Science.gov

Sample records for pathogenic virus infection

  1. Highly Pathogenic Avian Influenza Virus Infection in Feral Raccoons, Japan

    PubMed Central

    Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; Sashika, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-01-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health. PMID:21470469

  2. Highly pathogenic avian influenza virus infection in feral raccoons, Japan.

    PubMed

    Horimoto, Taisuke; Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; Sashika, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-04-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health.

  3. Gene expression responses to highly pathogenic avian influenza H5N1 virus infections in ducks

    USDA-ARS?s Scientific Manuscript database

    Differences in host response to infection with avian influenza (AI) viruses were investigated by identifying genes differentially expressed in tissues of infected ducks. Clear differences in pathogenicity were observed among ducks inoculated with five H5N1 HPAI viruses. Virus titers in tissues cor...

  4. High doses of highly pathogenic avian influenza virus in chicken meat are required to infect ferrets

    USDA-ARS?s Scientific Manuscript database

    H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused natural and experimental infections in various animals through consumption of infected bird carcasses and meat. However, little is known about the quantity of virus required and if all HPAIV subtypes can cause infections following c...

  5. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome.

    PubMed

    Handley, Scott A; Thackray, Larissa B; Zhao, Guoyan; Presti, Rachel; Miller, Andrew D; Droit, Lindsay; Abbink, Peter; Maxfield, Lori F; Kambal, Amal; Duan, Erning; Stanley, Kelly; Kramer, Joshua; Macri, Sheila C; Permar, Sallie R; Schmitz, Joern E; Mansfield, Keith; Brenchley, Jason M; Veazey, Ronald S; Stappenbeck, Thaddeus S; Wang, David; Barouch, Dan H; Virgin, Herbert W

    2012-10-12

    Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy, which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next-generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not nonpathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence by using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis.

  6. Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation.

    PubMed

    Pantin-Jackwood, Mary J; Smith, Diane M; Wasilenko, Jamie L; Spackman, Erica

    2012-06-01

    In order to develop better control measures against avian influenza, it is necessary to understand how the virus transmits in poultry. In a previous study in which the infectivity and transmissibility of the pandemic H1N1 influenza virus was examined in different poultry species, we found that no or minimal infection occurred in chicken and turkeys intranasally (IN) inoculated with the virus. However, we demonstrated that the virus can infect laying turkey hens by the intracloacal (IC) and intraoviduct (IO) routes, possibly explaining the drops in egg production observed in turkey breeder farms affected by the virus. Such novel routes of exposure have not been previously examined in chickens and could also explain outbreaks of low pathogenicity avian influenza (LPAI) that cause a decrease in egg production in chicken layers and breeders. In the present study, 46-wk-old specific-pathogen-free chicken layers were infected by the IN, IC, or IO routes with one of two LPAI viruses: a poultry origin virus, A/chicken/CA/1255/02 (H6N2), and a live bird market isolate, A/chicken/NJ/12220/97 (H9N2). Only hens IN inoculated with the H6N2 virus presented mild clinical signs consisting of depression and anorexia. However, a decrease in number of eggs laid was observed in all virus-inoculated groups when compared to control hens. Evidence of infection was found in all chickens inoculated with the H6N2 virus by any of the three routes and the virus transmitted to contact hens. On the other hand, only one or two hens from each of the groups inoculated with the H9N2 virus shed detectable levels of virus, or seroconverted and did not transmit the virus to contacts, regardless of the route of inoculation. In conclusion, LPAI viruses can also infect chickens through other routes besides the IN route, which is considered the natural route of exposure. However, as seen with the H9N2 virus, the infectivity of the virus did not increase when given by these alternate routes.

  7. Previous infection with a mesogenic strain of Newcastle disease virus affects infection with highly pathogenic avian influenza viruses in chickens

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known on the interactions between these two viruses when infecting birds. In a previous study we found that infection of chickens with a mesogenic strain of...

  8. Transcriptome Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    PubMed Central

    Kolliopoulou, Anna; Van Nieuwerburgh, Filip; Stravopodis, Dimitrios J.; Deforce, Dieter; Swevers, Luc; Smagghe, Guy

    2015-01-01

    Many insects can be persistently infected with viruses but do not show any obvious adverse effects with respect to physiology, development or reproduction. Here, Bombyx mori strain Daizo, persistently infected with cytoplasmic polyhedrosis virus (BmCPV), was used to study the host’s transcriptional response after pathogenic infection with the same virus in midgut tissue of larvae persistently and pathogenically infected as 2nd and 4th instars. Next generation sequencing revealed that from 13,769 expressed genes, 167 were upregulated and 141 downregulated in both larval instars following pathogenic infection. Several genes that could possibly be involved in B. mori immune response against BmCPV or that may be induced by the virus in order to increase infectivity were identified, whereas classification of differentially expressed transcripts (confirmed by qRT-PCR) resulted in gene categories related to physical barriers, immune responses, proteolytic / metabolic enzymes, heat-shock proteins, hormonal signaling and uncharacterized proteins. Comparison of our data with the available literature (pathogenic infection of persistently vs. non-persistently infected larvae) unveiled various similarities of response in both cases, which suggests that pre-existing persistent infection does not affect in a major way the transcriptome response against pathogenic infection. To investigate the possible host’s RNAi response against BmCPV challenge, the differential expression of RNAi-related genes and the accumulation of viral small RNAs (vsRNAs) were studied. During pathogenic infection, siRNA-like traces like the 2-fold up-regulation of the core RNAi genes Ago-2 and Dcr-2 as well as a peak of 20 nt small RNAs were observed. Interestingly, vsRNAs of the same size were detected at lower rates in persistently infected larvae. Collectively, our data provide an initial assessment of the relative significance of persistent infection of silkworm larvae on the host response following

  9. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian invluenza virus

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) avian influenza viruses (AIV) present an ongoing threat to the world poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection at mucosal respiratory sites. Chicken and duck tracheal epithelial ...

  10. The ability to cause infection in a pathogenic fungus uncovers a new biological feature of honey bee viruses

    USDA-ARS?s Scientific Manuscript database

    We demonstrated that honey bee viruses, including Deformed Wing Virus (DWV), Black Queen Cell Virus (BQCV) and Isreali Acute Paralysis Virus (IAPV), could infect and replicate in the fungal pathogen Ascosphaera apis, which causes honey bee chalkbrood disease, uncovering a novel biological feature of...

  11. Effect of Infection with a Mesogenic Strain of Newcastle Disease Virus on Infection with Highly Pathogenic Avian Influenza Virus in Chickens

    USDA-ARS?s Scientific Manuscript database

    Little is known on the interactions between avian influenza virus (AIV) and Newcastle disease virus (NDV) when coinfecting the same poultry host. In a previous study we found that infection of chickens with a mesogenic strain of NDV (mNDV) can reduce highly pathogenic AIV (HPAIV) replication, clinic...

  12. Therapeutic approaches to HIV infection based on virus structure and the host pathogen interaction.

    PubMed

    Pauza, C D; Streblow, D N

    1995-01-01

    The HIV-1 infection of central nervous system, with attendant neuropathy and dementia, poses a unique challenge for antiviral therapy. For practical considerations, it is important to define carefully the precise therapeutic objectives. (1) Is it necessary to inhibit spreading HIV-1 infection in the central nervous system? (2) What is the role of inflammatory responses in central nervous system disease during HIV-1 infection? (3) Is there a correlation between pathology and dementia? (4) Are virions or virus gene products toxic in the central nervous system? (5) Is there a role for immune suppression and opportunistic pathogens in AIDS dementia? The development of therapeutic agents for HIV-1 infection is guided by our knowledge of virus structure, the function of viral proteins, the interactions with host components, and detailed features of the virus life cycle. In each case, unique features of the virus can be identified and established as targets for unique antiviral compounds. Drugs acting as inhibitors of virus enzymatic functions are plagued by the rapid development in vivo of drug-resistant virus variants, although combination or alternating chemotherapeutic regimens may obviate some of these concerns. Novel approaches to inhibiting virus are flourishing. In vitro studies show the value of agents as diverse as molecular decoys for tat activity to efforts to mutagenize integrated proviruses by modified oligonucleotides that form triple helices with chromosomal genes. As each particular clinical situation is better defined, the design and application of these agents can be refined to inhibit HIV-1 replication and reduce the associated morbidity.

  13. Variation in infectivity and adaptation of wild duck- and poultry-origin high pathogenicity and low pathogenicity avian influenza viruses for poultry

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) viruses vary in their adaptation which impacts transmission between and infection of different bird species. We determine the intranasal mean bird infectious doses (BID50) for 11 high pathogenicity (HP) AI viruses for layer type chickens (LC), and three low pathogenicity (LP) A...

  14. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Infections with Avian influenza viruses (AIV) of low and high pathogenicity (LP and HP), and Newcastle disease virus (NDV) are commonly reported in domestic ducks in parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the ...

  15. Transcriptomic analysis reveals the potential of highly pathogenic PRRS virus to modulate immune system activation related to host-pathogen and damage associated signaling in infected porcine monocytes

    USDA-ARS?s Scientific Manuscript database

    One of the largest risks to the continued stability of the swine industry is by pathogens like porcine reproductive and respiratory syndrome virus (PRRSV) that can decimate production as it spreads among individuals. These infections can be low or highly pathogenic, and because it infects monocytic ...

  16. [Serologic studies of domestic cats for potential human pathogenic virus infections from wild rodents].

    PubMed

    Nowotny, N

    1996-05-01

    For several viral infections a reservoir in wild rodents has been demonstrated. Some of the agents are known or suspected to be pathogenic for humans. Because improvements in hygiene have reduced direct human contact with rodents, domestic cats could be acting as active transmitters of these viruses from rodents to man. We selected 4 such pathogens--ortho- and parapox-, hanta- and encephalomyocarditis viruses--which, in different ways, may lead to serious human illness: Ortho- and parapoxvirus infections may cause localized pox lesions following direct skin contact. In general, the lesions heal without complications; in immunosuppressed or -deficient individuals, however, infection may generalize and take a dramatic course. Hantaviruses exist in various serotypes with different pathogenicity for human beings, varying from asymptomatic infection to highly fatal disease. In central and northern Europe the Puumala serotype is predominant causing influenza-like symptoms and renal dysfunction. Human infections arise from inhalation of aerosolized excreta of persistently infected rodents. Infections of man associated with encephalomyocarditis virus were demonstrated sporadically in cases of encephalitis and meningitis. In the present study, we investigated in 200 feline serum samples the prevalence of antibodies to ortho- and parapox-, hanta- and encephalomyocarditis virus. All serum samples were from cats that had been allowed to roam outside and to hunt. They were submitted from all parts of Austria for routine diagnosis in 1993. Four per cent of cats showed antibodies to orthopoxviruses with haemagglutination inhibition (HI) titres of 16-512; because of extensive cross-reactivity, positive samples reacted with all investigated orthopoxviruses (a feline orthopoxvirus recently isolated in Vienna, the reference strain of cowpox virus, Brighton, and vaccinia virus, strain IHD), only varying in titre. The specificity of the results was confirmed by virus neutralisation (VN

  17. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses

    PubMed Central

    Richard, Audrey Stéphanie; Shim, Byoung-Shik; Kwon, Young-Chan; Zhang, Rong; Otsuka, Yuka; Schmitt, Kimberly; Berri, Fatma; Diamond, Michael S.; Choe, Hyeryun

    2017-01-01

    Although a causal relationship between Zika virus (ZIKV) and microcephaly has been established, it remains unclear why ZIKV, but not other pathogenic flaviviruses, causes congenital defects. Here we show that when viruses are produced in mammalian cells, ZIKV, but not the closely related dengue virus (DENV) or West Nile virus (WNV), can efficiently infect key placental barrier cells that directly contact the fetal bloodstream. We show that AXL, a receptor tyrosine kinase, is the primary ZIKV entry cofactor on human umbilical vein endothelial cells (HUVECs), and that ZIKV uses AXL with much greater efficiency than does DENV or WNV. Consistent with this observation, only ZIKV, but not WNV or DENV, bound the AXL ligand Gas6. In comparison, when DENV and WNV were produced in insect cells, they also infected HUVECs in an AXL-dependent manner. Our data suggest that ZIKV, when produced from mammalian cells, infects fetal endothelial cells much more efficiently than other pathogenic flaviviruses because it binds Gas6 more avidly, which in turn facilitates its interaction with AXL. PMID:28167751

  18. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses.

    PubMed

    Richard, Audrey Stéphanie; Shim, Byoung-Shik; Kwon, Young-Chan; Zhang, Rong; Otsuka, Yuka; Schmitt, Kimberly; Berri, Fatma; Diamond, Michael S; Choe, Hyeryun

    2017-02-21

    Although a causal relationship between Zika virus (ZIKV) and microcephaly has been established, it remains unclear why ZIKV, but not other pathogenic flaviviruses, causes congenital defects. Here we show that when viruses are produced in mammalian cells, ZIKV, but not the closely related dengue virus (DENV) or West Nile virus (WNV), can efficiently infect key placental barrier cells that directly contact the fetal bloodstream. We show that AXL, a receptor tyrosine kinase, is the primary ZIKV entry cofactor on human umbilical vein endothelial cells (HUVECs), and that ZIKV uses AXL with much greater efficiency than does DENV or WNV. Consistent with this observation, only ZIKV, but not WNV or DENV, bound the AXL ligand Gas6. In comparison, when DENV and WNV were produced in insect cells, they also infected HUVECs in an AXL-dependent manner. Our data suggest that ZIKV, when produced from mammalian cells, infects fetal endothelial cells much more efficiently than other pathogenic flaviviruses because it binds Gas6 more avidly, which in turn facilitates its interaction with AXL.

  19. Expression of a Peroral Infection Factor Determines Pathogenicity and Population Structure in an Insect Virus

    PubMed Central

    Simón, Oihane; Williams, Trevor; Cerutti, Martine; Caballero, Primitivo; López-Ferber, Miguel

    2013-01-01

    A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess. PMID:24223853

  20. Viruses accumulate in aging infection centers of a fungal forest pathogen

    PubMed Central

    Vainio, Eeva J; Müller, Michael M; Korhonen, Kari; Piri, Tuula; Hantula, Jarkko

    2015-01-01

    Fungal viruses (mycoviruses) with RNA genomes are believed to lack extracellular infective particles. These viruses are transmitted laterally among fungal strains through mycelial anastomoses or vertically via their infected spores, but little is known regarding their prevalence and patterns of dispersal under natural conditions. Here, we examined, in detail, the spatial and temporal changes in a mycovirus community and its host fungus Heterobasidion parviporum, the most devastating fungal pathogen of conifers in the Boreal forest region. During the 7-year sampling period, viruses accumulated in clonal host individuals as a result of indigenous viruses spreading within and between clones as well as novel strains arriving via airborne spores. Viral community changes produced pockets of heterogeneity within large H. parviporum clones. The appearance of novel viral infections in aging clones indicated that transient cell-to-cell contacts between Heterobasidion strains are likely to occur more frequently than what was inferred from genotypic analyses. Intraspecific variation was low among the three partitivirus species at the study site, whereas the unassigned viral species HetRV6 was highly polymorphic. The accumulation of point mutations during persistent infections resulted in viral diversification, that is, the presence of nearly identical viral sequence variants within single clones. Our results also suggest that co-infections by distantly related viral species are more stable than those between conspecific strains, and mutual exclusion may play a role in determining mycoviral communities. PMID:25126757

  1. Adaptive Heterosubtypic Immunity to Low Pathogenic Avian Influenza Viruses in Experimentally Infected Mallards

    PubMed Central

    Segovia, Karen M.; Stallknecht, David E.; Kapczynski, Darrell R.; Stabler, Lisa; Berghaus, Roy D.; Fotjik, Alinde; Latorre-Margalef, Neus; França, Monique S.

    2017-01-01

    Mallards are widely recognized as reservoirs for Influenza A viruses (IAV); however, host factors that might prompt seasonality and trends in subtype diversity of IAV such as adaptive heterosubtypic immunity (HSI) are not well understood. To investigate this, we inoculated mallards with a prevailing H3N8 low pathogenic avian influenza virus (LPAIV) subtype in waterfowl to determine if prior infection with this virus would be protective against heterosubtypic infections with the H4N6, H10N7 and H14N5 LPAIV subtypes after one, two and three months, respectively. Also, we investigated the effect of cumulative immunity after sequential inoculation of mallards with these viruses in one-month intervals. Humoral immunity was assessed by microneutralization assays using a subset of representative LPAIV subtypes as antigens. Our results indicate that prior inoculation with the H3N8 virus confers partial protective immunity against subsequent heterosubtypic infections with the robustness of HSI related to the phylogenetic similarity of the HA protein of the strains used. Furthermore, induced HSI was boosted and followed by repeated exposure to more than one LPAIV subtype. Our findings provide further information on the contributions of HSI and its role in the dynamics of IAV subtype diversity in mallards. PMID:28107403

  2. Host immune responses of ducks infected with H5N1 highly pathogenic avian influenza viruses of different pathogenicities.

    PubMed

    Wei, Liangmeng; Jiao, Peirong; Song, Yafen; Cao, Lan; Yuan, Runyu; Gong, Lang; Cui, Jin; Zhang, Shuo; Qi, Wenbao; Yang, Su; Liao, Ming

    2013-10-25

    Our previous studies have illustrated three strains of duck-origin H5N1 highly pathogenic avian influenza viruses (HPAIVs) had varying levels of pathogenicity in ducks (Sun et al., 2011). However, the host immune response of ducks infected with those of H5N1 HPAIVs was unclear. Here, we compared viral distribution and mRNA expression of immune-related genes in ducks following infection with the two HPAIV (A/Duck/Guangdong/212/2004, DK212 and A/Duck/Guangdong/383/2008, DK383). DK383 could replicate in the tested tissue of ducks (brain, spleen, lungs, cloacal bursa, kidney, and pancreas) more rapid and efficiently than DK212 at 1 and 2 days post-inoculation. Quantitative real-time PCR analysis showed that the expression levels of TLR3, IL-6, IL-8, and MHC class II in brains were higher than those of respective genes in lungs during the early stage of post infection. Furthermore, the expression levels of IL-6 and IL-8 in the brain of ducks following infection with DK383 were remarkably higher than those of ducks infected with DK212, respectively. Our results suggest that the shift in the H5N1 HPAIVs to increased virulence in ducks may be associated with efficient and rapid replication of the virus, accompanied by early destruction of host immune responses. These data are helpful to understand the underlying mechanism of the different outcome of H5N1 HPAIVs infection in ducks. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Human infection with highly pathogenic H5N1 influenza virus.

    PubMed

    Gambotto, Andrea; Barratt-Boyes, Simon M; de Jong, Menno D; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-04-26

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of H5N1 influenza viruses and their capacity for transmission from birds to human beings has raised worldwide concern about an impending human influenza pandemic similar to the notorious H1N1 Spanish influenza of 1918. Since many aspects of H5N1 influenza research are rapidly evolving, we aim in this Seminar to provide an up-to-date discussion on select topics of interest to influenza clinicians and researchers. We summarise the clinical features and diagnosis of infection and present therapeutic options for H5N1 infection of people. We also discuss ideas relating to virus transmission, host restriction, and pathogenesis. Finally, we discuss vaccine development in view of the probable importance of vaccination in pandemic control.

  4. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp.

    PubMed

    Shekhar, M S; Ponniah, A G

    2015-07-01

    Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed. © 2014 John Wiley & Sons Ltd.

  5. Influenza virus polymerase: Functions on host range, inhibition of cellular response to infection and pathogenicity.

    PubMed

    Rodriguez-Frandsen, Ariel; Alfonso, Roberto; Nieto, Amelia

    2015-11-02

    The viral polymerase is an essential complex for the influenza virus life cycle as it performs the viral RNA transcription and replication processes. To that end, the polymerase carries out a wide array of functions and associates to a large number of cellular proteins. Due to its importance, recent studies have found numerous mutations in all three polymerase protein subunits contributing to virus host range and pathogenicity. In this review, we will point out viral polymerase polymorphisms that have been associated with virus adaptation to mammalian hosts, increased viral polymerase activity and virulence. Furthermore, we will summarize the current knowledge regarding the new set of proteins expressed from the viral polymerase genes and their contribution to infection. In addition, the mechanisms used by the virus to counteract the cellular immune response in which the viral polymerase complex or its subunits are involved will be highlighted. Finally, the degradative process induced by the viral polymerase on the cellular transcription machinery and its repercussions on virus pathogenicity will be of particular interest. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus.

    PubMed

    Roberts, Kimberly K; Hill, Terence E; Davis, Melissa N; Holbrook, Michael R; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.

  7. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus

    PubMed Central

    Roberts, Kimberly K.; Hill, Terence E.; Davis, Melissa N.; Holbrook, Michael R.

    2015-01-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection. PMID:25759029

  8. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections.

    PubMed

    Cartwright, Emily K; McGary, Colleen S; Cervasi, Barbara; Micci, Luca; Lawson, Benton; Elliott, Sarah T C; Collman, Ronald G; Bosinger, Steven E; Paiardini, Mirko; Vanderford, Thomas H; Chahroudi, Ann; Silvestri, Guido

    2014-05-15

    Recent studies have identified a subset of memory T cells with stem cell-like properties (T(SCM)) that include increased longevity and proliferative potential. In this study, we examined the dynamics of CD4(+) T(SCM) during pathogenic SIV infection of rhesus macaques (RM) and nonpathogenic SIV infection of sooty mangabeys (SM). Whereas SIV-infected RM show selective numeric preservation of CD4(+) T(SCM), SIV infection induced a complex perturbation of these cells defined by depletion of CD4(+)CCR5(+) T(SCM), increased rates of CD4(+) T(SCM) proliferation, and high levels of direct virus infection. The increased rates of CD4(+) T(SCM) proliferation in SIV-infected RM correlated inversely with the levels of central memory CD4(+) T cells. In contrast, nonpathogenic SIV infection of SM evidenced preservation of both CD4(+) T(SCM) and CD4(+) central memory T cells, with normal levels of CD4(+) T(SCM) proliferation, and lack of selective depletion of CD4(+)CCR5(+) T(SCM). Importantly, SIV DNA was below the detectable limit in CD4(+) T(SCM) from 8 of 10 SIV-infected SM. We propose that increased proliferation and infection of CD4(+) T(SCM) may contribute to the pathogenesis of SIV infection in RM.

  9. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection.

    PubMed

    Zhang, Kun; Xu, Wei Wei; Zhang, Zhaowei; Liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-05-02

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.

  10. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection

    PubMed Central

    Zhang, Kun; wei Xu, Wei; Zhang, Zhaowei; liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R.; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-01-01

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses. PMID:28418930

  11. Plasmacytoid Dendritic Cell Infection and Sensing Capacity during Pathogenic and Nonpathogenic Simian Immunodeficiency Virus Infection

    PubMed Central

    Jochems, Simon P.; Jacquelin, Beatrice; Chauveau, Lise; Huot, Nicolas; Petitjean, Gaël; Lepelley, Alice; Liovat, Anne-Sophie; Ploquin, Mickaël J.; Cartwright, Emily K.; Bosinger, Steven E.; Silvestri, Guido; Barré-Sinoussi, Françoise; Lebon, Pierre; Schwartz, Olivier

    2015-01-01

    ABSTRACT Human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques (MAC) lead to chronic inflammation and AIDS. Natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM), are protected against SIV-induced chronic inflammation and AIDS. Here, we report that AGM plasmacytoid dendritic cells (pDC) express extremely low levels of CD4, unlike MAC and human pDC. Despite this, AGM pDC efficiently sensed SIVagm, but not heterologous HIV/SIV isolates, indicating a virus-host adaptation. Moreover, both AGM and SM pDC were found to be, in contrast to MAC pDC, predominantly negative for CCR5. Despite such limited CD4 and CCR5 expression, lymphoid tissue pDC were infected to a degree similar to that seen with CD4+ T cells in both MAC and AGM. Altogether, our finding of efficient pDC infection by SIV in vivo identifies pDC as a potential viral reservoir in lymphoid tissues. We discovered low expression of CD4 on AGM pDC, which did not preclude efficient sensing of host-adapted viruses. Therefore, pDC infection and efficient sensing are not prerequisites for chronic inflammation. The high level of pDC infection by SIVagm suggests that if CCR5 paucity on immune cells is important for nonpathogenesis of natural hosts, it is possibly not due to its role as a coreceptor. IMPORTANCE The ability of certain key immune cell subsets to resist infection might contribute to the asymptomatic nature of simian immunodeficiency virus (SIV) infection in its natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM). This relative resistance to infection has been correlated with reduced expression of CD4 and/or CCR5. We show that plasmacytoid dendritic cells (pDC) of natural hosts display reduced CD4 and/or CCR5 expression, unlike macaque pDC. Surprisingly, this did not protect AGM pDC, as infection levels were similar to those found in MAC pDC. Furthermore, we show that AGM pDC did not consistently produce type I

  12. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China.

    PubMed

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Yang, Zifeng; Shu, Yuelong; Peiris, Joseph Sriyal Malik

    2017-07-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.

  13. Homo- and Heterosubtypic Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza Virus Infection in Wood Ducks (Aix sponsa)

    PubMed Central

    Costa, Taiana P.; Brown, Justin D.; Howerth, Elizabeth W.; Stallknecht, David E.; Swayne, David E.

    2011-01-01

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations. PMID:21253608

  14. Homo- and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa).

    PubMed

    Costa, Taiana P; Brown, Justin D; Howerth, Elizabeth W; Stallknecht, David E; Swayne, David E

    2011-01-06

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.

  15. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys.

    PubMed

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Spackman, Erica; Kapczynski, Darrell R; Swayne, David E; Shepherd, Eric; Smith, Diane; Zsak, Aniko; Pantin-Jackwood, Mary

    2014-01-06

    Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time.

  16. Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus

    PubMed Central

    2012-01-01

    Background Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens. Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses. Methods To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains. Results Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection. Conclusions Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain. PMID:22390870

  17. Sequence of Pathogenic Events in Cynomolgus Macaques Infected with Aerosolized Monkeypox Virus

    PubMed Central

    Hall, G.; Pearson, G.; Rayner, E.; Graham, V. A.; Steeds, K.; Bewley, K. R.; Hatch, G. J.; Dennis, M.; Taylor, I.; Roberts, A. D.; Funnell, S. G. P.; Vipond, J.

    2015-01-01

    ABSTRACT To evaluate new vaccines when human efficacy studies are not possible, the FDA's “Animal Rule” requires well-characterized models of infection. Thus, in the present study, the early pathogenic events of monkeypox infection in nonhuman primates, a surrogate for variola virus infection, were characterized. Cynomolgus macaques were exposed to aerosolized monkeypox virus (105 PFU). Clinical observations, viral loads, immune responses, and pathological changes were examined on days 2, 4, 6, 8, 10, and 12 postchallenge. Viral DNA (vDNA) was detected in the lungs on day 2 postchallenge, and viral antigen was detected, by immunostaining, in the epithelium of bronchi, bronchioles, and alveolar walls. Lesions comprised rare foci of dysplastic and sloughed cells in respiratory bronchioles. By day 4, vDNA was detected in the throat, tonsil, and spleen, and monkeypox antigen was detected in the lung, hilar and submandibular lymph nodes, spleen, and colon. Lung lesions comprised focal epithelial necrosis and inflammation. Body temperature peaked on day 6, pox lesions appeared on the skin, and lesions, with positive immunostaining, were present in the lung, tonsil, spleen, lymph nodes, and colon. By day 8, vDNA was present in 9/13 tissues. Blood concentrations of interleukin 1ra (IL-1ra), IL-6, and gamma interferon (IFN-γ) increased markedly. By day 10, circulating IgG antibody concentrations increased, and on day 12, animals showed early signs of recovery. These results define early events occurring in an inhalational macaque monkeypox infection model, supporting its use as a surrogate model for human smallpox. IMPORTANCE Bioterrorism poses a major threat to public health, as the deliberate release of infectious agents, such smallpox or a related virus, monkeypox, would have catastrophic consequences. The development and testing of new medical countermeasures, e.g., vaccines, are thus priorities; however, tests for efficacy in humans cannot be performed because it

  18. Toll-like receptor pre-stimulation protects mice against lethal infection with highly pathogenic influenza viruses.

    PubMed

    Shinya, Kyoko; Okamura, Tadashi; Sueta, Setsuko; Kasai, Noriyuki; Tanaka, Motoko; Ginting, Teridah E; Makino, Akiko; Eisfeld, Amie J; Kawaoka, Yoshihiro

    2011-03-04

    Since the beginning of the 20th century, humans have experienced four influenza pandemics, including the devastating 1918 'Spanish influenza'. Moreover, H5N1 highly pathogenic avian influenza (HPAI) viruses are currently spreading worldwide, although they are not yet efficiently transmitted among humans. While the threat of a global pandemic involving a highly pathogenic influenza virus strain looms large, our mechanisms to address such a catastrophe remain limited. Here, we show that pre-stimulation of Toll-like receptors (TLRs) 2 and 4 increased resistance against influenza viruses known to induce high pathogenicity in animal models. Our data emphasize the complexity of the host response against different influenza viruses, and suggest that TLR agonists might be utilized to protect against lethality associated with highly pathogenic influenza virus infection in humans.

  19. The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals.

    PubMed

    Yoneda, Misako; Guillaume, Vanessa; Sato, Hiroki; Fujita, Kentaro; Georges-Courbot, Marie-Claude; Ikeda, Fusako; Omi, Mio; Muto-Terao, Yuri; Wild, T Fabian; Kai, Chieko

    2010-09-15

    Nipah virus (NiV) P gene encodes P protein and three accessory proteins (V, C and W). It has been reported that all four P gene products have IFN antagonist activity when the proteins were transiently expressed. However, the role of those accessory proteins in natural infection with NiV remains unknown. We generated recombinant NiVs lacking V, C or W protein, rNiV(V-), rNiV(C-), and rNiV(W-), respectively, to analyze the functions of these proteins in infected cells and the implications in in vivo pathogenicity. All the recombinants grew well in cell culture, although the maximum titers of rNiV(V-) and rNiV(C-) were lower than the other recombinants. The rNiV(V-), rNiV(C-) and rNiV(W-) suppressed the IFN response as well as the parental rNiV, thereby indicating that the lack of each accessory protein does not significantly affect the inhibition of IFN signaling in infected cells. In experimentally infected golden hamsters, rNiV(V-) and rNiV(C-) but not the rNiV(W-) virus showed a significant reduction in virulence. These results suggest that V and C proteins play key roles in NiV pathogenicity, and the roles are independent of their IFN-antagonist activity. This is the first report that identifies the molecular determinants of NiV in pathogenicity in vivo.

  20. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    PubMed

    Hagag, Ibrahim Thabet; Mansour, Shimaa M G; Zhang, Zerui; Ali, Ahmed A H; Ismaiel, El-Bakry M; Salama, Ali A; Cardona, Carol J; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  1. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt

    PubMed Central

    Hagag, Ibrahim Thabet; Mansour, Shimaa M. G.; Zhang, Zerui; Ali, Ahmed A. H.; Ismaiel, El-Bakry M.; Salama, Ali A.; Cardona, Carol J.; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  2. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia.

    PubMed

    Janssen, Mandy E W; Takagi, Yuko; Parent, Kristin N; Cardone, Giovanni; Nibert, Max L; Baker, Timothy S

    2015-01-15

    Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related "T=2" capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a "primitive" (early-branching) eukaryotic host and an important enteric pathogen of humans. Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa, including Giardia lamblia

  3. Three-Dimensional Structure of a Protozoal Double-Stranded RNA Virus That Infects the Enteric Pathogen Giardia lamblia

    PubMed Central

    Janssen, Mandy E. W.; Takagi, Yuko; Parent, Kristin N.; Cardone, Giovanni

    2014-01-01

    ABSTRACT Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related “T=2” capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a “primitive” (early-branching) eukaryotic host and an important enteric pathogen of humans. IMPORTANCE Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa

  4. Susceptibility And Adaptation Of A Mallard H5N2 Low Pathogenic Influenza Virus In Chickens Infected With Infectious Bursal Disease Virus

    USDA-ARS?s Scientific Manuscript database

    The influenza A/Mallard/Pennsylvania/12180/1984 (H5N2) virus is unable to replicate in 2 to 4-week old normal, immunocompetent specific-pathogen-free (SPF) chickens. In contrast, this mallard virus shows limited replication in chickens that had been previously infected with the immunosuppressive age...

  5. Infectivity and pathogenicity of Newcastle disease virus strains of different avian origin and different virulence for mallard ducklings.

    PubMed

    Dai, Yabin; Liu, Mei; Cheng, Xu; Shen, Xinyue; Wei, Yuyong; Zhou, Sheng; Yu, Shengqing; Ding, Chan

    2013-03-01

    Experimental infections of Newcastle disease virus (NDV) strains of different avian origin and different virulence in mallard (Anas platyrhynchos) ducklings were undertaken to evaluate infectivity and pathogenicity of NDV for ducks and the potential role of ducks in the epidemiology of Newcastle disease (ND). Ducklings were experimentally infected with seven NDV strains, and their clinical sign, weight gain, antibody response, virus shedding, and virus distribution in tissues were investigated. The duck origin virulent strain duck/Jiangsu/JSD0812/2008 (JSD0812) and the Chinese standard virulent strain F48E8 were highly pathogenic for ducklings. They caused high morbidity and mortality, and they distributed extensively in various tissues of infected ducklings. Other strains, including pigeon origin virulent strain pigeon/Jiangsu/JSP0204/2002 (JSP0204), chicken origin virulent strain chicken/Jiangsu/JSC0804/2008 (JSC0804), goose origin virulent goose/Jiangsu/JSG0210/2002 (JSG0210), and vaccine strains Mukteswar and LaSota had no pathogenicity to ducklings. They produced neither clinical signs of the disease nor adverse effect on growth of infected ducklings, and they persisted in duck bodies for only a short period. Virus shedding was detectable in all infected ducklings, but its period and route varied with the virulence of NDV strains. The results suggest that NDV with high pathogenicity in ducks may arise from the evolution within its corresponding host, further confirming that the ducks play an important role in the epidemiology of ND.

  6. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl

    USGS Publications Warehouse

    Gaidet, N.; Cattoli, G.; Hammoumi, S.; Newman, S.H.; Hagemeijer, W.; Takekawa, John Y.; Cappelle, J.; Dodman, T.; Joannis, T.; Gil, P.; Monne, I.; Fusaro, A.; Capua, I.; Manu, S.; Micheloni, P.; Ottosson, U.; Mshelbwala, J.H.; Lubroth, J.; Domenech, J.; Monicat, F.

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  7. Evidence of Infection by H5N2 Highly Pathogenic Avian Influenza Viruses in Healthy Wild Waterfowl

    PubMed Central

    Hammoumi, Saliha; Newman, Scott H.; Hagemeijer, Ward; Takekawa, John Y.; Cappelle, Julien; Dodman, Tim; Joannis, Tony; Gil, Patricia; Monne, Isabella; Fusaro, Alice; Capua, Ilaria; Manu, Shiiwuua; Micheloni, Pierfrancesco; Ottosson, Ulf; Mshelbwala, John H.; Lubroth, Juan; Domenech, Joseph; Monicat, François

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl. PMID:18704172

  8. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus

    PubMed Central

    Baskin, Carole R.; Bielefeldt-Ohmann, Helle; Tumpey, Terrence M.; Sabourin, Patrick J.; Long, James P.; García-Sastre, Adolfo; Tolnay, Airn-E.; Albrecht, Randy; Pyles, John A.; Olson, Pam H.; Aicher, Lauri D.; Rosenzweig, Elizabeth R.; Murali-Krishna, Kaja; Clark, Edward A.; Kotur, Mark S.; Fornek, Jamie L.; Proll, Sean; Palermo, Robert E.; Sabourin, Carol L.; Katze, Michael G.

    2009-01-01

    The mechanisms responsible for the virulence of the highly pathogenic avian influenza (HPAI) and of the 1918 pandemic influenza virus in humans remain poorly understood. To identify crucial components of the early host response during these infections by using both conventional and functional genomics tools, we studied 34 cynomolgus macaques (Macaca fascicularis) to compare a 2004 human H5N1 Vietnam isolate with 2 reassortant viruses possessing the 1918 hemagglutinin (HA) and neuraminidase (NA) surface proteins, known conveyors of virulence. One of the reassortants also contained the 1918 nonstructural (NS1) protein, an inhibitor of the host interferon response. Among these viruses, HPAI H5N1 was the most virulent. Within 24 h, the H5N1 virus produced severe bronchiolar and alveolar lesions. Notably, the H5N1 virus targeted type II pneumocytes throughout the 7-day infection, and induced the most dramatic and sustained expression of type I interferons and inflammatory and innate immune genes, as measured by genomic and protein assays. The H5N1 infection also resulted in prolonged margination of circulating T lymphocytes and notable apoptosis of activated dendritic cells in the lungs and draining lymph nodes early during infection. While both 1918 reassortant viruses also were highly pathogenic, the H5N1 virus was exceptional for the extent of tissue damage, cytokinemia, and interference with immune regulatory mechanisms, which may help explain the extreme virulence of HPAI viruses in humans. PMID:19218453

  9. In vitro and in vivo infectivity and pathogenicity of the lymphoid cell-derived woodchuck hepatitis virus.

    PubMed

    Lew, Y Y; Michalak, T I

    2001-02-01

    Woodchuck hepatitis virus (WHV) and human hepatitis B virus are closely related, highly hepatotropic mammalian DNA viruses that also replicate in the lymphatic system. The infectivity and pathogenicity of hepadnaviruses propagating in lymphoid cells are under debate. In this study, hepato- and lymphotropism of WHV produced by naturally infected lymphoid cells was examined in specifically established woodchuck hepatocyte and lymphoid cell cultures and coculture systems, and virus pathogenicity was tested in susceptible animals. Applying PCR-based assays discriminating between the total pool of WHV genomes and covalently closed circular DNA (cccDNA), combined with enzymatic elimination of extracellular viral sequences potentially associated with the cell surface, our study documents that virus replicating in woodchuck lymphoid cells is infectious to homologous hepatocytes and lymphoid cells in vitro. The productive replication of WHV from lymphoid cells in cultured hepatocytes was evidenced by the appearance of virus-specific DNA, cccDNA, and antigens, transmissibility of the virus through multiple passages in hepatocyte cultures, and the ability of the passaged virus to infect virus-naive animals. The data also revealed that WHV from lymphoid cells can initiate classical acute viral hepatitis in susceptible animals, albeit small quantities (approximately 10(3) virions) caused immunovirologically undetectable (occult) WHV infection that engaged the lymphatic system but not the liver. Our results provide direct in vitro and in vivo evidence that lymphoid cells in the infected host support propagation of infectious hepadnavirus that has the potential to induce hepatitis. They also emphasize a principal role of the lymphatic system in the maintenance and dissemination of hepadnavirus infection, particularly when infection is induced by low virus doses.

  10. Preliminary Epidemiology of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017.

    PubMed

    Zhou, Lei; Tan, Yi; Kang, Min; Liu, Fuqiang; Ren, Ruiqi; Wang, Yali; Chen, Tao; Yang, Yiping; Li, Chao; Wu, Jie; Zhang, Hengjiao; Li, Dan; Greene, Carolyn M; Zhou, Suizan; Iuliano, A Danielle; Havers, Fiona; Ni, Daxin; Wang, Dayan; Feng, Zijian; Uyeki, Timothy M; Li, Qun

    2017-08-01

    We compared the characteristics of cases of highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) A(H7N9) virus infections in China. HPAI A(H7N9) case-patients were more likely to have had exposure to sick and dead poultry in rural areas and were hospitalized earlier than were LPAI A(H7N9) case-patients.

  11. Preliminary Epidemiology of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017

    PubMed Central

    Zhou, Lei; Tan, Yi; Kang, Min; Liu, Fuqiang; Ren, Ruiqi; Wang, Yali; Chen, Tao; Yang, Yiping; Li, Chao; Wu, Jie; Zhang, Hengjiao; Li, Dan; Greene, Carolyn M.; Zhou, Suizan; Iuliano, A. Danielle; Havers, Fiona; Ni, Daxin; Wang, Dayan; Feng, Zijian; Uyeki, Timothy M.

    2017-01-01

    We compared the characteristics of cases of highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) A(H7N9) virus infections in China. HPAI A(H7N9) case-patients were more likely to have had exposure to sick and dead poultry in rural areas and were hospitalized earlier than were LPAI A(H7N9) case-patients. PMID:28580900

  12. Genetic characterization of highly pathogenic avian influenza H5N1 viruses isolated from naturally infected pigeons in Egypt.

