions, joining the class I deacetylase HDAC3 that was previously identified. Double knockdowns were consistent with the possibility that MutSβ, HDAC3 and HDAC5 act through a common pathway to promote expansions of threshold-length TNRs. PMID:22941650
Zhao, Xiao-Nan; Kumari, Daman; Gupta, Shikha; Wu, Di; Evanitsky, Maya; Yang, Wei; Usdin, Karen
2015-01-01
Fragile X-associated disorders are Repeat Expansion Diseases that result from expansion of a CGG/CCG-repeat in the FMR1 gene. Contractions of the repeat tract also occur, albeit at lower frequency. However, these contractions can potentially modulate disease symptoms or generate an allele with repeat numbers in the normal range. Little is known about the expansion mechanism and even less about contractions. We have previously demonstrated that the mismatch repair (MMR) protein MSH2 is required for expansions in a mouse model of these disorders. Here, we show that MSH3, the MSH2-binding partner in the MutSβ complex, is required for 98% of germ line expansions and all somatic expansions in this model. In addition, we provide evidence for two different contraction mechanisms that operate in the mouse model, a MutSβ-independent one that generates small contractions and a MutSβ-dependent one that generates larger ones. We also show that MutSβ complexes formed with the repeats have altered kinetics of ATP hydrolysis relative to complexes with bona fide MMR substrates and that MutSβ increases the stability of the CCG-hairpins at physiological temperatures. These data may have important implications for our understanding of the mechanism(s) of repeat instability and for the role of MMR proteins in this process. PMID:26420841
Abramyan, John; Stajich, Jason E
2012-01-01
Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide spread and associated decline in amphibian populations, it is imperative to incorporate novel genomic and genetic techniques into the study of this species. In this study, we present the first reported potential pathogenicity factors in B. dendrobatidis. In silico studies such as this allow us to identify putative targets for more specific molecular analyses, furthering our hope for the control of this pathogen.
Triplet repeat expansion at the FRAXE locus and X-linked mild mental handicap.
Knight, S. J.; Voelckel, M. A.; Hirst, M. C.; Flannery, A. V.; Moncla, A.; Davies, K. E.
1994-01-01
We have recently shown that the expression of the FRAXE fragile site in Xq28 is associated with the expansion of a GCC trinucleotide repeat. In the families studied, FRAXE expression is also associated with mild mental handicap. Here we present data on families that previously had been diagnosed as having the fragile X syndrome but that later were found to be negative for trinucleotide repeat expansion at the FRAXA locus. In these families we demonstrate the presence of a GCC trinucleotide repeat expansion at the FRAXE locus. Studies of the FRAXE locus of normal individuals show that they have 6-25 copies of the repeat, whereas affected individuals have > 200 copies. As in the fragile X syndrome, the amplified CpG residues are methylated in affected males. Images Figure 2 Figure 3 Figure 4 PMID:8023854
Prefoldin Protects Neuronal Cells from Polyglutamine Toxicity by Preventing Aggregation Formation*
Tashiro, Erika; Zako, Tamotsu; Muto, Hideki; Itoo, Yoshinori; Sörgjerd, Karin; Terada, Naofumi; Abe, Akira; Miyazawa, Makoto; Kitamura, Akira; Kitaura, Hirotake; Kubota, Hiroshi; Maeda, Mizuo; Momoi, Takashi; Iguchi-Ariga, Sanae M. M.; Kinjo, Masataka; Ariga, Hiroyoshi
2013-01-01
Huntington disease is caused by cell death after the expansion of polyglutamine (polyQ) tracts longer than ∼40 repeats encoded by exon 1 of the huntingtin (HTT) gene. Prefoldin is a molecular chaperone composed of six subunits, PFD1–6, and prevents misfolding of newly synthesized nascent polypeptides. In this study, we found that knockdown of PFD2 and PFD5 disrupted prefoldin formation in HTT-expressing cells, resulting in accumulation of aggregates of a pathogenic form of HTT and in induction of cell death. Dead cells, however, did not contain inclusions of HTT, and analysis by a fluorescence correlation spectroscopy indicated that knockdown of PFD2 and PFD5 also increased the size of soluble oligomers of pathogenic HTT in cells. In vitro single molecule observation demonstrated that prefoldin suppressed HTT aggregation at the small oligomer (dimer to tetramer) stage. These results indicate that prefoldin inhibits elongation of large oligomers of pathogenic Htt, thereby inhibiting subsequent inclusion formation, and suggest that soluble oligomers of polyQ-expanded HTT are more toxic than are inclusion to cells. PMID:23720755
Landrian, Ivette; McFarland, Karen N; Liu, Jilin; Mulligan, Connie J; Rasmussen, Astrid; Ashizawa, Tetsuo
2017-01-01
Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia disorder, is caused by a non-coding ATTCT microsatellite repeat expansion in the ataxin 10 gene. In a subset of SCA10 families, the 5'-end of the repeat expansion contains a complex sequence of penta- and heptanucleotide interruption motifs which is followed by a pure tract of tandem ATCCT repeats of unknown length at its 3'-end. Intriguingly, expansions that carry these interruption motifs correlate with an epileptic seizure phenotype and are unstable despite the theory that interruptions are expected to stabilize expanded repeats. To examine the apparent contradiction of unstable, interruption-positive SCA10 expansion alleles and to determine whether the instability originates outside of the interrupted region, we sequenced approximately 1 kb of the 5'-end of SCA10 expansions using the ATCCT-PCR product in individuals across multiple generations from four SCA10 families. We found that the greatest instability within this region occurred in paternal transmissions of the allele in stretches of pure ATTCT motifs while the intervening interrupted sequences were stable. Overall, the ATCCT interruption changes by only one to three repeat units and therefore cannot account for the instability across the length of the disease allele. We conclude that the AT-rich interruptions locally stabilize the SCA10 expansion at the 5'-end but do not completely abolish instability across the entire span of the expansion. In addition, analysis of the interruption alleles across these families support a parsimonious single origin of the mutation with a shared distant ancestor.
Triplet repeat expansion at the FRAXE locus and x-linked mild mental handicap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, S.J.L.; Hirst, M.C.; Flannery, A.V.
1994-07-01
The authors have recently shown that the expression of the FRAXE fragile site in Xq28 is associated with expansion of a GCC trinucleotide repeat. In the families studied, FRAXE expression is also associated with mild mental handicap. Here they present data on families that previously had been diagnosed as having the fragile X syndrome but that later were found to be negative for trinucleotide repeat expansion at the FRAXA locus. In these families they demonstrate the presence of a GCC trinucleotide repeat expansion at the FRAXE locus. Studies of the FRAXE locus of normal individuals show that they have 6-25more » copies of the repeat, whereas affected individuals have >200 copies. As in the fragile X syndrome, the amplified CpG residues are methylated in affected males. 19 refs., 4 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, T.; Guy, C.; Speight, G.
Studies of the transmission of schizophrenia in families with affected members in several generations have suggested that an expanded trinucleotide repeat mechanism may contribute to the genetic inheritance of this disorder. Using repeat expansion detection (RED), we and others have previously found that the distribution of CAG/CTG repeat size is larger in patients with schizophrenia than in controls. In an attempt to identify the specific expanded CAG/CTG locus or loci associated with schizophrenia, we have now used an approach based on a CAG/CTG PCR screening set combined with RED data. This has allowed us to minimize genotyping while excluding 43more » polymorphic autosomal loci and 7 X-chromosomal loci from the screening set as candidates for expansion in schizophrenia with a very high degree of confidence. 18 refs., 1 tab.« less
Lopez-Gonzalez, Rodrigo; Lu, Yubing; Gendron, Tania F; Karydas, Anna; Tran, Helene; Yang, Dejun; Petrucelli, Leonard; Miller, Bruce L; Almeida, Sandra; Gao, Fen-Biao
2016-10-19
GGGGCC repeat expansions in C9ORF72 are the most common genetic cause of both ALS and FTD. To uncover underlying pathogenic mechanisms, we found that DNA damage was greater, in an age-dependent manner, in motor neurons differentiated from iPSCs of multiple C9ORF72 patients than control neurons. Ectopic expression of the dipeptide repeat (DPR) protein (GR) 80 in iPSC-derived control neurons increased DNA damage, suggesting poly(GR) contributes to DNA damage in aged C9ORF72 neurons. Oxidative stress was also increased in C9ORF72 neurons in an age-dependent manner. Pharmacological or genetic reduction of oxidative stress partially rescued DNA damage in C9ORF72 neurons and control neurons expressing (GR) 80 or (GR) 80 -induced cellular toxicity in flies. Moreover, interactome analysis revealed that (GR) 80 preferentially bound to mitochondrial ribosomal proteins and caused mitochondrial dysfunction. Thus, poly(GR) in C9ORF72 neurons compromises mitochondrial function and causes DNA damage in part by increasing oxidative stress, revealing another pathogenic mechanism in C9ORF72-related ALS and FTD. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kremer, B.; Theilmann, J.; Spence, N.
1995-08-01
A total of 254 affected parent-child pairs with Huntington disease (HD) and 440 parent-child pairs with CAG size in the normal range were assessed to determine the nature and frequency of intergenerational CAG changes in the HD gene. Intergenerational CAG changes are extremely rare (3/440 [0.68%]) on normal chromosomes. In contrast, on HD chromosomes, changes in CAG size occur in {approximately}70% of meioses on HD chromosomes, with expansions accounting for 73% of these changes. These intergenerational CAG changes make a significant but minor contribution to changes in age at onset (r{sup 2}=.19). The size of the CAG repeat influenced largermore » intergenerational expansions (>7 CAG repeats), but the likelihood of smaller expansions or contractions was not influenced by CAG size. Large expansions (>7 CAG repeats) occur almost exclusively through paternal transmission (0.96%; P<10{sub -7}), while offspring of affected mothers are more likely to show no change (P=.01) or contractions in CAG size (P=.002). This study demonstrates that sex of the transmitting parent is the major determinant for CAG intergenerational changes in the HD gene. Similar paternal sex effects are seen in the evolution of new mutations for HD from intermediate alleles and for large expansions on affected chromosomes. Affected mothers almost never transmit a significantly expanded CAG repeat, despite the fact that many have similar large-sized alleles, compared with affected fathers. The sex-dependent effects of major expansion and contractions of the CAG repeat in the HD gene implicate different effects of gametogenesis, in males versus females, on intergenerational CAG repeat stability. 22 refs., 4 figs., 3 tabs.« less
Koch, Melissa R.; House, Nealia C. M.; Cosetta, Casey M.; Jong, Robyn M.; Salomon, Christelle G.; Joyce, Cailin E.; Philips, Elliot A.; Su, Xiaofeng A.; Freudenreich, Catherine H.
2018-01-01
CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin remodeler Isw1 is required to prevent CAG repeat expansions during transcription. CAG repeat expansions in the absence of Isw1 were dependent on both transcription-coupled repair (TCR) and base-excision repair (BER). Furthermore, isw1∆ mutants are sensitive to methyl methanesulfonate (MMS) and exhibit synergistic MMS sensitivity when combined with BER or TCR pathway mutants. We conclude that CAG expansions in the isw1∆ mutant occur during a transcription-coupled excision repair process that involves both TCR and BER pathways. We observed increased RNA polymerase II (RNAPII) occupancy at the CAG repeat when transcription of the repeat was induced, but RNAPII binding did not change in isw1∆ mutants, ruling out a role for Isw1 remodeling in RNAPII progression. However, nucleosome occupancy over a transcribed CAG tract was altered in isw1∆ mutants. Based on the known role of Isw1 in the reestablishment of nucleosomal spacing after transcription, we suggest that a defect in this function allows DNA structures to form within repetitive DNA tracts, resulting in inappropriate excision repair and repeat-length changes. These results establish a new function for Isw1 in directly maintaining the chromatin structure at the CAG repeat, thereby limiting expansions that can occur during transcription-coupled excision repair. PMID:29305386
Handley, Scott; Thackray, Larissa B.; Zhao, Guoyan; Presti, Rachel; Miller, Andrew; Droit, Lindsay; Abbink, Peter; Maxfield, Lori F.; Kambal, Amal; Duan, Erning; Stanley, Kelly; Kramer, Joshua; Macri, Sheila C.; Permar, Sallie R.; Schmitz, Joern E.; Mansfield, Keith; Brenchley, Jason M.; Veazey, Ronald S.; Stappenbeck, Thaddeus S.; Wang, David; Barouch, Dan H.; Virgin, Herbert W.
2012-01-01
SUMMARY Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not non-pathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis. PMID:23063120
van den Broek, Walther J A A; Nelen, Marcel R; Wansink, Derick G; Coerwinkel, Marga M; te Riele, Hein; Groenen, Patricia J T A; Wieringa, Bé
2002-01-15
The mechanism of expansion of the (CTG)n repeat in myotonic dystrophy (DM1) patients and the cause of its pathobiological effects are still largely unknown. Most likely, long repeats exert toxicity at the level of nuclear RNA transport or splicing. Here, we analyse cis- and trans-acting parameters that determine repeat behaviour in novel mouse models for DM1. Our mice carry 'humanized' myotonic dystrophy protein kinase (Dmpk) allele(s) with either a (CTG)84 or a (CTG)11 repeat, inserted at the correct position into the endogenous DM locus. Unlike in the human situation, the (CTG)84 repeat in the syntenic mouse environment was relatively stable during intergenerational segregation. However, somatic tissues showed substantial repeat expansions which were progressive upon aging and prominent in kidney, and in stomach and small intestine, where it was cell-type restricted. Other tissues examined showed only marginal size changes. The (CTG)11 allele was completely stable, as anticipated. Introducing the (CTG)84 allele into an Msh3-deficient background completely blocked the somatic repeat instability. In contrast, Msh6 deficiency resulted in a significant increase in the frequency of somatic expansions. Competition of Msh3 and Msh6 for binding to Msh2 in functional complexes with different DNA mismatch-recognition specificity may explain why the somatic (CTG)n expansion rate is differentially affected by ablation of Msh3 and Msh6.
2013-01-01
Background Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved. Results We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans. Conclusions The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution. PMID:24025428
Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R.; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C.; Pinto, Ricardo Mouro
2017-01-01
Huntington’s disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. PMID:27913616
Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C; Pinto, Ricardo Mouro
2017-02-01
Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. Copyright © 2017 by the Genetics Society of America.
Nielsen, Troels Tolstrup; Mardosiene, Skirmante; Løkkegaard, Annemette; Stokholm, Jette; Ehrenfels, Susanne; Bech, Sara; Friberg, Lars; Nielsen, Jens Kellberg; Nielsen, Jørgen E
2012-08-13
The autosomal dominant spinocerebellar ataxias (SCAs) confine a group of rare and heterogeneous disorders, which present with progressive ataxia and numerous other features e.g. peripheral neuropathy, macular degeneration and cognitive impairment, and a subset of these disorders is caused by CAG-repeat expansions in their respective genes. The diagnosing of the SCAs is often difficult due to the phenotypic overlap among several of the subtypes and with other neurodegenerative disorders e.g. Huntington's disease. We report a family in which the proband had rapidly progressing cognitive decline and only subtle cerebellar symptoms from age 42. Sequencing of the TATA-box binding protein gene revealed a modest elongation of the CAG/CAA-repeat of only two repeats above the non-pathogenic threshold of 41, confirming a diagnosis of SCA17. Normally, repeats within this range show reduced penetrance and result in a milder disease course with slower progression and later age of onset. Thus, this case presented with an unusual phenotype. The current case highlights the diagnostic challenge of neurodegenerative disorders and the need for a thorough clinical and paraclinical examination of patients presenting with rapid cognitive decline to make a precise diagnosis on which further genetic counseling and initiation of treatment modalities can be based.
Screening for the C9ORF72 repeat expansion in a greek frontotemporal dementia cohort.
Kartanou, Chrisoula; Karadima, Georgia; Koutsis, Georgios; Breza, Marianthi; Papageorgiou, Sokratis G; Paraskevas, George P; Kapaki, Elisabeth; Panas, Marios
2018-02-01
The C9orf72 repeat expansion is a common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in European populations. A previous study has reported a high frequency of the expansion in Greek ALS. However, no data have been reported on the frequency of the expansion in Greek FTD. Currently, we investigated the frequency of the C9orfF72 expansion in a well-characterized cohort of 64 Greek FTD patients. We detected the C9orf72 repeat expansion in 9.3% of cases. Overall, 27.7% of familial and 2.2% of sporadic cases were expansion-positive. Five out of 6 cases had a diagnosis of behavioral variant FTD. All expansion-positive cases had fairly typical FTD presentations. Clinical features included motor neuron disease, Parkinsonism and hallucinations. We conclude that the overall frequency of C9orf72-positive cases in Greek FTD is high, comparable to Greek ALS, similar to some Western European, but significantly higher than some Mediterranean FTD populations.
Al-Mahdawi, Sahar; Pinto, Ricardo Mouro; Varshney, Dhaval; Lawrence, Lorraine; Lowrie, Margaret B; Hughes, Sian; Webster, Zoe; Blake, Julian; Cooper, J Mark; King, Rosalind; Pook, Mark A
2006-11-01
Friedreich ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion mutation within intron 1 of the FXN gene. However, the origins of the GAA repeat expansion, its unstable dynamics within different cells and tissues, and its effects on frataxin expression are not yet completely understood. Therefore, we have chosen to generate representative FRDA mouse models by using the human FXN GAA repeat expansion itself as the genetically modified mutation. We have previously reported the establishment of two lines of human FXN YAC transgenic mice that contain unstable GAA repeat expansions within the appropriate genomic context. We now describe the generation of FRDA mouse models by crossbreeding of both lines of human FXN YAC transgenic mice with heterozygous Fxn knockout mice. The resultant FRDA mice that express only human-derived frataxin show comparatively reduced levels of frataxin mRNA and protein expression, decreased aconitase activity, and oxidative stress, leading to progressive neurodegenerative and cardiac pathological phenotypes. Coordination deficits are present, as measured by accelerating rotarod analysis, together with a progressive decrease in locomotor activity and increase in weight. Large vacuoles are detected within neurons of the dorsal root ganglia (DRG), predominantly within the lumbar regions in 6-month-old mice, but spreading to the cervical regions after 1 year of age. Secondary demyelination of large axons is also detected within the lumbar roots of older mice. Lipofuscin deposition is increased in both DRG neurons and cardiomyocytes, and iron deposition is detected in cardiomyocytes after 1 year of age. These mice represent the first GAA repeat expansion-based FRDA mouse models that exhibit progressive FRDA-like pathology and thus will be of use in testing potential therapeutic strategies, particularly GAA repeat-based strategies.
MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo
Williams, Gregory M.; Surtees, Jennifer A.
2015-01-01
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington’s disease, yet the pathway to expansion remains poorly understood. An important step in expansion is the shift from a stable TNR sequence to an unstable, expanding tract, which is thought to occur once a TNR attains a threshold length. Modeling of human data has indicated that TNR tracts are increasingly likely to expand as they increase in size and to do so in increments that are smaller than the repeat itself, but this has not been tested experimentally. Genetic work has implicated the mismatch repair factor MSH3 in promoting expansions. Using Saccharomyces cerevisiae as a model for CAG and CTG tract dynamics, we examined individual threshold-length TNR tracts in vivo over time in MSH3 and msh3Δ backgrounds. We demonstrate, for the first time, that these TNR tracts are highly dynamic. Furthermore, we establish that once such a tract has expanded by even a few repeat units, it is significantly more likely to expand again. Finally, we show that threshold- length TNR sequences readily accumulate net incremental expansions over time through a series of small expansion and contraction events. Importantly, the tracts were substantially stabilized in the msh3Δ background, with a bias toward contractions, indicating that Msh2-Msh3 plays an important role in shifting the expansion-contraction equilibrium toward expansion in the early stages of TNR tract expansion. PMID:25969461
Koutsis, G; Karadima, G; Pandraud, A; Sweeney, M G; Paudel, R; Houlden, H; Wood, N W; Panas, M
2012-09-01
Huntington’s disease (HD) is an autosomal dominant disorder characterized by a triad of chorea, psychiatric disturbance and cognitive decline. Around 1% of patients with HD-like symptoms lack the causative HD expansion and are considered HD phenocopies. Genetic diseases that can present as HD phenocopies include HD-like syndromes such as HDL1, HDL2 and HDL4 (SCA17), some spinocerebellar ataxias (SCAs) and dentatorubral-pallidoluysian atrophy (DRPLA). In this study we screened a cohort of 21 Greek patients with HD phenocopy syndromes formutations causing HDL2, SCA17, SCA1, SCA2, SCA3,SCA8, SCA12 and DRPLA. Fifteen patients (71%) had a positive family history. We identified one patient (4.8% of the total cohort) with an expansion of 81 combined CTA/CTG repeats at the SCA8 locus. This falls within what is believed to be the high-penetrance allele range. In addition to the classic HD triad, the patient had features of dystonia and oculomotor apraxia. There were no cases of HDL2, SCA17, SCA1, SCA2, SCA3, SCA12 or DRPLA. Given the controversy surrounding the SCA8 expansion, the present finding may be incidental. However, if pathogenic, it broadens the phenotype that may be associated with SCA8 expansions. The absence of any other mutations in our cohort is not surprising, given the low probability of reaching a genetic diagnosis in HD phenocopy patients.
Koutsis, Georgios; Karadima, Georgia; Kartanou, Chrisoula; Kladi, Athina; Panas, Marios
2015-01-01
An expanded hexanucleotide repeat in C9ORF72 has been identified as the most common genetic cause of amyotrophic lateral sclerosis and/or frontotemporal dementia in many populations, including the Greek. Recently, C9ORF72 expansions were reported as the most common genetic cause of Huntington disease (HD) phenocopies in a UK population. In the present study, we screened a selected cohort of 40 Greek patients with HD phenocopies for C9ORF72 hexanucleotide repeat expansions using repeat-primed polymerase chain reaction. We identified 2 patients (5%) with pathologic expansions. The first patient had chorea, behavioral-psychiatric disturbance, cognitive impairment, and a positive family history, fulfilling the strictest criteria for HD phenocopy. The second patient was sporadic and had parkinsonism, behavioral-psychiatric disturbance, and cognitive impairment, corresponding to a broader definition of HD phenocopy. These findings identify C9ORF72 expansions as a frequent cause of HD phenocopies in the Greek population, confirming recent findings in other populations and supporting proposed diagnostic testing for C9ORF72 expansions in patients with HD-like syndromes. Copyright © 2015 Elsevier Inc. All rights reserved.
Waite, Adrian J; Bäumer, Dirk; East, Simon; Neal, James; Morris, Huw R; Ansorge, Olaf; Blake, Derek J
2014-07-01
An intronic G(4)C(2) hexanucleotide repeat expansion in C9ORF72 is a major cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Several mechanisms including RNA toxicity, repeat-associated non-AUG translation mediated dipeptide protein aggregates, and haploinsufficiency of C9orf72 have been implicated in the molecular pathogenesis of this disorder. The aims of this study were to compare the use of two different Southern blot probes for detection of repeat expansions in an amyotrophic lateral sclerosis and frontotemporal lobar degeneration pathological cohort and to determine the levels of C9orf72 transcript variants and protein isoforms in patients versus control subjects. Our Southern blot studies identified smaller repeat expansions (250-1800 bp) that were only detectable with the flanking probe highlighting the potential for divergent results using different Southern blotting protocols that could complicate genotype-phenotype correlation studies. Further, we characterize a new C9orf72 antibody and show for the first time decreased C9orf72 protein levels in the frontal cortex from patients with a pathological hexanucleotide repeat expansion. These data suggest that a reduction in C9orf72 protein may be a consequence of the disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Zhou, Yifan; Kumari, Daman; Sciascia, Nicholas; Usdin, Karen
2016-01-01
Fragile X syndrome (FXS), a common cause of intellectual disability and autism, results from the expansion of a CGG-repeat tract in the 5' untranslated region of the FMR1 gene to >200 repeats. Such expanded alleles, known as full mutation (FM) alleles, are epigenetically silenced in differentiated cells thus resulting in the loss of FMRP, a protein important for learning and memory. The timing of repeat expansion and FMR1 gene silencing is controversial. We monitored the repeat size and methylation status of FMR1 alleles with expanded CGG repeats in patient-derived induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) that were grown for extended period of time either as stem cells or differentiated into neurons. We used a PCR assay optimized for the amplification of large CGG repeats for sizing, and a quantitative methylation-specific PCR for the analysis of FMR1 promoter methylation. The FMR1 mRNA levels were analyzed by qRT-PCR. FMRP levels were determined by western blotting and immunofluorescence. Chromatin immunoprecipitation was used to study the association of repressive histone marks with the FMR1 gene in FXS ESCs. We show here that while FMR1 gene silencing can be seen in FXS embryonic stem cells (ESCs), some silenced alleles contract and when the repeat number drops below ~400, DNA methylation erodes, even when the repeat number remains >200. The resultant active alleles do not show the large step-wise expansions seen in stem cells from other repeat expansion diseases. Furthermore, there may be selection against large active alleles and these alleles do not expand further or become silenced on neuronal differentiation. Our data support the hypotheses that (i) large expansions occur prezygotically or in the very early embryo, (ii) large unmethylated alleles may be deleterious in stem cells, (iii) methylation can occur on alleles with >400 repeats very early in embryogenesis, and (iv) expansion and contraction may occur by different mechanisms. Our data also suggest that the threshold for stable methylation of FM alleles may be higher than previously thought. A higher threshold might explain why some carriers of FM alleles escape methylation. It may also provide a simple explanation for why silencing has not been observed in mouse models with >200 repeats.
Slean, Meghan M.; Panigrahi, Gagan B.; Castel, Arturo López; Pearson, August B.; Tomkinson, Alan E.; Pearson, Christopher E.
2016-01-01
Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechanisms MutSβ-deficient mice incur contractions instead of expansions. Replication using CTG or CAG as the lagging strand template is known to cause contractions or expansions respectively; however, the interplay between replication and repair leading to this instability remains unclear. Towards understanding how repeat contractions may arise, we performed in vitro SV40-mediated replication of repeat-containing plasmids in the presence or absence of mismatch repair. Specifically, we separated repair from replication: Replication mediated by MutSβ- and MutSα-deficient human cells or cell extracts produced slipped-DNA heteroduplexes in the contraction- but not expansion-biased replication direction. Replication in the presence of MutSβ disfavoured the retention of replication products harbouring slipped-DNA heteroduplexes. Post-replication repair of slipped-DNAs by MutSβ-proficient extracts eliminated slipped-DNAs. Thus, a MutSβ-deficiency likely enhances repeat contractions because MutSβ protects against contractions by repairing template strand slip-outs. Replication deficient in LigaseI or PCNA-interaction mutant LigaseI revealed slipped-DNA formation at lagging strands. Our results reveal that distinct mechanisms lead to expansions or contractions and support inhibition of MutSβ as a therapeutic strategy to enhance the contraction of expanded repeats. PMID:27155933
Syme, Robert A.; Martin, Anke; Wyatt, Nathan A.; Lawrence, Julie A.; Muria-Gonzalez, Mariano J.; Friesen, Timothy L.; Ellwood, Simon R.
2018-01-01
Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic maps. As repeat masking in fungal genomes influences the final gene annotations, an accurate and reproducible pipeline was developed to ensure comparability between isolates. The genomes of the two forms are highly collinear, each composed of 12 chromosomes. Genome evolution in P. teres is characterized by genome fissuring through the insertion and expansion of transposable elements (TEs), a process that isolates blocks of genic sequence. The phenomenon is particularly pronounced in PTT, which has a larger, more repetitive genome than PTM and more recent transposon activity measured by the frequency and size of genome fissures. PTT has a longer cultivated host association and, notably, a greater range of host–pathogen genetic interactions compared to other Pyrenophora spp., a property which associates better with genome size than pathogen lifestyle. The two forms possess similar complements of TE families with Tc1/Mariner and LINE-like Tad-1 elements more abundant in PTT. Tad-1 was only detectable as vestigial fragments in PTM and, within the forms, differences in genome sizes and the presence and absence of several TE families indicated recent lineage invasions. Gene differences between P. teres forms are mainly associated with gene-sparse regions near or within TE-rich regions, with many genes possessing characteristics of fungal effectors. Instances of gene interruption by transposons resulting in pseudogenization were detected in PTT. In addition, both forms have a large complement of secondary metabolite gene clusters indicating significant capacity to produce an array of different molecules. This study provides genomic resources for functional genetics to help dissect factors underlying the host–pathogen interactions. PMID:29720997
Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy
NASA Astrophysics Data System (ADS)
Zocca, Alessia; Zanini, Corrado; Aimi, Andrea; Frigimelica, Gabriella; La Porta, Nicola; Battisti, Andrea
2008-05-01
The Mediterranean cypress ( Cupressus sempervirens) is a multi-purpose tree widely used in the Mediterranean region. An anthropogenic range expansion of cypress has taken place at the northern margin of the range in Italy in recent decades, driven by ornamental planting in spite of climatic constraints imposed by low winter temperature. The expansion has created new habitats for pathogens and pests, which strongly limit tree survival in the historical (core) part of the range. Based on the enemy release hypothesis, we predicted that damage should be lower in the expansion area. By comparing tree and seed cone damage by pathogens and pests in core and expansion areas of Trentino, a district in the southern Alps, we showed that tree damage was significantly higher in the core area. Seed cones of C. sempervirens are intensively colonized by an aggressive and specific pathogen (the canker fungus Seiridium cardinale, Coelomycetes), associated with seed insect vectors Megastigmus wachtli (Hymenoptera Torymidae) and Orsillus maculatus (Heteroptera Lygaeidae). In contrast, we observed lower tree damage in the expansion area, where a non-aggressive fungus ( Pestalotiopsis funerea, Coelomycetes) was more frequently associated with the same insect vectors. Our results indicate that both insect species have a great potential to reach the range margin, representing a continuous threat of the arrival of fungal pathogens to trees planted at extreme sites. Global warming may accelerate this process since both insects and fungi profit from increased temperature. In the future, cypress planted at the range margin may then face similar pest and pathogen threats as in the historical range.
Msh2-Msh3 Interferes with Okazaki Fragment Processing to Promote Trinucleotide Repeat Expansions
Kantartzis, Athena; Williams, Gregory M.; Balakrishnan, Lata; Roberts, Rick L.; Surtees, Jennifer A.; Bambara, Robert A.
2012-01-01
Summary Trinucleotide repeat (TNR) expansions are the underlying cause of more than forty neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington’s disease. Although genetic evidence has attributed the cause of these diseases to errors in DNA replication and/or repair, clear molecular mechanisms have not been described. We have focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. We further provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA Ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging strand DNA replication. PMID:22938864
Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions.
Kantartzis, Athena; Williams, Gregory M; Balakrishnan, Lata; Roberts, Rick L; Surtees, Jennifer A; Bambara, Robert A
2012-08-30
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease. Although genetic evidence points to errors in DNA replication and/or repair as the cause of these diseases, clear molecular mechanisms have not been described. Here, we focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. Furthermore, we provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging-strand DNA replication. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
Investigation of C9orf72 in 4 Neurodegenerative Disorders
Xi, Zhengrui; Zinman, Lorne; Grinberg, Yakov; Moreno, Danielle; Sato, Christine; Bilbao, Juan M.; Ghani, Mahdi; Hernández, Isabel; Ruiz, Agustín; Boada, Mercè; Morón, Francisco J.; Lang, Anthony E.; Marras, Connie; Bruni, Amalia; Colao, Rosanna; Maletta, Raffaele G.; Puccio, Gianfranco; Rainero, Innocenzo; Pinessi, Lorenzo; Galimberti, Daniela; Morrison, Karen E.; Moorby, Catriona; Stockton, Joanne D.; Masellis, Mario; Black, Sandra E.; Hazrati, Lili-Naz; Liang, Yan; van Haersma de With, Jan; Fornazzari, Luis; Villagra, Roque; Rojas-Garcia, Ricardo; Clarimón, Jordi; Mayeux, Richard; Robertson, Janice; St George-Hyslop, Peter; Rogaeva, Ekaterina
2014-01-01
Objective To estimate the allele frequency of C9orf72 (G4C2) repeats in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer disease (AD), and Parkinson disease (PD). Design The number of repeats was estimated by a 2-step genotyping strategy. For expansion carriers, we sequenced the repeat flanking regions and obtained APOE genotypes and MAPT H1/H2 haplotypes. Setting Hospitals specializing in neurodegenerative disorders. Subjects We analyzed 520 patients with FTLD, 389 patients with ALS, 424 patients with AD, 289 patients with PD, 602 controls, 18 families, and 29 patients with PD with the LRRK2 G2019S mutation. Main Outcome Measure The expansion frequency. Results Based on a prior cutoff (>30 repeats), the expansion was detected in 9.3% of patients with ALS, 5.2% of patients with FTLD, and 0.7% of patients with PD but not in controls or patients with AD. It was significantly associated with family history of ALS or FTLD and age at onset of FTLD. Phenotype variation (ALS vs FTLD) was not associated with MAPT, APOE, or variability in the repeat flanking regions. Two patients with PD were carriers of 39 and 32 repeats with questionable pathological significance, since the 39-repeat allele does not segregate with PD. No expansion or intermediate alleles (20–29 repeats) were found among the G2019S carriers and AD cases with TAR DNA-binding protein 43–positive inclusions. Surprisingly, the frequency of the 10-repeat allele was marginally increased in all 4 neurodegenerative diseases compared with controls, indicating the presence of an unknown risk variation in the C9orf72 locus. Conclusions The C9orf72 expansion is a common cause of ALS and FTLD, but not of AD or PD. Our study raises concern about a reliable cutoff for the pathological repeat number, which is important in the utility of genetic screening. PMID:22964832
A MutSβ-Dependent Contribution of MutSα to Repeat Expansions in Fragile X Premutation Mice?
Zhao, Xiao-Nan; Lokanga, Rachel; Allette, Kimaada; Gazy, Inbal; Wu, Di; Usdin, Karen
2016-01-01
The fragile X-related disorders result from expansion of a CGG/CCG microsatellite in the 5’ UTR of the FMR1 gene. We have previously demonstrated that the MSH2/MSH3 complex, MutSβ, that is important for mismatch repair, is essential for almost all expansions in a mouse model of these disorders. Here we show that the MSH2/MSH6 complex, MutSα also contributes to the production of both germ line and somatic expansions as evidenced by the reduction in the number of expansions observed in Msh6-/- mice. This effect is not mediated via an indirect effect of the loss of MSH6 on the level of MSH3. However, since MutSβ is required for 98% of germ line expansions and almost all somatic ones, MutSα is apparently not able to efficiently substitute for MutSβ in the expansion process. Using purified human proteins we demonstrate that MutSα, like MutSβ, binds to substrates with loop-outs of the repeats and increases the thermal stability of the structures that they form. We also show that MutSα facilitates binding of MutSβ to these loop-outs. These data suggest possible models for the contribution of MutSα to repeat expansion. In addition, we show that unlike MutSβ, MutSα may also act to protect against repeat contractions in the Fmr1 gene. PMID:27427765
MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo.
Williams, Gregory M; Surtees, Jennifer A
2015-07-01
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease, yet the pathway to expansion remains poorly understood. An important step in expansion is the shift from a stable TNR sequence to an unstable, expanding tract, which is thought to occur once a TNR attains a threshold length. Modeling of human data has indicated that TNR tracts are increasingly likely to expand as they increase in size and to do so in increments that are smaller than the repeat itself, but this has not been tested experimentally. Genetic work has implicated the mismatch repair factor MSH3 in promoting expansions. Using Saccharomyces cerevisiae as a model for CAG and CTG tract dynamics, we examined individual threshold-length TNR tracts in vivo over time in MSH3 and msh3Δ backgrounds. We demonstrate, for the first time, that these TNR tracts are highly dynamic. Furthermore, we establish that once such a tract has expanded by even a few repeat units, it is significantly more likely to expand again. Finally, we show that threshold- length TNR sequences readily accumulate net incremental expansions over time through a series of small expansion and contraction events. Importantly, the tracts were substantially stabilized in the msh3Δ background, with a bias toward contractions, indicating that Msh2-Msh3 plays an important role in shifting the expansion-contraction equilibrium toward expansion in the early stages of TNR tract expansion. Copyright © 2015 by the Genetics Society of America.
Thomas, Elizabeth A; Coppola, Giovanni; Tang, Bin; Kuhn, Alexandre; Kim, SoongHo; Geschwind, Daniel H; Brown, Timothy B; Luthi-Carter, Ruth; Ehrlich, Michelle E
2011-03-15
Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.
DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene.
Thys, Ryan Griffin; Wang, Yuh-Hwa
2015-11-27
DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Cleary, John D; Tomé, Stéphanie; López Castel, Arturo; Panigrahi, Gagan B; Foiry, Laurent; Hagerman, Katharine A; Sroka, Hana; Chitayat, David; Gourdon, Geneviève; Pearson, Christopher E
2010-09-01
Myotonic dystrophy, caused by DM1 CTG/CAG repeat expansions, shows varying instability levels between tissues and across ages within patients. We determined DNA replication profiles at the DM1 locus in patient fibroblasts and tissues from DM1 transgenic mice of various ages showing different instability. In patient cells, the repeat is flanked by two replication origins demarcated by CTCF sites, with replication diminished at the expansion. In mice, the expansion replicated from only the downstream origin (CAG as lagging template). In testes from mice of three different ages, replication toward the repeat paused at the earliest age and was relieved at later ages-coinciding with increased instability. Brain, pancreas and thymus replication varied with CpG methylation at DM1 CTCF sites. CTCF sites between progressing forks and repeats reduced replication depending on chromatin. Thus, varying replication progression may affect tissue- and age-specific repeat instability.
C9ORF72 G4C2-repeat expansion and frontotemporal dementia first reported case in Argentina.
Fernández Suarez, M; Surace, Ezequiel; Harris, P; Tapajoz, F; Sevlever, G; Allegri, R; Russo, G N
2016-06-01
We present a female patient aged 51 who developed behavioral disorders followed by cognitive impairment over 3 years. Neuropsychological, neuropsychiatric, and radiological features suggested a probable behavioral variant of frontotemporal dementia (bvFTD). A family history of amyotrophic lateral sclerosis and parkinsonism suggested the hexanucleotide repeat expansion G4C2 in C9ORF72 . We set up a two-step genotyping algorithm for the detection of the expansion using fragment-length analysis polymerase chain reaction (PCR) and repeat-primed PCR with fluorescent primers. We confirmed the presence of an expanded G4C2 allele in the patient. This represents the first documented case of bvFTD due to a C9ORF72 expansion in Argentina.
LANP mediates neuritic pathology in Spinocerebellar ataxia type 1
Cvetanovic, Marija; Kular, Rupinder K.; Opal, Puneet
2014-01-01
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease that results from a pathogenic glutamine-repeat expansion in the protein ataxin-1 (ATXN1). Although the functions of ATXN1 are still largely unknown, there is evidence to suggest that ATXN1 plays a role in regulating gene expression, the earliest process known to go awry in SCA1 mouse models. In this study, we show that ATXN1 reduces histone acetylation, a post-translational modification of histones associated with enhanced transcription, and represses histone acetyl transferase-mediated transcription. In addition, we find that depleting the Leucine-rich Acidic Nuclear Protein (LANP)—an ATXN1 binding inhibitor of histone acetylation—reverses aspects of SCA1 neuritic pathology. PMID:22884877
Interactions between the microbiota and pathogenic bacteria in the gut
Bäumler, Andreas J.; Sperandio, Vanessa
2016-01-01
The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases. PMID:27383983
Interactions between the microbiota and pathogenic bacteria in the gut.
Bäumler, Andreas J; Sperandio, Vanessa
2016-07-07
The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.
MutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions
Keogh, Norma; Chan, Kara Y.; Li, Guo-Min
2017-01-01
Abstract CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Additionally, some variants destabilize MutSβ, potentially masking the effects of biochemical alterations of the variations. Here, human Msh3 was mutated to selectively inactivate MutSβ. Msh3−/− cells are severely defective for CTG•CAG repeat expansions but show full activity on contractions. Msh3−/− cells provide a single, isogenic system to add back Msh3 and test key biochemical features of MutSβ on expansions. Msh3 overexpression led to high expansion activity and elevated levels of MutSβ complex, indicating that MutSβ abundance drives expansions. An ATPase-defective Msh3 expressed at normal levels was as defective in expansions as Msh3−/− cells, indicating that Msh3 ATPase function is critical for expansions. Expression of two Msh3 polymorphic variants at normal levels showed no detectable change in expansions, suggesting these polymorphisms primarily affect Msh3 protein stability, not activity. In summary, CTG•CAG expansions are limited by the abundance of MutSβ and rely heavily on Msh3 ATPase function. PMID:28973443
MutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions.
Keogh, Norma; Chan, Kara Y; Li, Guo-Min; Lahue, Robert S
2017-09-29
CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Additionally, some variants destabilize MutSβ, potentially masking the effects of biochemical alterations of the variations. Here, human Msh3 was mutated to selectively inactivate MutSβ. Msh3-/- cells are severely defective for CTG•CAG repeat expansions but show full activity on contractions. Msh3-/- cells provide a single, isogenic system to add back Msh3 and test key biochemical features of MutSβ on expansions. Msh3 overexpression led to high expansion activity and elevated levels of MutSβ complex, indicating that MutSβ abundance drives expansions. An ATPase-defective Msh3 expressed at normal levels was as defective in expansions as Msh3-/- cells, indicating that Msh3 ATPase function is critical for expansions. Expression of two Msh3 polymorphic variants at normal levels showed no detectable change in expansions, suggesting these polymorphisms primarily affect Msh3 protein stability, not activity. In summary, CTG•CAG expansions are limited by the abundance of MutSβ and rely heavily on Msh3 ATPase function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Repeat Expansion Diseases: the dark side of DNA repair?
Zhao, Xiao-Nan; Usdin, Karen
2015-01-01
DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion. PMID:26002199
Vogler, Amy J; Chan, Fabien; Nottingham, Roxanne; Andersen, Genevieve; Drees, Kevin; Beckstrom-Sternberg, Stephen M; Wagner, David M; Chanteau, Suzanne; Keim, Paul
2013-02-12
A cluster of human plague cases occurred in the seaport city of Mahajanga, Madagascar, from 1991 to 1999 following 62 years with no evidence of plague, which offered insights into plague pathogen dynamics in an urban environment. We analyzed a set of 44 Mahajanga isolates from this 9-year outbreak, as well as an additional 218 Malagasy isolates from the highland foci. We sequenced the genomes of four Mahajanga strains, performed whole-genome sequence single-nucleotide polymorphism (SNP) discovery on those strains, screened the discovered SNPs, and performed a high-resolution 43-locus multilocus variable-number tandem-repeat analysis of the isolate panel. Twenty-two new SNPs were identified and defined a new phylogenetic lineage among the Malagasy isolates. Phylogeographic analysis suggests that the Mahajanga lineage likely originated in the Ambositra district in the highlands, spread throughout the northern central highlands, and was then introduced into and became transiently established in Mahajanga. Although multiple transfers between the central highlands and Mahajanga occurred, there was a locally differentiating and dominant subpopulation that was primarily responsible for the 1991-to-1999 Mahajanga outbreaks. Phylotemporal analysis of this Mahajanga subpopulation revealed a cycling pattern of diversity generation and loss that occurred during and after each outbreak. This pattern is consistent with severe interseasonal genetic bottlenecks along with large seasonal population expansions. The ultimate extinction of plague pathogens in Mahajanga suggests that, in this environment, the plague pathogen niche is tenuous at best. However, the temporary large pathogen population expansion provides the means for plague pathogens to disperse and become ecologically established in more suitable nonurban environments. Maritime spread of plague led to the global dissemination of this disease and affected the course of human history. Multiple historical plague waves resulted in massive human mortalities in three classical plague pandemics: Justinian (6th and 7th centuries), Middle Ages (14th to 17th centuries), and third (mid-1800s to the present). Key to these events was the pathogen's entry into new lands by "plague ships" via seaport cities. Although initial disease outbreaks in ports were common, they were almost never sustained for long and plague pathogens survived only if they could become established in ecologically suitable habitats. Although plague pathogens' ability to invade port cities has been essential for intercontinental spread, these regions have not proven to be a suitable long-term niche. The disease dynamics in port cities such as Mahajanga are thus critical to plague pathogen amplification and dispersal into new suitable ecological niches for the observed global long-term maintenance of plague pathogens.
Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders.
Usdin, Karen; Kumari, Daman
2015-01-01
The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5' UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55-200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.
Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism
Meola, Giovanni; Cardani, Rosanna
2015-01-01
Abstract Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert’s disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in CNBP. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders. The pathogenesis of DM is explained by a common RNA gain-of-function mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. However additional pathogenic mechanism like changes in gene expression, modifier genes, protein translation and micro-RNA metabolism may also contribute to disease pathology and to clarify the phenotypic differences between these two types of myotonic dystrophies. This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies. PMID:27858759
Lai, Yanhao; Budworth, Helen; Beaver, Jill M; Chan, Nelson L S; Zhang, Zunzhen; McMurray, Cynthia T; Liu, Yuan
2016-08-22
Studies in knockout mice provide evidence that MSH2-MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2-MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2-MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion.
Lai, Yanhao; Budworth, Helen; Beaver, Jill M.; Chan, Nelson L. S.; Zhang, Zunzhen; McMurray, Cynthia T.; Liu, Yuan
2016-01-01
Studies in knockout mice provide evidence that MSH2–MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2–MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2–MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion. PMID:27546332
Dafinca, Ruxandra; Scaber, Jakub; Ababneh, Nida'a; Lalic, Tatjana; Weir, Gregory; Christian, Helen; Vowles, Jane; Douglas, Andrew G L; Fletcher-Jones, Alexandra; Browne, Cathy; Nakanishi, Mahito; Turner, Martin R; Wade-Martins, Richard; Cowley, Sally A; Talbot, Kevin
2016-08-01
An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor and cortical neurons, and performed an extensive phenotypic characterization. In C9orf72 iPSC-derived motor neurons, decreased cell survival is correlated with dysfunction in Ca(2+) homeostasis, reduced levels of the antiapoptotic protein Bcl-2, increased endoplasmic reticulum (ER) stress, and reduced mitochondrial membrane potential. Furthermore, C9orf72 motor neurons, and also cortical neurons, show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC-derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats, which describes a novel pathogenic link between C9orf72 mutations, dysregulation of calcium signaling, and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia. Stem Cells 2016;34:2063-2078. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Bergquist, Helen; Rocha, Cristina S. J.; Álvarez-Asencio, Rubén; Nguyen, Chi-Hung; Rutland, Mark. W.; Smith, C. I. Edvard; Good, Liam; Nielsen, Peter E.; Zain, Rula
2016-01-01
Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression. PMID:27846236
Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.
Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine
2015-10-01
Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS. © 2015 Wiley Periodicals, Inc.
Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy
Montague, Karli; Malik, Bilal; Gray, Anna L.; La Spada, Albert R.; Hanna, Michael G.; Szabadkai, Gyorgy
2014-01-01
Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington’s disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases. PMID:24898351
Expanded complexity of unstable repeat diseases
Polak, Urszula; McIvor, Elizabeth; Dent, Sharon Y.R.; Wells, Robert D.; Napierala, Marek
2015-01-01
Unstable Repeat Diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly expansion, of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequences of the repeat expansions is critical to developing successful therapies for these diseases. Recent technological breakthroughs in whole genome, transcriptome and proteome analyses will almost certainly lead to new discoveries regarding the mechanisms of repeat instability, the pathogenesis of URDs, and will facilitate development of novel therapeutic approaches. The aim of this review is to give a general overview of unstable repeats diseases, highlight the complexities of these diseases, and feature the emerging discoveries in the field. PMID:23233240
Partners in crime: bidirectional transcription in unstable microsatellite disease.
Batra, Ranjan; Charizanis, Konstantinos; Swanson, Maurice S
2010-04-15
Nearly two decades have passed since the discovery that the expansion of microsatellite trinucleotide repeats is responsible for a prominent class of neurological disorders, including Huntington disease and fragile X syndrome. These hereditary diseases are characterized by genetic anticipation or the intergenerational increase in disease severity accompanied by a decrease in age-of-onset. The revelation that the variable expansion of simple sequence repeats accounted for anticipation spawned a number of pathogenesis models and a flurry of studies designed to reveal the molecular events affected by these expansions. This work led to our current understanding that expansions in protein-coding regions result in extended homopolymeric amino acid tracts, often polyglutamine or polyQ, and deleterious protein gain-of-function effects. In contrast, expansions in noncoding regions cause RNA-mediated toxicity. However, the realization that the transcriptome is considerably more complex than previously imagined, as well as the emerging regulatory importance of antisense RNAs, has blurred this distinction. In this review, we summarize evidence for bidirectional transcription of microsatellite disease genes and discuss recent suggestions that some repeat expansions produce variable levels of both toxic RNAs and proteins that influence cell viability, disease penetrance and pathological severity.
The Effects of Expansions, Questions and Cloze Procedures on Children's Conversational Skills
ERIC Educational Resources Information Center
Wong, Tze-Peng; Moran, Catherine; Foster-Cohen, Susan
2012-01-01
The effectiveness of expansion as a technique for facilitating children's language and conversational skills is well known (Scherer and Olswang, 1984). Expansion, however, can appear alone or in combination with other techniques. Using a repeated measures design, this study aimed to compare the effects of expansion alone (EA); expansion combined…
Johnson, Colin P.; Gaetani, Massimiliano; Ortiz, Vanessa; Bhasin, Nishant; Harper, Sandy
2007-01-01
Pathogenic mutations in α and β spectrin result in a variety of syndromes, including hereditary elliptocytosis (HE), hereditary pyropoikilocytosis (HPP), and hereditary spherocytosis (HS). Although some mutations clearly lie at sites of interaction, such as the sites of spectrin α-βtetramer formation, a surprising number of HE-causing mutations have been identified within linker regions between distal spectrin repeats. Here we apply solution structural and single molecule methods to the folding and stability of recombinant proteins consisting of the first 5 spectrin repeats of α-spectrin, comparing normal spectrin with a pathogenic linker mutation, Q471P, between repeats R4 and R5. Results show that the linker mutation destabilizes a significant fraction of the 5-repeat construct at 37°C, whereas the WT remains fully folded well above body temperature. In WT protein, helical linkers propagate stability from one repeat to the next, but the mutation disrupts the stabilizing influence of adjacent repeats. The results suggest a molecular mechanism for the high frequency of disease caused by proline mutations in spectrin linkers. PMID:17192394
ATXN2 is a modifier of phenotype in ALS patients of Sardinian ancestry
Borghero, Giuseppe; Pugliatti, Maura; Marrosu, Francesco; Marrosu, Maria Giovanna; Murru, Maria Rita; Floris, Gianluca; Cannas, Antonino; Parish, Leslie D.; Cau, Tea B.; Loi, Daniela; Ticca, Anna; Traccis, Sebastiano; Manera, Umberto; Canosa, Antonio; Moglia, Cristina; Calvo, Andrea; Barberis, Marco; Brunetti, Maura; Renton, Alan E.; Nalls, Mike A.; Traynor, Bryan J.; Restagno, Gabriella; Chiò, Adriano
2016-01-01
Intermediate-length CAG expansions (encoding 27–33 glutamines, polyQ) of the Ataxin2 (ATXN2) gene represent a risk factor for amyotrophic lateral sclerosis (ALS). Recently, it has been proposed that ≥31 CAG expansions may influence ALS phenotype. We assessed whether ATXN2 intermediate-length polyQ expansions influence ALS phenotype in a series of 375 patients of Sardinian ancestry. Controls were 247 neurologically healthy subjects, resident in the study area, age- and gender-matched to cases. The frequency of ≥31 polyQ ATNX2 repeats was significantly more common in ALS cases (4 patients vs. no control, p = 0.0001). All patients with ≥31 polyQ repeats had a spinal onset versus 73.3% of patients with <31 polyQ repeats. Patients with an increased number of polyQ repeats have a shorter survival than those with <31 repeats (1.2 vs. 4.2 years, p = 0.035). In this large series of ALS patients of Sardinian ancestry, we have found that ≥31 polyQ repeats of the ATXN2 gene influenced patients' phenotype, being associated to a spinal onset and a significantly shorter survival. PMID:26208502
GFP-based fluorescence assay for CAG repeat instability in cultured human cells.
Santillan, Beatriz A; Moye, Christopher; Mittelman, David; Wilson, John H
2014-01-01
Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.
GFP-Based Fluorescence Assay for CAG Repeat Instability in Cultured Human Cells
Santillan, Beatriz A.; Moye, Christopher; Mittelman, David; Wilson, John H.
2014-01-01
Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries. PMID:25423602
Kanadia, Rahul N.; Shin, Jihae; Yuan, Yuan; Beattie, Stuart G.; Wheeler, Thurman M.; Thornton, Charles A.; Swanson, Maurice S.
2006-01-01
RNA-mediated pathogenesis is a recently developed disease model that proposes that certain types of mutant genes produce toxic transcripts that inhibit the activities of specific proteins. This pathogenesis model was proposed first for the neuromuscular disease myotonic dystrophy (DM), which is associated with the expansion of structurally related (CTG)n and (CCTG)n microsatellites in two unrelated genes. At the RNA level, these expansions form stable hairpins that alter the pre-mRNA splicing activities of two antagonistic factor families, the MBNL and CELF proteins. It is unclear which altered activity is primarily responsible for disease pathogenesis and whether other factors and biochemical pathways are involved. Here, we show that overexpression of Mbnl1 in vivo mediated by transduction of skeletal muscle with a recombinant adeno-associated viral vector rescues disease-associated muscle hyperexcitability, or myotonia, in the HSALR poly(CUG) mouse model for DM. Myotonia reversal occurs concurrently with restoration of the normal adult-splicing patterns of four pre-mRNAs that are misspliced during postnatal development in DM muscle. Our results support the hypothesis that the loss of MBNL1 activity is a primary pathogenic event in the development of RNA missplicing and myotonia in DM and provide a rationale for therapeutic strategies designed either to overexpress MBNL1 or inhibit MBNL1 interactions with CUG and CCUG repeat expansions. PMID:16864772
Basehore, Monica J; Marlowe, Natalia M; Jones, Julie R; Behlendorf, Deborah E; Laver, Thomas A; Friez, Michael J
2012-06-01
Most individuals with intellectual disability and/or autism are tested for Fragile X syndrome at some point in their lifetime. Greater than 99% of individuals with Fragile X have an expanded CGG trinucleotide repeat motif in the promoter region of the FMR1 gene, and diagnostic testing involves determining the size of the CGG repeat as well as methylation status when an expansion is present. Using a previously described triplet repeat-primed polymerase chain reaction, we have performed additional validation studies using two cohorts with previous diagnostic testing results available for comparison purposes. The first cohort (n=88) consisted of both males and females and had a high percentage of abnormal samples, while the second cohort (n=624) consisted of only females and was not enriched for expansion mutations. Data from each cohort were completely concordant with the results previously obtained during the course of diagnostic testing. This study further demonstrates the utility of using laboratory-developed triplet repeat-primed FMR1 testing in a clinical setting.
Alavi, Afagh; Nafissi, Shahriar; Rohani, Mohammad; Shahidi, Gholamali; Zamani, Babak; Shamshiri, Hosein; Safari, Iman; Elahi, Elahe
2014-01-01
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in populations of European descent. It was recently found that a hexanucleotide repeat expansion in C9ORF72 is its most common cause in these populations. The contribution of C9ORF72 to ALS is notably lower in the Far East, but its role in other populations is unknown. Results of C9ORF72 screening in 78 unrelated Iranian ALS patients are reported here. The repeat expansion was observed in only 1 (5.9%) of the familial and 1 (1.6%) of the sporadic cases. These figures are to be compared, respectively, with 30% and 6.9% among patients of European ethnicity. Screenings of C9ORF72 in other Middle East countries will reveal whether the low contribution of C9ORF72 to ALS is a feature of the entire region. During the screenings, it was noted that in a single family, 3 individuals affected with ALS, Parkinson's disease, or frontotemporal dementia all carried the repeat expansion. The finding suggests the mutation does rarely contribute to the etiology of Parkinson's disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Prediction of molecular mimicry candidates in human pathogenic bacteria.
Doxey, Andrew C; McConkey, Brendan J
2013-08-15
Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.
Prediction of molecular mimicry candidates in human pathogenic bacteria
Doxey, Andrew C; McConkey, Brendan J
2013-01-01
Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria. PMID:23715053
Sonobe, Yoshifumi; Ghadge, Ghanashyam; Masaki, Katsuhisa; Sendoel, Ataman; Fuchs, Elaine; Roos, Raymond P
2018-08-01
Expansion of a hexanucleotide repeat (HRE), GGGGCC, in the C9ORF72 gene is recognized as the most common cause of familial amyotrophic lateral sclerosis (FALS), frontotemporal dementia (FTD) and ALS-FTD, as well as 5-10% of sporadic ALS. Despite the location of the HRE in the non-coding region (with respect to the main C9ORF72 gene product), dipeptide repeat proteins (DPRs) that are thought to be toxic are translated from the HRE in all three reading frames from both the sense and antisense transcript. Here, we identified a CUG that has a good Kozak consensus sequence as the translation initiation codon. Mutation of this CTG significantly suppressed polyglycine-alanine (GA) translation. GA was translated when the G 4 C 2 construct was placed as the second cistron in a bicistronic construct. CRISPR/Cas9-induced knockout of a non-canonical translation initiation factor, eIF2A, impaired GA translation. Transfection of G 4 C 2 constructs induced an integrated stress response (ISR), while triggering the ISR led to a continuation of translation of GA with a decline in conventional cap-dependent translation. These in vitro observations were confirmed in chick embryo neural cells. The findings suggest that DPRs translated from an HRE in C9ORF72 aggregate and lead to an ISR that then leads to continuing DPR production and aggregation, thereby creating a continuing pathogenic cycle. Copyright © 2018 Elsevier Inc. All rights reserved.
The cryo-electron microscopy structure of huntingtin
NASA Astrophysics Data System (ADS)
Guo, Qiang; Bin Huang; Cheng, Jingdong; Seefelder, Manuel; Engler, Tatjana; Pfeifer, Günter; Oeckl, Patrick; Otto, Markus; Moser, Franziska; Maurer, Melanie; Pautsch, Alexander; Baumeister, Wolfgang; Fernández-Busnadiego, Rubén; Kochanek, Stefan
2018-03-01
Huntingtin (HTT) is a large (348 kDa) protein that is essential for embryonic development and is involved in diverse cellular activities such as vesicular transport, endocytosis, autophagy and the regulation of transcription. Although an integrative understanding of the biological functions of HTT is lacking, the large number of identified HTT interactors suggests that it serves as a protein-protein interaction hub. Furthermore, Huntington’s disease is caused by a mutation in the HTT gene, resulting in a pathogenic expansion of a polyglutamine repeat at the amino terminus of HTT. However, only limited structural information regarding HTT is currently available. Here we use cryo-electron microscopy to determine the structure of full-length human HTT in a complex with HTT-associated protein 40 (HAP40; encoded by three F8A genes in humans) to an overall resolution of 4 Å. HTT is largely α-helical and consists of three major domains. The amino- and carboxy-terminal domains contain multiple HEAT (huntingtin, elongation factor 3, protein phosphatase 2A and lipid kinase TOR) repeats arranged in a solenoid fashion. These domains are connected by a smaller bridge domain containing different types of tandem repeats. HAP40 is also largely α-helical and has a tetratricopeptide repeat-like organization. HAP40 binds in a cleft and contacts the three HTT domains by hydrophobic and electrostatic interactions, thereby stabilizing the conformation of HTT. These data rationalize previous biochemical results and pave the way for improved understanding of the diverse cellular functions of HTT.
Ogden, Nick H.; Mechai, Samir; Margos, Gabriele
2013-01-01
The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity. PMID:24010124
Ogden, Nick H; Mechai, Samir; Margos, Gabriele
2013-01-01
The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R 0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity.
Richieri-Costa-Pereira syndrome: Expanding its phenotypic and genotypic spectrum.
Bertola, D R; Hsia, G; Alvizi, L; Gardham, A; Wakeling, E L; Yamamoto, G L; Honjo, R S; Oliveira, L A N; Di Francesco, R C; Perez, B A; Kim, C A; Passos-Bueno, M R
2018-04-01
Richieri-Costa-Pereira syndrome is a rare autosomal recessive acrofacial dysostosis that has been mainly described in Brazilian individuals. The cardinal features include Robin sequence, cleft mandible, laryngeal anomalies and limb defects. A biallelic expansion of a complex repeated motif in the 5' untranslated region of EIF4A3 has been shown to cause this syndrome, commonly with 15 or 16 repeats. The only patient with mild clinical findings harbored a 14-repeat expansion in 1 allele and a point mutation in the other allele. This proband is described here in more details, as well as is his affected sister, and 5 new individuals with Richieri-Costa-Pereira syndrome, including a patient from England, of African ancestry. This study has expanded the phenotype in this syndrome by the observation of microcephaly, better characterization of skeletal abnormalities, less severe phenotype with only mild facial dysmorphisms and limb anomalies, as well as the absence of cleft mandible, which is a hallmark of the syndrome. Although the most frequent mutation in this study was the recurrent 16-repeat expansion in EIF4A3, there was an overrepresentation of the 14-repeat expansion, with mild phenotypic expression, thus suggesting that the number of these motifs could play a role in phenotypic delineation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.
Tomé, Stéphanie; Manley, Kevin; Simard, Jodie P; Clark, Greg W; Slean, Meghan M; Swami, Meera; Shelbourne, Peggy F; Tillier, Elisabeth R M; Monckton, Darren G; Messer, Anne; Pearson, Christopher E
2013-01-01
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases.
MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice
Simard, Jodie P.; Clark, Greg W.; Slean, Meghan M.; Swami, Meera; Shelbourne, Peggy F.; Tillier, Elisabeth R. M.; Monckton, Darren G.; Messer, Anne; Pearson, Christopher E.
2013-01-01
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases. PMID:23468640
Mattis, Virginia B; Svendsen, Soshana P; Ebert, Allison; Svendsen, Clive N; King, Alvin R; Casale, Malcolm; Winokur, Sara T; Batugedara, Gayani; Vawter, Marquis; Donovan, Peter J; Lock, Leslie F; Thompson, Leslie M; Zhu, Yu; Fossale, Elisa; Singh Atwal, Ranjit; Gillis, Tammy; Mysore, Jayalakshmi; Li, Jian-hong; Seong, IhnSik; Shen, Yiping; Chen, Xiaoli; Wheeler, Vanessa C; MacDonald, Marcy E; Gusella, James F; Akimov, Sergey; Arbez, Nicolas; Juopperi, Tarja; Ratovitski, Tamara; Chiang, Jason H; Kim, Woon Roung; Chighladze, Eka; Watkin, Erin; Zhong, Chun; Makri, Georgia; Cole, Robert N; Margolis, Russell L; Song, Hongjun; Ming, Guoli; Ross, Christopher A; Kaye, Julia A; Daub, Aaron; Sharma, Punita; Mason, Amanda R; Finkbeiner, Steven; Yu, Junying; Thomson, James A; Rushton, David; Brazier, Stephen P; Battersby, Alysia A; Redfern, Amanda; Tseng, Hsui-Er; Harrison, Alexander W; Kemp, Paul J; Allen, Nicholas D; Onorati, Marco; Castiglioni, Valentina; Cattaneo, Elena; Arjomand, Jamshid
2013-01-01
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, the HD consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a novel human stem cell platform for screening new candidate therapeutics. PMID:22748968
A New Property of Repeating Decimals
ERIC Educational Resources Information Center
Arledge, Jane; Tekansik, Sarah
2008-01-01
As extended by Ginsberg, Midi's theorem says that if the repeated section of a decimal expansion of a prime is split into appropriate blocks and these are added, the result is a string of nines. We show that if the expansion of 1/p[superscript n+1] is treated the same way, instead of being a string of nines, the sum is related to the period of…
Trinucleotide repeat length and progression of illness in Huntington's disease.
Kieburtz, K; MacDonald, M; Shih, C; Feigin, A; Steinberg, K; Bordwell, K; Zimmerman, C; Srinidhi, J; Sotack, J; Gusella, J
1994-11-01
The genetic defect causing Huntington's disease (HD) has been identified as an unstable expansion of a trinucleotide (CAG) repeat sequence within the coding region of the IT15 gene on chromosome 4. In 50 patients with manifest HD who were evaluated prospectively and uniformly, we examined the relationship between the extent of the DNA expansion and the rate of illness progression. Although the length of CAG repeats showed a strong inverse correlation with the age at onset of HD, there was no such relationship between the number of CAG repeats and the rate of clinical decline. These findings suggest that the CAG repeat length may influence or trigger the onset of HD, but other genetic, neurobiological, or environmental factors contribute to the progression of illness and the underlying pace of neuronal degeneration.
NASA Astrophysics Data System (ADS)
Stuhlmüller, M.; Schwarz-Finsterle, J.; Fey, E.; Lux, J.; Bach, M.; Cremer, C.; Hinderhofer, K.; Hausmann, M.; Hildenbrand, G.
2015-10-01
Trinucleotide repeat expansions (like (CGG)n) of chromatin in the genome of cell nuclei can cause neurological disorders such as for example the Fragile-X syndrome. Until now the mechanisms are not clearly understood as to how these expansions develop during cell proliferation. Therefore in situ investigations of chromatin structures on the nanoscale are required to better understand supra-molecular mechanisms on the single cell level. By super-resolution localization microscopy (Spectral Position Determination Microscopy; SPDM) in combination with nano-probing using COMBO-FISH (COMBinatorial Oligonucleotide FISH), novel insights into the nano-architecture of the genome will become possible. The native spatial structure of trinucleotide repeat expansion genome regions was analysed and optical sequencing of repetitive units was performed within 3D-conserved nuclei using SPDM after COMBO-FISH. We analysed a (CGG)n-expansion region inside the 5' untranslated region of the FMR1 gene. The number of CGG repeats for a full mutation causing the Fragile-X syndrome was found and also verified by Southern blot. The FMR1 promotor region was similarly condensed like a centromeric region whereas the arrangement of the probes labelling the expansion region seemed to indicate a loop-like nano-structure. These results for the first time demonstrate that in situ chromatin structure measurements on the nanoscale are feasible. Due to further methodological progress it will become possible to estimate the state of trinucleotide repeat mutations in detail and to determine the associated chromatin strand structural changes on the single cell level. In general, the application of the described approach to any genome region will lead to new insights into genome nano-architecture and open new avenues for understanding mechanisms and their relevance in the development of heredity diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew, S.E.; Goldberg, Y.P.; Squitieri, F.
Huntington disease (HD) is one of 7 disorders now known to be caused by expansion of a trinucleotide repeat. The HD mutation is a polymorphic trinucleotide (CAG) repeat in the 5{prime} region of a novel gene that expands beyond the normal range of 10-35 repeats in persons destined to develop the disease. Haplotype analysis of other dynamic mutation disorders such as myotonic dystrophy and Fragil X have suggested that a rare ancestral expansion event on a normal chromosome is followed by subsequent expansion events, resulting in a pool of chromosomes in the premutation range, which is inherently unstable and pronemore » to further multiple expansion events leading to disease range chromosomes. Haplotype analysis of 67 HD and 84 control chromosomes using 5 polymorphic markers, both intragenic and 5{prime} to the disease mutation, demonstrate that multiple haplotypes underlie HD. However, 94% of the chromosomes can be grouped under two major haplotypes. These two haplotypes are also present in the normal population. A third major haplotype is seen on 38% of normal chromosomes but rarely on HD chromosomes (6%). CAG lengths on the normal chromosomes with the two haplotypes seen in the HD population are higher than those seen on the normal chromosomes with the haplotype rarely seen on HD chromosomes. Furthermore, in populations with a diminished frequency of HD, CAG length on normal chromosomes is significantly less than other populations with higher prevalence rates for HD. These data suggest that CAG length on normal chromosomes may be a significant factor contributing to repeat instability that eventually leads to chromosomes with CAG repeat lengths in the HD range. Haplotypes on the HD chromosomes are identical to those normal chromosomes which have CAG lengths in the high range of normal, suggesting that further expansions of this pool of chromosomes leads to chromosomes with CAG repeat sizes within the disease range, consistent with a multistep model.« less
Bartoletti-Stella, Anna; Baiardi, Simone; Stanzani-Maserati, Michelangelo; Piras, Silvia; Caffarra, Paolo; Raggi, Alberto; Pantieri, Roberta; Baldassari, Sara; Caporali, Leonardo; Abu-Rumeileh, Samir; Linarello, Simona; Liguori, Rocco; Parchi, Piero; Capellari, Sabina
2018-06-01
Genetics is intricately involved in the etiology of neurodegenerative dementias. The incidence of monogenic dementia among all neurodegenerative forms is unknown due to the lack of systematic studies and of patient/clinician access to extensive diagnostic procedures. In this study, we conducted targeted sequencing in 246 clinically heterogeneous patients, mainly with early-onset and/or familial neurodegenerative dementia, using a custom-designed next-generation sequencing panel covering 27 genes known to harbor mutations that can cause different types of dementia, in addition to the detection of C9orf72 repeat expansions. Forty-nine patients (19.9%) carried known pathogenic or novel, likely pathogenic, variants, involving both common (presenilin 1, presenilin 2, C9orf72, and granulin) and rare (optineurin, serpin family I member 1 and protein kinase cyclic adenosine monophosphate (cAMP)-dependent type I regulatory subunit beta) dementia-associated genes. Our results support the use of an extended next-generation sequencing panels as a quick, accurate, and cost-effective method for diagnosis in clinical practice. This approach could have a significant impact on the proportion of tested patients, especially among those with an early disease onset. Copyright © 2018 Elsevier Inc. All rights reserved.
Genetic epidemiology of motor neuron disease-associated variants in the Scottish population.
Black, Holly A; Leighton, Danielle J; Cleary, Elaine M; Rose, Elaine; Stephenson, Laura; Colville, Shuna; Ross, David; Warner, Jon; Porteous, Mary; Gorrie, George H; Swingler, Robert; Goldstein, David; Harms, Matthew B; Connick, Peter; Pal, Suvankar; Aitman, Timothy J; Chandran, Siddharthan
2017-03-01
Genetic understanding of motor neuron disease (MND) has evolved greatly in the past 10 years, including the recent identification of association between MND and variants in TBK1 and NEK1. Our aim was to determine the frequency of pathogenic variants in known MND genes and to assess whether variants in TBK1 and NEK1 contribute to the burden of MND in the Scottish population. SOD1, TARDBP, OPTN, TBK1, and NEK1 were sequenced in 441 cases and 400 controls. In addition to 44 cases known to carry a C9orf72 hexanucleotide repeat expansion, we identified 31 cases and 2 controls that carried a loss-of-function or pathogenic variant. Loss-of-function variants were found in TBK1 in 3 cases and no controls and, separately, in NEK1 in 3 cases and no controls. This study provides an accurate description of the genetic epidemiology of MND in Scotland and provides support for the contribution of both TBK1 and NEK1 to MND susceptibility in the Scottish population. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Insights into intragenic and extragenic effectors of prion propagation using chimeric prion proteins
Kalastavadi, Tejas; Tank, Elizabeth MH
2008-01-01
The study of fungal prion proteins affords remarkable opportunities to elucidate both intragenic and extragenic effectors of prion propagation. The yeast prion protein Sup35 and the self-perpetuating [PSI+] prion state is one of the best characterized fungal prions. While there is little sequence homology among known prion proteins, one region of striking similarity exists between Sup35p and the mammalian prion protein PrP. This region is comprised of roughly five octapeptide repeats of similar composition. The expansion of the repeat region in PrP is associated with inherited prion diseases. In order to learn more about the effects of PrP repeat expansions on the structural properties of a protein that undergoes a similar transition to a self-perpetuating aggregate, we generated chimeric Sup35-PrP proteins. Using both in vivo and in vitro systems we described the effect of repeat length on protein misfolding, aggregation, amyloid formation and amyloid stability. We found that repeat expansions in the chimeric prion proteins increase the propensity to initiate prion propagation and enhance the formation of amyloid fibers without significantly altering fiber stability. PMID:19098443
Trinucleotide repeat length and progression of illness in Huntington's disease.
Kieburtz, K; MacDonald, M; Shih, C; Feigin, A; Steinberg, K; Bordwell, K; Zimmerman, C; Srinidhi, J; Sotack, J; Gusella, J
1994-01-01
The genetic defect causing Huntington's disease (HD) has been identified as an unstable expansion of a trinucleotide (CAG) repeat sequence within the coding region of the IT15 gene on chromosome 4. In 50 patients with manifest HD who were evaluated prospectively and uniformly, we examined the relationship between the extent of the DNA expansion and the rate of illness progression. Although the length of CAG repeats showed a strong inverse correlation with the age at onset of HD, there was no such relationship between the number of CAG repeats and the rate of clinical decline. These findings suggest that the CAG repeat length may influence or trigger the onset of HD, but other genetic, neurobiological, or environmental factors contribute to the progression of illness and the underlying pace of neuronal degeneration. PMID:7853373
Wen, Jingran; Scoles, Daniel R.; Facelli, Julio C.
2017-01-01
Spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3) are two common autosomal-dominant inherited ataxia syndromes, both of which are related to the unstable expansion of tri-nucleotide CAG repeats in the coding region of the related ATXN2 and ATXN3 genes, respectively. The poly-glutamine (poly-Q) tract encoded by the CAG repeats has long been recognized as an important factor in disease pathogenesis and progress. In this study, using the I-TASSER method for 3D structure prediction, we investigated the effect of poly-Q tract enlargement on the structure and folding of ataxin-2 and ataxin-3 proteins. Our results show good agreement with the known experimental structures of the Josephin and UIM domains providing credence to the simulation results presented here, which show that the enlargement of the poly-Q region not only affects the local structure of these regions but also affects the structures of functional domains as well as the whole protein. The changes observed in the predicted models of the UIM domains in ataxin-3 when the poly-Q track is enlarged provide new insights on possible pathogenic mechanisms. PMID:26861241
Budworth, Helen; Harris, Faye R.; Williams, Paul; Lee, Do Yup; Holt, Amy; Pahnke, Jens; Szczesny, Bartosz; Acevedo-Torres, Karina; Ayala-Peña, Sylvette; McMurray, Cynthia T.
2015-01-01
Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motor decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible. PMID:26247199
Hu, Jiaxin; Rong, Ziye; Gong, Xin; Zhou, Zhengyang; Sharma, Vivek K; Xing, Chao; Watts, Jonathan K; Corey, David R; Mootha, V Vinod
2018-03-15
Fuchs' endothelial corneal dystrophy (FECD) is the most common repeat expansion disorder. FECD impacts 4% of U.S. population and is the leading indication for corneal transplantation. Most cases are caused by an expanded intronic CUG tract in the TCF4 gene that forms nuclear foci, sequesters splicing factors and impairs splicing. We investigated the sense and antisense RNA landscape at the FECD gene and find that the sense-expanded repeat transcript is the predominant species in patient corneas. In patient tissue, sense foci number were negatively correlated with age and showed no correlation with sex. Each endothelial cell has ∼2 sense foci and each foci is single RNA molecule. We designed antisense oligonucleotides (ASOs) to target the mutant-repetitive RNA and demonstrated potent inhibition of foci in patient-derived cells. Ex vivo treatment of FECD human corneas effectively inhibits foci and reverses pathological changes in splicing. FECD has the potential to be a model for treating many trinucleotide repeat diseases and targeting the TCF4 expansion with ASOs represents a promising therapeutic strategy to prevent and treat FECD.
C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD.
O'Rourke, Jacqueline G; Bogdanik, Laurent; Muhammad, A K M G; Gendron, Tania F; Kim, Kevin J; Austin, Andrew; Cady, Janet; Liu, Elaine Y; Zarrow, Jonah; Grant, Sharday; Ho, Ritchie; Bell, Shaughn; Carmona, Sharon; Simpkinson, Megan; Lall, Deepti; Wu, Kathryn; Daughrity, Lillian; Dickson, Dennis W; Harms, Matthew B; Petrucelli, Leonard; Lee, Edward B; Lutz, Cathleen M; Baloh, Robert H
2015-12-02
Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Is There Convincing Evidence that Intermediate Repeats in the HTT Gene Cause Huntington's Disease?
Oosterloo, Mayke; Van Belzen, Martine J; Bijlsma, Emilia K; Roos, Raymund A C
2015-01-01
Huntington's disease (HD) is a neurodegenerative disease associated with a CAG repeat expansion in the Huntingtin (HTT) gene. A trinucleotide size between 27 and 35 is considered 'intermediate' and not to cause symptoms and signs of HD. There are articles claiming otherwise, however publishing only the cases that have a HD phenotype introduces a significant publication bias. Our objective is to determine if there is convincing evidence that intermediate repeats (IA) cause HD. Previously published case reports on HTT intermediate repeat sizes and all cases from the Netherlands with an IA were reviewed for clinical symptoms and signs. Four patients had a clinical presentation of Huntington's disease and an IA out of ten reported cases in literature. Between 2001 and 2012, 1,690 patients were tested for HD in the Netherlands. One case out of 60 with an IA had a phenotype resembling HD, but had already been published in a case report. Given the high background frequency of intermediate alleles in several populations, the possibility of developing HD would have huge implications for 1-7% of the normal population. It is possible that IAs present as an endophenotype with the potential of subsequent clinical manifestations. However, given the scarcity of convincing cases, the lack of convincing biological evidence for pathogenicity of intermediate alleles, and many genes still to be discovered for HD mimics, we find that it is premature to claim that IAs can cause HD. We recommend systematic follow up of this group of individuals and if possible brain pathology for confirmation or exclusion of HD.
Suntsov, V V; Suntsova, N I
2008-01-01
The ratio of macro- and microevolutionary processes is considered with reference to the ecological scenario of the origin of the plague pathogen and its subsequent natural and anthropogenic global expansion. The macroevolutionary transformation of the ancestral pseudotuberculosis microbe clone into the initial plague microbe Yersinia pestis tarbagani occurred in Central Asia at the end of the Late Pleistocene by a "vertical" Darwinian way in an inadaptive heterothermal continual intermediate environment--the Mongolian marmot Marmota sibirica-flea Oropsylla silantiewi system--via a sequence of unstable and currently extinct intermediate forms. Its natural geographic expansion on the "oil spot" principle in the postglacial time led to the microevolutionary formation of 20-30 hostal subspecies circulating in populations of the background species of burrowing rodents and pikas in arid areas of Eurasia. The intercontinental spread of the "marmot" and "rat" pathogen subspecies in the past few centuries has been exclusively anthropogenic, with the involvement of synanthropic (ship) rats.
Tsou, Wei-Ling; Hosking, Ryan R.; Burr, Aaron A.; Sutton, Joanna R.; Ouyang, Michelle; Du, Xiaofei; Gomez, Christopher M.; Todi, Sokol V.
2015-01-01
Spinocerebellar ataxia type 6 (SCA6) belongs to the family of CAG/polyglutamine (polyQ)-dependent neurodegenerative disorders. SCA6 is caused by abnormal expansion in a CAG trinucleotide repeat within exon 47 of CACNA1A, a bicistronic gene that encodes α1A, a P/Q-type calcium channel subunit and a C-terminal protein, termed α1ACT. Expansion of the CAG/polyQ region of CACNA1A occurs within α1ACT and leads to ataxia. There are few animal models of SCA6. Here, we describe the generation and characterization of the first Drosophila melanogaster models of SCA6, which express the entire human α1ACT protein with a normal or expanded polyQ. The polyQ-expanded version of α1ACT recapitulates the progressively degenerative nature of SCA6 when expressed in various fly tissues and the presence of densely staining aggregates. Additional studies identify the co-chaperone DnaJ-1 as a potential therapeutic target for SCA6. Expression of DnaJ-1 potently suppresses α1ACT-dependent degeneration and lethality, concomitant with decreased aggregation and reduced nuclear localization of the pathogenic protein. Mutating the nuclear importer karyopherin α3 also leads to reduced toxicity from pathogenic α1ACT. Little is known about the steps leading to degeneration in SCA6 and the means to protect neurons in this disease are lacking. Invertebrate animal models of SCA6 can expand our understanding of molecular sequelae related to degeneration in this disorder and lead to the rapid identification of cellular components that can be targeted to treat it. PMID:25954029
Handley, Renee R; Reid, Suzanne J; Brauning, Rudiger; Maclean, Paul; Mears, Emily R; Fourie, Imche; Patassini, Stefano; Cooper, Garth J S; Rudiger, Skye R; McLaughlan, Clive J; Verma, Paul J; Gusella, James F; MacDonald, Marcy E; Waldvogel, Henry J; Bawden, C Simon; Faull, Richard L M; Snell, Russell G
2017-12-26
The neurodegenerative disorder Huntington's disease (HD) is typically characterized by extensive loss of striatal neurons and the midlife onset of debilitating and progressive chorea, dementia, and psychological disturbance. HD is caused by a CAG repeat expansion in the Huntingtin ( HTT ) gene, translating to an elongated glutamine tract in the huntingtin protein. The pathogenic mechanism resulting in cell dysfunction and death beyond the causative mutation is not well defined. To further delineate the early molecular events in HD, we performed RNA-sequencing (RNA-seq) on striatal tissue from a cohort of 5-y-old OVT73 -line sheep expressing a human CAG-expansion HTT cDNA transgene. Our HD OVT73 sheep are a prodromal model and exhibit minimal pathology and no detectable neuronal loss. We identified significantly increased levels of the urea transporter SLC14A1 in the OVT73 striatum, along with other important osmotic regulators. Further investigation revealed elevated levels of the metabolite urea in the OVT73 striatum and cerebellum, consistent with our recently published observation of increased urea in postmortem human brain from HD cases. Extending that finding, we demonstrate that postmortem human brain urea levels are elevated in a larger cohort of HD cases, including those with low-level neuropathology (Vonsattel grade 0/1). This elevation indicates increased protein catabolism, possibly as an alternate energy source given the generalized metabolic defect in HD. Increased urea and ammonia levels due to dysregulation of the urea cycle are known to cause neurologic impairment. Taken together, our findings indicate that aberrant urea metabolism could be the primary biochemical disruption initiating neuropathogenesis in HD.
Independent Subtilases Expansions in Fungi Associated with Animals
Muszewska, Anna; Taylor, John W.; Szczesny, Pawel; Grynberg, Marcin
2011-01-01
Many socially important fungi encode an elevated number of subtilisin-like serine proteases, which have been shown to be involved in fungal mutualisms with grasses and in parasitism of insects, nematodes, plants, other fungi, and mammalian skin. These proteins have endopeptidase activities and constitute a significant part of fungal secretomes. Here, we use comparative genomics to investigate the relationship between the quality and quantity of serine proteases and the ability of fungi to cause disease in invertebrate and vertebrate animals. Our screen of previously unexamined fungi allowed us to annotate and identify nearly 1000 subtilisin-containing proteins and to describe six new categories of serine proteases. Architectures of predicted proteases reveal novel combinations of subtilisin domains with other, co-occurring domains. Phylogenetic analysis of the most common clade of fungal proteases, proteinase K, showed that gene family size changed independently in fungi, pathogenic to invertebrates (Hypocreales) and vertebrates (Onygenales). Interestingly, simultaneous expansions in the S8 and S53 families of subtilases in a single fungal species are rare. Our analysis finds that closely related systemic human pathogens may not show the same gene family expansions, and that related pathogens and nonpathogens may show the same type of gene family expansion. Therefore, the number of proteases does not appear to relate to pathogenicity. Instead, we hypothesize that the number of fungal serine proteases in a species is related to the use of the animal as a food source, whether it is dead or alive. PMID:21727238
2013-01-01
Background Expanded GGGGCC hexanucleotide repeats in the non-coding region of the C9ORF72 gene was recently identified as being responsible for over 40% of the cases of amyotrophic lateral sclerosis associated with frontotemporal lobar degeneration, in various extrapyramidal syndromes including supranuclear gaze palsy and corticobasal degeneration, and in addition, has been found to be a rare genetic cause of isolated Parkinsonism. To our knowledge, there is no published data concerning the neuropsychological evaluation of patients diagnosed with idiopathic Parkinson’s disease related with C9ORF72 repeat expansions. Case presentation We report the results of the comprehensive neuropsychological evaluation in a newly described case in the literature (the sixth) of a patient presenting isolated idiopathic Parkinson’s disease associated with C9ORF72 repeat expansions. The decrease in the patient’s prefrontal functions resulted in a slight decrease in global efficiency. These abnormalities did not appear to be different, with respect to the deficit observed and the intensity of the cognitive impairment, from those classically observed in cases of sporadic idiopathic Parkinson’s disease. Our patient also exhibited a significant impairment in visual gnosis. Conclusions If confirmed in other patients, visuoperceptive deficits in idiopathic Parkinson’s disease could represent a red flag that should prompt the clinician to perform addition diagnostic procedures. A thorough neuropsychological assessment may prove to be useful for detecting idiopathic Parkinson’s disease in patients who are suspected of having repeat abnormalities of C9ORF72 expansions. PMID:23987827
ATXN2 trinucleotide repeat length correlates with risk of ALS.
Sproviero, William; Shatunov, Aleksey; Stahl, Daniel; Shoai, Maryam; van Rheenen, Wouter; Jones, Ashley R; Al-Sarraj, Safa; Andersen, Peter M; Bonini, Nancy M; Conforti, Francesca L; Van Damme, Philip; Daoud, Hussein; Del Mar Amador, Maria; Fogh, Isabella; Forzan, Monica; Gaastra, Ben; Gellera, Cinzia; Gitler, Aaron D; Hardy, John; Fratta, Pietro; La Bella, Vincenzo; Le Ber, Isabelle; Van Langenhove, Tim; Lattante, Serena; Lee, Yi-Chung; Malaspina, Andrea; Meininger, Vincent; Millecamps, Stéphanie; Orrell, Richard; Rademakers, Rosa; Robberecht, Wim; Rouleau, Guy; Ross, Owen A; Salachas, Francois; Sidle, Katie; Smith, Bradley N; Soong, Bing-Wen; Sorarù, Gianni; Stevanin, Giovanni; Kabashi, Edor; Troakes, Claire; van Broeckhoven, Christine; Veldink, Jan H; van den Berg, Leonard H; Shaw, Christopher E; Powell, John F; Al-Chalabi, Ammar
2017-03-01
We investigated a CAG trinucleotide repeat expansion in the ATXN2 gene in amyotrophic lateral sclerosis (ALS). Two new case-control studies, a British dataset of 1474 ALS cases and 567 controls, and a Dutch dataset of 1328 ALS cases and 691 controls were analyzed. In addition, to increase power, we systematically searched PubMed for case-control studies published after 1 August 2010 that investigated the association between ATXN2 intermediate repeats and ALS. We conducted a meta-analysis of the new and existing studies for the relative risks of ATXN2 intermediate repeat alleles of between 24 and 34 CAG trinucleotide repeats and ALS. There was an overall increased risk of ALS for those carrying intermediate sized trinucleotide repeat alleles (odds ratio 3.06 [95% confidence interval 2.37-3.94]; p = 6 × 10 -18 ), with an exponential relationship between repeat length and ALS risk for alleles of 29-32 repeats (R 2 = 0.91, p = 0.0002). No relationship was seen for repeat length and age of onset or survival. In contrast to trinucleotide repeat diseases, intermediate ATXN2 trinucleotide repeat expansion in ALS does not predict age of onset but does predict disease risk. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Tejada, María-Isabel; Glover, Guillermo; Martínez, Francisco; Guitart, Miriam; de Diego-Otero, Yolanda; Fernández-Carvajal, Isabel; Ramos, Feliciano J.; Hernández-Chico, Concepción; Pintado, Elizabet; Rosell, Jordi; Calvo, María-Teresa; Ayuso, Carmen; Ramos-Arroyo, María-Antonia; Maortua, Hiart; Milà, Montserrat
2014-01-01
Fragile X syndrome is the most common inherited form of intellectual disability. Here we report on a study based on a collaborative registry, involving 12 Spanish centres, of molecular diagnostic tests in 1105 fragile X families comprising 5062 individuals, of whom, 1655 carried a full mutation or were mosaic, three cases had deletions, 1840 had a premutation, and 102 had intermediate alleles. Two patients with the full mutation also had Klinefelter syndrome. We have used this registry to assess the risk of expansion from parents to children. From mothers with premutation, the overall rate of allele expansion to full mutation is 52.5%, and we found that this rate is higher for male than female offspring (63.6% versus 45.6%; P < 0.001). Furthermore, in mothers with intermediate alleles (45–54 repeats), there were 10 cases of expansion to a premutation allele, and for the smallest premutation alleles (55–59 repeats), there was a 6.4% risk of expansion to a full mutation, with 56 repeats being the smallest allele that expanded to a full mutation allele in a single meiosis. Hence, in our series the risk for alleles of <59 repeats is somewhat higher than in other published series. These findings are important for genetic counselling. PMID:24987673
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budworth, Helen; Harris, Faye R.; Williams, Paul
Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motormore » decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.« less
Budworth, Helen; Harris, Faye R.; Williams, Paul; ...
2015-08-06
Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motormore » decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.« less
Effector functions of memory CTLs can be affected by signals received during reactivation.
Lv, Yingjun; Mattson, Elliot; Bhadurihauck, Anjuli; Garcia, Karla; Li, Lei; Xiao, Zhengguo
2017-08-01
Memory cytotoxic T lymphocytes (CTLs) are able to provide protections to the host against repeated insults from intracellular pathogens. However, it has not been completely understood how the effector functions of memory CTLs are induced upon antigen challenge, which is directly related to the efficacy of their protection. Third signal cytokines, such as IL-12 and type I interferon, have been suggested to be involved in the protective function of memory CTLs, but direct evidence is warranted. In this report, we found that memory CTLs need to be reactivated to exert effector functions. Infusion of a large population of quiescent memory CTLs did not lead to cancer control in tumor-bearing mice, whereas infusion of a reactivated memory CTL population did. This reactivation of memory CTLs requires cytokines such as IL-12 in addition to antigen but was less dependent upon costimulation and IL-2 compared to naive CTLs. Memory CTLs responded more quickly and with greater strength than their naive counterparts upon stimulation, which is associated with higher upregulation of important transcription factors such as T-bet and phosphorylated STAT4. In addition, memory CTLs underwent less expansion than naive CTLs upon pathogen challenge. In conclusion, effector functions of established memory CTLs may be affected by certain cytokines such as IL-12 and type I IFN. Thus, a pathogen's ability to induce cytokines could contribute to the efficacy of protection of an established memory CTL population.
Cady, Janet; Allred, Peggy; Bali, Taha; Pestronk, Alan; Goate, Alison; Miller, Timothy M; Mitra, Robi D; Ravits, John; Harms, Matthew B; Baloh, Robert H
2015-01-01
To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Targeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level. A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset. Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. © 2014 American Neurological Association.
Lin, Yuling; Min, Jiumeng; Lai, Ruilian; Wu, Zhangyan; Chen, Yukun; Yu, Lili; Cheng, Chunzhen; Jin, Yuanchun; Tian, Qilin; Liu, Qingfeng; Liu, Weihua; Zhang, Chengguang; Lin, Lixia; Hu, Yan; Zhang, Dongmin; Thu, Minkyaw; Zhang, Zihao; Liu, Shengcai; Zhong, Chunshui; Fang, Xiaodong; Wang, Jian; Yang, Huanming
2017-01-01
Abstract Longan (Dimocarpus longan Lour.), an important subtropical fruit in the family Sapindaceae, is grown in more than 10 countries. Longan is an edible drupe fruit and a source of traditional medicine with polyphenol-rich traits. Tree size, alternate bearing, and witches' broom disease still pose serious problems. To gain insights into the genomic basis of longan traits, a draft genome sequence was assembled. The draft genome (about 471.88 Mb) of a Chinese longan cultivar, “Honghezi,” was estimated to contain 31 007 genes and 261.88 Mb of repetitive sequences. No recent whole-genome-wide duplication event was detected in the genome. Whole-genome resequencing and analysis of 13 cultivated D. longan accessions revealed the extent of genetic diversity. Comparative transcriptome studies combined with genome-wide analysis revealed polyphenol-rich and pathogen resistance characteristics. Genes involved in secondary metabolism, especially those from significantly expanded (DHS, SDH, F3΄H, ANR, and UFGT) and contracted (PAL, CHS, and F3΄5΄H) gene families with tissue-specific expression, may be important contributors to the high accumulation levels of polyphenolic compounds observed in longan fruit. The high number of genes encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) and leucine-rich repeat receptor-like kinase proteins, as well as the recent expansion and contraction of the NBS-LRR family, suggested a genomic basis for resistance to insects, fungus, and bacteria in this fruit tree. These data provide insights into the evolution and diversity of the longan genome. The comparative genomic and transcriptome analyses provided information about longan-specific traits, particularly genes involved in its polyphenol-rich and pathogen resistance characteristics. PMID:28368449
Mierzejewska, Ewa J; Pawełczyk, Agnieszka; Radkowski, Marek; Welc-Falęciak, Renata; Bajer, Anna
2015-09-24
Dermacentor reticulatus plays an important role in the maintenance of pathogens of medical and veterinary importance in the environment. Currently two isolated populations of D. reticulatus are present in Poland--Western and Eastern. The range of the Eastern population covers endemic areas in eastern Poland but this population is expanding westwards creating an expansion zone in the centre of the country. The expansion zone in western Poland is occupied by the recently discovered Western population, spreading eastwards. Questing adult ticks (n = 2585) were collected in 2012-2014 in endemic regions of north-eastern (Warmińsko-Mazurskie Voivodeship) and central Poland (Masovian Voivodeship) and in the expansion zones in central and western Poland, in the region between the Vistula River and the western border of the country. Amplification of Babesia, Rickettsia spp. and Borrelia burgdorferi sensu lato DNAs was performed using specific starters. RNA of the TBE virus was detected using RT-PCR and representative PCR products were sequenced and compared with sequences deposited in GenBank. Of the total 2585 examined ticks, 1197 (46.3 %) were infected with at least one pathogen. Overall prevalence of pathogens was 4.18 % (108/2585) for Babesia spp., 44.10 % (1140/2585) for Rickettsia spp., 0.09 % (1/1107) for Borrelia afzelii and 7.6 % (7/92) for TBEV. Sequence analysis of DNA showed 99.86 % similarity to R. raoulti and 99.81 % to B. canis. One male from north-eastern Poland was infected with B. microti. Prevalence of R. raoulti was highest in the Western population (52.03 %) and lowest in the Eastern population in north-eastern Poland (34.18 %). Babesia canis was not detected in 592 ticks collected in the Western population, while in the Eastern population overall prevalence was 5.42 %. There were significant differences in the prevalence of B. canis between tick samples from northern (0.68 %), central (1.18 %) and southern (14.8 %) areas of the expansion zone in central Poland. Our study found significant differences between the range and prevalence of vectored pathogens in D. reticulatus from the endemic areas and newly inhabited expansion zones. The differences were likely associated with the different time of settlement or 'source' of ticks populations, the Eastern and the Western one.
C9orf72 hexanucleotide repeat expansions in Chinese sporadic amyotrophic lateral sclerosis.
He, Ji; Tang, Lu; Benyamin, Beben; Shah, Sonia; Hemani, Gib; Liu, Rong; Ye, Shan; Liu, Xiaolu; Ma, Yan; Zhang, Huagang; Cremin, Katie; Leo, Paul; Wray, Naomi R; Visscher, Peter M; Xu, Huji; Brown, Matthew A; Bartlett, Perry F; Mangelsdorf, Marie; Fan, Dongsheng
2015-09-01
A hexanucleotide repeat expansion (HRE) in the C9orf72 gene has been identified as the most common mutation in amyotrophic lateral sclerosis (ALS) among Caucasian populations. We sought to comprehensively evaluate genetic and epigenetic variants of C9orf72 and the contribution of the HRE in Chinese ALS cases. We performed fragment-length and repeat-primed polymerase chain reaction to determine GGGGCC copy number and expansion within the C9orf72 gene in 1092 sporadic ALS (sALS) and 1062 controls from China. We performed haplotype analysis of 23 single-nucleotide polymorphisms within and surrounding C9orf72. The C9orf72 HRE was found in 3 sALS patients (0.3%) but not in control subjects (p = 0.25). For 2 of the cases with the HRE, genotypes of 8 single-nucleotide polymorphisms flanking the HRE were inconsistent with the haplotype reported to be strongly associated with ALS in Caucasian populations. For these 2 individuals, we found hypermethylation of the CpG island upstream of the repeat, an observation not detected in other sALS patients (p < 10(-8)) or controls. The detailed analysis of the C9orf72 locus in a large cohort of Chinese samples provides robust evidence that may not be consistent with a single Caucasian founder event. Both the Caucasian and Chinese haplotypes associated with HRE were highly associated with repeat lengths >8 repeats implying that both haplotypes may confer instability of repeat length. Copyright © 2015 Elsevier Inc. All rights reserved.
Anjomani Virmouni, Sara; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A.
2014-01-01
Background Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats), YG8R (90 and 190 GAA repeats) and YG22R (190 GAA repeats). Methodology/Principal Findings We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R. Conclusions/Significance Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy. PMID:25198290
USDA-ARS?s Scientific Manuscript database
Simple sequence repeat (SSR) markers are widely used tools for inferences about genetic diversity, phylogeography and spatial genetic structure. Their applications assume that variation among alleles is essentially caused by an expansion or contraction of the number of repeats and that, accessorily,...
van Eyk, Clare L; O'Keefe, Louise V; Lawlor, Kynan T; Samaraweera, Saumya E; McLeod, Catherine J; Price, Gareth R; Venter, Deon J; Richards, Robert I
2011-07-15
Recent evidence supports a role for RNA as a common pathogenic agent in both the 'polyglutamine' and 'untranslated' dominant expanded repeat disorders. One feature of all repeat sequences currently associated with disease is their predicted ability to form a hairpin secondary structure at the RNA level. In order to investigate mechanisms by which hairpin-forming repeat RNAs could induce neurodegeneration, we have looked for alterations in gene transcript levels as hallmarks of the cellular response to toxic hairpin repeat RNAs. Three disease-associated repeat sequences--CAG, CUG and AUUCU--were specifically expressed in the neurons of Drosophila and resultant common transcriptional changes assessed by microarray analyses. Transcripts that encode several components of the Akt/Gsk3-β signalling pathway were altered as a consequence of expression of these repeat RNAs, indicating that this pathway is a component of the neuronal response to these pathogenic RNAs and may represent an important common therapeutic target in this class of diseases.
Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.
2014-01-01
Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1∶1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838
Herranz-Martin, Saul; Lewis, Katherine; Mulcahy, Padraig; Higginbottom, Adrian; Walker, Callum; Valenzuela, Isabel Martinez-Pena y; Coldicott, Ian; Shaw, Pamela J.
2017-01-01
ABSTRACT Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two major pathologies stemming from the hexanucleotide RNA expansions (HREs) have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN) dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV) and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ) abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43) pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches. PMID:28550099
Identification, variation and transcription of pneumococcal repeat sequences
2011-01-01
Background Small interspersed repeats are commonly found in many bacterial chromosomes. Two families of repeats (BOX and RUP) have previously been identified in the genome of Streptococcus pneumoniae, a nasopharyngeal commensal and respiratory pathogen of humans. However, little is known about the role they play in pneumococcal genetics. Results Analysis of the genome of S. pneumoniae ATCC 700669 revealed the presence of a third repeat family, which we have named SPRITE. All three repeats are present at a reduced density in the genome of the closely related species S. mitis. However, they are almost entirely absent from all other streptococci, although a set of elements related to the pneumococcal BOX repeat was identified in the zoonotic pathogen S. suis. In conjunction with information regarding their distribution within the pneumococcal chromosome, this suggests that it is unlikely that these repeats are specialised sequences performing a particular role for the host, but rather that they constitute parasitic elements. However, comparing insertion sites between pneumococcal sequences indicates that they appear to transpose at a much lower rate than IS elements. Some large BOX elements in S. pneumoniae were found to encode open reading frames on both strands of the genome, whilst another was found to form a composite RNA structure with two T box riboswitches. In multiple cases, such BOX elements were demonstrated as being expressed using directional RNA-seq and RT-PCR. Conclusions BOX, RUP and SPRITE repeats appear to have proliferated extensively throughout the pneumococcal chromosome during the species' past, but novel insertions are currently occurring at a relatively slow rate. Through their extensive secondary structures, they seem likely to affect the expression of genes with which they are co-transcribed. Software for annotation of these repeats is freely available from ftp://ftp.sanger.ac.uk/pub/pathogens/strep_repeats/. PMID:21333003
[Myotonic dystrophies: clinical presentation, pathogenesis, diagnostics and therapy].
Finsterer, Josef; Rudnik-Schöneborn, S
2015-01-01
The autosomal-dominant myotonic dystrophies dystrophia myotonica type-1 (DM1, Curschmann-Steinert disease) and dystrophia myotonica type-2 (DM2, proximal myotonic myopathy (PROMM)), are, contrary to the non-dystrophic myotonias, progressive multisystem disorders. DM1 and DM2 are the most frequent of the muscular dystrophies. In both diseases the skeletal muscle is the most severely affected organ (weakness, wasting, myotonia, myalgia). Additionally, they manifest in the eye, heart, brain, endocrine glands, gastrointestinal tract, skin, skeleton, and peripheral nerves. Phenotypes of DM1 may be classified as congenital, juvenile, classical, or late onset. DM2 is a disorder of the middle or older age and usually has a milder course compared to DM1. DM1 is due to a CTG-repeat expansion > 50 repeats in the non-coding 3' UTR of the DMPK-gene. DM2 is caused by a CCTG-repeat expansion to 75 - 11 000 repeats in intron-1 of the CNBP/ZNF9 gene. Mutant pre-mRNAs of both genes aggregate within the nucleus (nuclear foci), which sequester RNA-binding proteins and result in an abnormal protein expression via alternative splicing in downstream effector genes (toxic RNA diseases). Other mechanisms seem to play an additional pathogenetic role. Clinical severity of DM1 increases from generation to generation (anticipation). The higher the repeat expansion the more severe the DM1 phenotype. In DM2 severity of symptoms and age at onset do not correlate with the expansion size. Contrary to DM2, there is a congenital form and anticipation in DM1. © Georg Thieme Verlag KG Stuttgart · New York.
Structural studies of CNG repeats
Kiliszek, Agnieszka; Rypniewski, Wojciech
2014-01-01
CNG repeats (where N denotes one of the four natural nucleotides) are abundant in the human genome. Their tendency to undergo expansion can lead to hereditary diseases known as TREDs (trinucleotide repeat expansion disorders). The toxic factor can be protein, if the abnormal gene is expressed, or the gene transcript, or both. The gene transcripts have attracted much attention in the biomedical community, but their molecular structures have only recently been investigated. Model RNA molecules comprising CNG repeats fold into long hairpins whose stems generally conform to an A-type helix, in which the non-canonical N-N pairs are flanked by C-G and G-C pairs. Each homobasic pair is accommodated in the helical context in a unique manner, with consequences for the local helical parameters, solvent structure, electrostatic potential and potential to interact with ligands. The detailed three-dimensional profiles of RNA CNG repeats can be used in screening of compound libraries for potential therapeutics and in structure-based drug design. Here is a brief survey of the CNG structures published to date. PMID:24939898
Oda, Masaya; Maruyama, Hirofumi; Komure, Osamu; Morino, Hiroyuki; Terasawa, Hideo; Izumi, Yuishin; Imamura, Tohru; Yasuda, Minoru; Ichikawa, Keiji; Ogawa, Masafumi; Matsumoto, Masayasu; Kawakami, Hideshi
2004-02-01
Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant cerebellar ataxia caused by expansion of CAG/CAA trinucleotide repeats in the TATA-binding protein (TBP) gene. Because the number of triplets in patients with SCA17 in previous studies ranged from 43 to 63, the normal number of trinucleotide units has been considered to be 42 or less. However, some healthy subjects in SCA17 pedigrees carry alleles with the same number of expanded repeats as patients with SCA17. To investigate the minimum number of CAG/CAA repeats in the TBP gene that causes SCA17. We amplified the region of the TBP gene containing the CAG/CAA repeat by means of polymerase chain reaction and performed fragment and sequence analyses. The subjects included 734 patients with SCA (480 patients with sporadic SCA and 254 patients with familial SCA) without CAG repeat expansions at the SCA1, SCA2, Machado-Joseph disease, SCA6, SCA7, or dentatorubral-pallidolluysian atrophy loci, with 162 healthy subjects, 216 patients with Parkinson disease, and 195 with Alzheimer disease as control subjects. Eight patients with SCA possessed an allele with more than 43 CAG/CAA repeats. Among the non-SCA groups, alleles with 43 to 45 repeats were seen in 3 healthy subjects and 2 with Parkinson disease. In 1 SCA pedigree, a patient with possible SCA17 and her healthy sister had alleles with 45 repeats. A 34-year-old man carrying alleles with 47 and 44 repeats (47/44) had developed progressive cerebellar ataxia and myoclonus at 25 years of age, and he exhibited dementia and pyramidal signs. He was the only affected person in his pedigree, although his father and mother carried alleles with mildly expanded repeats (44/36 and 47/36, respectively). In another pedigree, 1 patient carried a 43-repeat allele, whereas another patient had 2 normal alleles, indicating that the 43-repeat allele may not be pathologic in this family. We estimate that 44 CAG/CAA repeats is the minimum number required to cause SCA17. However, the existence of unaffected subjects with mildly expanded triplets suggests that the TBP gene mutation may not penetrate fully. Homozygosity of alleles with mildly expanded triplet repeats in the TBP gene might contribute to the pathologic phenotype.
Tzelepis, Fanny; Persechini, Pedro M; Rodrigues, Mauricio M
2007-04-25
Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8(+) T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8(+) T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8(+) T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8(+) cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8(+) cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8(+) cytotoxic T cells was dependent on MHC class II restricted CD4(+) T cells. Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4(+) T cell-dependent expansion of pathogen-specific CD8(+) cytotoxic T cells.
R-loops: targets for nuclease cleavage and repeat instability.
Freudenreich, Catherine H
2018-01-11
R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.
Duplications and losses in gene families of rust pathogens highlight putative effectors
Amanda L. Pendleton; Katherine E. Smith; Nicolas Feau; Francis M. Martin; Igor V. Grigoriev; Richard Hamelin; C.Dana Nelson; J.Gordon Burleigh; John M. Davis
2014-01-01
Rust fungi are a group of fungal pathogens that cause some of the worldâs most destructive diseases of trees and crops . A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen...
D'Auria, Giuseppe; Jiménez, Núria; Peris-Bondia, Francesc; Pelaz, Carmen; Latorre, Amparo; Moya, Andrés
2008-01-14
The repeats in toxin (Rtx) are an important pathogenicity factor involved in host cells invasion of Legionella pneumophila and other pathogenic bacteria. Its role in escaping the host immune system and cytotoxic activity is well known. Its repeated motives and modularity make Rtx a multifunctional factor in pathogenicity. The comparative analysis of rtx gene among 6 strains of L. pneumophila showed modularity in their structures. Among compared genomes, the N-terminal region of the protein presents highly dissimilar repeats with functionally similar domains. On the contrary, the C-terminal region is maintained with a fashionable modular configuration, which gives support to its proposed role in adhesion and pore formation. Despite the variability of rtx among the considered strains, the flanking genes are maintained in synteny and similarity. In contrast to the extracellular bacteria Vibrio cholerae, in which the rtx gene is highly conserved and flanking genes have lost synteny and similarity, the gene region coding for the Rtx toxin in the intracellular pathogen L. pneumophila shows a rapid evolution. Changes in the rtx could play a role in pathogenicity. The interplay of the Rtx toxin with host membranes might lead to the evolution of new variants that are able to escape host cell defences.
Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael
2012-01-01
Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774
Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael
2012-01-01
Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.
The race between infection and immunity - how do pathogens set the pace?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribiero, Ruy M
2009-01-01
Infection is often referred to as a race between pathogen and immune response. This metaphor suggests that slower growing pathogens should be more easily controlled. However, a growing body ofevidence shows that many chronic infections are caused by failure to control slow growing pathogens. The slow growth of pathogens appears to directly affect the kinetics of the immune response. Compared with the response to fast growing pathogens, the T cell response to slow pathogens is delayed in its initiation, lymphocyte expansion is slow and the response often fails to clear the pathogen, leading to chronic infection. Understanding the 'rules ofthemore » race' for slow growing pathogens has important implications for vaccine design and immune control of many chronic infections.« less
EBR1 genomic expansion and its role in virulence of Fusarium species
USDA-ARS?s Scientific Manuscript database
Genome sequencing of Fusarium oxysporum revealed that pathogenic forms of this fungus harbor supernumerary chromosomes with a wide variety of genes, many of which likely encode traits required for pathogenicity or niche specialization. Specific transcription factor (TF) gene families are expanded on...
Morales, Fernando; Vásquez, Melissa; Santamaría, Carolina; Cuenca, Patricia; Corrales, Eyleen; Monckton, Darren G
2016-04-01
Somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 is age-dependent, tissue-specific and expansion-biased, contributing toward the tissue-specificity and progressive nature of the symptoms. Previously, using regression modelling of repeat instability we showed that variation in the rate of somatic expansion in blood DNA contributes toward variation in age of onset, directly implicating somatic expansion in the disease pathway. Here, we confirm these results using a larger more genetically homogenous Costa Rican DM1 cohort (p<0.001). Interestingly, we also provide evidence that supports subtle sex-dependent differences in repeat length-dependent age at onset and somatic mutational dynamics. Previously, we demonstrated that variation in the rate of somatic expansion was a heritable quantitative trait. Given the important role that DNA mismatch repair genes play in mediating expansions in mouse models, we tested for modifier gene effects with 13 DNA mismatch gene polymorphisms (one each in MSH2, PMS2, MSH6 and MLH1; and nine in MSH3). After correcting for allele length and age effects, we identified three polymorphisms in MSH3 that were associated with variation in somatic instability: Rs26279 (p=0.003); Rs1677658 (p=0.009); and Rs10168 (p=0.031). However, only the association with Rs26279 remained significant after multiple testing correction. Although we revealed a statistically significant association between Rs26279 and somatic instability, we did not detect an association with the age at onset. Individuals with the A/A genotype for Rs26279 tended to show a greater propensity to expand the CTG repeat than other genotypes. Interestingly, this SNP results in an amino acid change in the critical ATPase domain of MSH3 and is potentially functionally dimorphic. These data suggest that MSH3 is a key player in generating somatic variation in DM1 patients and further highlight MSH3 as a potential therapeutic target. Copyright © 2016 Elsevier B.V. All rights reserved.