    PubMed

    Elgendy, Emad Mohamed; Watanabe, Yohei; Daidoji, Tomo; Arai, Yasuha; Ikuta, Kazuyoshi; Ibrahim, Madiha Salah; Nakaya, Takaaki

    2016-12-01

    Avian influenza viruses impose serious public health burdens with significant mortality and morbidity not only in poultry but also in humans. While poultry susceptibility to avian influenza virus infection is well characterized, pigeons have been thought to have low susceptibility to these viruses. However, recent studies reported natural pigeon infections with highly pathogenic avian influenza H5N1 viruses. In Egypt, which is one of the H5N1 endemic areas for birds, pigeons are raised in towers built on farms in backyards and on house roofs, providing a potential risk for virus transmission from pigeons to humans. In this study, we performed genetic analysis of two H5N1 virus strains that were isolated from naturally infected pigeons in Egypt. Genetic and phylogenetic analyses showed that these viruses originated from Egyptian H5N1 viruses that were circulating in chickens or ducks. Several unique mutations, not reported before in any Egyptian isolates, were detected in the internal genes (i.e., polymerase residues PB1-V3D, PB1-K363R, PA-A369V, and PA-V602I; nucleoprotein residue NP-R38K; and nonstructural protein residues NS1-D120N and NS2-F55C). Our findings suggested that pigeons are naturally infected with H5N1 virus and can be a potential reservoir for transmission to humans, and showed the importance of genetic analysis of H5N1 internal genes.

  13. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    PubMed Central

    Pantin-Jackwood, Mary; Costa-Hurtado, Mar; Miller, Patti J.; Afonso, Claudio L.; Spackman, Erica; Kapczynski, Darrell; Shepherd, Eric; Smith, Diane; Swayne, David

    2015-01-01

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (P <0.01) at 4 days post inoculation (dpi). Co-infection didn’t affect the number of birds shedding LPAIV, but more LPAIV was shed at 2 dpi (P <0.0001) from ducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (P <0.05) compared to the ducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses. PMID:25759292

  14. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Miller, Patti J; Afonso, Claudio L; Spackman, Erica; Kapczynski, Darrell R; Shepherd, Eric; Smith, Diane; Swayne, David E

    2015-05-15

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it is not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (P<0.01) at 4 days post inoculation (dpi). Co-infection did not affect the number of birds shedding LPAIV, but more LPAIV was shed at 2 dpi (P<0.0001) from ducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (P<0.05) compared to the ducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses. Published by Elsevier B.V.

  15. Mammalian Innate Resistance to Highly Pathogenic Avian Influenza H5N1 Virus Infection Is Mediated through Reduced Proinflammation and Infectious Virus Release

    PubMed Central

    Nelli, Rahul K.; Dunham, Stephen P.; Kuchipudi, Suresh V.; White, Gavin A.; Baquero-Perez, Belinda; Chang, Pengxiang; Ghaemmaghami, Amir; Brookes, Sharon M.; Brown, Ian H.

    2012-01-01

    Respiratory epithelial cells and macrophages are the key innate immune cells that play an important role in the pathogenesis of influenza A virus infection. We found that these two cell types from both human and pig showed comparable susceptibilities to initial infection with a highly pathogenic avian influenza (HPAI) H5N1 virus (A/turkey/Turkey/1/05) and a moderately pathogenic human influenza H1N1 virus (A/USSR/77), but there were contrasting differences in host innate immune responses. Human cells mounted vigorous cytokine (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokine (CXCL9, CXCL10, and CXCL11) responses to H5N1 virus infection. However, pig epithelial cells and macrophages showed weak or no TNF-α and chemokine induction with the same infections. The apparent lack of a strong proinflammatory response, corroborated by the absence of TNF-α induction in H5N1 virus-challenged pigs, coincided with greater cell death and the reduced release of infectious virus from infected pig epithelial cells. Suppressor of cytokine signaling 3 (SOCS3), a protein suppressor of the JAK-STAT pathway, was constitutively highly expressed and transcriptionally upregulated in H5N1 virus-infected pig epithelial cells and macrophages, in contrast to the corresponding human cells. The overexpression of SOCS3 in infected human macrophages dampened TNF-α induction. In summary, we found that the reported low susceptibility of pigs to contemporary Eurasian HPAI H5N1 virus infections coincides at the level of innate immunity of respiratory epithelial cells and macrophages with a reduced output of viable virus and an attenuated proinflammatory response, possibly mediated in part by SOCS3, which could serve as a target in the treatment or prevention of virus-induced hypercytokinemia, as observed for humans. PMID:22718824

  16. Experimental infection of SPF and Korean native chickens with highly pathogenic avian influenza virus (H5N8).

    PubMed

    Lee, Eun-Kyoung; Song, Byung-Min; Kang, Hyun-Mi; Woo, Sang-Hee; Heo, Gyeong-Beom; Jung, Suk Chan; Park, Yong Ho; Lee, Youn-Jeong; Kim, Jae-Hong

    2016-05-01

    In 2014, an H5N8 outbreak of highly pathogenic avian influenza (HPAI) occurred in South Korea. The H5N8 strain produced mild to moderate clinical signs and mortality rates in commercial chicken farms, especially Korean native chicken farms. To understand the differences between their pathogenicity in SPF chicken and Korean native chicken., we evaluated the mean bird lethal doses (BLD50) of the Korean representative H5N8 virus (A/broiler duck/Korea/Buan2/2014) The BLD50values of the H5N8 virus were 10(5.3)EID50 and 10(6.7)EID50 in SPF and Korean native chickens, respectively. In addition, the mean death time was much longer, and the viral titers in tissues of H5N8-infected chickens were significantly lower, in the Korean group than in the SPF group. These features of the H5N8 virus likely account for its mild-to-moderate pathogenicity in commercial chicken farms, especially Korean native chicken flocks, despite the fact that it is a highly pathogenic virus according to the OIE criteria. To improve current understanding and management of HPAI, pathogenic characterization of novel emerging viruses should be performed by natural route in major poultry species in each country. © 2016 Poultry Science Association Inc.

  17. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl

    USDA-ARS?s Scientific Manuscript database

    The biological outcome of H5N1 high pathogenicity avian influenza (HPAI) virus infection in wild waterfowl is poorly understood. This study examined infectivity and pathobiology of A/chicken/Korea/IS/06 (H5N1) HPAI virus infection in Mute swans (Cygnus olor), Greylag geese (Anser anser), Ruddy Sheld...

  18. Survival of Highly Pathogenic Avian Influenza H5N1 Virus in Tissues Derived from Experimentally Infected Chickens.

    PubMed

    Yamamoto, Yu; Nakamura, Kikuyasu; Mase, Masaji

    2017-08-15

    Eurasian lineage highly pathogenic avian influenza (HPAI) H5N1 virus has been a severe threat to the poultry industry since its emergence in 1996. The carcass or tissues derived from infected birds may present the risk of the virus spreading to humans, animals, and the surrounding environment. In this study, we investigated the survival of the virus in feather, muscle, and liver tissues collected from six chickens (Gallus gallus) experimentally infected with HPAI H5N1 virus. The tissues were stored at +4°C or +20°C, and viral isolation was performed at different times for 360 days. The maximum periods for viral survival were observed in samples stored at +4°C in all tissue types and were 240 days in feather tissues, 160 days in muscle, and 20 days in liver. The viral infectivity at +20°C was maintained for a maximum of 30 days in the feather tissues, 20 days in muscle, and 3 days in liver. The viral inactivation rates partly overlapped in the feather and muscle tissues at the two temperatures. The virus was inactivated rapidly in the liver. Our experimental results indicate that the tissue type and temperature can greatly influence the survival of HPAI H5N1 virus in the tissues of infected chickens.IMPORTANCE Highly pathogenic avian influenza virus of the H5N1 subtype can cause massive losses of poultry, and people need to handle a large number of chicken carcasses contaminated with the virus at outbreak sites. This study evaluated how long the virus can keep its infectivity in the three types of tissues derived from chickens infected with the virus. Our experimental results indicate that the virus can survive in tissues for a specific period of time depending on the tissue type and temperature. Our results are valuable for better understanding of viral ecology in the environment and for reducing the risk of the virus spreading via bird tissues contaminated with the virus. Copyright © 2017 American Society for Microbiology.

  19. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses

    DOE PAGES

    Jaing, Crystal; Rowland, Raymond R. R.; Allen, Jonathan E.; ...

    2017-08-31

    African swine fever virus (ASFV) is a macrophage-tropic virus responsible for ASF, a transboundary disease that threatens swine production world-wide. Since there are no vaccines available to control ASF after an outbreak, obtaining an understanding of the virus-host interaction is important for developing new intervention strategies. In this study, a whole transcriptomic RNA-Seq method was used to characterize differentially expressed genes in pigs infected with a low pathogenic ASFV isolate, OUR T88/3 (OURT), or the highly pathogenic Georgia 2007/1 (GRG). After infection, pigs infected with OURT showed no or few clinical signs; whereas, GRG produced clinical signs consistent with acutemore » ASF. RNA-Seq detected the expression of ASFV genes from the whole blood of the GRG, but not the OURT pigs, consistent with the pathotypes of these strains and the replication of GRG in circulating monocytes. Even though GRG and OURT possess different pathogenic properties, there was significant overlap in the most upregulated host genes. A small number of differentially expressed microRNAs were also detected in GRG and OURT pigs. These data confirm previous studies describing the response of macrophages and lymphocytes to ASFV infection, as well as reveal unique gene pathways upregulated in response to infection with GRG.« less

  20. Human Pulmonary Microvascular Endothelial Cells Support Productive Replication of Highly Pathogenic Avian Influenza Viruses: Possible Involvement in the Pathogenesis of Human H5N1 Virus Infection

    PubMed Central

    Zeng, Hui; Pappas, Claudia; Belser, Jessica A.; Houser, Katherine V.; Zhong, Weiming; Wadford, Debra A.; Stevens, Troy; Balczon, Ron; Katz, Jacqueline M.

    2012-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause sporadic human infections with a high fatality rate. Respiratory failure due to acute respiratory distress syndrome (ARDS) is a complication among hospitalized patients. Since progressive pulmonary endothelial damage is the hallmark of ARDS, we investigated host responses following HPAI virus infection of human pulmonary microvascular endothelial cells. Evaluation of these cells for the presence of receptors preferred by influenza virus demonstrated that avian-like (α2-3-linked) receptors were more abundant than human-like (α2-6-linked) receptors. To test the permissiveness of pulmonary endothelial cells to virus infection, we compared the replication of selected seasonal, pandemic (2009 H1N1 and 1918), and potentially pandemic (H5N1) influenza virus strains. We observed that these cells support productive replication only of HPAI H5N1 viruses, which preferentially enter through and are released from the apical surface of polarized human endothelial monolayers. Furthermore, A/Thailand/16/2004 and A/Vietnam/1203/2004 (VN/1203) H5N1 viruses, which exhibit heightened virulence in mammalian models, replicated to higher titers than less virulent H5N1 strains. VN/1203 infection caused a significant decrease in endothelial cell proliferation compared to other subtype viruses. VN/1203 virus was also found to be a potent inducer of cytokines and adhesion molecules known to regulate inflammation during acute lung injury. Deletion of the H5 hemagglutinin (HA) multibasic cleavage site did not affect virus infectivity but resulted in decreased virus replication in endothelial cells. Our results highlight remarkable tropism and infectivity of the H5N1 viruses for human pulmonary endothelial cells, resulting in the potent induction of host inflammatory responses. PMID:22072765

  1. Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection.

    PubMed

    Zeng, Hui; Pappas, Claudia; Belser, Jessica A; Houser, Katherine V; Zhong, Weiming; Wadford, Debra A; Stevens, Troy; Balczon, Ron; Katz, Jacqueline M; Tumpey, Terrence M

    2012-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause sporadic human infections with a high fatality rate. Respiratory failure due to acute respiratory distress syndrome (ARDS) is a complication among hospitalized patients. Since progressive pulmonary endothelial damage is the hallmark of ARDS, we investigated host responses following HPAI virus infection of human pulmonary microvascular endothelial cells. Evaluation of these cells for the presence of receptors preferred by influenza virus demonstrated that avian-like (α2-3-linked) receptors were more abundant than human-like (α2-6-linked) receptors. To test the permissiveness of pulmonary endothelial cells to virus infection, we compared the replication of selected seasonal, pandemic (2009 H1N1 and 1918), and potentially pandemic (H5N1) influenza virus strains. We observed that these cells support productive replication only of HPAI H5N1 viruses, which preferentially enter through and are released from the apical surface of polarized human endothelial monolayers. Furthermore, A/Thailand/16/2004 and A/Vietnam/1203/2004 (VN/1203) H5N1 viruses, which exhibit heightened virulence in mammalian models, replicated to higher titers than less virulent H5N1 strains. VN/1203 infection caused a significant decrease in endothelial cell proliferation compared to other subtype viruses. VN/1203 virus was also found to be a potent inducer of cytokines and adhesion molecules known to regulate inflammation during acute lung injury. Deletion of the H5 hemagglutinin (HA) multibasic cleavage site did not affect virus infectivity but resulted in decreased virus replication in endothelial cells. Our results highlight remarkable tropism and infectivity of the H5N1 viruses for human pulmonary endothelial cells, resulting in the potent induction of host inflammatory responses.

  2. Prevention of immunodeficiency virus induced CD4+ T-cell depletion by prior infection with a non-pathogenic virus

    SciTech Connect

    TerWee, Julie A.; Carlson, Jennifer K.; Sprague, Wendy S.; Sondgeroth, Kerry S.; Shropshire, Sarah B.; Troyer, Jennifer L.; VandeWoude, Sue

    2008-07-20

    Immune dysregulation initiated by a profound loss of CD4+ T-cells is fundamental to HIV-induced pathogenesis. Infection of domestic cats with a non-pathogenic lentivirus prevalent in the puma (puma lentivirus, PLV or FIV{sub PCO}) prevented peripheral blood CD4+ T-cell depletion caused by subsequent virulent FIV infection. Maintenance of this critical population was not associated with a significant decrease in FIV viremia, lending support to the hypothesis that direct viral cytopathic effect is not the primary cause of immunodeficiency. Although this approach was analogous to immunization with a modified live vaccine, correlates of immunity such as a serum-neutralizing antibody or virus-specific T-cell proliferative response were not found in protected animals. Differences in cytokine transcription profile, most notably in interferon gamma, were observed between the protected and unprotected groups. These data provide support for the importance of non-adaptive enhancement of the immune response in the prevention of CD4+ T-cell loss.

  3. Cellular transcripts regulated during infections with Highly Pathogenic H5N1 Avian Influenza virus in 3 host systems.

    PubMed

    Balasubramaniam, Vinod Rmt; Hassan, Sharifah S; Omar, Abdul R; Mohamed, Maizan; Noor, Suriani M; Mohamed, Ramlan; Othman, Iekhsan

    2011-04-29

    Highly pathogenic Avian Influenza (HPAI) virus is able to infect many hosts and the virus replicates in high levels in the respiratory tract inducing severe lung lesions. The pathogenesis of the disease is actually the outcome of the infection as determined by complex host-virus interactions involving the functional kinetics of large numbers of participating genes. Understanding the genes and proteins involved in host cellular responses are therefore, critical for the elucidation of the mechanisms of infection. Differentially expressed transcripts regulated in a H5N1 infections of whole lung organ of chicken, in-vitro chick embryo lung primary cell culture (CeLu) and a continuous Madin Darby Canine Kidney cell line was undertaken. An improved mRNA differential display technique (Gene Fishing™) using annealing control primers that generates reproducible, authentic and long PCR products that are detectable on agarose gels was used for the identification of differentially expressed genes (DEGs). Seven of the genes have been selected for validation using a TaqMan® based real time quantitative PCR assay. Thirty seven known and unique differentially expressed genes from lungs of chickens, CeLu and MDCK cells were isolated. Among the genes isolated and identified include heat shock proteins, Cyclin D2, Prenyl (decaprenyl) diphosphate synthase, IL-8 and many other unknown genes. The quantitative real time RT-PCR assay data showed that the transcription kinetics of the selected genes were clearly altered during infection by the Highly Pathogenic Avian Influenza virus. The Gene Fishing™ technique has allowed for the first time, the isolation and identification of sequences of host cellular genes regulated during H5N1 virus infection. In this limited study, the differentially expressed genes in the three host systems were not identical, thus suggesting that their responses to the H5N1 infection may not share similar mechanisms and pathways.

  4. Adaptive heterosubtypic immunity to low pathogenic avian influenza viruses in experimentally infected mallards

    USDA-ARS?s Scientific Manuscript database

    Mallards are widely recognized as reservoirs for Influenza A viruses (IAV), however host factors that might prompt seasonality and trends in subtype diversity of IAV such as adaptive heterosubtypic immunity (HSI) are not well understood. We inoculated mallards with a prevailing H3N8 low pathogenic a...

  5. Impact of highly pathogenic avian influenza virus strain on generation and transmission of bioaerosols during simulated slaughter of infected chickens and ducks

    USDA-ARS?s Scientific Manuscript database

    Human infections with H5N1 highly pathogenic avian influenza (HPAI) virus occur following exposure to H5N1 virus-infected poultry, often during home slaughter or live-poultry market slaughter processes. Using bioaerosol samplers, we demonstrated that infectious H5N1 airborne particles were produced ...

  6. Transcription factor regulation and cytokine expression following in vitro infection of primary chicken cell culture with low pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) induced proinflammatory cytokine expression is believed to contribute to the disease pathogenesis following infection. However, there is limited information on the avian immune response to infection with low pathogenic avian influenza virus (LPAIV). To gain a better under...

  7. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    PubMed Central

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  8. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens.

    PubMed

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Shepherd, Eric; Cha, Ra Mi; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary J

    2015-09-23

    Highly pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide and produce co-infections especially in areas of the world where both viruses are endemic; but little is known about the interactions between these two viruses. The objective of this study was to determine if co-infection with NDV affects HPAIV replication in chickens. Only infections with virulent NDV strains (mesogenic Pigeon/1984 or velogenic CA/2002), and not a lentogenic NDV strain (LaSota), interfered with the replication of HPAIV A/chicken/Queretaro/14588-19/95 (H5N2) when the H5N2 was given at a high dose (10(6.9) EID50) two days after the NDV inoculation, but despite this interference, mortality was still observed. However, chickens infected with the less virulent mesogenic NDV Pigeon/1984 strain three days prior to being infected with a lower dose (10(5.3-5.5) EID50) of the same or a different HPAIV, A/chicken/Jalisco/CPA-12283-12/2012 (H7N3), had reduced HPAIV replication and increased survival rates. In conclusion, previous infection of chickens with virulent NDV strains can reduce HPAIV replication, and consequently disease and mortality. This interference depends on the titer of the viruses used, the virulence of the NDV, and the timing of the infections. The information obtained from these studies helps to understand the possible interactions and outcomes of infection (disease and virus shedding) when HPAIV and NDV co-infect chickens in the field.

  9. Experimental co-infection of SPF chickens with low pathogenicity avian influenza virus (LPAIV) subtypes H9N2, H5N2 and H7N9, and infectious bronchitis virus (IBV)

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) and infectious bronchitis virus (IBV) are two of the most important respiratory viruses affecting poultry worldwide, but little is known about the effect of co-infection of these two viruses in poultry. Low pathogenicity (LP) AIV can produce from mild to moderate upper r...

  10. Different routes of inoculation impact infectivity and pathogenesis of H5N1 high pathogenicity avian influenza virus infection in chickens and domestic ducks.

    PubMed

    Kwon, Y K; Swayne, D E

    2010-12-01

    The H5N1 type A influenza viruses classified as Qinghai-like virus (clade 2.2) are a unique lineage of type A influenza viruses with the capacity to produce significant disease and mortality in gallinaceous and anseriform birds, including domestic and wild ducks. The objective of this study was to determine the susceptibility and pathogenesis of chickens and domestic ducks to A/Whooper Swan/Mongolia/224/05 (H5N1) high pathogenicity avian influenza (HPAI) virus when administered through respiratory or alimentary routes of exposure. The chickens and ducks were more susceptible to the H5N1 HPAI virus, as evidenced by low infectious and lethal viral doses, when exposed by intranasal as compared to alimentary routes of inoculation (intragastric or oral-fed infected chicken meat). In the alimentary exposure pathogenesis study, pathologic changes included hemorrhage, necrosis, and inflammation in association with virus detection. These changes were generally observed in most of the visceral organs of chickens, between 2 and 4 days postinoculation (DPI), and are similar to lesions and virus localization seen in birds in natural cases or in experimental studies using the intranasal route. Alimentary exposure to the virus caused systemic infection in the ducks, characterized by moderate lymphocytic encephalitis, necrotized hepatitis, and pancreatitis with a corresponding demonstration of virus within the lesions. In both chickens and ducks with alimentary exposure, lesions, virus, or both were first demonstrated in the upper alimentary tract on 1 DPI, suggesting that the alimentary tract was the initial site affected upon consumption of infected meat or on gavage of virus in liquid medium. However, as demonstrated in the infectivity study in chickens, alimentary infection required higher exposure doses to produce infection as compared to intranasal exposure in chickens. These data suggest that upper respiratory exposure to H5N1 HPAI virus in birds is more likely to result in

  11. Dengue-specific CD8+ T cells have both protective and pathogenic roles in dengue virus infection.

    PubMed

    An, Jing; Zhou, De-Shan; Zhang, Jun-Lei; Morida, Hatue; Wang, Jia-Li; Yasui, Kotaro

    2004-09-01

    To analyze roles of memory T cells in the pathogenesis of dengue (DEN) virus infection, a DEN virus-specific CD8+ cell clone (2D42 cell) was employed to investigate its in vivo function after DEN virus infection using an animal model. HepG2 grafted severe combined immunodeficient (HepG2-grafted SCID) mice were divided into three groups--group A: HepG2-grafted SCID mice were inoculated intraperitoneally (ip) with 2D42 cells and then ip-infected with DEN virus type 2 (DEN-2); group B: HepG2-grafted SCID mice were inoculated with naive mouse thymocytes (NMT) and then ip-infected with DEN-2; group C: HepG2-grafted SCID mice were ip-infected with DEN-2 alone. Eighty percentage of group A mice died at average day 12.8 post-infection (p.i.) and 20% of them recovered from the disease after showing clinical signs and survived more than 3 months. They showed severe manifestations including dramatically decreased platelet count, decreased hematocrit, anemia, viremia and high frequency of histopathological changes in several organs. All of group B mice also showed the above severe clinical signs. One hundred percentage mortality rate was noted in these mice and death occurred at average day 10.8 p.i., which was the earliest among three groups. Although the mice from group C showed 100% mortality rate and similar clinical signs, death observed in these mice occurred at average day 17.4 p.i. and the manifestations were slight and developed slowly. Our results suggested both protective and pathogenic roles for DEN-specific CD8+ T cell in DEN virus infection, whereas NMT did not provided any protection.

  12. Corneal Opacity in Domestic Ducks Experimentally Infected With H5N1 Highly Pathogenic Avian Influenza Virus.

    PubMed

    Yamamoto, Y; Nakamura, K; Yamada, M; Mase, M

    2016-01-01

    Domestic ducks can be a key factor in the regional spread of H5N1 highly pathogenic avian influenza (HPAI) virus in Asia. The authors performed experimental infections to examine the relationship between corneal opacity and H5N1 HPAI virus infection in domestic ducks (Anas platyrhyncha var domestica). A total of 99 domestic ducks, including 3 control birds, were used in the study. In experiment 1, when domestic ducks were inoculated intranasally with 2 H5N1 HPAI viruses, corneal opacity appeared more frequently than neurologic signs and mortality. Corneal ulceration and exophthalmos were rare findings. Histopathologic examinations of the eyes of domestic ducks in experiment 2 revealed that corneal opacity was due to the loss of corneal endothelial cells and subsequent keratitis with edema. Influenza viral antigen was detected in corneal endothelial cells and some other ocular cells by immunohistochemistry. Results suggest that corneal opacity is a characteristic and frequent finding in domestic ducks infected with the H5N1 HPAI virus. Confirming this ocular change may improve the detection rate of infected domestic ducks in the field. © The Author(s) 2015.

  13. The Chinese highly pathogenic porcine reproductive and respiratory syndrome virus infection suppresses Th17 cells response in vivo.

    PubMed

    Zhang, Long; Zhou, Lei; Ge, Xinna; Guo, Xin; Han, Jun; Yang, Hanchun

    2016-06-30

    Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to immunomodulate innate and adaptive immunity of pigs. The Chinese highly pathogenic PRRSV (HP-PRRSV) infection causes severe bacterial secondary infection in pigs. However, the mechanism in relation to the bacterial secondary infection induced by HP-PRRSV remains unknown. In the present study, Th17 cells response in peripheral blood, lungs, spleens and lymph nodes of piglets were analyzed, and bacterial loads in lungs of piglets were examined upon HP-PRRSV infection. Meanwhile the changes of CD4(+) and CD8(+) T cells in peripheral blood of the inoculated piglets were analyzed. The results showed that HP-PRRSV-inoculated piglets exhibited a suppressed Th17 cells response in peripheral blood and a reduced number of Th17 cells in lungs, and higher bacterial loads in lungs, compared with low pathogenic PRRSV. Moreover, HP-PRRSV obviously resulted in severe depletion of porcine T cells in peripheral blood at the early stage of infection. These findings indicate that HP-PRRSV infection suppresses the response of Th17 cells that play an important role in combating bacterial infections, suggesting a possible correlation between the suppression of Th17 cells response in vivo and bacterial secondary infection induced by HP-PRRSV. Our present study adds a novel insight into better understanding of the pathogenesis of the Chinese HP-PRRSV.

  14. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus).

    PubMed

    Ramis, Antonio; van Amerongen, Geert; van de Bildt, Marco; Leijten, Loneke; Vanderstichel, Raphael; Osterhaus, Albert; Kuiken, Thijs

    2014-08-19

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes and viral tissue distribution. We inoculated sixteen black-headed gulls with 1 × 10(4) median tissue culture infectious dose HPAIV H5N1 (A/turkey/Turkey/1/2005) intratracheally and intraesophageally. Birds were monitored daily until 12 days post inoculation (dpi). Oropharyngeal and cloacal swabs were collected daily to detect viral shedding. Necropsies from birds were performed at 2, 4, 5, 6, 7, and 12 dpi. Sampling from selected tissues was done for histopathology, immunohistochemical detection of viral antigen, PCR, and viral isolation. Our study shows that all inoculated birds were productively infected, developed systemic disease, and had a high morbidity and mortality rate. Virus was detected mainly in the respiratory tract on the first days after inoculation, and then concentrated more in pancreas and central nervous system from 4 dpi onwards. Birds shed infectious virus until 7 dpi from the pharynx and 6 dpi from the cloaca. We conclude that black-headed gulls are highly susceptible to disease with a high mortality rate and are thus more likely to act as sentinel species for the presence of the virus than as long-distance carriers of the virus to new geographical areas.

  15. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    PubMed

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  16. Highly (H5N1) and Low (H7N2) Pathogenic Avian Influenza Virus Infection in Falcons Via Nasochoanal Route and Ingestion of Experimentally Infected Prey

    PubMed Central

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5–7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey

  17. Pathogenicity characteristics of an Iranian variant-2 (IS-1494) like infectious bronchitis virus in experimentally infected SPF chickens.

    PubMed

    Najafi, H; Ghalyanchi Langeroudi, A; Hashemzadeh, M; Madadgar, O; Karimi, V; Farahani, R K; Abdollahi, H; Maghsoudsloo, H; Seifouri, P

    Avian infectious bronchitis (IB) is a major cause of economic loss to the poultry industry. IB virus primarily affects respiratory tract, but strains differ in their tropism for such other target organs as kidneys and alimentary tract. The objective of this study was to estimate the pathogenicity of an Iranian IB virus (IBV) variant (variant-2) which is one of the most prevalent isolates circulating in Iranian poultry farms. SPF chickens were intranasally inoculated with 104 EID50/0.1 ml of the virus. Sera, fecal swabs, and different tissue samples were collected on different days post infection. Clinical signs, gross pathology, and histological changes were recorded. The amount of virus genome was quantified in different tissues and feces using quantitative real-time PCR assay. The highest viral loads were detected in the feces and cecal tonsils. Real-time PCR results demonstrated variant-2 tropism for respiratory tract, digestive system and renal tissue that is due to its epitheliotropic nature. This is the first pathogenicity study of Iranian variant-2 virus. Based on histology observations and clinical signs this isolate was classified as a nephropathogenic IBV. Further knowledge of IBV pathogenesis permits to perform more effective prevention practice.

  18. Host-pathogen dynamics of squirrelpox virus infection in red squirrels (Sciurus vulgaris).

    PubMed

    Fiegna, C; Dagleish, M P; Coulter, L; Milne, E; Meredith, A; Finlayson, J; Di Nardo, A; McInnes, C J

    2016-01-01

    To improve our understanding of squirrelpox virus (SQPV) infection in the susceptible host, three red squirrels were challenged with wild-type SQPV via scarification of the hind-limb skin. All squirrels seroconverted to the infection by the end of the experiment (17 days post-challenge). Challenged animals suffered disease characterised by the development of multiple skin and oral lesions with rapid progression of skin lesions at the infection site by day 10 post-challenge. No internal pathological changes were found at post-mortem examination. A novel SQPV Taqman(®) Real-time PCR detected viral DNA from multiple organs, with the largest amounts consistently associated with the primary and secondary skin and oral lesions where viral replication was most likely occurring. Immunohistochemistry clearly detected viral antigen in the stratified squamous epithelium of the epidermis, tongue and the oropharyngeal mucosa-associated lymphoid tissue and was consistently associated with histological changes resulting from viral replication. The lack of internal pathological changes and the detection of relatively low levels of viral DNA when compared with primary and secondary skin lesions argue against systemic disease, although systemic spread of the virus cannot be ruled out. This study allowed a comprehensive investigation of the clinical manifestation and progression of SQPV infection with a quantitative and qualitative analysis of virus dissemination and shedding. These findings suggest two separate routes of SQPV transmission under natural conditions, with both skin and saliva playing key roles in infected red squirrels.

  19. Highly Pathogenic Avian Influenza Viruses Do Not Inhibit Interferon Synthesis in Infected Chickens but Can Override the Interferon-Induced Antiviral State ▿†

    PubMed Central

    Penski, Nicola; Härtle, Sonja; Rubbenstroth, Dennis; Krohmann, Carsten; Ruggli, Nicolas; Schusser, Benjamin; Pfann, Michael; Reuter, Antje; Gohrbandt, Sandra; Hundt, Jana; Veits, Jutta; Breithaupt, Angele; Kochs, Georg; Stech, Jürgen; Summerfield, Artur; Vahlenkamp, Thomas; Kaspers, Bernd; Staeheli, Peter

    2011-01-01

    From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses. PMID:21613402

  20. Competitive replication kinetics and pathogenicity in pigs co-infected with historical and newly invading classical swine fever viruses.

    PubMed

    Huang, Yu-Liang; Deng, Ming-Chung; Tsai, Kuo-Jung; Liu, Hsin-Meng; Huang, Chin-Cheng; Wang, Fun-In; Chang, Chia-Yi

    2017-01-15

    Classical swine fever (CSF), an economically important and highly contagious disease of pigs, is caused by classical swine fever virus (CSFV). In Taiwan, CSFVs from field outbreaks belong to two distinct genotypes. The historical genotype 3.4 dominated from the 1920s to 1996, and since 1996, the newly invading genotype 2.1 has dominated. To explain the phenomenon of this virus shift in the field, representative viruses belonging to genotypes 2.1 and 3.4 were either inoculated alone (single infection) or co-inoculated (co-infection), both in vivo and in vitro, to compare the virus replication and pathogenesis. In pigs co-infected with the genotype 2.1 TD/96/TWN strain and the genotype 3.4 94.4/IL/94/TWN strain, the newly invading genotype 2.1 was detected earlier in the blood, oral fluid, and feces, and the viral loads were consistently and significantly higher than that of the historical genotype 3.4. In cell cultures, the ratio of secreted virus to cell-associated virus of the genotype 2.1 strain was higher than that of the genotype 3.4 strain. This study is the first to demonstrate a possible explanation of virus shift in the field, wherein the newly invading genotype 2.1 replicates more efficiently than did genotype 3.4 and outcompetes the replication and pathogenicity of genotype 3.4 in pigs in the field. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus-Infected Birds, United States, December 2014-March 2015.

    PubMed

    Arriola, Carmen S; Nelson, Deborah I; Deliberto, Thomas J; Blanton, Lenee; Kniss, Krista; Levine, Min Z; Trock, Susan C; Finelli, Lyn; Jhung, Michael A

    2015-12-01

    Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014-March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission.

  2. Experimental infection of IS/885/00-like infectious bronchitis virus in specific pathogen free and commercial broiler chicks.

    PubMed

    Awad, Faez; Chhabra, Rajesh; Forrester, Anne; Chantrey, Julian; Baylis, Matthew; Lemiere, Stephane; Hussein, Hussein Aly; Ganapathy, Kannan

    2016-04-01

    Pathogenesis of an IS/885/00-like (IS/885) strain of variant infectious bronchitis virus (IBV) was examined in one day old specific pathogen free (SPF) and commercial broiler chicks. Chicks were humanely euthanized at 3, 6, 9, 12, 15, 21 and 28 days post infection (dpi) for necropsy examination, and tissues were collected for histopathology and virus detection by reverse transcription polymerase chain reaction (RT-PCR). Respiratory clinical signs and gross lesions consisting of tracheal caseous exudate and plugs, and swollen kidneys (with or without) urate deposits were observed in SPF and broiler chicks. The onset of disease developed more slowly and were of lesser severity in broiler compared to SPF chicks, reflecting the inhibitory effects of the IBV maternal-antibodies in the broiler chicks or genetic/strain susceptibility, or both. Head swelling was observed in one infected broiler chick at 15 dpi and the virus was recovered by RT-PCR and isolation. In the IS/885-infected SPF chicks, cystic oviducts were found in two female chicks. IS/885 was isolated from the cystic fluid. Using ELISA, low to moderate levels of the antibodies to IBV was detected in the SPF compared to broiler infected chicks.

  3. Experimental infection with low and high pathogenicity H7N3 Chilean avian influenza viruses in Chiloe Wigeon (Anas sibilatrix) and Cinnamon Teal (Anas cyanoptera)

    USDA-ARS?s Scientific Manuscript database

    Since 2002, H5N1 high pathogenicity avian influenza (HPAI) viruses have been associated with natural, lethal infections in wild aquatic birds which have been reproduced experimentally. Some aquatic bird species have been suggested as potential transporters of H5N1 HPAI virus via migration. However, ...

  4. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza virus (HPAIV) infections in chickens produce a negative impact on egg production, and virus is deposited on surface and internal contents of eggs. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H...

  5. Experimental infection of mandarin duck with highly pathogenic avian influenza A (H5N8 and H5N1) viruses.

    PubMed

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Heo, Gyeong-Beom; Jung, Joojin; Jang, Il; Bae, You-Chan; Jung, Suk Chan; Lee, Youn-Jeong

    2017-01-01

    A highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in poultry and wild birds in South Korea in January 2014. Here, we determined the pathogenicity and transmissibility of three different clades of H5 viruses in mandarin ducks to examine the potential for wild bird infection. H5N8 (clade 2.3.4.4) replicated more efficiently in the upper and lower respiratory tract of mandarin ducks than two previously identified H5N1 virus clades (clades 2.2 and 2.3.2.1). However, none of the mandarin ducks infected with H5N8 and H5N1 viruses showed severe clinical signs or mortality, and gross lesions were only observed in a few tissues. Viral replication and shedding were greater in H5N8-infected ducks than in H5N1-infected ducks. Recovery of all viruses from control duck in contact with infected ducks indicated that the highly pathogenic H5 viruses spread horizontally through contact. Taken together, these results suggest that H5N8 viruses spread efficiently in mandarin ducks. Further studies of pathogenicity in wild birds are required to examine possible long-distance dissemination via migration routes.

  6. Pathogenesis of highly pathogenic avian influenza A virus (H7N1) infection in chickens inoculated with three different doses.

    PubMed

    Chaves, Aida J; Busquets, Nuria; Campos, Naiana; Ramis, Antonio; Dolz, Roser; Rivas, Raquel; Valle, Rosa; Abad, F Xavier; Darji, Ayub; Majo, Natalia

    2011-04-01

    To study the pathogenesis of a H7N1 highly pathogenic avian influenza virus strain, specific pathogen free chickens were inoculated with decreasing concentrations of virus: 10(5.5) median embryo lethal dose (ELD(50)) (G1), 10(3.5) ELD(50) (G2) and 10(1.5) ELD(50) (G3). Disease progression was monitored over a period of 16 days and sequential necropsies and tissue samples were collected for histological and immunohistochemical examination. Viral RNA loads were also quantified in different tissues, blood, oropharyngeal swabs, and cloacal swabs using quantitative real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). Clinical signs of depression, apathy, listlessness, huddling and ruffled feathers were recorded in G1 and a few G2 birds, whilst neurological signs were only observed in chickens inoculated with the highest dose. Gross lesions of haemorrhages were observed in the unfeathered skin of the comb and legs, and skeletal muscle, lung, pancreas and kidneys of birds inoculated with 10(5.5) ELD(50) and 10(3.5) ELD(50) doses. Microscopic lesions and viral antigen were demonstrated in cells of the nasal cavity, lung, heart, skeletal muscle, brain, spinal cord, gastrointestinal tract, pancreas, liver, bone marrow, thymus, bursa of Fabricius, spleen, kidney, adrenal gland and skin. Viral RNA was detected by RT-qPCR in kidney, lung, intestine, and brain samples of G1 and G2 birds. However, in birds infected with the lowest dose, viral RNA was detected only in brain and lung samples in low amounts at 5 and 7 days post infection. Interestingly, viral shedding was observed in oropharyngeal and cloacal swabs with proportionate decrease with the inoculation dose. We conclude that although an adequate infectious dose is critical in reproducing the clinical infection, chickens exposed to lower doses can be infected and shed virus representing a risk for the dissemination of the viral agent.

  7. Pathobiology of highly pathogenic avian influenza virus H5N2 infection in juvenile ostriches from South Africa.

    PubMed

    Howerth, Elizabeth W; Olivier, Adriaan; França, Monique; Stallknecht, David E; Gers, Sophette

    2012-12-01

    In 2011, over 35,000 ostriches were slaughtered in the Oudtshoorn district of the Western Cape province of South Africa following the diagnosis of highly pathogenic avian influenza virus H5N2. We describe the pathology and virus distribution via immunohistochemistry in juvenile birds that died rapidly in this outbreak after showing signs of depression and weakness. Associated sialic acid (SA) receptor distribution in uninfected birds is also described. At necropsy, enlarged spleens, swollen livers, and generalized congestion were noted. Birds not succumbing to acute influenza infection often became cachectic with serous atrophy of fat, airsacculitis, and secondary infections. Necrotizing hepatitis, splenitis, and airsacculitis were prominent histopathologic findings. Virus was detected via immunohistochemistry in abundance in the liver and spleen but also in the air sac and gastrointestinal tract. Infected cells included epithelium, endothelium, macrophages, circulating leukocytes, and smooth muscle of a variety of organs and vessel walls. Analysis of SA receptor distribution in uninfected juvenile ostriches via lectin binding showed abundant expression of SAalpha2,3Gal (avian type) and little or no expression of SAalpha2,6Gal (human type) in the gastrointestinal and respiratory tracts, as well as leukocytes in the spleen and endothelial cells in all organs, which correlated with H5N2 antigen distribution in these tissues.

  8. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus

    PubMed Central

    Ogata, Hiroyuki; Toyoda, Kensuke; Tomaru, Yuji; Nakayama, Natsuko; Shirai, Yoko; Claverie, Jean-Michel; Nagasaki, Keizo

    2009-01-01

    Heterocapsa circularisquama DNA virus (HcDNAV; previously designated as HcV) is a giant virus (girus) with a ~356-kbp double-stranded DNA (dsDNA) genome. HcDNAV lytically infects the bivalve-killing marine dinoflagellate H. circularisquama, and currently represents the sole DNA virus isolated from dinoflagellates, one of the most abundant protists in marine ecosystems. Its morphological features, genome type, and host range previously suggested that HcDNAV might be a member of the family Phycodnaviridae of Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs), though no supporting sequence data was available. NCLDVs currently include two families found in aquatic environments (Phycodnaviridae, Mimiviridae), one mostly infecting terrestrial animals (Poxviridae), another isolated from fish, amphibians and insects (Iridoviridae), and the last one (Asfarviridae) exclusively represented by the animal pathogen African swine fever virus (ASFV), the agent of a fatal hemorrhagic disease in domestic swine. In this study, we determined the complete sequence of the type B DNA polymerase (PolB) gene of HcDNAV. The viral PolB was transcribed at least from 6 h post inoculation (hpi), suggesting its crucial function for viral replication. Most unexpectedly, the HcDNAV PolB sequence was found to be closely related to the PolB sequence of ASFV. In addition, the amino acid sequence of HcDNAV PolB showed a rare amino acid substitution within a motif containing highly conserved motif: YSDTDS was found in HcDNAV PolB instead of YGDTDS in most dsDNA viruses. Together with the previous observation of ASFV-like sequences in the Sorcerer II Global Ocean Sampling metagenomic datasets, our results further reinforce the ideas that the terrestrial ASFV has its evolutionary origin in marine environments. PMID:19860921

  9. Resistant Pathogens, Fungi, and Viruses

    PubMed Central

    Guidry, Christopher A.; Mansfield, Sara A.; Sawyer, Robert G.; Cook, Charles H.