Vatsavayai, Sarat C; Yoon, Soo Jin; Gardner, Raquel C; Gendron, Tania F; Vargas, Jose Norberto S; Trujillo, Andrew; Pribadi, Mochtar; Phillips, Joanna J; Gaus, Stephanie E; Hixson, John D; Garcia, Paul A; Rabinovici, Gil D; Coppola, Giovanni; Geschwind, Daniel H; Petrucelli, Leonard; Miller, Bruce L; Seeley, William W
2016-01-01
See Scaber and Talbot (doi:10.1093/aww264) for a scientific commentary on this article. A GGGGCC repeat expansion in C9orf72 leads to frontotemporal dementia and/or amyotrophic lateral sclerosis. Diverse pathological features have been identified, and their disease relevance remains much debated. Here, we describe two illuminating patients with frontotemporal dementia due to the C9orf72 repeat expansion. Case 1 was a 65-year-old female with behavioural variant frontotemporal dementia accompanied by focal degeneration in subgenual anterior cingulate cortex, amygdala, and medial pulvinar thalamus. At autopsy, widespread RNA foci and dipeptide repeat protein inclusions were observed, but TDP-43 pathology was nearly absent, even in degenerating brain regions. Case 2 was a 74-year-old female with atypical frontotemporal dementia–motor neuron disease who underwent temporal lobe resection for epilepsy 5 years prior to her first frontotemporal dementia symptoms. Archival surgical resection tissue contained RNA foci, dipeptide repeat protein inclusions, and loss of nuclear TDP-43 but no TDP-43 inclusions despite florid TDP-43 inclusions at autopsy 8 years after first symptoms. These findings suggest that C9orf72-specific phenomena may impact brain structure and function and emerge before first symptoms and TDP-43 aggregation. PMID:27797809
Structure prediction of polyglutamine disease proteins: comparison of methods
2014-01-01
Background The expansion of polyglutamine (poly-Q) repeats in several unrelated proteins is associated with at least ten neurodegenerative diseases. The length of the poly-Q regions plays an important role in the progression of the diseases. The number of glutamines (Q) is inversely related to the onset age of these polyglutamine diseases, and the expansion of poly-Q repeats has been associated with protein misfolding. However, very little is known about the structural changes induced by the expansion of the repeats. Computational methods can provide an alternative to determine the structure of these poly-Q proteins, but it is important to evaluate their performance before large scale prediction work is done. Results In this paper, two popular protein structure prediction programs, I-TASSER and Rosetta, have been used to predict the structure of the N-terminal fragment of a protein associated with Huntington's disease with 17 glutamines. Results show that both programs have the ability to find the native structures, but I-TASSER performs better for the overall task. Conclusions Both I-TASSER and Rosetta can be used for structure prediction of proteins with poly-Q repeats. Knowledge of poly-Q structure may significantly contribute to development of therapeutic strategies for poly-Q diseases. PMID:25080018
The Genomic Diversification of the Whole Acinetobacter Genus: Origins, Mechanisms, and Consequences
Touchon, Marie; Cury, Jean; Yoon, Eun-Jeong; Krizova, Lenka; Cerqueira, Gustavo C.; Murphy, Cheryl; Feldgarden, Michael; Wortman, Jennifer; Clermont, Dominique; Lambert, Thierry; Grillot-Courvalin, Catherine; Nemec, Alexandr; Courvalin, Patrice; Rocha, Eduardo P.C.
2014-01-01
Bacterial genomics has greatly expanded our understanding of microdiversification patterns within a species, but analyses at higher taxonomical levels are necessary to understand and predict the independent rise of pathogens in a genus. We have sampled, sequenced, and assessed the diversity of genomes of validly named and tentative species of the Acinetobacter genus, a clade including major nosocomial pathogens and biotechnologically important species. We inferred a robust global phylogeny and delimited several new putative species. The genus is very ancient and extremely diverse: Genomes of highly divergent species share more orthologs than certain strains within a species. We systematically characterized elements and mechanisms driving genome diversification, such as conjugative elements, insertion sequences, and natural transformation. We found many error-prone polymerases that may play a role in resistance to toxins, antibiotics, and in the generation of genetic variation. Surprisingly, temperate phages, poorly studied in Acinetobacter, were found to account for a significant fraction of most genomes. Accordingly, many genomes encode clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems with some of the largest CRISPR-arrays found so far in bacteria. Integrons are strongly overrepresented in Acinetobacter baumannii, which correlates with its frequent resistance to antibiotics. Our data suggest that A. baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection. The outstanding diversification of the species occurred largely by horizontal transfer, including some allelic recombination, at specific hotspots preferentially located close to the replication terminus. Our work sets a quantitative basis to understand the diversification of Acinetobacter into emerging resistant and versatile pathogens. PMID:25313016
Baine, Fiona K; Peerbhai, Nabeelah; Krause, Amanda
2018-07-15
Huntington disease (HD) is a progressive neurodegenerative disease, characterised by a triad of movement disorder, emotional and behavioural disturbances and cognitive impairment. The underlying cause is an expanded CAG repeat in the huntingtin gene. For a small proportion of patients presenting with HD-like symptoms, the mutation in this gene is not identified and they are said to have a HD "phenocopy". South Africa has the highest number of recorded cases of an African-specific phenocopy, Huntington disease-like 2 (HDL2), caused by a repeat expansion in the junctophilin-3 gene. However, a significant proportion of black patients with clinical symptoms suggestive of HD still test negative for HD and HDL2. This study thus aimed to investigate five other loci associated with HD phenocopy syndromes - ATN1, ATXN2, ATXN7, TBP and C9orf72. In a sample of patients in whom HD and HDL2 had been excluded, a single expansion was identified in the ATXN2 gene, confirming a diagnosis of Spinocerebellar ataxia 2. The results indicate that common repeat expansion disorders do not contribute significantly to the HD-like phenotype in black South African patients. Importantly, allele sizing reveals unique distributions of normal repeat lengths across the associated loci in the African population studied. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Jilin; McFarland, Karen N.; Landrian, Ivette; Hutter, Diane; Teive, Hélio A. G.; Rasmussen, Astrid; Mulligan, Connie J.; Ashizawa, Tetsuo
2013-01-01
Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia, is caused by the expansion of the non-coding ATTCT pentanucleotide repeat in the ATAXIN 10 gene. To date, all cases of SCA10 are restricted to patients with ancestral ties to Latin American countries. Here, we report on a SCA10 patient with Sioux Native American ancestry and no reported Hispanic or Latino heritage. Neurological exam findings revealed impaired gait with mild, age-consistent cerebellar atrophy and no evidence of epileptic seizures. The age at onset for this patient, at 83 years of age, is the latest documented for SCA10 patients and is suggestive of a reduced penetrance allele in his family. Southern blot analysis showed an SCA10 expanded allele of 1400 repeats. Established SNPs surrounding the SCA10 locus showed a disease haplotype consistent with the previously described “SCA10 haplotype”. This case suggests that the SCA10 expansion represents an early mutation event that possibly occurred during the initial peopling of the Americas. PMID:24278426
Kimura, Shun-Ichi; Gomyo, Ayumi; Hayakawa, Jin; Tamaki, Masaharu; Akahoshi, Yu; Harada, Naonori; Ugai, Tomotaka; Kusuda, Machiko; Kameda, Kazuaki; Wada, Hidenori; Ishihara, Yuko; Kawamura, Koji; Sakamoto, Kana; Sato, Miki; Terasako-Saito, Kiriko; Kikuchi, Misato; Nakasone, Hideki; Kako, Shinichi; Tanihara, Aki; Kanda, Yoshinobu
2017-10-01
We evaluated the clinical significance of repeat blood cultures in persistent and recurrent fever during neutropenia in adult acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) patients undergoing intensive chemotherapy. We retrospectively reviewed the chemotherapy cycles at our centre between January 2007 and December 2015. Blood cultures obtained within three days after initial febrile neutropenia (FN) were defined as initial blood cultures and those obtained on or after day 4 were defined as repeat blood cultures. Overall, 321 chemotherapy cycles in 89 patients were subjected to review. FN was identified in 276 (86.0%) chemotherapy cycles. In persistent FN (134 episodes), the causative pathogens were detected by repeat blood cultures in seven episodes (5.2%), including only three episodes (2.2%) of new infection. Shaking chills and high body temperature were identified as significant predictors for bloodstream infection (BSI). In recurrent FN (85 episodes), the causative pathogens were detected in seven episodes (8.2%), and all of these were new organisms. The frequency of detecting new pathogens by repeat blood cultures in recurrent FN (7/85) was higher than that in persistent FN (3/134) (p = .0491). A history of recent BSI was identified as a significant predictor for BSI in recurrent FN. The diagnostic yield of repeat blood cultures for persistent FN was low in intensive chemotherapy for AML and MDS. The frequency of repeat blood cultures for persistent FN could be reduced based on predictors. On the other hand, blood cultures were considered to be essential in cases with recurrent FN.
Duplications and losses in gene families of rust pathogens highlight putative effectors.
Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M
2014-01-01
Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.
Sundararajan, Rangapriya; Freudenreich, Catherine H.
2011-01-01
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275
The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.
Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M
2013-05-29
Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study.
The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family
2013-01-01
Background Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study. PMID:23718880
Stevanin, Giovanni; Cassa, Eloy; Cancel, Géraldine; Abbas, Nacer; Dürr, Alexandra; Jardim, Edymar; Agid, Yves; Sousa, Patricia S; Brice, Alexis
1995-01-01
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder which has been shown to result, in Japanese families, from the expansion of a CAG repeat in the MJD1 gene on chromosome 14q. We show that the same molecular mechanism is responsible for MJD in four large Brazilian kindreds of Portuguese descent. The behaviour of the mutation was evaluated in 28 affected and 19 asymptomatic gene carriers. The number of repeats in the expanded alleles ranged from 66 to 77 with a strong negative correlation with age at onset (r=0·79). A mean 1·6 repeats increase from generation to generation correlated with clinical anticipation. Instability of the CAG repeat was bidirectional, with expansions as well as contractions, and was more marked in paternal transmissions. Finally, linkage disequilibrium was complete at locus D14S280 in the four Portuguese-Brazilian kindreds and four previously reported French families with the same mutation, which suggests the existence of a common founder. PMID:8558567
Structural studies of CNG repeats.
Kiliszek, Agnieszka; Rypniewski, Wojciech
2014-07-01
CNG repeats (where N denotes one of the four natural nucleotides) are abundant in the human genome. Their tendency to undergo expansion can lead to hereditary diseases known as TREDs (trinucleotide repeat expansion disorders). The toxic factor can be protein, if the abnormal gene is expressed, or the gene transcript, or both. The gene transcripts have attracted much attention in the biomedical community, but their molecular structures have only recently been investigated. Model RNA molecules comprising CNG repeats fold into long hairpins whose stems generally conform to an A-type helix, in which the non-canonical N-N pairs are flanked by C-G and G-C pairs. Each homobasic pair is accommodated in the helical context in a unique manner, with consequences for the local helical parameters, solvent structure, electrostatic potential and potential to interact with ligands. The detailed three-dimensional profiles of RNA CNG repeats can be used in screening of compound libraries for potential therapeutics and in structure-based drug design. Here is a brief survey of the CNG structures published to date. © Published by Oxford University Press on behalf of Nucleic Acids Research.
Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann
2009-09-01
Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named "Dyc" for "Digit in Y and Carpe" phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over.
Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann
2009-01-01
Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named “Dyc” for “Digit in Y and Carpe” phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over. PMID:19546318
Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St Claire, Jason; Panigrahi, Gagan B; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R; Cohen, Paula E; Li, Guo-Min; Pearson, Christopher E; Daly, Mark J; Wheeler, Vanessa C
2013-10-01
The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein levels play an important role in driving of the efficiency of somatic expansions.
Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St. Claire, Jason; Panigrahi, Gagan B.; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R.; Cohen, Paula E.; Li, Guo-Min; Pearson, Christopher E.; Daly, Mark J.; Wheeler, Vanessa C.
2013-01-01
The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease HdhQ111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.HdhQ111) than on a 129 background (129.HdhQ111). Linkage mapping in (B6x129).HdhQ111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.HdhQ111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. HdhQ111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1–MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2–MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein levels play an important role in driving of the efficiency of somatic expansions. PMID:24204323
USDA-ARS?s Scientific Manuscript database
Pyrenophora tritici-repentis is a necrotrophic fungal pathogen and causal agent of tan spot disease of wheat, which has increased significantly over the last few decades. Pathogenicity by this fungus is due to host-selective toxins. These toxins are recognized by their host plant in a genotype-speci...
Alu repeats: A source for the genesis of primate microsatellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcot, S.S.; Batzer, M.A.; Wang, Zhenyuan
1995-09-01
As a result of their abundance, relatively uniform distribution, and high degree of polymorphism, microsatellites and minisatellites have become valuable tools in genetic mapping, forensic identity testing, and population studies. In recent years, a number of microsatellite repeats have been found to be associated with Alu interspersed repeated DNA elements. The association of an Alu element with a microsatellite repeat could result from the integration of an Alu element within a preexisting microsatellite repeat. Alternatively, Alu elements could have a direct role in the origin of microsatellite repeats. Errors introduced during reverse transcription of the primary transcript derived from anmore » Alu {open_quotes}master{close_quote} gene or the accumulation of random mutations in the middle A-rich regions and oligo(dA)-rich tails of Alu elements after insertion and subsequent expansion and contraction of these sequences could result in the genesis of a microsatellite repeat. We have tested these hypotheses by a direct evolutionary comparison of the sequences of some recent Alu elements that are found only in humans and are absent from nonhuman primates, as well as some older Alu elements that are present at orthologous positions in a number of nonhuman primates. The origin of {open_quotes}young{close_quotes} Alu insertions, absence of sequences that resemble microsatellite repeats at the orthologous loci in chimpanzees, and the gradual expansion of microsatellite repeats in some old Alu repeats at orthologous positions within the genomes of a number of nonhuman primates suggest that Alu elements are a source for the genesis of primate microsatellite repeats. 48 refs., 5 figs., 3 tabs.« less
Bourke, Claire D.; Mountford, Adrian P.
2015-01-01
The skin provides an important first line of defence and immunological barrier to invasive pathogens, but immune responses must also be regulated to maintain barrier function and ensure tolerance of skin surface commensal organisms. In schistosomiasis-endemic regions, populations can experience repeated percutaneous exposure to schistosome larvae, however little is known about how repeated exposure to pathogens affects immune regulation in the skin. Here, using a murine model of repeated infection with Schistosoma mansoni larvae, we show that the skin infection site becomes rich in regulatory IL-10, whilst in its absence, inflammation, neutrophil recruitment, and local lymphocyte proliferation is increased. Whilst CD4+ T cells are the primary cellular source of regulatory IL-10, they expressed none of the markers conventionally associated with T regulatory (Treg) cells (i.e. FoxP3, Helios, Nrp1, CD223, or CD49b). Nevertheless, these IL-10+ CD4+ T cells in the skin from repeatedly infected mice are functionally suppressive as they reduced proliferation of responsive CD4+ T cells from the skin draining lymph node. Moreover, the skin of infected Rag-/- mice had impaired IL-10 production and increased neutrophil recruitment. Finally, we show that the mechanism behind IL-10 production by CD4+ T cells in the skin is due to a combination of an initial (day 1) response specific to skin commensal bacteria, and then over the following days schistosome-specific CD4+ T cell responses, which together contribute towards limiting inflammation and tissue damage following schistosome infection. We propose CD4+ T cells in the skin that do not express markers of conventional T regulatory cell populations have a significant role in immune regulation after repeated pathogen exposure and speculate that these cells may also help to maintain skin barrier function in the context of repeated percutaneous insult by other skin pathogens. PMID:25974019
Linkage disequilibrium at the SCA2 locus
Didierjean, O.; Cancel, G.; Stevanin, G.; Durr, A.; Burk, K.; Benomar, A.; Lezin, A.; Belal, S.; Abada-Bendid, M.; Klockgether, T.; Brice, A.
1999-01-01
Spinocerebellar ataxia type 2 (SCA2) is caused by the expansion of an unstable CAG repeat encoding a polyglutamine tract. Repeats with 32 to 200 CAGs are associated with the disease, whereas normal chromosomes contain 13 to 33 repeats. We tested 220 families of different geographical origins for the SCA2 mutation. Thirty three were positive (15%). Twenty three families with at least two affected subjects were tested for linkage disequilibium (LD) between the SCA2 mutation and three microsatellite markers, two of which (D12S1332-D12S1333) closely flanked the mutation; the other (D12S1672) was intragenic. Many different haplotypes were observed, indicating the occurrence of several ancestral mutations. However, the same haplotype, not observed in controls, was detected in the German, the Serbian, and some of the French families, suggesting a founder effect or recurrent mutations on an at risk haplotype. Keywords: linkage disequilibrium; SCA2; trinucleotide repeat expansion; founder effect PMID:10353790
Malik, Bilal; Nirmalananthan, Niranjanan; Gray, Anna L.; La Spada, Albert R.; Hanna, Michael G.
2013-01-01
Spinal and bulbar muscular atrophy, also known as Kennedy’s disease, is an adult-onset hereditary neurodegenerative disorder caused by an expansion of the polyglutamine repeat in the first exon in the androgen receptor gene. Pathologically, the disease is defined by selective loss of spinal and bulbar motor neurons causing bulbar, facial and limb weakness. Although the precise disease pathophysiology is largely unknown, it appears to be related to abnormal accumulation of the pathogenic androgen receptor protein within the nucleus, leading to disruption of cellular processes. Using a mouse model of spinal and bulbar muscular atrophy that exhibits many of the characteristic features of the human disease, in vivo physiological assessment of muscle function revealed that mice with the pathogenic expansion of the androgen receptor develop a motor deficit characterized by a reduction in muscle force, abnormal muscle contractile characteristics, loss of functional motor units and motor neuron degeneration. We have previously shown that treatment with arimoclomol, a co-inducer of the heat shock stress response, delays disease progression in the mutant superoxide dismutase 1 mouse model of amyotrophic lateral sclerosis, a fatal motor neuron disease. We therefore evaluated the therapeutic potential of arimoclomol in mice with spinal and bulbar muscular atrophy. Arimoclomol was administered orally, in drinking water, from symptom onset and the effects established at 18 months of age, a late stage of disease. Arimoclomol significantly improved hindlimb muscle force and contractile characteristics, rescued motor units and, importantly, improved motor neuron survival and upregulated the expression of the vascular endothelial growth factor which possess neurotrophic activity. These results provide evidence that upregulation of the heat shock response by treatment with arimoclomol may have therapeutic potential in the treatment of spinal and bulbar muscular atrophy and may also be a possible approach for the treatment of other neurodegenerative diseases. PMID:23393146
Astori, Giuseppe; Amati, Eliana; Bambi, Franco; Bernardi, Martina; Chieregato, Katia; Schäfer, Richard; Sella, Sabrina; Rodeghiero, Francesco
2016-07-13
The use of fetal bovine serum (FBS) as a cell culture supplement is discouraged by regulatory authorities to limit the risk of zoonoses and xenogeneic immune reactions in the transplanted host. Additionally, FBS production came under scrutiny due to animal welfare concerns. Platelet derivatives have been proposed as FBS substitutes for the ex-vivo expansion of mesenchymal stem/stromal cells (MSCs) since platelet-derived growth factors can promote MSC ex-vivo expansion. Platelet-derived growth factors are present in platelet lysate (PL) obtained after repeated freezing-thawing cycles of the platelet-rich plasma or by applying physiological stimuli such as thrombin or CaCl2.PL-expanded MSCs have been used already in the clinic, taking advantage of their faster proliferation compared with FBS-expanded preparations. Should PL be applied to other biopharmaceutical products, its demand is likely to increase dramatically. The use of fresh platelet units for the production of PL raises concerns due to limited availability of platelet donors. Expired units might represent an alternative, but further data are needed to define safety, including pathogen reduction, and functionality of the obtained PL. In addition, relevant questions concerning the definition of PL release criteria, including concentration ranges of specific growth factors in PL batches for various clinical indications, also need to be addressed. We are still far from a common definition of PL and standardized PL manufacture due to our limited knowledge of the mechanisms that mediate PL-promoting cell growth. Here, we concisely discuss aspects of PL as MSC culture supplement as a preliminary step towards an agreed definition of the required characteristics of PL for the requirements of manufacturers and users.
Belmonte, Rodrigo; Löbach, Lars; Christie, James; van den Ackerveken, Guido; Bottin, Arnaud; Bulone, Vincent; Díaz-Moreno, Sara M.; Dumas, Bernard; Fan, Lin; Gaulin, Elodie; Govers, Francine; Grenville-Briggs, Laura J.; Horner, Neil R.; Levin, Joshua Z.; Mammella, Marco; Meijer, Harold J. G.; Morris, Paul; Nusbaum, Chad; Oome, Stan; Phillips, Andrew J.; van Rooyen, David; Rzeszutek, Elzbieta; Saraiva, Marcia; Secombes, Chris J.; Seidl, Michael F.; Snel, Berend; Stassen, Joost H. M.; Sykes, Sean; Tripathy, Sucheta; van den Berg, Herbert; Vega-Arreguin, Julio C.; Wawra, Stephan; Young, Sarah K.; Zeng, Qiandong; Dieguez-Uribeondo, Javier; Russ, Carsten; Tyler, Brett M.; van West, Pieter
2013-01-01
Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica. PMID:23785293
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinsztein, D.C.; Leggo, J.; Crow, T.J.
A new class of disease (including Huntington disease, Kennedy disease, and spinocerebellar ataxias types 1 and 3) results from abnormal expansions of CAG trinucleotides in the coding regions of genes. In all of these diseases the CAG repeats are thought to be translated into polyglutamine tracts. There is accumulating evidence arguing for CAG trinucleotide expansions as one of the causative disease mutations in schizophrenia and bipolar affective disorder. We and others believe that the TATA-binding protein (TBP) is an important candidate to investigate in these diseases as it contains a highly polymorphic stretch of glutamine codons, which are close tomore » the threshold length where the polyglutamine tracts start to be associated with disease. Thus, we examined the lengths of this polyglutamine repeat in normal unrelated East Anglians, South African Blacks, sub-Saharan Africans mainly from Nigeria, and Asian Indians. We also examined 43 bipolar affective disorder patients and 65 schizophrenic patients. The range of polyglutamine tract-lengths that we found in humans was from 26-42 codons. No patients with bipolar affective disorder and schizophrenia had abnormal expansions at this locus. 22 refs., 1 tab.« less
Poongothai, J.
2013-01-01
Mitochondria contains a single deoxyribonucleic acid (DNA) polymerase, polymerase gamma (POLG) mapped to long arm of chromosome 15 (15q25), responsible for replication and repair of mitochondrial DNA. Exon 1 of the human POLG contains CAG trinucleotide repeat, which codes for polyglutamate. Ten copies of CAG repeat were found to be uniformly high (0.88) in different ethnic groups and considered as the common allele, whereas the mutant alleles (not -10/not -10 CAG repeats) were found to be associated with oligospermia/oligoasthenospermia in male infertility. Recent data suggested the implication of POLG CAG repeat expansion in infertility, but are debated. The aim of our study was to explore whether the not -10/not -10 variant is associated with spermatogenic failure. As few study on Indian population have been conducted so far to support this view, we investigated the distribution of the POLG CAG repeats in 61 infertile men and 60 normozoospermic control Indian men of Tamil Nadu, from the same ethnic background. This analysis interestingly revealed that the homozygous wild type genotype (10/-10) was common in infertile men (77% - 47/61) and in normozoospermic control men (71.7% - 43/60). Our study failed to confirm any influence of the POLG gene polymorphism on the efficiency of the spermatogenesis. PMID:24339545
Ye, Yanfang; Kirkham-McCarthy, Lucy; Lahue, Robert S
2016-07-01
Trinucleotide repeats (TNRs) are tandem arrays of three nucleotides that can expand in length to cause at least 17 inherited human diseases. Somatic expansions in patients can occur in differentiated tissues where DNA replication is limited and cannot be a primary source of somatic mutation. Instead, mouse models of TNR diseases have shown that both inherited and somatic expansions can be suppressed by the loss of certain DNA repair factors. It is generally believed that these repair factors cause misprocessing of TNRs, leading to expansions. Here we extend this idea to show that the Mre11-Rad50-Xrs2 (MRX) complex of Saccharomyces cerevisiae is a causative factor in expansions of short TNRs. Mutations that eliminate MRX subunits led to significant suppression of expansions whereas mutations that inactivate Rad51 had only a minor effect. Coupled with previous evidence, this suggests that MRX drives expansions of short TNRs through a process distinct from homologous recombination. The nuclease function of Mre11 was dispensable for expansions, suggesting that expansions do not occur by Mre11-dependent nucleolytic processing of the TNR. Epistasis between MRX and post-replication repair (PRR) was tested. PRR protects against expansions, so a rad5 mutant gave a high expansion rate. In contrast, the mre11 rad5 double mutant gave a suppressed expansion rate, indistinguishable from the mre11 single mutant. This suggests that MRX creates a TNR substrate for PRR. Protein acetylation was also tested as a mechanism regulating MRX activity in expansions. Six acetylation sites were identified in Rad50. Mutation of all six lysine residues to arginine gave partial bypass of a sin3 HDAC mutant, suggesting that Rad50 acetylation is functionally important for Sin3-mediated expansions. Overall we conclude that yeast MRX helps drive expansions of short TNRs by a mechanism distinct from its role in homologous recombination and independent of the nuclease function of Mre11. Copyright © 2016 Elsevier B.V. All rights reserved.
Hsiao, K M; Lin, H M; Pan, H; Li, T C; Chen, S S; Jou, S B; Chiu, Y L; Wu, M F; Lin, C C; Li, S Y
1999-01-01
Myotonic dystrophy (DM) is caused by a CTG trinucleotide expansion mutation at exon 15 of the myotonic dystrophy protein kinase gene. The clinical severity of this disease correlates with the length of the CTG trinucleotide repeats. Determination of the CTG repeat length has been primarily relied on by Southern blot analysis of restriction enzyme-digested genomic DNA. The development of PCR-based Southern blotting methodology provides a much more sensitive and simpler protocol for DM diagnosis. However, the quality of the template and the high (G+C) ratio of the amplified region hamper the use of PCR on the diagnosis of DM. A modified PCR protocol to amplify different lengths of CTG repeat region using various concentrations of 7deaza-dGTP has been reported (1). Here we describe a procedure including sample collection, DNA purification, and PCR analysis of CTG repeat length without using 7-deaza-dGTP. This protocol is very sensitive and convenient because only a small number of nucleate cells are needed for detection of CTG expansion. Therefore, it could be very useful in clinical and prenatal diagnosis as well as in prevalence study of DM.
The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences.
Touchon, Marie; Cury, Jean; Yoon, Eun-Jeong; Krizova, Lenka; Cerqueira, Gustavo C; Murphy, Cheryl; Feldgarden, Michael; Wortman, Jennifer; Clermont, Dominique; Lambert, Thierry; Grillot-Courvalin, Catherine; Nemec, Alexandr; Courvalin, Patrice; Rocha, Eduardo P C
2014-10-13
Bacterial genomics has greatly expanded our understanding of microdiversification patterns within a species, but analyses at higher taxonomical levels are necessary to understand and predict the independent rise of pathogens in a genus. We have sampled, sequenced, and assessed the diversity of genomes of validly named and tentative species of the Acinetobacter genus, a clade including major nosocomial pathogens and biotechnologically important species. We inferred a robust global phylogeny and delimited several new putative species. The genus is very ancient and extremely diverse: Genomes of highly divergent species share more orthologs than certain strains within a species. We systematically characterized elements and mechanisms driving genome diversification, such as conjugative elements, insertion sequences, and natural transformation. We found many error-prone polymerases that may play a role in resistance to toxins, antibiotics, and in the generation of genetic variation. Surprisingly, temperate phages, poorly studied in Acinetobacter, were found to account for a significant fraction of most genomes. Accordingly, many genomes encode clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems with some of the largest CRISPR-arrays found so far in bacteria. Integrons are strongly overrepresented in Acinetobacter baumannii, which correlates with its frequent resistance to antibiotics. Our data suggest that A. baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection. The outstanding diversification of the species occurred largely by horizontal transfer, including some allelic recombination, at specific hotspots preferentially located close to the replication terminus. Our work sets a quantitative basis to understand the diversification of Acinetobacter into emerging resistant and versatile pathogens. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Zaborin, Alexander; Krezalek, Monika; Hyoju, Sanjiv; Defazio, Jennifer R; Setia, Namrata; Belogortseva, Natalia; Bindokas, Vytautas P; Guo, Qiti; Zaborina, Olga; Alverdy, John C
2017-02-01
Cecal crypts represent a unique niche that are normally occupied by the commensal microbiota. Due to their density and close proximity to stem cells, microbiota within cecal crypts may modulate epithelial regeneration. Here we demonstrate that surgical stress, a process that invariably involves a short period of starvation, antibiotic exposure, and tissue injury, results in cecal crypt evacuation of their microbiota. Crypts devoid of their microbiota display pathophysiological features characterized by abnormal stem cell activation as judged by leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) staining, expansion of the proliferative zone toward the tips of the crypts, and an increase in apoptosis. In addition, crypts devoid of their microbiota display loss of their regenerative capacity as assessed by their ability to form organoids ex vivo. When a four-member human pathogen community isolated from the stool of a critically ill patient is introduced into the cecum of mice with empty crypts, crypts become occupied by the pathogens and further disruption of crypt homeostasis is observed. Fecal microbiota transplantation restores the cecal crypts' microbiota, normalizes homeostasis within crypts, and reestablishes crypt regenerative capacity. Taken together, these findings define an emerging role for the microbiota within cecal crypts to maintain epithelial cell homeostasis in a manner that may enhance recovery in response to the physiological stress imposed by the process of surgery. This study provides novel insight into the process by which surgical injury places the intestinal epithelium at risk for colonization by pathogenic microbes and impairment of its regenerative capacity via loss of its microbiota. We show that fecal transplant restores crypt homeostasis in association with repopulation of the microbiota within cecal crypts. Copyright © 2017 the American Physiological Society.
Kowalewski, Martin M; Salzer, Johanna S; Deutsch, Joseph C; Raño, Mariana; Kuhlenschmidt, Mark S; Gillespie, Thomas R
2011-01-01
Exponential expansion of human populations and human activities within primate habitats has resulted in high potential for pathogen exchange creating challenges for biodiversity conservation and global health. Under such conditions, resilient habitat generalists such as black and gold howler monkeys (Alouatta caraya) may act as effective sentinels to overall ecosystem health and alert us to impending epidemics in the human population. To better understand this potential, we examined noninvasively collected fecal samples from black and gold howler monkeys from remote, rural, and village populations in Northern Argentina. We examined all samples (n=90) for the zoonotic protozoa Cryptosporidium sp. and Giardia sp. via immunofluorescent antibody (IFA) detection. All samples were negative for Cryptosporidium sp. The prevalence of Giardia sp. was significantly higher at the rural site (67%) compared with the remote forest (57%) and village (40%) sites. A lack of Cryptosporidium sp. in all samples examined suggests that this pathogen is not a natural component of the howler parasite communities at these sites and that current land-use patterns and livestock contact are not exposing Argentine howler monkeys to this pathogen. High prevalence of Giardia sp. at all sites suggests that howler monkeys may serve as a viable reservoir for Giardia. Significantly higher prevalence of Giardia sp. at the rural site, where primate-livestock contact is highest, suggests the presence of multiple Giardia clades or increased exposure to Giardia through repeated zoonotic transmission among nonhuman primates, livestock, and/or people. These results highlight the need for future research into the epidemiology, cross-species transmission ecology, and clinical consequences of Giardia and other infectious agents not only in humans and livestock, but also in the wild animals that share their environments. © 2010 Wiley-Liss, Inc.
Tandem-repeat protein domains across the tree of life.
Jernigan, Kristin K; Bordenstein, Seth R
2015-01-01
Tandem-repeat protein domains, composed of repeated units of conserved stretches of 20-40 amino acids, are required for a wide array of biological functions. Despite their diverse and fundamental functions, there has been no comprehensive assessment of their taxonomic distribution, incidence, and associations with organismal lifestyle and phylogeny. In this study, we assess for the first time the abundance of armadillo (ARM) and tetratricopeptide (TPR) repeat domains across all three domains in the tree of life and compare the results to our previous analysis on ankyrin (ANK) repeat domains in this journal. All eukaryotes and a majority of the bacterial and archaeal genomes analyzed have a minimum of one TPR and ARM repeat. In eukaryotes, the fraction of ARM-containing proteins is approximately double that of TPR and ANK-containing proteins, whereas bacteria and archaea are enriched in TPR-containing proteins relative to ARM- and ANK-containing proteins. We show in bacteria that phylogenetic history, rather than lifestyle or pathogenicity, is a predictor of TPR repeat domain abundance, while neither phylogenetic history nor lifestyle predicts ARM repeat domain abundance. Surprisingly, pathogenic bacteria were not enriched in TPR-containing proteins, which have been associated within virulence factors in certain species. Taken together, this comparative analysis provides a newly appreciated view of the prevalence and diversity of multiple types of tandem-repeat protein domains across the tree of life. A central finding of this analysis is that tandem repeat domain-containing proteins are prevalent not just in eukaryotes, but also in bacterial and archaeal species.
Bilateral cross-bite treated by repeated rapid maxillary expansions: a 17-year follow-up case.
Cozzani, M; Mazzotta, L; Caprioglio, A
2014-07-01
The objective of this paper is to show the clinical results after the repeated application of a Haas expander for rapid maxillary expansion (RME) anchored onto deciduous teeth in a 7-year-old patient that presented bilateral cross-bite, superior crowding and no space for permanent lateral incisors eruption. A first Haas expander was applied to the patient. She was told to activate it once a day, each activation was equal to 0.20 mm. After the first RME, the bilateral cross-bite was solved but still there was not enough space for lateral incisor eruption. A second and then a third Haas expander were applied, with the same activation protocol as the first one, in order to gain space in the anterior region and to achieve proper eruption of the lateral incisors. The patient was then treated with fixed appliances. At debonding the patient presented well aligned arch-forms: space for lateral incisor eruption was gained and superior crowding was solved. Bilateral cross-bite was also corrected. She was seen again 10 years and 17 years after expansions: she showed no relapse and presented a good functional occlusion that had remained stable, and an aesthetically pleasant smile, however she exhibited gingival recessions. Repeated rapid maxillary expansion, anchored onto deciduous teeth, performed in early mixed dentition represents a safe and successful treatment to correct severe bilateral cross- bites and to create space for maxillary incisor eruption.
Kidd, L; Qurollo, B; Lappin, M; Richter, K; Hart, J R; Hill, S; Osmond, C; Breitschwerdt, E B
2017-07-01
Studies investigating the prevalence of vector-borne pathogens in southern California dogs are limited. Occult infections might be misdiagnosed as idiopathic immune-mediated disease. (1) To determine the prevalence of vector-borne pathogens in southern California dogs with compatible clinical findings using PCR and serologic panels and (2) to determine whether testing convalescent samples and repeating PCR on acute samples using the same and different gene targets enhance detection. Forty-two client-owned dogs with clinical signs of vector-borne disease presenting to specialty practices in San Diego County. Combined prospective and retrospective observational study. Forty-two acute and 27 convalescent samples were collected. Acute samples were prospectively tested for antibodies to Rickettsia, Ehrlichia, Bartonella, Babesia, Borrelia, and Anaplasma species. PCR targeting Ehrlichia, Babesia, Anaplasma, hemotropic Mycoplasma, and Bartonella species was also performed. Retrospectively, convalescent samples were tested for the same organisms using serology, and for Ehrlichia, Babesia, Anaplasma, and Bartonella species using PCR. Acute samples were retested using PCR targeting Ehrlichia and Babesia species. Evidence of exposure to or infection with a vector-borne pathogen was detected in 33% (14/42) of dogs. Ehrlichia and Babesia species were most common; each was identified in 5 dogs. Convalescent serologic testing, repeating PCR, and using novel PCR gene targets increased detection by 30%. Repeated testing using serology and PCR enhances detection of infection by vector-borne pathogens in dogs with clinical signs of immune-mediated disease. Larger prevalence studies of emerging vector-borne pathogens in southern California dogs are warranted. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Sammons, Morgan A.; Antons, Amanda K.; Bendjennat, Mourad; Udd, Bjarne; Krahe, Ralf; Link, Andrew J.
2010-01-01
Myotonic dystrophy types 1 and 2 (DM1 and DM2) are forms of muscular dystrophy that share similar clinical and molecular manifestations, such as myotonia, muscle weakness, cardiac anomalies, cataracts, and the presence of defined RNA-containing foci in muscle nuclei. DM2 is caused by an expansion of the tetranucleotide CCTG repeat within the first intron of ZNF9, although the mechanism by which the expanded nucleotide repeat causes the debilitating symptoms of DM2 is unclear. Conflicting studies have led to two models for the mechanisms leading to the problems associated with DM2. First, a gain-of-function disease model hypothesizes that the repeat expansions in the transcribed RNA do not directly affect ZNF9 function. Instead repeat-containing RNAs are thought to sequester proteins in the nucleus, causing misregulation of normal cellular processes. In the alternative model, the repeat expansions impair ZNF9 function and lead to a decrease in the level of translation. Here we examine the normal in vivo function of ZNF9. We report that ZNF9 associates with actively translating ribosomes and functions as an activator of cap-independent translation of the human ODC mRNA. This activity is mediated by direct binding of ZNF9 to the internal ribosome entry site sequence (IRES) within the 5′UTR of ODC mRNA. ZNF9 can activate IRES-mediated translation of ODC within primary human myoblasts, and this activity is reduced in myoblasts derived from a DM2 patient. These data identify ZNF9 as a regulator of cap-independent translation and indicate that ZNF9 activity may contribute mechanistically to the myotonic dystrophy type 2 phenotype. PMID:20174632
Prevalence of spinocerebellar ataxia 36 in a US population.
Valera, Juliana M; Diaz, Tatyana; Petty, Lauren E; Quintáns, Beatriz; Yáñez, Zuleima; Boerwinkle, Eric; Muzny, Donna; Akhmedov, Dmitry; Berdeaux, Rebecca; Sobrido, Maria J; Gibbs, Richard; Lupski, James R; Geschwind, Daniel H; Perlman, Susan; Below, Jennifer E; Fogel, Brent L
2017-08-01
To assess the prevalence and clinical features of individuals affected by spinocerebellar ataxia 36 (SCA36) at a large tertiary referral center in the United States. A total of 577 patients with undiagnosed sporadic or familial cerebellar ataxia comprehensively evaluated at a tertiary referral ataxia center were molecularly evaluated for SCA36. Repeat primed PCR and fragment analysis were used to screen for the presence of a repeat expansion in the NOP56 gene. Fragment analysis of triplet repeat primed PCR products identified a GGCCTG hexanucleotide repeat expansion in intron 1 of NOP56 in 4 index cases. These 4 SCA36-positive families comprised 2 distinct ethnic groups: white (European) (2) and Asian (Japanese [1] and Vietnamese [1]). Individuals affected by SCA36 exhibited typical clinical features with gait ataxia and age at onset ranging between 35 and 50 years. Patients also suffered from ataxic or spastic limbs, altered reflexes, abnormal ocular movement, and cognitive impairment. In a US population, SCA36 was observed to be a rare disorder, accounting for 0.7% (4/577 index cases) of disease in a large undiagnosed ataxia cohort.
USDA-ARS?s Scientific Manuscript database
The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreas...
USDA-ARS?s Scientific Manuscript database
The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...
Tienari, Pentti; Kiviharju, Anna; Valori, Miko; Lindholm, Dan; Laaksovirta, Hannu
2016-01-01
The mechanisms of neurodegenerative diseases have begun to become unraveled, thanks to the progress in stem cell research. The repeat expansion in the C90RF72 gene was identified in 2011 as the most common genetic cause of both ALS and frontal lobe dementia. Only over a couple of years the disease mechanisms of this mutation have been revealed and treatment trials have already been conducted in nerve cell cultures differentiated from patients' stem cells. We discuss the role of the repeat expansion in the C90RF72 gene in the epidemiology of the diseases and the resulting disturbances in nerve cell function.
Absence of bacterial resistance following repeat exposure to photodynamic therapy
NASA Astrophysics Data System (ADS)
Pedigo, Lisa A.; Gibbs, Aaron J.; Scott, Robert J.; Street, Cale N.
2009-06-01
The prevalence of antibiotic resistant bacteria necessitates exploration of alternative approaches to treat hospital and community acquired infections. The aim of this study was to determine whether bacterial pathogens develop resistance to antimicrobial photodynamic therapy (aPDT) during repeated sub-lethal challenge. Antibiotic sensitive and resistant strains of S. aureus and antibiotic sensitive E. coli were subjected to repeat PDT treatments using a methylene blue photosensitizer formulation and 670 nm illumination from a non-thermal diode laser. Parameters were adjusted such that kills were <100% so that surviving colonies could be passaged for subsequent exposures. With each repeat, kills were compared to those using non-exposed cultures of the same strain. Oxacillin resistance was induced in S. aureus using a disc diffusion method. For each experiment, "virgin" and "repeat" cultures were exposed to methylene blue at 0.01% w/v and illuminated with an energy dose of 20.6 J/cm2. No significant difference in killing of E. coli (repeat vs. virgin culture) was observed through 11 repeat exposures. Similar results were seen using MSSA and MRSA, wherein kill rate did not significantly differ from control over 25 repeat exposures. In contrast, complete oxacillin resistance could be generated in S. aureus over a limited number of exposures. PDT is effective in the eradication of pathogens including antibiotic resistance strains. Furthermore, repeated sub-lethal exposure does not induce resistance to subsequent PDT treatments. The absence of resistance formation represents a significant advantage of PDT over traditional antibiotics.
Chien, Maw-Sheng; Gilbert , Teresa L.; Huang, Chienjin; Landolt, Marsha L.; O'Hara, Patrick J.; Winton, James R.
1992-01-01
The complete sequence coding for the 57-kDa major soluble antigen of the salmonid fish pathogen, Renibacterium salmoninarum, was determined. The gene contained an opening reading frame of 1671 nucleotides coding for a protein of 557 amino acids with a calculated Mr value of 57190. The first 26 amino acids constituted a signal peptide. The deduced sequence for amino acid residues 27–61 was in agreement with the 35 N-terminal amino acid residues determined by microsequencing, suggesting the protein in synthesized as a 557-amino acid precursor and processed to produce a mature protein of Mr 54505. Two regions of the protein contained imperfect direct repeats. The first region contained two copies of an 81-residue repeat, the second contained five copies of an unrelated 25-residue repeat. Also, a perfect inverted repeat (including three in-frame UAA stop codons) was observed at the carboxyl-terminus of the gene.
Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism.
Kim, Jong-Min; Hong, Susie; Kim, Gyoung Pyoung; Choi, Yoon Jae; Kim, Yu Kyeong; Park, Sung Sup; Kim, Sang Eun; Jeon, Beom S
2007-10-01
To examine the presence of an ATXN2 mutation in patients with parkinsonism in the Korean population and to find the difference in the ATXN2 mutation between ataxic and parkinsonian phenotypes. Survey. Seoul National University Hospital (a referral center). Patients Patients with Parkinson disease (PD) (n = 468) and the Parkinson variant of multiple system atrophy (MSA-P) (n = 135) who were seen at our Department of Neurology during the past 3 years. CAG expansion in spinocerebellar ataxia type 2 (SCA2) alleles was assessed by polymerase chain reaction amplification and fragment analysis, and its size and interruption were verified by cloning and sequencing. SCA2 was tested also in the family members of the probands. Striatal dopamine transporter (DAT) and D(2) receptor status were evaluated in the probands and their SCA2-positive family members using iodine I 123 [(123)I]-radiolabeled fluoropropyl (FP) 2-carbomethoxy-3-(4-iodophenyl) tropane (CIT) with single-photon emission computed tomography (SPECT) and carbon C 11 [(11)C]-radiolabeled raclopride positron emission tomography (PET). We found 3 patients with apparently sporadic disease with expanded CAG repeats in the ATXN2 locus. Two patients had a PD phenotype. The third patient showed an MSA-P phenotype. The CAG repeats in the ATXN2 locus of the patients were 35/22, 34/22, and 32/22, respectively (range in normal population, 19-27). The size of repeats was lower than the CAG repeats (38-51) in ataxic SCA2 in our population. The sequence of expanded CAG repeats was interrupted by CAA as (CAG)(n)(CAA)(CAG)(8) in all the patients. DNA analyses in 2 families showed 2 asymptomatic carriers in each family. In the patient with the PD phenotype, striatal DAT loss was more severe in the putamen than the caudate, and [(11)C]raclopride PET showed an increased relative putamen-caudate binding ratio. The patient with the MSA-P phenotype had severe DAT loss throughout the striatum. Two of 3 asymptomatic carriers had striatal DAT loss. This study demonstrates that SCA2 is one of the genetic causes of PD and MSA-P. All 3 patients had apparently sporadic disease, emphasizing the need to screen even in patients with nonfamilial disease. CAG repeats were in the low expansion range and interrupted by CAA in all patients in the low-range expansion. Therefore, accurate determination of CAG expansion and ATXN2 sequencing are warranted. [(123)I]FP-CIT SPECT and [(11)C]raclopride PET provide a useful way to evaluate the degree of nigrostriatal dopaminergic damage in SCA2-related parkinsonism and gene carriers.
Chen, Jonathan L; VanEtten, Damian M; Fountain, Matthew A; Yildirim, Ilyas; Disney, Matthew D
2017-07-11
RNA repeat expansions cause a host of incurable, genetically defined diseases. The most common class of RNA repeats consists of trinucleotide repeats. These long, repeating transcripts fold into hairpins containing 1 × 1 internal loops that can mediate disease via a variety of mechanism(s) in which RNA is the central player. Two of these disorders are Huntington's disease and myotonic dystrophy type 1, which are caused by r(CAG) and r(CUG) repeats, respectively. We report the structures of two RNA constructs containing three copies of a r(CAG) [r(3×CAG)] or r(CUG) [r(3×CUG)] motif that were modeled with nuclear magnetic resonance spectroscopy and simulated annealing with restrained molecular dynamics. The 1 × 1 internal loops of r(3×CAG) are stabilized by one-hydrogen bond (cis Watson-Crick/Watson-Crick) AA pairs, while those of r(3×CUG) prefer one- or two-hydrogen bond (cis Watson-Crick/Watson-Crick) UU pairs. Assigned chemical shifts for the residues depended on the identity of neighbors or next nearest neighbors. Additional insights into the dynamics of these RNA constructs were gained by molecular dynamics simulations and a discrete path sampling method. Results indicate that the global structures of the RNA are A-form and that the loop regions are dynamic. The results will be useful for understanding the dynamic trajectory of these RNA repeats but also may aid in the development of therapeutics.
Cerqueira, Gustavo Coutinho; Smith, Martin; Rochette, Annie; El-Sayed, Najib M. A; Papadopoulou, Barbara; Ghedin, Elodie
2007-01-01
Trypanosomatids are unicellular protists that include the human pathogens Leishmania spp. (leishmaniasis), Trypanosoma brucei (sleeping sickness), and Trypanosoma cruzi (Chagas disease). Analysis of their recently completed genomes confirmed the presence of non–long-terminal repeat retrotransposons, also called retroposons. Using the 79-bp signature sequence common to all trypanosomatid retroposons as bait, we identified in the Leishmania major genome two new large families of small elements—LmSIDER1 (785 copies) and LmSIDER2 (1,073 copies)—that fulfill all the characteristics of extinct trypanosomatid retroposons. LmSIDERs are ∼70 times more abundant in L. major compared to T. brucei and are found almost exclusively within the 3′-untranslated regions (3′UTRs) of L. major mRNAs. We provide experimental evidence that LmSIDER2 act as mRNA instability elements and that LmSIDER2-containing mRNAs are generally expressed at lower levels compared to the non-LmSIDER2 mRNAs. The considerable expansion of LmSIDERs within 3′UTRs in an organism lacking transcriptional control and their role in regulating mRNA stability indicate that Leishmania have probably recycled these short retroposons to globally modulate the expression of a number of genes. To our knowledge, this is the first example in eukaryotes of the domestication and expansion of a family of mobile elements that have evolved to fulfill a critical cellular function. PMID:17907803
Kalunke, Raviraj M.; Tundo, Silvio; Benedetti, Manuel; Cervone, Felice; De Lorenzo, Giulia; D'Ovidio, Renato
2015-01-01
Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the pectin-depolymerizing activity of polygalacturonases secreted by microbial pathogens and insects. These ubiquitous inhibitors have a leucine-rich repeat structure that is strongly conserved in monocot and dicot plants. Previous reviews have summarized the importance of PGIP in plant defense and the structural basis of PG-PGIP interaction; here we update the current knowledge about PGIPs with the recent findings on the composition and evolution of pgip gene families, with a special emphasis on legume and cereal crops. We also update the information about the inhibition properties of single pgip gene products against microbial PGs and the results, including field tests, showing the capacity of PGIP to protect crop plants against fungal, oomycetes and bacterial pathogens. PMID:25852708
Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells.
Iudicone, Paola; Fioravanti, Daniela; Bonanno, Giuseppina; Miceli, Michelina; Lavorino, Claudio; Totta, Pierangela; Frati, Luigi; Nuti, Marianna; Pierelli, Luca
2014-01-27
Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures.
Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells
2014-01-01
Background Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. Methods PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. Results PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. Conclusion The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures. PMID:24467837
Brown, Tanya; Rodriguez-Lanetty, Mauricio
2015-01-01
Cnidarians, in general, are long-lived organisms and hence may repeatedly encounter common pathogens during their lifespans. It remains unknown whether these early diverging animals possess some type of immunological reaction that strengthens the defense response upon repeated infections, such as that described in more evolutionary derived organisms. Here we show results that sea anemones that had previously encountered a pathogen under sub-lethal conditions had a higher survivorship during a subsequently lethal challenge than naïve anemones that encountered the pathogen for the first time. Anemones subjected to the lethal challenge two and four weeks after the sub-lethal exposure presented seven- and five-fold increases in survival, respectively, compared to the naïve anemones. However, anemones challenged six weeks after the sub-lethal exposure showed no increase in survivorship. We argue that this short-lasting priming of the defense response could be ecologically relevant if pathogen encounters are restricted to short seasons characterized by high stress. Furthermore, we discovered significant changes in proteomic profiles between naïve sea anemones and those primed after pathogen exposure suggesting a clear molecular signature associated with immunological priming in cnidarians. Our findings reveal that immunological priming may have evolved much earlier in the tree of life than previously thought. PMID:26628080
Molecular Genetics and Genetic Testing in Myotonic Dystrophy Type 1
Savić Pavićević, Dušanka; Miladinović, Jelena; Brkušanin, Miloš; Šviković, Saša; Djurica, Svetlana; Brajušković, Goran; Romac, Stanka
2013-01-01
Myotonic dystrophy type 1 (DM1) is the most common adult onset muscular dystrophy, presenting as a multisystemic disorder with extremely variable clinical manifestation, from asymptomatic adults to severely affected neonates. A striking anticipation and parental-gender effect upon transmission are distinguishing genetic features in DM1 pedigrees. It is an autosomal dominant hereditary disease associated with an unstable expansion of CTG repeats in the 3′-UTR of the DMPK gene, with the number of repeats ranging from 50 to several thousand. The number of CTG repeats broadly correlates with both the age-at-onset and overall severity of the disease. Expanded DM1 alleles are characterized by a remarkable expansion-biased and gender-specific germline instability, and tissue-specific, expansion-biased, age-dependent, and individual-specific somatic instability. Mutational dynamics in male and female germline account for observed anticipation and parental-gender effect in DM1 pedigrees, while mutational dynamics in somatic tissues contribute toward the tissue-specificity and progressive nature of the disease. Genetic test is routinely used in diagnostic procedure for DM1 for symptomatic, asymptomatic, and prenatal testing, accompanied with appropriate genetic counseling and, as recommended, without predictive information about the disease course. We review molecular genetics of DM1 with focus on those issues important for genetic testing and counseling. PMID:23586035
Brettschneider, Johannes; Toledo, Jon B.; Van Deerlin, Vivianna M.; Elman, Lauren; McCluskey, Leo; Lee, Virginia M.-Y.; Trojanowski, John Q.
2012-01-01
Background/Aims We evaluated clinicopathological correlates of upper motor neuron (UMN) damage in amyotrophic lateral sclerosis (ALS), and analyzed if the presence of the C9ORF72 repeat expansion was associated with alterations in microglial inflammatory activity. Methods Microglial pathology was assessed by IHC with 2 different antibodies (CD68, Iba1), myelin loss by Kluver-Barrera staining and myelin basic protein (MBP) IHC, and axonal loss by neurofilament protein (TA51) IHC, performed on 59 autopsy cases of ALS including 9 cases with C9ORF72 repeat expansion. Results Microglial pathology as depicted by CD68 and Iba1 was significantly more extensive in the corticospinal tract (CST) of ALS cases with a rapid progression of disease. Cases with C9ORF72 repeat expansion showed more extensive microglial pathology in the medulla and motor cortex which persisted after adjusting for disease duration in a logistic regression model. Higher scores on the clinical UMN scale correlated with increasing microglial pathology in the cervical CST. TDP-43 pathology was more extensive in the motor cortex of cases with rapid progression of disease. Conclusions This study demonstrates that microglial pathology in the CST of ALS correlates with disease progression and is linked to severity of UMN deficits. PMID:22720079
Tandem-repeat protein domains across the tree of life
Jernigan, Kristin K.