    2014-01-01

    The first reports of antibiotic pathogens occurred a few short years after the introduction of these powerful new agents, heralding a new kind of war between medicine and pathogens. Although originally described in Staphylococcus aureus, resistance among bacteria has now become a grim race to determine which classes of bacteria will become more resistant, pitting the Gram positive staphylococci, enterococci, and streptococci against the increasingly resistant Gram negative pathogens, e. g., carbapenemase-resistant enterobacteriaceae. In addition, the availability of antibacterial agents has allowed the development of whole new kinds of diseases caused by non-bacterial pathogens, related largely to fungi that are inherently resistant to antibacterials. All of these organisms are becoming more prevalent and, ultimately, more clinically relevant for surgeons. It is ironic that despite their ubiquity in our communities, there is seldom a second thought given to viral infections in patients with surgical illness. The extent of most surgeon’s interest in viral infections ends with hepatitis and HIV, no doubt related to transmissibility as well as the implications that these viruses might have in a patient’s hepatic or immune functions. There are chapters and even textbooks written about these viruses so these will not be considered here. Instead, we will present the growing body of knowledge of the herpes family viruses and their occurrence and consequences in patients with concomitant surgical disease or critical illness. We have also chosen to focus this chapter on previously immune competent patients, as the impact of herpes family viruses in immunosuppressed patients such as transplant or AIDS patients has received thorough treatment elsewhere. PMID:25440119

  10. Experimental infection of mallard ducks with different subtype H5 and H7 highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of some Asian lineage H5N1 HPAIVs which can cause severe disease in ducks. With ...

  11. Differential cellular gene expression in duck trachea infected with a highly or low pathogenic H5N1 avian influenza virus

    PubMed Central

    2013-01-01

    Background Avian influenza A (AI) viruses of subtypes H5 can cause serious disease outbreaks in poultry including panzootic due to H5N1 highly pathogenic (HP) viruses. These viruses are a threat not only for animal health but also public health due to their zoonotic potential. The domestic duck plays a major role in the epidemiological cycle of influenza virus subtypes H5 but little is known concerning host/pathogen interactions during influenza infection in duck species. In this study, a subtracted library from duck trachea (a primary site of influenza virus infection) was constructed to analyse and compare the host response after a highly or low pathogenic (LP) H5N1-infection. Results Here, we show that more than 200 different genes were differentially expressed in infected duck trachea to a significant degree. In addition, significant differentially expressed genes between LPAI- and HPAI-infected tracheas were observed. Gene ontology annotation was used and specific signalling pathways were identified. These pathways were different for LPAI and HPAI-infected tracheas, except for the CXCR4 signalling pathway which is implicated in immune response. A different modulation of genes in the CXCR4 signalling pathway and TRIM33 was induced in duck tracheas infected with a HPAI- or a LPAI-H5N1. Conclusion First, this study indicates that Suppressive Subtractive Hybridization (SSH) is an alternative approach to gain insights into the pathogenesis of influenza infection in ducks. Secondly, the results indicate that cellular gene expression in the duck trachea was differently modulated after infection with a LPAI-H5N1 or after infection with a HPAI-H5N1 virus. Such difference found in infected trachea, a primary infection site, could precede continuation of infection and could explain appearance of respiratory symptoms or not. PMID:24015922

  12. Rate of introduction of a low pathogenic avian influenza virus infection in different poultry production sectors in the Netherlands.

    PubMed

    Gonzales, Jose L; Stegeman, Jan A; Koch, Guus; de Wit, Sjaak J; Elbers, Armin R W

    2013-01-01

    Targeted risk-based surveillance of poultry types (PT) with different risks of introduction of low pathogenic avian influenza virus (LPAIv) infection may improve the sensitivity of surveillance. To quantify the rate of introduction of LPAIv infections in different PT. Data from the Dutch LPAIv surveillance programme (2007-2010) were analysed using a generalised linear mixed and spatial model. Outdoor-layer, turkey, duck-breeder and meat-duck, farms had a 11, 8, 24 and 13 times higher rate of introduction of LPAIv than indoor-layer farms, respectively. Differences in the rate of introduction of LPAIv could be used to (re)design a targeted risk-based surveillance programme. © 2012 Blackwell Publishing Ltd.

  13. Multi-Year Pathogen Survey of Biofuel Switchgrass Breeding Plots Reveals High Prevalence of Infections by Panicum mosaic virus and Its Satellite Virus.

    PubMed

    Stewart, Catherine L; Pyle, Jesse D; Jochum, Charlene C; Vogel, Kenneth P; Yuen, Gary Y; Scholthof, Karen-Beth G

    2015-08-01

    Switchgrass (Panicum virgatum) cultivars are currently under development as lignocellulosic feedstock. Here we present a survey of three established switchgrass experimental nurseries in Nebraska in which we identified Panicum mosaic virus (PMV) as the most prevalent virus. In 2012, 72% of 139 symptomatic plants tested positive for PMV. Of the PMV-positive samples, 19% were coinfected with its satellite virus (SPMV). Less than 14% of all sampled plants in 2012 were positive for four additional viruses known to infect switchgrass. In 2013, randomized sampling of switchgrass individuals from the same 2012 breeding plots revealed that infection by PMV or PMV+SPMV was both more prevalent and associated with more severe symptoms in the cultivar Summer, and experimental lines with Summer parentage, than populations derived from the cultivar Kanlow. A 3-year analysis, from 2012 to 2014, showed that previously uninfected switchgrass plants acquire PMV or PMV+SPMV between harvest cycles. In contrast, some plants apparently did not maintain PMV infections at detectable levels from year-to-year. These findings suggest that PMV and SPMV should be considered important pathogens of switchgrass and serious potential threats to biofuel crop production efficiency.

  14. Short-Term Heat Shock Affects Host–Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1

    PubMed Central

    Xue, Jia; Fan, Xiaoxu; Yu, Jing; Zhang, Shouping; Xiao, Jin; Hu, Yanxin; Wang, Ming

    2016-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 is a highly contagious virus that can cause acute respiratory infections and high human fatality ratio due to excessive inflammatory response. Short-term heat shock, as a stressful condition, could induce the expression of heat shock proteins that function as molecular chaperones to protect cells against multiple stresses. However, the protective effect of short-term heat shock in influenza infection is far from being understood. In this study, mice were treated at 39°C for 4 h before being infected with HPAIV H5N1. Interestingly, short-term heat shock significantly increased the levels of HSP70 and pro-inflammatory cytokines IL-6, TNF-α, IFN-β, and IFN-γ in the lung tissues of mice. Following HPAIV H5N1 infection, short-term heat shock alleviated immunopathology and viral replication in lung tissue and repressed the weight loss and increased the survival rate of H5N1-infected mice. Our data reported that short-term heat shock provided beneficial anti-HPAIV H5N1 properties in mice model, which offers an alternative strategy for non-drug prevention for influenza infection. PMID:27379054

  15. Short-Term Heat Shock Affects Host-Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1.

    PubMed

    Xue, Jia; Fan, Xiaoxu; Yu, Jing; Zhang, Shouping; Xiao, Jin; Hu, Yanxin; Wang, Ming

    2016-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 is a highly contagious virus that can cause acute respiratory infections and high human fatality ratio due to excessive inflammatory response. Short-term heat shock, as a stressful condition, could induce the expression of heat shock proteins that function as molecular chaperones to protect cells against multiple stresses. However, the protective effect of short-term heat shock in influenza infection is far from being understood. In this study, mice were treated at 39°C for 4 h before being infected with HPAIV H5N1. Interestingly, short-term heat shock significantly increased the levels of HSP70 and pro-inflammatory cytokines IL-6, TNF-α, IFN-β, and IFN-γ in the lung tissues of mice. Following HPAIV H5N1 infection, short-term heat shock alleviated immunopathology and viral replication in lung tissue and repressed the weight loss and increased the survival rate of H5N1-infected mice. Our data reported that short-term heat shock provided beneficial anti-HPAIV H5N1 properties in mice model, which offers an alternative strategy for non-drug prevention for influenza infection.

  16. Progression of Pathogenic Events in Cynomolgus Macaques Infected with Variola Virus

    PubMed Central

    Rubins, Kathleen H.; Huggins, John W.; Fisher, Robert W.; Johnson, Anthony J.; de Kok-Mercado, Fabian; Larsen, Thomas; Raymond, Jo Lynne; Hensley, Lisa E.; Jahrling, Peter B.

    2011-01-01

    Smallpox, caused by variola virus (VARV), is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections – an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions. PMID:21998632

  17. Progression of pathogenic events in cynomolgus macaques infected with variola virus.

    PubMed

    Wahl-Jensen, Victoria; Cann, Jennifer A; Rubins, Kathleen H; Huggins, John W; Fisher, Robert W; Johnson, Anthony J; de Kok-Mercado, Fabian; Larsen, Thomas; Raymond, Jo Lynne; Hensley, Lisa E; Jahrling, Peter B

    2011-01-01

    Smallpox, caused by variola virus (VARV), is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections - an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions.

  18. Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China.

    PubMed

    Xu, Wen; Li, Hong; Jiang, Li

    2016-01-01

    Highly pathogenic avian influenza A H5N6 virus has caused four human infections in China. This study reports the preliminary findings of the first known human case of H5N6 in Yunnan province. The patient initially developed symptoms of sore throat and coughing on 27 January 2015. The disease rapidly progressed to severe pneumonia, multiple organ dysfunctions and acute respiratory distress syndrome and the patient died on 6 February. Virological analysis determined that the virus belonged to H5 clade 2.3.4.4 and it has obtained partial ability for mammalian adaptation and amantadine resistance. Environmental investigation found H5 in 63% of the samples including poultry faeces, tissues, cage surface swabs and sewage from local live poultry markets by real-time RT-PCR. These findings suggest that the expanding and enhancing of surveillance in both avian and humans are necessary to monitor the evolution of H5 influenza virus and to facilitate early detection of suspected cases.

  19. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known about the interaction between these two viruses when simultaneously co-infecting the same host, especially in areas of the world where both viruses are...

  20. Viruses infecting marine molluscs.

    PubMed

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-02-09

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.

  1. Analysis of the crow lung transcriptome in response to infection with highly pathogenic H5N1 avian influenza virus.

    PubMed

    Vijayakumar, Periyasamy; Mishra, Anamika; Ranaware, Pradip B; Kolte, Atul P; Kulkarni, Diwakar D; Burt, David W; Raut, Ashwin Ashok

    2015-03-15

    The highly pathogenic avian influenza (HPAI) H5N1 virus, currently circulating in Asia, causes severe disease in domestic poultry as well as wild birds like crow. However, the molecular pathogenesis of HPAIV infection in crows and other wild birds is not well known. Thus, as a step to explore it, a comprehensive global gene expression analysis was performed on crow lungs, infected with HPAI H5N1 crow isolate (A/Crow/India/11TI11/2011) using high throughput next generation sequencing (NGS) (GS FLX Titanium XLR70). The reference genome of crow is not available, so RNA seq analysis was performed on the basis of a de novo assembled transcriptome. The RNA seq result shows, 4052 genes were expressed uniquely in noninfected, 6277 genes were expressed uniquely in HPAIV infected sample and of the 6814 genes expressed in both samples, 2279 genes were significantly differentially expressed. Our transcriptome profile data allows for the ability to understand the molecular mechanism behind the recent lethal HPAIV outbreak in crows which was, until recently, thought to cause lethal infections only in gallinaceous birds such as chickens, but not in wild birds. The pattern of differentially expressed genes suggest that this isolate of H5N1 virus evades the host innate immune response by attenuating interferon (IFN)-inducible signalling possibly by down regulating the signalling from type I IFN (IFNAR1 and IFNAR2) and type II IFN receptors, upregulation of the signalling inhibitors suppressor of cytokine signalling 1 (SOCS1) and SOCS3 and altering the expression of toll-like receptors (TLRs). This may be the reason for disease and mortality in crows. Copyright © 2015. Published by Elsevier B.V.

  2. Replication of 2 subtypes of low-pathogenicity avian influenza virus of duck and gull origins in experimentally infected Mallard ducks.

    PubMed

    Daoust, P-Y; van de Bildt, M; van Riel, D; van Amerongen, G; Bestebroer, T; Vanderstichel, R; Fouchier, R A M; Kuiken, T

    2013-05-01

    Many subtypes of low-pathogenicity avian influenza (LPAI) virus circulate in wild bird reservoirs, but their prevalence may vary among species. We aimed to compare by real-time reverse-transcriptase polymerase chain reaction, virus isolation, histology, and immunohistochemistry the distribution and pathogenicity of 2 such subtypes of markedly different origins in Mallard ducks (Anas platyrhynchos): H2N3 isolated from a Mallard duck and H13N6 isolated from a Ring-billed Gull (Larus delawarensis). Following intratracheal and intraesophageal inoculation, neither virus caused detectable clinical signs, although H2N3 virus infection was associated with a significantly decreased body weight gain during the period of virus shedding. Both viruses replicated in the lungs and air sacs until approximately day 3 after inoculation and were associated with a locally extensive interstitial, exudative, and proliferative pneumonia. Subtype H2N3, but not subtype H13N6, went on to infect the epithelia of the intestinal mucosa and cloacal bursa, where it replicated without causing lesions until approximately day 5 after inoculation. Larger quantities of subtype H2N3 virus were detected in cloacal swabs than in pharyngeal swabs. The possible clinical significance of LPAI virus-associated pulmonary lesions and intestinal tract infection in ducks deserves further evaluation.

  3. Effect of homosubtypic and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa)

    USDA-ARS?s Scientific Manuscript database

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus...

  4. Long-Term Effect of Serial Infections with H13 and H16 Low-Pathogenic Avian Influenza Viruses in Black-Headed Gulls

    PubMed Central

    Verhagen, Josanne H.; van Amerongen, Geert; van de Bildt, Marco; Majoor, Frank; Fouchier, Ron A. M.

    2015-01-01

    ABSTRACT Infections of domestic and wild birds with low-pathogenic avian influenza viruses (LPAIVs) have been associated with protective immunity to subsequent infection. However, the degree and duration of immunity in wild birds from previous LPAIV infection, by the same or a different subtype, are poorly understood. Therefore, we inoculated H13N2 (A/black-headed gull/Netherlands/7/2009) and H16N3 (A/black-headed gull/Netherlands/26/2009) LPAIVs into black-headed gulls (Chroicocephalus ridibundus), their natural host species, and measured the long-term immune response and protection against one or two reinfections over a period of >1 year. This is the typical interval between LPAIV epizootics in wild birds. Reinfection with the same virus resulted in progressively less virus excretion, with complete abrogation of virus excretion after two infections for H13 but not H16. However, reinfection with the other virus affected neither the level nor duration of virus excretion. Virus excretion by immunologically naive birds did not differ in total levels of excreted H13 or H16 virus between first- and second-year birds, but the duration of H13 excretion was shorter for second-year birds. Furthermore, serum antibody levels did not correlate with protection against LPAIV infection. LPAIV-infected gulls showed no clinical signs of disease. These results imply that the epidemiological cycles of H13 and H16 in black-headed gulls are relatively independent from each other and depend mainly on infection of first-year birds. IMPORTANCE Low-pathogenic avian influenza viruses (LPAIVs) circulate mainly in wild water birds but are occasionally transmitted to other species, including humans, where they cause subclinical to fatal disease. To date, the effect of LPAIV-specific immunity on the epidemiology of LPAIV in wild birds is poorly understood. In this study, we investigated the effect of H13 and H16 LPAIV infection in black-headed gulls on susceptibility and virus excretion of

  5. Highly Pathogenic New World Arenavirus Infection Activates the Pattern Recognition Receptor Protein Kinase R without Attenuating Virus Replication in Human Cells.

    PubMed

    Huang, Cheng; Kolokoltsova, Olga A; Mateer, Elizabeth J; Koma, Takaaki; Paessler, Slobodan

    2017-10-15

    The arenavirus family consists of several highly pathogenic viruses, including the Old World (OW) arenavirus Lassa fever virus (LASV) and the New World (NW) Junin virus (JUNV) and Machupo virus (MACV). Host response to infection by these pathogenic arenaviruses is distinct in many aspects. JUNV and MACV infections readily induce an interferon (IFN) response in human cells, while LASV infection usually triggers an undetectable or weak IFN response. JUNV induces an IFN response through RIG-I, suggesting that the host non-self RNA sensor readily detects JUNV viral RNAs (vRNAs) during infection and activates IFN response. Double-stranded-RNA (dsRNA)-activated protein kinase R (PKR) is another host non-self RNA sensor classically known for its vRNA recognition activity. Here we report that infection with NW arenaviruses JUNV and MACV, but not OW LASV, activated PKR, concomitant with elevated phosphorylation of the translation initiation factor α subunit of eukaryotic initiation factor 2 (eIF2α). Host protein synthesis was substantially suppressed in MACV- and JUNV-infected cells but was only marginally reduced in LASV-infected cells. Despite the antiviral activity known for PKR against many other viruses, the replication of JUNV and MACV was not impaired but was slightly augmented in wild-type (wt) cells compared to that in PKR-deficient cells, suggesting that PKR or PKR activation did not negatively affect JUNV and MACV infection. Additionally, we found an enhanced IFN response in JUNV- or MACV-infected PKR-deficient cells, which was inversely correlated with virus replication.IMPORTANCE The detection of viral RNA by host non-self RNA sensors, including RIG-I and MDA5, is critical to the initiation of the innate immune response to RNA virus infection. Among pathogenic arenaviruses, the OW LASV usually does not elicit an interferon response. However, the NW arenaviruses JUNV and MACV readily trigger an IFN response in a RIG-I-dependent manner. Here, we demonstrate for

  6. Variation in viral shedding patterns between different wild bird species infected experimentally with low-pathogenicity avian influenza viruses that originated from wild birds.

    PubMed

    Costa, Taiana P; Brown, Justin D; Howerth, Elizabeth W; Stallknecht, David E

    2011-04-01

    The prevalence of infection with avian influenza (AI) virus varies significantly between taxonomic Orders and even between species within the same Order. The current understanding of AI infection and virus shedding parameters in wild birds is limited and largely based on trials conducted in mallards (Anas platyrhynchos). The objective of the present study was to provide experimental data to examine species-related differences in susceptibility and viral shedding associated with wild bird-origin low-pathogenicity avian influenza (LPAI) viruses in multiple duck species and gulls. Thus mallards, redheads (Aythya americana), wood ducks (Aix sponsa), and laughing gulls (Leucophaeus atricilla) were inoculated experimentally with three wild mallard-origin LPAI viruses representing multiple subtypes. Variation in susceptibility and patterns of viral shedding associated with LPAI virus infection was evident between the duck and gull species. Consistent with the literature, mallards excreted virus predominantly via the gastrointestinal tract. In wood ducks, redheads, and laughing gulls, AI virus was detected more often in oropharyngeal swabs than cloacal swabs. The results of this study suggest that LPAI shedding varies between taxonomically related avian species. Such differences may be important for understanding the potential role of individual species in the transmission and maintenance of LPAI viruses and may have implications for improving sampling strategies for LPAI detection. Additional comparative studies, which include LPAI viruses originating from non-mallard species, are necessary to further characterize these infections in wild avian species other than mallards and provide a mechanism to explain these differences in viral excretion.

  7. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    PubMed Central

    Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R.; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-01-01

    ABSTRACT The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. IMPORTANCE This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. PMID

  8. Histopathological characterization and shedding dynamics of guineafowl (Numida meleagris) intravenously infected with a H6N2 low pathogenicity Avian Influenza virus

    USDA-ARS?s Scientific Manuscript database

    Guineafowl of different ages were inoculated intravenously with an H6N2 wild waterfowl-origin low-pathogenicity type A avian influenza virus (LPAI). No evidence of clinical disease was observed. The examined infected birds had atrophy of the spleen, thymus, and cloacal bursa when compared to the n...

  9. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    USDA-ARS?s Scientific Manuscript database

    High pathogenicity avian influenza virus (HPAIV) infections in chickens decrease egg production and eggs that are laid contain HPAIV. Vaccination once or twice was examined as a way to protect chickens from Vietnamese H5N1 HPAIV. Eighty-three percent of hens without vaccination died within 3 days ...

  10. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Molecular signatures associated with Mx-1 mediated resistance to highlyl pathogenic influenza virus infections: mechanisms of survival

    USDA-ARS?s Scientific Manuscript database

    Understanding the role of host factors during lethal influenza virus infection is critical to deciphering the events that will determine the fate of the host. One such factor is encoded by the Mx1 gene, which confers resistance to influenza virus infection. Here, we compared pathology and global g...

  12. Kinetic Characterization of PB1-F2-Mediated Immunopathology during Highly Pathogenic Avian H5N1 Influenza Virus Infection

    PubMed Central

    Leymarie, Olivier; Jouvion, Grégory; Hervé, Pierre-Louis; Chevalier, Christophe; Lorin, Valérie; Lecardonnel, Jérôme; Da Costa, Bruno; Delmas, Bernard

    2013-01-01

    The PB1-F2 protein encoded by influenza A viruses can contribute to virulence, a feature that is dependent of its sequence polymorphism. Whereas PB1-F2 from some H1N1 viruses were shown to exacerbate the inflammatory response within the airways, the contribution of PB1-F2 to highly pathogenic avian influenza virus (HPAIV) virulence in mammals remains poorly described. Using a H5N1 HPAIV strain isolated from duck and its PB1-F2 knocked-out mutant, we characterized the dynamics of PB1-F2-associated host response in a murine model of lethal pneumonia. The mean time of death was 10 days for the two viruses, allowing us to perform global transcriptomic analyses and detailed histological investigations of the infected lungs at multiple time points. At day 2 post-infection (pi), while no histopathological lesion was observed, PB1-F2 expression resulted in a significant inhibition of cellular pathways involved in macrophage activation and in a transcriptomic signature suggesting that it promotes damage to the epithelial barrier. At day 4 pi, the gene profile associated with PB1-F2 expression revealed dysfunctions in NK cells activity. At day 8 pi, PB1-F2 expression was strongly associated with increased transcription of genes encoding chemokines and cytokines implicated in the recruitment of granulocytes, as well as expression of a number of genes encoding enzymes expressed by neutrophils. These transcriptomic data were fully supported by the histopathological analysis of the mice lungs which evidenced more severe inflammatory lesions and enhanced recruitment of neutrophils in the context of PB1-F2 expression, and thus provided a functional corroboration to the insight obtained in this work. In summary, our study shows that PB1-F2 of H5N1 HPAIV markedly influences the expression of the host transcriptome in a different way than its H1N1 counterparts: H5N1 PB1-F2 first delays the initial immune response but increases the pulmonary inflammatory response during the late

  13. Exposure to a low pathogenic A/H7N2 virus in chickens protects against highly pathogenic A/H7N1 virus but not against subsequent infection with A/H5N1.

    PubMed

    Vergara-Alert, Júlia; Moreno, Ana; Zabala, Juliana G; Bertran, Kateri; Costa, Taiana P; Cordón, Iván; Rivas, Raquel; Majó, Natàlia; Busquets, Núria; Cordioli, Paolo; Rodriguez, Fernando; Darji, Ayub

    2013-01-01

    Recent evidences have demonstrated that the presence of low pathogenic avian influenza viruses (LPAIV) may play an important role in host ecology and transmission of avian influenza viruses (AIV). While some authors have clearly demonstrated that LPAIV can mutate to render highly pathogenic avian influenza viruses (HPAIV), others have shown that their presence could provide the host with enough immunological memory to resist re-infections with HPAIV. In order to experimentally study the role of pre-existing host immunity, chickens previously infected with H7N2 LPAIV were subsequently challenged with H7N1 HPAIV. Pre-infection of chickens with H7N2 LAPIV conferred protection against the lethal challenge with H7N1 HPAIV, dramatically reducing the viral shedding, the clinical signs and the pathological outcome. Correlating with the protection afforded, sera from chickens primed with H7N2 LPAIV reacted with the H7-AIV subtype in hemagglutination inhibition assay and specifically with the N2-neuraminidase antigen. Conversely, subsequent exposure to H5N1 HPAIV resulted in a two days-delay on the onset of disease but all chickens died by 7 days post-challenge. Lack of protection correlated with the absence of H5-hemagglutining inhibitory antibodies prior to H5N1 HPAIV challenge. Our data suggest that in naturally occurring outbreaks of HPAIV, birds with pre-existing immunity to LPAIV could survive lethal infections with HA-homologous HPAIV but not subsequent re-infections with HA-heterologous HPAIV. These results could be useful to better understand the dynamics of AIV in chickens and might help in future vaccine formulations.

  14. Effect of age on the pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses.

    PubMed

    Pantin-Jackwood, Mary J; Smith, Diane M; Wasilenko, Jamie L; Cagle, Caran; Shepherd, Eric; Sarmento, Luciana; Kapczynski, Darrell R; Afonso, Claudio L

    2012-08-01

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks varies between different viruses and is affected by the age of the ducks, with younger ducks presenting a more severe disease. In order to better understand the pathobiology of H5N1 HPAI in ducks including the role of host responses, 2 and 5-week-old Pekin ducks were infected with three different H5N1 HPAI viruses. Virus-induced pathology ranged from no clinical signs to severe disease and mortality, with the 2-week-old ducks being more severely affected by the more virulent viruses. However, these more virulent viruses induced higher body temperatures in the 5-week-old ducks than in the 2-week-old ducks indicating possible differences in innate immune responses. To analyze the ducks host responses to H5N1 HPAI virus infection, expression of innate immune-related genes was measured in the spleens and lungs of infected ducks at the peak of virus infection. IFN-α, RIG-I, and IL-6 RNA levels were increased in spleens regardless of the virus given and the age of the ducks, however differences were observed in the levels of up-regulation of IFN-α and RIG-I between the 2 and the 5-week-old ducks with the more virulent virus. Differences in IL-2 gene expression were also observed. In the lungs, the levels of expression of innate immune-related genes were lower than in the spleen, with mostly up-regulation of RIG-I and IL-6 and down-regulation of IFN-α and IL-2; no significant difference in expression was found between the 2 and the 5-week-old ducks. The differences observed in the innate immune responses to infection with H5N1 HPAI viruses could explain in part the differences in pathogenicity found between the 2 and 5-week-old ducks, however earlier time points after infection and additional innate immune-related genes should be examined. Published by Elsevier B.V.

  15. Disease severity is associated with differential gene expression at the early and late phases of infection in nonhuman primates infected with different H5N1 highly pathogenic avian influenza viruses.

    PubMed

    Muramoto, Yukiko; Shoemaker, Jason E; Le, Mai Quynh; Itoh, Yasushi; Tamura, Daisuke; Sakai-Tagawa, Yuko; Imai, Hirotaka; Uraki, Ryuta; Takano, Ryo; Kawakami, Eiryo; Ito, Mutsumi; Okamoto, Kiyoko; Ishigaki, Hirohito; Mimuro, Hitomi; Sasakawa, Chihiro; Matsuoka, Yukiko; Noda, Takeshi; Fukuyama, Satoshi; Ogasawara, Kazumasa; Kitano, Hiroaki; Kawaoka, Yoshihiro

    2014-08-01

    Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus infection. We

  16. Disease Severity Is Associated with Differential Gene Expression at the Early and Late Phases of Infection in Nonhuman Primates Infected with Different H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Muramoto, Yukiko; Shoemaker, Jason E.; Le, Mai Quynh; Itoh, Yasushi; Tamura, Daisuke; Sakai-Tagawa, Yuko; Imai, Hirotaka; Uraki, Ryuta; Takano, Ryo; Kawakami, Eiryo; Ito, Mutsumi; Okamoto, Kiyoko; Ishigaki, Hirohito; Mimuro, Hitomi; Sasakawa, Chihiro; Matsuoka, Yukiko; Noda, Takeshi; Fukuyama, Satoshi; Ogasawara, Kazumasa; Kitano, Hiroaki

    2014-01-01

    ABSTRACT Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. IMPORTANCE Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus

  17. Avian Influenza A (H7N9) viruses isolated from patients with mild and fatal infection differ in pathogenicity and induction of cytokines.

    PubMed

    Zhou, Junmei; Guo, Xiaolan; Fang, Danyun; Yu, Yufeng; Si, Lulu; Wang, Ying; Zeng, Gucheng; Yan, Huijun; Wu, Jie; Ke, Changwen; Jiang, Lifang

    2017-10-01

    Since 2013, a novel Influenza A (H7N9) virus strain has continued to circulate within poultry and causing human disease. Influenza A (H7N9) virus results in two types of infection: mild and severe. The different results of clinical findings may be related with host susceptibility and characteristics of the virus itself. In order to investigate potential pathogenesis of Influenza A (H7N9) virus, we performed pathogenecity and cytokines analysis of two isolates, A/Guangdong/6/2013 H7N9 virus (GD-6) from a patient with a mild infection, and A/Guangdong/7/2013 H7N9 virus (GD-7) from a patient with a fatal infection. We found that GD-7 replicated to higher levels than GD-6 in human peripheral blood mononuclear cells (PBMCs), lung tissues, and mice. Furthermore, GD-7 infection resulted in more severe lung damage in mice lung tissues than GD-6 infection. GD-7 elicited higher levels of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α) than GD-6 did. In conclusion, GD-7 was more pathogenic and induced higher levels of proinflammatory cytokines than GD-6 did. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Efficacy of Fostera® PRRS modified live virus (MLV) vaccination strategy against a Thai highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) infection.

    PubMed

    Charoenchanikran, Ponlakrit; Kedkovid, Roongtham; Sirisereewan, Chaitawat; Woonwong, Yonlayong; Arunorat, Jirapat; Sitthichareonchai, Panchan; Sopipan, Natthawan; Jittimanee, Suphattra; Kesdangsakonwut, Sawang; Thanawongnuwech, Roongroje

    2016-10-01

    Recently, the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) (HP-PRRSV) belonging to lineage 8 causes severe symptom with high morbidity and high mortality rates to the Asian pig industry. A recent study showed that pigs immunized with Fostera® PRRS modified live virus (MLV) of lineage 8 could provide a degree of protection against a Vietnamese HP-PRRSV infection. It should be noted that PRRSV commonly found after weaning causes porcine respiratory disease complex (PRDC). Vaccination strategy should be evaluated in each farm scenario. Eighty-one PRRSV-free piglets obtained from a PRRS-free herd were divided into two experiments with the major difference of infection timing after vaccination, 42 days in experiment 1 (n = 42) and 28 days in experiment 2 (n = 39). Each experiment had similar protocol containing three groups including a negative control, unvaccinated challenged, and vaccinated challenged groups. Pigs in vaccination groups were immunized with Fostera® PRRS MLV vaccine at 3 weeks of age. Then, unvaccinated challenged and vaccinated challenged groups were intranasally inoculated with a Thai HP-PRRSV (10PL01). Vaccinated challenged pigs showed significantly lower levels of mean rectal temperatures, clinical severity, lung lesion scores, and viral titers in serum and lung tissue compared to the unvaccinated challenged pigs (p < 0.05). Vaccinated challenged pigs had higher survival rate than those of unvaccinated challenged pigs in both experiments. It should be noted that pigs challenged 42 days after vaccination showed a better performance than pigs challenged 28 days after vaccination. In conclusion, Fostera® PRRS MLV vaccine was able to improve the survival rate against the Thai HP-PRRSV infection in both 42- and 28-day vaccination-to-infection protocols.

  19. Survival analysis of infected mice reveals pathogenic variations in the genome of avian H1N1 viruses.

    PubMed

    Koçer, Zeynep A; Fan, Yiping; Huether, Robert; Obenauer, John; Webby, Richard J; Zhang, Jinghui; Webster, Robert G; Wu, Gang

    2014-12-12

    Most influenza pandemics have been caused by H1N1 viruses of purely or partially avian origin. Here, using Cox proportional hazard model, we attempt to identify the genetic variations in the whole genome of wild-type North American avian H1N1 influenza A viruses that are associated with their virulence in mice by residue variations, host origins of virus (Anseriformes-ducks or Charadriiformes-shorebirds), and host-residue interactions. In addition, through structural modeling, we predicted that several polymorphic sites associated with pathogenicity were located in structurally important sites, especially in the polymerase complex and NS genes. Our study introduces a new approach to identify pathogenic variations in wild-type viruses circulating in the natural reservoirs and ultimately to understand their infectious risks to humans as part of risk assessment efforts towards the emergence of future pandemic strains.

  20. Encephalitis in a stone marten (Martes foina) after natural infection with highly pathogenic avian influenza virus subtype H5N1.

    PubMed

    Klopfleisch, R; Wolf, P U; Wolf, C; Harder, T; Starick, E; Niebuhr, M; Mettenleiter, T C; Teifke, J P

    2007-01-01

    Recent outbreaks of disease in different avian species, caused by the highly pathogenic avian influenza virus (HPAIV), have involved infection by subtype H5N1 of the virus. This virus has also crossed species barriers and infected felines and humans. Here, we report the natural infection of a stone marten (Martes foina) from an area with numerous confirmed cases of H5N1 HPAIV infection in wild birds. Histopathological examination of tissues from this animal revealed a diffuse nonsuppurative panencephalitis with perivascular cuffing, multifocal gliosis and neuronal necrosis. Additionally, focal necrosis of pancreatic acinar cells was observed. Immunohistochemically, lesions in these organs were associated with avian influenza virus antigen in neurons, glial cells and pancreatic acinar cells. Thus, the microscopical lesions and viral antigen distribution in this stone marten differs from that recently described for cats naturally and experimentally infected with the same virus subtype. This is the first report of natural infection of a mustelid with HPAIV H5N1.

  1. Activation of Type I and III Interferon Signalling Pathways Occurs in Lung Epithelial Cells Infected with Low Pathogenic Avian Influenza Viruses

    PubMed Central

    Sutejo, Richard; Yeo, Dawn S.; Myaing, Myint Zu; Hui, Chen; Xia, Jiajia; Ko, Debbie; Cheung, Peter C. F.; Tan, Boon-Huan; Sugrue, Richard J.

    2012-01-01

    The host response to the low pathogenic avian influenza (LPAI) H5N2, H5N3 and H9N2 viruses were examined in A549, MDCK, and CEF cells using a systems-based approach. The H5N2 and H5N3 viruses replicated efficiently in A549 and MDCK cells, while the H9N2 virus replicated least efficiently in these cell types. However, all LPAI viruses exhibited similar and higher replication efficiencies in CEF cells. A comparison of the host responses of these viruses and the H1N1/WSN virus and low passage pH1N1 clinical isolates was performed in A549 cells. The H9N2 and H5N2 virus subtypes exhibited a robust induction of Type I and Type III interferon (IFN) expression, sustained STAT1 activation from between 3 and 6 hpi, which correlated with large increases in IFN-stimulated gene (ISG) expression by 10 hpi. In contrast, cells infected with the pH1N1 or H1N1/WSN virus showed only small increases in Type III IFN signalling, low levels of ISG expression, and down-regulated expression of the IFN type I receptor. JNK activation and increased expression of the pro-apoptotic XAF1 protein was observed in A549 cells infected with all viruses except the H1N1/WSN virus, while MAPK p38 activation was only observed in cells infected with the pH1N1 and the H5 virus subtypes. No IFN expression and low ISG expression levels were generally observed in CEF cells infected with either AIV, while increased IFN and ISG expression was observed in response to the H1N1/WSN infection. These data suggest differences in the replication characteristics and antivirus signalling responses both among the different LPAI viruses, and between these viruses and the H1N1 viruses examined. These virus-specific differences in host cell signalling highlight the importance of examining the host response to avian influenza viruses that have not been extensively adapted to mammalian tissue culture. PMID:22470468

  2. Infected or not: are PCR-positive oropharyngeal swabs indicative of low pathogenic influenza A virus infection in the respiratory tract of Mallard Anas platyrhynchos?

    PubMed

    Wille, Michelle; van Run, Peter; Waldenström, Jonas; Kuiken, Thijs

    2014-05-14

    Detection of influenza virus in oropharyngeal swabs collected during wild bird surveillance is assumed to represent respiratory infection, although intestine is the main site of infection. We tested this assumption by histological examination of the respiratory tract of wild Mallards with virus-positive oropharyngeal swabs. Thirty-two of 125 Mallards tested had viral-RNA positive oropharyngeal swabs. The respiratory tracts of four Mallards with the most virus were examined in detail by immunohistochemistry. None had detectable virus antigen in the respiratory tract, suggesting it was not infected. An alternative explanation is that the oropharynx was contaminated with virus through feeding in surface water or through preening.

  3. Experimentally Infected Domestic Ducks Show Efficient Transmission of Indonesian H5N1 Highly Pathogenic Avian Influenza Virus, but Lack Persistent Viral Shedding

    PubMed Central

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2–8 dpi. Viral ribonucleic acid was detected from 1–15 days post inoculation from the oral route and 1–24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection. PMID:24392085

  4. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    PubMed

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  5. Differences in pathogenicity and response to vaccination between Pekin and Muscovy ducks infected with H5N1 highly pathogenic influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Vaccination of domestic ducks against H5N1 HPAI is being conducted as a method of control but with mixed results. One of the observations from the field is that Muscovy ducks (Cair...

  6. Red Ginseng-containing diet helps to protect mice and ferrets from the lethal infection by highly pathogenic H5N1 influenza virus

    PubMed Central

    Park, Eun Hye; Yum, Jung; Ku, Keun Bon; Kim, Heui Man; Kang, Young Myong; Kim, Jeong Cheol; Kim, Ji An; Kang, Yoo Kyung; Seo, Sang Heui

    2013-01-01

    The highly pathogenic (HP) H5N1 influenza virus is endemic in many countries and has a great potential for a pandemic in humans. The immune-enhancing prowess of ginseng has been known for millennia. We aimed to study whether mice and ferrets fed with Red Ginseng could be better protected from the lethal infections of HP H5N1 influenza virus than the infected unfed mice and ferrets. We fed mice and ferrets with Red Ginseng prior to when they were infected with HP H5N1 influenza virus. The mice and ferrets fed with a 60-day diet containing Red Ginseng could be protected from lethal infections by HP H5N1 influenza virus (survival rate of up to 45% and 40%, respectively). Interferon-α and -γ antiviral cytokines were significantly induced in the lungs of mice fed Red Ginseng, compared to mice fed an unsupplemented diet. These data suggest that the diet with the immune-enhancing Red Ginseng could help humans to overcome the infections by HP H5N1 influenza virus. PMID:24558309

  7. Progression of Pathogenic Events in Cynomolgus Macaques Infected with Variola Virus

    DTIC Science & Technology

    2011-10-01

    suggesting potential targets for therapeutic intervention in humans. Results Comparative Pathology of VARV Infection Gross Necropsy Findings. 108 pfu...first became apparent on day 3 and were limited to peripheral and visceral lymphadenopathy and prominent splenic lymphoid follicles in one animal only...Epitheliocentric lesions were commonly found in haired skin and oronasal mucosa. Cutaneous lesions became apparent histologically at day 3, and

  8. Experimental infection of bar-headed geese (Anser indicus) and ruddy shelducks (Tadorna ferruginea) with a clade 2.3.2 H5N1 highly pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Since 2005, clade 2.2 H5N1 highly pathogenic avian influenza (HPAI) viruses have caused infections and disease involving numerous species of wild waterfowl in Eurasia and Africa. However, outbreaks associated with clade 2.3.2 viruses have increased since 2009, and viruses within this clade have beco...

  9. The response of colostrum-deprived, specific pathogen-free pigs to experimental infection with Teschen disease virus.

    PubMed

    Dardiri, A H; Seibold, H R; DeLay, P D

    1966-03-01

    The clinical response to Teschen disease and the excretion and rate of virus distribution in tissues of colostrum-deprived, specific pathogenfree pigs was determined. Severe, mild, and clinically inapparent responses to the disease were noticed following simultaneous intracranial and intranasal infections. Fourteen-day-old pigs reacted more severely to infection than 21-day-old pigs. The virus was detected in feces 2-3 days following infection but not in stools of surviving pigs 30 days after infection. The highest concentration of virus occurred during the incubation period and before onset of paralysis; the lowest concentrations were found during terminal disease stages. In tissues collected before or immediately after death of pigs, Teschen disease virus was found in several visceral organs but not in blood, urine or urinary bladder tissue. Virus yield was highest in brain and spinal cord tissues. Highest virus concentration was found in the cervical thoracic portions of the spinal cord, thalamus and cerebellum. Other aspects of the clinical disease are discussed.

  10. Clinical predictors of the leading pathogens in human immunodeficiency virus-infected adults with community-onset bacteremia in the emergency department: The importance of transmission routes.

    PubMed

    Lee, Ching-Chi; Chou, Yu-Ju; Lin, Jiun-Nong; Chu, Feng-Yuan; Tang, Hung-Jen; Lai, Chung-Hsu; Lin, Hsi-Hsun; Hung, Chien-Ching; Ko, Wen-Chien

    2016-12-18

    To investigate the clinical characteristics and pathogens of community-onset bacteremia among human immunodeficiency virus (HIV)-infected adults as well as to establish the clinical predictors of the major microorganisms. An observational cohort study was conducted retrospectively between January 2007 and December 2012. Demographic characteristics and pathogens determined from chart records were analyzed. Of the 121 eligible HIV adults with bacteremia, there was a male predominance (106 patients, 87.6%); elderly individuals (age ≥ 65 years) accounted for only 2.5% of the study population (3 patients). Of the total microorganisms isolated (n=123), Staphylococcus aureus (55, 44.7%) and Salmonella enterica (17, 13.8%) were the common pathogens. In a multivariate analysis, the leading two significant predictors of S. aureus infection were infective endocarditis (odds ratio, 11.49; p=0.001) and transmission risk with injection drug users (IDUs; odds ratio, 6.22; p=0.001). In addition, transmission risk with men who have sex with men (MSM; odds ratio, 37.49; p=0.001) was the leading clinical predictor of S. enterica infection. In further analyses, a strong linear-by-linear correlation between S. aureus infection and IDU (γ=0.94, p=0.02) as well as between S. enterica infection and MSM (γ=0.96, p=0.01) was evidenced. Focusing on the two key pathogens in HIV-infected adults with community-onset bacteremia, IDU was one of independent predictors associated with S. aureus infection, whereas MSM was the leading risk factor of S. enterica infection. Although the proposed predictive model of these pathogens has been not established, a scoring system involving the transmission risk of HIV may be of use for the early identification of these patients for clinicians. Copyright © 2017. Published by Elsevier B.V.

  11. Pathologic Changes in Wild Birds Infected with Highly Pathogenic Avian Influenza A(H5N8) Viruses, South Korea, 2014

    PubMed Central

    Kim, Hye-Ryoung; Kwon, Yong-Kuk; Jang, Il; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Lee, Hee-Soo; Joo, Yi-Seok; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun

    2015-01-01

    In January 2014, an outbreak of infection with highly pathogenic avian influenza (HPAI) A(H5N8) virus began on a duck farm in South Korea and spread to other poultry farms nearby. During this outbreak, many sick or dead wild birds were found around habitats frequented by migratory birds. To determine the causes of death, we examined 771 wild bird carcasses and identified HPAI A(H5N8) virus in 167. Gross and histologic lesions were observed in pancreas, lung, brain, and kidney of Baikal teals, bean geese, and whooper swans but not mallard ducks. Such lesions are consistent with lethal HPAI A(H5N8) virus infection. However, some HPAI-positive birds had died of gunshot wounds, peritonitis, or agrochemical poisoning rather than virus infection. These findings suggest that susceptibility to HPAI A(H5N8) virus varies among species of migratory birds and that asymptomatic migratory birds could be carriers of this virus. PMID:25897841

  12. Pathologic Changes in Wild Birds Infected with Highly Pathogenic Avian Influenza A(H5N8) Viruses, South Korea, 2014.

    PubMed

    Kim, Hye-Ryoung; Kwon, Yong-Kuk; Jang, Il; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Lee, Hee-Soo; Joo, Yi-Seok; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun; Bae, You-Chan

    2015-05-01

    In January 2014, an outbreak of infection with highly pathogenic avian influenza (HPAI) A(H5N8) virus began on a duck farm in South Korea and spread to other poultry farms nearby. During this outbreak, many sick or dead wild birds were found around habitats frequented by migratory birds. To determine the causes of death, we examined 771 wild bird carcasses and identified HPAI A(H5N8) virus in 167. Gross and histologic lesions were observed in pancreas, lung, brain, and kidney of Baikal teals, bean geese, and whooper swans but not mallard ducks. Such lesions are consistent with lethal HPAI A(H5N8) virus infection. However, some HPAI-positive birds had died of gunshot wounds, peritonitis, or agrochemical poisoning rather than virus infection. These findings suggest that susceptibility to HPAI A(H5N8) virus varies among species of migratory birds and that asymptomatic migratory birds could be carriers of this virus.

  13. Picturing pathogen infection in plants.

    PubMed

    Barón, Matilde; Pineda, Mónica; Pérez-Bueno, María Luisa

    2016-09-01

    Several imaging techniques have provided valuable tools to evaluate the impact of biotic stress on host plants. The use of these techniques enables the study of plant-pathogen interactions by analysing the spatial and temporal heterogeneity of foliar metabolism during pathogenesis. In this work we review the use of imaging techniques based on chlorophyll fluorescence, multicolour fluorescence and thermography for the study of virus, bacteria and fungi-infected plants. These studies have revealed the impact of pathogen challenge on photosynthetic performance, secondary metabolism, as well as leaf transpiration as a promising tool for field and greenhouse management of diseases. Images of standard chlorophyll fluorescence (Chl-F) parameters obtained during Chl-F induction kinetics related to photochemical processes and those involved in energy dissipation, could be good stress indicators to monitor pathogenesis. Changes on UV-induced blue (F440) and green fluorescence (F520) measured by multicolour fluorescence imaging in pathogen-challenged plants seem to be related with the up-regulation of the plant secondary metabolism and with an increase in phenolic compounds involved in plant defence, such as scopoletin, chlorogenic or ferulic acids. Thermal imaging visualizes the leaf transpiration map during pathogenesis and emphasizes the key role of stomata on innate plant immunity. Using several imaging techniques in parallel could allow obtaining disease signatures for a specific pathogen. These techniques have also turned out to be very useful for presymptomatic pathogen detection, and powerful non-destructive tools for precision agriculture. Their applicability at lab-scale, in the field by remote sensing, and in high-throughput plant phenotyping, makes them particularly useful. Thermal sensors are widely used in crop fields to detect early changes in leaf transpiration induced by both air-borne and soil-borne pathogens. The limitations of measuring photosynthesis by

  14. Metagenomic Detection of Viral Pathogens in Spanish Honeybees: Co-Infection by Aphid Lethal Paralysis, Israel Acute Paralysis and Lake Sinai Viruses

    PubMed Central

    Rubio-Guerri, Consuelo; Karlsson, Oskar E.; Kukielka, Deborah; Belák, Sándor; Sánchez-Vizcaíno, José Manuel

    2013-01-01

    The situation in Europe concerning honeybees has in recent years become increasingly aggravated with steady decline in populations and/or catastrophic winter losses. This has largely been attributed to the occurrence of a variety of known and “unknown”, emerging novel diseases. Previous studies have demonstrated that colonies often can harbour more than one pathogen, making identification of etiological agents with classical methods difficult. By employing an unbiased metagenomic approach, which allows the detection of both unexpected and previously unknown infectious agents, the detection of three viruses, Aphid Lethal Paralysis Virus (ALPV), Israel Acute Paralysis Virus (IAPV), and Lake Sinai Virus (LSV), in honeybees from Spain is reported in this article. The existence of a subgroup of ALPV with the ability to infect bees was only recently reported and this is the first identification of such a strain in Europe. Similarly, LSV appear to be a still unclassified group of viruses with unclear impact on colony health and these viruses have not previously been identified outside of the United States. Furthermore, our study also reveals that these bees carried a plant virus, Turnip Ringspot Virus (TuRSV), potentially serving as important vector organisms. Taken together, these results demonstrate the new possibilities opened up by high-throughput sequencing and metagenomic analysis to study emerging new diseases in domestic and wild animal populations, including honeybees. PMID:23460860

  15. Metagenomic detection of viral pathogens in Spanish honeybees: co-infection by Aphid Lethal Paralysis, Israel Acute Paralysis and Lake Sinai Viruses.

    PubMed

    Granberg, Fredrik; Vicente-Rubiano, Marina; Rubio-Guerri, Consuelo; Karlsson, Oskar E; Kukielka, Deborah; Belák, Sándor; Sánchez-Vizcaíno, José Manuel

    2013-01-01

    The situation in Europe concerning honeybees has in recent years become increasingly aggravated with steady decline in populations and/or catastrophic winter losses. This has largely been attributed to the occurrence of a variety of known and "unknown", emerging novel diseases. Previous studies have demonstrated that colonies often can harbour more than one pathogen, making identification of etiological agents with classical methods difficult. By employing an unbiased metagenomic approach, which allows the detection of both unexpected and previously unknown infectious agents, the detection of three viruses, Aphid Lethal Paralysis Virus (ALPV), Israel Acute Paralysis Virus (IAPV), and Lake Sinai Virus (LSV), in honeybees from Spain is reported in this article. The existence of a subgroup of ALPV with the ability to infect bees was only recently reported and this is the first identification of such a strain in Europe. Similarly, LSV appear to be a still unclassified group of viruses with unclear impact on colony health and these viruses have not previously been identified outside of the United States. Furthermore, our study also reveals that these bees carried a plant virus, Turnip Ringspot Virus (TuRSV), potentially serving as important vector organisms. Taken together, these results demonstrate the new possibilities opened up by high-throughput sequencing and metagenomic analysis to study emerging new diseases in domestic and wild animal populations, including honeybees.

  16. Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission.

    PubMed

    Hiono, Takahiro; Okamatsu, Masatoshi; Yamamoto, Naoki; Ogasawara, Kohei; Endo, Mayumi; Kuribayashi, Saya; Shichinohe, Shintaro; Motohashi, Yurie; Chu, Duc-Huy; Suzuki, Mizuho; Ichikawa, Takaya; Nishi, Tatsuya; Abe, Yuri; Matsuno, Keita; Tanaka, Kazuyuki; Tanigawa, Tsutomu; Kida, Hiroshi; Sakoda, Yoshihiro

    2016-01-01

    Highly pathogenic avian influenza viruses (HPAIVs) have spread in both poultry and wild birds. Determining transmission routes of these viruses during an outbreak is essential for the control of avian influenza. It has been widely postulated that migratory ducks play crucial roles in the widespread dissemination of HPAIVs in poultry by carrying viruses along with their migrations; however close contacts between wild migratory ducks and poultry are less likely in modern industrial poultry farming settings. Therefore, we conducted experimental infections of HPAIVs and low pathogenic avian influenza viruses (LPAIVs) to chickens, domestic ducks, tree sparrows, jungle crows, and black rats to evaluate their roles in virus transmission. The results showed that chickens, ducks, sparrows, and crows were highly susceptible to HPAIV infection. Significant titers of virus were recovered from the sparrows and crows infected with HPAIVs, which suggests that they potentially play roles of transmission of HPAIVs to poultry. In contrast, the growth of LPAIVs was limited in each of the animals tested compared with that of HPAIVs. The present results indicate that these common synanthropes play some roles in influenza virus transmission from wild birds to poultry. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Pathogenicity of an H5N1 avian influenza virus isolated in Vietnam in 2012 and reliability of conjunctival samples for diagnosis of infection

    PubMed Central

    Bui, Vuong N.; Dao, Tung D.; Nguyen, Tham T. H.; Nguyen, Lien T.; Bui, Anh N.; Trinh, Dai Q.; Pham, Nga T.; Inui, Kenjiro; Runstadler, Jonathan; Ogawa, Haruko; Nguyen, Khong V.; Imai, Kunitoshi

    2013-01-01

    The continued spread of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 among poultry in Vietnam poses a potential threat to animals and public health. To evaluate the pathogenicity of a 2012 H5N1 HPAIV isolate and to assess the utility of conjunctival swabs for viral detection and isolation in surveillance, an experimental infection with HPAIV subtype H5N1 was carried out in domestic ducks. Ducks were infected with 107.2 TCID50 of A/duck/Vietnam/QB1207/2012 (H5N1), which was isolated from a moribund domestic duck. In the infected ducks, clinical signs of disease, including neurological disorder, were observed. Ducks started to die at 3 days-post-infection (dpi), and the study mortality reached 67%. Viruses were recovered from oropharyngeal and conjunctival swabs until 7 dpi and from cloacal swabs until 4 dpi. In the ducks that died or were sacrificed on 3, 5, or 6 dpi, viruses were recovered from lung, brain, heart, pancreas and intestine, among which the highest virus titers were in the lung, brain or heart. Results of virus titration were confirmed by real-time RT-PCR. Genetic and phylogenetic analysis of the HA gene revealed that the isolate belongs to clade 2.3.2.1 similarly to the H5N1 viruses isolated in Vietnam in 2012. The present study demonstrated that this recent HPAI H5N1 virus of clade 2.3.2.1 could replicate efficiently in the systemic organs, including the brain, and cause severe disease with neurological symptoms in domestic ducks. Therefore, this HPAI H5N1 virus seems to retain the neurotrophic feature and has further developed properties of shedding virus from the oropharynx and conjunctiva in addition to the cloaca, potentially posing a higher risk of virus spread through cross-contact and/or environmental transmission. Continued surveillance and diagnostic programs using conjuntcival swabs in the field would further verify the apparent reliability of conjunctival samples for the detection of AIV. PMID:24211664

  18. Derivation and Characterization of Pathogenic Transmitted/Founder Molecular Clones from Simian Immunodeficiency Virus SIVsmE660 and SIVmac251 following Mucosal Infection

    PubMed Central

    Lopker, Michael J.; Del Prete, Gregory Q.; Estes, Jacob D.; Li, Hui; Reid, Carolyn; Newman, Laura; Lipkey, Leslie; Camus, Celine; Easlick, Juliet L.; Wang, Shuyi; Decker, Julie M.; Bar, Katharine J.; Learn, Gerald; Pal, Ranajit; Weiss, Deborah E.; Hahn, Beatrice H.; Lifson, Jeffrey D.; Shaw, George M.

    2016-01-01

    ABSTRACT Currently available simian immunodeficiency virus (SIV) infectious molecular clones (IMCs) and isolates used in nonhuman primate (NHP) models of AIDS were originally derived from infected macaques during chronic infection or end stage disease and may not authentically recapitulate features of transmitted/founder (T/F) genomes that are of particular interest in transmission, pathogenesis, prevention, and treatment studies. We therefore generated and characterized T/F IMCs from genetically and biologically heterogeneous challenge stocks of SIVmac251 and SIVsmE660. Single-genome amplification (SGA) was used to identify full-length T/F genomes present in plasma during acute infection resulting from atraumatic rectal inoculation of Indian rhesus macaques with low doses of SIVmac251 or SIVsmE660. All 8 T/F clones yielded viruses that were infectious and replication competent in vitro, with replication kinetics similar to those of the widely used chronic-infection-derived IMCs SIVmac239 and SIVsmE543. Phenotypically, the new T/F virus strains exhibited a range of neutralization sensitivity profiles. Four T/F virus strains were inoculated into rhesus macaques, and each exhibited typical SIV replication kinetics. The SIVsm T/F viruses were sensitive to TRIM5α restriction. All T/F viruses were pathogenic in rhesus macaques, resulting in progressive CD4+ T cell loss in gastrointestinal tissues, peripheral blood, and lymphatic tissues. The animals developed pathological immune activation; lymphoid tissue damage, including fibrosis; and clinically significant immunodeficiency leading to AIDS-defining clinical endpoints. These T/F clones represent a new molecular platform for the analysis of virus transmission and immunopathogenesis and for the generation of novel “bar-coded” challenge viruses and next-generation simian-human immunodeficiency viruses that may advance the HIV/AIDS vaccine agenda. IMPORTANCE Nonhuman primate research has relied on only a few

  19. Derivation and Characterization of Pathogenic Transmitted/Founder Molecular Clones from Simian Immunodeficiency Virus SIVsmE660 and SIVmac251 following Mucosal Infection.

    PubMed

    Lopker, Michael J; Del Prete, Gregory Q; Estes, Jacob D; Li, Hui; Reid, Carolyn; Newman, Laura; Lipkey, Leslie; Camus, Celine; Easlick, Juliet L; Wang, Shuyi; Decker, Julie M; Bar, Katharine J; Learn, Gerald; Pal, Ranajit; Weiss, Deborah E; Hahn, Beatrice H; Lifson, Jeffrey D; Shaw, George M; Keele, Brandon F

    2016-10-01

    Currently available simian immunodeficiency virus (SIV) infectious molecular clones (IMCs) and isolates used in nonhuman primate (NHP) models of AIDS were originally derived from infected macaques during chronic infection or end stage disease and may not authentically recapitulate features of transmitted/founder (T/F) genomes that are of particular interest in transmission, pathogenesis, prevention, and treatment studies. We therefore generated and characterized T/F IMCs from genetically and biologically heterogeneous challenge stocks of SIVmac251 and SIVsmE660. Single-genome amplification (SGA) was used to identify full-length T/F genomes present in plasma during acute infection resulting from atraumatic rectal inoculation of Indian rhesus macaques with low doses of SIVmac251 or SIVsmE660. All 8 T/F clones yielded viruses that were infectious and replication competent in vitro, with replication kinetics similar to those of the widely used chronic-infection-derived IMCs SIVmac239 and SIVsmE543. Phenotypically, the new T/F virus strains exhibited a range of neutralization sensitivity profiles. Four T/F virus strains were inoculated into rhesus macaques, and each exhibited typical SIV replication kinetics. The SIVsm T/F viruses were sensitive to TRIM5α restriction. All T/F viruses were pathogenic in rhesus macaques, resulting in progressive CD4(+) T cell loss in gastrointestinal tissues, peripheral blood, and lymphatic tissues. The animals developed pathological immune activation; lymphoid tissue damage, including fibrosis; and clinically significant immunodeficiency leading to AIDS-defining clinical endpoints. These T/F clones represent a new molecular platform for the analysis of virus transmission and immunopathogenesis and for the generation of novel "bar-coded" challenge viruses and next-generation simian-human immunodeficiency viruses that may advance the HIV/AIDS vaccine agenda. Nonhuman primate research has relied on only a few infectious molecular clones

  20. Mild Respiratory Illness Among Young Children Caused by Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in Dhaka, Bangladesh, 2011.

    PubMed

    Chakraborty, Apurba; Rahman, Mahmudur; Hossain, M Jahangir; Khan, Salah Uddin; Haider, M Sabbir; Sultana, Rebeca; Ali Rimi, Nadia; Islam, M Saiful; Haider, Najmul; Islam, Ausraful; Sultana Shanta, Ireen; Sultana, Tahmina; Al Mamun, Abdullah; Homaira, Nusrat; Goswami, Doli; Nahar, Kamrun; Alamgir, A S M; Rahman, Mustafizur; Mahbuba Jamil, Khondokar; Azziz-Baumgartner, Eduardo; Simpson, Natosha; Shu, Bo; Lindstrom, Stephen; Gerloff, Nancy; Davis, C Todd; Katz, Jaqueline M; Mikolon, Andrea; Uyeki, Timothy M; Luby, Stephen P; Sturm-Ramirez, Katharine

    2017-09-15

    In March 2011, a multidisciplinary team investigated 2 human cases of highly pathogenic avian influenza A(H5N1) virus infection, detected through population-based active surveillance for influenza in Bangladesh, to assess transmission and contain further spread. We collected clinical and exposure history of the case patients and monitored persons coming within 1 m of a case patient during their infectious period. Nasopharyngeal wash specimens from case patients and contacts were tested with real-time reverse-transcription polymerase chain reaction, and virus culture and isolates were characterized. Serum samples were tested with microneutralization and hemagglutination inhibition assays. We tested poultry, wild bird, and environmental samples from case patient households and surrounding areas for influenza viruses. Two previously healthy case patients, aged 13 and 31 months, had influenzalike illness and fully recovered. They had contact with poultry 7 and 10 days before illness onset, respectively. None of their 57 contacts were subsequently ill. Clade 2.2.2.1 highly pathogenic avian influenza H5N1 viruses were isolated from the case patients and from chicken fecal samples collected at the live bird markets near the patients' dwellings. Identification of H5N1 cases through population-based surveillance suggests possible additional undetected cases throughout Bangladesh and highlights the importance of surveillance for mild respiratory illness among populations frequently exposed to infected poultry.

  1. Biological characterization of highly pathogenic avian influenza H5N1 viruses that infected humans in Egypt in 2014-2015.

    PubMed

    El-Shesheny, Rabeh; Mostafa, Ahmed; Kandeil, Ahmed; Mahmoud, Sara H; Bagato, Ola; Naguib, Amel; Refaey, Samir El; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2017-03-01

    Highly pathogenic avian influenza (HPAI) H5N1 influenza viruses emerged as a human pathogen in 1997 with expected potential to undergo sustained human-to-human transmission and pandemic viral spread. HPAI H5N1 is endemic in Egyptian poultry and has caused sporadic human infection. The first outbreak in early 2006 was caused by clade 2.2 viruses that rapidly evolved genetically and antigenically. A sharp increase in the number of human cases was reported in Egypt in the 2014/2015 season. In this study, we analyzed and characterized three isolates of HPAI H5N1 viruses isolated from infected humans in Egypt in 2014/2015. Phylogenetic analysis demonstrated that the nucleotide sequences of eight segments of the three isolates were clustered with those of members of clade 2.2.1.2. We also found that the human isolates from 2014/2015 had a slight, non-significant difference in their affinity for human-like sialic acid receptors. In contrast, they showed significant differences in their replication kinetics in MDCK, MDCK-SIAT, and A549 cells as well as in embryonated chicken eggs. An antiviral bioassay study revealed that all of the isolates were susceptible to amantadine. Therefore, further investigation and monitoring is required to correlate the genetic and/or antigenic changes of the emerging HPAI H5N1 viruses with possible alteration in their characteristics and their potential to become a further threat to public health.

  2. Genetics and infectivity of H5N1 highly pathogenic avian influenza viruses isolated from chickens and wild birds in Japan during 2010-11.

    PubMed

    Uchida, Yuko; Suzuki, Yasushi; Shirakura, Masayuki; Kawaguchi, Akira; Nobusawa, Eri; Tanikawa, Taichiro; Hikono, Hirokazu; Takemae, Nobuhiro; Mase, Masaji; Kanehira, Katsushi; Hayashi, Tsuyoshi; Tagawa, Yuichi; Tashiro, Masato; Saito, Takehiko

    2012-12-01

    Outbreaks of H5N1 subtype highly pathogenic avian influenza virus (HPAIV) were recorded in chickens, domesticated birds and wild birds throughout Japan from November 2010 to March 2011. Genetic analysis of the Japanese isolates indicated that all gene segments, except the PA gene, were closely related to Japanese wild bird isolates in 2008 and belonged to clade 2.3.2.1 classified by the WHO/OIE/FAO H5N1 Evolution Working Group. Direct ancestors of the PA gene segment of all Japanese viruses analyzed in this study can be found in wild bird strains of several subtypes other than H5N1 isolated between 2007 and 2009. The PA gene of these wild bird isolates share a common ancestor with H5N1 HPAIVs belonging to clades 2.5, 7 and 9, indicating that wild birds were involved in the emergence of the current reassortant 2.3.2.1 viruses. To determine how viruses were maintained in the wild bird population, two isolates derived from chickens (A/chicken/Shimane/1/2010, Ck10 and A/chicken/Miyazaki/S4/2011, CkS411) and one from a wild bird (A/mandarin duck/Miyazaki/22M-765/2011, MandarinD11) were compared in their ability to infect and be transmitted to chickens. There was a significant difference in the survival of chickens that were infected with 10(6)EID(50) of CkS411 compared to those with MandarinD11 and the transmission efficiency of CkS411 was greater than the other viruses. The increased titer of CkS411 excreted from infected chickens contributed to the improved transmission rates. It was considered that reduced virus excretion and transmission of MandarinD11 could have been due to adaptation of the virus in wild birds.

  3. Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin.

    PubMed

    Loveday, Emma-Kate; Diederich, Sandra; Pasick, John; Jean, François

    2015-01-01

    A common critical cellular event that many human enveloped viruses share is the requirement for proteolytic cleavage of the viral glycoprotein by furin in the host secretory pathway. For example, the furin-dependent proteolytic activation of highly pathogenic (HP) influenza A (infA) H5 and H7 haemagglutinin precursor (HA0) subtypes is critical for yielding fusion-competent infectious virions. In this study, we hypothesized that viral hijacking of the furin pathway by HP infA viruses to permit cleavage of HA0 could represent a novel molecular mechanism controlling the dynamic production of fusion-competent infectious virus particles during the viral life cycle. We explored the biological role of a newly identified furin-directed human microRNA, miR-24, in this process as a potential post-transcriptional regulator of the furin-mediated activation of HA0 and production of fusion-competent virions in the host secretory pathway. We report that miR-24 and furin are differentially expressed in human A549 cells infected with HP avian-origin infA H5N1. Using miR-24 mimics, we demonstrated a robust decrease in both furin mRNA levels and intracellular furin activity in A549 cells. Importantly, pretreatment of A549 cells with miR-24 mimicked these results: a robust decrease of H5N1 infectious virions and a complete block of H5N1 virus spread that was not observed in A549 cells infected with low-pathogenicity swine-origin infA H1N1 virus. Our results suggest that viral-specific downregulation of furin-directed microRNAs such as miR-24 during the life cycle of HP infA viruses may represent a novel regulatory mechanism that governs furin-mediated proteolytic activation of HA0 glycoproteins and production of infectious virions.

  4. Pathogenic Human Viruses in Coastal Waters

    PubMed Central

    Griffin, Dale W.; Donaldson, Kim A.; Paul, John H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and important field. PMID:12525429

  5. Pathogenic human viruses in coastal waters

    USGS Publications Warehouse

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  6. Viruses Infecting Reptiles

    PubMed Central

    Marschang, Rachel E.

    2011-01-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions. PMID:22163336

  7. Viruses infecting reptiles.

    PubMed

    Marschang, Rachel E

    2011-11-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch's postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  8. Impact of virus strain characteristics on early detection of highly pathogenic avian influenza infection in commercial table-egg layer flocks and implications for outbreak control.

    PubMed

    Weaver, J Todd; Malladi, Sasidhar; Goldsmith, Timothy J; Hueston, Will; Hennessey, Morgan; Lee, Brendan; Voss, Shauna; Funk, Janel; Der, Christina; Bjork, Kathe E; Clouse, Timothy L; Halvorson, David A

    2012-12-01

    Early detection of highly pathogenic avian influenza (HPAI) infection in commercial poultry flocks is a critical component of outbreak control. Reducing the time to detect HPAI infection can reduce the risk of disease transmission to other flocks. The timeliness of different types of detection triggers could be dependent on clinical signs that are first observed in a flock, signs that might vary due to HPAI virus strain characteristics. We developed a stochastic disease transmission model to evaluate how transmission characteristics of various HPAI strains might effect the relative importance of increased mortality, drop in egg production, or daily real-time reverse transcriptase (RRT)-PCR testing, toward detecting HPAI infection in a commercial table-egg layer flock. On average, daily RRT-PCR testing resulted in the shortest time to detection (from 3.5 to 6.1 days) depending on the HPAI virus strain and was less variable over a range of transmission parameters compared with other triggers evaluated. Our results indicate that a trigger to detect a drop in egg production would be useful for HPAI virus strains with long infectious periods (6-8 days) and including an egg-drop detection trigger in emergency response plans would lead to earlier and consistent reporting in some cases. We discuss implications for outbreak control and risk of HPAI spread attributed to different HPAI strain characteristics where an increase in mortality or a drop in egg production or both would be among the first clinical signs observed in an infected flock.

  9. Neurotropism in blackcaps (Sylvia atricapilla) and red-billed queleas (Quelea quelea) after highly pathogenic avian influenza virus H5N1 infection.

    PubMed

    Breithaupt, A; Kalthoff, D; Dale, J; Bairlein, F; Beer, M; Teifke, J P

    2011-09-01

    The epidemiologic role of passerine birds in the spread of highly pathogenic avian influenza virus (HPAIV) remains controversial. However, confirmed natural infections with HPAIV in Passeriformes, their close contact to poultry and humans, and their role as a human food source indicate a need for increased research on passerines. To date, there are only a few studies on viral shedding and pathomorphologic changes in songbirds infected with HPAIV. To investigate susceptibility, clinical outcome, virus spread, and pathomorphology, the authors inoculated oculo-oronasally 22 red-billed queleas (Quelea quelea) and 11 blackcaps (Sylvia atricapilla) with A/Cygnus cygnus/Germany/R65/2006 (H5N1) using 2 different doses of either 10(4) EID50 (50% egg infective dose) or 10(6) EID50 per animal. They monitored all birds for clinical signs and oropharyngeal and cloacal virus shedding. They also performed immunohistochemistry and obtained molecular virologic data by real-time reverse transcription polymerase chain reaction in tissue samples. In contrast to blackcaps, where 100% of the infected individuals died, queleas were much less susceptible, with a mortality of 82% and 18%, depending on the doses applied. In both species, the virus was shed within 3 to 6 days postinfection, mainly via the respiratory tract. Viral antigen was detected in 100% of the succumbed birds, particularly in the central nervous system. In blackcaps, the heart, lungs, and pancreas were mainly infected. In contrast, the pancreas was predominantly affected in queleas, whereas the heart and the lower respiratory tract were of minor relevance. The authors hypothesize that neurotropism should be considered a main factor for the fatal course of disease in Passeriformes after infection with HPAIV.

  10. Experimental infection of specific pathogen-free New Zealand White rabbits with five strains of amyxomatous myxoma virus.

    PubMed

    Marlier, D; Cassart, D; Boucraut-Baralon, C; Coignoul, F; Vindevogel, H

    1999-11-01

    Myxomatosis is a specific disease of the European rabbit (Oryctolagus cuniculus) due to a virus belonging to the genus Leporipoxvirus. Forty-seven years after its deliberate introduction into Europe, the clinical aspects and the epizootiology of myxomatosis have changed. Two forms (nodular and amyxomatous) of the disease have been identified to date. A comparative study was made of the clinical signs, pathogenesis and gross lesions observed in male specific pathogen-free New Zealand White rabbits inoculated with five strains of amyxomatous myxoma virus. All five strains induced the characteristic amyxomatous myxomatosis clinical syndrome with clinical signs that differed only in intensity. The varying clinical intensity, together with the results of virological examination question the virulence of at least three of the five strains. Genomic analysis confirmed that the five strains came from the Lausanne strain introduced in 1952 in France and not from an unnoticed introduction of a Californian strain of myxoma virus. No link was found between the amyxomatous myxoma virus strains and the SG33 vaccine strain. 1999 Harcourt Publishers Ltd.

  11. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    USDA-ARS?s Scientific Manuscript database

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  12. Improved Pathogenicity of a Beet Black Scorch Virus Variant by Low Temperature and Co-infection with Its Satellite RNA

    PubMed Central

    Xu, Jin; Liu, Deshui; Zhang, Yongliang; Wang, Ying; Han, Chenggui; Li, Dawei; Yu, Jia-Lin; Wang, Xian-Bing

    2016-01-01

    Co-infection of none-coding satellite RNAs (sat-RNAs) usually inhibits replication and attenuates disease symptoms of helper viruses. However, we find that the sat-RNA of Beet black scorch virus (BBSV) and low temperature (18°C) additively enhance the systemic infection of BBSV in Nicotiana benthamiana. Northern blotting hybridization revealed a relatively reduced accumulation of BBSV-derived small interfering RNAs (siRNAs) in presence of sat-RNA as compared to that of BBSV alone. Cloning and sequencing of total small RNAs showed that more than 50% of the total small RNAs sequenced from BBSV-infected plants were BBSV-siRNAs, whereas the abundance of sat-siRNAs were higher than BBSV-siRNAs in the sat-RNA co-infected plants, indicating that the sat-RNA occupies most of the silencing components and possibly relieves the RNA silencing-mediated defense against BBSV. Interestingly, the 5′ termini of siRNAs derived from BBSV and sat-RNA were dominated by Uridines (U) and Adenines (A), respectively. Besides, the infection of BBSV alone and with sat-RNA induce down-regulation of miR168 and miR403, respectively, which leads to high accumulation of their targets, Argonaute 1 (AGO1) and AGO2. Our work reveals the profiles of siRNAs of BBSV and sat-RNA and provides an additional clue to investigate the complicated interaction between the helper virus and sat-RNA. PMID:27867378

  13. Differential host gene expression in cells infected with highly pathogenic H5N1 avian influenza viruses.

    PubMed

    Sarmento, Luciana; Afonso, Claudio L; Estevez, Carlos; Wasilenko, Jamie; Pantin-Jackwood, Mary

    2008-10-15

    In order to understand the molecular mechanisms by which different strains of avian influenza viruses overcome host response in birds, we used a complete chicken genome microarray to compare early gene expression levels in chicken embryo fibroblasts (CEF) infected with two avian influenza viruses (AIV), A/CK/Hong Kong/220/97 and A/Egret/Hong Kong/757.2/02, with different replication characteristics. Gene ontology revealed that the genes with altered expression are involved in many vital functional classes including protein metabolism, translation, transcription, host defense/immune response, ubiquitination and the cell cycle. Among the immune-related genes, MEK2, MHC class I, PDCD10 and Bcl-3 were selected for further expression analysis at 24 hpi using semi-quantitive RT-PCR. Infection of CEF with A/Egret/Hong Kong/757.2/02 resulted in a marked repression of MEK2 and MHC class I gene expression levels. Infection of CEF with A/CK/Hong Kong/220/97 induced an increase of MEK2 and a decrease in PDCD10 and Bcl-3 expression levels. The expression levels of alpha interferon (IFN-alpha), myxovirus resistance 1 (Mx1) and interleukin-8 (IL-8) were also analyzed at 24 hpi, showing higher expression levels of all of these genes after infection with A/CK/Hong Kong/220/97 compared to A/Egret/Hong Kong/757.2/02. In addition, comparison of the NS1 sequences of the viruses revealed amino acid differences that may explain in part the differences in IFN-alpha expression observed. Microarray gene expression analysis has proven to be a useful tool on providing important insights into how different AIVs affect host gene expression and how AIVs may use different strategies to evade host response and replicate in host cells.

  14. Specific polyclonal F(ab')2 neutralize a large panel of highly pathogenic avian influenza A viruses (H5N1) and control infection in mice.

    PubMed

    Herbreteau, Cécile Hélène; Jacquot, Frédéric; Rith, Sareth; Vacher, Laurent; Nguyen, Ludovic; Carbonnelle, Caroline; Lotteau, Vincent; Jolivet, Michel; Raoul, Hervé; Buchy, Philippe; Saluzzo, Jean-François

    2014-01-01

    There is still no specific therapy for infection with the highly pathogenic avian influenza A virus (HPAI) H5N1, which caused 39 human cases with a 64% fatality rate in 2013. We prepared highly purified specific equine polyclonal immunoglobulin fragments (F(ab')2) against H5N1 and tested them for efficacy in vitro and with different administration schedules in H5N1-challenged BALB/c mice. in vitro, F(ab')2 neutralized 21 different H5N1 strains from different areas, representative of 11 different clades and sub-clades and 9 years of evolution of the virus. In vivo mouse experiments identified that the most efficient administration protocol consists of five consecutive daily injections after infection; 10 mg/kg giving a 60% increase in survival. These data demonstrate the ability of anti-H5N1 F(ab')2 to markedly reduce the mortality and morbidity associated with infection of mice with HPAI H5N1 virus, and their potential for human therapy.

  15. Zika Virus as an Emerging Global Pathogen

    PubMed Central

    Beckham, J. David; Pastula, Daniel M.; Massey, Aaron; Tyler, Kenneth L.

    2016-01-01

    IMPORTANCE Zika virus (ZIKV) is an emerging arthropod-borne virus (arbovirus) in the genus Flavivirus that has caused a widespread outbreak of febrile illness, is associated with neurological disease, and has spread across the Pacific to the Americas in a short period. OBSERVATIONS In this review, we discuss what is currently known about ZIKV, neuroimmunologic complications, and the impact on global human health. Zika virus spread across Africa and Asia in part owing to unique genomic evolutionary conditions and pressures resulting in specific human disease manifestations, complications, and pathogenesis. Recent data suggest that acute ZIKV infection in pregnant women may result in acute infection of fetal tissue and brain tissue, causing microcephaly and potentially severe debilitation of the infant or even death of the fetus. Cases of acute ZIKV are also associated with Guillain-Barré syndrome. With the increased number of cases, new complications such as ocular involvement and sexual transmission have been reported. CONCLUSIONS AND RELEVANCE Zika virus is an emerging viral pathogen with significant consequences on human health throughout the world. Ongoing research into this pathogen is urgently needed to produce viable vaccine and therapeutic options. PMID:27183312

  16. Effect of porcine circovirus type 2a or 2b on infection kinetics and pathogenicity of two genetically divergent strains of porcine reproductive and respiratory syndrome virus in the conventional pig model

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to characterize the infection dynamics and pathogenicity of two heterologous type 2 porcine reproductive and respiratory syndrome virus (PRRSV) isolates in a conventional pig model under the influence of concurrent porcine circovirus (PCV) subtype 2a or 2b infection. ...

  17. Experimental infection of a North American raptor, American Kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1).

    PubMed

    Hall, Jeffrey S; Ip, Hon S; Franson, J Christian; Meteyer, Carol; Nashold, Sean; TeSlaa, Joshua L; French, John; Redig, Patrick; Brand, Christopher

    2009-10-22

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  18. Experimental Infection of a North American Raptor, American Kestrel (Falco sparverius), with Highly Pathogenic Avian Influenza Virus (H5N1)

    PubMed Central

    Hall, Jeffrey S.; Ip, Hon S.; Franson, J. Christian; Meteyer, Carol; Nashold, Sean; TeSlaa, Joshua L.; French, John; Redig, Patrick; Brand, Christopher

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4–5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America. PMID:19847294

  19. Serologic cross-reactivity among humans and birds infected with highly pathogenic avian influenza A subtype H5N1 viruses in China.

    PubMed

    Li, Zheng; Ma, Chi; Liu, Zhonghua; He, Wei

    2011-03-30

    To study immunogenicity and serologic cross-reactivity of hemagglutinins (HAs) among humans and birds infected with highly pathogenic avian influenza (HPAI) H5N1, four representative H5N1 HA genes from humans and birds infected with distinct genetic clusters of H5N1 viruses in China were cloned, and several H5N1 infected human serum and H5N1 positive bird serum samples were used. Recombinant HA proteins were generated for ELISA assays and pseudotype viruses containing HAs were produced for neutralization assays and hemagglutination inhibition (HI) tests. We found significant differences among clades compared to species in binding, neutralization and HI activity of H5N1 strains isolated from birds. While significant differences were observed among species in H5N1 isolated from humans, investigation of H5N1 infected human and avian sera provided evidence that the pressure from nAb may be a driving force for positive selection. Therefore, improved anti-viral nAb therapies could block avian influenza transmission in humans.

  20. Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1)

    USGS Publications Warehouse

    Hall, J.S.; Ip, H.S.; Franson, J.C.; Meteyer, C.; Nashold, S.; Teslaa, J.L.; French, J.; Redig, P.; Brand, C.

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  1. A comparative evaluation of feathers, oropharyngeal swabs, and cloacal swabs for the detection of H5N1 highly pathogenic avian influenza virus infection in experimentally infected chickens and ducks.