2015-01-01
Tandem-repeat protein domains, composed of repeated units of conserved stretches of 20–40 amino acids, are required for a wide array of biological functions. Despite their diverse and fundamental functions, there has been no comprehensive assessment of their taxonomic distribution, incidence, and associations with organismal lifestyle and phylogeny. In this study, we assess for the first time the abundance of armadillo (ARM) and tetratricopeptide (TPR) repeat domains across all three domains in the tree of life and compare the results to our previous analysis on ankyrin (ANK) repeat domains in this journal. All eukaryotes and a majority of the bacterial and archaeal genomes analyzed have a minimum of one TPR and ARM repeat. In eukaryotes, the fraction of ARM-containing proteins is approximately double that of TPR and ANK-containing proteins, whereas bacteria and archaea are enriched in TPR-containing proteins relative to ARM- and ANK-containing proteins. We show in bacteria that phylogenetic history, rather than lifestyle or pathogenicity, is a predictor of TPR repeat domain abundance, while neither phylogenetic history nor lifestyle predicts ARM repeat domain abundance. Surprisingly, pathogenic bacteria were not enriched in TPR-containing proteins, which have been associated within virulence factors in certain species. Taken together, this comparative analysis provides a newly appreciated view of the prevalence and diversity of multiple types of tandem-repeat protein domains across the tree of life. A central finding of this analysis is that tandem repeat domain-containing proteins are prevalent not just in eukaryotes, but also in bacterial and archaeal species. PMID:25653910
Saberi, Shahram; Stauffer, Jennifer E; Jiang, Jie; Garcia, Sandra Diaz; Taylor, Amy E; Schulte, Derek; Ohkubo, Takuya; Schloffman, Cheyenne L; Maldonado, Marcus; Baughn, Michael; Rodriguez, Maria J; Pizzo, Don; Cleveland, Don; Ravits, John
2018-03-01
Hexanucleotide repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (C9 ALS). The main hypothesized pathogenic mechanisms are C9orf72 haploinsufficiency and/or toxicity from one or more of bi-directionally transcribed repeat RNAs and their dipeptide repeat proteins (DPRs) poly-GP, poly-GA, poly-GR, poly-PR and poly-PA. Recently, nuclear import and/or export defects especially caused by arginine-containing poly-GR or poly-PR have been proposed as significant contributors to pathogenesis based on disease models. We quantitatively studied and compared DPRs, nuclear pore proteins and C9orf72 protein in clinically related and clinically unrelated regions of the central nervous system, and compared them to phosphorylated TDP-43 (pTDP-43), the hallmark protein of ALS. Of the five DPRs, only poly-GR was significantly abundant in clinically related areas compared to unrelated areas (p < 0.001), and formed dendritic-like aggregates in the motor cortex that co-localized with pTDP-43 (p < 0.0001). While most poly-GR dendritic inclusions were pTDP-43 positive, only 4% of pTDP-43 dendritic inclusions were poly-GR positive. Staining for arginine-containing poly-GR and poly-PR in nuclei of neurons produced signals that were not specific to C9 ALS. We could not detect significant differences of nuclear markers RanGap, Lamin B1, and Importin β1 in C9 ALS, although we observed subtle nuclear changes in ALS, both C9 and non-C9, compared to control. The C9orf72 protein itself was diffusely expressed in cytoplasm of large neurons and glia, and nearly 50% reduced, in both clinically related frontal cortex and unrelated occipital cortex, but not in cerebellum. In summary, sense-encoded poly-GR DPR was unique, and localized to dendrites and pTDP43 in motor regions of C9 ALS CNS. This is consistent with new emerging ideas about TDP-43 functions in dendrites.
Saberi, Shahram; Stauffer, Jennifer E.; Jiang, Jie; Garcia, Sandra Diaz; Taylor, Amy E; Schulte, Derek; Ohkubo, Takuya; Schloffman, Cheyenne L.; Maldonado, Marcus; Baughn, Michael; Rodriguez, Maria J; Pizzo, Don; Cleveland, Don; Ravits, John
2018-01-01
Hexanucleotide repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (C9 ALS). The main hypothesized pathogenic mechanisms are C9orf72 haploinsufficiency and/or toxicity from one or more of bi-directionally transcribed repeat RNAs and their dipeptide repeat proteins (DPRs) poly-GP, poly-GA, poly-GR, poly-PR and poly-PA. Recently, nuclear import and/or export defects especially caused by arginine-containing poly-GR or poly-PR have been proposed as significant contributors to pathogenesis based on disease models. We quantitatively studied and compared DPRs, nuclear pore proteins and C9orf72 protein in clinically-related and clinically-unrelated regions of the central nervous system, and compared them to phosphorylated TDP-43 (pTDP-43), the hallmark protein of ALS. Of the five DPRs, only poly-GR was significantly abundant in clinically-related areas compared to unrelated areas (p<0.001), and formed dendritic-like aggregates in the motor cortex that co-localized with pTDP-43 (p<0.0001). While most poly-GR dendritic inclusions were pTDP-43-positive, only 4% of pTDP-43 dendritic inclusions were poly-GR-positive. Staining for arginine-containing poly-GR and poly-PR in nuclei of neurons produced signals that were not specific to C9 ALS. We could not detect significant differences of nuclear markers RanGap, Lamin B1, and Importin β1 in C9 ALS, although we observed subtle nuclear changes in ALS, both C9 and non-C9, compared to control. The C9orf72 protein itself was diffusely expressed in cytoplasm of large neurons and glia, and nearly 50% reduced, in both clinically-related frontal cortex and unrelated occipital cortex, but not in cerebellum. In summary, sense-encoded poly-GR DPR was unique, and localized to neurites and pTDP43 in motor regions of C9 ALS CNS. This is consistent with new emerging ideas about TDP-43 functions in dendrites. PMID:29196813
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, F.V.; Calikoglu, A.S.; Whetsell, L.H.
1994-09-01
Instability and enlargement of a CAG repeat region at the beginning of the huntingtin gene (IT-15) has been linked with Huntington`s disease. The CAG repeat size shows a highly significant correlation with age-of-onset of clinicial features in individuals with 40 or more repeats who have Huntington disease. The clinical status of nonsymptomatic individuals with 30 to 39 CAG repeats is considered ambiguous. In order to define more carefully the nature of the HD expansion instability, we examined patients in our HD population using a discriminating fluorescence-based PCR approach. The degree of somatic mutation increases with both earlier age of onsetmore » and the size of the inherited allele. A single prominent band one repeat larger than the index peak was typical in individuals with 40-41 CAG repeats. Three to four larger bands are typically discerned in individuals with 50 or more repeats. In an extreme example, an individual with approximately 95 repeats had at least 8 prominent bands. Plotting the degree of somatic mutation relative to the size of the HD allele shows somatic mutation activity increases with size. By this approach 40-60% of the alleles in a 40-41 CAG repeat HD loci is represented in the primary allele. In contrast, the primary allele represents a relatively minor proportion of the total alleles for expansions greater than 50 CAG repeats (10-20%). The limited range of somatic mutation suggest that the instability is restricted to very early stages of embryogenesis before tissue development diverges or that persistent somatic instability occurs at a slow rate. Therefore, the properties of somatic instability in Huntington`s disease have aspects that are both in common but also different from that found in other trinucleotide repeat expanding diseases such as myotonic muscular dystrophy and fragile X syndrome.« less
Viau, Sabrina; Chabrand, Lucie; Eap, Sandy; Lorant, Judith; Rouger, Karl; Goudaliez, Francis; Sumian, Chryslain; Delorme, Bruno
2017-01-01
We recently developed and characterized a standardized and clinical grade human Platelet Lysate (hPL) that constitutes an advantageous substitute for fetal bovine serum (FBS) for human mesenchymal stem cell (hMSC) expansion required in cell therapy procedures, avoiding xenogenic risks (virological and immunological) and ethical issues. Because of the progressive use of pathogen-reduced (PR) labile blood components, and the requirement of ensuring the viral safety of raw materials for cell therapy products, we evaluated the impact of the novel procedure known as THERAFLEX UV-Platelets for pathogen reduction on hPL quality (growth factors content) and efficacy (as a medium supplement for hMSC expansion). This technology is based on short-wave ultraviolet light (UV-C) that induces non-reversible damages in DNA and RNA of pathogens while preserving protein structures and functions, and has the main advantage of not needing the addition of any photosensitizing additives (that might secondarily interfere with hMSCs). We applied the THERAFLEX UV-Platelets procedure on fresh platelet concentrates (PCs) suspended in platelet additive solution and prepared hPL from these treated PCs. We compared the quality and efficacy of PR-hPL with the corresponding non-PR ones. We found no impact on the content of five cytokines tested (EGF, bFGF, PDGF-AB, VEGF and IGF-1) but a significant decrease in TGF-ß1 (-21%, n = 11, p<0.01). We performed large-scale culture of hMSCs from bone marrow (BM) during three passages and showed that hPL or PR-hPL at 8% triggered comparable BM-hMSC proliferation as FBS at 10% plus bFGF. Moreover, after proliferation of hMSCs in an hPL- or PR-hPL-containing medium, their profile of membrane marker expression, their clonogenic potential and immunosuppressive properties were maintained, in comparison with BM-hMSCs cultured under FBS conditions. The potential to differentiate towards the adipogenic and osteogenic lineages of hMSCs cultured in parallel in the three conditions also remained identical. We demonstrated the feasibility of using UV-C-treated platelets to subsequently obtain pathogen-reduced hPL, while preserving its optimal quality and efficacy for hMSC expansion in cell therapy applications.
Viau, Sabrina; Chabrand, Lucie; Eap, Sandy; Lorant, Judith; Rouger, Karl; Goudaliez, Francis; Sumian, Chryslain; Delorme, Bruno
2017-01-01
Background We recently developed and characterized a standardized and clinical grade human Platelet Lysate (hPL) that constitutes an advantageous substitute for fetal bovine serum (FBS) for human mesenchymal stem cell (hMSC) expansion required in cell therapy procedures, avoiding xenogenic risks (virological and immunological) and ethical issues. Because of the progressive use of pathogen-reduced (PR) labile blood components, and the requirement of ensuring the viral safety of raw materials for cell therapy products, we evaluated the impact of the novel procedure known as THERAFLEX UV-Platelets for pathogen reduction on hPL quality (growth factors content) and efficacy (as a medium supplement for hMSC expansion). This technology is based on short-wave ultraviolet light (UV-C) that induces non-reversible damages in DNA and RNA of pathogens while preserving protein structures and functions, and has the main advantage of not needing the addition of any photosensitizing additives (that might secondarily interfere with hMSCs). Methodology / Principal findings We applied the THERAFLEX UV-Platelets procedure on fresh platelet concentrates (PCs) suspended in platelet additive solution and prepared hPL from these treated PCs. We compared the quality and efficacy of PR-hPL with the corresponding non-PR ones. We found no impact on the content of five cytokines tested (EGF, bFGF, PDGF-AB, VEGF and IGF-1) but a significant decrease in TGF-ß1 (-21%, n = 11, p<0.01). We performed large-scale culture of hMSCs from bone marrow (BM) during three passages and showed that hPL or PR-hPL at 8% triggered comparable BM-hMSC proliferation as FBS at 10% plus bFGF. Moreover, after proliferation of hMSCs in an hPL- or PR-hPL-containing medium, their profile of membrane marker expression, their clonogenic potential and immunosuppressive properties were maintained, in comparison with BM-hMSCs cultured under FBS conditions. The potential to differentiate towards the adipogenic and osteogenic lineages of hMSCs cultured in parallel in the three conditions also remained identical. Conclusion / Significance We demonstrated the feasibility of using UV-C-treated platelets to subsequently obtain pathogen-reduced hPL, while preserving its optimal quality and efficacy for hMSC expansion in cell therapy applications. PMID:28763452
Changes of pituitary gland volume in Kennedy disease.
Pieper, C C; Teismann, I K; Konrad, C; Heindel, W L; Schiffbauer, H
2013-12-01
Kennedy disease is a rare X-linked neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the androgen-receptor gene. Apart from neurologic signs, this mutation can cause a partial androgen insensitivity syndrome with typical alterations of gonadotropic hormones produced by the pituitary gland. The aim of the present study was therefore to evaluate the impact of Kennedy disease on pituitary gland volume under the hypothesis that endocrinologic changes caused by partial androgen insensitivity may lead to morphologic changes (ie, hypertrophy) of the pituitary gland. Pituitary gland volume was measured in sagittal sections of 3D T1-weighted 3T-MR imaging data of 8 patients with genetically proven Kennedy disease and compared with 16 healthy age-matched control subjects by use of Multitracer by a blinded, experienced radiologist. The results were analyzed by a univariant ANOVA with total brain volume as a covariant. Furthermore, correlation and linear regression analyses were performed for pituitary volume, patient age, disease duration, and CAG repeat expansion length. Intraobserver reliability was evaluated by means of the Pearson correlation coefficient. Pituitary volume was significantly larger in patients with Kennedy disease (636 [±90] mm(3)) than in healthy control subjects (534 [±91] mm(3)) (P = .041). There was no significant difference in total brain volume (P = .379). Control subjects showed a significant decrease in volume with age (r = -0.712, P = .002), whereas there was a trend to increasing gland volume in patients with Kennedy disease (r = 0.443, P = .272). Gland volume correlated with CAG repeat expansion length in patients (r = 0.630, P = .047). The correlation coefficient for intraobserver reliability was 0.94 (P < .001). Patients with Kennedy disease showed a significantly higher pituitary volume that correlated with the CAG repeat expansion length. This could reflect hypertrophy as the result of elevated gonadotropic hormone secretion caused by the androgen receptor mutation with partial androgen insensitivity.
Aoki, Yoshitsugu; Manzano, Raquel; Lee, Yi; Dafinca, Ruxandra; Aoki, Misako; Douglas, Andrew G L; Varela, Miguel A; Sathyaprakash, Chaitra; Scaber, Jakub; Barbagallo, Paola; Vader, Pieter; Mäger, Imre; Ezzat, Kariem; Turner, Martin R; Ito, Naoki; Gasco, Samanta; Ohbayashi, Norihiko; El Andaloussi, Samir; Takeda, Shin'ichi; Fukuda, Mitsunori; Talbot, Kevin; Wood, Matthew J A
2017-04-01
A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kelly, Laura J; Renny-Byfield, Simon; Pellicer, Jaume; Macas, Jiří; Novák, Petr; Neumann, Pavel; Lysak, Martin A; Day, Peter D; Berger, Madeleine; Fay, Michael F; Nichols, Richard A; Leitch, Andrew R; Leitch, Ilia J
2015-10-01
Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
USDA-ARS?s Scientific Manuscript database
Disease resistance (R) genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLRs define the fastest evolving...
The Candida Pathogenic Species Complex
Turner, Siobhán A.; Butler, Geraldine
2014-01-01
Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity. PMID:25183855
A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK.
Morgan, Sarah; Shatunov, Aleksey; Sproviero, William; Jones, Ashley R; Shoai, Maryam; Hughes, Deborah; Al Khleifat, Ahmad; Malaspina, Andrea; Morrison, Karen E; Shaw, Pamela J; Shaw, Christopher E; Sidle, Katie; Orrell, Richard W; Fratta, Pietro; Hardy, John; Pittman, Alan; Al-Chalabi, Ammar
2017-06-01
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease of motor neurons. About 25 genes have been verified as relevant to the disease process, with rare and common variation implicated. We used next generation sequencing and repeat sizing to comprehensively assay genetic variation in a panel of known amyotrophic lateral sclerosis genes in 1126 patient samples and 613 controls. About 10% of patients were predicted to carry a pathological expansion of the C9orf72 gene. We found an increased burden of rare variants in patients within the untranslated regions of known disease-causing genes, driven by SOD1, TARDBP, FUS, VCP, OPTN and UBQLN2. We found 11 patients (1%) carried more than one pathogenic variant (P = 0.001) consistent with an oligogenic basis of amyotrophic lateral sclerosis. These findings show that the genetic architecture of amyotrophic lateral sclerosis is complex and that variation in the regulatory regions of associated genes may be important in disease pathogenesis. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Simple sequence repeat markers that identify Claviceps species and strains
USDA-ARS?s Scientific Manuscript database
Claviceps purpurea is a pathogen that infects most members of the Pooideae subfamily and causes ergot, a floral disease in which the ovary is replaced with a sclerotium. This study was initiated to develop Simple Sequence Repeat (SSRs) markers for rapid identification of C. purpurea. SSRs were desi...
Rajan-Babu, Indhu-Shree; Lian, Mulias; Cheah, Felicia S H; Chen, Min; Tan, Arnold S C; Prasath, Ethiraj B; Loh, Seong Feei; Chong, Samuel S
2017-07-19
Fragile X mental retardation 1 (FMR1) full-mutation expansion causes fragile X syndrome. Trans-generational fragile X syndrome transmission can be avoided by preimplantation genetic diagnosis (PGD). We describe a robust PGD strategy that can be applied to virtually any couple at risk of transmitting fragile X syndrome. This novel strategy utilises whole-genome amplification, followed by triplet-primed polymerase chain reaction (TP-PCR) for robust detection of expanded FMR1 alleles, in parallel with linked multi-marker haplotype analysis of 13 highly polymorphic microsatellite markers located within 1 Mb of the FMR1 CGG repeat, and the AMELX/Y dimorphism for gender identification. The assay was optimised and validated on single lymphoblasts isolated from fragile X reference cell lines, and applied to a simulated PGD case and a clinical in vitro fertilisation (IVF)-PGD case. In the simulated PGD case, definitive diagnosis of the expected results was achieved for all 'embryos'. In the clinical IVF-PGD case, delivery of a healthy baby girl was achieved after transfer of an expansion-negative blastocyst. FMR1 TP-PCR reliably detects presence of expansion mutations and obviates reliance on informative normal alleles for determining expansion status in female embryos. Together with multi-marker haplotyping and gender determination, misdiagnosis and diagnostic ambiguity due to allele dropout is minimised, and couple-specific assay customisation can be avoided.
Martinez-Urtaza, Jaime; van Aerle, Ronny; Abanto, Michel; Haendiges, Julie; Myers, Robert A; Trinanes, Joaquin; Baker-Austin, Craig; Gonzalez-Escalona, Narjol
2017-11-14
Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3) was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW) lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming. IMPORTANCE Vibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio , the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe.
Young, Douglas; Mayer, Franziska; Vidotto, Nella; Schweizer, Tatjana; Berth, Ramon; Abramowski, Dorothee; Shimshek, Derya R.; van der Putten, P. Herman; Schmid, Peter
2013-01-01
Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model. PMID:24086450
Hagerman, Randi; Hagerman, Paul
2014-01-01
Summary Fragile X syndrome, the leading heritable form of cognitive impairment, is caused by epigenetic silencing of the fragile X (FMR1) gene consequent to large expansions (>200 repeats) of a non-coding CGG-repeat element. Smaller, “premutation” expansions (55–200 repeats) can give rise to a family of neurodevelopmental (ADHD, autism spectrum disorder, seizure disorder) and neurodegenerative (FXTAS) clinical phenotypes through an entirely distinct molecular mechanism involving increased FMR1 mRNA production and toxicity. Basic cellular, animal, and human studies have helped to elucidate the underlying RNA toxicity mechanism, while clinical research is providing a more nuanced picture of the spectrum of clinical involvement. Whereas advances on both mechanistic and clinical fronts are driving new approaches to targeted treatment, two important issues/needs are emerging: to define the extent to which the mechanisms contributing to FXTAS also contribute to other neurodegenerative and medical disorders, and to redefine FXTAS in light of its differing presentations and associated features. PMID:23867198
[Climate change - a pioneer for the expansion of canine vector-borne diseases?].
Krämer, F; Mencke, N
2011-01-01
Vector-transmitted diseases are one of the major contributors to the global burden of disease in humans and animals. Climate change is consistently held responsible for the spread of parasitic acarid and insect vectors such as ticks, fleas, sand flies and mosquitoes, and their transmitted pathogens (in the case of the dog the so-called canine vector-borne diseases [CVBD]). Currently, there is only insufficient data available to prove whether climate change is a major driving force for vector and disease expansion, but the evidence is growing. Other reasons, such as ecological, demographic and socio-economic factors, e.g. pet travel into and pet import from endemic areas, also play a role in this development. Apart from all the controversial discussion of the factors leading to vector and disease expansion, preventative measures should include dog owners' education as they are responsible for individual parasite protection as well as for the minimisation of adverse risk behaviour, e.g. regarding pet travel. Broad-spectrum vector control should be practised by using parasiticides that repel and kill blood feeders in order to minimize the risk of CVBD-pathogen transmission.
Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers.
Lu, H-J; Bernardo, R; Ohm, H W
2003-02-01
Popping expansion volume is the most important quality trait in popcorn ( Zea mays L.), but its genetics is not well understood. The objectives of this study were to map quantitative trait loci (QTLs) responsible for popping expansion volume in a popcorn x dent corn cross, and to compare the predicted efficiencies of phenotypic selection, marker-based selection, and marker-assisted selection for popping expansion volume. Of 259 simple sequence repeat (SSR) primer pairs screened, 83 pairs were polymorphic between the H123 (dent corn) and AG19 (popcorn) parental inbreds. Popping test data were obtained for 160 S(1) families developed from the [AG19(H123 x AG19)] BC(1) population. The heritability ( h(2)) for popping expansion volume on an S(1) family mean basis was 0.73. The presence of the gametophyte factor Ga1(s) in popcorn complicates the analysis of popcorn x dent corn crosses. But, from a practical perspective, the linkage between a favorable QTL allele and Ga1(s) in popcorn will lead to selection for the favorable QTL allele. Four QTLs, on chromosomes 1S, 3S, 5S and 5L, jointly explained 45% of the phenotypic variation. Marker-based selection for popping expansion volume would require less time and work than phenotypic selection. But due to the high h(2) of popping expansion volume, marker-based selection was predicted to be only 92% as efficient as phenotypic selection. Marker-assisted selection, which comprises index selection on phenotypic and marker scores, was predicted to be 106% as efficient as phenotypic selection. Overall, our results suggest that phenotypic selection will remain the preferred method for selection in popcorn x dent corn crosses.
ERIC Educational Resources Information Center
Tassone, Flora; Choudhary, Nimrah S.; Tassone, Federica; Durbin-Johnson, Blythe; Hansen, Robin; Hertz-Picciotto, Irva; Pessah, Isaac
2013-01-01
Fragile X syndrome (FXS) is a neuro-developmental disorder characterized by intellectual disabilities and autism spectrum disorders (ASD). Expansion of a CGG trinucleotide repeat (greater than 200 repeats) in the 5'UTR of the fragile X mental retardation gene, is the single most prevalent cause of cognitive disabilities. Several screening studies…
Mary Anne Sword Sayer; Eric A. Kuehler
2010-01-01
Photosynthate from mature foliage provides the energy source necessary for longleaf pine (Pinus palustris Mill.) root system expansion. Crown scorch caused by repeated prescribed fire could decrease this energy and, in turn, reduce new root production. We conducted a study to assess the root biomass of restored longleaf pine saplings in response to...
Su, Zhaoming; Zhang, Yongjie; Gendron, Tania F; Bauer, Peter O; Chew, Jeannie; Yang, Wang-Yong; Fostvedt, Erik; Jansen-West, Karen; Belzil, Veronique V; Desaro, Pamela; Johnston, Amelia; Overstreet, Karen; Oh, Seok-Yoon; Todd, Peter K; Berry, James D; Cudkowicz, Merit E; Boeve, Bradley F; Dickson, Dennis; Floeter, Mary Kay; Traynor, Bryan J; Morelli, Claudia; Ratti, Antonia; Silani, Vincenzo; Rademakers, Rosa; Brown, Robert H; Rothstein, Jeffrey D; Boylan, Kevin B; Petrucelli, Leonard; Disney, Matthew D
2014-09-03
A repeat expansion in C9ORF72 causes frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). RNA of the expanded repeat (r(GGGGCC)exp) forms nuclear foci or undergoes repeat-associated non-ATG (RAN) translation, producing "c9RAN proteins." Since neutralizing r(GGGGCC)exp could inhibit these potentially toxic events, we sought to identify small-molecule binders of r(GGGGCC)exp. Chemical and enzymatic probing of r(GGGGCC)8 indicate that it adopts a hairpin structure in equilibrium with a quadruplex structure. Using this model, bioactive small molecules targeting r(GGGGCC)exp were designed and found to significantly inhibit RAN translation and foci formation in cultured cells expressing r(GGGGCC)66 and neurons transdifferentiated from fibroblasts of repeat expansion carriers. Finally, we show that poly(GP) c9RAN proteins are specifically detected in c9ALS patient cerebrospinal fluid. Our findings highlight r(GGGGCC)exp-binding small molecules as a possible c9FTD/ALS therapeutic and suggest that c9RAN proteins could potentially serve as a pharmacodynamic biomarker to assess efficacy of therapies that target r(GGGGCC)exp. Copyright © 2014 Elsevier Inc. All rights reserved.
Su, Zhaoming; Zhang, Yongjie; Gendron, Tania F.; Bauer, Peter O.; Chew, Jeannie; Yang, Wang-Yong; Fostvedt, Erik; Jansen-West, Karen; Belzil, Veronique V.; Desaro, Pamela; Johnston, Amelia; Overstreet, Karen; Oh, Seok-Yoon; Todd, Peter K.; Berry, James D.; Cudkowicz, Merit E.; Boeve, Bradley F.; Dickson, Dennis; Floeter, Mary Kay; Traynor, Bryan J.; Morelli, Claudia; Ratti, Antonia; Silani, Vincenzo; Rademakers, Rosa; Brown, Robert H.; Rothstein, Jeffrey D.; Boylan, Kevin B.; Petrucelli, Leonard; Disney, Matthew D.
2014-01-01
Summary A repeat expansion in C9ORF72 causes frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). RNA of the expanded repeat (r(GGGGCC)exp) forms nuclear foci or undergoes repeat-associated non-ATG (RAN) translation producing “c9RAN proteins”. Since neutralizing r(GGGGCC)exp could inhibit these potentially toxic events, we sought to identify small molecule binders of r(GGGGCC)exp. Chemical and enzymatic probing of r(GGGGCC)8 indicate it adopts a hairpin structure in equilibrium with a quadruplex structure. Using this model, bioactive small molecules targeting r(GGGGCC)exp were designed and found to significantly inhibit RAN translation and foci formation in cultured cells expressing r(GGGGCC)66 and neurons trans-differentiated from fibroblasts of repeat expansion carriers. Finally, we show that poly(GP) c9RAN proteins are specifically detected in c9ALS patient cerebrospinal fluid. Our findings highlight r(GGGGCC)exp-binding small molecules as a possible c9FTD/ALS therapeutic, and suggest c9RAN proteins could potentially serve as a pharmacodynamic biomarker to assess efficacy of therapies that target r(GGGGCC)exp. PMID:25132468
Prevalence of spinocerebellar ataxia 36 in a US population
Valera, Juliana M.; Diaz, Tatyana; Petty, Lauren E.; Quintáns, Beatriz; Yáñez, Zuleima; Boerwinkle, Eric; Muzny, Donna; Akhmedov, Dmitry; Berdeaux, Rebecca; Sobrido, Maria J.; Gibbs, Richard; Lupski, James R.; Geschwind, Daniel H.; Perlman, Susan; Below, Jennifer E.
2017-01-01
Objective: To assess the prevalence and clinical features of individuals affected by spinocerebellar ataxia 36 (SCA36) at a large tertiary referral center in the United States. Methods: A total of 577 patients with undiagnosed sporadic or familial cerebellar ataxia comprehensively evaluated at a tertiary referral ataxia center were molecularly evaluated for SCA36. Repeat primed PCR and fragment analysis were used to screen for the presence of a repeat expansion in the NOP56 gene. Results: Fragment analysis of triplet repeat primed PCR products identified a GGCCTG hexanucleotide repeat expansion in intron 1 of NOP56 in 4 index cases. These 4 SCA36-positive families comprised 2 distinct ethnic groups: white (European) (2) and Asian (Japanese [1] and Vietnamese [1]). Individuals affected by SCA36 exhibited typical clinical features with gait ataxia and age at onset ranging between 35 and 50 years. Patients also suffered from ataxic or spastic limbs, altered reflexes, abnormal ocular movement, and cognitive impairment. Conclusions: In a US population, SCA36 was observed to be a rare disorder, accounting for 0.7% (4/577 index cases) of disease in a large undiagnosed ataxia cohort. PMID:28761930
Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells.
Murmann, Andrea E; Gao, Quan Q; Putzbach, William E; Patel, Monal; Bartom, Elizabeth T; Law, Calvin Y; Bridgeman, Bryan; Chen, Siquan; McMahon, Kaylin M; Thaxton, C Shad; Peter, Marcus E
2018-03-01
Trinucleotide repeat (TNR) expansions in the genome cause a number of degenerative diseases. A prominent TNR expansion involves the triplet CAG in the huntingtin (HTT) gene responsible for Huntington's disease (HD). Pathology is caused by protein and RNA generated from the TNR regions including small siRNA-sized repeat fragments. An inverse correlation between the length of the repeats in HTT and cancer incidence has been reported for HD patients. We now show that siRNAs based on the CAG TNR are toxic to cancer cells by targeting genes that contain long reverse complementary TNRs in their open reading frames. Of the 60 siRNAs based on the different TNRs, the six members in the CAG/CUG family of related TNRs are the most toxic to both human and mouse cancer cells. siCAG/CUG TNR-based siRNAs induce cell death in vitro in all tested cancer cell lines and slow down tumor growth in a preclinical mouse model of ovarian cancer with no signs of toxicity to the mice. We propose to explore TNR-based siRNAs as a novel form of anticancer reagents. © 2018 The Authors.
Bidirectional nucleolar dysfunction in C9orf72 frontotemporal lobar degeneration.
Mizielinska, Sarah; Ridler, Charlotte E; Balendra, Rubika; Thoeng, Annora; Woodling, Nathan S; Grässer, Friedrich A; Plagnol, Vincent; Lashley, Tammaryn; Partridge, Linda; Isaacs, Adrian M
2017-04-18
An intronic GGGGCC expansion in C9orf72 is the most common known cause of both frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat expansion leads to the generation of sense and antisense repeat RNA aggregates and dipeptide repeat (DPR) proteins, generated by repeat-associated non-ATG translation. The arginine-rich DPR proteins poly(glycine-arginine or GR) and poly(proline-arginine or PR) are potently neurotoxic and can localise to the nucleolus when expressed in cells, resulting in enlarged nucleoli with disrupted functionality. Furthermore, GGGGCC repeat RNA can bind nucleolar proteins in vitro. However, the relevance of nucleolar stress is unclear, as the arginine-rich DPR proteins do not localise to the nucleolus in C9orf72-associated FTLD/ALS (C9FTLD/ALS) patient brain. We measured nucleolar size in C9FTLD frontal cortex neurons using a three-dimensional, volumetric approach. Intriguingly, we found that C9FTLD brain exhibited bidirectional nucleolar stress. C9FTLD neuronal nucleoli were significantly smaller than control neuronal nucleoli. However, within C9FTLD brains, neurons containing poly(GR) inclusions had significantly larger nucleolar volumes than neurons without poly(GR) inclusions. In addition, expression of poly(GR) in adult Drosophila neurons led to significantly enlarged nucleoli. A small but significant increase in nucleolar volume was also observed in C9FTLD frontal cortex neurons containing GGGGCC repeat-containing RNA foci. These data show that nucleolar abnormalities are a consistent feature of C9FTLD brain, but that diverse pathomechanisms are at play, involving both DPR protein and repeat RNA toxicity.
ERIC Educational Resources Information Center
Bishai, David; Liu, Liang; Shiau, Stephanie; Wang, Harrison; Tsai, Cindy; Liao, Margaret; Prakash, Shivaani; Howard, Tracy
2011-01-01
The purpose of this study was to estimate the risk of acquiring pathogenic bacteria as a result of shaking hands at graduation ceremonies. School officials participating in graduation ceremonies at elementary, secondary, and postsecondary schools were recruited. Specimens were collected before and immediately following graduation. Cultures…
USDA-ARS?s Scientific Manuscript database
Application of peracetic acid (PAA) at low concentrations has been proved to be a broad functional and eco-friendly prophylaxis/disinfection method against various fish pathogens. Therefore, regular applications of low concentration PAA is sufficient to control (potential) pathogens in recirculatin...
Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine
2009-01-01
Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences composed of a succession of repeats (23- to 47-bp long) separated by unique sequences called spacers. Polymorphism can be observed in different strains of a species and may be used for genotyping. We describe protocols and bioinformatics tools that allow the identification of CRISPRs from sequenced genomes, their comparison, and their component determination (the direct repeats and the spacers). A schematic representation of the spacer organization can be produced, allowing an easy comparison between strains.
Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.
2005-01-01
Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019
Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I
2003-08-01
Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis.
Fuchs' Endothelial Corneal Dystrophy in Patients With Myotonic Dystrophy, Type 1
Winkler, Nelson S.; Milone, Margherita; Martinez-Thompson, Jennifer M.; Raja, Harish; Aleff, Ross A.; Patel, Sanjay V.; Fautsch, Michael P.; Wieben, Eric D.
2018-01-01
Purpose RNA toxicity from CTG trinucleotide repeat (TNR) expansion within noncoding DNA of the transcription factor 4 (TCF4) and DM1 protein kinase (DMPK) genes has been described in Fuchs' endothelial corneal dystrophy (FECD) and myotonic dystrophy, type 1 (DM1), respectively. We prospectively evaluated DM1 patients and their families for phenotypic FECD and report the analysis of CTG expansion in the TCF4 gene and DMPK expression in corneal endothelium. Methods FECD grade was evaluated by slit lamp biomicroscopy in 26 participants from 14 families with DM1. CTG TNR length in TCF4 and DMPK was determined by a combination of Gene Scan and Southern blotting of peripheral blood leukocyte DNA. Results FECD grade was 2 or higher in 5 (36%) of 14 probands, significantly greater than the general population (5%) (P < 0.001). FECD segregated with DM1; six of eight members of the largest family had both FECD and DM1, while the other two family members had neither disease. All DNA samples from 24 subjects, including four FECD-affected probands, were bi-allelic for nonexpanded TNR length in TCF4 (<40 repeats). Considering a 75% prevalence of TCF4 TNR expansion in FECD, the probability of four FECD probands lacking TNR expansion was 0.4%. Neither severity of DM1 nor DMPK TNR length predicted the presence of FECD in DM1 patients. Conclusions FECD was common in DM1 families, and the diseases cosegregated. TCF4 TNR expansion was lacking in DM1 families. These findings support a hypothesis that DMPK TNR expansion contributes to clinical FECD.
9 CFR 113.328 - Fowl Laryngotracheitis Vaccine.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Disregard all deaths during the first 24 hours post-injection. To be a valid test, at least four embryos in... pathogens by the chicken embryo inoculation test prescribed in § 113.37, except that, if the test is inconclusive because of vaccine virus override, the test may be repeated and if the repeat test is inconclusive...
9 CFR 113.325 - Avian Encephalomyelitis Vaccine.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pathogens by the chicken embryo inoculation test prescribed in § 113.37, except that, if the test is inconclusive because of a vaccine virus override, the test may be repeated and if the repeat test is inconclusive for the same reason, the chicken inoculation test prescribed in § 113.36 may be conducted and the...
USDA-ARS?s Scientific Manuscript database
Simple sequence repeats (SSR) markers were developed from a small insert genomic library for Bipolaris sorokiniana, a mitosporic fungal pathogen that causes spot blotch and root rot in switchgrass. About 59% of sequenced clones (n=384) harbored various SSR motifs. After eliminating the redundant seq...
CAG repeat lengths ≥335 attenuate the phenotype in the R6/2 Huntington’s disease transgenic mouse
Dragatsis, I.; Goldowitz, D.; Del Mar, N.; Deng, Y.P.; Meade, C.A.; Liu, Li; Sun, Z.; Dietrich, P.; Yue, J.; Reiner, A.
2015-01-01
With spontaneous elongation of the CAG repeat in the R6/2 transgene to ≥335, resulting in a transgene protein too large for passive entry into nuclei via the nuclear pore, we observed an abrupt increase in lifespan to >20 weeks, compared to the 12 weeks common in R6/2 mice with 150 repeats. In the ≥335 CAG mice, large ubiquitinated aggregates of mutant protein were common in neuronal dendrites and perikaryal cytoplasm, but intranuclear aggregates were small and infrequent. Message and protein for the ≥335 CAG transgene were reduced to one-third that in 150 CAG R6/2 mice. Neurological and neurochemical abnormalities were delayed in onset and less severe than in 150 CAG R6/2 mice. These findings suggest that polyQ length and pathogenicity in Huntington’s disease may not be linearly related, and pathogenicity may be less severe with extreme repeats. Both diminished mutant protein and reduced nuclear entry may contribute to phenotype attenuation. PMID:19027857
Dalby, Andrew R.
2009-01-01
Background Microsatellites have been used extensively in the field of comparative genomics. By studying microsatellites in coding regions we have a simple model of how genotypic changes undergo selection as they are directly expressed in the phenotype as altered proteins. The simplest of these tandem repeats in coding regions are the tri-nucleotide repeats which produce a repeat of a single amino acid when translated into proteins. Tri-nucleotide repeats are often disease associated, and are also known to be unstable to both expansion and contraction. This makes them sensitive markers for studying proteome evolution, in closely related species. Results The evolutionary history of the family of malarial causing parasites Plasmodia is complex because of the life-cycle of the organism, where it interacts with a number of different hosts and goes through a series of tissue specific stages. This study shows that the divergence between the primate and rodent malarial parasites has resulted in a lineage specific change in the simple amino acid repeat distribution that is correlated to A–T content. The paper also shows that this altered use of amino acids in SAARs is consistent with the repeat distributions being under selective pressure. Conclusions The study shows that simple amino acid repeat distributions can be used to group related species and to examine their phylogenetic relationships. This study also shows that an outgroup species with a similar A–T content can be distinguished based only on the amino acid usage in repeats, and suggest that this might be a useful feature for proteome clustering. The lineage specific use of amino acids in repeat regions suggests that comparative studies of SAAR distributions between proteomes gives an insight into the mechanisms of expansion and the selective pressures acting on the organism. PMID:19597555
LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects.
Magalhães, Diogo M; Scholte, Larissa L S; Silva, Nicholas V; Oliveira, Guilherme C; Zipfel, Cyril; Takita, Marco A; De Souza, Alessandra A
2016-08-12
Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of plant RLKs. The functions of most LRR-RLKs have remained undiscovered, and a few that have been experimentally characterized have been shown to have important roles in growth and development as well as in defense responses. Although RLK subfamilies have been previously studied in many plants, no comprehensive study has been performed on this gene family in Citrus species, which have high economic importance and are frequent targets for emerging pathogens. In this study, we performed in silico analysis to identify and classify LRR-RLK homologues in the predicted proteomes of Citrus clementina (clementine) and Citrus sinensis (sweet orange). In addition, we used large-scale phylogenetic approaches to elucidate the evolutionary relationships of the LRR-RLKs and further narrowed the analysis to the LRR-XII group, which contains several previously described cell surface immune receptors. We built integrative protein signature databases for Citrus clementina and Citrus sinensis using all predicted protein sequences obtained from whole genomes. A total of 300 and 297 proteins were identified as LRR-RLKs in C. clementina and C. sinensis, respectively. Maximum-likelihood phylogenetic trees were estimated using Arabidopsis LRR-RLK as a template and they allowed us to classify Citrus LRR-RLKs into 16 groups. The LRR-XII group showed a remarkable expansion, containing approximately 150 paralogs encoded in each Citrus genome. Phylogenetic analysis also demonstrated the existence of two distinct LRR-XII clades, each one constituted mainly by RD and non-RD kinases. We identified 68 orthologous pairs from the C. clementina and C. sinensis LRR-XII genes. In addition, among the paralogs, we identified a subset of 78 and 62 clustered genes probably derived from tandem duplication events in the genomes of C. clementina and C. sinensis, respectively. This work provided the first comprehensive evolutionary analysis of the LRR-RLKs in Citrus. A large expansion of LRR-XII in Citrus genomes suggests that it might play a key role in adaptive responses in host-pathogen co-evolution, related to the perennial life cycle and domestication of the citrus crop species.
Phylogeny and comparative genome analysis of a Basidiomycete fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor
2011-03-14
Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein familiesmore » that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.« less
Broda, Magdalena; Kierzek, Elzbieta; Gdaniec, Zofia; Kulinski, Tadeusz; Kierzek, Ryszard
2005-08-16
Trinucleotide repeat expansion diseases (TREDs) are correlated with elongation of CNG DNA and RNA repeats to pathological level. This paper shows, for the first time, complete data concerning thermodynamic stabilities of RNA with CNG trinucleotide repeats. Our studies include the stability of oligoribonucleotides composed of two to seven of CAG, CCG, CGG, and CUG repeats. The thermodynamic parameters of helix propagation correlated with the presence of multiple N-N mismatches within CNG RNA duplexes were also determined. Moreover, the total stability of CNG RNA hairpins, as well as the contribution of trinucleotide repeats placed only in the stem or loop regions, was evaluated. The improved thermodynamic parameters allow to predict much more accurately the thermodynamic stabilities and structures of CNG RNAs.
Zheng, Chong-Ke; Wang, Chun-Lian; Zhang, Xiao-Ping; Wang, Fu-Jun; Qin, Teng-Fei; Zhao, Kai-Jun
2014-09-01
To activate the expression of host genes that contribute to pathogen growth, pathogenic Xanthomonas bacteria inject their transcription activator-like effectors (TALEs) into plant cells and the TALEs bind to target gene promoters by the central repeat region consisting of near-perfect 34-amino-acid repeats (34-aa repeats). Based on the recognition codes between the 34-aa repeats and the targeted nucleotides, TALE-based technologies, such as designer TALEs (dTALEs) and TALE nucleases (TALENs), have been developed. Amazingly, every natural TALE invariantly has a truncated last half-repeat (LHR) at the end of the 34-aa repeats. Consequently, all the reported dTALEs and TALENs also harbour their LHRs. Here, we show that the LHRs in dTALEs are dispensable for the function of gene activation by both transient expression assays in Nicotiana benthamiana and gene-specific targeting in the rice genome, indicating that TALEs might originate from a single progenitor. In the light of this finding, we demonstrate that dTALEs can be constructed through two simple steps. Moreover, the activation strengths of dTALEs lacking the LHR are comparable with those of dTALEs harbouring the LHR. Our results provide new insights into the origin of natural TALEs, and will facilitate the simplification of the design and assembly of TALE-based tools, such as dTALEs and TALENs, in the near future. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Taylor, J S; Breden, F
2000-01-01
The standard slipped-strand mispairing (SSM) model for the formation of variable number tandem repeats (VNTRs) proposes that a few tandem repeats, produced by chance mutations, provide the "raw material" for VNTR expansion. However, this model is unlikely to explain the formation of VNTRs with long motifs (e.g., minisatellites), because the likelihood of a tandem repeat forming by chance decreases rapidly as the length of the repeat motif increases. Phylogenetic reconstruction of the birth of a mitochondrial (mt) DNA minisatellite in guppies suggests that VNTRs with long motifs can form as a consequence of SSM at noncontiguous repeats. VNTRs formed in this manner have motifs longer than the noncontiguous repeat originally formed by chance and are flanked by one unit of the original, noncontiguous repeat. SSM at noncontiguous repeats can therefore explain the birth of VNTRs with long motifs and the "imperfect" or "short direct" repeats frequently observed adjacent to both mtDNA and nuclear VNTRs. PMID:10880490
Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene
NASA Astrophysics Data System (ADS)
Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.
1994-07-01
The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.
The Cognitive and Behavioral Phenotypes of Individuals with "CHRNA7" Duplications
ERIC Educational Resources Information Center
Gillentine, M. A.; Berry, L. N.; Goin-Kochel, R. P.; Ali, M. A.; Ge, J.; Guffey, D.; Rosenfeld, J. A.; Hannig, V.; Bader, P.; Proud, M.; Shinawi, M.; Graham, B. H.; Lin, A.; Lalani, S. R.; Reynolds, J.; Chen, M.; Grebe, T.; Minard, C. G.; Stankiewicz, P.; Beaudet, A. L.; Schaaf, C. P.
2017-01-01
Chromosome 15q11q13 is among the least stable regions in the genome due to its highly complex genomic architecture. Low copy repeat elements at 15q13.3 facilitate recurrent copy number variants (CNVs), with deletions established as pathogenic and "CHRNA7" implicated as a candidate gene. However, the pathogenicity of duplications of…
The Evolution of Dark Matter in the Mitogenome of Seed Beetles
Sayadi, Ahmed; Immonen, Elina; Tellgren-Roth, Christian
2017-01-01
Abstract Animal mitogenomes are generally thought of as being economic and optimized for rapid replication and transcription. We use long-read sequencing technology to assemble the remarkable mitogenomes of four species of seed beetles. These are the largest circular mitogenomes ever assembled in insects, ranging from 24,496 to 26,613 bp in total length, and are exceptional in that some 40% consists of non-coding DNA. The size expansion is due to two very long intergenic spacers (LIGSs), rich in tandem repeats. The two LIGSs are present in all species but vary greatly in length (114–10,408 bp), show very low sequence similarity, divergent tandem repeat motifs, a very high AT content and concerted length evolution. The LIGSs have been retained for at least some 45 my but must have undergone repeated reductions and expansions, despite strong purifying selection on protein coding mtDNA genes. The LIGSs are located in two intergenic sites where a few recent studies of insects have also reported shorter LIGSs (>200 bp). These sites may represent spaces that tolerate neutral repeat array expansions or, alternatively, the LIGSs may function to allow a more economic translational machinery. Mitochondrial respiration in adult seed beetles is based almost exclusively on fatty acids, which reduces the need for building complex I of the oxidative phosphorylation pathway (NADH dehydrogenase). One possibility is thus that the LIGSs may allow depressed transcription of NAD genes. RNA sequencing showed that LIGSs are partly transcribed and transcriptional profiling suggested that all seven mtDNA NAD genes indeed show low levels of transcription and co-regulation of transcription across sexes and tissues. PMID:29048527
Use of controlled vocabularies to improve biomedical information retrieval tasks.
Pasche, Emilie; Gobeill, Julien; Vishnyakova, Dina; Ruch, Patrick; Lovis, Christian
2013-01-01
The high heterogeneity of biomedical vocabulary is a major obstacle for information retrieval in large biomedical collections. Therefore, using biomedical controlled vocabularies is crucial for managing these contents. We investigate the impact of query expansion based on controlled vocabularies to improve the effectiveness of two search engines. Our strategy relies on the enrichment of users' queries with additional terms, directly derived from such vocabularies applied to infectious diseases and chemical patents. We observed that query expansion based on pathogen names resulted in improvements of the top-precision of our first search engine, while the normalization of diseases degraded the top-precision. The expansion of chemical entities, which was performed on the second search engine, positively affected the mean average precision. We have shown that query expansion of some types of biomedical entities has a great potential to improve search effectiveness; therefore a fine-tuning of query expansion strategies could help improving the performances of search engines.
Expansion of all multitrace tree level EYM amplitudes
NASA Astrophysics Data System (ADS)
Du, Yi-Jian; Feng, Bo; Teng, Fei
2017-12-01
In this paper, we investigate the expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes. First, we propose two types of recursive expansions of tree level EYM amplitudes with an arbitrary number of gluons, gravitons and traces by those amplitudes with fewer traces or/and gravitons. Then we give many support evidence, including proofs using the Cachazo-He-Yuan (CHY) formula and Britto-Cachazo-Feng-Witten (BCFW) recursive relation. As a byproduct, two types of generalized BCJ relations for multitrace EYM are further proposed, which will be useful in the BCFW proof. After one applies the recursive expansions repeatedly, any multitrace EYM amplitudes can be given in the Kleiss-Kuijf (KK) basis of tree level color ordered Yang-Mills (YM) amplitudes. Thus the Bern-Carrasco-Johansson (BCJ) numerators, as the expansion coefficients, for all multitrace EYM amplitudes are naturally constructed.
Kovalenko, Marina; Milnerwood, Austen; Giordano, James; St Claire, Jason; Guide, Jolene R; Stromberg, Mary; Gillis, Tammy; Sapp, Ellen; DiFiglia, Marian; MacDonald, Marcy E; Carroll, Jeffrey B; Lee, Jong-Min; Tappan, Susan; Raymond, Lynn; Wheeler, Vanessa C
2018-01-01
Successful disease-modifying therapy for Huntington's disease (HD) will require therapeutic intervention early in the pathogenic process. Achieving this goal requires identifying phenotypes that are proximal to the HTT CAG repeat expansion. To use Htt CAG knock-in mice, precise genetic replicas of the HTT mutation in patients, as models to study proximal disease events. Using cohorts of B6J.HttQ111/+ mice from 2 to 18 months of age, we analyzed pathological markers, including immunohistochemistry, brain regional volumes and cortical thickness, CAG instability, electron microscopy of striatal synapses, and acute slice electrophysiology to record glutamatergic transmission at striatal synapses. We also incorporated a diet perturbation paradigm for some of these analyses. B6J.HttQ111/+ mice did not exhibit significant neurodegeneration or gliosis but revealed decreased striatal DARPP-32 as well as subtle but regional-specific changes in brain volumes and cortical thickness that parallel those in HD patients. Ultrastructural analyses of the striatum showed reduced synapse density, increased postsynaptic density thickness and increased synaptic cleft width. Acute slice electrophysiology showed alterations in spontaneous AMPA receptor-mediated postsynaptic currents, evoked NMDA receptor-mediated excitatory postsynaptic currents, and elevated extrasynaptic NMDA currents. Diet influenced cortical thickness, but did not impact somatic CAG expansion, nor did it show any significant interaction with genotype on immunohistochemical, brain volume or cortical thickness measures. These data show that a single HttQ111 allele is sufficient to elicit brain region-specific morphological changes and early neuronal dysfunction, highlighting an insidious disease process already apparent in the first few months of life.
Translating HDAC inhibitors in Friedrich's ataxia
Soragni, Elisabetta; Gottesfeld, Joel M
2016-01-01
Introduction Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. Areas covered We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. Expert opinion 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing. PMID:28392990
Mason, Amanda G; Tomé, Stephanie; Simard, Jodie P; Libby, Randell T; Bammler, Theodor K; Beyer, Richard P; Morton, A Jennifer; Pearson, Christopher E; La Spada, Albert R
2014-03-15
Expansion of CAG/CTG trinucleotide repeats causes numerous inherited neurological disorders, including Huntington's disease (HD), several spinocerebellar ataxias and myotonic dystrophy type 1. Expanded repeats are genetically unstable with a propensity to further expand when transmitted from parents to offspring. For many alleles with expanded repeats, extensive somatic mosaicism has been documented. For CAG repeat diseases, dramatic instability has been documented in the striatum, with larger expansions noted with advancing age. In contrast, only modest instability occurs in the cerebellum. Using microarray expression analysis, we sought to identify the genetic basis of these regional instability differences by comparing gene expression in the striatum and cerebellum of aged wild-type C57BL/6J mice. We identified eight candidate genes enriched in cerebellum, and validated four--Pcna, Rpa1, Msh6 and Fen1--along with a highly associated interactor, Lig1. We also explored whether expression levels of mismatch repair (MMR) proteins are altered in a line of HD transgenic mice, R6/2, that is known to show pronounced regional repeat instability. Compared with wild-type littermates, MMR expression levels were not significantly altered in R6/2 mice regardless of age. Interestingly, expression levels of these candidates were significantly increased in the cerebellum of control and HD human samples in comparison to striatum. Together, our data suggest that elevated expression levels of DNA replication and repair proteins in cerebellum may act as a safeguard against repeat instability, and may account for the dramatically reduced somatic instability present in this brain region, compared with the marked instability observed in the striatum.
Teixeira, Marcus M; de Almeida, Luiz G P; Kubitschek-Barreira, Paula; Alves, Fernanda L; Kioshima, Erika S; Abadio, Ana K R; Fernandes, Larissa; Derengowski, Lorena S; Ferreira, Karen S; Souza, Rangel C; Ruiz, Jeronimo C; de Andrade, Nathalia C; Paes, Hugo C; Nicola, André M; Albuquerque, Patrícia; Gerber, Alexandra L; Martins, Vicente P; Peconick, Luisa D F; Neto, Alan Viggiano; Chaucanez, Claudia B; Silva, Patrícia A; Cunha, Oberdan L; de Oliveira, Fabiana F M; dos Santos, Tayná C; Barros, Amanda L N; Soares, Marco A; de Oliveira, Luciana M; Marini, Marjorie M; Villalobos-Duno, Héctor; Cunha, Marcel M L; de Hoog, Sybren; da Silveira, José F; Henrissat, Bernard; Niño-Vega, Gustavo A; Cisalpino, Patrícia S; Mora-Montes, Héctor M; Almeida, Sandro R; Stajich, Jason E; Lopes-Bezerra, Leila M; Vasconcelos, Ana T R; Felipe, Maria S S
2014-10-29
The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.
Spinocerebellar ataxia 17: full phenotype in a 41 CAG/CAA repeats carrier.
Origone, Paola; Gotta, Fabio; Lamp, Merit; Trevisan, Lucia; Geroldi, Alessandro; Massucco, Davide; Grazzini, Matteo; Massa, Federico; Ticconi, Flavia; Bauckneht, Matteo; Marchese, Roberta; Abbruzzese, Giovanni; Bellone, Emilia; Mandich, Paola
2018-01-01
Spinocerebellar ataxia 17 (SCA17) is one of the most heterogeneous forms of autosomal dominant cerebellar ataxias with a large clinical spectrum which can mimic other movement disorders such as Huntington disease (HD), dystonia and parkinsonism. SCA17 is caused by an expansion of CAG/CAA repeat in the Tata binding protein ( TBP ) gene. Normal alleles contain 25 to 40 CAG/CAA repeats, alleles with 50 or greater CAG/CAA repeats are pathological with full penetrance. Alleles with 43 to 49 CAG/CAA repeats were also reported and their penetrance is estimated between 50 and 80%. Recently few symptomatic individuals having 41 and 42 repeats were reported but it is still unclear whether CAG/CAA repeats of 41 or 42 are low penetrance disease-causing alleles. Thus, phenotypic variability like the disease course in subject with SCA17 locus restricted expansions remains to be fully understood. The patients was a 63-year-old woman who, at 54 years, showed personality changes and increased frequency of falls. At 55 years of age neuropsychological tests showed executive attention and visuospatial deficit. At the age of 59 the patient developed dysarthria and a progressive cognitive deficit. The neurological examination showed moderate gait ataxia, dysdiadochokinesia and dysmetria, dysphagia, dysarthria and abnormal saccadic pursuit, severe axial asynergy during postural changes, choreiform dyskinesias. Molecular analysis of the TBP gene demonstrated an allele with 41 repeat suggesting that 41 CAG/CCG TBP repeats could be an allele associated with the full clinical spectrum of SCA17. The described case with the other similar cases described in the literature suggests that 41 CAG/CAA trinucleotides should be considered as critical threshold in SCA17. We suggest that SCA17 diagnosis should be suspected in patients presenting with movement disorders associated with other neurodegenerative signs and symptoms.
Sensitizing pathogens to antibiotics using the CRISPR-Cas system.
Goren, Moran; Yosef, Ido; Qimron, Udi
2017-01-01
The extensive use of antibiotics over the last century has resulted in a significant artificial selection pressure for antibiotic-resistant pathogens to evolve. Various strategies to fight these pathogens have been introduced including new antibiotics, naturally-derived enzymes/peptides that specifically target pathogens and bacteriophages that lyse these pathogens. A new tool has recently been introduced in the fight against drug-resistant pathogens-the prokaryotic defense mechanism-clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system. The CRISPR-Cas system acts as a nuclease that can be guided to cleave any target DNA, allowing sophisticated, yet feasible, manipulations of pathogens. Here, we review pioneering studies that use the CRISPR-Cas system to specifically edit bacterial populations, eliminate their resistance genes and combine these two strategies in order to produce an artificial selection pressure for antibiotic-sensitive pathogens. We suggest that intelligent design of this system, along with efficient delivery tools into pathogens, may significantly reduce the threat of antibiotic-resistant pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Al-Saadi, Abdulwahid; Reddy, Joseph D; Duan, Yong P; Brunings, Asha M; Yuan, Qiaoping; Gabriel, Dean W
2007-08-01
Citrus canker disease is caused by five groups of Xanthomonas citri strains that are distinguished primarily by host range: three from Asia (A, A*, and A(w)) and two that form a phylogenetically distinct clade and originated in South America (B and C). Every X. citri strain carries multiple DNA fragments that hybridize with pthA, which is essential for the pathogenicity of wide-host-range X. citri group A strain 3213. DNA fragments that hybridized with pthA were cloned from a representative strain from all five groups. Each strain carried one and only one pthA homolog that functionally complemented a knockout mutation of pthA in 3213. Every complementing homolog was of identical size to pthA and carried 17.5 nearly identical, direct tandem repeats, including three new genes from narrow-host-range groups C (pthC), A(w) (pthAW), and A* (pthA*). Every noncomplementing paralog was of a different size; one of these was sequenced from group A* (pthA*-2) and was found to have an intact promoter and full-length reading frame but with 15.5 repeats. None of the complementing homologs nor any of the noncomplementing paralogs conferred avirulence to 3213 on grapefruit or suppressed avirulence of a group A* strain on grapefruit. A knockout mutation of pthC in a group C strain resulted in loss of pathogenicity on lime, but the strain was unaffected in ability to elicit an HR on grapefruit. This pthC- mutant was fully complemented by pthA, pthB, or pthC. Analysis of the predicted amino-acid sequences of all functional pthA homologs and nonfunctional paralogs indicated that the specific sequence of the 17th repeat may be essential for pathogenicity of X. citri on citrus.