    PubMed

    Nuradji, Harimurti; Bingham, John; Lowther, Sue; Wibawa, Hendra; Colling, Axel; Long, Ngo Thanh; Meers, Joanne

    2015-11-01

    Oropharyngeal and cloacal swabs have been widely used for the detection of H5N1 highly pathogenic avian Influenza A virus (HPAI virus) in birds. Previous studies have shown that the feather calamus is a site of H5N1 virus replication and therefore has potential for diagnosis of avian influenza. However, studies characterizing the value of feathers for this purpose are not available, to our knowledge; herein we present a study investigating feathers for detection of H5N1 virus. Ducks and chickens were experimentally infected with H5N1 HPAI virus belonging to 1 of 3 clades (Indonesian clades 2.1.1 and 2.1.3, Vietnamese clade 1). Different types of feathers and oropharyngeal and cloacal swab samples were compared by virus isolation. In chickens, virus was detected from all sample types: oral and cloacal swabs, and immature pectorosternal, flight, and tail feathers. During clinical disease, the viral titers were higher in feathers than swabs. In ducks, the proportion of virus-positive samples was variable depending on viral strain and time from challenge; cloacal swabs and mature pectorosternal feathers were clearly inferior to oral swabs and immature pectorosternal, tail, and flight feathers. In ducks infected with Indonesian strains, in which most birds did not develop clinical signs, all sampling methods gave intermittent positive results; 3-23% of immature pectorosternal feathers were positive during the acute infection period; oropharyngeal swabs had slightly higher positivity during early infection, while feathers performed better during late infection. Our results indicate that immature feathers are an alternative sample for the diagnosis of HPAI in chickens and ducks. © 2015 The Author(s).

  2. Heterologous post-infection immunity against Egyptian avian influenza virus (AIV) H9N2 modulates the course of subsequent infection by highly pathogenic AIV H5N1, but vaccination immunity does not.

    PubMed

    Naguib, Mahmoud M; Grund, Christian; Arafa, Abdel-Satar; Abdelwhab, E M; Beer, Martin; Harder, Timm C

    2017-06-01

    In Egypt, zoonotic A/goose/Guangdong/1/96 (gs/GD-like) highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.2.1.2 is entrenched in poultry populations and has co-circulated with low-pathogenic avian influenza virus H9N2 of the G1 lineage since 2010. Here, the impact of H9N2 infection or vaccination on the course of consecutive infection with a lethal Egyptian HPAIV H5N1 is studied. Three-week-old chickens were infected with H9N2 or vaccinated with inactivated H9N2 or H5N1 antigens and challenged three weeks later by an HPAIV H5N1. Interestingly, pre-infection of chickens with H9N2 decreased the oral excretion of H5N1 to levels that were comparable to those of H5N1-immunized chickens, but vaccination with inactivated H9N2 did not. H9N2 pre-infection modulated but did not conceal clinical disease by HPAIV H5N1. By contrast, homologous H5 vaccination abolished clinical syndromic surveillance, although vaccinated clinical healthy birds were capable of spreading the virus.

  3. Risk Reduction Modeling of High Pathogenicity Avian Influenza Virus Titers in Nonpasteurized Liquid Egg Obtained from Infected but Undetected Chicken Flocks.

    PubMed

    Weaver, J Todd; Malladi, Sasidhar; Spackman, Erica; Swayne, David E

    2015-11-01

    Control of highly pathogenic avian influenza (HPAI) outbreaks in poultry has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a zone under permit. Nonpasteurized liquid egg (NPLE) is one such commodity for which movements may be permitted, considering inactivation of HPAI virus via pasteurization. Active surveillance testing at the flock level, using targeted matrix gene real-time reversed transcriptase-polymerase chain reaction testing (RRT-PCR) has been incorporated into HPAI emergency response plans as the primary on-farm diagnostic test procedure to detect HPAI in poultry and is considered to be a key risk mitigation measure. To inform decisions regarding the potential movement of NPLE to a pasteurization facility, average HPAI virus concentrations in NPLE produced from a HPAI virus infected, but undetected, commercial table-egg-layer flock were estimated for three HPAI virus strains using quantitative simulation models. Pasteurization under newly proposed international design standards (5 log10 reduction) is predicted to inactivate HPAI virus in NPLE to a very low concentration of less than 1 embryo infectious dose (EID)50 /mL, considering the predicted virus titers in NPLE from a table-egg flock under active surveillance. Dilution of HPAI virus from contaminated eggs in eggs from the same flock, and in a 40,000 lb tanker-truck load of NPLE containing eggs from disease-free flocks was also considered. Risk assessment can be useful in the evaluation of commodity-specific risk mitigation measures to facilitate safe trade in animal products from countries experiencing outbreaks of highly transmissible animal diseases.

  4. INFLAMMATORY EFFECTS OF HIGHLY PATHOGENIC H5N1 INFLUENZA VIRUS INFECTION IN THE CNS OF MICE

    PubMed Central

    Jang, Haeman; Boltz, David; McClaren, Jennifer; Pani, Amar K.; Smeyne, Michelle; Korff, Ane; Webster, Robert; Smeyne, Richard Jay

    2012-01-01

    The A/VN/1203/04 H5N1 influenza virus is capable of infecting the CNS of mice and inducing a number of neurodegenerative pathologies. Here, we examined the effects of H5N1 on several pathological aspects affected in parkinsonism, including loss of the phenotype of dopaminergic (DAergic) neurons located in the substantia nigra pars compacta (SNpc), expression of mono- and indolamines in brain, alterations in SNpc microglia number and morphology, and expression of cytokines, chemokines and growth factors. We find that H5N1 induces a transient loss of the DAergic phenotype in SNpc and now report that this loss recovers by 90 days post infection (dpi). A similar pattern of loss and recovery was seen in monoamine levels of the basal ganglia. The inflammatory response in lung and different regions of the brain known to be targets of the H5N1 virus (brainstem, substantia nigra, striatum, and cortex) were examined at 3, 10, 21, 60 and 90 dpi. We found a significant increase in the number of activated microglia in each of these brain regions that lasted at least 90 days. We also quantified expression of IL-1α, IL-1β, IL-2, IL-6, IL-9, IL-10, IL-12(p70), IL-13, TNF-α, IFN-γ, GM-CSF, G-CSF, M-CSF, eotaxin, IP-10, KC, MCP-1, MIP-1α, MIP-1β and VEGF and find that the pattern and levels of expression are dependent on both brain region and time after infection. We conclude that H5N1 infection in mice induces a long-lasting inflammatory response in brain and may play a contributing factor in the development of pathologies in neurodegenerative disorders. PMID:22302798

  5. Effect of age on pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks varies between different viruses and is affected by the age of the ducks, with younger ducks presenting more severe disease. In order to better understand the pathobiology of H5N1 HPAI in ducks, including t...

  6. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature.

  7. Respiratory syncytial virus infection of newborn CX3CR1-deficent mice induces a pathogenic pulmonary innate immune response.

    PubMed

    Das, Sudipta; Raundhal, Mahesh; Chen, Jie; Oriss, Timothy B; Huff, Rachael; Williams, John V; Ray, Anuradha; Ray, Prabir

    2017-09-07

    Respiratory syncytial virus (RSV) infects almost all infants by 2 years of age, and severe bronchiolitis resulting from RSV infection is the primary cause of hospitalization in the first year of life. Among infants hospitalized due to RSV-induced bronchiolitis, those with a specific mutation in the chemokine receptor CX3CR1, which severely compromises binding of its ligand CX3CL1, were at a higher risk for more severe viral bronchiolitis than those without the mutation. Here, we show that RSV infection of newborn mice deficient in CX3CR1 leads to significantly greater neutrophilic inflammation in the lungs, accompanied by an increase in mucus production compared with that induced in WT mice. Analysis of innate and adaptive immune responses revealed an early increase in the number of IL-17+ γδ T cells in CX3CR1-deficient mice that outnumbered IFN-γ+ γδ T cells as well as IFN-γ+ NK cells, IFN-γ being host protective in the context of RSV infection. This bias toward IL-17+ γδ T cells persisted at a later time. The lungs of CX3CR1-deficient mice expressed higher levels of IL-1β mRNA and protein, and blockade of IL-1β signaling using IL-1 receptor antagonist significantly reduced the number of IL-17+ γδ T cells in the lungs of infected mice. Blockade of IL-17RC abolished RSV-induced lung pathology in infected CX3CR1-deficient mice. We propose that, in infants harboring mutant CX3CR1, targeting the IL-17R may minimize disease severity and hospitalization in early life.

  8. Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia.

    PubMed

    Mangiri, Amalya; Iuliano, A Danielle; Wahyuningrum, Yunita; Praptiningsih, Catharina Y; Lafond, Kathryn E; Storms, Aaron D; Samaan, Gina; Ariawan, Iwan; Soeharno, Nugroho; Kreslake, Jennifer M; Storey, J Douglas; Uyeki, Timothy M

    2017-01-01

    Indonesia has reported highest number of fatal human cases of highly pathogenic avian influenza (HPAI) A (H5N1) virus infection worldwide since 2005. There are limited data available on seasonal and pandemic influenza in Indonesia. During 2012, we conducted a survey of clinicians in two districts in western Java, Indonesia, to assess knowledge, attitudes, and practices (KAP) of clinical diagnosis, testing, and treatment of patients with seasonal influenza, pandemic influenza, or HPAI H5N1 virus infections. Overall, a very low percentage of physician participants reported ever diagnosing hospitalized patients with seasonal, pandemic, or HPAI H5N1 influenza. Use of influenza testing was low in outpatients and hospitalized patients, and use of antiviral treatment was very low for clinically diagnosed influenza patients. Further research is needed to explore health system barriers for influenza diagnostic testing and availability of antivirals for treatment of influenza in Indonesia. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  9. A parvo-like virus persistently infecting a C6/36 clone of Aedes albopictus mosquito cell line and pathogenic for Aedes aegypti larvae.

    PubMed

    Jousset, F X; Barreau, C; Boublik, Y; Cornet, M

    1993-08-01

    We have isolated and partially characterized from an apparently healthy C6/36 subclone of Aedes albopictus cell line a small icosahedral non-enveloped DNA virus, designated AaPV. This virus proved to be highly pathogenic for Aedes aegypti neonate larvae. Viral infection persisted for over 4 years in the cell culture without any cytopathic effect. Attempts to infect suckling mice, Drosophila melanogaster adults and Spodoptera littoralis larvae with AaPV were unsuccessful. Similarly, the AaPV failed to replicate in vertebrate and Drosophila cell lines. Virions, about 22 nm in diameter, had a buoyant density of 1.43 g/cm3 and contained three capsid polypeptides with molecular weights of 53, 41 and 40 kDa. A preliminary study of the viral genome indicated the presence of single-stranded DNA. By its biophysical and biochemical properties, this virus appears to be related to the genus Densovirus within the family Parvoviridae, but lacks serological relationships with the other members of this genus.

  10. Transcription analysis on response of porcine alveolar macrophages to co-infection of the highly pathogenic porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae.

    PubMed

    Li, Bin; Du, Luping; Xu, Xiangwei; Sun, Bing; Yu, Zhengyu; Feng, Zhixin; Liu, Maojun; Wei, Yanna; Wang, Haiyan; Shao, Guoqing; He, Kongwang

    2015-01-22

    Porcine respiratory disease complex (PRDC) is of great concern economically, for swine producers worldwide. Co-infections with porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae (Mhp) are considered the major causative agents of PRDC, and responsible for mass mortality in pigs. Nevertheless, the molecular mechanisms underlying the host factors involved in pathogenesis and persistent infection have not been clearly established because of a lack of information regarding host responses following co-infection. In the current study, high throughput cDNA microarray assays were employed to evaluate host responses of porcine alveolar macrophages (PAM) to co-infection with highly pathogenic PRRSV (HP-PRRSV) and Mhp. A total of 2152 and 1760 genes were identified as being differentially expressed between the control group and PRRSV+Mhp co-infected group at 6 and 15 h post infection, respectively. The DE genes were involved in many vital functional classes, including inflammatory response, immune response, apoptosis, defense response, signal transduction. The pathway analysis demonstrated that the most significant pathways were associated with chemokine signaling pathway, cytokine, TLR, RLR and NLR signaling pathways and Jak-STAT signaling pathway. STRING analysis demonstrated that IL-1β is an integral gene in co-infections with PRRSV and Mhp. The present study is the first to document the response of PAMs to co-infection with HP-PRRSV and Mhp. The observed gene expression profile could help with the screening of potential host agents for reducing the prevalence of co-infections, and to further develop our understanding of the molecular pathogenesis associated with PRRSV and Mhp co-infection in pigs.

  11. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese

    USDA-ARS?s Scientific Manuscript database

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory birds into North America mixing with low pathogenicity AI viruses to produce a H5N2 HPAI virus. The H5N8 and H5N2 HPAI viruses were detected initially in wild waterfowl and backyard birds, and lat...

  12. Host Cytokine Responses of Pigeons Infected with Highly Pathogenic Thai Avian Influenza Viruses of Subtype H5N1 Isolated from Wild Birds

    PubMed Central

    Hayashi, Tsuyoshi; Hiromoto, Yasuaki; Chaichoune, Kridsada; Patchimasiri, Tuangthong; Chakritbudsabong, Warunya; Prayoonwong, Natanan; Chaisilp, Natnapat; Wiriyarat, Witthawat; Parchariyanon, Sujira; Ratanakorn, Parntep; Uchida, Yuko; Saito, Takehiko

    2011-01-01

    Highly pathogenic avian influenza virus (HPAIV) of the H5N1 subtype has been reported to infect pigeons asymptomatically or induce mild symptoms. However, host immune responses of pigeons inoculated with HPAIVs have not been well documented. To assess host responses of pigeons against HPAIV infection, we compared lethality, viral distribution and mRNA expression of immune related genes of pigeons infected with two HPAIVs (A/Pigeon/Thailand/VSMU-7-NPT/2004; Pigeon04 and A/Tree sparrow/Ratchaburi/VSMU-16-RBR/2005; T.sparrow05) isolated from wild birds in Thailand. The survival experiment showed that 25% of pigeons died within 2 weeks after the inoculation of two HPAIVs or medium only, suggesting that these viruses did not cause lethal infection in pigeons. Pigeon04 replicated in the lungs more efficiently than T.sparrow05 and spread to multiple extrapulmonary organs such as the brain, spleen, liver, kidney and rectum on days 2, 5 and 9 post infection. No severe lesion was observed in the lungs infected with Pigeon04 as well as T.sparrow05 throughout the collection periods. Encephalitis was occasionally observed in Pigeon04- or T.sparrow05-infected brain, the severity, however was mostly mild. To analyze the expression of immune-related genes in the infected pigeons, we established a quantitative real-time PCR analysis for 14 genes of pigeons. On day 2 post infection, Pigeon04 induced mRNA expression of Mx1, PKR and OAS to a greater extent than T.sparrow05 in the lungs, however their expressions were not up-regulated concomitantly on day 5 post infection when the peak viral replication was observed. Expressions of TLR3, IFNα, IL6, IL8 and CCL5 in the lungs following infection with the two HPAIVs were low. In sum, Pigeon04 exhibited efficient replication in the lungs compared to T.sparrow05, but did not induce excessive host cytokine expressions. Our study has provided the first insight into host immune responses of pigeons against HPAIV infection. PMID:21826229

  13. Systems analysis of immune responses in Marek's disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism.

    PubMed

    Smith, Jacqueline; Sadeyen, Jean-Remy; Paton, Ian R; Hocking, Paul M; Salmon, Nigel; Fife, Mark; Nair, Venugopal; Burt, David W; Kaiser, Pete

    2011-11-01

    Marek's disease virus (MDV) is a highly contagious oncogenic alphaherpesvirus that causes disease that is both a cancer model and a continuing threat to the world's poultry industry. This comprehensive gene expression study analyzes the host response to infection in both resistant and susceptible lines of chickens and inherent expression differences between the two lines following the infection of the host. A novel pathogenicity mechanism, involving the downregulation of genes containing HIC1 transcription factor binding sites as early as 4 days postinfection, was suggested from this analysis. HIC1 drives antitumor mechanisms, suggesting that MDV infection switches off genes involved in antitumor regulation several days before the expression of the MDV oncogene meq. The comparison of the gene expression data to previous QTL data identified several genes as candidates for involvement in resistance to MD. One of these genes, IRG1, was confirmed by single nucleotide polymorphism analysis to be involved in susceptibility. Its precise mechanism remains to be elucidated, although the analysis of gene expression data suggests it has a role in apoptosis. Understanding which genes are involved in susceptibility/resistance to MD and defining the pathological mechanisms of the disease gives us a much greater ability to try to reduce the incidence of this virus, which is costly to the poultry industry in terms of both animal welfare and economics.

  14. Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice.

    PubMed

    Marathe, Bindumadhav M; Wong, Sook-San; Vogel, Peter; Garcia-Alcalde, Fernando; Webster, Robert G; Webby, Richard J; Najera, Isabel; Govorkova, Elena A

    2016-05-25

    Current anti-influenza therapy depends on administering drugs soon after infection, which is often impractical. We assessed whether combinations of oseltamivir (a neuraminidase inhibitor) and T-705 (a nonspecific inhibitor of viral polymerases) could extend the window for treating lethal infection with highly pathogenic A(H5N1) influenza virus in mice. Combination therapy protected 100% of mice, even when delayed until 96 h postinoculation. Compared to animals receiving monotherapy, mice receiving combination therapy had reduced viral loads and restricted viral spread in lung tissues, limited lung damage, and decreased inflammatory cytokine production. Next-generation sequencing showed that virus populations in T-705-treated mice had greater genetic variability, with more frequent transversion events, than did populations in control and oseltamivir-treated mice, but no substitutions associated with resistance to oseltamivir or T-705 were detected. Thus, combination therapy extended the treatment window for A(H5N1) influenza infection in mice and should be considered for evaluation in a clinical setting.

  15. Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice

    PubMed Central

    Marathe, Bindumadhav M.; Wong, Sook-San; Vogel, Peter; Garcia-Alcalde, Fernando; Webster, Robert G.; Webby, Richard J.; Najera, Isabel; Govorkova, Elena A.

    2016-01-01

    Current anti-influenza therapy depends on administering drugs soon after infection, which is often impractical. We assessed whether combinations of oseltamivir (a neuraminidase inhibitor) and T-705 (a nonspecific inhibitor of viral polymerases) could extend the window for treating lethal infection with highly pathogenic A(H5N1) influenza virus in mice. Combination therapy protected 100% of mice, even when delayed until 96 h postinoculation. Compared to animals receiving monotherapy, mice receiving combination therapy had reduced viral loads and restricted viral spread in lung tissues, limited lung damage, and decreased inflammatory cytokine production. Next-generation sequencing showed that virus populations in T-705–treated mice had greater genetic variability, with more frequent transversion events, than did populations in control and oseltamivir-treated mice, but no substitutions associated with resistance to oseltamivir or T-705 were detected. Thus, combination therapy extended the treatment window for A(H5N1) influenza infection in mice and should be considered for evaluation in a clinical setting. PMID:27221530

  16. Differences in innate immune responses to H5N1 highly pathogenic avian influenza virus infection between Pekin, Muscovy and Mallard ducks

    USDA-ARS?s Scientific Manuscript database

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. However, differences in pathogenicity and response to vaccination have been observed between different duck species. In this study we examined the pathogenicity of H5N1 HPAI viru...

  17. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay.

    PubMed

    Bertran, Kateri; Moresco, Kira; Swayne, David E

    2015-03-10

    High pathogenicity avian influenza virus (HPAIV) infections in chickens negatively impact egg production and cause egg contamination. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H5N2 HPAIV. However, Asian H5N1 HPAIV infection has some characteristics of increased pathogenicity compared to other H5 HPAIV such as more rapid drop and complete cessation in egg production. Sham (vaccinated at 25 and 28 weeks of age), inactivated H5N1 Once (1X-H5-Vax; vaccinated at 28 weeks of age only) and inactivated H5N1 Twice (2X-H5-Vax; vaccinated at 25 and 28 weeks of age) vaccinated adult White Leghorn hens were challenged intranasally at 31 weeks of age with 6.1 log10 mean embryo infectious doses (EID50) of clade 2.3.2.1a H5N1 HPAIV (A/chicken/Vietnam/NCVD-675/2011) which was homologous to the inactivated vaccine. Sham-vaccinated layers experienced 100% mortality within 3 days post-challenge; laid soft and thin-shelled eggs; had recovery of virus from oral swabs and in 53% of the eggs from eggshell surface (35%), yolk (24%), and albumin (41%); and had very high titers of virus (average 7.91 log10 EID50/g) in all segments of the oviduct and ovary. By comparison, 1X- and 2X-H5-Vax challenged hens survived infection, laid similar number of eggs pre- and post-challenge, all eggs had normal egg shell quality, and had significantly fewer contaminated eggs with reduced virus quantity. The 2X-H5-Vax hens had significantly higher HI titers by the day of challenge (304 GMT) and at termination (512 GMT) than 1X-H5-Vax hens (45 GMT and 128 GMT). The current study demonstrated that AIV infections caused by clade 2.3.2.1a H5N1 variants can be effectively controlled by either double or single homologous vaccination.

  18. Recombinant feline leukemia virus (FeLV) variants establish a limited infection with altered cell tropism in specific-pathogen-free cats in the absence of FeLV subgroup A helper virus.

    PubMed

    Bechtel, M K; Hayes, K A; Mathes, L E; Pandey, R; Stromberg, P C; Roy-Burman, P

    1999-03-01

    Feline leukemia virus subgroup B (FeLV-B) is commonly associated with feline lymphosarcoma and arises through recombination between endogenous retroviral elements inherited in the cat genome and corresponding regions of the envelope (env) gene from FeLV subgroup A (FeLV-A). In vivo infectivity for FeLV-B is thought to be inefficient in the absence of FeLV-A. Proposed FeLV-A helper functions include enhanced replication efficiency, immune evasion, and replication rescue for defective FeLV-B virions. In vitro analysis of the recombinant FeLV-B-like viruses (rFeLVs) employed in this study confirmed these viruses were replication competent prior to their use in an in vivo study without FeLV-A helper virus. Eight specific-pathogen-free kittens were inoculated with the rFeLVs alone. Subsequent hematology and histology results were within normal limits, however, in the absence of detectable viremia, virus expression, or significant seroconversion, rFeLV proviral DNA was detected in bone marrow tissue of 4/4 (100%) cats at 45 weeks postinoculation (pi), indicating these rFeLVs established a limited but persistent infection in the absence of FeLV-A. Altered cell tropism was also noted. Focal infection was seen in T-cell areas of the splenic follicles in 3/4 (75%) rFeLV-infected cats analyzed, while an FeLV-A-infected cat showed focal infection in B-cell areas of the splenic follicles. Nucleotide sequence analysis of the surface glycoprotein portion of the rFeLV env gene amplified from bone marrow tissue collected at 45 weeks pi showed no sequence alterations from the original rFeLV inocula.

  19. The non-pathogenic Australian rabbit calicivirus RCV-A1 provides temporal and partial cross protection to lethal Rabbit Haemorrhagic Disease Virus infection which is not dependent on antibody titres

    PubMed Central

    2013-01-01

    The endemic non-pathogenic Australian rabbit calicivirus RCV-A1 is known to provide some cross protection to lethal infection with the closely related Rabbit Haemorrhagic Disease Virus (RHDV). Despite its obvious negative impacts on viral biocontrol of introduced European rabbits in Australia, little is known about the extent and mechanisms of this cross protection. In this study 46 rabbits from a colony naturally infected with RCV-A1 were exposed to RHDV. Survival rates and survival times did not correlate with titres of serum antibodies specific to RCV-A1 or cross reacting to RHDV, but were instead influenced by the time between infection with the two viruses, demonstrating for the first time that the cross protection to lethal RHDV infection is transient. These findings are an important step towards a better understanding of the complex interactions of co-occurring pathogenic and non-pathogenic lagoviruses. PMID:23834204

  20. Zika Virus Infection.

    PubMed

    Shirley, Debbie-Ann T; Nataro, James P

    2017-08-01

    In less than 2 years since entry into the Americas, we have witnessed the emergent spread of Zika virus into large subsets of immunologically naïve human populations and then encountered the devastating effects of microcephaly and brain anomalies that can arise from in utero infection with the virus. Diagnostic evaluation and management of affected infants continues to evolve as our understanding of Zika virus rapidly advances. The development of a safe and effective vaccine holds the potential to attenuate the spread of infection and limit the impact of congenital infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Virus Infections in the Nervous System

    PubMed Central

    Koyuncu, Orkide O.; Hogue, Ian B.; Enquist, Lynn W.

    2013-01-01

    Virus infections usually begin in peripheral tissues and can invade the mammalian nervous system (NS), spreading into the peripheral (PNS) and more rarely the central nervous systems (CNS). The CNS is protected from most virus infections by effective immune responses and multi-layer barriers. However, some viruses enter the NS with high efficiency via the bloodstream or by directly infecting nerves that innervate peripheral tissues, resulting in debilitating direct and immune-mediated pathology. Most viruses in the NS are opportunistic or accidental pathogens, but a few, most notably the alpha herpesviruses and rabies virus, have evolved to enter the NS efficiently and exploit neuronal cell biology. Remarkably, the alpha herpesviruses can establish quiescent infections in the PNS, with rare but often fatal CNS pathology. Here we review how viruses gain access to and spread in the well-protected CNS, with particular emphasis on alpha herpesviruses, which establish and maintain persistent NS infections. PMID:23601101

  2. Passive immunization against highly pathogenic Avian Influenza Virus (AIV) strain H7N3 with antiserum generated from viral polypeptides protect poultry birds from lethal viral infection.

    PubMed

    Shahzad, Mirza Imran; Naeem, Khalid; Mukhtar, Muhammad; Khanum, Azra

    2008-11-28

    Our studies were aimed at developing a vaccination strategy that could provide protection against highly pathogenic avian influenza virus (AIV), H7N3 or its variants outbreaks. A purified viral stock of highly pathogenic H7N3 isolate was lysed to isolate viral proteins by electrophresing on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by their elution from gel through trituration in phosphate buffered saline (PBS). Overall, five isolated viral polypeptides/proteins upon characterization were used to prepare hyperimmune monovalent serum against respective polypeptides independently and a mixture of all five in poultry birds, and specificity confirmation of each antiserum through dot blot and Western blotting. Antiserum generated from various group birds was pooled and evaluated in 2-week old broiler chicken, for its protection against viral challenge. To evaluate in-vivo protection of each antiserum against viral challenges, six groups of 2-week old broiler chicken were injected with antiserum and a seventh control group received normal saline. Each group was exposed to purified highly pathogenic AIV H7N3 strain at a dose 10(5) embryo lethal dose (ELD(50)). We observed that nucleoprotein (NP) antiserum significantly protected birds from viral infection induced morbidity, mortality and lowered viral shedding compared with antiserum from individual viral proteins or mixed polypeptides/proteins inclusive of NP component. The capability of individual viral polypeptide specific antisera to protect against viral challenges in decreasing order was nucleoprotein (NP) > hemagglutinin (HA) > neuraminidase (NA) > viral proteins mix > viral polymerase (PM) > non-structural proteins (NS). Our data provide proof of concept for potential utilization of passive immunization in protecting poultry industry during infection outbreaks. Furthermore conserved nature of avian NP makes it an ideal candidate to produce antiserum protective against viral

  3. Highly Pathogenic Avian Influenza Virus H5N1 Infection in a Long-Distance Migrant Shorebird under Migratory and Non-Migratory States

    PubMed Central

    Reperant, Leslie A.; van de Bildt, Marco W. G.; van Amerongen, Geert; Buehler, Debbie M.; Osterhaus, Albert D. M. E.; Jenni-Eiermann, Susi; Piersma, Theunis; Kuiken, Thijs

    2011-01-01

    Corticosterone regulates physiological changes preparing wild birds for migration. It also modulates the immune system and may lead to increased susceptibility to infection, with implications for the spread of pathogens, including highly pathogenic avian influenza virus (HPAIV) H5N1. The red knot (Calidris canutus islandica) displays migratory changes in captivity and was used as a model to assess the effect of high plasma concentration of corticosterone on HPAIV H5N1 infection. We inoculated knots during pre-migration (N = 6), fueling (N = 5), migration (N = 9) and post-migration periods (N = 6). Knots from all groups shed similar viral titers for up to 5 days post-inoculation (dpi), peaking at 1 to 3 dpi. Lesions of acute encephalitis, associated with virus replication in neurons, were seen in 1 to 2 knots per group, leading to neurological disease and death at 5 to 11 dpi. Therefore, the risk of HPAIV H5N1 infection in wild birds and of potential transmission between wild birds and poultry may be similar at different times of the year, irrespective of wild birds' migratory status. However, in knots inoculated during the migration period, viral shedding levels positively correlated with pre-inoculation plasma concentration of corticosterone. Of these, knots that did not become productively infected had lower plasma concentration of corticosterone. Conversely, elevated plasma concentration of corticosterone did not result in an increased probability to develop clinical disease. These results suggest that birds with elevated plasma concentration of corticosterone at the time of migration (ready to migrate) may be more susceptible to acquisition of infection and shed higher viral titers—before the onset of clinical disease—than birds with low concentration of corticosterone (not ready for take-off). Yet, they may not be more prone to the development of clinical disease. Therefore, assuming no effect of sub-clinical infection on the likelihood of

  4. Highly pathogenic avian influenza virus H5N1 infection in a long-distance migrant shorebird under migratory and non-migratory states.

    PubMed

    Reperant, Leslie A; van de Bildt, Marco W G; van Amerongen, Geert; Buehler, Debbie M; Osterhaus, Albert D M E; Jenni-Eiermann, Susi; Piersma, Theunis; Kuiken, Thijs

    2011-01-01

    Corticosterone regulates physiological changes preparing wild birds for migration. It also modulates the immune system and may lead to increased susceptibility to infection, with implications for the spread of pathogens, including highly pathogenic avian influenza virus (HPAIV) H5N1. The red knot (Calidris canutus islandica) displays migratory changes in captivity and was used as a model to assess the effect of high plasma concentration of corticosterone on HPAIV H5N1 infection. We inoculated knots during pre-migration (N = 6), fueling (N = 5), migration (N = 9) and post-migration periods (N = 6). Knots from all groups shed similar viral titers for up to 5 days post-inoculation (dpi), peaking at 1 to 3 dpi. Lesions of acute encephalitis, associated with virus replication in neurons, were seen in 1 to 2 knots per group, leading to neurological disease and death at 5 to 11 dpi. Therefore, the risk of HPAIV H5N1 infection in wild birds and of potential transmission between wild birds and poultry may be similar at different times of the year, irrespective of wild birds' migratory status. However, in knots inoculated during the migration period, viral shedding levels positively correlated with pre-inoculation plasma concentration of corticosterone. Of these, knots that did not become productively infected had lower plasma concentration of corticosterone. Conversely, elevated plasma concentration of corticosterone did not result in an increased probability to develop clinical disease. These results suggest that birds with elevated plasma concentration of corticosterone at the time of migration (ready to migrate) may be more susceptible to acquisition of infection and shed higher viral titers--before the onset of clinical disease--than birds with low concentration of corticosterone (not ready for take-off). Yet, they may not be more prone to the development of clinical disease. Therefore, assuming no effect of sub-clinical infection on the likelihood of

  5. Outbreak of H5N2 highly pathogenic avian Influenza A virus infection in two commercial layer facilities: lesions and viral antigen distribution.

    PubMed

    Arruda, Paulo H E; Stevenson, Gregory W; Killian, Mary L; Burrough, Eric R; Gauger, Phillip C; Harmon, Karen M; Magstadt, Drew R; Yoon, Kyoung-Jin; Zhang, Jianqiang; Madson, Darin M; Piñeyro, Pablo; Derscheid, Rachel J; Schwartz, Kent J; Cooper, Vickie L; Halbur, Patrick G; Main, Rodger G; Sato, Yuko; Arruda, Bailey L

    2016-09-01

    The largest outbreak of highly pathogenic avian Influenza A virus (HPAIV) infection in U.S. history began in December 2014 resulting in the euthanasia of millions of birds and collateral economic consequences to the U.S. poultry industry. We describe 2 cases of H5N2 HPAIV infection in laying hens in Iowa. Following a sharp increase in mortality with minimal clinical signs, 15 dead birds, from 2 unrelated farms, were submitted to the Iowa State University Veterinary Diagnostic Laboratory. Common lesions included diffuse edema and multifocal hemorrhage of the comb, catarrhal exudate in the oropharynx, and multifocal tracheal hemorrhage. Less common lesions included epicardial petechiae, splenic hemorrhage, and pancreatic necrosis. Influenza A virus nucleoprotein was detected by immunohistochemistry in multiple cell types including ependymal cells, the choroid plexus, neurons, respiratory epithelium and macrophages in the lung, cardiac myocytes, endothelial cells, necrotic foci in the spleen, Kupffer cells in the liver, and necrotic acinar cells in the pancreas. Real-time polymerase chain reaction and sequencing confirmed H5N2 HPAIV with molecular characteristics similar to other contemporary U.S. H5N2 HPAIVs in both cases. © 2016 The Author(s).

  6. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    PubMed Central

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  7. Immune-related gene expression in response to H11N9 low pathogenic avian influenza virus infection in chicken and Pekin duck peripheral blood mononuclear cells.

    PubMed

    Adams, Sean C; Xing, Zheng; Li, Jinling; Cardona, Carol J

    2009-05-01

    The duck and chicken are important hosts of avian influenza virus (AIV) with distinctive responses to infection. Frequently, AIV infections in ducks are asymptomatic and long-lasting in contrast to the clinically apparent and transient infections observed in chickens. These differences may be due in part to the host response to AIV infection. Using real-time quantitative PCR, we examined the expression of immune-related genes in response to low pathogenic AIV H11N9 infection in peripheral blood mononuclear cells (PBMC) isolated from the blood of chickens and Pekin ducks. While chicken PBMC expressed IL-1beta and IL-6 at high levels similar to mammalian species, duck PBMC expression levels were minimal or unchanged. Similarly, duck IFN-beta expression was nearly unaffected, whereas chicken expression was highly upregulated. Chicken IFN-gamma was expressed to higher levels than duck IFN-gamma, while IFN-alpha was expressed similarly by both species. IL-2 was elevated early in infection in duck PBMC, but returned to baseline levels by the end of the experiment; in contrast, IL-2 was weakly induced in chicken PBMC at late time points. TLR-7 and MHC class I molecule expressions were conserved between species, whereas duck MHC class II expression was downregulated and chicken expression was unchanged. These results show distinct PBMC expression patterns of pro-inflammatory cytokines and IFNs between species. The differences in pro-inflammatory cytokine and IFN expression reflect the asymptomatic and lasting infection observed in ducks and the tendency towards clinical signs and rapid clearance seen in chickens. These results highlight important differences in the host response to AIV of two species thought to be critical in the genesis and maintenance of epidemic strains of AIV.

  8. In Vivo Monocyte Tropism of Pathogenic Feline Immunodeficiency Viruses

    PubMed Central

    Dow, Steven W.; Mathiason, Candace K.; Hoover, Edward A.

    1999-01-01

    Virus-infected monocytes rarely are detected in the bloodstreams of animals or people infected with immunodeficiency-inducing lentiviruses, yet tissue macrophages are thought to be a major reservoir of virus-infected cells in vivo. We have identified feline immunodeficiency virus (FIV) clinical isolates that are pathogenic in cats and readily transmitted vertically. We report here that five of these FIV isolates are highly monocytotropic in vivo. However, while FIV-infected monocytes were numerous in the blood of experimentally infected cats, viral antigen was not detectable in freshly isolated cells. Only after a short-term (at least 12-h) in vitro monocyte culture were FIV antigens detectable (by immunocytochemical analysis or enzyme-linked immunosorbent assay). In vitro experiments suggested that monocyte adherence provided an important trigger for virus antigen expression. In the blood of cats infected with a prototype monocytotropic isolate (FIV subtype B strain 2542), infected monocytes appeared within 2 weeks, correlating with high blood mononuclear-cell-associated viral titers and CD4 cell depletion. By contrast, infected monocytes could not be detected in the blood of cats infected with a less pathogenic FIV strain (FIV subtype A strain Petaluma). We concluded that some strains of FIV are monocytotropic in vivo. Moreover, this property may relate to virus virulence, vertical transmission, and infection of tissue macrophages. PMID:10400783

  9. Zika virus infection.

    PubMed

    Pougnet, Laurence; Thill, Chloé; Pougnet, Richard; Auvinet, Henri; Giacardi, Christophe; Drouillard, Isabelle

    2016-12-01

    A 21-year old woman from New-Caledonia had 40 ̊C fever with vomiting, arthralgia, myalgia, and measles-like rash. Etiological analyses showed primary infection with Zika virus. Because of severe clinical presentation, she was hospitalized in the intensive care unit of the Brest military Hospital. Zika virus is mainly transmitted by Aedes mosquitoes. If they settle in Metropolitan France, Zika virus might also spread there.

  10. A soluble envelope protein of endogenous retrovirus (FeLIX) present in serum of domestic cats mediates infection of a pathogenic variant of feline leukemia virus.

    PubMed

    Sakaguchi, Shoichi; Shojima, Takayuki; Fukui, Daisuke; Miyazawa, Takayuki

    2015-03-01

    T-lymphotropic feline leukemia virus (FeLV-T), a highly pathogenic variant of FeLV, induces severe immunosuppression in cats. FeLV-T is fusion defective because in its PHQ motif, a gammaretroviral consensus motif in the N terminus of an envelope protein, histidine is replaced with aspartate. Infection by FeLV-T requires FeLIX, a truncated envelope protein encoded by an endogenous FeLV, for transactivation of infectivity and Pit1 for binding FeLIX. Although Pit1 is present in most tissues in cats, the expression of FeLIX is limited to certain cells in lymphoid organs. Therefore, the host cell range of FeLV-T was thought to be restricted to cells expressing FeLIX. However, because FeLIX is a soluble factor and is expressed constitutively in lymphoid organs, we presumed it to be present in blood and evaluated its activities in sera of various mammalian species using a pseudotype assay. We demonstrated that cat serum has FeLIX activity at a functional level, suggesting that FeLIX is present in the blood and that FeLV-T may be able to infect cells expressing Pit1 regardless of the expression of FeLIX in vivo. In addition, FeLIX activities in sera were detected only in domestic cats and not in other feline species tested. To our knowledge, this is the first report to prove that a large amount of truncated envelope protein of endogenous retrovirus is circulating in the blood to facilitate the infection of a pathogenic exogenous retrovirus. © 2015 The Authors.

  11. Efficacy of single dose of a bivalent vaccine containing inactivated Newcastle disease virus and reassortant highly pathogenic avian influenza H5N1 virus against lethal HPAI and NDV infection in chickens.

    PubMed

    Lee, Dong-Hun; Park, Jae-Keun; Kwon, Jung-Hoon; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Jang, Yo-Han; Seong, Baik-Lin; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2013-01-01

    Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6:2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.

  12. [ZIKA--VIRUS INFECTION].

    PubMed

    Velev, V

    2016-01-01

    This review summarizes the knowledge of the scientific community for Zika-virus infection. It became popular because of severe congenital damage causes of CNS in newborns whose mothers are infected during pregnancy, as well as the risk of pandemic distribution. Discusses the peculiarities of the biology and ecology of vectors--blood-sucking mosquitoes Aedes; stages in the spread of infection and practical problems which caused during pregnancy. Attention is paid to the recommendations that allow leading national and international medical organizations to deal with the threat Zika-virus infection.

  13. Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems

    PubMed Central

    Feare, Chris J.; Renaud, François; Thomas, Frédéric; Gauthier-Clerc, Michel

    2010-01-01

    Understanding of ecologic factors favoring emergence and maintenance of highly pathogenic avian influenza (HPAI) viruses is limited. Although low pathogenic avian influenza viruses persist and evolve in wild populations, HPAI viruses evolve in domestic birds and cause economically serious epizootics that only occasionally infect wild populations. We propose that evolutionary ecology considerations can explain this apparent paradox. Host structure and transmission possibilities differ considerably between wild and domestic birds and are likely to be major determinants of virulence. Because viral fitness is highly dependent on host survival and dispersal in nature, virulent forms are unlikely to persist in wild populations if they kill hosts quickly or affect predation risk or migratory performance. Interhost transmission in water has evolved in low pathogenic influenza viruses in wild waterfowl populations. However, oropharyngeal shedding and transmission by aerosols appear more efficient for HPAI viruses among domestic birds. PMID:20587174

  14. Kinetics of Lymphocyte Proliferation during Primary Immune Response in Macaques Infected with Pathogenic Simian Immunodeficiency Virus SIVmac251: Preliminary Report of the Effect of Early Antiviral Therapy

    PubMed Central

    Benlhassan-Chahour, Kadija; Penit, Claude; Dioszeghy, Vincent; Vasseur, Florence; Janvier, Geneviève; Rivière, Yves; Dereuddre-Bosquet, Nathalie; Dormont, Dominique; Le Grand, Roger; Vaslin, Bruno

    2003-01-01

    The aim of this study was to evaluate the kinetics of lymphocyte proliferation during primary infection of macaques with pathogenic simian immunodeficiency virus (SIV) and to study the impact of short-term postexposure highly active antiretroviral therapy (HAART) prophylaxis. Twelve macaques were infected by intravenous route with SIVmac251 and given treatment for 28 days starting 4 h postexposure. Group 1 received a placebo, and groups 2 and 3 received combinations of zidovudine (AZT), lamivudine (3TC), and indinavir. Macaques in group 2 received AZT (4.5 mg/kg of body weight), 3TC (2.5 mg/kg), and indinavir (20 mg/kg) twice per day by the oral route whereas macaques in group 3 were given AZT (4.5 mg/kg) and 3TC (2.5 mg/kg) subcutaneously twice per day, to improve the pharmacokinetic action of these drugs, and a higher dose of indinavir (60 mg/kg). The kinetics of lymphocyte proliferation were analyzed by monitoring 5-bromo-2′-deoxyuridine (BrdU) uptake ex vivo and by fluorescence-activated cell sorting analysis. HAART did not protect against SIV infection but did strongly impact on virus loads: viremia was delayed and lowered during antiviral therapy in group 2, with better control after treatment was stopped, and in group 3, viremia was maintained at lower levels during treatment, with virus even undetectable in the blood of some macaques, but there was no evidence of improved control of the virus after treatment. We provide direct evidence that dividing NK cells are detected earlier than dividing T cells in the blood (mostly in CD45RA− T cells), mirroring plasma viremia. Dividing CD8+ T cells were detected earlier than dividing CD4+ T cells, and the highest percentages of proliferating T cells coincided with the first evidence of partial control of peak viremia and with an increase in the percentage of circulating gamma interferon-positive CD8+ T cells. The level of cell proliferation in the blood during SIV primary infection was clearly associated with

  15. Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants.

    PubMed

    Kathiria, Palak; Sidler, Corinne; Golubov, Andrey; Kalischuk, Melanie; Kawchuk, Lawrence M; Kovalchuk, Igor

    2010-08-01

    Our previous experiments showed that infection of tobacco (Nicotiana tabacum) plants with Tobacco mosaic virus (TMV) leads to an increase in homologous recombination frequency (HRF). The progeny of infected plants also had an increased rate of rearrangements in resistance gene-like loci. Here, we report that tobacco plants infected with TMV exhibited an increase in HRF in two consecutive generations. Analysis of global genome methylation showed the hypermethylated genome in both generations of plants, whereas analysis of methylation via 5-methyl cytosine antibodies demonstrated both hypomethylation and hypermethylation. Analysis of the response of the progeny of infected plants to TMV, Pseudomonas syringae, or Phytophthora nicotianae revealed a significant delay in symptom development. Infection of these plants with TMV or P. syringae showed higher levels of induction of PATHOGENESIS-RELATED GENE1 gene expression and higher levels of callose deposition. Our experiments suggest that viral infection triggers specific changes in progeny that promote higher levels of HRF at the transgene and higher resistance to stress as compared with the progeny of unstressed plants. However, data reported in these studies do not establish evidence of a link between recombination frequency and stress resistance.

  16. Human pathogenic hantaviruses and prevention of infection

    PubMed Central

    Schönrich, Günther; Klempa, Boris

    2011-01-01

    Hantaviruses are emerging viruses which are hosted by small mammals. When transmitted to humans, they can cause two clinical syndromes, hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. The review compiles the current list of hantaviruses which are thought to be pathogenic in humans on the basis of molecular or at least serological evidence. Whereas induction of a neutralizing humoral immune response is considered to be protective against infection, the dual role of cellular immunity (protection versus immunopathogenicity) is discussed. For immunization, inactivated virus vaccines are licensed in certain Asian countries. Moreover, several classical and molecular vaccine approaches are in pre-clinical stages of development. The development of hantavirus vaccines is hampered by the lack of adequate animal models of hantavirus-associated disease. In addition to active immunization strategies, the review summarizes other ways of infection prevention, as passive immunization, chemoprophylaxis and exposition prophylaxis. PMID:21508676

  17. Estimating the Per-Contact Probability of Infection by Highly Pathogenic Avian Influenza (H7N7) Virus during the 2003 Epidemic in The Netherlands

    PubMed Central

    Ssematimba, Amos; Elbers, Armin R. W.; Hagenaars, Thomas J.; de Jong, Mart C. M.

    2012-01-01

    Estimates of the per-contact probability of transmission between farms of Highly Pathogenic Avian Influenza virus of H7N7 subtype during the 2003 epidemic in the Netherlands are important for the design of better control and biosecurity strategies. We used standardized data collected during the epidemic and a model to extract data for untraced contacts based on the daily number of infectious farms within a given distance of a susceptible farm. With these data, we used a maximum likelihood estimation approach to estimate the transmission probabilities by the individual contact types, both traced and untraced. The estimated conditional probabilities, conditional on the contact originating from an infectious farm, of virus transmission were: 0.000057 per infectious farm within 1 km per day, 0.000413 per infectious farm between 1 and 3 km per day, 0.0000895 per infectious farm between 3 and 10 km per day, 0.0011 per crisis organisation contact, 0.0414 per feed delivery contact, 0.308 per egg transport contact, 0.133 per other-professional contact and, 0.246 per rendering contact. We validate these outcomes against literature data on virus genetic sequences for outbreak farms. These estimates can be used to inform further studies on the role that improved biosecurity between contacts and/or contact frequency reduction can play in eliminating between-farm spread of the virus during future epidemics. The findings also highlight the need to; 1) understand the routes underlying the infections without traced contacts and, 2) to review whether the contact-tracing protocol is exhaustive in relation to all the farm’s day-to-day activities and practices. PMID:22808285

  18. Using mean infectious dose of wild duck-and poultry-origin high and low pathogenicity avian influenza viruses as one measure of infectivity and adaptation to poultry

    USDA-ARS?s Scientific Manuscript database

    The mean infectious doses of selected avian influenza virus (AIV) isolates, determined in domestic poultry under experimental conditions, were shown to be both host and virus dependent and could be considered one measure of the infectivity and adaptation to a specific host. As such, the mean infect...

  19. Analysis of the swine tracheobronchial lymphnode transcriptomic response to infection with a Chinese highly pathogenic strain of porcine reproductive and respiratory syndrome virus

    USDA-ARS?s Scientific Manuscript database

    Background: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide. Emergence in 2006 of a novel highly pathogenic PRRSV (HP-PRRSV) isolate in China necessitated a comparative investigation into the host transcriptome response in tracheobronchial lymph nod...

  20. Analysis of the swine tracheobronchial lymphnode transcriptomic response to infection with a Chinese highly pathogenic strain of porcine reproductive and respiratory syndrome virus

    USDA-ARS?s Scientific Manuscript database

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide. Emergence in 2006 of a novel highly pathogenic PRRSV (HP-PRRSV) isolate in China necessitated a comparative investigation into the host transcriptome response in tracheobronchial lymph nodes (TBLN) 14...

  1. Swine tracheobronchial lymph node mRNA responses in swine infected with a highly pathogenic strain of porcine reproductive and respiratory syndrome virus

    USDA-ARS?s Scientific Manuscript database

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide. Emergence in 2006 of a novel highly pathogenic PRRSV (HP-PRRSV) isolate in China necessitated a comparative investigation into the host transcriptome response in tracheobronchial lymph nodes (TBLN) 14...

  2. Detecting the emergence of novel, zoonotic viruses pathogenic to humans

    PubMed Central

    2015-01-01

    RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2–3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations. PMID:25416679

  3. Detecting the emergence of novel, zoonotic viruses pathogenic to humans.

    PubMed

    Rosenberg, Ronald

    2015-03-01

    RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2-3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations.

  4. Viruses - from pathogens to vaccine carriers.

    PubMed

    Small, Juliana C; Ertl, Hildegund C J

    2011-10-01

    Vaccination is mankind's greatest public health success story. By now vaccines to many of the viruses that once caused fatal childhood diseases are routinely used throughout the world. Traditional methods of vaccine development through inactivation or attenuation of viruses have failed for some of the most deadly human pathogens, necessitating new approaches. Genetic modification of viruses not only allows for their attenuation but also for incorporation of sequences from other viruses, turning one pathogen into a vaccine carrier for another. Recombinant viruses have pros and cons as vaccine carriers, as discussed below using vectors based on adenovirus, herpesvirus, flavivirus, and rhabdovirus as examples.

  5. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4 Virus: Equivocal Pathogenicity and Implications for Surveillance Following Natural Infection in Breeder Ducks in the United Kingdom.

    PubMed

    Núñez, A; Brookes, S M; Reid, S M; Garcia-Rueda, C; Hicks, D J; Seekings, J M; Spencer, Y I; Brown, I H

    2016-02-01

    Since early 2014, several outbreaks involving novel reassortant highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been detected in poultry and wild bird species in Asia, Europe and North America. These viruses have been detected in apparently healthy and dead wild migratory birds, as well as in domestic chickens, turkeys, geese and ducks. In this study, we describe the pathology of an outbreak of H5N8 HPAIV in breeder ducks in the UK. A holding with approximately 6000 breeder ducks, aged approximately 60 weeks, showed a gradual reduction in egg production and increased mortality over a 7-day period. Post-mortem examination revealed frequent fibrinous peritonitis, with severely haemorrhagic ovarian follicles and occasional splenic and pancreatic necrosis and high incidence of mycotic granulomas in the air sacs and lung. Low-to-moderate levels of HPAI H5N8 virus were detected mainly in respiratory and digestive tract, with minor involvement of other organs. Although histopathological examination confirmed the gross pathology findings, intralesional viral antigen detection by immunohistochemistry was not observed. Immunolabelled cells were rarely only present in inflamed air sacs and serosa, usually superficial to granulomatous inflammation. Abundant bacterial microcolonies were observed in haemorrhagic ovaries and oviduct. The limited viral tissue distribution and presence of inter-current fungal and bacterial infections suggest a minor role for HPAIV H5N8 in clinical disease in layer ducks. © 2015 Crown copyright.

  6. Identification of risk factors associated with highly pathogenic avian influenza H5N1 virus infection in poultry farms, in Nigeria during the epidemic of 2006-2007.

    PubMed

    Fasina, Folorunso O; Rivas, Ariel L; Bisschop, Shahn P R; Stegeman, Arjan J; Hernandez, Jorge A

    2011-02-01

    We conducted a matched case-control study to evaluate risk factors for infection with highly pathogenic avian influenza (HPAI) H5N1 virus in poultry farms during the epidemic of 2006-2007 in Nigeria. Epidemiologic data were collected through the use of a questionnaire from 32 case farms and 83 control farms. The frequency of investigated exposure factors was compared between case and control farms by using conditional logistic regression analysis. In the multivariable analysis, the variables for (i) receiving visitors on farm premises (odds ratio [OR]=8.32; 95% confidence interval [CI]=1.87, 36.97; P<0.01), (ii) purchased live poultry/products (OR=11.91; 95% CI=3.11-45.59; P<0.01), and (iii) farm workers live outside the premises (OR=8.98; 95% CI=1.97, 40.77; P<0.01) were identified as risk factors for HPAI in poultry farms. Improving farm hygiene and biosecurity should help reduce the risk for influenza (H5N1) infection in poultry farms in Nigeria. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. [West Nile virus infection].

    PubMed

    Pérez Ruiz, Mercedes; Gámez, Sara Sanbonmatsu; Clavero, Miguel Angel Jiménez

    2011-12-01

    West Nile virus (WNV) is an arbovirus usually transmitted by mosquitoes. The main reservoirs are birds, although the virus may infect several vertebrate species, such as horses and humans. Up to 80% of human infections are asymptomatic. The most frequent clinical presentation is febrile illness, and neuroinvasive disease can occur in less than 1% of cases. Spain is considered a high-risk area for the emergence of WNV due to its climate and the passage of migratory birds from Africa (where the virus is endemic). These birds nest surrounding wetlands where populations of possible vectors for the virus are abundant. Diagnosis of human neurological infections can be made by detection of IgM in serum and/or cerebrospinal fluid samples, demonstration of a four-fold increase in IgG antibodies between acute-phase and convalescent-phase serum samples, or by detection of viral genome by reverse transcription-polymerase chain reaction (especially useful in transplant recipients). Since WNV is a biosafety level 3 agent, techniques that involve cell culture are restricted to laboratories with this level of biosafety, such as reference laboratories. The National Program for the Surveillance of WNV Encephalitis allows the detection of virus circulation among birds and vectors in areas especially favorable for the virus, such as wetlands, and provides information for evaluation of the risk of disease in horses and humans.

  8. Eight-year observation and comparative study of specific pathogen-free cats experimentally infected with feline immunodeficiency virus (FIV) subtypes A and B: terminal acquired immunodeficiency syndrome in a cat infected with FIV petaluma strain.

    PubMed

    Kohmoto, M; Uetsuka, K; Ikeda, Y; Inoshima, Y; Shimojima, M; Sato, E; Inada, G; Toyosaki, T; Miyazawa, T; Doi, K; Mikami, T

    1998-03-01

    Three specific pathogen-free cats experimentally infected with feline immunodeficiency virus (FIV) strains Petaluma, TM1 and TM2, respectively were observed for over 8 years. Without showing any significant clinical signs of immunodeficiency syndrome (AIDS) for 8 years and 4 months of asymptomatic phase, the Petaluma-infected cat exhibited severe stomatitis/gingivitis, anorexia, emaciation, hematological and immunological disorders such as severe anemia, lymphopenia, thrombocytopenia, and decrease of CD4/CD8 ratio to 0.075, and finally died with hemoperitoneum at 8 years and 8 months post-infection. Histopathological studies revealed that the cat had systemic lymphoid atrophy and bone marrow disorders indicating acute myelocytic leukemia (aleukemic type). Plasma viral titer of the cat at AIDS phase was considerably high and anti-FIV antibody titer was slightly low as compared with the other FIV-infected cats. In addition, immunoblotting analysis using serially collected serum/plasma samples of these cats revealed that antibodies against FIV proteins were induced in all the infected cats, however in the Petaluma-infected cat anti-Gag antibodies disappeared during the asymptomatic period. These results suggested that plasma viral load and anti-FIV Gag antibody response correlated with disease progression, and supported FIV-infected cats as a suitable animal model of human AIDS.

  9. Evolution and Emergence of Pathogenic Viruses: Past, Present, and Future.

    PubMed

    Parvez, Mohammad K; Parveen, Shama

    2017-01-01

    Incidences of emerging/re-emerging deadly viral infections have significantly affected human health despite extraordinary progress in the area of biomedical knowledge. The best examples are the recurring outbreaks of dengue and chikungunya fever in tropical and sub-tropical regions, the recent epidemic of Zika in the Americas and the Caribbean, and the SARS, MERS, and influenza A outbreaks across the globe. The established natural reservoirs of human viruses are mainly farm animals, and, to a lesser extent, wild animals and arthropods. The intricate "host-pathogen-environment" relationship remains the key to understanding the emergence/re-emergence of pathogenic viruses. High population density, rampant constructions, poor sanitation, changing climate, and the introduction of anthropophilic vectors create selective pressure on host-pathogen reservoirs. Nevertheless, the knowledge and understanding of such zoonoses and pathogen diversity in their known non-human reservoirs are very limited. Prevention of arboviral infections using vector control methods has not been very successful. Currently, new approaches to protect against food-borne infections, such as consuming only properly cooked meats and animal products, are the most effective control measures. Though significant progress in controlling human immunodeficiency virus and hepatitis viruses has been achieved, the unpredictable nature of evolving viruses and the rare occasions of outbreaks severely hamper control and preventive modalities. © 2017 S. Karger AG, Basel.

  10. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam

    USDA-ARS?s Scientific Manuscript database

    Wild ducks are reservoirs of avian influenza viruses in nature, and usually don’t show signs of disease. However, some Asian lineage H5N1 highly pathogenic avian influenza (HPAI) viruses can cause disease and death in both wild and domestic ducks. The objective of this study was to compare the cli...

  11. Pathogenic organisms in hip joint infections

    PubMed Central

    Geipel, Udo

    2009-01-01

    Infections of the hip joint are usually of bacterial etiology. Only rarely, an infectious arthritis is caused in this localization by viruses or fungi. Native joint infections of the hip are less common than infections after implantation of prosthetic devices. Difficulties in prosthetic joint infections are, (I) a higher age of patients, and, thus an associated presence of other medical risk factors, (II) often long courses of treatment regimes depending on the bacterium and its antibiotic resistance, (III) an increased mortality, and (IV) a high economic burden for removal and reimplantation of an infected prosthetic device. The pathogenic mechanisms responsible for articular infections are well studied only for some bacteria, e.g. Staphylococcus aureus, while others are only partially understood. Important known bacterial properties and microbiological characteristics of infection are the bacterial adhesion on the native joint or prosthetic material, the bacterial biofilm formation, the development of small colony variants (SCV) as sessile bacterial types and the increasing resistance to antibiotics. PMID:19834588

  12. Viruses, Other Pathogenic Microorganisms and Esophageal Cancer

    PubMed Central

    Xu, Wenjia; Liu, Zhongshun; Bao, Qunchao; Qian, Zhikang

    2015-01-01

    Background Esophageal cancer (EC) is the eighth most prevalent malignant tumor and the sixth leading cause of cancer mortality throughout the world. Despite the technical developments in diagnosis and treatment, the 5-year survival rate is still low. The etiology of EC remains poorly understood; multiple risk factors may be involved and account for the great variation in EC incidence in different geographic regions. Summary Infection with carcinogenetic pathogens has been proposed as a risk factor for EC. This review explores the recent studies on the association of human papillomavirus (HPV), Epstein-Barr virus (EBV), Helicobacter pylori and esophageal bacterial biota with EC. Key Message Among the above-mentioned pathogens, HPV most likely contributes to esophageal squamous cell carcinoma (ESCC) in high-risk populations. New techniques are being applied to studies on the role of infection in EC, which will inevitably bring novel ideas to the field in the near future. Practical Implications Multiple meta-analyses support the finding of a higher HPV detection rate in regions associated with high risk for ESCC compared to low-risk areas. A potential role of HPV in the rise of esophageal adenocarcinoma (EAC) was proposed recently. However, further studies are required before a firm conclusion can be drawn. Less work has been done in studying the association between EBV and ESCC, and the results are quite controversial. H. pylori infection is found to be inversely related to EC, which is probably due to the reduced incidence of gastroesophageal reflux disease. Analysis of the esophageal bacterial biota revealed distinct clusters of bacteria in normal and diseased esophagi. A type II microbiome rich in Gram-negative bacteria potentially contributes to EAC by inducing chronic inflammation. Novel findings from such studies as these may benefit public health by justifying anti-infection measures to prevent EC. PMID:26674173

  13. The pathogenicity of H7 subtype avian influenza viruses in chickens, turkeys and ducks

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) viruses infect numerous avian species, and low pathogenicity (LP) AI viruses of the H7 subtype are typically reported to produce mild or subclinical infections in both wild aquatic birds and domestic poultry. However relatively little work has been done to compare LPAI viruses ...

  14. Pathogenicity of H5N1 HPAI viruses from Vietnam in chickens and ducks

    USDA-ARS?s Scientific Manuscript database

    Ducks and other wild aquatic birds are the natural reservoir of influenza type A viruses, and influenza viruses in these species normally is an asymptomatic infection. Even the viruses that are highly pathogenic for chickens typically can infect but do not cause disease in domestic ducks. However,...

  15. New evidence that deformed wing virus and black queen cell virus are multi-host pathogens.

    PubMed

    Zhang, X; He, S Y; Evans, J D; Pettis, J S; Yin, G F; Chen, Y P

    2012-01-01

    The host-range breadth of pathogens can have important consequences for pathogens' long term evolution and virulence, and play critical roles in the emergence and spread of the new diseases. Black queen cell virus (BQCV) and Deformed wing virus (DWV) are the two most common and prevalent viruses in European honey bees, Apis mellifera. Here we provide the evidence that BQCV and DWV infect wild species of honey bees, Apis florea and Apis dorsata. Phylogenetic analyses suggest that these viruses might have moved from A. mellifera to wild bee species and that genetic relatedness as well as the geographical proximity of host species likely play an important role in host range of the viruses. The information obtained from this present study can have important implication for understanding the population structure of bee virus as well as host-virus interactions.

  16. Attenuation of pathogenic immune responses during infection with human and simian immunodeficiency virus (HIV/SIV) by the tetracycline derivative minocycline.

    PubMed

    Drewes, Julia L; Szeto, Gregory L; Engle, Elizabeth L; Liao, Zhaohao; Shearer, Gene M; Zink, M Christine; Graham, David R

    2014-01-01

    HIV immune pathogenesis is postulated to involve two major mechanisms: 1) chronic innate immune responses that drive T cell activation and apoptosis and 2) induction of immune regulators that suppress T cell function and proliferation. Both arms are elevated chronically in lymphoid tissues of non-natural hosts, which ultimately develop AIDS. However, these mechanisms are not elevated chronically in natural hosts of SIV infection that avert immune pathogenesis despite similarly high viral loads. In this study we investigated whether minocycline could modulate these pathogenic antiviral responses in non-natural hosts of HIV and SIV. We found that minocycline attenuated in vitro induction of type I interferon (IFN) and the IFN-stimulated genes indoleamine 2,3-dioxygenase (IDO1) and TNF-related apoptosis inducing ligand (TRAIL) in human plasmacytoid dendritic cells and PBMCs exposed to aldrithiol-2 inactivated HIV or infectious influenza virus. Activation-induced TRAIL and expression of cytotoxic T-lymphocyte antigen 4 (CTLA-4) in isolated CD4+ T cells were also reduced by minocycline. Translation of these in vitro findings to in vivo effects, however, were mixed as minocycline significantly reduced markers of activation and activation-induced cell death (CD25, Fas, caspase-3) but did not affect expression of IFNβ or the IFN-stimulated genes IDO1, FasL, or Mx in the spleens of chronically SIV-infected pigtailed macaques. TRAIL expression, reflecting the mixed effects of minocycline on activation and type I IFN stimuli, was reduced by half, but this change was not significant. These results show that minocycline administered after infection may protect against aspects of activation-induced cell death during HIV/SIV immune disease, but that in vitro effects of minocycline on type I IFN responses are not recapitulated in a rapid progressor model in vivo.

  17. Microarray analysis following infection with highly pathogenic avian influenza H5N1 virus in naive and vaccinated SPF chickens

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) is a viral disease of poultry that remains a constant threat to commercial poultry throughout the world. Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) H5N1 have originated in Southeast Asia and spread to several European, Middle Eastern, and A...

  18. Early responses of chicken lungs and spleens to infection with highly pathogenic avian influenza virus using microarray analysis

    USDA-ARS?s Scientific Manuscript database

    Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) have originated in Asia and spread through several Middle Eastern, African and European countries, resulting in one of the most serious animal disease incident in recent history. These outbreaks were characterized by t...

  19. Varicella zoster virus infection

    PubMed Central

    Gershon, Anne A.; Breuer, Judith; Cohen, Jeffrey I.; Cohrs, Randall J.; Gershon, Michael D.; Gilden, Don; Grose, Charles; Hambleton, Sophie; Kennedy, Peter G. E.; Oxman, Michael N.; Seward, Jane F.; Yamanishi, Koichi

    2017-01-01

    Infection with varicella zoster virus (VZV) causes varicella (chickenpox), which can be severe in immunocompromised individuals, infants and adults. Primary infection is followed by latency in ganglionic neurons. During this period, no virus particles are produced and no obvious neuronal damage occurs. Reactivation of the virus leads to virus replication, which causes zoster (shingles) in tissues innervated by the involved neurons, inflammation and cell death — a process that can lead to persistent radicular pain (postherpetic neuralgia). The pathogenesis of postherpetic neuralgia is unknown and it is difficult to treat. Furthermore, other zoster complications can develop, including myelitis, cranial nerve palsies, meningitis, stroke (vasculopathy), retinitis, and gastroenterological infections such as ulcers, pancreatitis and hepatitis. VZV is the only human herpesvirus for which highly effective vaccines are available. After varicella or vaccination, both wild-type and vaccine-type VZV establish latency, and long-term immunity to varicella develops. However, immunity does not protect against reactivation. Thus, two vaccines are used: one to prevent varicella and one to prevent zoster. In this Primer we discuss the pathogenesis, diagnosis, treatment, and prevention of VZV infections, with an emphasis on the molecular events that regulate these diseases. For an illustrated summary of this Primer, visit: http://go.nature.com/14×VI1 PMID:27188665

  20. Varicella zoster virus infection.

    PubMed

    Gershon, Anne A; Breuer, Judith; Cohen, Jeffrey I; Cohrs, Randall J; Gershon, Michael D; Gilden, Don; Grose, Charles; Hambleton, Sophie; Kennedy, Peter G E; Oxman, Michael N; Seward, Jane F; Yamanishi, Koichi

    2015-07-02

    Infection with varicella zoster virus (VZV) causes varicella (chickenpox), which can be severe in immunocompromised individuals, infants and adults. Primary infection is followed by latency in ganglionic neurons. During this period, no virus particles are produced and no obvious neuronal damage occurs. Reactivation of the virus leads to virus replication, which causes zoster (shingles) in tissues innervated by the involved neurons, inflammation and cell death - a process that can lead to persistent radicular pain (postherpetic neuralgia). The pathogenesis of postherpetic neuralgia is unknown and it is difficult to treat. Furthermore, other zoster complications can develop, including myelitis, cranial nerve palsies, meningitis, stroke (vasculopathy), retinitis, and gastroenterological infections such as ulcers, pancreatitis and hepatitis. VZV is the only human herpesvirus for which highly effective vaccines are available. After varicella or vaccination, both wild-type and vaccine-type VZV establish latency, and long-term immunity to varicella develops. However, immunity does not protect against reactivation. Thus, two vaccines are used: one to prevent varicella and one to prevent zoster. In this Primer we discuss the pathogenesis, diagnosis, treatment, and prevention of VZV infections, with an emphasis on the molecular events that regulate these diseases. For an illustrated summary of this Primer, visit: http://go.nature.com/14xVI1.

  1. Molecular Basis of Latency in Pathogenic Human Viruses

    NASA Astrophysics Data System (ADS)

    Garcia-Blanco, Mariano A.; Cullen, Bryan R.

    1991-11-01

    Several human viruses are able to latently infect specific target cell populations in vivo. Analysis of the replication cycles of herpes simplex virus, Epstein-Barr virus, and human immunodeficiency virus suggests that the latent infections established by these human pathogens primarily result from a lack of host factors critical for the expression of viral early gene products. The subsequent activation of specific cellular transcription factors in response to extracellular stimuli can induce the expression of these viral regulatory proteins and lead to a burst of lytic viral replication. Latency in these eukaryotic viruses therefore contrasts with latency in bacteriophage, which is maintained primarily by the expression of virally encoded repressors of lytic replication.

  2. Virus Infections of Honeybees Apis Mellifera

    PubMed Central

    Tantillo, Giuseppina; Bottaro, Marilisa; Di Pinto, Angela; Martella, Vito; Di Pinto, Pietro

    2015-01-01

    The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp.) and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and well-being of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV) and Kakugo virus (KV); Sacbrood virus (SBV); Black Queen cell virus (BQCV); Acute bee paralysis virus (ABPV); Kashmir bee virus (KBV); Israeli Acute Paralysis Virus (IAPV); Chronic bee paralysis virus (CBPV). The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research. PMID:27800411

  3. Giant viruses infecting algae.

    PubMed

    Van Etten, J L; Meints, R H

    1999-01-01

    Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.

  4. Low-pathogenic avian influenza viruses in wild house mice.

    PubMed

    Shriner, Susan A; VanDalen, Kaci K; Mooers, Nicole L; Ellis, Jeremy W; Sullivan, Heather J; Root, J Jeffrey; Pelzel, Angela M; Franklin, Alan B

    2012-01-01

    Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID(50) equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 10(3.89) (H3N6) to 10(5.06) (H4N6) for the wild bird viruses and 10(2.08) (H6N2) to 10(2.85) (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics.

  5. Low-Pathogenic Avian Influenza Viruses in Wild House Mice

    PubMed Central

    Shriner, Susan A.; VanDalen, Kaci K.; Mooers, Nicole L.; Ellis, Jeremy W.; Sullivan, Heather J.; Root, J. Jeffrey; Pelzel, Angela M.; Franklin, Alan B.

    2012-01-01

    Background Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. Methodology/Principal Findings We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID50 equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 103.89 (H3N6) to 105.06 (H4N6) for the wild bird viruses and 102.08 (H6N2) to 102.85 (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Conclusions/Significance Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics. PMID:22720076

  6. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R; Suarez, David L; Stallknecht, David E; Swayne, David E

    2016-11-01

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses.

  7. [Zika virus infection during pregnancy].

    PubMed

    Picone, O; Vauloup-Fellous, C; D'Ortenzio, E; Huissoud, C; Carles, G; Benachi, A; Faye, A; Luton, D; Paty, M-C; Ayoubi, J-M; Yazdanpanah, Y; Mandelbrot, L; Matheron, S

    2016-05-01

    A Zika virus epidemic is currently ongoing in the Americas. This virus is linked to congenital infections with potential severe neurodevelopmental dysfunction. However, incidence of fetal infection and whether this virus is responsible of other fetal complications are still unknown. National and international public health authorities recommend caution and several prevention measures. Declaration of Zika virus infection is now mandatory in France. Given the available knowledge on Zika virus, we suggest here a review of the current recommendations for management of pregnancy in case of suspicious or infection by Zika virus in a pregnant woman.

  8. Highly Pathogenic Avian Influenza Virus A/H5N1 Infection in Vaccinated Meat Duck Flocks in the Mekong Delta of Vietnam.

    PubMed

    Cuong, N V; Truc, V N T; Nhung, N T; Thanh, T T; Chieu, T T B; Hieu, T Q; Men, N T; Mai, H H; Chi, H T; Boni, M F; van Doorn, H R; Thwaites, G E; Carrique-Mas, J J; Hoa, N T

    2016-04-01

    We investigated episodes of suspected highly pathogenic avian influenza (HPAI)-like illness among 12 meat duck flocks in two districts in Tien Giang province (Mekong Delta, Vietnam) in November 2013. In total, duck samples from 8 of 12 farms tested positive for HPAI virus subtype A/haemagglutinin 5 and neuraminidase 1 (H5N1) by real-time RT-PCR. Sequencing results confirmed clade of 2.3.2.1.c as the cause of the outbreaks. Most (7/8) laboratory-confirmed positive flocks had been vaccinated with inactivated HPAI H5N1 clade 2.3.4 vaccines <6 days prior to onset of clinical signs. A review of vaccination data in relation to estimated production in the area suggested that vaccination efforts were biased towards larger flocks and that vaccination coverage was low [21.2% ducks vaccinated with two shots (range by district 7.4-34.9%)]. The low-coverage data, the experimental evidence of lack of cross-protection conferred by the currently used vaccines based on clade 2.3.4 together with the short lifespan of meat duck flocks (60-70 days), suggest that vaccination is not likely to be effective as a tool for control of H5N1 infection in meat duck flocks in the area. © 2016 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  9. Hepatitis E Virus Infection

    PubMed Central

    Dalton, Harry R.; Abravanel, Florence; Izopet, Jacques

    2014-01-01

    SUMMARY Hepatitis E virus (HEV) infection is a worldwide disease. An improved understanding of the natural history of HEV infection has been achieved within the last decade. Several reservoirs and transmission modes have been identified. Hepatitis E is an underdiagnosed disease, in part due to the use of serological assays with low sensitivity. However, diagnostic tools, including nucleic acid-based tests, have been improved. The epidemiology and clinical features of hepatitis E differ between developing and developed countries. HEV infection is usually an acute self-limiting disease, but in developed countries it causes chronic infection with rapidly progressive cirrhosis in organ transplant recipients, patients with hematological malignancy requiring chemotherapy, and individuals with HIV. HEV also causes extrahepatic manifestations, including a number of neurological syndromes and renal injury. Acute infection usually requires no treatment, but chronic infection should be treated by reducing immunosuppression in transplant patients and/or the use of antiviral therapy. In this comprehensive review, we summarize the current knowledge about the virus itself, as well as the epidemiology, diagnostics, natural history, and management of HEV infection in developing and developed countries. PMID:24396139

  10. Comparison of pathogenicities of H7 avian influenza viruses via intranasal and conjunctival inoculation in cynomolgus macaques.

    PubMed

    Shichinohe, Shintaro; Itoh, Yasushi; Nakayama, Misako; Ozaki, Hiroichi; Soda, Kosuke; Ishigaki, Hirohito; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2016-06-01

    The outbreak of H7N9 low pathogenic avian influenza viruses in China has attracted attention to H7 influenza virus infection in humans. Since we have shown that the pathogenicity of H1N1 and H5N1 influenza viruses in macaques was almost the same as that in humans, we compared the pathogenicities of H7 avian influenza viruses in cynomolgus macaques via intranasal and conjunctival inoculation, which mimics natural infection in humans. H7N9 virus, as well as H7N7 highly pathogenic avian influenza virus, showed more efficient replication and higher pathogenicity in macaques than did H7N1 and H7N3 highly pathogenic avian influenza viruses. These results are different from pathogenicity in chickens as reported previously. Therefore, our results obtained in macaques help to estimate the pathogenicity of H7 avian influenza viruses in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Detection of Pathogenic Viruses in Sewage Provided Early Warnings of Hepatitis A Virus and Norovirus Outbreaks

    PubMed Central

    Hellmér, Maria; Paxéus, Nicklas; Magnius, Lars; Enache, Lucica; Arnholm, Birgitta; Johansson, Annette; Bergström, Tomas

    2014-01-01

    Most persons infected with enterically transmitted viruses shed large amounts of virus in feces for days or weeks, both before and after onset of symptoms. Therefore, viruses causing gastroenteritis may be detected in wastewater, even if only a few persons are infected. In this study, the presence of eight pathogenic viruses (norovirus, astrovirus, rotavirus, adenovirus, Aichi virus, parechovirus, hepatitis A virus [HAV], and hepatitis E virus) was investigated in sewage to explore whether their identification could be used as an early warning of outbreaks. Samples of the untreated sewage were collected in proportion to flow at Ryaverket, Gothenburg, Sweden. Daily samples collected during every second week between January and May 2013 were pooled and analyzed for detection of viruses by concentration through adsorption to milk proteins and PCR. The largest amount of noroviruses was detected in sewage 2 to 3 weeks before most patients were diagnosed with this infection in Gothenburg. The other viruses were detected at lower levels. HAV was detected between weeks 5 and 13, and partial sequencing of the structural VP1protein identified three different strains. Two strains were involved in an ongoing outbreak in Scandinavia and were also identified in samples from patients with acute hepatitis A in Gothenburg during spring of 2013. The third strain was unique and was not detected in any patient sample. The method used may thus be a tool to detect incipient outbreaks of these viruses and provide early warning before the causative pathogens have been recognized in health care. PMID:25172863

  12. A computationally optimized broadly reactive H5 hemagglutinin vaccine provides protection against homologous and heterologous H5N1 highly pathogenic avian influenza virus infection in chickens

    USDA-ARS?s Scientific Manuscript database

    Since its emergence in 1996 in China, H5N1 highly pathogenic avian influenza (HPAI) virus has continuously evolved into different genetic clades that have created challenges to maintaining antigenically relevant H5N1 vaccine seeds. Therefore, a universal (multi-hemagglutinin [HA] subtype) or more c...

  13. Different routes of inoculation impact infectivity and pathogenesis of H5N1 high pathogenicity avian influenza virus infection in chickens and domestic ducks

    USDA-ARS?s Scientific Manuscript database

    The H5N1 type A influenza viruses classified as Qinghai-like virus (clade 2.2) are a unique lineage of type A influenza viruses with the capacity to produce significant disease and mortality in gallinaceous birds and water fowl including ducks. The objective of this study was to determine the suscep...

  14. A study on pathogens of Chinese prawn ( Penaeus Chinensis) virus diseases

    NASA Astrophysics Data System (ADS)

    Sun, Xiu-Qin; Zhang, Jin-Xing

    1995-09-01

    This pathogenic study shows that the viral diseases of Chinese prawns ( Penaeus chinensis, O'sbeck) is due to three kinds of viruses: epithelium envelope baculovirus of Penaeus chinensis (EEBV-PC, detected by the authors in 1993), infections hypodermal and hematopoietic necrosis virus, and hepatopancreatic parvo-like virus, and that the first two viruses seem to be the main pathogens of the epidemic in the northern regions in 1993.

  15. Hepatitis C virus infection.

    PubMed

    Manns, Michael P; Buti, Maria; Gane, Ed; Pawlotsky, Jean-Michel; Razavi, Homie; Terrault, Norah; Younossi, Zobair

    2017-03-02

    Hepatitis C virus (HCV) is a hepatotropic RNA virus that causes progressive liver damage, which might result in liver cirrhosis and hepatocellular carcinoma. Globally, between 64 and 103 million people are chronically infected. Major risk factors for this blood-borne virus infection are unsafe injection drug use and unsterile medical procedures (iatrogenic infections) in countries with high HCV prevalence. Diagnostic procedures include serum HCV antibody testing, HCV RNA measurement, viral genotype and subtype determination and, lately, assessment of resistance-associated substitutions. Various direct-acting antiviral agents (DAAs) have become available, which target three proteins involved in crucial steps of the HCV life cycle: the NS3/4A protease, the NS5A protein and the RNA-dependent RNA polymerase NS5B protein. Combination of two or three of these DAAs can cure (defined as a sustained virological response 12 weeks after treatment) HCV infection in >90% of patients, including populations that have been difficult to treat in the past. As long as a prophylactic vaccine is not available, the HCV pandemic has to be controlled by treatment-as-prevention strategies, effective screening programmes and global access to treatment.

  16. Effect of statin treatments on highly pathogenic avian influenza H5N1, seasonal and H1N1pdm09 virus infections in BALB/c mice

    PubMed Central

    Kumaki, Yohichi; Morrey, John D; Barnard, Dale L

    2013-01-01

    Statins are used to control elevated cholesterol or hypercholesterolemia, but have previously been reported to have antiviral properties. Aims To show efficacy of statins in various influenza virus mouse models. Materials & methods BALB/c mice were treated intraperitoneally or orally with several types of statins (simvastatin, lovastatin, mevastatin, pitavastatin, atorvastatin or rosuvastatin) at various concentrations before or after infection with either influenza A/Duck/ MN/1525/81 H5N1 virus, influenza A/Vietnam/1203/2004 H5N1 virus, influenza A/ Victoria/3/75 H3N2 virus, influenza A/NWS/33 H1N1 virus or influenza A/CA/04/09 H1N1pdm09 virus. Results The statins administered intraperitoneally or orally at any dose did not significantly enhance the total survivors relative to untreated controls. In addition, infected mice receiving any concentration of statin were not protected against weight loss due to the infection. None of the statins significantly increased the mean day of death relative to mice in the placebo treatment group. Furthermore, the statins had relatively few ameliorative effects on lung pathology or lung weights at day 3 and 6 after virus exposure, although mice treated with simvastatin did have improved lung function as measured by arterial saturated oxygen levels in one experiment. Conclusion Statins showed relatively little efficacy in any mouse model used by any parameter tested. PMID:23420457

  17. [Transmissibility and pathogenicity of influenza viruses].

    PubMed

    Horimoto, Taisuke; Yamada, Shinya; Kawaoka, Yoshihiro

    2010-09-01

    In the spring of 2009, a novel swine-origin H1N1 virus, whose antigenicity is quite different from those of seasonal human H1N1 strains, emerged in Mexico and readily transmitted and spread among humans, resulting in the first influenza pandemic in the 21st century. Molecular analyses of the pandemic H1N1 2009 viruses indicate low-pathogenic features for humans, although worldwide transmission of the virus and a considerable numbers of lethal cases with acute pneumonia have been observed in the first wave of the current pandemic. Here, we review our current molecular knowledge of transmissibility and pathogenicity of influenza viruses and discuss the future aspects of the pandemic virus.