Goldstein, Orly; Gana-Weisz, Mali; Nefussy, Beatrice; Vainer, Batel; Nayshool, Omri; Bar-Shira, Anat; Traynor, Bryan J; Drory, Vivian E; Orr-Urtreger, Avi
2018-04-01
We characterized the C9orf72 hexanucleotide repeat expansion (RE) mutation in amyotrophic lateral sclerosis (ALS) patients of 2 distinct origins, Ashkenazi and North Africa Jews (AJ, NAJ), its frequency, and genotype-phenotype correlations. In AJ, 80% of familial ALS (fALS) and 11% of sporadic ALS carried the RE, a total of 12.9% of all AJ-ALS compared to 0.3% in AJ controls (odds ratio [OR] = 44.3, p < 0.0001). In NAJ, 10% of fALS and 9% of sporadic ALS carried the RE, a total of 9.1% of all NAJ-ALS compared to 1% in controls (OR = 9.9, p = 0.0006). We identified a risk haplotype shared among all ALS patients, although an association with age at disease onset, fALS, and dementia were observed only in AJ. Variations were identified downstream the repeats. The risk haplotype and these polymorphisms were at high frequencies in alleles with 8 repeats or more, suggesting sequence instability. The different genotype-phenotype correlations and OR, together with the large range in age at onset, suggest that other modifiers and risk factors may affect penetrance and phenotype in ALS. Copyright © 2017 Elsevier Inc. All rights reserved.
Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export.
Shi, Kevin Y; Mori, Eiichiro; Nizami, Zehra F; Lin, Yi; Kato, Masato; Xiang, Siheng; Wu, Leeju C; Ding, Ming; Yu, Yonghao; Gall, Joseph G; McKnight, Steven L
2017-02-14
The toxic proline:arginine (PR n ) poly-dipeptide encoded by the (GGGGCC) n repeat expansion in the C9orf72 form of heritable amyotrophic lateral sclerosis (ALS) binds to the central channel of the nuclear pore and inhibits the movement of macromolecules into and out of the nucleus. The PR n poly-dipeptide binds to polymeric forms of the phenylalanine:glycine (FG) repeat domain, which is shared by several proteins of the nuclear pore complex, including those in the central channel. A method of chemical footprinting was used to characterize labile, cross-β polymers formed from the FG domain of the Nup54 protein. Mutations within the footprinted region of Nup54 polymers blocked both polymerization and binding by the PR n poly-dipeptide. The aliphatic alcohol 1,6-hexanediol melted FG domain polymers in vitro and reversed PR n -mediated enhancement of the nuclear pore permeability barrier. These data suggest that toxicity of the PR n poly-dipeptide results in part from its ability to lock the FG repeats of nuclear pore proteins in the polymerized state. Our study offers a mechanistic interpretation of PR n poly-dipeptide toxicity in the context of a prominent form of ALS.
Influence of the sex of the transmitting grandparent in congenital myotonic dystrophy.
López de Munain, A; Cobo, A M; Poza, J J; Navarrete, D; Martorell, L; Palau, F; Emparanza, J I; Baiget, M
1995-09-01
To analyse the influence of the sex of the transmitting grandparents on the occurrence of the congenital form of myotonic dystrophy (CDM), we have studied complete three generation pedigrees of 49 CDM cases, analysing: (1) the sex distribution in the grandparents' generation, and (2) the intergenerational amplification of the CTG repeat, measured in its absolute and relative values, between grandparents and the mothers of CDM patients and between the latter and their CDM children. The mean relative intergenerational increase in the 32 grandparent-mother pairs was significantly greater than in the 56 mother-CDM pairs (Mann-Whitney U test, p < 0.001). The mean expansion of the grandfathers (103 CTG repeats) was also significantly different from that seen in the grandmothers' group (154 CTG repeats) (Mann-Whitney U test, p < 0.01). This excess of non-manifesting males between the CDM grandparents' generation with a smaller CTG length than the grandmothers could suggest that the premutation has to be transmitted by a male to reach the degree of instability responsible for subsequent intergenerational CTG expansions without size constraints characteristic of the CDM range.
Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.
Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K
2017-04-01
For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Marco Masi; Antonio Evidente; Susan Meyer; Joshua Nicholson; Ashley Munoz
2014-01-01
The seed pathogen Pyrenophora semeniperda has demonstrated potential as a mycoherbicidal biocontrol for eliminating persistent seed banks of annual bromes on western North American rangelands. This pathogen exhibits variation in virulence that is related to mycelial growth rate, but direct laboratory tests of virulence on seeds often have low repeatability. We...
Govindaraju, Gayathri; Jabeena, C A; Sethumadhavan, Devadathan Valiyamangalath; Rajaram, Nivethika; Rajavelu, Arumugam
2017-10-01
In eukaryotes, cytosine methylation regulates diverse biological processes such as gene expression, development and maintenance of genomic integrity. However, cytosine methylation and its functions in pathogenic apicomplexan protozoans remain enigmatic. To address this, here we investigated the presence of cytosine methylation in the nucleic acids of the protozoan Plasmodium falciparum. Interestingly, P. falciparum has TRDMT1, a conserved homologue of DNA methyltransferase DNMT2. However, we found that TRDMT1 did not methylate DNA, in vitro. We demonstrate that TRDMT1 methylates cytosine in the endogenous aspartic acid tRNA of P. falciparum. Through RNA bisulfite sequencing, we mapped the position of 5-methyl cytosine in aspartic acid tRNA and found methylation only at C38 position. P. falciparum proteome has significantly higher aspartic acid content and a higher proportion of proteins with poly aspartic acid repeats than other apicomplexan pathogenic protozoans. Proteins with such repeats are functionally important, with significant roles in host-pathogen interactions. Therefore, TRDMT1 mediated C38 methylation of aspartic acid tRNA might play a critical role by translational regulation of important proteins and modulate the pathogenicity of the malarial parasite. Copyright © 2017 Elsevier B.V. All rights reserved.
Ngaki, Micheline N.; Wang, Bing; Sahu, Binod B.; Srivastava, Subodh K.; Farooqi, Mohammad S.; Kambakam, Sekhar; Swaminathan, Sivakumar
2016-01-01
Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction. PMID:27760122
Tracking the establishment of local endemic populations of an emergent enteric pathogen
Holt, Kathryn E.; Thieu Nga, Tran Vu; Thanh, Duy Pham; Vinh, Ha; Kim, Dong Wook; Vu Tra, My Phan; Campbell, James I.; Hoang, Nguyen Van Minh; Vinh, Nguyen Thanh; Minh, Pham Van; Thuy, Cao Thu; Nga, Tran Thi Thu; Thompson, Corinne; Dung, Tran Thi Ngoc; Nhu, Nguyen Thi Khanh; Vinh, Phat Voong; Tuyet, Pham Thi Ngoc; Phuc, Hoang Le; Lien, Nguyen Thi Nam; Phu, Bui Duc; Ai, Nguyen Thi Thuy; Tien, Nguyen Manh; Dong, Nguyen; Parry, Christopher M.; Hien, Tran Tinh; Farrar, Jeremy J.; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.; Baker, Stephen
2013-01-01
Shigella sonnei is a human-adapted pathogen that is emerging globally as the dominant agent of bacterial dysentery. To investigate local establishment, we sequenced the genomes of 263 Vietnamese S. sonnei isolated over 15 y. Our data show that S. sonnei was introduced into Vietnam in the 1980s and has undergone localized clonal expansion, punctuated by genomic fixation events through periodic selective sweeps. We uncover geographical spread, spatially restricted frontier populations, and convergent evolution through local gene pool sampling. This work provides a unique, high-resolution insight into the microevolution of a pioneering human pathogen during its establishment in a new host population. PMID:24082120
The insulin-like growth factor pathway is altered in Spinocerebellar ataxia type 1 and type 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatchel, Jennifer R.; Watase, Kei; Thaller, Christina
2008-01-29
Polyglutamine diseases are inherited neurodegenerative disorders caused by expansion of CAG trinucleotide repeats encoding a polyglutamine tract in the disease-causing proteins. There are nine of these disorders each having distinct features but also clinical and pathological similarities. In particular, spinocerebellar ataxia type 1 and 7 (SCA1 and SCA7) patients manifest cerebellar ataxia with corresponding degeneration of Purkinje cells. Given this common phenotype, we asked whether the two disorders share common molecular pathogenic events. To address this question we studied two genetically accurate mouse models of SCA1 and SCA7—Sca1154Q/2Q and Sca7266Q/5Q knock-in mice—that express the glutamine-expanded proteins from the respective endogenousmore » loci. We found common transcriptional changes in early symptomatic mice, with downregulation of Insulin-like growth factor binding protein 5 (Igfbp5) representing one of the most robust transcriptional changes that closely correlates with disease state. Interestingly, down-regulation of Igfbp5 occurred in granule neurons through a non-cell autonomous mechanism and was concomitant with activation of the Insulin-like growth factor I (Igf-I) pathway, and, in particular, the Igf-I receptor, expressed in part on Purkinje cells (PC). These data define a possible common pathogenic response in SCA1 and SCA7 and reveal the importance of neuron-neuron interactions in SCA1 and SCA7 pathogenesis. The sensitivity of Igfbp5 levels to disease state could render it and other components of its effector pathway useful as biomarkers in this class of diseases.« less
Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae
Erkes, Annett; Reschke, Maik; Boch, Jens
2017-01-01
Abstract Transcription activator-like effectors (TALEs) are secreted by plant–pathogenic Xanthomonas bacteria into plant cells where they act as transcriptional activators and, hence, are major drivers in reprogramming the plant for the benefit of the pathogen. TALEs possess a highly repetitive DNA-binding domain of typically 34 amino acid (AA) tandem repeats, where AA 12 and 13, termed repeat variable di-residue (RVD), determine target specificity. Different Xanthomonas strains possess different repertoires of TALEs. Here, we study the evolution of TALEs from the level of RVDs determining target specificity down to the level of DNA sequence with focus on rice-pathogenic Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains. We observe that codon pairs coding for individual RVDs are conserved to a similar degree as the flanking repeat sequence. We find strong indications that TALEs may evolve 1) by base substitutions in codon pairs coding for RVDs, 2) by recombination of N-terminal or C-terminal regions of existing TALEs, or 3) by deletion of individual TALE repeats, and we propose possible mechanisms. We find indications that the reassortment of TALE genes in clusters is mediated by an integron-like mechanism in Xoc. We finally study the effect of the presence/absence and evolutionary modifications of TALEs on transcriptional activation of putative target genes in rice, and find that even single RVD swaps may lead to considerable differences in activation. This correlation allowed a refined prediction of TALE targets, which is the crucial step to decipher their virulence activity. PMID:28637323
A Trial of Metformin in Individuals With Fragile X Syndrome
2018-06-05
Fragile X Syndrome; Fragile X Mental Retardation Syndrome; Mental Retardation, X Linked; Genetic Diseases, X-Linked; Trinucleotide Repeat Expansion; Fra(X) Syndrome; Intellectual Disability; FXS; Neurobehavioral Manifestations; Sex Chromosome Disorders
Saluto, Alessandro; Brussino, Alessandro; Tassone, Flora; Arduino, Carlo; Cagnoli, Claudia; Pappi, Patrizia; Hagerman, Paul; Migone, Nicola; Brusco, Alfredo
2005-01-01
Several diagnostic strategies have been applied to the detection of FMR1 gene repeat expansions in fragile X syndrome. Here, we report a novel polymerase chain reaction-based strategy using the Expand Long Template PCR System (Roche Diagnostics, Mannheim, Germany) and the osmolyte betaine. Repeat expansions up to ∼330 CGGs in males and up to at least ∼160 CGGs in carrier women could be easily visualized on ethidium bromide agarose gels. We also demonstrated that fluorescence analysis of polymerase chain reaction products was a reliable tool to verify the presence of premutation and full mutation alleles both in males and in females. This technique, primarily designed to detect premutation alleles, can be used as a routine first screen for expanded FMR1 alleles. PMID:16258159
Cognition and event-related potentials in adult-onset non-demented myotonic dystrophy type 1.
Tanaka, H; Arai, M; Harada, M; Hozumi, A; Hirata, K
2012-02-01
To clarify the cognitive and event-related potentials (ERPs) profiles of adult-onset genetically-proven non-demented myotonic dystrophy type 1 (DM1). Fourteen DM1 patients and matched 14 normal controls were enrolled. DM1 patients were compared with normal controls, using a variety of neuropsychological tests; an auditory "oddball" counting paradigm for the ERPs, and low-resolution brain electromagnetic tomography (LORETA). For patients, ERPs and neuropsychological parameters were correlated with CTG repeat size, duration of illness, grip strength, and arterial blood gas analysis. Frontal lobe dysfunction, prolonged N1 latency, and attenuated N2/P3 amplitudes were observed in DM1. Longer CTG repeat size was associated with fewer categories achieved on Wisconsin Card Sorting Test. Greater grip strength was associated with better scores on color-word "interference" of Stroop test. P3 latency was negatively correlated with PaO(2). LORETA revealed significant hypoactivities at the orbitofrontal and medial temporal lobe, cingulate, and insula. There was no correlation between ERPs and CTG expansion. Adult-onset non-demented DM1 presented frontal lobe dysfunction. Absence of correlations between CTG repeat size and objective ERP parameters suggested CTG expansion in lymphocytes does not directly contribute to cognitive dysfunction. CTG expansion in lymphocytes does not directly contribute to cognitive dysfunction of adult-onset non-demented DM1. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Whole genome tandem repeat polymorphisms were evaluated between two closely related Xylella fastidiosa strains, M23 and Temecula1, both cause almond leaf scorch disease (ALSD) and grape Pierce’s disease (PD) in California. Strain M23 was isolated from almond and the genome was sequenced in this stu...
Evidence suggesting possible SCA1 gene involvement in schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diehl, S.R.; Wange, S.; Sun, C.
Several findings suggest a possible role for the SCA1 gene on chromosome 6p in some cases of schizophrenia. First, linkage analyses in Irish pedigrees provided LOD scores up to 3.0 for one model tested using microsatellites closely linked to SCA1. Reanalysis of these data using affected sibpair methods yielded a significant result (p = 0.01) for one marker. An attempt to replicate this linkage finding was made using 44 NIMH families (206 individuals, 80 affected) and 12 Utah families (120 individuals, 49 affected). LOD scores were negative in these new families, even allowing for heterogeneity, as were results using affectedmore » sibpair methods. However, one Utah family provided a LOD score of 1.3. We also screened the SCA1 trinucleotide repeat to search for expansions characteristic of this disorder in these families and in 38 additional unrelated schizophrenics. We found 1 schizophrenic with 41 repeats, which is substantially larger than the maximum size of 36 repeats observed in previous studies of several hundred controls. We are now assessing whether the distribution of SCA1 repeats differs significantly in schizophrenia versus controls. Recent reports suggest possible anticipation in schizophrenia (also characteristic of SCA1) and a few cases of psychiatric symptoms suggesting schizophrenia have been observed in the highly related disorder DRPLA (SCA2), which is also based on trinucleotide repeat expansion. These findings suggest that further investigations of this gene and chromosome region may be a priority.« less
Doerfler, Phillip A.; Todd, Adrian G.; Clément, Nathalie; Falk, Darin J.; Nayak, Sushrusha; Herzog, Roland W.; Byrne, Barry J.
2016-01-01
Pompe disease is a progressive neuromuscular disorder caused by lysosomal accumulation of glycogen from a deficiency in acid alpha-glucosidase (GAA). Replacement of the missing enzyme is available by repeated protein infusions; however, efficacy is limited by immune response and inability to restore enzymatic function in the central nervous system. An alternative therapeutic option is adeno-associated virus (AAV)-mediated gene therapy, which results in widespread gene transfer and prolonged transgene expression. Both enzyme replacement therapy (ERT) and gene therapy can elicit anti-GAA immune reactions that dampen their effectiveness and pose life-threatening risks to patient safety. To modulate the immune responses related to gene therapy, we show that a human codon-optimized GAA (coGAA) driven by a liver-specific promoter (LSP) using AAV9 is capable of promoting immune tolerance in a Gaa−/− mouse model. Copackaging AAV9-LSP-coGAA with the tissue-restricted desmin promoter (AAV9-DES-coGAA) demonstrates the necessary cell autonomous expression in cardiac muscle, skeletal muscle, peripheral nerve, and the spinal cord. Simultaneous high-level expression in liver led to the expansion of GAA-specific regulatory T-cells (Tregs) and induction of immune tolerance. Transfer of Tregs into naïve recipients prevented pathogenic allergic reactions after repeated ERT challenges. Copackaged AAV9 also attenuated preexisting humoral and cellular immune responses, which enhanced the biochemical correction. Our data present a therapeutic design in which simultaneous administration of two copackaged AAV constructs may provide therapeutic benefit and resolve immune reactions in the treatment of multisystem disorders. PMID:26603344
Fuller, Trevon; Bensch, Staffan; Müller, Inge; Novembre, John; Pérez-Tris, Javier; Ricklefs, Robert E; Smith, Thomas B; Waldenström, Jonas
2012-03-01
Pathogens that are maintained by wild birds occasionally jump to human hosts, causing considerable loss of life and disruption to global commerce. Preliminary evidence suggests that climate change and human movements and commerce may have played a role in recent range expansions of avian pathogens. Since the magnitude of climate change in the coming decades is predicted to exceed climatic changes in the recent past, there is an urgent need to determine the extent to which climate change may drive the spread of disease by avian migrants. In this review, we recommend actions intended to mitigate the impact of emergent pathogens of migratory birds on biodiversity and public health. Increased surveillance that builds upon existing bird banding networks is required to conclusively establish a link between climate and avian pathogens and to prevent pathogens with migratory bird reservoirs from spilling over to humans.
Miyazaki, Yumi; Tsumiyama, Ken; Yamane, Takashi; Ito, Mitsuhiro; Shiozawa, Shunichi
2013-04-18
We have developed a systems biology concept to explain the origin of systemic autoimmunity. From our studies of systemic lupus erythematosus (SLE) we have concluded that this disease is the inevitable consequence of over-stimulating the host's immune system by repeated exposure to antigen to levels that surpass a critical threshold, which we term the system's "self-organized criticality". We observed that overstimulation of CD4 T cells in mice led to the development of autoantibody-inducing CD4 T cells (aiCD4 T) capable of generating various autoantibodies and pathological lesions identical to those observed in SLE. We show here that this is accompanied by the significant expansion of a novel population of effector T cells characterized by expression of programmed death-1 (PD-1)-positive, CD27(low), CD127(low), CCR7(low) and CD44(high)CD62L(low) markers, as well as increased production of IL-2 and IL-6. In addition, repeated immunization caused the expansion of CD8 T cells into fully-matured cytotoxic T lymphocytes (CTL) that express Ly6C(high)CD122(high) effector and memory markers. Thus, overstimulation with antigen leads to the expansion of a novel effector CD4 T cell population that expresses an unusual memory marker, PD-1, and that may contribute to the pathogenesis of SLE.
DeChaine, Eric G; Martini, Andrew P
2004-01-01
Climate oscillations of the Quaternary drove the repeated expansion and contraction of ecosystems. Alpine organisms were probably isolated in sky island refugia during warm interglacials, such as now, and expanded their range by migrating down-slope during glacial periods. We used population genetic and phylogenetic approaches to infer how paleoclimatic events influenced the distribution of genetic variation in the predominantly alpine butterfly Parnassius smintheus. We sequenced a 789 bp region of cytochrome oxidase I for 385 individuals from 20 locations throughout the Rocky Mountains, ranging from southern Colorado to northern Montana. Analyses revealed at lease two centers of diversity in the northern and southern Rocky Mountains and strong population structure. Nested clade analysis suggested that the species experienced repeated cycles of population expansion and fragmentation. The estimated ages of these events, assuming a molecular clock, corresponded with paleoclimatic data on habitat expansion and contraction over the past 400,000 years. We propose that alpine butterflies persisted in an archipelago of isolated sky islands during interglacials and that populations expanded and became more connected during cold glacial periods. An archipelago model implies that the effects of genetic drift and selection varied among populations, depending on their latitude, area, and local environment. Alpine organisms are sensitive indicators of climate change and their history can be used to predict how high-elevation ecosystems might respond to further climate warming.
Cooper-Knock, Johnathan; Robins, Henry; Niedermoser, Isabell; Wyles, Matthew; Heath, Paul R; Higginbottom, Adrian; Walsh, Theresa; Kazoka, Mbombe; Ince, Paul G; Hautbergue, Guillaume M; McDermott, Christopher J; Kirby, Janine; Shaw, Pamela J
2017-01-01
Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72 . We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes ( n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72 . We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies ( p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression ( t -test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course ( t -test, p = 0.025). Our data are consistent with an oligogenic model of ALS. We provide evidence for a number of entirely novel genetic variants of ALS caused by mutations in RNA-binding proteins. Moreover we show that these mutations act synergistically with each other and with C9ORF72 expansions to modify the clinical phenotype of ALS. A key finding is that this synergy is present only between functionally interacting variants. This work has significant implications for ALS therapy development.
NASA Astrophysics Data System (ADS)
Walsh, Patrick S.; Blodgett, Karl N.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.
Glutamine is vitally important to a class of neurodegenerative diseases called poly-glutamine (poly-Q) repeat diseases such as Huntington's Disease (HD). Recent studies have revealed a pathogenic pathway that proceeds through misfolding of poly-Q regions into characteristic β-turn/ β-hairpin structures that are highly correlated with toxicity. The inherent conformational preferences of small glutamine containing peptides (Ac-Q-Q-NHBn and Ac-A-Q-NHBn) were studied using conformation-specific IR and UV spectroscopies, with the goal of probing the delicate interplay between three competitive hydrogen bonding motifs: backbone-backbone, sidechain-backbone, and sidechain-sidechain hydrogen bonds. Laser desorption, coupled with a supersonic expansion, was used to introduce the non-thermally labile sample into the gas-phase. Resonant ion-dip infrared (RIDIR) spectroscopy is a powerful tool for recording the vibrational spectra of single conformational isomers and was used here to reveal the innate structural preferences of the glutamine containing peptides. Experimental results are compared against density functional calculations to arrive at firm conformational assignments. Our results demonstrate a striking preference for β-turn formation in the non-polar environment of the gas-phase. Previous Affiliation: Purdue University, Department of Chemistry.
Carpenter, Stephen M; Nunes-Alves, Cláudio; Booty, Matthew G; Way, Sing Sing; Behar, Samuel M
2016-01-01
T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.
Carpenter, Stephen M.; Nunes-Alves, Cláudio; Booty, Matthew G.; Way, Sing Sing; Behar, Samuel M.
2016-01-01
T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection. PMID:26745507
Target discovery and antifungal intervention via chemical biology approaches
USDA-ARS?s Scientific Manuscript database
Controlling infective fungi, especially pathogens that produce toxic secondary metabolites, is problematic as effective antimycotic agents are very limited. Moreover, the expansion of fungal resistance to commercial drugs is a global human health issue. Conventional antimycotic agents also cause ser...
Dryland, Philippa A.; Doherty, Elaine; Love, Jennifer M.; Love, Donald R.
2013-01-01
Myotonic dystrophy type 1 is an autosomal dominant neuromuscular disorder that is caused by the expansion of a CTG trinucleotide repeat in the DMPK gene. The confirmation of a clinical diagnosis of DM-1 usually involves PCR amplification of the CTG repeat-containing region and subsequent sizing of the amplification products in order to deduce the number of CTG repeats. In the case of repeat hyperexpansions, Southern blotting is also used; however, the latter has largely been superseded by triplet repeat-primed PCR (TP-PCR), which does not yield a CTG repeat number but nevertheless provides a means of stratifying patients regarding their disease severity. We report here a combination of forward and reverse TP-PCR primers that allows for the simple and effective scoring of both the size of smaller alleles and the presence or absence of expanded repeat sequences. In addition, the CTG repeat-containing TP-PCR forward primer can target both the DM-1 and Huntington disease genes, thereby streamlining the work flow for confirmation of clinical diagnoses in a diagnostic laboratory. PMID:26317000
Genetics Home Reference: fragile X-associated tremor/ataxia syndrome
... found in clumps of proteins and mRNA (intranuclear inclusions) in brain and nerve cells in people with ... their functions, although the effect of the intranuclear inclusions is unclear. In addition, the repeat expansion makes ...
1979-06-01
expansion of terrestrial system meets all planned needs i Department of Housing Under review and Urban Development Department of Interior No baseline...be a suitable addition to table 1.1. SI The cost and available federal support will be important to P the states and will have an effect on our total...Repeater ə Jsystems to expand the system coverage. The attached map shows the existing program and future expansion . II, TECHNICAL DESCRIPTION - i |A
Valera Yepes, Rocío; Virgili Casas, Maria; Povedano Panades, Monica; Guerrero Gual, Mireia; Villabona Artero, Carles
2015-05-01
Kennedy's disease, also known as bulbospinal muscular atrophy, is a rare, X-linked recessive neurodegenerative disorder affecting adult males. It is caused by expansion of an unstable cytosine-adenine-guanine tandem-repeat in exon 1 of the androgen-receptor gene on chromosome Xq11-12, and is characterized by spinal motor neuron progressive degeneration. Endocrinologically, these patients often have the features of hypogonadism associated to the androgen insensitivity syndrome, particularly its partial forms. We report 4 cases with the typical neurological presentation, consisting of slowly progressing generalized muscle weakness with atrophy and bulbar muscle involvement; these patients also had several endocrine manifestations; the most common non-neurological manifestation was gynecomastia. In all cases reported, molecular analysis showed an abnormal cytosine-adenine-guanine triplet repeat expansion in the androgen receptor gene. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.
Precise small molecule recognition of a toxic CUG RNA repeat expansion
Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D
2017-01-01
Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)exp) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp. In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)exp in its natural context. PMID:27941760
Precise small-molecule recognition of a toxic CUG RNA repeat expansion.
Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D
2017-02-01
Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG) exp ) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG) exp . In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG) exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG) exp in its natural context.
Population-expression models of immune response
NASA Astrophysics Data System (ADS)
Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya
2013-06-01
The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.
Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas
2016-01-01
Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between RipTAL repeats allows for a reconstruction of repeat array biogenesis, for example through slipped strand mispairing or gene conversion. Using these studies we show how RipTALs of broad host range strains evolved convergently toward a shared target sequence. Finally, we discuss the differences between TALE-likes of plant pathogens in the context of disease ecology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuomo, Christina A.; Guldener, Ulrich; Xu, Jin Rong
2007-09-07
We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher ratesmore » of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.« less
Izumi, Yuishin; Maruyama, Hirofumi; Oda, Masaya; Morino, Hiroyuki; Okada, Takayuki; Ito, Hidefumi; Sasaki, Iwao; Tanaka, Hiroyasu; Komure, Osamu; Udaka, Fukashi; Nakamura, Shigenobu; Kawakami, Hideshi
2003-01-01
We analyzed the SCA8 CTA/CTG repeat in a large group of Japanese subjects. The frequency of large alleles (85–399 CTA/CTG repeats) was 1.9% in spinocerebellar ataxia (SCA), 0.4% in Parkinson disease, 0.3% in Alzheimer disease, and 0% in a healthy control group; the frequency was significantly higher in the group with SCA than in the control group. Homozygotes for large alleles were observed only in the group with SCA. In five patients with SCA from two families, a large SCA8 CTA/CTG repeat and a large SCA6 CAG repeat coexisted. Age at onset was correlated with SCA8 repeats rather than SCA6 repeats in these five patients. In one of these families, at least one patient showed only a large SCA8 CTA/CTG repeat allele, with no large SCA6 CAG repeat allele. We speculate that the presence of a large SCA8 CTA/CTG repeat allele influences the function of channels such as α1A-voltage–dependent calcium channel through changing or aberrant splicing, resulting in the development of cerebellar ataxia, especially in homozygous patients. PMID:12545428
Izumi, Yuishin; Maruyama, Hirofumi; Oda, Masaya; Morino, Hiroyuki; Okada, Takayuki; Ito, Hidefumi; Sasaki, Iwao; Tanaka, Hiroyasu; Komure, Osamu; Udaka, Fukashi; Nakamura, Shigenobu; Kawakami, Hideshi
2003-03-01
We analyzed the SCA8 CTA/CTG repeat in a large group of Japanese subjects. The frequency of large alleles (85-399 CTA/CTG repeats) was 1.9% in spinocerebellar ataxia (SCA), 0.4% in Parkinson disease, 0.3% in Alzheimer disease, and 0% in a healthy control group; the frequency was significantly higher in the group with SCA than in the control group. Homozygotes for large alleles were observed only in the group with SCA. In five patients with SCA from two families, a large SCA8 CTA/CTG repeat and a large SCA6 CAG repeat coexisted. Age at onset was correlated with SCA8 repeats rather than SCA6 repeats in these five patients. In one of these families, at least one patient showed only a large SCA8 CTA/CTG repeat allele, with no large SCA6 CAG repeat allele. We speculate that the presence of a large SCA8 CTA/CTG repeat allele influences the function of channels such as alpha(1A)-voltage-dependent calcium channel through changing or aberrant splicing, resulting in the development of cerebellar ataxia, especially in homozygous patients.
Distinct C9orf72-Associated Dipeptide Repeat Structures Correlate with Neuronal Toxicity
Krans, Amy; Sawaya, Michael R.; Paulson, Henry L.; Todd, Peter K.; Barmada, Sami J.; Ivanova, Magdalena I.
2016-01-01
Hexanucleotide repeat expansions in C9orf72 are the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansions elicit toxicity in part through repeat-associated non-AUG (RAN) translation of the intronic (GGGGCC)n sequence into dipeptide repeat-containing proteins (DPRs). Little is known, however, about the structural characteristics and aggregation propensities of the dipeptide units comprising DPRs. To address this question, we synthesized dipeptide units corresponding to the three sense-strand RAN translation products, analyzed their structures by circular dichroism, electron microscopy and dye binding assays, and assessed their relative toxicity when applied to primary cortical neurons. Short, glycine-arginine (GR)3 dipeptides formed spherical aggregates and selectively reduced neuronal survival compared to glycine-alanine (GA)3 and glycine-proline (GP)3 dipeptides. Doubling peptide length had little effect on the structure of GR or GP peptides, but (GA)6 peptides formed β-sheet rich aggregates that bound thioflavin T and Congo red yet lacked the typical fibrillar morphology of amyloids. Aging of (GA)6 dipeptides increased their β-sheet content and enhanced their toxicity when applied to neurons. We also observed that the relative toxicity of each tested dipeptide was proportional to peptide internalization. Our results demonstrate that different C9orf72-related dipeptides exhibit distinct structural properties that correlate with their relative toxicity. PMID:27776165
Chang, Yu-Jen; Jeng, U-Ser; Chiang, Ya-Ling; Hwang, Ing-Shouh; Chen, Yun-Ru
2016-03-04
Hexanucleotide expansions, GGGGCC, in the non-coding regions of the C9orf72 gene were found in major frontotemporal lobar dementia and amyotrophic lateral sclerosis patients (C9FTD/ALS). In addition to possible RNA toxicity, several dipeptide repeats (DPRs) are translated through repeat-associated non-ATG-initiated translation. The DPRs, including poly(GA), poly(GR), poly(GP), poly(PR), and poly(PA), were found in the brains and spinal cords of C9FTD/ALS patients. Among the DPRs, poly(GA) is highly susceptible to form cytoplasmic inclusions, which is a characteristic of C9FTD/ALS. To elucidate DPR aggregation, we used synthetic (GA)15 DPR as a model system to examine the aggregation and structural properties in vitro. We found that (GA)15 with 15 repeats fibrillates rapidly and ultimately forms flat, ribbon-type fibrils evidenced by transmission electron microscopy and atomic force microscopy. The fibrils are capable of amyloid dye binding and contain a characteristic cross-β sheet structure, as revealed by x-ray scattering. Furthermore, using neuroblastoma cells, we demonstrated the neurotoxicity and cell-to-cell transmission property of (GA)15 DPR. Overall, our results show the structural and toxicity properties of GA DPR to facilitate future DPR-related therapeutic development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kovalenko, Marina; Milnerwood, Austen; Giordano, James; St. Claire, Jason; Guide, Jolene R.; Stromberg, Mary; Gillis, Tammy; Sapp, Ellen; DiFiglia, Marian; MacDonald, Marcy E.; Carroll, Jeffrey B.; Lee, Jong-Min; Tappan, Susan; Raymond, Lynn; Wheeler, Vanessa C.
2018-01-01
Background: Successful disease-modifying therapy for Huntington’s disease (HD) will require therapeutic intervention early in the pathogenic process. Achieving this goal requires identifying phenotypes that are proximal to the HTT CAG repeat expansion. Objective: To use Htt CAG knock-in mice, precise genetic replicas of the HTT mutation in patients, as models to study proximal disease events. Methods: Using cohorts of B6J.HttQ111/+ mice from 2 to 18 months of age, we analyzed pathological markers, including immunohistochemistry, brain regional volumes and cortical thickness, CAG instability, electron microscopy of striatal synapses, and acute slice electrophysiology to record glutamatergic transmission at striatal synapses. We also incorporated a diet perturbation paradigm for some of these analyses. Results: B6J.HttQ111/+ mice did not exhibit significant neurodegeneration or gliosis but revealed decreased striatal DARPP-32 as well as subtle but regional-specific changes in brain volumes and cortical thickness that parallel those in HD patients. Ultrastructural analyses of the striatum showed reduced synapse density, increased postsynaptic density thickness and increased synaptic cleft width. Acute slice electrophysiology showed alterations in spontaneous AMPA receptor-mediated postsynaptic currents, evoked NMDA receptor-mediated excitatory postsynaptic currents, and elevated extrasynaptic NMDA currents. Diet influenced cortical thickness, but did not impact somatic CAG expansion, nor did it show any significant interaction with genotype on immunohistochemical, brain volume or cortical thickness measures. Conclusions: These data show that a single HttQ111 allele is sufficient to elicit brain region-specific morphological changes and early neuronal dysfunction, highlighting an insidious disease process already apparent in the first few months of life. PMID:29480209
Castro, Hoanna; Kul, Emre; Buijsen, Ronald A M; Severijnen, Lies-Anne W F M; Willemsen, Rob; Hukema, Renate K; Stork, Oliver; Santos, Mónica
2017-06-01
A CGG-repeat expansion in the premutation range in the Fragile X mental retardation 1 gene (FMR1) has been identified as the genetic cause of Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative disorder that manifests with action tremor, gait ataxia and cognitive impairments. In this study, we used a bigenic mouse model, in which expression of a 90CGG premutation tract is activated in neural cells upon doxycycline administration-P90CGG mouse model. We, here, demonstrate the behavioural manifestation of clinically relevant features of FXTAS patients and premutation carrier individuals in this inducible mouse model. P90CGG mice display heightened anxiety, deficits in motor coordination and impaired gait and represent the first FXTAS model that exhibits an ataxia phenotype as observed in patients. The behavioural phenotype is accompanied by the formation of ubiquitin/FMRpolyglycine-positive intranuclear inclusions, as another hallmark of FXTAS, in the cerebellum, hippocampus and amygdala. Strikingly, upon cessation of transgene induction the anxiety phenotype of mice recovers along with a reduction of intranuclear inclusions in dentate gyrus and amygdala. In contrast, motor function deteriorates further and no reduction in intranuclear inclusions can be observed in the cerebellum. Our data thus demonstrate that expression of a 90CGG premutation expansion outside of the FMR1 context is sufficient to evoke an FXTAS-like behavioural phenotype. Brain region-specific neuropathology and (partial) behavioural reversibility make the inducible P90CGG a valuable mouse model for testing pathogenic mechanisms and therapeutic intervention methods. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Splice isoform-specific suppression of the CaV2.1 variant underlying Spinocerebellar ataxia type 6
Tsou, Wei-Ling; Soong, Bing-Wen; Paulson, Henry L.; Rodríguez-Lebrón, Edgardo
2011-01-01
Spinocerebellar ataxia type 6 (SCA6) is an inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the CaV2.1 voltage-gated calcium channel subunit (CACNA1A). There is currently no treatment for this debilitating disorder and thus a pressing need to develop preventative therapies. RNA interference (RNAi) has proven effective at halting disease progression in several models of spinocerebellar ataxia (SCA), including SCA types 1 and 3. However, in SCA6 and other dominantly inherited neurodegenerative disorders, RNAi-based strategies that selectively suppress expression of mutant alleles may be required. Using a CaV2.1 mini-gene reporter system, we found that pathogenic CAG expansions in CaV2.1 enhance splicing activity at the 3′end of the transcript, leading to a CAG repeat length-dependent increase in the levels of a polyQ-encoding CaV2.1 mRNA splice isoform and the resultant disease protein. Taking advantage of this molecular phenomenon, we developed a novel splice isoform-specific (SIS)-RNAi strategy that selectively targets the polyQ-encoding CaV2.1 splice variant. Selective suppression of transiently expressed and endogenous polyQ-encoding CaV2.1 splice variants was achieved in a variety of cell-based models including a human neuronal cell line, using a new artificial miRNA-like delivery system. Moreover, the efficacy of gene silencing correlated with effective intracellular recognition and processing of SIS-RNAi miRNA mimics. These results lend support to the preclinical development of SIS-RNAi as a potential therapy for SCA6 and other dominantly inherited diseases. PMID:21550405
Splice isoform-specific suppression of the Cav2.1 variant underlying spinocerebellar ataxia type 6.
Tsou, Wei-Ling; Soong, Bing-Wen; Paulson, Henry L; Rodríguez-Lebrón, Edgardo
2011-09-01
Spinocerebellar ataxia type 6 (SCA6) is an inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the Ca(V)2.1 voltage-gated calcium channel subunit (CACNA1A). There is currently no treatment for this debilitating disorder and thus a pressing need to develop preventative therapies. RNA interference (RNAi) has proven effective at halting disease progression in several models of spinocerebellar ataxia (SCA), including SCA types 1 and 3. However, in SCA6 and other dominantly inherited neurodegenerative disorders, RNAi-based strategies that selectively suppress expression of mutant alleles may be required. Using a Ca(V)2.1 mini-gene reporter system, we found that pathogenic CAG expansions in Ca(V)2.1 enhance splicing activity at the 3'end of the transcript, leading to a CAG repeat length-dependent increase in the levels of a polyQ-encoding Ca(V)2.1 mRNA splice isoform and the resultant disease protein. Taking advantage of this molecular phenomenon, we developed a novel splice isoform-specific (SIS)-RNAi strategy that selectively targets the polyQ-encoding Ca(V)2.1 splice variant. Selective suppression of transiently expressed and endogenous polyQ-encoding Ca(V)2.1 splice variants was achieved in a variety of cell-based models including a human neuronal cell line, using a new artificial miRNA-like delivery system. Moreover, the efficacy of gene silencing correlated with effective intracellular recognition and processing of SIS-RNAi miRNA mimics. These results lend support to the preclinical development of SIS-RNAi as a potential therapy for SCA6 and other dominantly inherited diseases. Copyright © 2011 Elsevier Inc. All rights reserved.
Liu, Peng; Stajich, Jason E
2015-04-01
Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis responsible for worldwide decline in amphibian populations. Previous analysis of the Bd genome revealed a unique expansion of the carbohydrate-binding module family 18 (CBM18) predicted to be a sub-class of chitin recognition domains. CBM expansions have been linked to the evolution of pathogenicity in a variety of fungal species by protecting the fungus from the host. Based on phylogenetic analysis and presence of additional protein domains, the gene family can be classified into 3 classes: Tyrosinase-, Deacetylase-, and Lectin-like. Examination of the mRNA expression levels from sporangia and zoospores of nine of the cbm18 genes found that the Lectin-like genes had the highest expression while the Tyrosinase-like genes showed little expression, especially in zoospores. Heterologous expression of GFP-tagged copies of four CBM18 genes in Saccharomyces cerevisiae demonstrated that two copies containing secretion signal peptides are trafficked to the cell boundary. The Lectin-like genes cbm18-ll1 and cbm18-ll2 co-localized with the chitinous cell boundaries visualized by staining with calcofluor white. In vitro assays of the full length and single domain copies from CBM18-LL1 demonstrated chitin binding and no binding to cellulose or xylan. Expressed CBM18 domain proteins were demonstrated to protect the fungus, Trichoderma reeseii, in vitro against hydrolysis from exogenously added chitinase, likely by binding and limiting exposure of fungal chitin. These results demonstrate that cbm18 genes can play a role in fungal defense and expansion of their copy number may be an important pathogenicity factor of this emerging infectious disease of amphibians. Copyright © 2015 Elsevier Inc. All rights reserved.
Tsou, Wei-Ling; Qiblawi, Sultan H.; Hosking, Ryan R.; Gomez, Christopher M.
2016-01-01
ABSTRACT Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease that results from abnormal expansion of a polyglutamine (polyQ) repeat. SCA6 is caused by CAG triplet repeat expansion in the gene CACNA1A, resulting in a polyQ tract of 19-33 in patients. CACNA1A, a bicistronic gene, encodes the α1A calcium channel subunit and the transcription factor, α1ACT. PolyQ expansion in α1ACT causes degeneration in mice. We recently described the first Drosophila models of SCA6 that express α1ACT with a normal (11Q) or hyper-expanded (70Q) polyQ. Here, we report additional α1ACT transgenic flies, which express full-length α1ACT with a 33Q repeat. We show that α1ACT33Q is toxic in Drosophila, but less so than the 70Q version. When expressed everywhere, α1ACT33Q-expressing adults die earlier than flies expressing the normal allele. α1ACT33Q causes retinal degeneration and leads to aggregated species in an age-dependent manner, but at a slower pace than the 70Q counterpart. According to western blots, α1ACT33Q localizes less readily in the nucleus than α1ACT70Q, providing clues into the importance of polyQ tract length on α1ACT localization and its site of toxicity. We expect that these new lines will be highly valuable for future work on SCA6. PMID:27979829
The C9orf72 repeat expansion disrupts nucleocytoplasmic transport.
Zhang, Ke; Donnelly, Christopher J; Haeusler, Aaron R; Grima, Jonathan C; Machamer, James B; Steinwald, Peter; Daley, Elizabeth L; Miller, Sean J; Cunningham, Kathleen M; Vidensky, Svetlana; Gupta, Saksham; Thomas, Michael A; Hong, Ingie; Chiu, Shu-Ling; Huganir, Richard L; Ostrow, Lyle W; Matunis, Michael J; Wang, Jiou; Sattler, Rita; Lloyd, Thomas E; Rothstein, Jeffrey D
2015-09-03
The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.
Gendron, Tania F; Chew, Jeannie; Stankowski, Jeannette N; Hayes, Lindsey R; Zhang, Yong-Jie; Prudencio, Mercedes; Carlomagno, Yari; Daughrity, Lillian M; Jansen-West, Karen; Perkerson, Emilie A; O'Raw, Aliesha; Cook, Casey; Pregent, Luc; Belzil, Veronique; van Blitterswijk, Marka; Tabassian, Lilia J; Lee, Chris W; Yue, Mei; Tong, Jimei; Song, Yuping; Castanedes-Casey, Monica; Rousseau, Linda; Phillips, Virginia; Dickson, Dennis W; Rademakers, Rosa; Fryer, John D; Rush, Beth K; Pedraza, Otto; Caputo, Ana M; Desaro, Pamela; Palmucci, Carla; Robertson, Amelia; Heckman, Michael G; Diehl, Nancy N; Wiggs, Edythe; Tierney, Michael; Braun, Laura; Farren, Jennifer; Lacomis, David; Ladha, Shafeeq; Fournier, Christina N; McCluskey, Leo F; Elman, Lauren B; Toledo, Jon B; McBride, Jennifer D; Tiloca, Cinzia; Morelli, Claudia; Poletti, Barbara; Solca, Federica; Prelle, Alessandro; Wuu, Joanne; Jockel-Balsarotti, Jennifer; Rigo, Frank; Ambrose, Christine; Datta, Abhishek; Yang, Weixing; Raitcheva, Denitza; Antognetti, Giovanna; McCampbell, Alexander; Van Swieten, John C; Miller, Bruce L; Boxer, Adam L; Brown, Robert H; Bowser, Robert; Miller, Timothy M; Trojanowski, John Q; Grossman, Murray; Berry, James D; Hu, William T; Ratti, Antonia; Traynor, Bryan J; Disney, Matthew D; Benatar, Michael; Silani, Vincenzo; Glass, Jonathan D; Floeter, Mary Kay; Rothstein, Jeffrey D; Boylan, Kevin B; Petrucelli, Leonard
2017-03-29
There is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating motor neuron disease. However, discovery of a G 4 C 2 repeat expansion in the C9ORF72 gene as the most common genetic cause of ALS has opened up new avenues for therapeutic intervention for this form of ALS. G 4 C 2 repeat expansion RNAs and proteins of repeating dipeptides synthesized from these transcripts are believed to play a key role in C9ORF72 -associated ALS (c9ALS). Therapeutics that target G 4 C 2 RNA, such as antisense oligonucleotides (ASOs) and small molecules, are thus being actively investigated. A limitation in moving such treatments from bench to bedside is a lack of pharmacodynamic markers for use in clinical trials. We explored whether poly(GP) proteins translated from G 4 C 2 RNA could serve such a purpose. Poly(GP) proteins were detected in cerebrospinal fluid (CSF) and in peripheral blood mononuclear cells from c9ALS patients and, notably, from asymptomatic C9ORF72 mutation carriers. Moreover, CSF poly(GP) proteins remained relatively constant over time, boding well for their use in gauging biochemical responses to potential treatments. Treating c9ALS patient cells or a mouse model of c9ALS with ASOs that target G 4 C 2 RNA resulted in decreased intracellular and extracellular poly(GP) proteins. This decrease paralleled reductions in G 4 C 2 RNA and downstream G 4 C 2 RNA-mediated events. These findings indicate that tracking poly(GP) proteins in CSF could provide a means to assess target engagement of G 4 C 2 RNA-based therapies in symptomatic C9ORF72 repeat expansion carriers and presymptomatic individuals who are expected to benefit from early therapeutic intervention. Copyright © 2017, American Association for the Advancement of Science.
Gendron, Tania F.; Chew, Jeannie; Stankowski, Jeannette N.; Hayes, Lindsey R.; Zhang, Yong-Jie; Prudencio, Mercedes; Carlomagno, Yari; Daughrity, Lillian M.; Jansen-West, Karen; Perkerson, Emilie A.; O’Raw, Aliesha; Cook, Casey; Pregent, Luc; Belzil, Veronique; van Blitterswijk, Marka; Tabassian, Lilia J.; Lee, Chris W.; Yue, Mei; Tong, Jimei; Song, Yuping; Castanedes-Casey, Monica; Rousseau, Linda; Phillips, Virginia; Dickson, Dennis W.; Rademakers, Rosa; Fryer, John D.; Rush, Beth K.; Pedraza, Otto; Caputo, Ana M.; Desaro, Pamela; Palmucci, Carla; Robertson, Amelia; Heckman, Michael G.; Diehl, Nancy N.; Wiggs, Edythe; Tierney, Michael; Braun, Laura; Farren, Jennifer; Lacomis, David; Ladha, Shafeeq; Fournier, Christina N.; McCluskey, Leo F.; Elman, Lauren B.; Toledo, Jon B.; McBride, Jennifer D.; Tiloca, Cinzia; Morelli, Claudia; Poletti, Barbara; Solca, Federica; Prelle, Alessandro; Wuu, Joanne; Jockel-Balsarotti1, Jennifer; Rigo, Frank; Ambrose, Christine; Datta, Abhishek; Yang, Weixing; Raitcheva, Denitza; Antognetti, Giovanna; McCampbell, Alexander; Van Swieten, John C.; Miller, Bruce L.; Boxer, Adam L.; Brown, Robert H.; Bowser, Robert; Miller, Timothy M.; Trojanowski, John Q.; Grossman, Murray; Berry, James D.; Hu, William T.; Ratti, Antonia; Traynor, Bryan J.; Disney, Matthew D.; Benatar, Michael; Silani, Vincenzo; Glass, Jonathan D.; Floeter, Mary Kay; Rothstein, Jeffrey D.; Boylan, Kevin B.; Petrucelli, Leonard
2017-01-01
There is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating motor neuron disease. However, discovery of a G4C2 repeat expansion in the C9ORF72 gene as the most common genetic cause of ALS has opened up new avenues for therapeutic intervention for this form of ALS. G4C2 repeat expansion RNAs and proteins of repeating dipeptides synthesized from these transcripts are believed to play a key role in C9ORF72-associated ALS (c9ALS). Therapeutics that target G4C2 RNA, such as antisense oligonucleotides (ASOs) and small molecules, are thus being actively investigated. A limitation in moving such treatments from bench to bedside is a lack of pharmacodynamic markers for use in clinical trials. We explored whether poly(GP) proteins translated from G4C2 RNA could serve such a purpose. Poly(GP) proteins were detected in cerebrospinal fluid (CSF) and in peripheral blood mononuclear cells from c9ALS patients and, notably, from asymptomatic C9ORF72 mutation carriers. Moreover, CSF poly(GP) proteins remained relatively constant over time, boding well for their use in gauging biochemical responses to potential treatments. Treating c9ALS patient cells or a mouse model of c9ALS with ASOs that target G4C2 RNA resulted in decreased intracellular and extracellular poly(GP) proteins. This decrease paralleled reductions in G4C2 RNA and downstream G4C2 RNA–mediated events. These findings indicate that tracking poly(GP) proteins in CSF could provide a means to assess target engagement of G4C2 RNA–based therapies in symptomatic C9ORF72 repeat expansion carriers and presymptomatic individuals who are expected to benefit from early therapeutic intervention. PMID:28356511
Krause, A; Mitchell, CL; Essop, F; Tager, S; Temlett, J; Stevanin, G; Ross, CA; Rudnicki, DD; Margolis, RL
2015-01-01
Huntington disease (HD) is a progressive autosomal dominant neurodegenerative disorder, characterized by abnormal movements, cognitive decline and psychiatric symptoms, caused by a CAG repeat expansion in the huntingtin (HTT) gene on chromosome 4p. A CAG/CTG repeat expansion in the junctophilin-3 (JPH3) gene on chromosome 16q24.2 causes a Huntington disease-like phenotype (HDL2). All patients to date with HDL2 have some African ancestry. The present study aimed to characterize the genetic basis of the Huntington disease phenotype in South Africans and to investigate the possible origin of the JPH3 mutation. In a sample of unrelated South African individuals referred for diagnostic HD testing, 62% (106/171) of white patients compared to only 36% (47/130) of black patients had an expansion in HTT. However, 15% (20/130) of black South African patients and no white patients (0/171) had an expansion in JPH3, confirming the diagnosis of Huntington disease like 2 (HDL2). Individuals with HDL2 share many clinical features with individuals with HD and are clinically indistinguishable in many cases, although the average age of onset and diagnosis in HDL2 is 5 years later than HD and individual clinical features may be more prominent. HDL2 mutations contribute significantly to the HD phenotype in South Africans with African ancestry. JPH3 haplotype studies in 31 families, mainly from South Africa and North America, provide evidence for a founder mutation and support a common African origin for all HDL2 patients. Molecular testing in individuals with an HD phenotype and African ancestry should include testing routinely for JPH3 mutations. PMID:26079385
Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang
2016-09-01
Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.
Microevolution of Monophasic Salmonella Typhimurium during Epidemic, United Kingdom, 2005–2010
Petrovska, Liljana; Mather, Alison E.; AbuOun, Manal; Branchu, Priscilla; Harris, Simon R.; Connor, Thomas; Hopkins, K.L.; Underwood, A.; Lettini, Antonia A.; Page, Andrew; Bagnall, Mary; Wain, John; Parkhill, Julian; Dougan, Gordon; Davies, Robert
2016-01-01
Microevolution associated with emergence and expansion of new epidemic clones of bacterial pathogens holds the key to epidemiologic success. To determine microevolution associated with monophasic Salmonella Typhimurium during an epidemic, we performed comparative whole-genome sequencing and phylogenomic analysis of isolates from the United Kingdom and Italy during 2005–2012. These isolates formed a single clade distinct from recent monophasic epidemic clones previously described from North America and Spain. The UK monophasic epidemic clones showed a novel genomic island encoding resistance to heavy metals and a composite transposon encoding antimicrobial drug resistance genes not present in other Salmonella Typhimurium isolates, which may have contributed to epidemiologic success. A remarkable amount of genotypic variation accumulated during clonal expansion that occurred during the epidemic, including multiple independent acquisitions of a novel prophage carrying the sopE gene and multiple deletion events affecting the phase II flagellin locus. This high level of microevolution may affect antigenicity, pathogenicity, and transmission. PMID:26982594
Evolutionary genomics of Entamoeba
Weedall, Gareth D.; Hall, Neil
2011-01-01
Entamoeba histolytica is a human pathogen that causes amoebic dysentery and leads to significant morbidity and mortality worldwide. Understanding the genome and evolution of the parasite will help explain how, when and why it causes disease. Here we review current knowledge about the evolutionary genomics of Entamoeba: how differences between the genomes of different species may help explain different phenotypes, and how variation among E. histolytica parasites reveals patterns of population structure. The imminent expansion of the amount genome data will greatly improve our knowledge of the genus and of pathogenic species within it. PMID:21288488
Lê Van, Amandine; Gladieux, Pierre; Lemaire, Christophe; Cornille, Amandine; Giraud, Tatiana; Durel, Charles-Eric; Caffier, Valérie; Le Cam, Bruno
2012-01-01
Understanding how pathogens emerge is essential to bring disease-causing agents under durable human control. Here, we used cross-pathogenicity tests to investigate the changes in life-history traits of the fungal pathogen Venturia inaequalis associated with host-tracking during the domestication of apple and subsequent host-range expansion on the wild European crabapple (Malus sylvestris). Pathogenicity of 40 isolates collected in wild and domesticated ecosystems was assessed on the domesticated apple, its Central Asian main progenitor (M. sieversii) and M. sylvestris. Isolates from wild habitats in the centre of origin of the crop were not pathogenic on the domesticated apple and less aggressive than other isolates on their host of origin. Isolates from the agro-ecosystem in Central Asia infected a higher proportion of plants with higher aggressiveness, on both the domesticated host and its progenitor. Isolates from the European crabapple were still able to cause disease on other species but were less aggressive and less frequently virulent on these hosts than their endemic populations. Our results suggest that the domestication of apple was associated with the acquisition of virulence in the pathogen following host-tracking. The spread of the disease in the agro-ecosystem would also have been accompanied by an increase in overall pathogenicity. PMID:23144656
Evolution of pathogen virulence across space during an epidemic
Osnas, Erik; Hurtado, Paul J.; Dobson, Andrew P.