  18. Differences in the Pathogenicity and Inflammatory Responses Induced by Avian Influenza A/H7N9 Virus Infection in BALB/c and C57BL/6 Mouse Models

    PubMed Central

    Gao, Tongtong; Pan, Ting; Wu, Xiaohong; Yu, Hong; Guo, Yan; Zeng, Yang; Du, Lanying; Jiang, Shibo; Sun, Shihui; Zhou, Yusen

    2014-01-01

    Avian influenza A/H7N9 virus infection causes pneumonia in humans with a high case fatality rate. However, virus-induced modulation of immune responses is being recognized increasingly as a factor in the pathogenesis of this disease. In this study, we compared the pathogenicity of A/H7N9 infection in BALB/c and C57BL/6 mouse models, and investigated the putative involvement of proinflammatory cytokines in lung injury and viral clearance. In both mouse strains, A/Anhui/1/2013(H7N9) infection with 106 TCID50 resulted in viral replication in lung, severe body weight loss and acute lung injury. During the early infection stage, infected C57BL/6 mice exhibited more severe lung injury, slower recovery from lung damage, less effective viral clearance, higher levels of interlukine (IL)-6, monocyte chemotactic protein (MCP)-1, and IL-1β, and lower levels of tumor necrosis factor (TNF)-α and interferon (IFN)-γ than infected BALB/c mice. These results suggest that TNF-α and IFN-γ may help suppress viral gene expression and increase viral clearance, and that IL-6 and MCP-1 may contribute to lung injury in A/H7N9-infected individuals. In addition, lung damage and the distribution of virus antigen in tissues were similar in young and middle-aged mice. These results suggest that the more serious lung injury in middle-aged or older H7N9 cases is not mainly caused by differences in viral replication in the lung but probably by a dysregulated immune response induced by underlying comorbidities. These results indicate that the extent of dysregulation of the host immune response after H7N9 virus infection most probably determines the outcome of H7N9 virus infection. PMID:24676272

  19. Giant viruses of amoebae as potential human pathogens.

    PubMed

    Colson, Philippe; La Scola, Bernard; Raoult, Didier

    2013-01-01

    Giant viruses infecting phagocytic protists are composed of mimiviruses, the record holders of particle and genome size amongst viruses, and marseilleviruses. Since the discovery in 2003 at our laboratory of the first of these giant viruses, the Mimivirus, a growing body of data has revealed that they are common inhabitants of our biosphere. Moreover, from the outset, the story of Mimivirus has been linked to that of patients exhibiting pneumonia and it was shown that patients developed antibodies to this amoebal pathogen. Since then, there have been several proven cases of human infection or colonization with giant viruses of amoebae, which are known to host several bacteria that are human pathogens. Mimiviruses and marseilleviruses represent a major challenge in human pathology, as virological procedures implemented to date have not used appropriate media to allow their culture, and molecular techniques have used filtration steps that likely prevented their detection. Nevertheless, there is an increasing body of evidence that mimiviruses might cause pneumonia and that humans carry marseilleviruses, and re-analyses of metagenomic databases have provided evidence that these giant viruses can be common in human samples. The proportion of human infections related to these giant mimiviruses and marseilleviruses and the precise short- and long-term consequences of these infections have been scarcely investigated so far and should be the subject of future works.

  20. Protection against H5N1 highly pathogenic avian and pandemic (H1N1) 2009 influenza virus infection in cynomolgus monkeys by an inactivated H5N1 whole particle vaccine.

    PubMed

    Nakayama, Misako; Shichinohe, Shintaro; Itoh, Yasushi; Ishigaki, Hirohito; Kitano, Mitsutaka; Arikata, Masahiko; Pham, Van Loi; Ishida, Hideaki; Kitagawa, Naoko; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Ichikawa, Takaya; Tsuchiya, Hideaki; Nakamura, Shinichiro; Le, Quynh Mai; Ito, Mutsumi; Kawaoka, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2013-01-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3), in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1) 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3.

  1. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    SciTech Connect

    Perera, Rushika M.; Riley, Catherine; Isaac, Georgis; Hopf- Jannasch, Amber; Moore, Ronald J.; Weitz, Karl K.; Pasa-Tolic, Ljiljana; Metz, Thomas O.; Adamec, Jiri; Kuhn, Richard J.

    2012-03-22

    Dengue virus causes {approx}50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.

  2. Pathobiology of clade 2.3.4.4 H5Nx high pathogenicity avian influenza virus infections in minor gallinaceous poultry supports early backyard flock introductions in Western U.S., 2014-2015.

    PubMed

    Bertran, Kateri; Lee, Dong-Hun; Pantin-Jackwood, Mary J; Spackman, Erica; Balzli, Charles; Suarez, David L; Swayne, David E

    2017-08-09

    In 2014-2015, the U.S. experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus. Initial cases affected mainly wild birds and mixed backyard poultry species, while later outbreaks affected mostly commercial chickens and turkeys. The pathogenesis, transmission, and intra-host evolutionary dynamics of initial Eurasian H5N8 and reassortant H5N2 clade 2.3.4.4 HPAI viruses in the U.S. were investigated in minor gallinaceous poultry species (i.e. species for which the U.S. commercial industries are small): Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Low mean bird infectious doses (<2 to 3.7 log10) support direct introduction and infection of these species as observed in mixed backyard poultry during the early outbreaks. Pathobiological features and systemic virus replication in all species tested were consistent with HPAI virus infection. Sustained virus shedding with transmission to contact-exposed birds, alongside long incubation periods, could enable unrecognized dissemination and adaptation to other gallinaceous such as chickens and turkeys. Genome sequencing of excreted viruses revealed numerous low-frequency polymorphisms and 20 consensus-level substitutions in all genes and species but especially in Japanese quail and Pearl guinea fowl and in internal proteins PB1 and PB2. This genomic flexibility after only one passage indicates that influenza viruses can continue to evolve in Galliformes, increasing their opportunity to adapt to other species. Our findings suggest that these gallinaceous poultry are permissive for infection and sustainable transmissibility with 2014 initial wild bird-adapted clade 2.3.4.4 virus, with potential acquisition of mutations leading to host range adaptation.IMPORTANCE The outbreak of clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus that occurred in the U.S. in 2014-2015 represents the worst livestock disease

  3. Drosophila as a genetic model for studying pathogenic human viruses.

    PubMed

    Hughes, Tamara T; Allen, Amanda L; Bardin, Joseph E; Christian, Megan N; Daimon, Kansei; Dozier, Kelsey D; Hansen, Caom L; Holcomb, Lisa M; Ahlander, Joseph

    2012-02-05

    Viruses are infectious particles whose viability is dependent on the cells of living organisms, such as bacteria, plants, and animals. It is of great interest to discover how viruses function inside host cells in order to develop therapies to treat virally infected organisms. The fruit fly Drosophila melanogaster is an excellent model system for studying the molecular mechanisms of replication, amplification, and cellular consequences of human viruses. In this review, we describe the advantages of using Drosophila as a model system to study human viruses, and highlight how Drosophila has been used to provide unique insight into the gene function of several pathogenic viruses. We also propose possible directions for future research in this area.

  4. Drosophila as a genetic model for studying pathogenic human viruses

    PubMed Central

    Hughes, Tamara T.; Allen, Amanda L.; Bardin, Joseph E.; Christian, Megan N.; Daimon, Kansei; Dozier, Kelsey D.; Hansen, Caom L.; Holcomb, Lisa M.; Ahlander, Joseph

    2011-01-01

    Viruses are infectious particles whose viability is dependent on the cells of living organisms, such as bacteria, plants, and animals. It is of great interest to discover how viruses function inside host cells in order to develop therapies to treat virally infected organisms. The fruit fly Drosophila melanogaster is an excellent model system for studying the molecular mechanisms of replication, amplification, and cellular consequences of human viruses. In this review, we describe the advantages of using Drosophila as a model system to study human viruses, and highlight how Drosophila has been used to provide unique insight into the gene function of several pathogenic viruses. We also propose possible directions for future research in this area. PMID:22177780

  5. Integrated omics analysis of pathogenic host responses during pandemic H1N1 influenza virus infection: the crucial role of lipid metabolism

    PubMed Central

    Tisoncik-Go, Jennifer; Gasper, David J.; Kyle, Jennifer E.; Eisfeld, Amie J.; Selinger, Christian; Hatta, Masato; Morrison, Juliet; Korth, Marcus J.; Zink, Erika M.; Kim, Young-Mo; Schepmoes, Athena A.; Nicora, Carrie D.; Purvine, Samuel O.; Weitz, Karl K.; Peng, Xinxia; Green, Richard R.; Tilton, Susan C.; Webb-Robertson, Bobbie-Jo; Waters, Katrina M.; Metz, Thomas O.; Smith, Richard D.; Kawaoka, Yoshihiro; Suresh, M.; Josset, Laurence; Katze, Michael G.

    2016-01-01

    SUMMARY Pandemic influenza viruses modulate pro-inflammatory responses that can lead to immunopathogenesis. We present an extensive and systematic profiling of lipids, metabolites and proteins in respiratory compartments of ferrets infected with either 1918 or 2009 human pandemic H1N1 influenza viruses. Integrative analysis of high-throughput omics data with virologic and histopathologic data uncovered relationships between host responses and phenotypic outcomes of viral infection. Pro-inflammatory lipid precursors in the trachea following 1918 infection correlated with severe tracheal lesions. Using an algorithm to infer cell quantity changes from gene expression data, we found enrichment of distinct T cell subpopulations in the trachea. There was also a predicted increase in inflammatory monocytes in the lung of 1918 virus-infected animals that was sustained throughout infection. This study presents a unique resource to the influenza research community and demonstrates the utility of an integrative systems approach for characterization of lipid metabolism alterations underlying respiratory responses to viruses. PMID:26867183

  6. History of discoveries and pathogenicity of TT viruses.

    PubMed

    Okamoto, H

    2009-01-01

    Since 1997, groups of novel nonenveloped DNA viruses with a circular, single-stranded (negative sense) DNA genome of 3.6-3.9 kb, 3.2 kb, or 2.8-2.9 kb in size have been discovered and designated Torque teno virus (TTV), Torque teno midi virus (TTMDV), and Torque teno mini virus (TTMV), respectively, in the floating genus Anellovirus. These three anelloviruses frequently and ubiquitously infect humans, and the infections are characterized by lifelong viremia and great genetic variability. Although TTV infection has been epidemiologically suggested to be associated with many diseases including liver diseases, respiratory disorders, hematological disorders, and cancer, there is no direct causal evidence for links between TTV infection and specific clinical diseases. The pathogenetic role of TTMV and TTMDV infections remains unknown. The changing ratio of the three anelloviruses to each other over time, relative viral load, or combination of different genotype(s) of each anellovirus may be associated with the pathogenicity or the disease-inducing potential of these three human anelloviruses. To clarify their disease association, polymerase chain reaction (PCR) systems for accurately detecting, differentiating, and quantitating all of the genotypes and/or genogroups of TTV, TTMDV, and TTMV should be established and standardized, as should methods to detect past infections and immunological responses to anellovirus infections.

  7. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    USDA-ARS?s Scientific Manuscript database

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  8. Association of Mx1 Asn631 variant alleles with reductions in morbidity, early mortality, viral shedding, and cytokine responses in chickens infected with a highly pathogenic avian influenza virus.

    PubMed

    Ewald, Sandra J; Kapczynski, Darrell R; Livant, Emily J; Suarez, David L; Ralph, John; McLeod, Scott; Miller, Carolyn

    2011-06-01

    Myxovirus-resistance (Mx) proteins are produced by host cells in response to type I interferons, and some members of the Mx gene family in mammals have been shown to limit replication of influenza and other viruses. According to an early report, chicken Mx1 variants encoding Asn at position 631 have antiviral activity, whereas variants with Ser at 631 lack activity in experiments evaluating Mx1 complementary DNA (cDNA) expressed ectopically in a cell line. We evaluated whether the Mx1 631 dimorphism influenced pathogenesis of highly pathogenic avian influenza virus (HPAIV) infection in chickens of two commercial broiler lines, each segregating for Asn631 and Ser631 variants. Following intranasal infection with HPAIV strain A/Chicken/Queretaro/14588-19/1995 H5N2, chickens homozygous for Asn631 allele were significantly more resistant to disease based on early mortality, morbidity, or virus shedding than Ser631 homozygotes. Higher amounts of splenic cytokine transcripts were observed in the Ser631 birds after infection, consistent with higher viral loads seen in this group and perhaps contributing to their higher morbidity. Nucleotide sequence determination of Mx1 cDNAs demonstrated that the Asn631 variants in the two chicken lines differed at several amino acid positions outside 631. In vitro experiments with a different influenza strain (low pathogenicity) failed to demonstrate an effect of Mx1 Asn631 on viral replication suggesting that in vivo responses may differ markedly from in vitro, or that choice of virus strain may be critical in demonstrating effects of chicken Mx1. Overall, these studies provide the first evidence that Mx1 has antiviral effects in chickens infected with influenza virus.

  9. Novel Eurasian Highly Pathogenic Avian Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014

    PubMed Central

    Ip, Hon S.; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues. PMID:25898265

  10. Novel Eurasian highly pathogenic influenza A H5 viruses in wild birds, Washington, USA

    USGS Publications Warehouse

    Ip, Hon S.; Kim Torchetti, Mia; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara L.; Shearn-Bochsler, Valerie I.; Killian, Mary Lea; Pederson, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  11. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    PubMed

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  12. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses from an avian reservoir, and then generate mammalian adaptable influenza A viruses (IAVs) is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and...

  13. Laser inactivation of pathogenic viruses in water

    NASA Astrophysics Data System (ADS)

    Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-03-01

    Currently there is a situation that makes it difficult to provide the population with quality drinking water for the sanitary-hygienic requirements. One of the urgent problems is the need for water disinfection. Since the emergence of microorganisms that are pathogens transmitted through water such as typhoid, cholera, etc. requires constant cleansing of waters against pathogenic bacteria. In the water treatment process is destroyed up to 98% of germs, but among the remaining can be pathogenic viruses, the destruction of which requires special handling. As a result, the conducted research the following methods have been proposed for combating harmful microorganisms: sterilization of water by laser radiation and using a UV lamp.

  14. Hepatitis E virus as an emerging zoonotic pathogen.

    PubMed

    Park, Woo-Jung; Park, Byung-Joo; Ahn, Hee-Seop; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Lee, Sang-Won; Yoo, Han-Sang; Choi, In-Soo

    2016-03-01

    Hepatitis E outbreaks are a serious public health concern in developing countries. The disease causes acute infections, primarily in young adults. The mortality rate is approximately 2%; however, it can exceed 20% in pregnant women in some regions in India. The causative agent, hepatitis E virus (HEV), has been isolated from several animal species, including pigs. HEV genotypes 3 and 4 have been isolated from both humans and animals, and are recognized as zoonotic pathogens. Seroprevalence studies in animals and humans indirectly suggest that HEV infections occur worldwide. The virus is primarily transmitted to humans via undercooked animal meats in developed countries. Moreover, transfusion- and transplantation-mediated HEV infections have recently been reported. This review summarizes the general characteristics of hepatitis E, HEV infection status in animals and humans, the zoonotic transmission modes of HEV, and HEV vaccine development status.

  15. Hepatitis E virus as an emerging zoonotic pathogen

    PubMed Central

    Park, Woo-Jung; Park, Byung-Joo; Ahn, Hee-Seop; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Lee, Sang-Won; Yoo, Han-Sang

    2016-01-01

    Hepatitis E outbreaks are a serious public health concern in developing countries. The disease causes acute infections, primarily in young adults. The mortality rate is approximately 2%; however, it can exceed 20% in pregnant women in some regions in India. The causative agent, hepatitis E virus (HEV), has been isolated from several animal species, including pigs. HEV genotypes 3 and 4 have been isolated from both humans and animals, and are recognized as zoonotic pathogens. Seroprevalence studies in animals and humans indirectly suggest that HEV infections occur worldwide. The virus is primarily transmitted to humans via undercooked animal meats in developed countries. Moreover, transfusion- and transplantation-mediated HEV infections have recently been reported. This review summarizes the general characteristics of hepatitis E, HEV infection status in animals and humans, the zoonotic transmission modes of HEV, and HEV vaccine development status. PMID:27051334

  16. Comparison of the pathogenicity of different H5N1 HPAI viruses in chickens and ducks

    USDA-ARS?s Scientific Manuscript database

    Contrary to what is observed in chickens where infection with highly pathogenic avian influenza (HPAI) viruses produce fatal disease, the Asian H5N1 HPAI viruses have changed from producing mild respiratory infections in ducks to some strains causing systemic disease and death. In order to further ...

  17. Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans

    PubMed Central

    Igarashi, Tatsuhiko; Brown, Charles R.; Endo, Yasuyuki; Buckler-White, Alicia; Plishka, Ronald; Bischofberger, Norbert; Hirsch, Vanessa; Martin, Malcolm A.

    2001-01-01

    The highly pathogenic simian immunodeficiency virus/HIV type 1 (SHIV) chimeric virus SHIVDH12R induces a systemic depletion of CD4+ T lymphocytes in rhesus monkeys during the initial 3–4 weeks of infection. Nonetheless, high levels of viral RNA production continue unabated for an additional 2–5 months. In situ hybridization and immunohistochemical analyses revealed that tissue macrophage in the lymph nodes, spleen, gastrointestinal tract, liver, and kidney sustain high plasma virus loads in the absence of CD4+ T cells. Quantitative confocal immunofluorescence analysis indicated that greater than 95% of the virus-producing cells in these tissues are macrophage and less than 2% are T lymphocytes. Interestingly, the administration of a potent reverse transcriptase inhibitor blocked virus production during the early T cell phase but not during the later macrophage phase of the SHIVDH12R infection. When interpreted in the context of HIV-1 infections, these results implicate tissue macrophage as an important reservoir of virus in vivo. They become infected during the acute infection, gradually increase in number over time, and can be a major contributor to total body virus burden during the symptomatic phase of the human infection. PMID:11136236

  18. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... Avian Swine/Variant Pandemic Other Avian Influenza A Virus Infections in Humans Language: English (US) Español ... with Avian Influenza A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses ...

  19. Plant virus infections control stomatal development

    PubMed Central

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-01-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum. PMID:27687773

  20. Plant virus infections control stomatal development.

    PubMed

    Murray, Rose R; Emblow, Mark S M; Hetherington, Alistair M; Foster, Gary D

    2016-09-30

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum.

  1. Plant virus infections control stomatal development

    NASA Astrophysics Data System (ADS)

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-09-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum.

  2. Highly pathogenic Avian Influenza A(H5N1) virus infection among workers at live bird markets, Bangladesh, 2009-2010.

    PubMed

    Nasreen, Sharifa; Khan, Salah Uddin; Luby, Stephen P; Gurley, Emily S; Abedin, Jaynal; Zaman, Rashid Uz; Sohel, Badrul Munir; Rahman, Mustafizur; Hancock, Kathy; Levine, Min Z; Veguilla, Vic; Wang, David; Holiday, Crystal; Gillis, Eric; Sturm-Ramirez, Katharine; Bresee, Joseph S; Rahman, Mahmudur; Uyeki, Timothy M; Katz, Jacqueline M; Azziz-Baumgartner, Eduardo

    2015-04-01

    The risk for influenza A(H5N1) virus infection is unclear among poultry workers in countries where the virus is endemic. To assess H5N1 seroprevalence and seroconversion among workers at live bird markets (LBMs) in Bangladesh, we followed a cohort of workers from 12 LBMs with existing avian influenza surveillance. Serum samples from workers were tested for H5N1 antibodies at the end of the study or when LBM samples first had H5N1 virus-positive test results. Of 404 workers, 9 (2%) were seropositive at baseline. Of 284 workers who completed the study and were seronegative at baseline, 6 (2%) seroconverted (7 cases/100 poultry worker-years). Workers who frequently fed poultry, cleaned feces from pens, cleaned food/water containers, and did not wash hands after touching sick poultry had a 7.6 times higher risk for infection compared with workers who infrequently performed these behaviors. Despite frequent exposure to H5N1 virus, LBM workers showed evidence of only sporadic infection.

  3. Secondary bacterial infections in influenza virus infection pathogenesis.

    PubMed

    Smith, Amber M; McCullers, Jonathan A

    2014-01-01

    Influenza is often complicated by bacterial pathogens that colonize the nasopharynx and invade the middle ear and/or lung epithelium. Incidence and pathogenicity of influenza-bacterial coinfections are multifactorial processes that involve various pathogenic virulence factors and host responses with distinct site- and strain-specific differences. Animal models and kinetic models have improved our understanding of how influenza viruses interact with their bacterial co-pathogens and the accompanying immune responses. Data from these models indicate that considerable alterations in epithelial surfaces and aberrant immune responses lead to severe inflammation, a key driver of bacterial acquisition and infection severity following influenza. However, further experimental and analytical studies are essential to determining the full mechanistic spectrum of different viral and bacterial strains and species and to finding new ways to prevent and treat influenza-associated bacterial coinfections. Here, we review recent advances regarding transmission and disease potential of influenza-associated bacterial infections and discuss the current gaps in knowledge.

  4. Multiple infections of rodents with zoonotic pathogens in Austria.

    PubMed

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  5. Multiple Infections of Rodents with Zoonotic Pathogens in Austria

    PubMed Central

    Schmidt, Sabrina; Essbauer, Sandra S.; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H.; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald

    2014-01-01

    Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID

  6. The role of NS protein in the pathogenicity of HPAI H5N1 viruses in ducks

    USDA-ARS?s Scientific Manuscript database

    Until 2002, highly pathogenic avian influenza (HPAI) H5N1 viruses caused no disease or only mild respiratory infections in ducks. Since then, new viruses have emerged that cause systemic disease and high mortality in ducks and other waterfowl. Studies on HPAI virus pathogenicity in ducks have been...

  7. The effect of NS1 gene exchange on the pathogenicity of H5N1 HPAI viruses in ducks

    USDA-ARS?s Scientific Manuscript database

    Until 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses caused only mild respiratory infections in ducks. Since then, new viruses have emerged that cause systemic disease and high mortality in ducks and other waterfowl. Studies on HPAI virus pathogenicity in ducks have been limited and t...

  8. The role of carbohydrates in infection strategies of enteric pathogens.

    PubMed

    Kato, Kentaro; Ishiwa, Akiko

    2015-03-01

    Enteric pathogens cause considerable public health concerns worldwide including tropical regions. Here, we review the roles of carbohydrates in the infection strategies of various enteric pathogens including viruses, bacteria and protozoa, which infect the epithelial lining of the human and animal intestine. At host cell entry, enteric viruses, including norovirus, recognize mainly histo-blood group antigens. At the initial step of bacterial infections, carbohydrates also function as receptors for attachment. Here, we describe the function of carbohydrates in infection by Salmonella enterica and several bacterial species that produce a variety of fimbrial adhesions. During invasion by enteropathogenic protozoa, apicomplexan parasites utilize sialic acids or sulfated glycans. Carbohydrates serve as receptors for infection by these microbes; however, their usage of carbohydrates varies depending on the microbe. On the surface of the mucosal tissues of the gastrointestinal tract, various carbohydrate moieties are present and play a crucial role in infection, representing the site of infection or route of access for most microbes. During the infection and/or invasion process of the microbes, carbohydrates function as receptors for various microbes, but they can also function as a barrier to infection. One approach to develop effective prophylactic and therapeutic antimicrobial agents is to modify the drug structure. Another approach is to modify the mode of inhibition of infection depending on the individual pathogen by using and mimicking the interactions with carbohydrates. In addition, similarities in mode of infection may also be utilized. Our findings will be useful in the development of new drugs for the treatment of enteric pathogens.

  9. Replication and pathogenesis associated with H5N1, H5N2, and H5N3 low-pathogenic avian influenza virus infection in chickens and ducks.

    PubMed

    Mundt, Egbert; Gay, Lauren; Jones, Les; Saavedra, Geraldine; Tompkins, S Mark; Tripp, Ralph A

    2009-01-01

    A comparative study examining replication and disease pathogenesis associated with low-pathogenic H5N1, H5N2, or H5N3 avian influenza virus (AIV) infection of chickens and ducks was performed. The replication and pathogenesis of highly pathogenic AIV (HPAIV) has received substantial attention; however, the behavior of low-pathogenic AIVs, which serve as precursors to HPAIVs, has received less attention. Thus, chickens or ducks were inoculated with an isolate from a wild bird [A/Mute Swan/MI/451072/06 (H5N1)] or isolates from chickens [A/Ck/PA/13609/93 (H5N2), A/Ck/TX/167280-4/02 (H5N3)], and virus replication, induction of a serological response, and disease pathogenesis were investigated, and the hemagglutinin and neuraminidase (NA) gene sequences of the isolates were determined. Virus isolated from tracheal and cloacal swabs showed that H5N1 replicated better in ducks, whereas H5N2 and H5N3 replicated better in chickens. Comparison of the NA gene sequences showed that chicken-adapted H5N2 and H5N3 isolates both have a deletion of 20 amino acids in the NA stalk region, which was absent in the H5N1 isolate. Histopathological examination of numerous organs showed that H5N2 and H5N3 isolates caused lesions in chickens in a variety of organs, but to a greater extent in the respiratory and intestinal tracts, whereas H5N1 lesions in ducks were observed mainly in the respiratory tract. This study suggests that the H5N1, H5N2, and H5N3 infections occurred at distinct sites in chicken and ducks, and that comparative studies in different model species are needed to better understand the factors influencing the evolution of these viruses.

  10. Determinants of pathogenicity of H5N1 highly pathogenic avian influenza viruses in ducks

    USDA-ARS?s Scientific Manuscript database

    Ducks have been implicated in the dissemination and evolution of the H5N1 highly pathogenic avian influenza (HPAI) viruses. The pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in very short time. The determinants of pathogenic...

  11. Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks.

    PubMed

    Hellmér, Maria; Paxéus, Nicklas; Magnius, Lars; Enache, Lucica; Arnholm, Birgitta; Johansson, Annette; Bergström, Tomas; Norder, Heléne

    2014-11-01

    Most persons infected with enterically transmitted viruses shed large amounts of virus in feces for days or weeks, both before and after onset of symptoms. Therefore, viruses causing gastroenteritis may be detected in wastewater, even if only a few persons are infected. In this study, the presence of eight pathogenic viruses (norovirus, astrovirus, rotavirus, adenovirus, Aichi virus, parechovirus, hepatitis A virus [HAV], and hepatitis E virus) was investigated in sewage to explore whether their identification could be used as an early warning of outbreaks. Samples of the untreated sewage were collected in proportion to flow at Ryaverket, Gothenburg, Sweden. Daily samples collected during every second week between January and May 2013 were pooled and analyzed for detection of viruses by concentration through adsorption to milk proteins and PCR. The largest amount of noroviruses was detected in sewage 2 to 3 weeks before most patients were diagnosed with this infection in Gothenburg. The other viruses were detected at lower levels. HAV was detected between weeks 5 and 13, and partial sequencing of the structural VP1protein identified three different strains. Two strains were involved in an ongoing outbreak in Scandinavia and were also identified in samples from patients with acute hepatitis A in Gothenburg during spring of 2013. The third strain was unique and was not detected in any patient sample. The method used may thus be a tool to detect incipient outbreaks of these viruses and provide early warning before the causative pathogens have been recognized in health care. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Phylogeny, Pathogenicity, and Transmission of H5N1 Avian Influenza Viruses in Chickens

    PubMed Central

    Cui, Jin; Qu, Nannan; Guo, Yang; Cao, Lan; Wu, Siyu; Mei, Kun; Sun, Hailiang; Lu, Yiliang; Qin, Zhifeng; Jiao, Peirong; Liao, Ming

    2017-01-01

    We analyzed five H5N1 avian influenza viruses (AIVs) isolated from different birds in 2012 in China. Based on whole-genome sequences, we divided the viruses into four genotypes. The DKE26, GSE43, and DKE53 viruses belonged to Genotypes 1–3, respectively. The CKE93 and CKE96 viruses were classified into Genotype 4. Genotypes 1–3 correspond to the viruses containing the HA gene of clade 2.3.2, and Genotype 4 is the virus that bears the HA gene of clade 7.2. To better understand the pathogenicity and transmission of the viruses, we infected chickens with 103 EID50/0.1 ml GSE43 (clade 2.3.2) or CKE93 (clade 7.2) virus. Our results revealed that 6 of 7 specific-pathogen-free (SPF) chickens inoculated with GSE43 virus were dead before 7-day post-infection, but all the SPF chickens inoculated with CKE93 virus survived the infection. Both the GSE43 and CKE93 viruses replicated systemically in chickens. The virus titers of GSE43 virus in tested organs were obviously higher than those of CKE93 virus. Our results revealed that the pathogenicity and replication of GSE43 in chickens was much higher than those of CKE93. The GSE43 virus could transmit between chickens, but the CKE93 could not transmit between chickens by naïve contact. Therefore, different clades of H5N1 AIVs possessed variable pathogenicities and transmission abilities among chickens. Our study contributes to knowledge of pathogenic variations of prevalent H5N1 viruses. PMID:28770175

  13. Phylogeny, Pathogenicity, and Transmission of H5N1 Avian Influenza Viruses in Chickens.

    PubMed

    Cui, Jin; Qu, Nannan; Guo, Yang; Cao, Lan; Wu, Siyu; Mei, Kun; Sun, Hailiang; Lu, Yiliang; Qin, Zhifeng; Jiao, Peirong; Liao, Ming

    2017-01-01

    We analyzed five H5N1 avian influenza viruses (AIVs) isolated from different birds in 2012 in China. Based on whole-genome sequences, we divided the viruses into four genotypes. The DKE26, GSE43, and DKE53 viruses belonged to Genotypes 1-3, respectively. The CKE93 and CKE96 viruses were classified into Genotype 4. Genotypes 1-3 correspond to the viruses containing the HA gene of clade 2.3.2, and Genotype 4 is the virus that bears the HA gene of clade 7.2. To better understand the pathogenicity and transmission of the viruses, we infected chickens with 10(3) EID50/0.1 ml GSE43 (clade 2.3.2) or CKE93 (clade 7.2) virus. Our results revealed that 6 of 7 specific-pathogen-free (SPF) chickens inoculated with GSE43 virus were dead before 7-day post-infection, but all the SPF chickens inoculated with CKE93 virus survived the infection. Both the GSE43 and CKE93 viruses replicated systemically in chickens. The virus titers of GSE43 virus in tested organs were obviously higher than those of CKE93 virus. Our results revealed that the pathogenicity and replication of GSE43 in chickens was much higher than those of CKE93. The GSE43 virus could transmit between chickens, but the CKE93 could not transmit between chickens by naïve contact. Therefore, different clades of H5N1 AIVs possessed variable pathogenicities and transmission abilities among chickens. Our study contributes to knowledge of pathogenic variations of prevalent H5N1 viruses.

  14. Abiotic and biotic factors affecting the replication and pathogenicity of bee viruses.

    PubMed

    McMenamin, Alexander J; Brutscher, Laura M; Glenny, William; Flenniken, Michelle L

    2016-08-01

    Bees are important pollinators of plants in both agricultural and non-agricultural landscapes. Recent losses of both managed and wild bee species have negative impacts on crop production and ecosystem diversity. Therefore, in order to mitigate bee losses, it is important to identify the factors most responsible. Multiple factors including pathogens, agrochemical exposure, lack of quality forage, and reduced habitat affect bee health. Pathogen prevalence is one factor that has been associated with colony losses. Numerous pathogens infect bees including fungi, protists, bacteria, and viruses, the majority of which are RNA viruses including several that infect multiple bee species. RNA viruses readily infect bees, yet there is limited understanding of their impacts on bee health, particularly in the context of other stressors. Herein we review the influence environmental factors have on the replication and pathogenicity of bee viruses and identify research areas that require further investigation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Respiratory syncytial virus infection in adults.

    PubMed

    Falsey, Ann R

    2007-04-01

    Respiratory syncytial virus (RSV) is a common winter time respiratory virus that affects persons of all ages and is the major cause of serious lower respiratory tract infections in young children. However, RSV is also an important pathogen in adults, particularly in the elderly, patients with chronic lung disease, or those with impaired immunity. Clinical features of RSV infections overlap with other respiratory viruses, so laboratory tests are required to establish the diagnosis. Reverse transcriptase polymerase chain reaction (RT-PCR) of samples from nasal swabs, sputum, or bronchoalveolar lavage is a sensitive test to substantiate the diagnosis. Serologies are useful in epidemiological surveys. The clinical course of RSV infections is variable. In infants, RSV presents as bronchiolitis. In adults, mild to moderate upper respiratory tract illness is characteristic. However, severe pneumonia can occur, particularly in the elderly with comorbidities or compromised immune status. Humoral antibodies confer partial immunity to RSV infection and disease severity; cellular immunity is important to eradicate RSV in established infections. Treatment of RSV infections is often supportive. Aerosolized ribavirin is approved for RSV infections in infants; its role in adults is controversial. Infection control measures are critical to limit spread of RSV. Currently, RSV vaccines are not available, but candidate vaccines are being developed.

  16. Modeling Dental Health Care Workers' Risk of Occupational Infection from Bloodborne Pathogens.

    ERIC Educational Resources Information Center

    Capilouto, Eli; And Others

    1990-01-01

    The brief paper offers a model which permits quantification of the dental health care workers' risk of occupationally acquiring infection from bloodborne pathogens such as human immunodeficiency virus and hepatitis B virus. The model incorporates five parameters such as the probability that any individual patient is infected and number of patients…

  17. Modeling Dental Health Care Workers' Risk of Occupational Infection from Bloodborne Pathogens.

    ERIC Educational Resources Information Center

    Capilouto, Eli; And Others

    1990-01-01

    The brief paper offers a model which permits quantification of the dental health care workers' risk of occupationally acquiring infection from bloodborne pathogens such as human immunodeficiency virus and hepatitis B virus. The model incorporates five parameters such as the probability that any individual patient is infected and number of patients…

  18. Saffold virus, a novel human Cardiovirus with unknown pathogenicity.

    PubMed

    Himeda, Toshiki; Ohara, Yoshiro

    2012-02-01

    Although cardioviruses have been thought to mainly infect rodents, a novel human cardiovirus, designated Saffold virus (SAFV), was identified in 2007. SAFV is grouped with Theiler-like rat virus and Theiler's murine encephalomyelitis virus (TMEV) in the species Theilovirus of the genus Cardiovirus of the family Picornaviridae. Eight genotypes of SAFV have now been identified. SAFV has been isolated from nasal and stool specimens from infants presenting with respiratory and gastrointestinal symptoms as well as from children with nonpolio acute flaccid paralysis; however, the relationship of SAFV to this symptomatology remains unclear. Of note, the virus has also been isolated from the cerebrospinal fluid specimens of patients with aseptic meningitis. This finding is of interest since TMEV is known to cause a multiple sclerosis-like syndrome in mice. The involvement of SAFV in various diseases (e.g., respiratory illness, gastrointestinal illness, neurological diseases, and type I diabetes) is presently under investigation. In order to clarify the pathogenicity of SAFV, additional epidemiological studies are required. Furthermore, identification of the SAFV cellular receptor will help establish an animal model for SAFV infection and help clarify the pathogenesis of SAFV-related diseases. In addition, investigation of the tissue-specific expression of the receptor may facilitate development of a novel picornavirus vector, which could be a useful tool in gene therapy for humans. The study of viral factors involved in viral pathogenicity using a reverse genetics technique will also be important.

  19. Saffold Virus, a Novel Human Cardiovirus with Unknown Pathogenicity

    PubMed Central

    Himeda, Toshiki

    2012-01-01

    Although cardioviruses have been thought to mainly infect rodents, a novel human cardiovirus, designated Saffold virus (SAFV), was identified in 2007. SAFV is grouped with Theiler-like rat virus and Theiler's murine encephalomyelitis virus (TMEV) in the species Theilovirus of the genus Cardiovirus of the family Picornaviridae. Eight genotypes of SAFV have now been identified. SAFV has been isolated from nasal and stool specimens from infants presenting with respiratory and gastrointestinal symptoms as well as from children with nonpolio acute flaccid paralysis; however, the relationship of SAFV to this symptomatology remains unclear. Of note, the virus has also been isolated from the cerebrospinal fluid specimens of patients with aseptic meningitis. This finding is of interest since TMEV is known to cause a multiple sclerosis-like syndrome in mice. The involvement of SAFV in various diseases (e.g., respiratory illness, gastrointestinal illness, neurological diseases, and type I diabetes) is presently under investigation. In order to clarify the pathogenicity of SAFV, additional epidemiological studies are required. Furthermore, identification of the SAFV cellular receptor will help establish an animal model for SAFV infection and help clarify the pathogenesis of SAFV-related diseases. In addition, investigation of the tissue-specific expression of the receptor may facilitate development of a novel picornavirus vector, which could be a useful tool in gene therapy for humans. The study of viral factors involved in viral pathogenicity using a reverse genetics technique will also be important. PMID:22114344

  20. Hanta virus infection during dengue virus infection outbreak in Indonesia.

    PubMed

    Suharti, Catharina; van Gorp, Eric C M; Dolmans, Wil M V; Groen, Jan; Hadisaputro, Suharyo; Djokomoeljanto, Robert J; D M E, Osterhaus Ab; van der Meer, Jos W M

    2009-04-01

    To investigate which recent infection could have caused the present dengue-like symptoms, in adult patients clinically fulfilling the WHO criteria for dengue, in which serologically were not confirmed for dengue virus infections. Prospective study. During an outbreak of dengue (between May 1995 and May 1996) 118 consecutive adults (>13 years) suspected by the WHO 1997 case definition of DF or DHF were investigated. Patients were examined for history of illness, physical and laboratory findings consisting of full blood counts, prothrombin time (PT), activated partial thromboplastin time (aPTT), liver function (bilirubin, ASAT, ALAT), renal function (creatinine), and serological assays included dengue, hantavirus, chikungunya, R. typhi, R. tsutsugamuchi, rubella virus, influenza A virus, and leptospira. In 58 of the total 118 patients, recent dengue virus infection was serologically confirmed. In 20 of the remaining 60 patients, we found serological evidence of another recent infection: hantavirus (5), chikungunya virus (2), R. typhi (5), R. tsutsugamuchi (2), rubella virus (3), influenza A virus (1), and leptospira (2). No evidence for recent infection with any of the mentioned agents was detected in the remaining 40 specimens. We conclude that based on clinical characteristics alone, it is not easy to diagnose dengue. Specific laboratory tests to differentiate dengue from other febrile illnesses are needed. Among these, in Indonesia hantavirus infection should be considered as well.

  1. [BK virus infections in kidney transplantation].

    PubMed

    Lanot, Antoine; Bouvier, Nicolas; Chatelet, Valérie; Dina, Julia; Béchade, Clémence; Ficheux, Maxence; Henri, Patrick; Lobbedez, Thierry; Hurault de Ligny, Bruno

    2016-04-01

    BK virus is near ubiquitous, with a seroprevalence of around 80% in the general population. Subsequent to an asymptomatic primary infection, BK virus then remains dormant in healthy subjects. Reactivation occurs in immunocompromised people. BKv is pathogenic mainly among patients who have received a kidney transplant, in whom the virus can cause specific tubulo-interstitial nephritis and even result in graft failure among approximately 20 to 30% of nephritic cases. Since the mid 90 s, incidence has increased with the use of new powerful immunosuppressor treatments. The cornerstone of BK virus infection or BK virus-associated nephropathy treatment is a decrease of the immunosuppressive regimen, which must then be offset with the risk of rejection. The use of several adjuvant therapies has been submitted (fluoroquinolones, leflunomide, intravenous immunoglobulins, cidofovir), with no sufficient proof enabling the recommendation of first-line prescription. The high frequency of this infection and its potential harmfulness argue for the use of prevention strategies, at least among patients presenting risk factors. Retransplantation is safe after a first kidney allograft loss caused by BK-virus nephropathy, on condition that a screening for viremia is frequently conducted. Copyright © 2015 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  2. Biologic characterization of chicken-derived H6N2 low pathogenic avian influenza viruses in chickens and ducks

    USDA-ARS?s Scientific Manuscript database

    In this study we biologically characterized H6N2 low pathogenicity avian influenza (LPAI) viruses by infecting chickens and ducks in order to compare adaptation of these viruses in these species. We examined the clinical signs, virus shedding, and immune response to infection in 4-week old white le...

  3. Hepatitis B virus infection in multitransfused haemophiliacs.

    PubMed Central

    Nebbia, G; Moroni, G A; Simoni, L; Belli, M; Carnelli, V

    1986-01-01

    A longitudinal study of 44 haemophilic children, all in a treatment programme with factor concentrates, was undertaken to evaluate the occurrence, characteristics, and evolution of hepatitis B virus (HBV) infection. Twenty four children (55%) (group I) showed signs of HBV infection, while 20 (45%) (group II) did not. Age at onset of treatment, number of infusions, and total amount of concentrate received did not show significant differences between the two groups. In group I only four children (16%) had symptomatic acute hepatitis. Chronic liver disease was present in nine patients (38% of infected children). The early age of infection would seem to be an important factor for predicting chronic evolution. Evidence of delta infection in three children with severe liver disease seemed to confirm the high pathogenicity of this agent. Because of the risks associated with chronic HBV infection a careful follow up of patients positive for hepatitis B surface antigen is mandatory. PMID:3089179

  4. Domestic Pigs Have Low Susceptibility to H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Lipatov, Aleksandr S.; Kwon, Yong Kuk; Sarmento, Luciana V.; Lager, Kelly M.; Spackman, Erica; Suarez, David L.; Swayne, David E.