2015-01-01
We explore pathogen virulence evolution during the spatial expansion of an infectious disease epidemic in the presence of a novel host movement trade-off, using a simple, spatially explicit mathematical model. This work is motivated by empirical observations of the Mycoplasma gallisepticum invasion into North American house finch (Haemorhous mexicanus) populations; however, our results likely have important applications to other emerging infectious diseases in mobile hosts. We assume that infection reduces host movement and survival and that across pathogen strains the severity of these reductions increases with pathogen infectiousness. Assuming these trade-offs between pathogen virulence (host mortality), pathogen transmission, and host movement, we find that pathogen virulence levels near the epidemic front (that maximize wave speed) are lower than those that have a short-term growth rate advantage or that ultimately prevail (i.e., are evolutionarily stable) near the epicenter and where infection becomes endemic (i.e., that maximize the pathogen basic reproductive ratio). We predict that, under these trade-offs, less virulent pathogen strains will dominate the periphery of an epidemic and that more virulent strains will increase in frequency after invasion where disease is endemic. These results have important implications for observing and interpreting spatiotemporal epidemic data and may help explain transient virulence dynamics of emerging infectious diseases.
Pathogen perception by NLRs in plants and animals: Parallel worlds.
Duxbury, Zane; Ma, Yan; Furzer, Oliver J; Huh, Sung Un; Cevik, Volkan; Jones, Jonathan D G; Sarris, Panagiotis F
2016-08-01
Intracellular NLR (Nucleotide-binding domain and Leucine-rich Repeat-containing) receptors are sensitive monitors that detect pathogen invasion of both plant and animal cells. NLRs confer recognition of diverse molecules associated with pathogen invasion. NLRs must exhibit strict intramolecular controls to avoid harmful ectopic activation in the absence of pathogens. Recent discoveries have elucidated the assembly and structure of oligomeric NLR signalling complexes in animals, and provided insights into how these complexes act as scaffolds for signal transduction. In plants, recent advances have provided novel insights into signalling-competent NLRs, and into the myriad strategies that diverse plant NLRs use to recognise pathogens. Here, we review recent insights into the NLR biology of both animals and plants. By assessing commonalities and differences between kingdoms, we are able to develop a more complete understanding of NLR function. © 2016 WILEY Periodicals, Inc.
Almaguer-Mederos, L E; Mesa, J M L; González-Zaldívar, Y; Almaguer-Gotay, D; Cuello-Almarales, D; Aguilera-Rodríguez, R; Falcón, N S; Gispert, S; Auburger, G; Velázquez-Pérez, L
2018-05-14
Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by the unstable expansion of a CAG/CAA repeat in the ATXN2 gene, which normally encodes 22 glutamines (Q22). A large study was conducted to characterize the CAG/CAA repeat intergenerational instability in SCA2 families. Large normal alleles (LNA, Q24-31) were significantly more unstable upon maternal transmissions. In contrast, expanded alleles (EA, Q32-750) were significantly more unstable during paternal transmissions, in correlation with repeat length. Significant correlations were found between the instability and the age at conception in paternal transmissions. In conclusion, intergenerational instability at ATXN2 locus is influenced by the sex, repeat length and age at conception of the transmitting parent. These results have profound implications for genetic counseling services. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
C9orf72 nucleotide repeat structures initiate molecular cascades of disease.
Haeusler, Aaron R; Donnelly, Christopher J; Periz, Goran; Simko, Eric A J; Shaw, Patrick G; Kim, Min-Sik; Maragakis, Nicholas J; Troncoso, Juan C; Pandey, Akhilesh; Sattler, Rita; Rothstein, Jeffrey D; Wang, Jiou
2014-03-13
A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat-length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformation-dependent manner. Specifically, nucleolin, an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases.
Morganti, Marina; Bolzoni, Luca; Scaltriti, Erika; Casadei, Gabriele; Carra, Elena; Rossi, Laura; Gherardi, Paola; Faccini, Fabio; Arrigoni, Norma; Sacchi, Anna Rita; Delledonne, Marco; Pongolini, Stefano
2018-03-01
Background and aimEpidemiology of human non-typhoid salmonellosis is characterised by recurrent emergence of new clones of the pathogen over time. Some clonal lines of Salmonella have shaped epidemiology of the disease at global level, as happened for serotype Enteritidis or, more recently, for Salmonella 4,[5],12:i:-, a monophasic variant of serotype Typhimurium. The same clonal behaviour is recognisable at sub-serotype level where single outbreaks or more generalised epidemics are attributable to defined clones. The aim of this study was to understand the dynamics of a clone of Salmonella 4,[5],12:i:- over a 3-year period (2012-15) in a province of Northern Italy where the clone caused a large outbreak in 2013. Furthermore, the role of candidate outbreak sources was investigated and the accuracy of multilocus variable-number tandem repeat analysis (MLVA) was evaluated. Methods: we retrospectively investigated the outbreak through whole genome sequencing (WGS) and further monitored the outbreak clone for 2 years after its conclusion. Results: The study showed the transient nature of the clone in the population, possibly as a consequence of its occasional expansion in a food-processing facility. We demonstrated that important weaknesses characterise conventional typing methods applied to clonal pathogens such as Salmonella 4,[5],12:i:-, namely lack of accuracy for MLVA and inadequate resolution power for PFGE to be reliably used for clone tracking. Conclusions : The study provided evidence for the remarkable prevention potential of whole genome sequencing used as a routine tool in systems that integrate human, food and animal surveillance.
Giannoccaro, Maria Pia; Bartoletti-Stella, Anna; Piras, Silvia; Casalena, Alfonsina; Oppi, Federico; Ambrosetto, Giovanni; Montagna, Pasquale; Liguori, Rocco; Parchi, Piero; Capellari, Sabina
2018-01-01
In 1969, Dazzi and Finizio reported the second observation of frontotemporal dementia (FTD) - amyotrophic lateral sclerosis (ALS) association in a large Italian kindred affected by an autosomal dominant form of ALS with high penetrance, frequent bulbar onset, and frequent cognitive decline. To expand the original characterization of this family and report the link with the C9orf72 repeat expansion (RE). We followed or reviewed the medical records of thirteen patients belonging to the original family and performed genetic analyses in four individuals. Eight patients presented with ALS, four with FTD, and one with schizophrenia. The C9orf72 RE was found in three patients but not in the healthy survivor. Additionally, we found a novel possible pathogenic variant in the ITM2B gene in one patient with a complex phenotype, associating movement disorders, psychiatric and cognitive features, deafness, and optic atrophy. The neuropathological examination of this patient did not show the classical features of ITM2B mutation related dementias suggesting that the putative pathogenic mechanism does not involve cellular mislocalization of the protein or the formation of amyloid plaques. We showed that the original Italian pedigree described with FTD/ALS carries the C9orf72 RE. Moreover, the finding of an additional mutation in another dementia causing gene in a patient with a more complex phenotype suggests a possible role of genetic modifiers in the disease. Together with other reports showing the coexistence of mutations in multiple ALS/FTD causative genes in the same family, our study supports an oligogenic etiology of ALS/FTD.
Neutral Genomic Microevolution of a Recently Emerged Pathogen, Salmonella enterica Serovar Agona
Litrup, Eva; Murphy, Ronan; Cormican, Martin; Fanning, Seamus; Brown, Derek; Guttman, David S.; Brisse, Sylvain; Achtman, Mark
2013-01-01
Salmonella enterica serovar Agona has caused multiple food-borne outbreaks of gastroenteritis since it was first isolated in 1952. We analyzed the genomes of 73 isolates from global sources, comparing five distinct outbreaks with sporadic infections as well as food contamination and the environment. Agona consists of three lineages with minimal mutational diversity: only 846 single nucleotide polymorphisms (SNPs) have accumulated in the non-repetitive, core genome since Agona evolved in 1932 and subsequently underwent a major population expansion in the 1960s. Homologous recombination with other serovars of S. enterica imported 42 recombinational tracts (360 kb) in 5/143 nodes within the genealogy, which resulted in 3,164 additional SNPs. In contrast to this paucity of genetic diversity, Agona is highly diverse according to pulsed-field gel electrophoresis (PFGE), which is used to assign isolates to outbreaks. PFGE diversity reflects a highly dynamic accessory genome associated with the gain or loss (indels) of 51 bacteriophages, 10 plasmids, and 6 integrative conjugational elements (ICE/IMEs), but did not correlate uniquely with outbreaks. Unlike the core genome, indels occurred repeatedly in independent nodes (homoplasies), resulting in inaccurate PFGE genealogies. The accessory genome contained only few cargo genes relevant to infection, other than antibiotic resistance. Thus, most of the genetic diversity within this recently emerged pathogen reflects changes in the accessory genome, or is due to recombination, but these changes seemed to reflect neutral processes rather than Darwinian selection. Each outbreak was caused by an independent clade, without universal, outbreak-associated genomic features, and none of the variable genes in the pan-genome seemed to be associated with an ability to cause outbreaks. PMID:23637636
Goo, Stephen M.; Cho, Soochin
2013-01-01
The ribonuclease (RNase) A superfamily is a vertebrate-specific gene family. Because of a massive expansion that occurred during the early mammalian evolution, extant mammals in general have much more RNase genes than nonmammalian vertebrates. Mammalian RNases have been associated with diverse physiological functions including digestion, cytotoxicity, angiogenesis, male reproduction, and host defense. However, it is still uncertain when their expansion occurred and how a wide array of functions arose during their evolution. To answer these questions, we generate a compendium of all RNase genes identified in 20 complete mammalian genomes including the platypus, Ornithorhynchus anatinus. Using this, we delineate 13 ancient RNase gene lineages that arose before the divergence between the monotreme and the other mammals (∼220 Ma). These 13 ancient gene lineages are differentially retained in the 20 mammals, and the rate of protein sequence evolution is highly variable among them, which suggest that they have undergone extensive functional diversification. In addition, we identify 22 episodes of recent expansion of RNase genes, many of which have signatures of adaptive functional differentiation. Exemplifying this, bursts of gene duplication occurred for the RNase1, RNase4, and RNase5 genes of the little brown bat (Myotis lucifugus), which might have contributed to the species’ effective defense against heavier pathogen loads caused by its communal roosting behavior. Our study illustrates how host-defense systems can generate new functions efficiently by employing a multigene family, which is crucial for a host organism to adapt to its ever-changing pathogen environment. PMID:24162010
UNSTABLE MUTATIONS IN THE FMR1 GENE AND THE PHENOTYPES
Loesch, Danuta; Hagerman, Randi
2014-01-01
Fragile X syndrome (FXS), a severe neurodevelopmental anomaly, and one of the earliest disorders linked to an unstable (‘dynamic’) mutation, is caused by the large (>200) CGG repeat expansions in the noncoding portion of the FMR1 (Fragile X Mental Retardation-1) gene. These expansions, termed full mutations, normally silence this gene's promoter through methylation, leading to a gross deficit of the Fragile X Mental Retardation Protein (FMRP) that is essential for normal brain development. Rare individuals with the expansion but with an unmethylated promoter (and thus, FMRP production), present a much less severe form of FXS. However, a unique feature of the relationship between the different sizes of CGG expanded tract and phenotypic changes is that smaller expansions (<200) generate a series of different clinical manifestations and/or neuropsychological changes. The major part of this chapter is devoted to those FMR1 alleles with small (55-200) CGG expansions, termed ‘premutations’, which have the potential for generating the full mutation alleles on mother-offspring transmission, on the one hand, and are associated with some phenotypic changes, on the other. Thus, the role of several factors known to determine the rate of CGG expansion in the premutation alleles is discussed first. Then, an account of various neurodevelopmental, congnitive, behavioural and physical changes reported in carriers of these small expansions is given, and possible association of these conditions with a toxicity of the elevated FMR1 gene's transcript (mRNA) is discussed. The next two sections are devoted to major and well defined clinical conditions associated with the premutation alleles. The first one is the late onset neurodegenerative disorder termed fragile X-associated tremor ataxia syndrome (FXTAS). The wide range of clinical and neuropsychological manifestations of this syndrome, and their relevance to elevated levels of the FMR1 mRNA, are described. Another distinct disorder linked to the CGG repeat expansions within the premutation range is fragile X-associated primary ovarian insufficiency (FXPOI) in females, and an account of the spectrum of manifestations of this disorder, together with the latest findings suggesting an early onset of the ovarian changes, is given. In the following section, the most recent findings concerning the possible contribution of FMR1 ‘grey zone’ alleles (those with the smallest repeat expansions overlapping with the normal range i.e., 41-54 CGGs), to the psychological and clinical manifestations, already associated with premutation alleles, are discussed. Special emphasis has been placed on the possibility that the modest elevation of ‘toxic’ FMR1 mRNA in the carriers of grey zone alleles may present an additional risk for some neurodegenerative diseases, such as those associated with parkinsonism, by synergizing with either other susceptibility genes or environmental poisons. The present status of the treatment of fragile X-related disorders, especially FXS, is presented in the last section of this chapter. Pharmacological interventions in this syndrome have recently extended beyond stimulants and antipsychotic medications, and the latest trials involving a group of GluR5 antagonists aim to ascertain if these substances have the potential to reverse some of the neurobiological abnormalities of FXS. PMID:23560306
Potential drivers of virulence evolution in aquaculture
Kennedy, David A.; Kurath, Gael; Brito, Ilana L.; Purcell, Maureen K.; Read, Andrew F.; Winton, James R.; Wargo, Andrew R.
2016-01-01
Infectious diseases are economically detrimental to aquaculture, and with continued expansion and intensification of aquaculture, the importance of managing infectious diseases will likely increase in the future. Here, we use evolution of virulence theory, along with examples, to identify aquaculture practices that might lead to the evolution of increased pathogen virulence. We identify eight practices common in aquaculture that theory predicts may favor evolution toward higher pathogen virulence. Four are related to intensive aquaculture operations, and four others are related specifically to infectious disease control. Our intention is to make aquaculture managers aware of these risks, such that with increased vigilance, they might be able to detect and prevent the emergence and spread of increasingly troublesome pathogen strains in the future.
Ankyrin-repeat containing proteins of microbes: a conserved structure with functional diversity
Al-Khodor, Souhaila; Price, Christopher T.; Kalia, Awdhesh; Kwaik, Yousef Abu
2009-01-01
Summary The ankyrin repeat (ANK) is the most common protein-protein interaction motif in nature and predominantly found in eukaryotic proteins. The genome sequencing of various pathogenic or symbiotic bacteria and eukaryotic viruses identified numerous genes encoding ANK-containing proteins that were proposed to have been acquired from eukaryotes by horizontal gene transfer. However, the recent discovery of additional ANK-containing proteins encoded in the genomes of archaea and free-living bacteria suggests either a more ancient origin of the ANK motif or multiple convergent evolution events. Many bacterial pathogens employ various types of secretion systems to deliver ANK-containing proteins into eukaryotic cells where they mimic or manipulate various host functions. Understanding the molecular and biochemical functions of this family of proteins will enhance our understanding of important host-microbe interactions. PMID:19962898
NASA Technical Reports Server (NTRS)
Sawka, Michael N.; Convertino, Victor A.; Eichner, E. Randy; Schnieder, Suzanne M.; Young, Andrew J.
2000-01-01
This paper reviews the influence of several perturbations (physical exercise, heat stress, terrestrial altitude, microgravity, and trauma/sickness) on adaptations of blood volume (BV), erythrocyte volume (EV), and plasma volume (PV). Exercise training can induced BV expansion; PV expansion usually occurs immediately, but EV expansion takes weeks. EV and PV expansion contribute to aerobic power improvements associated with exercise training. Repeated heat exposure induces PV expansion but does not alter EV. PV expansion does not improve thermoregulation, but EV expansion improves thermoregulation during exercise in the heat. Dehydration decreases PV (and increases plasma tonicity) which elevates heat strain and reduces exercise performance. High altitude exposure causes rapid (hours) plasma loss. During initial weeks at altitude, EV is unaffected, but a gradual expansion occurs with extended acclimatization. BV adjustments contribute, but are not key, to altitude acclimatization. Microgravity decreases PV and EV which contribute to orthostatic intolerance and decreased exercise capacity in astronauts. PV decreases may result from lower set points for total body water and central venous pressure, which EV decrease bay result form increased erythrocyte destruction. Trauma, renal disease, and chronic diseases cause anemia from hemorrhage and immune activation, which suppressions erythropoiesis. The re-establishment of EV is associated with healing, improved life quality, and exercise capabilities for these injured/sick persons.
DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases
Bettencourt, Conceição; Hensman‐Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas‐Gómez, Petra; García‐Velázquez, Lizbeth Esmeralda; Alonso‐Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J.
2016-01-01
Objective The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome‐wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. Methods We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single‐nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. Results In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10–5). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10–5) and all SCAs (p = 2.22 × 10–4) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10–5), all in the same direction as in the HD GWAS. Interpretation We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983–990 PMID:27044000
Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S; Williams, Steven A
2016-03-01
The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world's most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other eukaryotic pathogens.
Patil, Aarti; Orjuela-Sánchez, Pamela; da Silva-Nunes, Mônica; Ferreira, Marcelo U.
2010-01-01
The circumsporozoite protein (CSP) of Plasmodium vivax, a major target for malaria vaccine development, has immunodominant B-cell epitopes mapped to central nonapeptide repeat arrays. To determine whether rearrangements of repeat motifs during mitotic DNA replication of parasites create significant CSP diversity under conditions of low effective meiotic recombination rates, we examined csp alleles from sympatric P. vivax isolates systematically sampled from an area of low malaria endemicity in Brazil over a period of 14 months. Nine unique csp types, comprising six different nonapeptide repeats, were observed in 45 isolates analyzed. Identical or nearly identical repeats predominated in most arrays, consistent with their recent expansion. We found strong linkage disequilibrium at sites across the chromosome 8 segment flanking the csp locus, consistent with rare meiotic recombination in this region. We conclude that CSP repeat diversity may not be severely constrained by rare meiotic recombination in areas of low malaria endemicity. New repeat variants may be readily created by nonhomologous recombination even when meiotic recombination is rare, with potential implications for CSP-based vaccine development. PMID:20097310
Clinical, molecular, and pharmacological aspects of FMR1 related disorders.
Pugin, A; Faundes, V; Santa María, L; Curotto, B; Aliaga, S; Salas, I; Soto, P; Bravo, P; Peña, M I; Alliende, M A
2017-05-01
Fragile X syndrome, the most common inherited cause of intellectual disability, is associated with a broad spectrum of disorders across different generations of a single family. This study reviews the clinical manifestations of fragile X-associated disorders as well as the spectrum of mutations of the fragile X mental retardation 1 gene (FMR1) and the neurobiology of the fragile X mental retardation protein (FMRP), and also provides an overview of the potential therapeutic targets and genetic counselling. This disorder is caused by expansion of the CGG repeat (>200 repeats) in the 5 prime untranslated region of FMR1, resulting in a deficit or absence of FMRP. FMRP is an RNA-binding protein that regulates the translation of several genes that are important in synaptic plasticity and dendritic maturation. It is believed that CGG repeat expansions in the premutation range (55 to 200 repeats) elicit an increase in mRNA levels of FMR1, which may cause neuronal toxicity. These changes manifest clinically as developmental problems such as autism and learning disabilities as well as neurodegenerative diseases including fragile X-associated tremor/ataxia syndrome (FXTAS). Advances in identifying the molecular basis of fragile X syndrome may help us understand the causes of neuropsychiatric disorders, and they will probably contribute to development of new and specific treatments. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Hypospadias as a novel feature in spinal bulbar muscle atrophy.
Nordenvall, Anna Skarin; Paucar, Martin; Almqvist, Catarina; Nordenström, Anna; Frisén, Louise; Nordenskjöld, Agneta
2016-04-01
Spinal and bulbar muscle atrophy (SBMA) is an X-linked neuromuscular disorder caused by CAG repeat expansions in the androgen receptor (AR) gene. The SBMA phenotype consists of slowly progressive neuromuscular symptoms and undermasculinization features as the result of malfunction of the AR. The latter mainly includes gynecomastia and infertility. Hypospadias is also a feature of undermasculinization with an underdeveloped urethra and penis; it has not been described as part of the SBMA phenotype but has been suggested to be associated with a prolonged CAG repeat in the AR gene. This study includes the first epidemiologic description of the co-occurrence of hypospadias and SBMA in subjects and their male relatives in Swedish population-based health registers, as well as an additional clinical case. One boy with severe hypospadias was screened for mutations in the AR gene and was found to have 42 CAG repeats in it, which is in the full range of mutations causing SBMA later in life. We also detected a maximum of four cases displaying the combination of SBMA and hypospadias in our national register databases. This is the third case report with hypospadias in association with CAG repeat expansions in the AR gene in the full range known to cause SBMA later in life. Our findings suggest that hypospadias may be an under diagnosed feature of the SBMA phenotype and we propose that neurologists working with SBMA further investigate and report the true prevalence of hypospadias among patients with SBMA.
Varela, Miguel A; Curtis, Helen J; Douglas, Andrew GL; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew JA
2016-01-01
Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets. PMID:25990798
Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A
2016-02-01
Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.
Dugas, Diana V; Hernandez, David; Koenen, Erik J M; Schwarz, Erika; Straub, Shannon; Hughes, Colin E; Jansen, Robert K; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T; Hajrah, Nahid H; Alharbi, Njud S; Al-Malki, Abdulrahman L; Sabir, Jamal S M; Bailey, C Donovan
2015-11-23
The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms.
Hargreaves, Katherine R.; Flores, Cesar O.; Lawley, Trevor D.
2014-01-01
ABSTRACT Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. PMID:25161187
USDA-ARS?s Scientific Manuscript database
Ambrosia beetles in the Euwallacea nr. fornicatus complex (Coleoptera: Curculionidae) vector Fusarium spp. fungi pathogenic to susceptible hosts, including avocado. The Florida avocado production area in Miami-Dade County was surveyed for E. nr. fornicatus upon observations of initial damage in 2016...
Assessment of Aedes albopictus (Skuse) clutch size in wild and laboratory populations
USDA-ARS?s Scientific Manuscript database
Aedes albopictus (Skuse) is an invasive mosquito species found across the southern U.S. and has undergone range expansion into many northern states. Although primarily pestiferous, it is a capable vector of many disease-causing pathogens. Intra- and interspecific larval competition have been evalu...
Stotz, Henrik U; Harvey, Pascoe J; Haddadi, Parham; Mashanova, Alla; Kukol, Andreas; Larkan, Nicholas J; Borhan, M Hossein; Fitt, Bruce D L
2018-01-01
Genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors (NLRs) control resistance against intracellular (cell-penetrating) pathogens. However, evidence for a role of genes coding for proteins with LRR domains in resistance against extracellular (apoplastic) fungal pathogens is limited. Here, the distribution of genes coding for proteins with eLRR domains but lacking kinase domains was determined for the Brassica napus genome. Predictions of signal peptide and transmembrane regions divided these genes into 184 coding for receptor-like proteins (RLPs) and 121 coding for secreted proteins (SPs). Together with previously annotated NLRs, a total of 720 LRR genes were found. Leptosphaeria maculans-induced expression during a compatible interaction with cultivar Topas differed between RLP, SP and NLR gene families; NLR genes were induced relatively late, during the necrotrophic phase of pathogen colonization. Seven RLP, one SP and two NLR genes were found in Rlm1 and Rlm3/Rlm4/Rlm7/Rlm9 loci for resistance against L. maculans on chromosome A07 of B. napus. One NLR gene at the Rlm9 locus was positively selected, as was the RLP gene on chromosome A10 with LepR3 and Rlm2 alleles conferring resistance against L. maculans races with corresponding effectors AvrLm1 and AvrLm2, respectively. Known loci for resistance against L. maculans (extracellular hemi-biotrophic fungus), Sclerotinia sclerotiorum (necrotrophic fungus) and Plasmodiophora brassicae (intracellular, obligate biotrophic protist) were examined for presence of RLPs, SPs and NLRs in these regions. Whereas loci for resistance against P. brassicae were enriched for NLRs, no such signature was observed for the other pathogens. These findings demonstrate involvement of (i) NLR genes in resistance against the intracellular pathogen P. brassicae and a putative NLR gene in Rlm9-mediated resistance against the extracellular pathogen L. maculans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallmayer, J.; Pintado, E.; Lotspeich, L.
Approximately 2%-5% of autistic children show cytogenetic evidence of the fragile X syndrome. This report tests whether infantile autism in multiplex autism families arises from an unusual manifestion of the fragile X syndrome. This could arise either by expansion of the (CGG)n trinucleotide repeat in FMR-1 or from a mutation elsewhere in the gene. We studied 35 families that met stringent criteria for multiplex autism. Amplification of the trinucleotide repeat and analysis of methylation status were performed in 79 autistic children and in 31 of their unaffected siblings by Southern blot analysis. No examples of amplified repeats were seen inmore » the autistic or control children or in their parents or grandparents. We next examined the hypothesis that there was a mutation elsewhere in the FMR-1 gene, by linkage analysis in 32 of these families. We tested four different dominant models and a recessive model. Linkage to FMR-1 could be excluded (lod score between -24 and -62) in all models by using probes DXS548, FRAXAC1, and FRAXAC2 and the CGG repeat itself. Tests for heterogeneity in this sample were negative, and the occurrence of positive lod scores in this data set could be attributed to chance. Analysis of the data by the affected-sib method also did not show evidence for linkage of any marker to autism. These results enable us to reject the hypothesis that multiplex autism arises from expansion of the (CGG)n trinucleotide repeat in FMR-1. Further, because the overall lod scores for all probes in all models tested were highly negative, linkage to FMR-1 can also be ruled out in multiplex autistic families. 35 refs., 2 figs., 5 tabs.« less
Yeshaya, J; Shalgi, R; Shohat, M; Avivi, L
1999-01-01
X-chromosome inactivation and the size of the CGG repeat number are assumed to play a role in the clinical, physical, and behavioral phenotype of female carriers of a mutated FMR1 allele. In view of the tight relationship between replication timing and the expression of a given DNA sequence, we have examined the replication timing of FMR1 alleles on active and inactive X-chromosomes in cell samples (lymphocytes or amniocytes) of 25 females: 17 heterozygous for a mutated FMR1 allele with a trinucleotide repeat number varying from 58 to a few hundred, and eight homozygous for a wild-type allele. We have applied two-color fluorescence in situ hybridization (FISH) with FMR1 and X-chromosome alpha-satellite probes to interphase cells of the various genotypes: the alpha-satellite probe was used to distinguish between early replicating (active) and late replicating (inactive) X-chromosomes, and the FMR1 probe revealed the replication pattern of this locus. All samples, except one with a large trinucleotide expansion, showed an early replicating FMR1 allele on the active X-chromosome and a late replicating allele on the inactive X-chromosome. In samples of mutation carriers, both the early and the late alleles showed delayed replication compared with normal alleles, regardless of repeat size. We conclude therefore that: (1) the FMR1 locus is subjected to X-inactivation; (2) mutated FMR1 alleles, regardless of repeat size, replicate later than wild-type alleles on both the active and inactive X-chromosomes; and (3) the delaying effect of the trinucleotide expansion, even with a low repeat size, is superimposed on the delay in replication associated with X-inactivation.
Fragile X and autism: Intertwined at the molecular level leading to targeted treatments.
Hagerman, Randi; Hoem, Gry; Hagerman, Paul
2010-09-21
Fragile X syndrome (FXS) is caused by an expanded CGG repeat (> 200 repeats) in the 5' untranslated portion of the fragile mental retardation 1 gene (FMR1), leading to deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA carrier protein that controls the translation of several other genes that regulate synaptic development and plasticity. Autism occurs in approximately 30% of FXS cases, and pervasive developmental disorder, not otherwise specified (PDD-NOS) occurs in an additional 30% of cases. Premutation repeat expansions (55 to 200 CGG repeats) may also give rise to autism spectrum disorders (ASD), including both autism and PDD-NOS, through a different molecular mechanism that involves a direct toxic effect of the expanded CGG repeat FMR1 mRNA. RNA toxicity can also lead to aging effects including tremor, ataxia and cognitive decline, termed fragile X-associated tremor ataxia syndrome (FXTAS), in premutation carriers in late life. In studies of mice bearing premutation expansions, there is evidence of early postnatal neuronal cell toxicity, presenting as reduced cell longevity, decreased dendritic arborization and altered synaptic morphology. There is also evidence of mitochondrial dysfunction in premutation carriers. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in autism without fragile X mutations. Research regarding dysregulation of neurotransmitter systems in FXS, including the metabotropic glutamate receptor (mGluR)1/5 pathway and γ aminobutyric acid (GABA)A pathways, have led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism.
Ciura, Sorana; Sellier, Chantal; Campanari, Maria-Letizia; Charlet-Berguerand, Nicolas; Kabashi, Edor
2016-01-01
ABSTRACT The most common genetic cause for amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) is repeat expansion of a hexanucleotide sequence (GGGGCC) within the C9orf72 genomic sequence. To elucidate the functional role of C9orf72 in disease pathogenesis, we identified certain molecular interactors of this factor. We determined that C9orf72 exists in a complex with SMCR8 and WDR41 and that this complex acts as a GDP/GTP exchange factor for RAB8 and RAB39, 2 RAB GTPases involved in macroautophagy/autophagy. Consequently, C9orf72 depletion in neuronal cultures leads to accumulation of unresolved aggregates of SQSTM1/p62 and phosphorylated TARDBP/TDP-43. However, C9orf72 reduction does not lead to major neuronal toxicity, suggesting that a second stress may be required to induce neuronal cell death. An intermediate size of polyglutamine repeats within ATXN2 is an important genetic modifier of ALS-FTD. We found that coexpression of intermediate polyglutamine repeats (30Q) of ATXN2 combined with C9orf72 depletion increases the aggregation of ATXN2 and neuronal toxicity. These results were confirmed in zebrafish embryos where partial C9orf72 knockdown along with intermediate (but not normal) repeat expansions in ATXN2 causes locomotion deficits and abnormal axonal projections from spinal motor neurons. These results demonstrate that C9orf72 plays an important role in the autophagy pathway while genetically interacting with another major genetic risk factor, ATXN2, to contribute to ALS-FTD pathogenesis. PMID:27245636
Ciura, Sorana; Sellier, Chantal; Campanari, Maria-Letizia; Charlet-Berguerand, Nicolas; Kabashi, Edor
2016-08-02
The most common genetic cause for amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) is repeat expansion of a hexanucleotide sequence (GGGGCC) within the C9orf72 genomic sequence. To elucidate the functional role of C9orf72 in disease pathogenesis, we identified certain molecular interactors of this factor. We determined that C9orf72 exists in a complex with SMCR8 and WDR41 and that this complex acts as a GDP/GTP exchange factor for RAB8 and RAB39, 2 RAB GTPases involved in macroautophagy/autophagy. Consequently, C9orf72 depletion in neuronal cultures leads to accumulation of unresolved aggregates of SQSTM1/p62 and phosphorylated TARDBP/TDP-43. However, C9orf72 reduction does not lead to major neuronal toxicity, suggesting that a second stress may be required to induce neuronal cell death. An intermediate size of polyglutamine repeats within ATXN2 is an important genetic modifier of ALS-FTD. We found that coexpression of intermediate polyglutamine repeats (30Q) of ATXN2 combined with C9orf72 depletion increases the aggregation of ATXN2 and neuronal toxicity. These results were confirmed in zebrafish embryos where partial C9orf72 knockdown along with intermediate (but not normal) repeat expansions in ATXN2 causes locomotion deficits and abnormal axonal projections from spinal motor neurons. These results demonstrate that C9orf72 plays an important role in the autophagy pathway while genetically interacting with another major genetic risk factor, ATXN2, to contribute to ALS-FTD pathogenesis.
Murray, Anna; Schoemaker, Minouk J; Bennett, Claire E; Ennis, Sarah; Macpherson, James N; Jones, Michael; Morris, Danielle H; Orr, Nick; Ashworth, Alan; Jacobs, Patricia A; Swerdlow, Anthony J
2014-01-01
Primary ovarian insufficiency before the age of 40 years affects 1% of the female population and is characterized by permanent cessation of menstruation. Genetic causes include FMR1 expansion mutations. Previous studies have estimated mutation prevalence in clinical referrals for primary ovarian insufficiency, but these are likely to be biased as compared with cases in the general population. The prevalence of FMR1 expansion mutations in early menopause (between the ages of 40 and 45 years) has not been published. We studied FMR1 CGG repeat number in more than 2,000 women from the Breakthrough Generations Study who underwent menopause before the age of 46 years. We determined the prevalence of premutation (55-200 CGG repeats) and intermediate (45-54 CGG repeats) alleles in women with primary ovarian insufficiency (n = 254) and early menopause (n = 1,881). The prevalence of the premutation was 2.0% in primary ovarian insufficiency, 0.7% in early menopause, and 0.4% in controls, corresponding to odds ratios of 5.4 (95% confidence interval = 1.7-17.4; P = 0.004) for primary ovarian insufficiency and 2.0 (95% confidence interval = 0.8-5.1; P = 0.12) for early menopause. Combining primary ovarian insufficiency and early menopause gave an odds ratio of 2.4 (95% confidence interval = 1.02-5.8; P = 0.04). Intermediate alleles were not significant risk factors for either early menopause or primary ovarian insufficiency. FMR1 premutations are not as prevalent in women with ovarian insufficiency as previous estimates have suggested, but they still represent a substantial cause of primary ovarian insufficiency and early menopause.
Akimoto, Chizuru; Volk, Alexander E; van Blitterswijk, Marka; Van den Broeck, Marleen; Leblond, Claire S; Lumbroso, Serge; Camu, William; Neitzel, Birgit; Onodera, Osamu; van Rheenen, Wouter; Pinto, Susana; Weber, Markus; Smith, Bradley; Proven, Melanie; Talbot, Kevin; Keagle, Pamela; Chesi, Alessandra; Ratti, Antonia; van der Zee, Julie; Alstermark, Helena; Birve, Anna; Calini, Daniela; Nordin, Angelica; Tradowsky, Daniela C; Just, Walter; Daoud, Hussein; Angerbauer, Sabrina; DeJesus-Hernandez, Mariely; Konno, Takuya; Lloyd-Jani, Anjali; de Carvalho, Mamede; Mouzat, Kevin; Landers, John E; Veldink, Jan H; Silani, Vincenzo; Gitler, Aaron D; Shaw, Christopher E; Rouleau, Guy A; van den Berg, Leonard H; Van Broeckhoven, Christine; Rademakers, Rosa; Andersen, Peter M; Kubisch, Christian
2014-01-01
Background The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. Methods The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. Results Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9–100%), and the mean specificity was 98.0% (87.5–100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. Conclusions Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting. PMID:24706941
Heide, Solveig; Masliah-Planchon, Julien; Isidor, Bertrand; Guimier, Anne; Bodet, Damien; Coze, Carole; Deville, Anne; Thebault, Estelle; Pasquier, Corinne Jeanne; Cassagnau, Elisabeth; Pierron, Gaelle; Clément, Nathalie; Schleiermacher, Gudrun; Amiel, Jeanne; Delattre, Olivier; Peuchmaur, Michel; Bourdeaut, Franck
2016-01-01
Germline non-polyalanine repeat expansion mutations in PHOX2B (PHOX2B NPARM) predispose to peripheral neuroblastic tumors (PNT), frequently in association with other neurocristopathies: Hirschsprung disease (HSCR) or congenital central hypoventilation syndrome (CCHS). Although PHOX2B polyalanine repeat expansions predispose to a low incidence of benign PNTs, the oncologic phenotype associated with PHOX2B NPARM is still not known in detail. We analyzed prognostic factors, treatment toxicity, and outcome of patients with PNT and PHOX2B NPARM. Thirteen patients were identified, six of whom also had CCHS and/or HSCR, one also had late-onset hypoventilation with hypothalamic dysfunction (LO-CHS/HD), and six had no other neurocristopathy. Four tumours were "poorly differentiated," and nine were differentiated, including five ganglioneuromas, three ganglioneuroblastomas, and one differentiating neuroblastoma, hence illustrating that PHOX2B NPARM are predominantly associated with differentiating tumors. Nevertheless, three patients had stage 4 and one patient had stage 3 disease. Segmental chromosomal alterations, correlating with poor prognosis, were found in all the six tumors analyzed by array-comparative genomic hybridization. One patient died of tumor progression, one is on palliative care, one died of hypoventilation, and 10 patients are still alive, with median follow-up of 5 years. Based on histological phenotype, our series suggests that heterozygous PHOX2B NPARM do not fully preclude ganglion cell differentiation in tumors. However, this tumor predisposition syndrome may also be associated with poorly differentiated tumors with unfavorable genomic profiles and clinically aggressive behaviors. The intrafamilial variability and the unpredictable tumor prognosis should be considered in genetic counseling. © 2015 Wiley Periodicals, Inc.
Bishai, David; Liu, Liang; Shiau, Stephanie; Wang, Harrison; Tsai, Cindy; Liao, Margaret; Prakash, Shivaani; Howard, Tracy
2011-06-01
The purpose of this study was to estimate the risk of acquiring pathogenic bacteria as a result of shaking hands at graduation ceremonies. School officials participating in graduation ceremonies at elementary, secondary, and postsecondary schools were recruited. Specimens were collected before and immediately following graduation. Cultures identified any pathogenic bacteria in each specimen. Subjects shook a total of 5,209 hands. Staphylococcus aureus was separately detected on one pregraduation right hand, one postgraduation right hand, and one postgraduation left hand. Nonpathogenic bacteria were collected in 93% of specimens. Pregraduation and postgraduation specimens were of different strains. We measured a risk of one new bacterial acquisition in a sample exposed to 5,209 handshakes yielding an overall estimate of 0.019 pathogens acquired per handshake. We conclude that a single handshake at a graduation offers only a small risk of bacterial pathogen acquisition.
Sex and virulence in Escherichia coli: an evolutionary perspective
Wirth, Thierry; Falush, Daniel; Lan, Ruiting; Colles, Frances; Mensa, Patience; Wieler, Lothar H; Karch, Helge; Reeves, Peter R; Maiden, Martin CJ; Ochman, Howard; Achtman, Mark
2006-01-01
Pathogenic Escherichia coli cause over 160 million cases of dysentery and one million deaths per year, whereas non-pathogenic E. coli constitute part of the normal intestinal flora of healthy mammals and birds. The evolutionary pathways underlying this dichotomy in bacterial lifestyle were investigated by multilocus sequence typing of a global collection of isolates. Specific pathogen types [enterohaemorrhagic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, K1 and Shigella] have arisen independently and repeatedly in several lineages, whereas other lineages contain only few pathogens. Rates of evolution have accelerated in pathogenic lineages, culminating in highly virulent organisms whose genomic contents are altered frequently by increased rates of homologous recombination; thus, the evolution of virulence is linked to bacterial sex. This long-term pattern of evolution was observed in genes distributed throughout the genome, and thereby is the likely result of episodic selection for strains that can escape the host immune response. PMID:16689791
Using sediment budgets to investigate the pathogen flux through catchments.
Whiteway, Tanya G; Laffan, Shawn W; Wasson, Robert J
2004-10-01
We demonstrate a materials budget approach to identify the main source areas and fluxes of pathogens through a landscape by using the flux of fine sediments as a proxyfor pathogens. Sediment budgets were created for three subcatchment tributaries of the Googong Reservoir in south-eastern New South Wales, Australia. Major inputs, sources, stores, and transport zones were estimated using sediment sampling, dam trap efficiency measures, and radionuclide tracing. Particle size analyses were used to quantify the fine-sediment component of the total sediment flux, from which the pathogen flux was inferred by considering the differences between the mobility and transportation of fine sediments and pathogens. Gullies were identified as important sources of fine sediment, and therefore of pathogens, with the pathogen risk compounded when cattle shelter in them during wet periods. The results also indicate that the degree of landscape modification influences both sediment and pathogen mobilization. Farm dams, swampy meadows and glades along drainage paths lower the flux of fine sediment, and therefore pathogens, in this landscape during low-flow periods. However, high-rainfall and high-flow events are likely to transport most of the fine sediment, and therefore pathogen, flux from the Googong landscape to the reservoir. Materials budgets are a repeatable and comparatively low-cost method for investigating the pathogen flux through a landscape.
Evolution of Protein Domain Repeats in Metazoa
Schüler, Andreas; Bornberg-Bauer, Erich
2016-01-01
Repeats are ubiquitous elements of proteins and they play important roles for cellular function and during evolution. Repeats are, however, also notoriously difficult to capture computationally and large scale studies so far had difficulties in linking genetic causes, structural properties and evolutionary trajectories of protein repeats. Here we apply recently developed methods for repeat detection and analysis to a large dataset comprising over hundred metazoan genomes. We find that repeats in larger protein families experience generally very few insertions or deletions (indels) of repeat units but there is also a significant fraction of noteworthy volatile outliers with very high indel rates. Analysis of structural data indicates that repeats with an open structure and independently folding units are more volatile and more likely to be intrinsically disordered. Such disordered repeats are also significantly enriched in sites with a high functional potential such as linear motifs. Furthermore, the most volatile repeats have a high sequence similarity between their units. Since many volatile repeats also show signs of recombination, we conclude they are often shaped by concerted evolution. Intriguingly, many of these conserved yet volatile repeats are involved in host-pathogen interactions where they might foster fast but subtle adaptation in biological arms races. Key Words: protein evolution, domain rearrangements, protein repeats, concerted evolution. PMID:27671125
Young, James S; Wu, Tao; Chen, Yuhong; Zhao, Dongchang; Liu, Hongjun; Yi, Tangsheng; Johnston, Heather; Racine, Jeremy; Li, Xiaofan; Wang, Audrey; Todorov, Ivan; Zeng, Defu
2013-01-01
We reported that both donor CD4+ T and B cells in transplants were required for induction of an autoimmune-like chronic graft versus host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. Here, we report that, although donor B cells have little impact on acute GVHD (aGVHD) severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e. skin and lung); they also markedly augment damage in a prototypical cGVHD target organ- the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4+ T cells to upregulate MHC II and co-stimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4+ T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4+ T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation and survival of pathogenic CD4+ T cells. PMID:22649197
Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin
2013-10-10
Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae. Molecular dating analyses suggest that Ranunculaceae and Berberidaceae diverged between 90 and 84 mya, which is congruent with the fossil records and with recent estimates of the divergence time of these two taxa. © 2013.
Koon, Alex C.; Chan, Ho Yin Edwin
2017-01-01
For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development. PMID:28377694
Molecular Advances Leading to Treatment Implications for Fragile X Premutation Carriers
Polussa, Jonathan; Schneider, Andrea; Hagerman, Randi
2014-01-01
Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and it is characterized by a CGG expansion of more than 200 repeats in the FMR1 gene, leading to methylation of the promoter and gene silencing. The fragile X premutation, characterized by a 55 to 200 CGG repeat expansion, causes health problems and developmental difficulties in some, but not all, carriers. The premutation causes primary ovarian insufficiency in approximately 20% of females, psychiatric problems (including depression and/or anxiety) in approximately 50% of carriers and a neurodegenerative disorder, the fragile X-associated tremor ataxia syndrome (FXTAS), in approximately 40% of males and 16% of females later in life. Recent clinical studies in premutation carriers have expanded the health problems that may be seen. Advances in the molecular pathogenesis of the premutation have shown significant mitochondrial dysfunction and oxidative stress in neurons which may be amenable to treatment. Here we review the clinical problems of carriers and treatment recommendations. PMID:25436181
Single sperm analysis of the trinucleotide repeat in the Huntington`s disease gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeflang, E.P.; Zhang, L.; Hubert, R.
1994-09-01
Huntington`s disease (HD) is one of several genetic diseases caused by trinucleotide repeat expansion. The CAG repeat is very unstable, with size changes occurring in more than 80% of transmissions. The degree of instability of this repeat in the male germline can be determined by analysis of individual sperm cells. An easy and sensitive PCR assay has been developed to amplify this trinucleotide repeat region from single sperm using two rounds of PCR. As many as 90% of the single sperm show amplification for the HD repeat. The PCR product can be easily detected on an ethidium bromide-stained agarose gel.more » Single sperm samples from an HD patient with 18 and 49 repeats were studied. We observed size variations for the expanded alleles while the size of the normal allele in sperm is very consistent. We did not detect any significant bias in the amplification of normal alleles over the larger HD alleles. Our preliminary study supports the observation made by PCR of total sperm that instability of the HD trinucleotide repeat occurs in the germline. HD preimplantation diagnosis on single embryo blastomeres may also possible.« less
Interpreting short tandem repeat variations in humans using mutational constraint
Gymrek, Melissa; Willems, Thomas; Reich, David; Erlich, Yaniv
2017-01-01
Identifying regions of the genome that are depleted of mutations can reveal potentially deleterious variants. Short tandem repeats (STRs), also known as microsatellites, are among the largest contributors of de novo mutations in humans. However, per-locus studies of STR mutations have been limited to highly ascertained panels of several dozen loci. Here, we harnessed bioinformatics tools and a novel analytical framework to estimate mutation parameters for each STR in the human genome by correlating STR genotypes with local sequence heterozygosity. We applied our method to obtain robust estimates of the impact of local sequence features on mutation parameters and used this to create a framework for measuring constraint at STRs by comparing observed vs. expected mutation rates. Constraint scores identified known pathogenic variants with early onset effects. Our metric will provide a valuable tool for prioritizing pathogenic STRs in medical genetics studies. PMID:28892063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Manning, M; Sintay, B
Purpose: Tumor motion in lung SBRT is typically managed by creating an internal target volume (ITV) based on 4D-CT information. Another option, which may reduce lung dose and imaging artifact, is to use a breath hold (BH) during simulation and delivery. Here we evaluate the reproducibility of tumor position at repeated BH using a newly released spirometry system. Methods: Three patients underwent multiple BH CT’s at simulation. All patients underwent a BH cone beam CT (CBCT) prior to each treatment. All image sets were registered to a patient’s first simulation CT based on local bony anatomy. The gross tumor volumemore » (GTV), and the diaphragm or the apex of the lung were contoured on the first image set and expanded in 1 mm increments until the GTVs and diaphragms on all image sets were included inside an expanded structure. The GTV and diaphragm margins necessary to encompass the structures were recorded. Results: The first patient underwent 2 BH CT’s and fluoroscopy at simulation, the remaining patients underwent 3 BH CT’s at simulation. In all cases the GTV’s remained within 1 mm expansions and the diaphragms remained within 2 mm expansions on repeat scans. Each patient underwent 3 daily BH CBCT’s. In all cases the GTV’s remained within a 2 mm expansions, and the diaphragms (or lung apex in one case) remained within 2 mm expansions at daily BH imaging. Conclusions: These case studies demonstrate spirometry as an effective tool for limiting tumor motion (and imaging artifact) and facilitating reproducible tumor positioning over multiple set-ups and BH’s. This work was partially supported by Qfix.« less
Oliveira Santos, Miguel; Caldeira, Inês; Gromicho, Marta; Pronto-Laborinho, Ana; de Carvalho, Mamede
2017-10-01
A hexanucleotide repeat expansion in the C9orf72 gene is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. It has been described before four patients with multiple sclerosis (MS) and C9orf72-ALS. However, C9orf72 positivity is not associated with increased risk of MS. Inflammatory pathways related to NF-κB have been linked to ALS and MS, and appear to be important in C9orf72-ALS patients. A 42-year-old woman presented with progressive bulbar symptoms for 9 months. Neurological examination disclosed spastic dysarthria, atrophic tongue with fasciculations, brisk jaw and limb tendon reflexes, and bilateral Hoffman sign. Electrophysiological assessment confirmed ALS. Brain MRI revealed multiple and bilateral juxtacortical and periventricular inflammatory changes, some with gadolinium-enhancement, configuring a probable MS-like pattern. CSF evaluation was unremarkable, with no oligoclonal bands. Visual and somatosensory evoked potentials were normal. Follow-up brain MRI 6 months later showed two new lesions in two relatively characteristic locations of MS, with no gadolinium-enhancement. Genetic screening revealed a C9orf72 expansion. As patient had no clinical manifestation of MS, a diagnosis of radiologically isolated syndrome was considered. We speculate that these demyelinating lesions might facilitate expressivity of C9orf72 expansion, through NF-κB activation. This plausible association may lead to the identification of a therapeutic target in this subgroup of C9orf72-ALS patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Ozone disinfection of home nebulizers effectively kills common cystic fibrosis bacterial pathogens.
Towle, Dana; Baker, Vanisha; Schramm, Craig; O'Brien, Matthew; Collins, Melanie S; Feinn, Richard; Murray, Thomas S
2018-05-01
The Cystic Fibrosis Foundation (CFF) recommends routine nebulizer disinfection for patients but compliance is challenging due to the heavy burden of home care. SoClean® is a user friendly ozone based home disinfection device currently for home respiratory equipment. The objective of this study was to determine whether SoClean® has potential as a disinfection device for families with CF by killing CF associated bacteria without altering nebulizer output. Ozone based disinfection effectively kills bacterial pathogens inoculated to home nebulizer equipment without gross changes in nebulizer function. Common bacterial pathogens associated with CF were inoculated onto the PariLC® jet nebulizer and bacterial recovery compared with or without varied ozone exposure. In separate experiments, nebulizer output was estimated after repeated ozone exposure by weighing the nebulizer. Ozone disinfection was time dependent with a 5 min infusion time and 120 min dwell time effectively killing >99.99% bacteria tested including Pseudomonas aeruginosa and Staphylococcus aureus. Over 250 h of repeat ozone exposure did not alter nebulizer output. This suggests SoClean® has potential as a user-friendly disinfection technique for home respiratory equipment. © 2018 Wiley Periodicals, Inc.
Bailey, Paul C; Schudoma, Christian; Jackson, William; Baggs, Erin; Dagdas, Gulay; Haerty, Wilfried; Moscou, Matthew; Krasileva, Ksenia V
2018-02-19
The plant immune system is innate and encoded in the germline. Using it efficiently, plants are capable of recognizing a diverse range of rapidly evolving pathogens. A recently described phenomenon shows that plant immune receptors are able to recognize pathogen effectors through the acquisition of exogenous protein domains from other plant genes. We show that plant immune receptors with integrated domains are distributed unevenly across their phylogeny in grasses. Using phylogenetic analysis, we uncover a major integration clade, whose members underwent repeated independent integration events producing diverse fusions. This clade is ancestral in grasses with members often found on syntenic chromosomes. Analyses of these fusion events reveals that homologous receptors can be fused to diverse domains. Furthermore, we discover a 43 amino acid long motif associated with this dominant integration clade which is located immediately upstream of the fusion site. Sequence analysis reveals that DNA transposition and/or ectopic recombination are the most likely mechanisms of formation for nucleotide binding leucine rich repeat proteins with integrated domains. The identification of this subclass of plant immune receptors that is naturally adapted to new domain integration will inform biotechnological approaches for generating synthetic receptors with novel pathogen "baits."
McKay, G J; Egan, D; Morris, E; Scott, C; Brown, A E
1999-02-01
Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin.
McKay, Gareth J.; Egan, Damian; Morris, Elizabeth; Scott, Carol; Brown, Averil E.
1999-01-01
Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin. PMID:9925589
Short-Sequence DNA Repeats in Prokaryotic Genomes
van Belkum, Alex; Scherer, Stewart; van Alphen, Loek; Verbrugh, Henri
1998-01-01
Short-sequence DNA repeat (SSR) loci can be identified in all eukaryotic and many prokaryotic genomes. These loci harbor short or long stretches of repeated nucleotide sequence motifs. DNA sequence motifs in a single locus can be identical and/or heterogeneous. SSRs are encountered in many different branches of the prokaryote kingdom. They are found in genes encoding products as diverse as microbial surface components recognizing adhesive matrix molecules and specific bacterial virulence factors such as lipopolysaccharide-modifying enzymes or adhesins. SSRs enable genetic and consequently phenotypic flexibility. SSRs function at various levels of gene expression regulation. Variations in the number of repeat units per locus or changes in the nature of the individual repeat sequences may result from recombination processes or polymerase inadequacy such as slipped-strand mispairing (SSM), either alone or in combination with DNA repair deficiencies. These rather complex phenomena can occur with relative ease, with SSM approaching a frequency of 10−4 per bacterial cell division and allowing high-frequency genetic switching. Bacteria use this random strategy to adapt their genetic repertoire in response to selective environmental pressure. SSR-mediated variation has important implications for bacterial pathogenesis and evolutionary fitness. Molecular analysis of changes in SSRs allows epidemiological studies on the spread of pathogenic bacteria. The occurrence, evolution and function of SSRs, and the molecular methods used to analyze them are discussed in the context of responsiveness to environmental factors, bacterial pathogenicity, epidemiology, and the availability of full-genome sequences for increasing numbers of microorganisms, especially those that are medically relevant. PMID:9618442
Mollica, Peter A; Zamponi, Martina; Reid, John A; Sharma, Deepak K; White, Alyson E; Ogle, Roy C; Bruno, Robert D; Sachs, Patrick C
2018-06-13
Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat (TNR) expansion within the HTT gene. The mechanisms underlying HD-associated cellular dysfunction during pluripotency and neurodevelopment, are poorly understood. Here we tested the hypothesis that hypomethylation during cellular reprogramming leads to up-regulation of DNA repair genes and stabilization of TNRs in HD cells. We sought to determine how the HD TNR region is affected by global epigenetic changes through cellular reprogramming and early neurodifferentiation. We find that early-stage HD-affected neural stem cells (NSCs) contain increased levels of global 5-hydroxymethylation (5-hmC) and normalized DNA repair gene expression. We confirm TNR stability is induced during pluripotency, and maintained in HD-NSCs. We also identify up-regulation of 5-hmC catalyzing ten-eleven translocation (TET1/2) proteins, and show their knockdown leads to a corresponding decrease in select DNA repair gene expression. We further confirm decreased expression of TET regulating miR-29 family members in HD-NSCs. Our findings demonstrate that mechanisms involved in pluripotency recover the selected DNA repair gene expression and stabilizes pathogenic TNRs in HD. © 2018. Published by The Company of Biologists Ltd.
Chadi, Gerson; Maximino, Jessica Ruivo; Jorge, Frederico Mennucci de Haidar; Borba, Fabrício Castro de; Gilio, Joyce Meire; Callegaro, Dagoberto; Lopes, Camila Galvão; Santos, Samantha Nakamura Dos; Rebelo, Gabriela Natania Sales
2017-05-01
To investigate gene mutations in familial form (FALS) and sporadic form (SALS) of amyotrophic lateral sclerosis (ALS) in a highly miscegenated population. Frequencies of mutations in the C9orfF72, TARDBP, SOD1, FUS and VAPB genes were investigated in a cohort of FALS (n = 39) and SALS (n = 189) subjects from the Research Centre of the University of São Paulo School of Medicine. All patients were subjected to C9orf72 and TARDBP analyses. SOD1, FUS and VAPB were also evaluated in FALS subjects. Mutations were identified in FALS (61.3%) and SALS (5.3%) patients. Mutations in C9orf72 (12.8%, >45 GGGGCC hexanucleotide repeats), VAPB (43.6%, P56S) and SOD1 (7.7%, L145S) were identified in FALS subjects. Pathogenic C9orf72 expansions (2.64%) were identified in some SALS patients. Similar changes of TARDBP were found in SALS (2.64%) but not in FALS subjects. No FUS mutations were seen in any FALS subjects. TARDBP and C9orf72 mutations in this cohort were similar to those found in other centres worldwide. VAPB mutation (P56S) was highly prevalent in Brazilian FALS patients.
Dissemination, divergence and establishment of H7N9 influenza viruses in China.
Lam, Tommy Tsan-Yuk; Zhou, Boping; Wang, Jia; Chai, Yujuan; Shen, Yongyi; Chen, Xinchun; Ma, Chi; Hong, Wenshan; Chen, Yin; Zhang, Yanjun; Duan, Lian; Chen, Peiwen; Jiang, Junfei; Zhang, Yu; Li, Lifeng; Poon, Leo Lit Man; Webby, Richard J; Smith, David K; Leung, Gabriel M; Peiris, Joseph S M; Holmes, Edward C; Guan, Yi; Zhu, Huachen
2015-06-04
Since 2013 the occurrence of human infections by a novel avian H7N9 influenza virus in China has demonstrated the continuing threat posed by zoonotic pathogens. Although the first outbreak wave that was centred on eastern China was seemingly averted, human infections recurred in October 2013 (refs 3-7). It is unclear how the H7N9 virus re-emerged and how it will develop further; potentially it may become a long-term threat to public health. Here we show that H7N9 viruses have spread from eastern to southern China and become persistent in chickens, which has led to the establishment of multiple regionally distinct lineages with different reassortant genotypes. Repeated introductions of viruses from Zhejiang to other provinces and the presence of H7N9 viruses at live poultry markets have fuelled the recurrence of human infections. This rapid expansion of the geographical distribution and genetic diversity of the H7N9 viruses poses a direct challenge to current disease control systems. Our results also suggest that H7N9 viruses have become enzootic in China and may spread beyond the region, following the pattern previously observed with H5N1 and H9N2 influenza viruses.
Kay, Chris; Collins, Jennifer A; Skotte, Niels H; Southwell, Amber L; Warby, Simon C; Caron, Nicholas S; Doty, Crystal N; Nguyen, Betty; Griguoli, Annamaria; Ross, Colin J; Squitieri, Ferdinando; Hayden, Michael R
2015-01-01
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder. PMID:26201449
Freedenberg, D L; Gane, L W; Richards, C S; Lampe, M; Hills, J; O'Connor, R; Manchester, D; Taylor, A; Tassone, F; Hulseberg, D; Hagerman, R J; Patil, S R
1999-07-30
We report on an individual with developmental delays, short stature, skeletal abnormalities, normal pubertal development, expansion of the fragile X triplet repeat, as well as an isodicentric X chromosome. S is a 19-year-old woman who presented for evaluation of developmental delay. Pregnancy was complicated by a threatened miscarriage. She was a healthy child with intellectual impairment noted in infancy. Although she had global delays, speech was noted to be disproportionately delayed with few words until age 3.5 years. Facial appearance was consistent with fragile X syndrome. Age of onset of menses was 11 years with normal breast development. A maternal male second cousin had been identified with fragile X syndrome based on DNA studies. The mother of this child (S's maternal first cousin) and the grandfather (S's maternal uncle) were both intellectually normal but were identified as carrying triplet expansions in the premutation range. S's mother had some school difficulties but was not identified as having global delays. Molecular analysis of S's fragile X alleles noted an expansion of more than 400 CGG repeats in one allele. Routine cytogenetic studies of peripheral blood noted the presence of an isodicentric X in 81of 86 cells scored. Five of 86 cells were noted to be 45,X. Cytogenetic fra(X) studies from peripheral blood showed that the structurally normal chromosome had the fragile site in approximately 16% of the cells. Analysis of maternal fragile X alleles identified an allele with an expansion to approximately 110 repeats. FMRP studies detected the expression of the protein in 24% of cells studied. To our knowledge, this is the first patient reported with an isodicentric X and fragile X syndrome. Whereas her clinical phenotype is suggestive of fragile X syndrome, her skeletal abnormalities may represent the presence of the isodicentric X. Treatment of S with 20 mg/day of Prozac improved her behavior. In the climate of cost con trol, this individual reinforces the recommendation of obtaining chromosomes on individuals with developmental delay even with a family history of fragile X syndrome. Copyright 1999 Wiley-Liss, Inc.
Schardl, Christopher L; Young, Carolyn A; Hesse, Uljana; Amyotte, Stefan G; Andreeva, Kalina; Calie, Patrick J; Fleetwood, Damien J; Haws, David C; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G; Schweri, Kathryn K; Voisey, Christine R; Farman, Mark L; Jaromczyk, Jerzy W; Roe, Bruce A; O'Sullivan, Donal M; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G; Bullock, Charles T; Charlton, Nikki D; Chen, Li; Cox, Murray; Dinkins, Randy D; Florea, Simona; Glenn, Anthony E; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D; Khan, Anar K; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E; Tanaka, Eiji; Webb, Jennifer S; Wilson, Ella V; Wiseman, Jennifer L; Yoshida, Ruriko; Zeng, Zheng
2013-01-01
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Schardl, Christopher L.; Young, Carolyn A.; Hesse, Uljana; Amyotte, Stefan G.; Andreeva, Kalina; Calie, Patrick J.; Fleetwood, Damien J.; Haws, David C.; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G.; Schweri, Kathryn K.; Voisey, Christine R.; Farman, Mark L.; Jaromczyk, Jerzy W.; Roe, Bruce A.; O'Sullivan, Donal M.; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G.; Bullock, Charles T.; Charlton, Nikki D.; Chen, Li; Cox, Murray; Dinkins, Randy D.; Florea, Simona; Glenn, Anthony E.; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R.; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D.; Khan, Anar K.; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E.; Tanaka, Eiji; Webb, Jennifer S.; Wilson, Ella V.; Wiseman, Jennifer L.; Yoshida, Ruriko; Zeng, Zheng
2013-01-01
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses. PMID:23468653
A TALE-inspired computational screen for proteins that contain approximate tandem repeats.
Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias
2017-01-01
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.
A TALE-inspired computational screen for proteins that contain approximate tandem repeats
Krwawicz, Joanna
2017-01-01
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen. PMID:28617832
Anggraeni, Melisa R; Connors, Natalie K; Wu, Yang; Chuan, Yap P; Lua, Linda H L; Middelberg, Anton P J
2013-09-13
Biomolecular engineering enables synthesis of improved proteins through synergistic fusion of modules from unrelated biomolecules. Modularization of peptide antigen from an unrelated pathogen for presentation on a modular virus-like particle (VLP) represents a new and promising approach to synthesize safe and efficacious vaccines. Addressing a key knowledge gap in modular VLP engineering, this study investigates the underlying fundamentals affecting the ability of induced antibodies to recognize the native pathogen. Specifically, this quality of immune response is correlated to the peptide antigen module structure. We modularized a helical peptide antigen element, helix 190 (H190) from the influenza hemagglutinin (HA) receptor binding region, for presentation on murine polyomavirus VLP, using two strategies aimed to promote H190 helicity on the VLP. In the first strategy, H190 was flanked by GCN4 structure-promoting elements within the antigen module; in the second, dual H190 copies were arrayed as tandem repeats in the module. Molecular dynamics simulation predicted that tandem repeat arraying would minimize secondary structural deviation of modularized H190 from its native conformation. In vivo testing supported this finding, showing that although both modularization strategies conferred high H190-specific immunogenicity, tandem repeat arraying of H190 led to a strikingly higher immune response quality, as measured by ability to generate antibodies recognizing a recombinant HA domain and split influenza virion. These findings provide new insights into the rational engineering of VLP vaccines, and could ultimately enable safe and efficacious vaccine design as an alternative to conventional approaches necessitating pathogen cultivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molano, Eddy Patricia Lopez; Cabrera, Odalys García; Jose, Juliana; do Nascimento, Leandro Costa; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Alvarez, Javier Correa; Tiburcio, Ricardo Augusto; Tokimatu Filho, Paulo Massanari; de Lima, Gustavo Machado Alvares; Guido, Rafael Victório Carvalho; Corrêa, Thamy Lívia Ribeiro; Leme, Adriana Franco Paes; Mieczkowski, Piotr; Pereira, Gonçalo Amarante Guimarães
2018-01-17
The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity.
C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease
Haeusler, Aaron R.; Donnelly, Christopher J.; Periz, Goran; Simko, Eric A.J.; Shaw, Patrick G.; Kim, Min-Sik; Maragakis, Nicholas J.; Troncoso, Juan C.; Pandey, Akhilesh; Sattler, Rita; Rothstein, Jeffrey D.; Wang, Jiou
2014-01-01
Summary A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformationdependent manner. Specifically, nucleolin (NCL), an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases. PMID:24598541
Non-radioactive detection of trinucleotide repeat size variability.
Tomé, Stéphanie; Nicole, Annie; Gomes-Pereira, Mario; Gourdon, Genevieve
2014-03-06
Many human diseases are associated with the abnormal expansion of unstable trinucleotide repeat sequences. The mechanisms of trinucleotide repeat size mutation have not been fully dissected, and their understanding must be grounded on the detailed analysis of repeat size distributions in human tissues and animal models. Small-pool PCR (SP-PCR) is a robust, highly sensitive and efficient PCR-based approach to assess the levels of repeat size variation, providing both quantitative and qualitative data. The method relies on the amplification of a very low number of DNA molecules, through sucessive dilution of a stock genomic DNA solution. Radioactive Southern blot hybridization is sensitive enough to detect SP-PCR products derived from single template molecules, separated by agarose gel electrophoresis and transferred onto DNA membranes. We describe a variation of the detection method that uses digoxigenin-labelled locked nucleic acid probes. This protocol keeps the sensitivity of the original method, while eliminating the health risks associated with the manipulation of radiolabelled probes, and the burden associated with their regulation, manipulation and waste disposal.
Correlating Phytophthora ramorum infection rate and lesion expansion in tanoak
Katherine Hayden; Heather Rickard; Matteo Garbelotto
2008-01-01
To date, resistance to Phytophthora ramorum in its most susceptible hosts has most commonly been quantified by lesion growth, after wounding or non-wounding inoculations via mycelia or high concentrations of zoospores. However, even highly susceptible hosts may not always become infected when they are exposed to a pathogen under ecologically...
USDA-ARS?s Scientific Manuscript database
Empirical and mechanistic modeling indicate that aerially transmitted pathogens follow a power law, resulting in dispersive epidemic waves. The spread parameter (b) of the power law model, which defines the distance travelled by the epidemic wave front, has been found to be approximately 2 for sever...
USDA-ARS?s Scientific Manuscript database
Population growth, frontier agricultural expansion, and urbanization transform the landscape and the surrounding ecosystem, affecting climate, diseases, and interactions between animals and humans. Additionally, the Earth’s oceans serve as the engine of the Earth’s climate and ecosystems, and they a...
USDA-ARS?s Scientific Manuscript database
Trunk diseases are responsible for important economic losses in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections. Variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to differences in the d...
Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua
2016-05-06
One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.
Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J.; Wang, Baohua; Wang, Zonghua
2016-01-01
One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants. PMID:27151494
Within-host evolution of bacterial pathogens
Didelot, Xavier; Walker, A. Sarah; Peto, Tim E.; Crook, Derrick W.; Wilson, Daniel J.
2016-01-01
Whole genome sequencing has opened the way to investigating the dynamics and genomic evolution of bacterial pathogens during colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in the infected host — in particular, the evolution of drug resistance and host adaptation in patients chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, pointing to an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections, and to suggest the best treatment option. PMID:26806595
Within-host evolution of bacterial pathogens.
Didelot, Xavier; Walker, A Sarah; Peto, Tim E; Crook, Derrick W; Wilson, Daniel J
2016-03-01
Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, S.; Leggo, J.; Ferguson-Smith, M.A.
1996-04-09
A group of diseases are due to abnormal expansions of trinucleotide repeats. These diseases all affect the nervous system. In addition, they manifest the phenomenon of anticipation, in which the disease tends to present at an earlier age or with greater severity in successive generations. Many additional genes with trinucleotide repeats are believed to be expressed in the human brain. As anticipation has been reported in schizophrenia and bipolar affective disorder, we have examined allele distributions of 13 trinucleotide repeat-containing genes, many novel and all expressed in the brain, in genomic DNA from schizophrenic (n = 20-97) and bipolar affectivemore » disorder patients (23-30) and controls (n = 43-146). No evidence was obtained to implicate expanded alleles in these 13 genes as causal factors in these diseases. 26 refs., 1 fig., 2 tabs.« less
Dispersion Measure Variation of Repeating Fast Radio Burst Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuan-Pei; Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu
The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2)more » FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.« less
Hall, L Malcolm; Collins, Catherine; Collet, Bertrand
2018-02-02
The utility of molecular response data arising from in-vivo single and repeated measure fish disease-challenge experiments is compared. An in-silico 'experiment' involving the generation of two imaginary immune-molecule quantity response profiles over time for individual animals was carried out. Daily 'observed' molecule quantities were drawn from the 'known' individual response profiles to mimic the results of single and repeated measurement. The results indicate that repeated measure experiments are required to infer individual level response profiles, and that these experiments also provide more accurate summary statistics and data more suited to inferring the dependent ordering of the molecular response. Additionally repeated measure experiments utilise fewer animals than single measure experiments. These results are described alongside a discussion of experimental methodological issues pertinent to the adoption of aquatic animal repeated measure experimental designs. We conclude that investigators need to take particular care when making inferences from single measure experiments and that serious consideration should be given to using repeated measure experiments for in-vivo fish disease-challenge investigations. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Natale, Jo Anna
1993-01-01
Inside one Washington, DC, elementary school, Principal John Pannell has high hopes for his students and an expansive school vision. Malcolm X School compensates for disorder outside by clearly inculcating rules and behavior expectations. Children in school uniforms daily repeat a motto promoting Malcolm X as a school of love allowing no hitting,…
Chang, S C; Macêdo, D P C; Souza-Motta, C M; Oliveira, N T
2013-08-12
Fusarium verticillioides is a pathogen of agriculturally important crops, especially maize. It is considered one of the most important pathogens responsible for fumonisin contamination of food products, which causes severe, chronic, and acute intoxication in humans and animals. Moreover, it is recognized as a cause of localized infections in immunocompetent patients and disseminated infections among severely immunosuppressed patients. Several molecular tools have been used to analyze the intraspecific variability of fungi. The objective of this study was to use molecular markers to compare pathogenic isolates of F. verticillioides and isolates of the same species obtained from clinical samples of patients with Fusarium mycoses. The molecular markers that we used were inter-simple sequence repeat markers (primers GTG5 and GACA4), intron splice site primer (primer EI1), random amplified polymorphic DNA marker (primer OPW-6), and restriction fragment length polymorphism-internal transcribed spacer (ITS) from rDNA. From the data obtained, clusters were generated based on the UPGMA clustering method. The amplification products obtained using primers ITS4 and ITS5 and loci ITS1-5.8-ITS2 of the rDNA yielded fragments of approximately 600 bp for all the isolates. Digestion of the ITS region fragment using restriction enzymes such as EcoRI, DraI, BshI, AluI, HaeIII, HinfI, MspI, and PstI did not permit differentiation among pathogenic and clinical isolates. The inter-simple sequence repeat, intron splice site primer, and random amplified polymorphic DNA markers presented high genetic homogeneity among clinical isolates in contrast to the high variability found among the phytopathogenic isolates of F. verticillioides.
TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis
Anderson, Ryan G.; Cherkis, Karen A.; Law, Terry F.; Liu, Qingli L.; Machius, Mischa; Nimchuk, Zachary L.; Yang, Li; Chung, Eui-Hwan; El Kasmi, Farid; Hyunh, Michael; Sondek, John E.; Dangl, Jeffery L.
2017-01-01
Detection of pathogens by plants is mediated by intracellular nucleotide-binding site leucine-rich repeat (NLR) receptor proteins. NLR proteins are defined by their stereotypical multidomain structure: an N-terminal Toll–interleukin receptor (TIR) or coiled-coil (CC) domain, a central nucleotide-binding (NB) domain, and a C-terminal leucine-rich repeat (LRR). The plant innate immune system contains a limited NLR repertoire that functions to recognize all potential pathogens. We isolated Response to the bacterial type III effector protein HopBA1 (RBA1), a gene that encodes a TIR-only protein lacking all other canonical NLR domains. RBA1 is sufficient to trigger cell death in response to HopBA1. We generated a crystal structure for HopBA1 and found that it has similarity to a class of proteins that includes esterases, the heme-binding protein ChaN, and an uncharacterized domain of Pasteurella multocida toxin. Self-association, coimmunoprecipitation with HopBA1, and function of RBA1 require two previously identified TIR–TIR dimerization interfaces. Although previously described as distinct in other TIR proteins, in RBA1 neither of these interfaces is sufficient when the other is disrupted. These data suggest that oligomerization of RBA1 is required for function. Our identification of RBA1 demonstrates that “truncated” NLRs can function as pathogen sensors, expanding our understanding of both receptor architecture and the mechanism of activation in the plant immune system. PMID:28137883
Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira
Xu, Yinghua; Zhu, Yongzhang; Wang, Yuezhu; Chang, Yung-Fu; Zhang, Ying; Jiang, Xiugao; Zhuang, Xuran; Zhu, Yongqiang; Zhang, Jinlong; Zeng, Lingbing; Yang, Minjun; Li, Shijun; Wang, Shengyue; Ye, Qiang; Xin, Xiaofang; Zhao, Guoping; Zheng, Huajun; Guo, Xiaokui; Wang, Junzhi
2016-01-01
Leptospirosis, caused by pathogenic Leptospira spp., has recently been recognized as an emerging infectious disease worldwide. Despite its severity and global importance, knowledge about the molecular pathogenesis and virulence evolution of Leptospira spp. remains limited. Here we sequenced and analyzed 102 isolates representing global sources. A high genomic variability were observed among different Leptospira species, which was attributed to massive gene gain and loss events allowing for adaptation to specific niche conditions and changing host environments. Horizontal gene transfer and gene duplication allowed the stepwise acquisition of virulence factors in pathogenic Leptospira evolved from a recent common ancestor. More importantly, the abundant expansion of specific virulence-related protein families, such as metalloproteases-associated paralogs, were exclusively identified in pathogenic species, reflecting the importance of these protein families in the pathogenesis of leptospirosis. Our observations also indicated that positive selection played a crucial role on this bacteria adaptation to hosts. These novel findings may lead to greater understanding of the global diversity and virulence evolution of Leptospira spp. PMID:26833181
Xu, Xi-Hui; Su, Zhen-Zhu; Wang, Chen; Kubicek, Christian P.; Feng, Xiao-Xiao; Mao, Li-Juan; Wang, Jia-Ying; Chen, Chen; Lin, Fu-Cheng; Zhang, Chu-Long
2014-01-01
The fungus Harpophora oryzae is a close relative of the pathogen Magnaporthe oryzae and a beneficial endosymbiont of wild rice. Here, we show that H. oryzae evolved from a pathogenic ancestor. The overall genomic structures of H. and M. oryzae were found to be similar. However, during interactions with rice, the expression of 11.7% of all genes showed opposing trends in the two fungi, suggesting differences in gene regulation. Moreover, infection patterns, triggering of host defense responses, signal transduction and nutritional preferences exhibited remarkable differentiation between the two fungi. In addition, the H. oryzae genome was found to contain thousands of loci of transposon-like elements, which led to the disruption of 929 genes. Our results indicate that the gain or loss of orphan genes, DNA duplications, gene family expansions and the frequent translocation of transposon-like elements have been important factors in the evolution of this endosymbiont from a pathogenic ancestor. PMID:25048173
Harnessing Whole Genome Sequencing in Medical Mycology.
Cuomo, Christina A
2017-01-01
Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.
Chen, Chiung-Mei; Lee, Li-Ching; Soong, Bing-Wen; Fung, Hon-Chung; Hsu, Wen-Chuin; Lin, Pei-Ying; Huang, Hui-Ju; Chen, Fen-Lin; Lin, Cheng-Yueh; Lee-Chen, Guey-Jen; Wu, Yih-Ru
2010-03-01
Spinocerebellar ataxia type 17 (SCA17) involves the expression of a CAG/CAA expansion mutation in the gene encoding TATA-box binding protein (TBP), a general transcription initiation factor. The spectrum of SCA17 clinical presentation is broad. We screened for triplet expansion in the TBP gene in Taiwanese Parkinson's disease (PD), Alzheimer's disease (AD) and atypical parkinsonism and investigated the functional implication of expanded alleles using lymphoblastoid cells as a model. A total of 6 mildly expanded alleles (44-46) were identified in patients group. The frequency of the individuals carrying expanded alleles in PD (3/602 [0.5%]), AD (2/245 [0.8%]) and atypical parkinsonism (1/44 [2.3%]) is not significant as compared to that in the control subjects (0/644 [0.0%]). In lymphoblastoid cells, HSPA5, HSPA8 and HSPB1 expression levels in cells with expanded TBP were significantly lower than that of the control cells. Although not significantly, the levels of PARK7 protein isoforms 6.1 and 6.4 are notably increased in SCA17 lymphoblastoid cells. Treatment of TBH (tert-butyl hydroperoxide) significantly increases cell death in the cells with mildly expanded TBP. Our findings expand the spectrum of SCA17 phenotype and may contribute to our understanding of the disease. Copyright 2009 Elsevier B.V. All rights reserved.
Psychiatric symptoms and CAG expansion in Huntington`s disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, M.W.; Schmid, W.; Spiegel, R.
1996-02-16
The mutation responsible for Huntington`s disease (HD) is an elongated CAG repeat in the coding region of the IT15 gene. A PCR-based test with high sensitivity and accuracy is now available to identify asymptomatic gene carriers and patients. An inverse correlation between CAG copy number and age at disease onset has been found in a large number of affected individuals. The influence of the CAG repeat expansion on other phenotypic manifestations, especially specific psychiatric symptoms has not been studied intensively. In order to elucidate this situation we investigated the relation between CAG copy number and distinct psychiatric phenotypes found inmore » 79 HD-patients. None of the four differentiated categories (personality change, psychosis, depression, and nonspecific alterations) showed significant differences in respect to size of the CAG expansion. In addition, no influence of individual sex on psychiatric presentation could be found. On the other hand in patients with personality changes maternal transmission was significantly more frequent compared with all other groups. Therefore we suggest that clinical severity of psychiatric features in HD is not directly dependent on the size of the dynamic mutation involved. The complex pathogenetic mechanisms leading to psychiatric alterations are still unknown and thus genotyping does not provide information about expected psychiatric symptoms in HD gene carriers. 40 refs., 1 fig., 2 tabs.« less
Huntington disease without CAG expansion: Phenocopies or errors in assignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew, S.E.; Goldberg, Y.P.; Kremer, B.
1994-05-01
Huntington disease (HD) has been shown to be associated with an expanded CAG repeat within a novel gene on 4p16.3 (IT15). A total of 30 of 1,022 affected persons (2.9% of the cohort) did not have an expanded CAG in the disease range. The reasons for not observing expansion in affected individuals are important for determining the sensitivity of using repeat length both for diagnosis of affected patients and for predictive testing programs and may have biological relevance for the understanding of the molecular mechanism underlying HD. Here the authors show that the majority (18) of the individuals with normalmore » sized alleles represent misdiagnosis, sample mix-up, or clerical error. The remaining 12 patients represent possible phenocopies for HD. In at least four cases, family studies of these phenocopies excluded 4p16.3 as the region responsible for the phenotype. Mutations in the HD gene that are other than CAG expansion have not been excluded for the remaining eight cases, however, in as many as seven of these persons, retrospective review of these patients' clinical features identified characteristics not typical for HD. This study shows that on rare occasions mutations in other, as-yet-undefined genes can present with a clinical phenotype very similar to that of HD. 30 refs., 4 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Lasota, Rafal; Pierscieniak, Karolina; Garcia, Pascale; Simon-Bouhet, Benoit; Wolowicz, Maciej
2016-11-01
The aim of the study was to determine genetic diversity in the soft-shell clam Mya arenaria on a wide geographical scale using mtDNA COI gene sequences. Low levels of genetic diversity was found, which can most likely be explained by a bottleneck effect during Pleistocene glaciations and/or selection. The geographical genetic structuring of the studied populations was also very low. The star-like phylogeny of the haplotypes indicates a relatively recent, rapid population expansion following the glaciation period and repeated expansion following the founder effect(s) after the initial introduction of the soft-shell clam to Europe. North American populations are characterized by the largest number of haplotypes, including rare ones, as expected for native populations. Because of the founder effect connected with initial and repeated expansion events, European populations have significantly lower numbers of haplotypes in comparison with those of North America. We also observed subtle differentiations among populations from the North and Baltic seas. The recently founded soft-shell clam population in the Black Sea exhibited the highest genetic similarity to Baltic populations, which confirmed the hypothesis that M. arenaria was introduced to the Gulf of Odessa from the Baltic Sea. The most enigmatic results were obtained for populations from the White Sea, which were characterized by high genetic affinity with American populations.
Functional insights from the distribution and role of homopeptide repeat-containing proteins
Faux, Noel G.; Bottomley, Stephen P.; Lesk, Arthur M.; Irving, James A.; Morrison, John R.; de la Banda, Maria Garcia; Whisstock, James C.
2005-01-01
Expansion of “low complex” repeats of amino acids such as glutamine (Poly-Q) is associated with protein misfolding and the development of degenerative diseases such as Huntington's disease. The mechanism by which such regions promote misfolding remains controversial, the function of many repeat-containing proteins (RCPs) remains obscure, and the role (if any) of repeat regions remains to be determined. Here, a Web-accessible database of RCPs is presented. The distribution and evolution of RCPs that contain homopeptide repeats tracts are considered, and the existence of functional patterns investigated. Generally, it is found that while polyamino acid repeats are extremely rare in prokaryotes, several eukaryote putative homologs of prokaryote RCP—involved in important housekeeping processes—retain the repetitive region, suggesting an ancient origin for certain repeats. Within eukarya, the most common uninterrupted amino acid repeats are glutamine, asparagines, and alanine. Interestingly, while poly-Q repeats are found in vertebrates and nonvertebrates, poly-N repeats are only common in more primitive nonvertebrate organisms, such as insects and nematodes. We have assigned function to eukaryote RCPs using Online Mendelian Inheritance in Man (OMIM), the Human Reference Protein Database (HRPD), FlyBase, and Wormpep. Prokaryote RCPs were annotated using BLASTp searches and Gene Ontology. These data reveal that the majority of RCPs are involved in processes that require the assembly of large, multiprotein complexes, such as transcription and signaling. PMID:15805494
New primer for specific amplification of the CAG repeat in Huntington disease alleles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, C.E.; Hodes, M.E.
1994-09-01
Huntington disease is an autosomal dominant neurodegenerative disorder caused by an expansion of a CAG trinucleotide repeat near the 5{prime} end of the gene for Huntington disease (IT15). The CAG repeat is flanked by a variable-length CCG repeat that is included in the amplification product obtained with most currently used primer sets and PCR protocols. Inclusion of this adjacent CCG repeat complicates the accurate assessment of CAG repeat length and interferes with the genotype determination of those individuals carrying alleles in the intermediate range between normal and expanded sized. Due to the GC-rich nature of this region, attempts at designingmore » a protocol for amplification of only the CAG repeat have proved unreliable and difficult to execute. We report here the development of a compatible primer set and PCR protocol that yields consistent amplification of the CAG-repeat region. PCR products can be visualized in ethidium bromide-stained agarose gels for rapid screening or in 6% polyacrylamide gels for determination of exact repeat length. This assay produces bands that can be sized accurately, while eliminating most nonspecific products. Fifty-five specimens examined showed consistency with another well-known method, but one that amplifies the CCG repeats as well. The results we obtained also matched the known carrier status of the donors.« less
Global Transport Networks and Infectious Disease Spread
Tatem, A.J.; Rogers, D.J.; Hay, S.I.
2011-01-01
Air, sea and land transport networks continue to expand in reach, speed of travel and volume of passengers and goods carried. Pathogens and their vectors can now move further, faster and in greater numbers than ever before. Three important consequences of global transport network expansion are infectious disease pandemics, vector invasion events and vector-borne pathogen importation. This review briefly examines some of the important historical examples of these disease and vector movements, such as the global influenza pandemics, the devastating Anopheles gambiae invasion of Brazil and the recent increases in imported Plasmodium falciparum malaria cases. We then outline potential approaches for future studies of disease movement, focussing on vector invasion and vector-borne disease importation. Such approaches allow us to explore the potential implications of international air travel, shipping routes and other methods of transport on global pathogen and vector traffic. PMID:16647974
Receptor-like kinases in plant innate immunity.
Wu, Ying; Zhou, Jian-Min
2013-12-01
Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the identification of a number of immune receptors and components of immune receptor complexes. It is now clear that receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are key pattern-recognition receptors (PRRs) for microbe- and plant-derived molecular patterns that are associated with pathogen invasion. RLKs and RLPs involved in immune signaling belong to large gene families in plants and have undergone lineage specific expansion. Molecular evolution and population studies on phytopathogenic molecular signatures and their receptors have provided crucial insight into the co-evolution between plants and pathogens. [Figure: see text] Jian-Min Zhou (Corresponding author). © 2013 Institute of Botany, Chinese Academy of Sciences.
Barreiro, Luis B; Patin, Etienne; Neyrolles, Olivier; Cann, Howard M; Gicquel, Brigitte; Quintana-Murci, Lluís
2005-11-01
The innate immunity system constitutes the first line of host defense against pathogens. Two closely related innate immunity genes, CD209 and CD209L, are particularly interesting because they directly recognize a plethora of pathogens, including bacteria, viruses, and parasites. Both genes, which result from an ancient duplication, possess a neck region, made up of seven repeats of 23 amino acids each, known to play a major role in the pathogen-binding properties of these proteins. To explore the extent to which pathogens have exerted selective pressures on these innate immunity genes, we resequenced them in a group of samples from sub-Saharan Africa, Europe, and East Asia. Moreover, variation in the number of repeats of the neck region was defined in the entire Human Genome Diversity Panel for both genes. Our results, which are based on diversity levels, neutrality tests, population genetic distances, and neck-region length variation, provide genetic evidence that CD209 has been under a strong selective constraint that prevents accumulation of any amino acid changes, whereas CD209L variability has most likely been shaped by the action of balancing selection in non-African populations. In addition, our data point to the neck region as the functional target of such selective pressures: CD209 presents a constant size in the neck region populationwide, whereas CD209L presents an excess of length variation, particularly in non-African populations. An additional interesting observation came from the coalescent-based CD209 gene tree, whose binary topology and time depth (approximately 2.8 million years ago) are compatible with an ancestral population structure in Africa. Altogether, our study has revealed that even a short segment of the human genome can uncover an extraordinarily complex evolutionary history, including different pathogen pressures on host genes as well as traces of admixture among archaic hominid populations.
Role of Replication and CpG Methylation in Fragile X Syndrome CGG Deletions in Primate Cells
Nichol Edamura, Kerrie; Leonard, Michelle R.; Pearson, Christopher E.
2005-01-01
Instability of the fragile X CGG repeat involves both maternally derived expansions and deletions in the gametes of full-mutation males. It has also been suggested that the absence of aberrant CpG methylation may enhance repeat deletions through an unknown process. The effect of CGG tract length, DNA replication direction, location of replication initiation, and CpG methylation upon CGG stability were investigated using an SV40 primate replication system. Replication-dependant deletions with 53 CGG repeats were observed when replication was initiated proximal to the repeat, with CGG as the lagging-strand template. When we initiated replication further from the repeat, while maintaining CGG as the lagging-strand template or using CCG as the lagging-strand template, significant instability was not observed. CpG methylation of the unstable template stabilized the repeat, decreasing both the frequency and the magnitude of deletion events. Furthermore, CpG methylation slowed the efficiency of replication for all templates. Interestingly, replication forks displayed no evidence of a block at the CGG repeat tract, regardless of replication direction or CpG methylation status. Templates with 20 CGG repeats were stable under all circumstances. These results reveal that CGG deletions occur during replication and are sensitive to replication-fork dynamics, tract length, and CpG methylation. PMID:15625623
Liu, Jinling; Liu, Xionglun; Dai, Liangying; Wang, Guoliang
2007-09-01
Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the mammalian interleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.
Gray, Michelle; Shirasaki, Dyna I.; Cepeda, Carlos; Andre, Veronique M.; Wilburn, Brian; Lu, Xiao-Hong; Tao, Jifang; Yamazaki, Irene; Li, Shi-Hua; Sun, Yi E.; Li, Xiao-Jiang; Levine, Michael S.; William Yang, X
2008-01-01
To elucidate the pathogenic mechanisms in Huntington’s disease (HD) elicited by expression of full-length human mutant huntingtin (fl-mhtt), a Bacterial Artificial Chromosome (BAC)-mediated transgenic mouse model (BACHD) was developed expressing fl-mhtt with 97 glutamine repeats under the control of endogenous htt regulatory machinery on the BAC. BACHD mice exhibit progressive motor deficits, neuronal synaptic dysfunction, and late-onset selective neuropathology, which includes significant cortical and striatal atrophy and striatal dark neuron degeneration. Power analyses reveal the robustness of the behavioral and neuropathological phenotypes, suggesting BACHD as a suitable fl-mhtt mouse model for preclinical studies. Further analyses of BACHD mice provide additional insights into how mhtt may elicit neuropathogenesis. First, unlike prior fl-mhtt mouse models, BACHD mice reveal that the slowly progressive and selective pathogenic process in HD mouse brains can occur without early and diffuse nuclear accumulation of aggregated mhtt (i.e. as detected by immunostaining with the EM48 antibody). Instead, a relatively steady-state level of predominantly full-length mhtt and a small amount of mhtt N-terminal fragments are sufficient to elicit the disease process. Second, the polyglutamine repeat within fl-mhtt in BACHD mice is encoded by a mixed CAA-CAG repeat, which is stable in both the germline and somatic tissues including the cortex and striatum at the onset of neuropathology. Therefore, our results suggest that somatic repeat instability does not play a necessary role in selective neuropathogenesis in BACHD mice. In summary, the BACHD model constitutes a novel and robust in vivo paradigm for the investigation of HD pathogenesis and treatment. PMID:18550760
Jwa, Nam-Soo; Hwang, Byung Kook
2017-01-01
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.
Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D’Hont, Angélique
2013-01-01
Background Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. Methodology/Principal Findings The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. Conclusion The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas. PMID:23840670
Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D'Hont, Angélique
2013-01-01
Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.
Yonezawa, Akihito; Onaka, Takashi; Imada, Kazunori
2009-08-01
Most cases of infectious mononucleosis (IM) are caused by Epstein-Barr virus (EBV). Other pathogens have been reported to cause heterophile-negative mononucleosis-like syndrome, including cytomegalovirus (CMV) and human immunodeficiency virus type-1 (HIV-1). Primary CMV infection is often asymptomatic in immunocompetent individuals. In this article, we describe a patient with prolonged fever and fatigue, who developed transient monoclonal CD8+ T-cell lymphocytosis after primary CMV infection. Monoclonal gene rearrangement of T-cell receptor (TCR) beta locus was transiently detected in DNA from peripheral lymphocytes. Monoclonal rearrangement and atypical lymphocytosis disappeared after treatment with anti-viral agents. These observations imply that monoclonal expansion of T-cells could be a reactive phenomenon of primary CMV infection and TCR gene rearrangement is not specific for malignancy. Physicians should carefully follow patients with monoclonal expansion of CD8+ T-cells after CMV-IM in order to rule out T cell malignancy.
Tristan M. Cofer; Katherine J. Elliott; Janis K. Bush; Chelcy F. Miniat
2018-01-01
Southern Appalachian riparian forests have undergone changes in composition and function from invasive pathogens and pests. Castanea dentata mortality in the 1930s from chestnut blight (Cryphonectria parasitica) and Tsuga canadensis mortality in the 2000s from the hemlock woolly adelgid (Adelges tsugae) have led to the expansion and...
USDA-ARS?s Scientific Manuscript database
Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic ...
USDA-ARS?s Scientific Manuscript database
Trunk diseases threaten the longevity and productivity of grapevines in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections, but variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to their un...
Ni, ZhouXian; Ye, YouJu; Bai, Tiandao; Xu, Meng; Xu, Li-An
2017-09-11
The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.
The genotype-phenotype landscape of familial amyotrophic lateral sclerosis in Australia.
McCann, E P; Williams, K L; Fifita, J A; Tarr, I S; O'Connor, J; Rowe, D B; Nicholson, G A; Blair, I P
2017-09-01
Amyotrophic lateral sclerosis (ALS) is a clinically and genetically heterogeneous fatal neurodegenerative disease. Around 10% of ALS cases are hereditary. ALS gene discoveries have provided most of our understanding of disease pathogenesis. We aimed to describe the genetic landscape of ALS in Australia by assessing 1013 Australian ALS patients for known ALS mutations by direct sequencing, whole exome sequencing or repeat primed polymerase chain reaction. Age of disease onset and disease duration were used for genotype-phenotype correlations. We report 60.8% of Australian ALS families in this cohort harbour a known ALS mutation. Hexanucleotide repeat expansions in C9orf72 accounted for 40.6% of families and 2.9% of sporadic patients. We also report ALS families with mutations in SOD1 (13.7%), FUS (2.4%), TARDBP (1.9%), UBQLN2 (.9%), OPTN (.5%), TBK1 (.5%) and CCNF (.5%). We present genotype-phenotype correlations between these genes as well as between gene mutations. Notably, C9orf72 hexanucleotide repeat expansion positive patients experienced significantly later disease onset than ALS mutation patients. Among SOD1 families, p.I114T positive patients had significantly later onset and longer survival. Our report highlights a unique spectrum of ALS gene frequencies among patients from the Australian population, and further, provides correlations between specific ALS mutations with disease onset and/or duration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Redefining disease emergence to improve prioritization and macro-ecological analyses.
Rosenthal, Samantha R; Ostfeld, Richard S; McGarvey, Stephen T; Lurie, Mark N; Smith, Katherine F
2015-12-01
Microbial infections are as old as the hosts they sicken, but interest in the emergence of pathogens and the diseases they cause has been accelerating rapidly. The term 'emerging infectious disease' was coined in the mid-1900s to describe changes in disease dynamics in the modern era. Both the term and the phenomena it is meant to characterize have evolved and diversified over time, leading to inconsistencies and confusion. Here, we review the evolution of the term 'emerging infectious disease' (EID) in the literature as applied to human hosts. We examine the pathways (e.g., speciation or strain differentiation in the causative agent vs. rapid geographic expansion of an existing pathogen) by which diseases emerge. We propose a new framework for disease and pathogen emergence to improve prioritization. And we illustrate how the operational definition of an EID affects conclusions concerning the pathways by which diseases emerge and the ecological and socioeconomic drivers that elicit emergence. As EIDs appear to be increasing globally, and resources for science level off or decline, the research community is pushed to prioritize its focus on the most threatening diseases, riskiest potential pathogens, and the places they occur. The working definition of emerging infectious diseases and pathogens plays a crucial role in prioritization, but we argue that the current definitions may be impeding these efforts. We propose a new framework for classifying pathogens and diseases as "emerging" that distinguishes EIDs from emerging pathogens and novel potential pathogens. We suggest prioritization of: 1) EIDs for adaptation and mitigation, 2) emerging pathogens for preventive measures, and 3) novel potential pathogens for intensive surveillance.
Lloyd, C H; Yearn, J A; Cowper, G A; Blavier, J; Vanderdonckt, M
2004-07-01
The setting expansion is an important property for a phosphate-bonded investment material. This research was undertaken to investigate a test that might be suitable for its measurement when used in a Standard. In the 'Casting-Ring Test', the investment sample is contained in a steel ring and expands to displace a precisely positioned pin. Variables with the potential to alter routine reproduction of the value were investigated. The vacuum-mixer model is a production laboratory variable that must not be ignored and for this reason, experiments were repeated using a different vacuum-mixer located at a second test site. Restraint by the rigid ring material increased expansion, while force on the pin reduced it. Expansion was specific to the lining selected. Increased environmental temperature decreased the final value. Expansion was still taking place at a time at which its value might be measured. However, when these factors are set, the reproducibility of values for setting expansion was good at both test sites (coefficient of variation 14%, at most). The results revealed that with the control that is available reliable routine measurement is possible in a Standard test. The inter-laboratory variable, vacuum-mixer model, produced significant differences and it should be the subject of further investigation.
Ciampi-Guillardi, Maisa; Baldauf, Cristina; Souza, Anete Pereira; Silva-Junior, Geraldo José; Amorim, Lilian
2014-07-01
Citrus crops in São Paulo State, Brazil, have been severely affected by postbloom fruit drop disease (PFD), which is caused by Colletotrichum acutatum. This disease leads to the drop of up to 100% of young fruits. Previous studies have assumed that this pathogen exhibits a clonal reproductive mode, although no population genetic studies have been conducted so far. Thus, the genetic structure of six C. acutatum populations from sweet orange orchards showing PFD symptoms was determined using nine microsatellite markers, enabling inference on predominant mode of reproduction. C. acutatum populations exhibit a nearly panmictic genetic structure and a high degree of admixture, indicating either ongoing contemporary gene flow at a regional scale or a recent introduction from a common source, since this pathogen was introduced in Brazil only very recently. Sharing haplotypes among orchards separated by 400 km suggests the natural dispersal of fungal propagules, with the possible involvement of pollinators. A significant population expansion was detected, which was consistent with an increase in host density associated with crop expansion toward new areas across the state. Findings of moderate to high levels of haplotypic diversity and gametic equilibrium suggest that recombination might play an important role in these pathogen populations, possibly via parasexual reproduction or a cryptic sexual cycle. This study provides additional tools for epidemiological studies of C. acutatum to improve prevention and management strategies for this disease.
Wakeel, Abdul; den Dulk-Ras, Amke; Hooykaas, Paul J. J.; McBride, Jere W.
2011-01-01
Ehrlichia chaffeensis has type 1 and 4 secretion systems (T1SS and T4SS), but the substrates have not been identified. Potential substrates include secreted tandem repeat protein (TRP) 47, TRP120, and TRP32, and the ankyrin repeat protein, Ank200, that are involved in molecular host–pathogen interactions including DNA binding and a network of protein–protein interactions with host targets associated with signaling, transcriptional regulation, vesicle trafficking, and apoptosis. In this study we report that E. chaffeensis TRP47, TRP32, TRP120, and Ank200 were not secreted in the Agrobacterium tumefaciens Cre recombinase reporter assay routinely used to identify T4SS substrates. In contrast, all TRPs and the Ank200 proteins were secreted by the Escherichia coli complemented with the hemolysin secretion system (T1SS), and secretion was reduced in a T1SS mutant (ΔTolC), demonstrating that these proteins are T1SS substrates. Moreover, T1SS secretion signals were identified in the C-terminal domains of the TRPs and Ank200, and a detailed bioinformatic analysis of E. chaffeensis TRPs and Ank200 revealed features consistent with those described in the repeats-in-toxins (RTX) family of exoproteins, including glycine- and aspartate-rich tandem repeats, homology with ATP-transporters, a non-cleavable C-terminal T1SS signal, acidic pIs, and functions consistent with other T1SS substrates. Using a heterologous E. coli T1SS, this investigation has identified the first Ehrlichia T1SS substrates supporting the conclusion that the T1SS and corresponding substrates are involved in molecular host–pathogen interactions that contribute to Ehrlichia pathobiology. Further investigation of the relationship between Ehrlichia TRPs, Ank200, and the RTX exoprotein family may lead to a greater understanding of the importance of T1SS substrates and specific functions of T1SS in the pathobiology of obligately intracellular bacteria. PMID:22919588
A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe
McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew
2014-01-01
Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810
Effector-triggered immunity: from pathogen perception to robust defense.
Cui, Haitao; Tsuda, Kenichi; Parker, Jane E
2015-01-01
In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses.
Schandock, Franziska; Riber, Camilla Frich; Röcker, Annika; Müller, Janis A; Harms, Mirja; Gajda, Paulina; Zuwala, Kaja; Andersen, Anna H F; Løvschall, Kaja Borup; Tolstrup, Martin; Kreppel, Florian; Münch, Jan; Zelikin, Alexander N
2017-12-01
Viral pathogens continue to constitute a heavy burden on healthcare and socioeconomic systems. Efforts to create antiviral drugs repeatedly lag behind the advent of pathogens and growing understanding is that broad-spectrum antiviral agents will make strongest impact in future antiviral efforts. This work performs selection of synthetic polymers as novel broadly active agents and demonstrates activity of these polymers against Zika, Ebola, Lassa, Lyssa, Rabies, Marburg, Ebola, influenza, herpes simplex, and human immunodeficiency viruses. Results presented herein offer structure-activity relationships for these pathogens in terms of their susceptibility to inhibition by polymers, and for polymers in terms of their anionic charge and hydrophobicity that make up broad-spectrum antiviral agents. The identified leads cannot be predicted based on prior data on polymer-based antivirals and represent promising candidates for further development as preventive microbicides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chowdhury, S M Z H; Omar, A R; Aini, I; Hair-Bejo, M; Jamaluddin, A A; Md-Zain, B M; Kono, Y
2003-12-01
Specific-pathogen-free (SPF) chickens inoculated with low passage Chicken anaemia virus (CAV), SMSC-1 and 3-1 isolates produced lesions suggestive of CAV infection. Repeated passages of the isolates in cell culture until passage 60 (P60) and passage 123 produced viruses that showed a significantly reduced level of pathogenicity in SPF chickens compared to the low passage isolates. Sequence comparison indicated that nucleotide changes in only the coding region of the P60 passage isolates were thought to contribute to virus attenuation. Phylogenetic analysis indicated that SMSC-1 and 3-1 were highly divergent, but their P60 passage derivatives shared significant homology to a Japanese isolate A2.
SSR allelic variation in almond (Prunus dulcis Mill.).
Xie, Hua; Sui, Yi; Chang, Feng-Qi; Xu, Yong; Ma, Rong-Cai
2006-01-01
Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach.
Martin, Francis J.; Gomez, Marisa I.; Wetzel, Dawn M.; Memmi, Guido; O’Seaghdha, Maghnus; Soong, Grace; Schindler, Christian; Prince, Alice
2009-01-01
The activation of type I IFN signaling is a major component of host defense against viral infection, but it is not typically associated with immune responses to extracellular bacterial pathogens. Using mouse and human airway epithelial cells, we have demonstrated that Staphylococcus aureus activates type I IFN signaling, which contributes to its virulence as a respiratory pathogen. This response was dependent on the expression of protein A and, more specifically, the Xr domain, a short sequence–repeat region encoded by DNA that consists of repeated 24-bp sequences that are the basis of an internationally used epidemiological typing scheme. Protein A was endocytosed by airway epithelial cells and subsequently induced IFN-β expression, JAK-STAT signaling, and IL-6 production. Mice lacking IFN-α/β receptor 1 (IFNAR-deficient mice), which are incapable of responding to type I IFNs, were substantially protected against lethal S. aureus pneumonia compared with wild-type control mice. The profound immunological consequences of IFN-β signaling, particularly in the lung, may help to explain the conservation of multiple copies of the Xr domain of protein A in S. aureus strains and the importance of protein A as a virulence factor in the pathogenesis of staphylococcal pneumonia. PMID:19603548
Dobinson, K F; Harris, R E; Hamer, J E
1993-01-01
The fungal phytopathogen Magnaporthe grisea parasitizes a wide variety of gramineous hosts. In the course of investigating the genetic relationship between pathogen genotype and host specificity we identified a retroelement that is present in some strains of M. grisea that infect finger millet and goosegrass (members of the plant genus Eleusine). The element, designated grasshopper (grh), is present in multiple copies and dispersed throughout the genome. DNA sequence analysis showed that grasshopper contains 198 base pair direct, long terminal repeats (LTRs) with features characteristic of retroviral and retrotransposon LTRs. Within the element we identified an open reading frame with sequences homologous to the reverse transcriptase, RNaseH, and integrase domains of retroelement pol genes. Comparison of the open reading frame with sequences from other retroelements showed that grh is related to the gypsy family of retrotransposons. Comparisons of the distribution of the grasshopper element with other dispersed repeated DNA sequences in M. grisea indicated that grasshopper was present in a broadly dispersed subgroup of Eleusine pathogens, suggesting that the element was acquired subsequent to the evolution of this host-specific form. We present arguments that the amplification of different retroelements within populations of M. grisea is a consequence of the clonal organization of the fungal populations.
Exclusive Universities: Use and Misuse of Affirmative Action in Sudanese Higher Education
ERIC Educational Resources Information Center
Tenret, Elise
2016-01-01
Although characterized by repeated ethnic conflicts, Sudan has implemented affirmative action at universities since the 1970s for students coming from war zones and remote areas. The implementation of compensatory measures has been promoted--somehow imposed--by the several peace treaties and by the massive expansion of higher education during the…
IFRD1 Is a Candidate Gene for SMNA on Chromosome 7q22-q23
Brkanac, Zoran; Spencer, David; Shendure, Jay; Robertson, Peggy D.; Matsushita, Mark; Vu, Tiffany; Bird, Thomas D.; Olson, Maynard V.; Raskind, Wendy H.
2009-01-01
We have established strong linkage evidence that supports mapping autosomal-dominant sensory/motor neuropathy with ataxia (SMNA) to chromosome 7q22-q32. SMNA is a rare neurological disorder whose phenotype encompasses both the central and the peripheral nervous system. In order to identify a gene responsible for SMNA, we have undertaken a comprehensive genomic evaluation of the region of linkage, including evaluation for repeat expansion and small deletions or duplications, capillary sequencing of candidate genes, and massively parallel sequencing of all coding exons. We excluded repeat expansion and small deletions or duplications as causative, and through microarray-based hybrid capture and massively parallel short-read sequencing, we identified a nonsynonymous variant in the human interferon-related developmental regulator gene 1 (IFRD1) as a disease-causing candidate. Sequence conservation, animal models, and protein structure evaluation support the involvement of IFRD1 in SMNA. Mutation analysis of IFRD1 in additional patients with similar phenotypes is needed for demonstration of causality and further evaluation of its importance in neurological diseases. PMID:19409521
Evolutionary genomics of yeast pathogens in the Saccharomycotina
Naranjo-Ortíz, Miguel A.; Marcet-Houben, Marina
2016-01-01
Saccharomycotina comprises a diverse group of yeasts that includes numerous species of industrial or clinical relevance. Opportunistic pathogens within this clade are often assigned to the genus Candida but belong to phylogenetically distant lineages that also comprise non-pathogenic species. This indicates that the ability to infect humans has evolved independently several times among Saccharomycotina. Although the mechanisms of infection of the main groups of Candida pathogens are starting to be unveiled, we still lack sufficient understanding of the evolutionary paths that led to a virulent phenotype in each of the pathogenic lineages. Deciphering what genomic changes underlie the evolutionary emergence of a virulence trait will not only aid the discovery of novel virulence mechanisms but it will also provide valuable information to understand how new pathogens emerge, and what clades may pose a future danger. Here we review recent comparative genomics efforts that have revealed possible evolutionary paths to pathogenesis in different lineages, focusing on the main three agents of candidiasis worldwide: Candida albicans, C. parapsilosis and C. glabrata. We will discuss what genomic traits may facilitate the emergence of virulence, and focus on two different genome evolution mechanisms able to generate drastic phenotypic changes and which have been associated to the emergence of virulence: gene family expansion and interspecies hybridization. PMID:27493146
Characterization of Pathogenic Vibrio parahaemolyticus from the Chesapeake Bay, Maryland
Chen, Arlene J.; Hasan, Nur A.; Haley, Bradd J.; Taviani, Elisa; Tarnowski, Mitch; Brohawn, Kathy; Johnson, Crystal N.; Colwell, Rita R.; Huq, Anwar
2017-01-01
Vibrio parahaemolyticus is the leading cause of bacterial gastroenteritis associated with seafood consumption in the United States. Here we investigated the presence of virulence factors and genetic diversity of V. parahaemolyticus isolated from water, oyster, and sediment samples from the Chesapeake Bay, Maryland. Of more than 2,350 presumptive Vibrio collected, more than half were confirmed through PCR as V. parahaemolyticus, with 10 encoding both tdh and trh and 6 encoding only trh. Potentially pathogenic V. parahaemolyticus were then serotyped with O1:KUT and O3:KUT predominant. Furthermore, pulsed-field gel electrophoresis was performed and the constructed dendrogram displayed high diversity, as did results from multiple-locus VNTR analysis. Vibrio parahaemolyticus was readily isolated from Chesapeake Bay waters but was less frequently isolated from oyster and sediment samples collected during this study. Potentially pathogenic V. parahaemolyticus was isolated in fewer numbers and the isolates displayed expansive diversity. Although characteristics of the pathogenic V. parahaemolyticus were highly variable and the percent of pathogenic V. parahaemolyticus detected was low, it is important to note that, pathogenic V. parahaemolyticus are present in the Chesapeake Bay, warranting seafood monitoring to minimize risk of disease for the public, and to reduce the economic burden of V. parahaemolyticus related illness. PMID:29375492
Characterization of Pathogenic Vibrio parahaemolyticus from the Chesapeake Bay, Maryland.
Chen, Arlene J; Hasan, Nur A; Haley, Bradd J; Taviani, Elisa; Tarnowski, Mitch; Brohawn, Kathy; Johnson, Crystal N; Colwell, Rita R; Huq, Anwar
2017-01-01
Vibrio parahaemolyticus is the leading cause of bacterial gastroenteritis associated with seafood consumption in the United States. Here we investigated the presence of virulence factors and genetic diversity of V. parahaemolyticus isolated from water, oyster, and sediment samples from the Chesapeake Bay, Maryland. Of more than 2,350 presumptive Vibrio collected, more than half were confirmed through PCR as V. parahaemolyticus , with 10 encoding both tdh and trh and 6 encoding only trh . Potentially pathogenic V. parahaemolyticus were then serotyped with O1:KUT and O3:KUT predominant. Furthermore, pulsed-field gel electrophoresis was performed and the constructed dendrogram displayed high diversity, as did results from multiple-locus VNTR analysis. Vibrio parahaemolyticus was readily isolated from Chesapeake Bay waters but was less frequently isolated from oyster and sediment samples collected during this study. Potentially pathogenic V. parahaemolyticus was isolated in fewer numbers and the isolates displayed expansive diversity. Although characteristics of the pathogenic V. parahaemolyticus were highly variable and the percent of pathogenic V. parahaemolyticus detected was low, it is important to note that, pathogenic V. parahaemolyticus are present in the Chesapeake Bay, warranting seafood monitoring to minimize risk of disease for the public, and to reduce the economic burden of V. parahaemolyticus related illness.
Population History and Pathways of Spread of the Plant Pathogen Phytophthora plurivora
Schoebel, Corine N.; Stewart, Jane; Gruenwald, Niklaus J.; Rigling, Daniel; Prospero, Simone
2014-01-01
Human activity has been shown to considerably affect the spread of dangerous pests and pathogens worldwide. Therefore, strict regulations of international trade exist for particularly harmful pathogenic organisms. Phytophthora plurivora, which is not subject to regulations, is a plant pathogen frequently found on a broad range of host species, both in natural and artificial environments. It is supposed to be native to Europe while resident populations are also present in the US. We characterized a hierarchical sample of isolates from Europe and the US and conducted coalescent-, migration, and population genetic analysis of sequence and microsatellite data, to determine the pathways of spread and the demographic history of this pathogen. We found P. plurivora populations to be moderately diverse but not geographically structured. High levels of gene flow were observed within Europe and unidirectional from Europe to the US. Coalescent analyses revealed a signal of a recent expansion of the global P. plurivora population. Our study shows that P. plurivora has most likely been spread around the world by nursery trade of diseased plant material. In particular, P. plurivora was introduced into the US from Europe. International trade has allowed the pathogen to colonize new environments and/or hosts, resulting in population growth. PMID:24427303
De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici
2014-01-01
Background Pyrenochaeta lycopersici is a soil-dwelling ascomycete pathogen that causes corky root rot disease in tomato (Solanum lycopersicum) and other Solanaceous crops, reducing fruit yields by up to 75%. Fungal pathogens that infect roots receive less attention than those infecting the aerial parts of crops despite their significant impact on plant growth and fruit production. Results We assembled a 54.9Mb P. lycopersici draft genome sequence based on Illumina short reads, and annotated approximately 17,000 genes. The P. lycopersici genome is closely related to hemibiotrophs and necrotrophs, in agreement with the phenotypic characteristics of the fungus and its lifestyle. Several gene families related to host–pathogen interactions are strongly represented, including those responsible for nutrient absorption, the detoxification of fungicides and plant cell wall degradation, the latter confirming that much of the genome is devoted to the pathogenic activity of the fungus. We did not find a MAT gene, which is consistent with the classification of P. lycopersici as an imperfect fungus, but we observed a significant expansion of the gene families associated with heterokaryon incompatibility (HI). Conclusions The P. lycopersici draft genome sequence provided insight into the molecular and genetic basis of the fungal lifestyle, characterizing previously unknown pathogenic behaviors and defining strategies that allow this asexual fungus to increase genetic diversity and to acquire new pathogenic traits. PMID:24767544
Murphy, Mary; Minihan, Donal; Buckley, James F; O'Mahony, Micheál; Whyte, Paul; Fanning, Séamus
2008-01-24
The identification of the routes of dissemination of Escherichia coli (E. coli) O157 through a cohort of cattle is a critical step to control this pathogen at farm level. The aim of this study was to identify potential routes of dissemination of E. coli O157 using Multiple-Locus Variable number of tandem repeat Analysis (MLVA). Thirty-eight environmental and sixteen cattle faecal isolates, which were detected in four adjacent pens over a four-month period were sub-typed. MLVA could separate these isolates into broadly defined clusters consisting of twelve MLVA types. Strain diversity was observed within pens, individual cattle and the environment. Application of MLVA is a broadly useful and convenient tool when applied to uncover the dissemination of E. coli O157 in the environment and in supporting improved on-farm management of this important pathogen. These data identified diverse strain types based on amplification of VNTR markers in each case.
The computation of pi to 29,360,000 decimal digits using Borweins' quartically convergent algorithm
NASA Technical Reports Server (NTRS)
Bailey, David H.
1988-01-01
The quartically convergent numerical algorithm developed by Borwein and Borwein (1987) for 1/pi is implemented via a prime-modulus-transform multiprecision technique on the NASA Ames Cray-2 supercomputer to compute the first 2.936 x 10 to the 7th digits of the decimal expansion of pi. The history of pi computations is briefly recalled; the most recent algorithms are characterized; the implementation procedures are described; and samples of the output listing are presented. Statistical analyses show that the present decimal expansion is completely random, with only acceptable numbers of long repeating strings and single-digit runs.
Fan, Dongying; Li, Yanfang; Zhao, Lingyun; Li, Zhengpeng; Huang, Lili; Yan, Xia
2016-01-01
The mechanism of biocontrol agent Saccharothrix yanglingensis Hhs.015 action against Valsa mali, a major apple Valsa canker pathogen, was examined using a novel, sensitive (minimum detection limit 100 pg/μL) and reliably RT-qPCR technique. Prior to lesion formation, total concentration of V. mali in the bark showed a significant decrease (p<0.05) after 24 h of Hhs.015 treatment. This was more pronounced at 48 and 96 h post treatment. After lesion formation, levels of V. mali remained constant at the boundary between infected and uninfected bark tissues, although the relative expansion rate of the lesion was significantly reduced (p<0.05). Gene expression levels of endo-polygalacturonase, a marker for fungal pathogenicity, were sharply reduced while host induced resistance callose synthase levels increased significantly (p<0.05) at the boundary bark at 9 d after Hhs.015 treatment. The results showed that biocontrol agent Hhs.015 prevented infection of V. mali by inhibiting pathogen growth, down-regulating pathogenicity factor expression and inducing a high level of host resistance. PMID:27611855
Genetic characterization of Spinocerebellar ataxia 1 in a South Indian cohort.
Kumaran, Dhanya; Balagopal, Krishnan; Tharmaraj, Reginald George Alex; Aaron, Sanjith; George, Kuryan; Muliyil, Jayaprakash; Sivadasan, Ajith; Danda, Sumita; Alexander, Mathew; Hasan, Gaiti
2014-10-25
Spinocerebellar ataxia type 1 (SCA1) is a late onset autosomal dominant cerebellar ataxia, caused by CAG triplet repeat expansion in the ATXN1 gene. The frequency of SCA1 occurrence is more in Southern India than in other regions as observed from hospital-based studies. However there are no reports on variability of CAG repeat expansion, phenotype-genotype association and founder mutations in a homogenous population from India. Genomic DNA isolated from buccal mouthwash of the individuals in the cohort was used for PCR-based diagnosis of SCA1. Subsequently SNP's found within the ATXN1 loci were identified by Taqman allelic discrimination assays. Significance testing of the genotype-phenotype associations was calculated by Kruskal-Wallis ANOVA test with post-hoc Dunnett's test and Pearson's correlation coefficient. By genetic analysis of an affected population in Southern India we identified 21 pre-symptomatic individuals including four that were well past the average age of disease onset of 44 years, 16 symptomatic and 63 normal individuals. All pre-symptomatic cases harbor "pure" expansions of greater than 40 CAGs. Genotyping to test for the presence of two previously identified SNPs showed a founder effect of the same repeat carrying allele as in the general Indian population. We show that SCA1 disease onset is significantly delayed when transmission of the disease is maternal. Our finding of early disease onset in individuals with a paternally inherited allele could serve as valuable information for clinicians towards early detection of SCA1 in patients with affected fathers. Identification of older pre-symptomatic individuals (n = 4) in our cohort among individuals with a shared genetic and environmental background, suggests that second site genetic or epigenetic modifiers might significantly affect SCA1 disease progression. Moreover, such undetected SCA1 cases could underscore the true prevalence of SCA1 in India.
Fifita, Jennifer A; Zhang, Katharine Y; Galper, Jasmin; Williams, Kelly L; McCann, Emily P; Hogan, Alison L; Saunders, Neil; Bauer, Denis; Tarr, Ingrid S; Pamphlett, Roger; Nicholson, Garth A; Rowe, Dominic; Yang, Shu; Blair, Ian P
2017-01-01
Mutations in the genes encoding the heterogeneous nuclear ribonucleoproteins hnRNPA1 and hnRNPA2/B1 have been reported in a multisystem proteinopathy that includes amyotrophic lateral sclerosis (ALS) and inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia. Mutations were also described in the prion-like domain of hnRNPA1 in patients with classic ALS. Another hnRNP protein, hnRNPA3, has been found to be associated with the ALS/frontotemporal dementia protein C9orf72. To further assess their role in ALS, we examined these hnRNPs in spinal cord tissue from sporadic (SALS) and familial ALS (FALS) patients, including C9orf72 repeat expansion-positive patients, and controls. We also sought to determine the prevalence of HNRNPA1, HNRNPA2B1, and HNRNPA3 mutations in Australian ALS patients. Immunostaining was used to assess hnRNPs in ALS patient spinal cords. Mutation analysis of the HNRNPA1, HNRNPA2B1, and HNRNPA3 genes was performed in FALS and of their prion-like domains in SALS patients. Immunostaining of spinal motor neurons of ALS patients with the C9orf72 repeat expansion showed significant mislocalisation of hnRNPA3, and no differences in hnRNPA1 or A2/B1 localisation, compared to controls. No novel or known mutations were identified in HNRNPA1, HNRNPA2B1, or HNRNPA3 in Australian ALS patients. hnRNPA3 pathology was identified in motor neurons of ALS patients with C9orf72 repeat expansions, implicating hnRNPA3 in the pathogenesis of C9orf72-linked ALS. hnRNPA3 warrants further investigation into the pathogenesis of ALS linked to C9orf72. This study also determined that HNRNP mutations are not a common cause of FALS and SALS in Australia. © 2017 S. Karger AG, Basel.
Latimer, Caitlin S; Flanagan, Margaret E; Cimino, Patrick J; Jayadev, Suman; Davis, Marie; Hoffer, Zachary S; Montine, Thomas J; Gonzalez-Cuyar, Luis F; Bird, Thomas D; Keene, C Dirk
2017-01-01
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a trinucleotide (CAG) repeat expansion in huntingtin (HTT) on chromosome 4. Anticipation can cause longer repeat expansions in children of HD patients. Juvenile Huntington's disease (JHD), defined as HD arising before age 20, accounts for 5-10% of HD cases, with cases arising in the first decade accounting for approximately 1%. Clinically, JHD differs from the predominately choreiform adult onset Huntington's disease (AOHD) with variable presentations, including symptoms such as myoclonus, seizures, Parkinsonism, and cognitive decline. The neuropathologic changes of AOHD are well characterized, but there are fewer reports that describe the neuropathology of JHD. Here we report a case of a six-year-old boy with paternally-inherited JHD caused by 169 CAG trinucleotide repeats who presented at age four with developmental delay, dysarthria, and seizures before dying at age 6. The boy's clinical presentation and neuropathological findings are directly compared to those of his father, who presented with AOHD and 54 repeats. A full autopsy was performed for the JHD case and a brain-only autopsy was performed for the AOHD case. Histochemically- and immunohistochemically-stained slides were prepared from formalin-fixed, paraffin-embedded tissue sections. Both cases had neuropathology corresponding to Vonsattel grade 3. The boy also had cerebellar atrophy with huntingtin-positive inclusions in the cerebellum, findings not present in the father. Autopsies of father and son provide a unique opportunity to compare and contrast the neuropathologic findings of juvenile and adult onset HD while also providing the first immunohistochemical evidence of cerebellar involvement in JHD. Additionally this is the first known report to include findings from peripheral tissue in a case of JHD.
2011-01-01
Background The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. Results A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. Conclusions Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS. PMID:21486489
Gao, Lei; Zhou, Yuan; Wang, Zhi-Wei; Su, Ying-Juan; Wang, Ting
2011-04-13
The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS.
Shalaby, Karim H; Lyons-Cohen, Miranda R; Whitehead, Gregory S; Thomas, Seddon Y; Prinz, Immo; Nakano, Hideki; Cook, Donald N
2017-11-14
Mechanisms that elicit mucosal T H 17 cell responses have been described, yet how these cells are sustained in chronically inflamed tissues remains unclear. We sought to understand whether maintenance of lung T H 17 inflammation requires environmental agents in addition to antigen and to identify the lung antigen-presenting cell (APC) types that sustain the self-renewal of T H 17 cells. Animals were exposed repeatedly to aspiration of ovalbumin alone or together with environmental adjuvants, including common house dust extract (HDE), to test their role in maintaining lung inflammation. Alternatively, antigen-specific effector/memory T H 17 cells, generated in culture with CD4 + T cells from Il17a fate-mapping mice, were adoptively transferred to assess their persistence in genetically modified animals lacking distinct lung APC subsets or cell-specific Toll-like receptor (TLR) 4 signaling. T H 17 cells were also cocultured with lung APC subsets to determine which of these could revive their expansion and activation. T H 17 cells and the consequent neutrophilic inflammation were poorly sustained by inhaled antigen alone but were augmented by inhalation of antigen together with HDE. This was associated with weight loss and changes in lung physiology consistent with interstitial lung disease. The effect of HDE required TLR4 signaling predominantly in lung hematopoietic cells, including CD11c + cells. CD103 + and CD11b + conventional dendritic cells interacted directly with T H 17 cells in situ and revived the clonal expansion of T H 17 cells both ex vivo and in vivo, whereas lung macrophages and B cells could not. T H 17-dependent inflammation in the lungs can be sustained by persistent TLR4-mediated activation of lung conventional dendritic cells. Published by Elsevier Inc.
Evolution of pathogenicity and sexual reproduction in eight Candida genomes
Butler, Geraldine; Rasmussen, Matthew D.; Lin, Michael F.; Santos, Manuel A.S.; Sakthikumar, Sharadha; Munro, Carol A.; Rheinbay, Esther; Grabherr, Manfred; Forche, Anja; Reedy, Jennifer L.; Agrafioti, Ino; Arnaud, Martha B.; Bates, Steven; Brown, Alistair J.P.; Brunke, Sascha; Costanzo, Maria C.; Fitzpatrick, David A.; de Groot, Piet W. J.; Harris, David; Hoyer, Lois L.; Hube, Bernhard; Klis, Frans M.; Kodira, Chinnappa; Lennard, Nicola; Logue, Mary E.; Martin, Ronny; Neiman, Aaron M.; Nikolaou, Elissavet; Quail, Michael A.; Quinn, Janet; Santos, Maria C.; Schmitzberger, Florian F.; Sherlock, Gavin; Shah, Prachi; Silverstein, Kevin; Skrzypek, Marek S.; Soll, David; Staggs, Rodney; Stansfield, Ian; Stumpf, Michael P H; Sudbery, Peter E.; Thyagarajan, Srikantha; Zeng, Qiandong; Berman, Judith; Berriman, Matthew; Heitman, Joseph; Gow, Neil A. R.; Lorenz, Michael C.; Birren, Bruce W.; Kellis, Manolis; Cuomo, Christina A.
2009-01-01
Candida species are the most common cause of opportunistic fungal infection worldwide. We report the genome sequences of six Candida species and compare these and related pathogens and nonpathogens. There are significant expansions of cell wall, secreted, and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the Mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/alpha2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine to serine genetic code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the C. albicans gene catalog, identifying many new genes. PMID:19465905
Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits
Chakraborty, Shalini; Roy, Sonti; Mistry, Hiral Uday; Murthy, Shweta; George, Neena; Bhandari, Vasundhra; Sharma, Paresh
2017-01-01
Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress. PMID:29081773
Assessment of Climate Change and Vector-borne Diseases in the United States
NASA Astrophysics Data System (ADS)
Monaghan, A. J.; Beard, C. B.; Eisen, R. J.; Barker, C. M.; Garofalo, J.; Hahn, M.; Hayden, M.; Ogden, N.; Schramm, P.
2016-12-01
Vector-borne diseases are illnesses that are transmitted by vectors, which include mosquitoes, ticks, and fleas. The seasonality, distribution, and prevalence of vector-borne diseases are influenced significantly by climate factors, primarily high and low temperature extremes and precipitation patterns. In this presentation we summarize key findings from Chapter 5 ("Vector-borne Diseases") of the recently published USGCRP Scientific Assessment of the Impacts of Climate Change on Human Health in the United States. Climate change is expected to alter geographic and seasonal distributions of vectors and vector-borne diseases, leading to earlier activity and northward range expansion of ticks capable of carrying the bacteria that cause Lyme disease and other pathogens, and influencing the distribution, abundance and prevalence of infection in mosquitoes that transmit West Nile virus and other pathogens. The emergence or reemergence of vector-borne pathogens is also likely.
Ebolaviruses: New roles for old proteins.
Cantoni, Diego; Rossman, Jeremy S
2018-05-01
In 2014, the world witnessed the largest Ebolavirus outbreak in recorded history. The subsequent humanitarian effort spurred extensive research, significantly enhancing our understanding of ebolavirus replication and pathogenicity. The main functions of each ebolavirus protein have been studied extensively since the discovery of the virus in 1976; however, the recent expansion of ebolavirus research has led to the discovery of new protein functions. These newly discovered roles are revealing new mechanisms of virus replication and pathogenicity, whilst enhancing our understanding of the broad functions of each ebolavirus viral protein (VP). Many of these new functions appear to be unrelated to the protein's primary function during virus replication. Such new functions range from bystander T-lymphocyte death caused by VP40-secreted exosomes to new roles for VP24 in viral particle formation. This review highlights the newly discovered roles of ebolavirus proteins in order to provide a more encompassing view of ebolavirus replication and pathogenicity.
Ebolaviruses: New roles for old proteins
2018-01-01
In 2014, the world witnessed the largest Ebolavirus outbreak in recorded history. The subsequent humanitarian effort spurred extensive research, significantly enhancing our understanding of ebolavirus replication and pathogenicity. The main functions of each ebolavirus protein have been studied extensively since the discovery of the virus in 1976; however, the recent expansion of ebolavirus research has led to the discovery of new protein functions. These newly discovered roles are revealing new mechanisms of virus replication and pathogenicity, whilst enhancing our understanding of the broad functions of each ebolavirus viral protein (VP). Many of these new functions appear to be unrelated to the protein’s primary function during virus replication. Such new functions range from bystander T-lymphocyte death caused by VP40-secreted exosomes to new roles for VP24 in viral particle formation. This review highlights the newly discovered roles of ebolavirus proteins in order to provide a more encompassing view of ebolavirus replication and pathogenicity. PMID:29723187
Cultivation of pathogenic Treponema pallidum in vitro.
Horváth, I; Duncan, W P; Bullard, J C
1981-01-01
Treponema pallidum was discovered relatively late and was not cultured in vitro. Both the delineation of T. pallidum biology and the eradication of syphilis suggest the necessity of cultivation in vitro. An attempt has been made with an improved medium to cultivate pathogenic T. pallidum Budapest strain in vitro. Only in the first passage, evidence of in vitro multiplication of T. pallidum has been established by (i) macroscopic observation, (ii) darkfield examination, (iii) electron microscopic examination, (iv) optical densities, (v) tritium labelled thymidine incorporation, and (vi) the pathogenicity off the cultured organisms was evidenced by rabbit challenge. Explanation of the oxygen utilization of T. pallidum suspension is discussed. Unidentified formations were observed on electron micrographs from the 96 h cultures. They may belong to the multiplication forms of treponemes. Further experiments are needed for their identification and for expansion of the multiplication of T. pallidum beyond the first passage.
Gorgé, Olivier; Lopez, Stéphanie; Hilaire, Valérie; Lisanti, Olivier; Ramisse, Vincent; Vergnaud, Gilles
2008-01-01
The Shigella genus has historically been separated into four species, based on biochemical assays. The classification within each species relies on serotyping. Recently, genome sequencing and DNA assays, in particular the multilocus sequence typing (MLST) approach, greatly improved the current knowledge of the origin and phylogenetic evolution of Shigella spp. The Shigella and Escherichia genera are now considered to belong to a unique genomospecies. Multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) provides valuable polymorphic markers for genotyping and performing phylogenetic analyses of highly homogeneous bacterial pathogens. Here, we assess the capability of MLVA for Shigella typing. Thirty-two potentially polymorphic VNTRs were selected by analyzing in silico five Shigella genomic sequences and subsequently evaluated. Eventually, a panel of 15 VNTRs was selected (i.e., MLVA15 analysis). MLVA15 analysis of 78 strains or genome sequences of Shigella spp. and 11 strains or genome sequences of Escherichia coli distinguished 83 genotypes. Shigella population cluster analysis gave consistent results compared to MLST. MLVA15 analysis showed capabilities for E. coli typing, providing classification among pathogenic and nonpathogenic E. coli strains included in the study. The resulting data can be queried on our genotyping webpage (http://mlva.u-psud.fr). The MLVA15 assay is rapid, highly discriminatory, and reproducible for Shigella and Escherichia strains, suggesting that it could significantly contribute to epidemiological trace-back analysis of Shigella infections and pathogenic Escherichia outbreaks. Typing was performed on strains obtained mostly from collections. Further studies should include strains of much more diverse origins, including all pathogenic E. coli types. PMID:18216214
The myotonic dystrophy kinase 3{prime}-untranslated region and its effect on gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, C.W.Y.; Sabourin, L.A.; Narang, M.A.
1994-09-01
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease involving the expansion of an unstable CTG repeat in the 3{prime}-untranslated (3{prime}-UTR) region of the DM kinase (DMK) gene. Increased levels of mRNA in congenital compared to normal tissue have been shown, suggesting elevated DMK levels may be responsible for the disease phenotype. To study the effect of the DMK 3{prime}UTR on gene expression, a reporter gene system was constructed using the constitutive CMV promoter with the chloramphenicol acetyl transferase (CAT) open reading frame and the DMK 3{prime}UTR containing from 5 repeats up to 90 repeats. Transient transfection into a rhabdomyosarcomamore » cell line shows a three-fold increase in CAT activity from constructs containing a wildtype 3{prime}UTR (5 and 20 repeats) compared to a control construct containing only a poly(A) signal. Reporter constructs with repeats in the protomutation (50 repeats) and mutation (90 repeats) range show a greater than 10-fold increase over control CAT activity. These results suggest the presence of elements in the DMK 3{prime}UTR capable of conferring increased gene expression. We are currently investigating cell-specific activity of the constructs and conducting deletion mapping to identify regulatory elements in the 3{prime}-UTR.« less
Johzuka, Katsuki; Terasawa, Masahiro; Ogawa, Hideyuki; Ogawa, Tomoko; Horiuchi, Takashi
2006-03-01
An average of 200 copies of the rRNA gene (rDNA) is clustered in a long tandem array in Saccharomyces cerevisiae. FOB1 is known to be required for expansion/contraction of the repeats by stimulating recombination, thereby contributing to the maintenance of the average copy number. In Deltafob1 cells, the repeats are still maintained without any fluctuation in the copy number, suggesting that another, unknown system acts to prevent repeat contraction. Here, we show that condensin acts together with FOB1 in a functionally complemented fashion to maintain the long tandem repeats. Six condensin mutants possessing severely contracted rDNA repeats were isolated in Deltafob1 cells but not in FOB1+ cells. We also found that the condensin complex associated with the nontranscribed spacer region of rDNA with a major peak coincided with the replication fork barrier (RFB) site in a FOB1-dependent fashion. Surprisingly, condensin association with the RFB site was established during S phase and was maintained until anaphase. These results indicate that FOB1 plays a novel role in preventing repeat contraction by regulating condensin association and suggest a link between replication termination and chromosome condensation and segregation.
Jwa, Nam-Soo; Hwang, Byung Kook
2017-01-01
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants. PMID:29033963
In vitro culture of the flagellate protozoan Hexamita salmonis
Uzmann, J.R.; Hayduk, S.H.
1963-01-01
Trophozoites of Hexamita salmonis, asserted pathogen of juvenile salmonid fishes, were isolated from two species of Pacific salmon hosts and cultured repeatedly in an organic medium saturated with nitrogen. Primary isolates and serial subcultures usually exhibited five- to tenfold population increases per passage.
Genetic diversity and structure of Phakopsora pachyrhizi infecting soybean in Nigeria
USDA-ARS?s Scientific Manuscript database
The genetic structure of Nigerian field populations of the soybean rust pathogen Phakopsora pachyrhizi was determined using 18 simple sequence repeat markers. A total of 113 fungal isolates was collected by hierarchical sampling infected leaves from soybean fields in three agroecological zones in 2...
Kalman, Lisa; Tarleton, Jack; Hitch, Monica; Hegde, Madhuri; Hjelm, Nick; Berry-Kravis, Elizabeth; Zhou, Lili; Hilbert, James E.; Luebbe, Elizabeth A.; Moxley, Richard T.; Toji, Lorraine
2014-01-01
Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3′ untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not available. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community, the National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members, and the Coriell Cell Repositories, has established and characterized cell lines from patients with DM1 to create a reference material panel. The CTG repeats in genomic DNA samples from 10 DM1 cell lines were characterized in three clinical genetic testing laboratories using PCR and Southern blot analysis. DMPK alleles in the samples cover four of five DM1 clinical categories: normal (5 to 34 repeats), mild (50 to 100 repeats), classical (101 to 1000 repeats), and congenital (>1000 repeats). We did not identify or establish Coriell cell lines in the premutation range (35 to 49 repeats). These samples are publicly available for quality control, proficiency testing, test development, and research and should help improve the accuracy of DM1 testing. PMID:23680132
Cell-type specific differences in promoter activity of the ALS-linked C9orf72 mouse ortholog.
Langseth, Abraham J; Kim, Juhyun; Ugolino, Janet E; Shah, Yajas; Hwang, Ho-Yon; Wang, Jiou; Bergles, Dwight E; Brown, Solange P
2017-07-18
A hexanucleotide repeat expansion in the C9orf72 gene is the most common cause of inherited forms of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Both loss-of-function and gain-of-function mechanisms have been proposed to underlie this disease, but the pathogenic pathways are not fully understood. To better understand the involvement of different cell types in the pathogenesis of ALS, we systematically analyzed the distribution of promoter activity of the mouse ortholog of C9orf72 in the central nervous system. We demonstrate that C9orf72 promoter activity is widespread in both excitatory and inhibitory neurons as well as in oligodendrocytes and oligodendrocyte precursor cells. In contrast, few microglia and astrocytes exhibit detectable C9orf72 promoter activity. Although at a gross level, the distribution of C9orf72 promoter activity largely follows overall cellular density, we found that it is selectively enriched in subsets of neurons and glial cells that degenerate in ALS. Specifically, we show that C9orf72 promoter activity is enriched in corticospinal and spinal motor neurons as well as in oligodendrocytes in brain regions that are affected in ALS. These results suggest that cell autonomous changes in both neurons and glia may contribute to C9orf72-mediated disease, as has been shown for mutations in superoxide dismutase-1 (SOD1).
Expanded ATXN3 frameshifting events are toxic in Drosophila and mammalian neuron models.
Stochmanski, Shawn J; Therrien, Martine; Laganière, Janet; Rochefort, Daniel; Laurent, Sandra; Karemera, Liliane; Gaudet, Rebecca; Vyboh, Kishanda; Van Meyel, Don J; Di Cristo, Graziella; Dion, Patrick A; Gaspar, Claudia; Rouleau, Guy A
2012-05-15
Spinocerebellar ataxia type 3 is caused by the expansion of the coding CAG repeat in the ATXN3 gene. Interestingly, a -1 bp frameshift occurring within an (exp)CAG repeat would henceforth lead to translation from a GCA frame, generating polyalanine stretches instead of polyglutamine. Our results show that transgenic expression of (exp)CAG ATXN3 led to -1 frameshifting events, which have deleterious effects in Drosophila and mammalian neurons. Conversely, transgenic expression of polyglutamine-encoding (exp)CAA ATXN3 was not toxic. Furthermore, (exp)CAG ATXN3 mRNA does not contribute per se to the toxicity observed in our models. Our observations indicate that expanded polyglutamine tracts in Drosophila and mouse neurons are insufficient for the development of a phenotype. Hence, we propose that -1 ribosomal frameshifting contributes to the toxicity associated with (exp)CAG repeats.
NASA Astrophysics Data System (ADS)
Oram, R. J.; Latimer, I. D.; Spoor, S. P.
1997-05-01
This paper reports on a technique for providing a frequency-stabilized helium - neon gas laser by using inherently stable ultralow thermal expansion optical cavities. Four longitudinal monoblock cavity lasers were constructed and tested. These had their laser mirrors optically contacted to the bulk material. A 1 mm diameter hole along the axis of the block served as the discharge channel with electrodes optically contacted to the sides of the block. One of these lasers had a glass capilliary for the discharge channel. A fifth laser had a gain tube with Brewster angle windows fixed in a Zerodur box with the mirrors contacted to the ends. The warm-up characteristics of the five different lasers have been obtained and a theoretical model using finite element analysis was developed to determine the thermal expansion during warm-up. Using this computer model the thermal expansion coefficient of the material Zerodur was obtained. The results suggest that monoblock lasers can produce a free-running laser frequency stability of better than 10 MHz and show a repeatable warm-up characteristic of 100 MHz frequency drift.
Gas gun driven dynamic fracture and fragmentation of Ti-6Al-4V cylinders
NASA Astrophysics Data System (ADS)
Jones, D. R.; Chapman, D. J.; Eakins, D. E.
2014-05-01
The dynamic fracture and fragmentation of a material is a complex late stage phenomenon occurring in many shock loading scenarios. Improving our predictive capability depends upon exercising our current failure models against new loading schemes and data. We present axially-symmetric high strain rate (104 s-1) expansion of Ti-6Al-4V cylinders using a single stage light gas gun technique. A steel ogive insert was located inside the target cylinder, into which a polycarbonate rod was launched. Deformation of this rod around the insert drives the cylinder into rapid expansion. This technique we have developed facilitates repeatable loading, independent of the temperature of the sample cylinder, with straightforward adjustment of the radial strain rate. Expansion velocity was measured with multiple channels of photon Doppler velocimetry. High speed imaging was used to track the overall expansion process and record strain to failure and crack growth. Results from a cylinder at a temperature of 150 K are compared with work at room temperature, examining the deformation, failure mechanisms and differences in fragmentation.
Tolone, Marco; Larrondo, Cristian; Yáñez, José M; Newman, Scott; Sardina, Maria Teresa; Portolano, Baldassare
2016-07-28
Mastitis resistance is a complex and multifactorial trait, and its expression depends on both genetic and environmental factors, including infection pressure. The objective of this research was to determine the genetic basis of mastitis resistance to specific pathogens using a repeatability threshold probit animal model. The most prevalent isolated pathogens were coagulase-negative staphylococci (CNS); 39 % of records and 77 % of the animals infected at least one time in the whole period of study. There was significant genetic variation only for Streptococci (STR). In addition, there was a positive genetic correlation between STR and all pathogens together (ALL) (0.36 ± 0.22), and CNS and ALL (0.92 ± 0.04). The results of our study support the presence of significant genetic variation for mastitis caused by Streptococci and suggest the importance of discriminating between different pathogens causing mastitis due to the fact that they most likely influence different genetic traits. Low heritabilities for pathogen specific-mastitis resistance may be considered when including bacteriological status as a measure of mastitis presence to implement breeding strategies for improving udder health in dairy ewes.
McVicker, Gareth; Prajsnar, Tomasz K.; Williams, Alexander; Wagner, Nelly L.; Boots, Michael; Renshaw, Stephen A.; Foster, Simon J.
2014-01-01
To slow the inexorable rise of antibiotic resistance we must understand how drugs impact on pathogenesis and influence the selection of resistant clones. Staphylococcus aureus is an important human pathogen with populations of antibiotic-resistant bacteria in hospitals and the community. Host phagocytes play a crucial role in controlling S. aureus infection, which can lead to a population “bottleneck” whereby clonal expansion of a small fraction of the initial inoculum founds a systemic infection. Such population dynamics may have important consequences on the effect of antibiotic intervention. Low doses of antibiotics have been shown to affect in vitro growth and the generation of resistant mutants over the long term, however whether this has any in vivo relevance is unknown. In this work, the population dynamics of S. aureus pathogenesis were studied in vivo using antibiotic-resistant strains constructed in an isogenic background, coupled with systemic models of infection in both the mouse and zebrafish embryo. Murine experiments revealed unexpected and complex bacterial population kinetics arising from clonal expansion during infection in particular organs. We subsequently elucidated the effect of antibiotic intervention within the host using mixed inocula of resistant and sensitive bacteria. Sub-curative tetracycline doses support the preferential expansion of resistant microorganisms, importantly unrelated to effects on growth rate or de novo resistance acquisition. This novel phenomenon is generic, occurring with methicillin-resistant S. aureus (MRSA) in the presence of β-lactams and with the unrelated human pathogen Pseudomonas aeruginosa. The selection of resistant clones at low antibiotic levels can result in a rapid increase in their prevalence under conditions that would previously not be thought to favor them. Our results have key implications for the design of effective treatment regimes to limit the spread of antimicrobial resistance, where inappropriate usage leading to resistance may reduce the efficacy of life-saving drugs. PMID:24586163
Faure, Eric; Royer-Carenzi, Manuela
2008-12-01
We studied the possible effects of the expansion of ancient Mediterranean civilizations during the five centuries before and after Christ on the European distribution of the mutant allele for the chemokine receptor gene CCR5 which has a 32-bp deletion (CCR5-Delta32). There is a strong evidence for the unitary origin of the CCR5-Delta32 mutation, this it is found principally in Europe and Western Asia, with generally a north-south downhill cline frequency. Homozygous carriers of this mutation show a resistance to HIV-1 infection and a slower progression towards AIDS. However, HIV has clearly emerged too recently to have been the selective force on CCR5. Our analyses showed strong negative correlations in Europe between the allele frequency and two historical parameters, i.e. the first colonization dates by the great ancient Mediterranean civilizations, and the distances from the Northern frontiers of the Roman Empire in its greatest expansion. Moreover, other studies have shown that the deletion frequencies in both German Bronze Age and Swedish Neolithic populations were similar to those found in the corresponding modern populations, and this deletion has been found in ancient DNA of around 7000 years ago, suggesting that in the past, the deletion frequency could have been relatively high in European populations. In addition, in West Nile virus pathogenesis, CCR5 plays an antimicrobial role showing that host genetic factors are highly pathogen-specific. Our results added to all these previous data suggest that the actual European allele frequency distribution might not be due to genes spreading, but to a negative selection resulting in the spread of pathogens principally during Roman expansion. Indeed, as gene flows from colonizers to European native populations were extremely low, the mutational changes might be associated with vulnerability to imported infections. To date, the nature of the parasites remains unknown; however, zoonoses could be incriminated.
Luu, Rachel A.; Gurnani, Komal; Dudani, Renu; Kammara, Rajagopal; van Faassen, Henk; Sirard, Jean-Claude; Krishnan, Lakshmi; Sad, Subash
2014-01-01
Ag presentation to CD8+ T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (~7 days), resistant mice (129×1SvJ) harbor a chronic infection lasting ~60–90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8+ T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62LhighIL-7RαhighCD44high) CD8+ T cells. However, by day 14–21, majority of the primed CD8+ T cells display an effector phenotype (CD62LlowIL-7RαlowCD44high). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62LlowIL-7RαhighCD44high) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8+ T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8+ T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8+ T cell recognition, conferring a survival advantage to the pathogen. PMID:16849458
Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore
Fountain-Jones, Nicholas M.; Craft, Meggan E.; Funk, W. Chris; Kozakiewicz, Chris; Trumbo, Daryl; Boydston, Erin E.; Lyren, Lisa M.; Crooks, Kevin R.; Lee, Justin S.; VandeWoude, Sue; Carver, Scott
2017-01-01
Urban expansion has widespread impacts on wildlife species globally, including the transmission and emergence of infectious diseases. However, there is almost no information about how urban landscapes shape transmission dynamics in wildlife. Using an innovative phylodynamic approach combining host and pathogen molecular data with landscape characteristics and host traits, we untangle the complex factors that drive transmission networks of Feline Immunodeficiency Virus (FIV) in bobcats (Lynx rufus). We found that the urban landscape played a significant role in shaping FIV transmission. Even though bobcats were often trapped within the urban matrix, FIV transmission events were more likely to occur in areas with more natural habitat elements. Urban fragmentation also resulted in lower rates of pathogen evolution, possibly owing to a narrower range of host genotypes in the fragmented area. Combined, our findings show that urban landscapes can have impacts on a pathogen and its evolution in a carnivore living in one of the most fragmented and urban systems in North America. The analytical approach used here can be broadly applied to other host-pathogen systems, including humans.
Hadfield, James; Harris, Simon R; Seth-Smith, Helena M B; Parmar, Surendra; Andersson, Patiyan; Giffard, Philip M; Schachter, Julius; Moncada, Jeanne; Ellison, Louise; Vaulet, María Lucía Gallo; Fermepin, Marcelo Rodríguez; Radebe, Frans; Mendoza, Suyapa; Ouburg, Sander; Morré, Servaas A; Sachse, Konrad; Puolakkainen, Mirja; Korhonen, Suvi J; Sonnex, Chris; Wiggins, Rebecca; Jalal, Hamid; Brunelli, Tamara; Casprini, Patrizia; Pitt, Rachel; Ison, Cathy; Savicheva, Alevtina; Shipitsyna, Elena; Hadad, Ronza; Kari, Laszlo; Burton, Matthew J; Mabey, David; Solomon, Anthony W; Lewis, David; Marsh, Peter; Unemo, Magnus; Clarke, Ian N; Parkhill, Julian; Thomson, Nicholas R
2017-07-01
Chlamydia trachomatis is the world's most prevalent bacterial sexually transmitted infection and leading infectious cause of blindness, yet it is one of the least understood human pathogens, in part due to the difficulties of in vitro culturing and the lack of available tools for genetic manipulation. Genome sequencing has reinvigorated this field, shedding light on the contemporary history of this pathogen. Here, we analyze 563 full genomes, 455 of which are novel, to show that the history of the species comprises two phases, and conclude that the currently circulating lineages are the result of evolution in different genomic ecotypes. Temporal analysis indicates these lineages have recently expanded in the space of thousands of years, rather than the millions of years as previously thought, a finding that dramatically changes our understanding of this pathogen's history. Finally, at a time when almost every pathogen is becoming increasingly resistant to antimicrobials, we show that there is no evidence of circulating genomic resistance in C. trachomatis . © 2017 Hadfield et al.; Published by Cold Spring Harbor Laboratory Press.
Characterization of a Beta vulgaris PGIP defense gene promoter in transgenic plants
USDA-ARS?s Scientific Manuscript database
Polygalacturonase-inhibiting protein (BvPGIP) genes were cloned from a sugar beet breeding line F1016 with increased tolerance to the sugar beet root maggot. Polygalacturonase-inhibiting proteins are cell wall leucine-rich repeat (LRR) proteins with crucial roles in development, pathogen defense an...
Are we there yet for rice disease control
USDA-ARS?s Scientific Manuscript database
Plant resistance (R) genes play an important role in fighting against plant pathogens. For the past two decades, significant efforts have been directed to map and clone R genes. Most of the cloned plant R genes encode proteins with leucine rich repeat and nucleotide binding sites (NLR), their cellul...
Effects of climate and sewer condition on virus transport to groundwater
USDA-ARS?s Scientific Manuscript database
Pathogen contamination from leaky sanitary sewers poses a threat to groundwater quality in urban areas, yet the spatial and temporal dimensions of this contamination are not well understood. In this study, 16 monitoring wells and six municipal wells were repeatedly sampled for human enteric viruses....
Detection, breeding, and selection of durable resistance to brown rust in sugarcane
USDA-ARS?s Scientific Manuscript database
Brown rust, caused by Puccinia melanocephala, is an important disease of sugarcane in Louisiana. The adaptability of the pathogen has repeatedly resulted in resistant cultivars becoming susceptible once they are widely grown. The frequency of the brown rust resistance gene Bru1 was low in the breedi...
A survey of FRAXE allele sizes in three populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, N.; Ju, W.; Curley, D.
1996-08-09
FRAXE is a fragile site located at Xq27-8, which contains polymorphic triplet GCC repeats associated with a CpG island. Similar to FRAXA, expansion of the GCC repeats results in an abnormal methylation of the CpG island and is associated with a mild mental retardation syndrome (FRAXE-MR). We surveyed the GCC repeat alleles of FRAXE from 3 populations. A total of 665 X chromosomes including 416 from a New York Euro-American sample (259 normal and 157 with FRAXA mutations), 157 from a Chinese sample (144 normal and 13 FRAXA), and 92 from a Finnish sample (56 normal and 36 FRAXA) weremore » analyzed by polymerase chain reaction. Twenty-seven alleles, ranging from 4 to 39 GCC repeats, were observed. The modal repeat number was 16 in the New York and Finnish samples and accounted for 24% of all the chromosomes tested (162/665). The modal repeat number in the Chinese sample was 18. A founder effect for FRAXA was suggested among the Finnish FRAXA samples in that 75% had the FRAXE 16 repeat allele versus only 30% of controls. Sequencing of the FRAXE region showed no imperfections within the GCC repeat region, such as those commonly seen in FRAXA. The smaller size and limited range of repeats and the lack of imperfections suggests the molecular mechanisms underlying FRAXE triplet mutations may be different from those underlying FRAXA. 27 refs., 4 figs., 1 tab.« less
Smith, Eric L; Staehr, Mette; Masakayan, Reed; Tatake, Ishan J; Purdon, Terence J; Wang, Xiuyan; Wang, Pei; Liu, Hong; Xu, Yiyang; Garrett-Thomson, Sarah C; Almo, Steven C; Riviere, Isabelle; Liu, Cheng; Brentjens, Renier J
2018-06-06
B cell maturation antigen (BCMA) has recently been identified as an important multiple myeloma (MM)-specific target for chimeric antigen receptor (CAR) T cell therapy. In CAR T cell therapy targeting CD19 for lymphoma, host immune anti-murine CAR responses limited the efficacy of repeat dosing and possibly long-term persistence. This clinically relevant concern can be addressed by generating a CAR incorporating a human single-chain variable fragment (scFv). We screened a human B cell-derived scFv phage display library and identified a panel of BCMA-specific clones from which human CARs were engineered. Despite a narrow range of affinity for BCMA, dramatic differences in CAR T cell expansion were observed between unique scFvs in a repeat antigen stimulation assay. These results were confirmed by screening in a MM xenograft model, where only the top preforming CARs from the repeat antigen stimulation assay eradicated disease and prolonged survival. The results of this screening identified a highly effective CAR T cell therapy with properties, including rapid in vivo expansion (>10,000-fold, day 6), eradication of large tumor burden, and durable protection to tumor re-challenge. We generated a bicistronic construct including a second-generation CAR and a truncated-epithelial growth factor receptor marker. CAR T cell vectors stemming from this work are under clinical investigation. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases.
Bettencourt, Conceição; Hensman-Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas-Gómez, Petra; García-Velázquez, Lizbeth Esmeralda; Alonso-Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J; Jones, Lesley
2016-06-01
The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome-wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single-nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10(-5) ). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10(-5) ) and all SCAs (p = 2.22 × 10(-4) ) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10(-5) ), all in the same direction as in the HD GWAS. We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983-990. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
Ciura, Sorana; Lattante, Serena; Le Ber, Isabelle; Latouche, Morwena; Tostivint, Hervé; Brice, Alexis; Kabashi, Edor
2013-08-01
To define the role that repeat expansions of a GGGGCC hexanucleotide sequence of the C9orf72 gene play in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A genetic model for ALS was developed to determine whether loss of function of the zebrafish orthologue of C9orf72 (zC9orf72) leads to abnormalities in neuronal development. C9orf72 mRNA levels were quantified in brain and lymphoblasts derived from FTLD and ALS/FTLD patients and in zebrafish. Knockdown of the zC9orf72 was performed using 2 specific antisense morpholino oligonucleotides to block transcription. Quantifications of spontaneous swimming and tactile escape response, as well as measurements of axonal projections from the spinal cord, were performed. Significantly decreased expression of C9orf72 transcripts in brain and lymphoblasts was found in sporadic FTLD and ALS/FTLD patients with normal-size or expanded hexanucleotide repeats. The zC9orf72 is selectively expressed in the developing nervous system at developmental stages. Loss of function of the zC9orf72 transcripts causes both behavioral and cellular deficits related to locomotion without major morphological abnormalities. These deficits were rescued upon overexpression of human C9orf72 mRNA transcripts. Our results indicate C9orf72 haploinsufficiency could be a contributing factor in the spectrum of ALS/FTLD neurodegenerative disorders. Loss of function of the zebrafish orthologue of zC9orf72 expression in zebrafish is associated with axonal degeneration of motor neurons that can be rescued by expressing human C9orf72 mRNA, highlighting the specificity of the induced phenotype. These results reveal a pathogenic consequence of decreased C9orf72 levels, supporting a loss of function mechanism of disease. © 2013 American Neurological Association.
Muvhali, Munyadziwa; Smith, Anthony Marius; Rakgantso, Andronica Moipone; Keddy, Karen Helena
2017-10-02
Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) has become a significant pathogen in South Africa, and the need for improved molecular surveillance of this pathogen has become important. Over the years, multi-locus variable-number tandem-repeats analysis (MLVA) has become a valuable molecular subtyping technique for Salmonella, particularly for highly homogenic serotypes such as Salmonella Enteritidis. This study describes the use of MLVA in the molecular epidemiological investigation of outbreak isolates in South Africa. Between the years 2013 and 2015, the Centre for Enteric Diseases (CED) received 39 Salmonella Enteritidis isolates from seven foodborne illness outbreaks, which occurred in six provinces. MLVA was performed on all isolates. Three MLVA profiles (MLVA profiles 21, 22 and 28) were identified among the 39 isolates. MLVA profile 28 accounted for 77% (30/39) of the isolates. Isolates from a single outbreak were grouped into a single MLVA profile. A minimum spanning tree (MST) created from the MLVA data showed a close relationship between MLVA profiles 21, 22 and 28, with a single VNTR locus difference between them. MLVA has proven to be a reliable method for the molecular epidemiological investigation of Salmonella Enteritidis outbreaks in South Africa. These foodborne outbreaks emphasize the importance of the One Health approach as an essential component for combating the spread of zoonotic pathogens such as Salmonella Enteritidis.
A review of typical thermal fatigue failure models for solder joints of electronic components
NASA Astrophysics Data System (ADS)
Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong
2017-09-01
For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.
GENETICS AND NEUROPATHOLOGY OF HUNTINGTON’S DISEASE
Reiner, Anton; Dragatsis, Ioannis; Dietrich, Paula
2015-01-01
Huntington’s disease (HD) is an autosomal dominant progressive neurodegenerative disorder that prominently affects the basal ganglia, leading to affective, cognitive, behavioral and motor decline. The basis of HD is a CAG repeat expansion to >35 CAG in a gene that codes for a ubiquitous protein known as huntingtin, resulting in an expanded N-terminal polyglutamine tract. The size of the expansion is correlated with disease severity, with increasing CAG accelerating the age of onset. A variety of possibilities have been proposed as to the mechanism by which the mutation causes preferential injury to the basal ganglia. The present chapter provides a basic overview of the genetics and pathology of HD. PMID:21907094
C9orf72 expansion presenting as an eating disorder.
Sanders, Peter; Ewing, Isobel; Ahmad, Kate
2016-03-01
This report describes a 64-year-old woman with a strong family history of motor neuron disease, whose diagnosis of behavioural variant frontotemporal dementia was delayed due to her initial presentation with atypical manifestations, including restriction of oral intake resulting in low weight, disordered eating and anxiety. Upon investigation, she was found to be a carrier of the C9orf72 hexanucleotide repeat expansion. Our case supports previous publications asserting that C9orf72 mutation carriers manifest with diverse clinical syndromes, and expands the phenotype to include anorexia and food refusal as potential features of the condition. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Zhang, Ya; Kitajima, Masaaki; Whittle, Andrew J.; Liu, Wen-Tso
2017-01-01
The occurrence of pathogenic bacteria in drinking water distribution systems (DWDSs) is a major health concern, and our current understanding is mostly related to pathogenic species such as Legionella pneumophila and Mycobacterium avium but not to bacterial species closely related to them. In this study, genomic-based approaches were used to characterize pathogen-related species in relation to their abundance, diversity, potential pathogenicity, genetic exchange, and distribution across an urban drinking water system. Nine draft genomes recovered from 10 metagenomes were identified as Legionella (4 draft genomes), Mycobacterium (3 draft genomes), Parachlamydia (1 draft genome), and Leptospira (1 draft genome). The pathogenicity potential of these genomes was examined by the presence/absence of virulence machinery, including genes belonging to Type III, IV, and VII secretion systems and their effectors. Several virulence factors known to pathogenic species were detected with these retrieved draft genomes except the Leptospira-related genome. Identical clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) genetic signatures were observed in two draft genomes recovered at different stages of the studied system, suggesting that the spacers in CRISPR-Cas could potentially be used as a biomarker in the monitoring of Legionella related strains at an evolutionary scale of several years across different drinking water production and distribution systems. Overall, metagenomics approach was an effective and complementary tool of culturing techniques to gain insights into the pathogenic characteristics and the CRISPR-Cas signatures of pathogen-related species in DWDSs. PMID:29097994
Percutaneous drainage in the treatment of Klebsiella pneumoniae lung abscess.
Cameron, E W; Whitton, I D
1977-01-01
Seven cases of lung abscess involving Klebsiella pneumoniae with or without other pathogens presented with gross expansion of the involved lobes or segments and severe clinical illness despite medical treatment. Operative management by rib resection and tube drainage was successful in each case, one of which was found to be an infected cryptococcoma. Postoperative bronchograms were made in six cases. Images PMID:341405
Jennifer Klutsch; Nadir Erbilgin
2012-01-01
In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...
USDA-ARS?s Scientific Manuscript database
Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the geographic expansion, and continued outbreaks in humans and avian species underscore the need for more effective influenza vaccines and antivirals. Additional small anim...
Atypical memory B cells in human chronic infectious diseases: An interim report.
Portugal, Silvia; Obeng-Adjei, Nyamekye; Moir, Susan; Crompton, Peter D; Pierce, Susan K
2017-11-01
Immunological memory is a remarkable phenomenon in which survival of an initial infection by a pathogen leads to life-long protection from disease upon subsequent exposure to that same pathogen. For many infectious diseases, long-lived protective humoral immunity is induced after only a single infection in a process that depends on the generation of memory B cells (MBCs) and long-lived plasma cells. However, over the past decade it has become increasingly evident that many chronic human infectious diseases to which immunity is not readily established, including HIV-AIDS, malaria and TB, are associated with fundamental alterations in the composition and functionality of MBC compartments. A common feature of these diseases appears to be a large expansion of what have been termed exhausted B cells, tissue-like memory B cells or atypical memory B cells (aMBCs) that, for simplicity's sake, we refer to here as aMBCs. It has been suggested that chronic immune activation and inflammation drive the expansion of aMBCs and that in some way aMBCs contribute to deficiencies in the acquisition of immunity in chronic infectious diseases. Although aMBCs are heterogeneous both within individuals and between diseases, they have several features in common including low expression of the cell surface markers that define classical MBCs in humans including CD21 and CD27 and high expression of genes not usually expressed by classical MBCs including T-bet, CD11c and a variety of inhibitory receptors, notably members of the FcRL family. Another distinguishing feature is their greatly diminished ability to be stimulated through their B cell receptors to proliferate, secrete cytokines or produce antibodies. In this review, we describe our current understanding of the phenotypic markers of aMBCs, their specificity in relation to the disease-causing pathogen, their functionality, the drivers of their expansion in chronic infections and their life span. We briefly summarize the features of aMBCs in healthy individuals and in autoimmune disease. We also comment on the possible relationship of human aMBCs and T-bet + , CD11c + age/autoimmune-associated B cells, also a topic of this review volume. Published by Elsevier Inc.
Within-Host Evolution of Burkholderia pseudomallei in Four Cases of Acute Melioidosis
Limmathurotsakul, Direk; Max, Tamara L.; Sarovich, Derek S.; Vogler, Amy J.; Dale, Julia L.; Ginther, Jennifer L.; Leadem, Benjamin; Colman, Rebecca E.; Foster, Jeffrey T.; Tuanyok, Apichai; Wagner, David M.; Peacock, Sharon J.; Pearson, Talima; Keim, Paul
2010-01-01
Little is currently known about bacterial pathogen evolution and adaptation within the host during acute infection. Previous studies of Burkholderia pseudomallei, the etiologic agent of melioidosis, have shown that this opportunistic pathogen mutates rapidly both in vitro and in vivo at tandemly repeated loci, making this organism a relevant model for studying short-term evolution. In the current study, B. pseudomallei isolates cultured from multiple body sites from four Thai patients with disseminated melioidosis were subjected to fine-scale genotyping using multilocus variable-number tandem repeat analysis (MLVA). In order to understand and model the in vivo variable-number tandem repeat (VNTR) mutational process, we characterized the patterns and rates of mutations in vitro through parallel serial passage experiments of B. pseudomallei. Despite the short period of infection, substantial divergence from the putative founder genotype was observed in all four melioidosis cases. This study presents a paradigm for examining bacterial evolution over the short timescale of an acute infection. Further studies are required to determine whether the mutational process leads to phenotypic alterations that impact upon bacterial fitness in vivo. Our findings have important implications for future sampling strategies, since colonies in a single clinical sample may be genetically heterogeneous, and organisms in a culture taken late in the infective process may have undergone considerable genetic change compared with the founder inoculum. PMID:20090837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinsztein, D.C.; Leggo, J.; Whittaker, J.L.
1996-07-01
Abnormal CAG expansions in the IT-15 gene are associated with Huntington disease (HD). In the diagnostic setting it is necessary to define the limits of the CAG size ranges on normal and HD-associated chromosomes. Most large analyses that defined the limits of the normal and pathological size ranges employed PCR assays, which included the CAG repeats and a CCG repeat tract that was thought to be invariant. Many of these experiments found an overlap between the normal and disease size ranges. Subsequent findings that the CCG repeats vary by 9 trinucleotide lengths suggested that the limits of the normal andmore » disease size ranges should be reevaluated with assays that exclude the CCG polymorphism. Since patients with between 30 and 40 repeats are rare, a consortium was assembled to collect such individuals. All 178 samples were reanalyzed in Cambridge by using assays specific for the CAG repeats. We have optimized methods for reliable sizing of CAG repeats and show cases that demonstrate the dangers of using PCR assays that include both the CAG and CCG polymorphisms. Seven HD patients had 36 repeats, which confirms that this allele is associated with disease. Individuals without apparent symptoms or signs of HD were found at 36 repeats (aged 74, 78, 79, and 87 years), 37 repeats (aged 69 years), 38 repeats (aged 69 and 90 years), and 39 repeats (aged 67, 90, and 95 years). The detailed case histories of an exceptional case from this series will be presented: a 95-year-old man with 39 repeats who did not have classical features of HD. The apparently healthy survival into old age of some individuals with 36-39 repeats suggests that the HD mutation may not always be fully penetrant. 26 refs., 3 figs., 1 tab.« less
Rüttermann, Stefan; Krüger, Sören; Raab, Wolfgang H-M; Janda, Ralf
2007-10-01
To investigate the polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials. The densities of SureFil (SU), CeramXMono (CM), Clearfil AP-X (CF), Solitaire 2 (SO), TetricEvoCeram (TE), and Filtek P60 (FT) were measured using the Archimedes' principle prior to and 15min after curing for 20, 40 and 60s and after 1h, 24h, 7 d, and 30 d storage at 37 degrees C in water. Volumetric changes (DeltaV) in percent after polymerization and after each storage period in water were calculated from the changes of densities. Water sorption and solubility were determined after 30 d for all specimens and their curing times. Two-way ANOVA was calculated for shrinkage and repeated measures ANOVA was calculated for hygroscopic expansion (p<0.05). DeltaV depended on filler load but not on curing time (SU approximately -2.0%, CM approximately -2.6%, CF approximately -2.1%, SO approximately -3.3%, TE approximately -1.7%, FT approximately -1.8%). Hygroscopic expansion depended on water sorption and solubility. Except for SU, all materials showed DeltaV approximately +1% after water storage. Polymerization shrinkage depended on the type of resin-based filling material but not on curing time. Shrinkage was not compensated by hygroscopic expansion.