    2008-01-01

    Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are one of the natural hosts where such reassortment events could occur. Virological, histological and serological features of H5N1 virus infection in pigs were characterized in this study. Two- to three-week-old domestic piglets were intranasally inoculated with 106 EID50 of A/Vietnam/1203/04 (VN/04), A/chicken/Indonesia/7/03 (Ck/Indo/03), A/Whooper swan/Mongolia/244/05 (WS/Mong/05), and A/Muscovy duck/Vietnam/ 209/05 (MDk/VN/05) viruses. Swine H3N2 and H1N1 viruses were studied as a positive control for swine influenza virus infection. The pathogenicity of the H5N1 HPAI viruses was also characterized in mouse and ferret animal models. Intranasal inoculation of pigs with H5N1 viruses or consumption of infected chicken meat did not result in severe disease. Mild weight loss was seen in pigs inoculated with WS/Mong/05, Ck/Indo/03 H5N1 and H1N1 swine influenza viruses. WS/Mong/05, Ck/Indo/03 and VN/04 viruses were detected in nasal swabs of inoculated pigs mainly on days 1 and 3. Titers of H5N1 viruses in nasal swabs were remarkably lower compared with those of swine influenza viruses. Replication of all four H5N1 viruses in pigs was restricted to the respiratory tract, mainly to the lungs. Titers of H5N1 viruses in the lungs were lower than those of swine viruses. WS/Mong/05 virus was isolated from trachea and tonsils, and MDk/VN/05 virus was isolated from nasal turbinate of infected pigs. Histological examination revealed mild to moderate bronchiolitis and multifocal alveolitis in the lungs of pigs infected with H5N1 viruses, while infection with swine influenza viruses resulted in severe tracheobronchitis and bronchointerstitial pneumonia. Pigs had low

  5. Differential transcription of fathead minnow immune-related genes following infection with frog virus 3, an emerging pathogen of ectothermic vertebrates.

    PubMed

    Cheng, Kwang; Escalon, B Lynn; Robert, Jacques; Chinchar, V Gregory; Garcia-Reyero, Natàlia

    2014-05-01

    Frog virus 3 (FV3) and other ranaviruses are responsible for die-offs involving wild, farmed, and captive amphibians, fish, and reptiles. To ascertain which elements of the immune system respond to infection, we explored transcriptional responses following infection of fathead minnow cells with either wild type (wt) FV3 or a knock out (KO) mutant targeting the 18 kDa immediate early gene (18K). At 8h post infection we observed marked upregulation of multiple transcripts encoding proteins affecting innate and acquired immunity. Sequences expressed 4-fold or higher in wt-infected cells included transcripts encoding interferon (IFN), IFN regulatory factors (IRFs), IFN stimulated genes (ISGs) such as Mx and MHC class I, and interleukins IL-1β, IL-8, IL-17C and IL-12. Cells infected with the 18K KO mutant (∆18K) showed qualitative differences and lower levels of induction. Collectively, these results indicate that ranavirus infection induced expression of multiple cellular genes affecting both innate and acquired immunity.

  6. Experimental co-infection of infectious bronchitis and low pathogenic avian influenza H9N2 viruses in commercial broiler chickens.

    PubMed

    Hassan, Kareem E; Ali, Ahmed; Shany, Salama A S; El-Kady, Magdy F

    2017-06-30

    In this study, commercial broilers were experimentally infected with single (classical IBV, variant IBV or AIV-H9N2) or mixed AIV-H9N2 with classical, variant or vaccine strains of IBV. Birds were monitored for clinical and pathological outcomes and virus shedding for 10days post infection (DPI). Clinical signs were limited to the respiratory tract in all challenged groups and varied from mild to moderate mouth breathing to severe respiratory signs with snorting sound and extended head. Mortalities were only recorded in mixed AIV-H9N2/variant IBV challenge group. AIV-H9N2 challenge caused tracheal petechial hemorrhage that progressed to tracheal congestion and caseation. In mixed AIV-H9N2/IBV vaccine challenge, severe tracheitis with bronchial cast formation was observed. In mixed AIV-H9N2/variant IBV challenge severe congestion of the tracheal mucosa and excessive exudates with a tendency to form tubular casts were observed. Kidney ureate deposition was only observed in variant IBV challenge group. Histopathologically, tracheal congestion, severe degeneration, and deciliation were noticed in all groups of mixed infection. Interestingly, hemorrhage and atrophy were observed in thymus gland of birds challenged with single AIV-H9N2 or mixed AIV-H9N2/IBV. There was no difference in the tracheal shedding level of variant IBV between single and mixed infected groups while classical IBV shedding increased in mixed infection group. Interestingly, the AIV-H9N2 showed constantly high shedding titers till 7DPI with variant or vaccine IBV co-infection. In conclusion, co-infection of IBV and AIV-H9N2 induced severe clinical outcome and high mortality. Also, IBV co-infection increased the shedding of AIV-H9N2 in experimentally infected birds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Immunobiology of Ebola and Lassa virus infections.

    PubMed

    Prescott, Joseph B; Marzi, Andrea; Safronetz, David; Robertson, Shelly J; Feldmann, Heinz; Best, Sonja M

    2017-03-01

    Two of the most important contemporary emerging viruses that affect human health in Africa are Ebola virus (EBOV) and Lassa virus (LASV). The 2013-2016 West African outbreak of EBOV was responsible for more than 11,000 deaths, primarily in Guinea, Sierra Leone and Liberia. LASV is constantly emerging in these and surrounding West African countries, with an estimate of more than 500,000 cases of Lassa fever, and approximately 5,000 deaths, annually. Both EBOV and LASV are zoonotic, and human infection often results in a severe haemorrhagic fever in both cases. However, the contribution of specific immune responses to disease differs between EBOV and LASV. This Review examines innate and adaptive immune responses to these viruses with the goal of delineating responses that are associated with protective versus pathogenic outcomes.

  8. Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017.

    PubMed

    Kang, Min; Lau, Eric H Y; Guan, Wenda; Yang, Yuwei; Song, Tie; Cowling, Benjamin J; Wu, Jie; Peiris, Malik; He, Jianfeng; Mok, Chris Ka Pun

    2017-07-06

    We describe the epidemiology of highly pathogenic avian influenza (HPAI) A(H7N9) based on poultry market environmental surveillance and laboratory-confirmed human cases (n = 9) in Guangdong, China. We also compare the epidemiology between human cases of high- and low-pathogenic avian influenza A(H7N9) (n = 51) in Guangdong. Case fatality and severity were similar. Touching sick or dead poultry was the most important risk factor for HPAI A(H7N9) infections and should be highlighted for the control of future influenza A(H7N9) epidemics. This article is copyright of The Authors, 2017.

  9. Pathogenicity of molecularly cloned bovine leukemia virus.

    PubMed Central

    Rovnak, J; Boyd, A L; Casey, J W; Gonda, M A; Jensen, W A; Cockerell, G L

    1993-01-01

    To delineate the mechanisms of bovine leukemia virus (BLV) pathogenesis, four full-length BLV clones, 1, 8, 9, and 13, derived from the transformed cell line FLK-BLV and a clone construct, pBLV913, were introduced into bovine spleen cells by microinjection. Microinjected cells exhibited cytopathic effects and produced BLV p24 and gp51 antigens and infectious virus. The construct, pBLV913, was selected for infection of two sheep by inoculation of microinjected cells. After 15 months, peripheral blood mononuclear cells from these sheep served as inocula for the transfer of infection to four additional sheep. All six infected sheep seroconverted to BLV and had detectable BLV DNA in peripheral blood mononuclear cells after amplification by polymerase chain reaction. Four of the six sheep developed altered B/T-lymphocyte ratios between 33 and 53 months postinfection. One sheep died of unrelated causes, and one remained hematologically normal. Two of the affected sheep developed B lymphocytosis comparable to that observed in animals inoculated with peripheral blood mononuclear cells from BLV-infected cattle. This expanded B-lymphocyte population was characterized by elevated expression of B-cell surface markers, spontaneous blastogenesis, virus expression in vitro, and increased, polyclonally integrated provirus. One of these two sheep developed lymphocytic leukemia-lymphoma at 57 months postinfection. Leukemic cells had the same phenotype and harbored a single, monoclonally integrated provirus but produced no virus after in vitro cultivation. The range in clinical response to in vivo infection with cloned BLV suggests an important role for host immune response in the progression of virus replication and pathogenesis. Images PMID:8230433

  10. Lack of Interleukin-10-Mediated Anti-Inflammatory Signals and Upregulated Interferon Gamma Production Are Linked to Increased Intestinal Epithelial Cell Apoptosis in Pathogenic Simian Immunodeficiency Virus Infection

    PubMed Central

    Pan, Diganta; Kenway-Lynch, Carys S.; Lala, Wendy; Veazey, Ronald S.; Lackner, Andrew A.; Das, Arpita

    2014-01-01

    ABSTRACT Interleukin-10 (IL-10) is an immunomodulatory cytokine that is important for maintenance of epithelial cell (EC) survival and anti-inflammatory responses (AIR). The majority of HIV infections occur through the mucosal route despite mucosal epithelium acting as a barrier to human immunodeficiency virus (HIV). Therefore, understanding the role of IL-10 in maintenance of intestinal homeostasis during HIV infection is of interest for better characterization of the pathogenesis of HIV-mediated enteropathy. We demonstrated here changes in mucosal IL-10 signaling during simian immunodeficiency virus (SIV) infection in rhesus macaques. Disruption of the epithelial barrier was manifested by EC apoptosis and loss of the tight-junction protein ZO-1. Multiple cell types, including a limited number of ECs, produced IL-10. SIV infection resulted in increased levels of IL-10; however, this was associated with increased production of mucosal gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), suggesting that IL-10 was not able to regulate AIR. This observation was supported by the downregulation of STAT3, which is necessary to inhibit production of IFN-γ and TNF-α, and the upregulation of SOCS1 and SOCS3, which are important regulatory molecules in the IL-10-mediated AIR. We also observed internalization of the IL-10 receptor (IL-10R) in mucosal lymphocytes, which could limit cellular availability of IL-10 for signaling and contribute to the loss of a functional AIR. Collectively, these findings demonstrate that internalization of IL-10R with the resultant impact on IL-10 signaling and dysregulation of the IL-10-mediated AIR might play a crucial role in EC damage and subsequent SIV/HIV pathogenesis. IMPORTANCE Interleukin-10 (IL-10), an important immunomodulatory cytokine plays a key role to control inflammatory function and homeostasis of the gastrointestinal mucosal immune system. Despite recent advancements in the study of IL-10 and its role in HIV

  11. Pathogenicity of modified bat influenza virus with different M genes and its reassortment potential with swine influenza A virus.

    PubMed

    Yang, Jianmei; Lee, Jinhwa; Ma, Jingjiao; Lang, Yuekun; Nietfeld, Jerome; Li, Yuhao; Duff, Michael; Li, Yonghai; Yang, Yuju; Liu, Haixia; Zhou, Bin; Wentworth, David E; Richt, Juergen A; Li, Zejun; Ma, Wenjun

    2017-01-18

    In our previous studies the reassortant virus containing only the PR8 H1N1 matrix (M) gene in the background of the modified bat influenza Bat09:mH1mN1 virus could be generated. However, whether M genes from other origins can be rescued in the background of the Bat09:mH1mN1 virus and whether the resulting novel reassortant virus is virulent remain unknown. Herein, two reassortant viruses were generated in the background of the Bat09:mH1mN1 virus containing either a North American or a Eurasian swine influenza virus M gene. These two reassortant viruses and the reassortant virus with PR8 M as well as the control Bat09:mH1mN1 virus replicated efficiently in cultured cells, while the reassortant virus with PR8 M grew to a higher titer than the other three viruses in tested cells. Mouse studies showed that reassortant viruses with either North American or Eurasian swine influenza virus M genes did not enhance virulence, whereas the reassortant virus with PR8 M gene displayed higher pathogenicity when compared to the Bat09:mH1mN1 virus. This is most likely due to the fact that the PR8 H1N1 virus is a mouse-adapted virus. Furthermore, reassortment potential between the Bat09:mH1mN1 virus and an H3N2 swine influenza virus (A/swine/Texas/4199-2/1998) was investigated using co-infection of MDCK cells, but no reassortant viruses were detected. Taken together, our results indicate that the modified bat influenza virus is most likely incapable of reassortment with influenza A viruses with in vitro co-infection experiments, although reassortant viruses with different M genes can be generated by reverse genetics.

  12. Respiratory Syncytial Virus Infections

    MedlinePlus

    Respiratory syncytial virus (RSV) causes mild, cold-like symptoms in adults and older healthy children. It can cause serious problems in ... tests can tell if your child has the virus. There is no specific treatment. You should give ...

  13. Soy isoflavones and virus infections

    USDA-ARS?s Scientific Manuscript database

    Isoflavones and their related flavonoid compounds exert antiviral properties in vitro and in vivo against a wide range of viruses. Genistein is, by far, the most studied soy isoflavone in this regard, and it has been shown to inhibit the infectivity of enveloped or nonenveloped viruses, as well as s...

  14. Neonatal herpes simplex virus infections.

    PubMed

    Pinninti, Swetha G; Kimberlin, David W

    2013-04-01

    Neonatal herpes simplex virus infections are uncommon, but because of the morbidity and mortality associated with the infection they are often considered in the differential diagnosis of ill neonates. The use of polymerase chain reaction for diagnosis of central nervous system infections and the development of safe and effective antiviral therapy has revolutionized the diagnosis and management of these infants. Initiation of long-term antiviral suppressive therapy in these infants has led to significant improvement in morbidity. This article summarizes the epidemiology of neonatal herpes simplex virus infections and discusses clinical presentation, diagnosis, management, and follow up of infants with neonatal herpes disease.

  15. Rapidly Expanding Range of Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Hall, Jeffrey S; Dusek, Robert J; Spackman, Erica

    2015-07-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus' propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  16. Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens

    PubMed Central

    Hall, Roy A.; Bielefeldt-Ohmann, Helle; McLean, Breeanna J.; O’Brien, Caitlin A.; Colmant, Agathe M.G.; Piyasena, Thisun B.H.; Harrison, Jessica J.; Newton, Natalee D.; Barnard, Ross T.; Prow, Natalie A.; Deerain, Joshua M.; Mah, Marcus G.K.Y.; Hobson-Peters, Jody

    2016-01-01

    Recent advances in virus detection strategies and deep sequencing technologies have enabled the identification of a multitude of new viruses that persistently infect mosquitoes but do not infect vertebrates. These are usually referred to as insect-specific viruses (ISVs). These novel viruses have generated considerable interest in their modes of transmission, persistence in mosquito populations, the mechanisms that restrict their host range to mosquitoes, and their interactions with pathogens transmissible by the same mosquito. In this article, we discuss studies in our laboratory and others that demonstrate that many ISVs are efficiently transmitted directly from the female mosquito to their progeny via infected eggs, and, moreover, that persistent infection of mosquito cell cultures or whole mosquitoes with ISVs can restrict subsequent infection, replication, and transmission of some mosquito-borne viral pathogens. This suggests that some ISVs may act as natural regulators of arboviral transmission. We also discuss viral and host factors that may be responsible for their host restriction. PMID:28096646

  17. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis o...

  18. Evidence of the synergistic effect of honey bee pathogens nosema ceranae and deformed wing virus

    USDA-ARS?s Scientific Manuscript database

    Nosema ceranae and Deformed Wing Virus (DWV) are two of the most prevalent pathogens currently attacking Western honey bees, Apis mellifera, and often simultaneously infect the same hosts. Here we investigated the synergistic effect of two pathogens under lab conditions and at different nutrition st...

  19. Bacterial Respiratory Infections Complicating Human Immunodeficiency Virus.

    PubMed

    Feldman, Charles; Anderson, Ronald

    2016-04-01

    Opportunistic bacterial and fungal infections of the lower respiratory tract, most commonly those caused by Streptococcus pneumoniae (the pneumococcus), Mycobacterium tuberculosis, and Pneumocystis jirovecii, remain the major causes of mortality in those infected with human immunodeficiency virus (HIV). Bacterial respiratory pathogens most prevalent in those infected with HIV, other than M. tuberculosis, represent the primary focus of the current review with particular emphasis on the pneumococcus, the leading cause of mortality due to HIV infection in the developed world. Additional themes include (1) risk factors; (2) the predisposing effects of HIV-mediated suppression on pulmonary host defenses, possibly intensified by smoking; (3) clinical and laboratory diagnosis, encompassing assessment of disease severity and outcome; and (4) antibiotic therapy. The final section addresses current recommendations with respect to pneumococcal immunization in the context of HIV infection, including an overview of the rationale underpinning the current "prime-boost" immunization strategy based on sequential administration of pneumococcal conjugate vaccine 13 and pneumococcal polysaccharide vaccine 23.

  20. Pathogenesis of human immunodeficiency virus infection.

    PubMed Central

    Levy, J A

    1993-01-01

    The lentivirus human immunodeficiency virus (HIV) causes AIDS by interacting with a large number of different cells in the body and escaping the host immune response against it. HIV is transmitted primarily through blood and genital fluids and to newborn infants from infected mothers. The steps occurring in infection involve an interaction of HIV not only with the CD4 molecule on cells but also with other cellular receptors recently identified. Virus-cell fusion and HIV entry subsequently take place. Following virus infection, a variety of intracellular mechanisms determine the relative expression of viral regulatory and accessory genes leading to productive or latent infection. With CD4+ lymphocytes, HIV replication can cause syncytium formation and cell death; with other cells, such as macrophages, persistent infection can occur, creating reservoirs for the virus in many cells and tissues. HIV strains are highly heterogeneous, and certain biologic and serologic properties determined by specific genetic sequences can be linked to pathogenic pathways and resistance to the immune response. The host reaction against HIV, through neutralizing antibodies and particularly through strong cellular immune responses, can keep the virus suppressed for many years. Long-term survival appears to involve infection with a relatively low-virulence strain that remains sensitive to the immune response, particularly to control by CD8+ cell antiviral activity. Several therapeutic approaches have been attempted, and others are under investigation. Vaccine development has provided some encouraging results, but the observations indicate the major challenge of preventing infection by HIV. Ongoing research is necessary to find a solution to this devastating worldwide epidemic. Images PMID:8464405

  1. Screening for sexually transmitted infection pathogens in semen samples

    PubMed Central

    Peeling, RW; Embree, J

    2005-01-01

    The transmission of sexually transmitted infection (STI) pathogens from an infected donor to the recipient of a semen donation in assisted conception may result not only in acute infection but also in long-term reproductive complications or adverse outcomes of pregnancy, including infection of the offspring. Screening for bacterial STI pathogens, Chlamydia trachomatis and Neisseria gonorrhoeae is strongly recommended because these pathogens can cause serious reproductive complications in the recipients of semen donations and infection in their offspring. Screening for these pathogens should be performed using the most sensitive methods, such as nucleic acid amplified tests. False-negative results due to inhibitory substances in the semen sample should be monitored using amplification controls. Where specimen transport is not a problem and culture facilities are available, N gonorrhoeae can also be detected by culture. Laboratories performing screening should subscribe to proficiency programs and have strict quality controls. Although Trichomonas vaginalis, group B streptococcus and genital mycoplasmas have been associated with adverse outcomes of pregnancy, the frequent finding of these organisms in healthy individuals brings into question the validity of mandatory inclusion of these organisms in the screening panel. Although viral STI pathogens and Treponema pallidum - the causative agent of syphilis - may be detected in semen, their presence may be more sensitively detected through antibody testing of the donor. Screening donors for HIV, hepatitis B and syphilis by serology is uniformly recommended in all of the guidelines, but the value of screening either donors or semen samples for cytomegalovirus, herpes simplex viruses and human papilloma viruses is less clear. PMID:18159531

  2. Is low pathogenic avian influenza virus virulent for wild waterbirds?

    PubMed Central

    Kuiken, Thijs

    2013-01-01

    Although low pathogenic avian influenza virus (LPAIV) is traditionally considered to have adapted to its wild waterbird host to become avirulent, recent studies have suggested that LPAIV infection might after all have clinical effects. Therefore, I reviewed the literature on LPAIV infections in wild waterbirds. The virulence of LPAIV was assessed in 17 studies on experimental infections and nine studies on natural infections. Reported evidence for virulence were reductions in return rate, feeding rate, body weight, long-range movement and reproductive success, as well as pathological changes in infected organs. However, major caveats in studies of experimental infections were unnatural route of LPAIV inoculation, animal husbandry not simulating natural stressors and low sensitivity of clinical assessment. Major caveats in studies of natural infections were incomplete measurement of LPAIV infection burden, quasi-experimental design and potential misclassification of birds. After taking these caveats into account, the only remaining evidence for virulence was that presence and intensity of LPAIV infection were negatively correlated with body weight. Based on this correlation, together with the demonstrated LPAIV tropism for the intestinal tract, I hypothesize that LPAIV reduces digestive tract function, and suggest how future studies could be directed to test this hypothesis. PMID:23740783

  3. Pathogenicity of two Egyptian H5N1 highly pathogenic avian influenza viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    Domestic ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Interestingly, the pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in ducks. These changes in vir...

  4. Recovery of Pathogenic Measles Virus from Cloned cDNA

    PubMed Central

    Takeda, Makoto; Takeuchi, Kaoru; Miyajima, Naoko; Kobune, Fumio; Ami, Yasushi; Nagata, Noriyo; Suzaki, Yuriko; Nagai, Yoshiyuki; Tashiro, Masato

    2000-01-01

    Reverse genetics technology so far established for measles virus (MeV) is based on the Edmonston strain, which was isolated several decades ago, has been passaged in nonlymphoid cell lines, and is no longer pathogenic in monkey models. On the other hand, MeVs isolated and passaged in the Epstein-Barr virus-transformed marmoset B-lymphoblastoid cell line B95a would retain their original pathogenicity (F. Kobune et al., J. Virol. 64:700–705, 1990). Here we have developed MeV reverse genetics systems based on the highly pathogenic IC-B strain isolated in B95a cells. Infectious viruses were successfully recovered from the cloned cDNA of IC-B strain by two different approaches. One was simple cotransfection of B95a cells, with three plasmids each encoding the nucleocapsid (N), phospho (P), or large (L) protein, respectively, and their expression was driven by the bacteriophage T7 RNA polymerase supplied by coinfecting recombinant vaccinia virus vTF7-3. The second approach was transfection with the L-encoding plasmid of a helper cell line constitutively expressing the MeV N and P proteins and the T7 polymerase (F. Radecke et al., EMBO J. 14:5773–5784, 1995) on which B95a cells were overlaid. Virus clones recovered by both methods possessed RNA genomes identical to that of the parental IC-B strain and were indistinguishable from the IC-B strain with respect to growth phenotypes in vitro and the clinical course and histopathology of experimentally infected cynomolgus monkeys. Thus, the systems developed here could be useful for studying viral gene functions in the context of the natural course of MeV pathogenesis. PMID:10864679

  5. Distribution of lesions and antigen of highly pathogenic avian influenza virus A/Swan/Germany/R65/06 (H5N1) in domestic cats after presumptive infection by wild birds.

    PubMed

    Klopfleisch, R; Wolf, P U; Uhl, W; Gerst, S; Harder, T; Starick, E; Vahlenkamp, T W; Mettenleiter, T C; Teifke, J P

    2007-05-01

    In early 2006, the highly pathogenic avian influenza virus (HPAIV) H5N1 of the Asian lineage caused the death of wild aquatic birds in Northern Germany. In the mainly affected areas, a trans-species transmission of HPAIV H5N1 to mammals occurred between birds and domestic cats and 1 Stone Marten (Martes foina), respectively. Here, we report lesions and distribution of influenza virus antigen in 3 cats infected naturally with HPAIV H5N1 A/swan/Germany/R65/06. The hemagglutinin partial nucleotide sequences of the viruses were genetically closely related to a H5N1 HPAIV obtained from a dead Whooper Swan (Cygnus cygnus) of the same area. At necropsy, within the patchy dark-red and consolidated lungs, there was granulomatous pneumonia caused by Aelurostrongylus sp. Histologically, the main findings associated with influenza in all cats were bronchointerstitial pneumonia and marked random hepatic necrosis. In addition, all animals displayed lymphoid necrosis in the spleen and Peyer's patches and necrosis of the adrenal cortex. Immunohistochemically, nucleoprotein of HPAIV was present intralesionally in the lungs, liver, adrenal glands, and lymphoid tissues. Oropharyngeal swabs were shown to be suited to detect HPAIV by quantitative real-time polymerase chain reaction (RT-PCR) in these cats, despite the paucity of influenza virus antigen in the upper respiratory tract by means of immunohistochemistry. The results show that outdoor cats in areas affected by HPAIV in wild birds are at risk for lethal infection. In conclusion, hepatic necrosis was, besides bronchointerstitial pneumonia, the primary lesion, suggesting that in naturally infected cats, damage to the liver plays an important role in the pathogenesis of H5N1 influenza.

  6. Leading edge analysis of transcriptomic changes during pseudorabies virus infection

    USDA-ARS?s Scientific Manuscript database

    Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN) of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV) were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each...

  7. Respiratory syncytial virus: co-infection and paediatric lower respiratory tract infections.

    PubMed

    Yoshida, Lay-Myint; Suzuki, Motoi; Nguyen, Hien Anh; Le, Minh Nhat; Dinh Vu, Thiem; Yoshino, Hiroshi; Schmidt, Wolf-Peter; Nguyen, Thi Thuy Ai; Le, Huu Tho; Morimoto, Konosuke; Moriuchi, Hiroyuki; Dang, Duc Anh; Ariyoshi, Koya

    2013-08-01

    Comprehensive population-based data on the role of respiratory viruses in the development of lower respiratory tract infections (LRTIs) remain unclear. We investigated the incidence and effect of single and multiple infections with respiratory viruses on the risk of LRTIs in Vietnam. Population-based prospective surveillance and a case-control study of hospitalised paediatric patients with acute respiratory infection (ARI) were conducted from April 2007 through to March 2010. Healthy controls were randomly recruited from the same community. Nasopharyngeal samples were collected and tested for 13 respiratory viruses using multiplex PCRs. 1992 hospitalised ARI episodes, including 397 (19.9%) with LRTIs, were enrolled. Incidence of hospitalised LRTIs among children aged <24 months was 2171.9 per 100 000 (95% CI 1947.9-2419.7). The majority of ARI cases (60.9%) were positive for at least one virus. Human rhinovirus (24.2%), respiratory syncytial virus (20.1%) and influenza A virus (12.0%) were the most common and 9.5% had multiple-viral infections. Respiratory syncytial virus and human metapneumovirus infections independently increased the risk of LRTIs. Respiratory syncytial virus further increased the risk, when co-infected with human rhinovirus, human metapneumovirus and parainfluenza virus-3 but not with influenza A virus. The case-control analysis revealed that respiratory syncytial virus and influenza A virus increased the risk of ARI hospitalisation but not human rhinovirus. Respiratory syncytial virus is the leading pathogen associated with risk of ARI hospitalisation and LRTIs in Vietnam.

  8. Microgravity Analogues of Herpes Virus Pathogenicity: Human Cytomegalovirus (hCMV) and Varicella Zoster (VZV) Infectivity in Human Tissue Like Assemblies (TLAs)

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Albrecht, T.; Cohrs, R.

    2009-01-01

    The old adage we are our own worst enemies may perhaps be the most profound statement ever made when applied to man s desire for extraterrestrial exploration and habitation of Space. Consider the immune system protects the integrity of the entire human physiology and is comprised of two basic elements the adaptive or circulating and the innate immune system. Failure of the components of the adaptive system leads to venerability of the innate system from opportunistic microbes; viral, bacteria, and fungal, which surround us, are transported on our skin, and commonly inhabit the human physiology as normal and imunosuppressed parasites. The fine balance which is maintained for the preponderance of our normal lives, save immune disorders and disease, is deregulated in microgravity. Thus analogue systems to study these potential Risks are essential for our progress in conquering Space exploration and habitation. In this study we employed two known physiological target tissues in which the reactivation of hCMV and VZV occurs, human neural and lung systems created for the study and interaction of these herpes viruses independently and simultaneously on the innate immune system. Normal human neural and lung tissue analogues called tissue like assemblies (TLAs) were infected with low MOIs of approximately 2 x 10(exp -5) pfu hCMV or VZV and established active but prolonged low grade infections which spanned .7-1.5 months in length. These infections were characterized by the ability to continuously produce each of the viruses without expiration of the host cultures. Verification and quantification of viral replication was confirmed via RT_PCR, IHC, and confocal spectral analyses of the respective essential viral genomes. All host TLAs maintained the ability to actively proliferate throughout the entire duration of the experiments as is analogous to normal in vivo physiological conditions. These data represent a significant advance in the ability to study the triggering

  9. Equine infectious anemia in mules: virus isolation and pathogenicity studies.

    PubMed

    Spyrou, V; Papanastassopoulou, M; Psychas, V; Billinis, Ch; Koumbati, M; Vlemmas, J; Koptopoulos, G

    2003-08-29

    There appears to be a lack of information concerning responses of mules to natural infection or experimental inoculation with equine infectious anemia virus (EIAV). In the present study EIAV was isolated from mules, for the first time, and its pathogenicity in naturally infected and experimentally inoculated animals was investigated. Two naturally infected (A and B) and three EIAV free mules (C, D and E) were used for this purpose. Mule A developed clinical signs, whereas mule B remained asymptomatic until the end of the study. Mules C and D were each inoculated with 10ml of blood from mule A and developed signs of the disease; they were euthanatized or died at day 22 and 25 post-inoculation, respectively. Mule E served as a negative control. The virus was isolated from the plasma samples of mules with clinical signs of the disease (A, C and D), but not from the asymptomatic mule B. Both proviral DNA and viral RNA were amplified from blood and tissues of the infected animals by nested polymerase chain reaction (nPCR). Antibodies were not detected in the two experimentally infected mules until their natural death or euthanasia. Clinicopathological and laboratory findings showed that, in mules, EIAV produced clinical signs similar to those observed in horses and ponies. Nested PCR proved to be a rapid, sensitive and specific diagnostic method for the detection of EIAV, regardless of the disease stage.

  10. Real-time PCR to identify variola virus or other human pathogenic orthopox viruses.

    PubMed

    Scaramozzino, Natale; Ferrier-Rembert, Audrey; Favier, Anne-Laure; Rothlisberger, Corinne; Richard, Stéphane; Crance, Jean-Marc; Meyer, Hermann; Garin, Daniel

    2007-04-01

    Variola virus (family Poxviridae, genus Orthopoxvirus) and the closely related cowpox, vaccinia, and monkeypox viruses can infect humans. Efforts are mounting to replenish the smallpox vaccine stocks, optimize diagnostic methods for poxviruses, and develop new antivirals against smallpox, because it is feared that variola virus might be used as a weapon of bioterrorism. We developed an assay for the detection of variola virus DNA. The assay is based on TaqMan chemistry targeting the 14-kD protein gene. For the 1st stage of the assay we used genus consensus primers and a mixture of 2 probes (14-kD POX and 14-kD VAR) spanning the 14-kD protein-encoding gene for detection of all human pathogenic orthopoxviruses. We then tested positive samples with the specific orthopoxvirus-specific probe 14-kD POX to identify monkeypox, cowpox, and vaccinia viruses and with the 14-kD VAR probe to identify variola viruses. The assay was established on 4 different PCR cycler platforms. It was assessed in a study with 85 different orthopoxvirus species and strains that included variola, camelpox, cowpox, monkeypox, and vaccinia viruses at concentrations ranging from 100 ng/L to 1 microg/L. The assay detected as little as 0.05 fg of DNA, corresponding to 25 copies of DNA, and enabled differentiation of variola virus from the other orthopoxviruses. This real-time PCR assay provides a rapid method for the early detection and differentiation of smallpox and other human pathogenic orthopoxvirus infections.

  11. Plasmopara halstedii virus causes hypovirulence in Plasmopara halstedii, the downy mildew pathogen of the sunflower.

    PubMed

    Grasse, Wolfgang; Zipper, Reinhard; Totska, Maria; Spring, Otmar

    2013-08-01

    Plasmopara halstedii virus (PhV) is an isometric virus recently found in the oomycete Plasmopara halstedii. The fully sequenced virus genome consists of two ss(+)RNA strands encoding for the virus polymerase and the coat protein, respectively. Most of previously screened field isolates of P. halstedii were found to harbor PhV, but effects of PhV on the pathogenicity and aggressiveness of the oomycete have not been investigated yet. To assess the influence of PhV on the infectivity of P. halstedii, virus-free isolates of the oomycete were searched for, cultivated on sunflower and used for single zoospore infection. Four genetically homogenous strains belonging to three different pathotypes (710, 730, 750) were established. Subcultures of each strain were successfully infected with PhV. This afforded pairs of isogenic strains with and without virus and allowed assessment of the pathogenicity (susceptibility to specific sunflower genotypes) and aggressiveness (intensity of infection, time scale and density of sporulation) in cultivation of sunflower. While no significant difference was found in the pathogenicity of P. halstedii strains with and without virus towards sunflower seedlings of different resistance (pathotype differentials), the aggressiveness of the oomycete was diminished by PhV. Compared to the virus-free strains, the time required for the first sporulation (latent period) increased by about 1 day post inoculation. Progression of the pathogen from the hypocotyl into the epicotyl of sunflower (systemic infection) was reduced by about one third in the presence of virus. In the virus containing strains, the average density of sporangia produced per cm² cotyledon reached only 75% of the virus-free controls. In summary, the presence of PhV leads to hypovirulence effects by weakening the aggressiveness of P. halstedii.

  12. High pathogenicity avian influenza virus in the reproductive tract of chickens

    USDA-ARS?s Scientific Manuscript database

    Infection with high pathogenicity avian influenza virus (HPAIV) has been associated with a wide range of clinical manifestations in poultry including severe depression in egg production and isolation of HPAIV from eggs laid by infected hens. To evaluate the pathobiology in the reproductive tract of...

  13. Airborne transmission of H5N1 high pathogenicity avian influenza viruses during simulated home slaughter

    USDA-ARS?s Scientific Manuscript database

    Most H5N1 human infections have occurred following exposure to H5N1 high pathogenicity avian influenza (HPAI) virus-infected poultry, especially when poultry are home slaughtered or slaughtered in live poultry markets. Previous studies have demonstrated that slaughter of clade 1 isolate A/Vietnam/1...

  14. Atypical pathogens and respiratory tract infections.

    PubMed

    Blasi, F

    2004-07-01

    The atypical respiratory pathogens Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila are now recognised as a significant cause of acute respiratory-tract infections, implicated in community-acquired pneumonia, acute exacerbations of chronic bronchitis, asthma, and less frequently, upper respiratory-tract infections. Chronic infection with C. pneumoniae is common among patients with chronic obstructive pulmonary disease and may also play a role in the natural history of asthma, including exacerbations. The lack of a gold standard for diagnosis of these pathogens still handicaps the current understanding of their true prevalence and role in the pathogenesis of acute and chronic respiratory infections. While molecular diagnostic techniques, such as polymerase chain reaction, offer improvements in sensitivity, specificity and rapidity over culture and serology, the need remains for a consistent and reproducible diagnostic technique, available to all microbiology laboratories. Current treatment guidelines for community-acquired pneumonia recognise the importance of atypical respiratory pathogens in its aetiology, for which macrolides are considered suitable first-line agents. The value of atypical coverage in antibiotic therapy for acute exacerbations of chronic bronchitis and exacerbations of asthma is less clear, while there is no evidence to suggest that atypical pathogens should be covered in antibiotic treatment of upper respiratory-tract infections.

  15. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Somanathan Pillai, Smitha; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  16. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, D. E.; Suarez, D. L.; Senne, D. A.; Pedersen, J. C.; Killian, M. L.; Pasick, J.; Handel, K.; Pillai, S. P. S.; Lee, C. -W.; Stallknecht, D.; Slemons, R.; Ip, H. S.; Deliberto, T.

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10 5.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  17. Characterization of Low-Pathogenicity H5N1 Avian Influenza Viruses from North America▿

    PubMed Central

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Pillai, Smitha P. Somanathan; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage. PMID:17728231

  18. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America.

    PubMed

    Spackman, Erica; Swayne, David E; Suarez, David L; Senne, Dennis A; Pedersen, Janice C; Killian, Mary Lea; Pasick, John; Handel, Katherine; Pillai, Smitha P Somanathan; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S; Deliberto, Tom

    2007-11-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10(5.3) and 10(7.5) 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  19. Infectious Bronchitis Virus Variants: Molecular Analysis and Pathogenicity Investigation.

    PubMed

    Lin, Shu-Yi; Chen, Hui-Wen

    2017-09-22

    Infectious bronchitis virus (IBV) variants constantly emerge and pose economic threats to poultry farms worldwide. Numerous studies on the molecular and pathogenic characterization of IBV variants have been performed between 2007 and 2017, which we have reviewed herein. We noted that viral genetic mutations and recombination events commonly gave rise to distinct IBV genotypes, serotypes and pathotypes. In addition to characterizing the S1 genes, full viral genomic sequencing, comprehensive antigenicity, and pathogenicity studies on emerging variants have advanced our understanding of IBV infections, which is valuable for developing countermeasures against IBV field outbreaks. This review of IBV variants provides practical value for understanding their phylogenetic relationships and epidemiology from both regional and worldwide viewpoints.

  20. Changing clinical scenario in Chandipura virus infection

    PubMed Central

    Sudeep, A.B.; Gurav, Y.K.; Bondre, V.P.

    2016-01-01

    Chandipura virus (CHPV) (Vesiculovirus: Rhabdoviridae) garnered global attention as an emerging neurotropic pathogen inflicting high mortality in children within 24 h of commencement of symptoms. The 2003-2004 outbreaks in Central India witnessed case fatality rates ranging from 56-75 per cent in Andhra Pradesh and Gujarat with typical encephalitic symptoms. Due to the acute sickness and rapid deterioration, the precise mechanism of action of the virus is still unknown. Recent studies have shown increased expression of CHPV phosphoprotein upto 6 h post infection (PI) demonstrating CHPV replication in neuronal cells and the rapid destruction of the cells by apoptosis shed light on the probable mechanism of rapid death in children. Phlebotomine sandflies are implicated as vectors due to their predominance in endemic areas, repeated virus isolations and their ability to transmit the virus by transovarial and venereal routes. Significant contributions have been made in the development of diagnostics and prophylactics, vaccines and antivirals. Two candidate vaccines, viz. a recombinant vaccine and a killed vaccine and siRNAs targeting P and M proteins have been developed and are awaiting clinical trials. Rhabdomyosarcoma and Phlebotomus papatasi cell lines as well as embryonated chicken eggs have been found useful in virus isolation and propagation. Despite these advancements, CHPV has been a major concern in Central India and warrants immediate attention from virologists, neurologists, paediatricians and the government for containing the virus. PMID:27748295

  1. Pathogenic prion protein fragment (PrP106-126) promotes human immunodeficiency virus type-1 infection in peripheral blood monocyte-derived macrophages.

    PubMed

    Bacot, Silvia M; Feldman, Gerald M; Yamada, Kenneth M; Dhawan, Subhash

    2015-02-01

    Transfusion of blood and blood products contaminated with the pathogenic form of prion protein Prp(sc), thought to be the causative agent of variant a Creutzfeldt-Jakob disease (vCJD), may result in serious consequences in recipients with a compromised immune system, for example, as seen in HIV-1 infection. In the present study, we demonstrate that treatment of peripheral blood monocyte-derived macrophages (MDM) with PrP106-126, a synthetic domain of PrP(sc) that has intrinsic functional activities related to the full-length protein, markedly increased their susceptibility to HIV-1 infection, induced cytokine secretion, and enhanced their migratory behavior in response to N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP). Live-cell imaging of MDM cultured in the presence of PrP106-126 showed large cell clusters indicative of cellular activation. Tyrosine kinase inhibitor STI-571, protein kinase C inhibitor K252B, and cyclin-dependent kinase inhibitor olomoucine attenuated PrP106-126-induced altered MDM functions. These findings delineate a previously undefined functional role of PrP106-126-mediated host cell response in promoting HIV-1 pathogenesis.

  2. Role for proteases and HLA-G in the pathogenicity of influenza A viruses.

    PubMed

    Foucault, Marie-Laure; Moules, Vincent; Rosa-Calatrava, Manuel; Riteau, Béatrice

    2011-07-01

    Influenza is one of the most common infectious diseases in humans occurring as seasonal epidemic and sporadic pandemic outbreaks. The ongoing infections of humans with avian H5N1 influenza A viruses (IAV) and the past 2009 pandemic caused by the quadruple human/avian/swine reassortant (H1N1) virus highlights the permanent threat caused by these viruses. This review aims to describe the interaction between the virus and the host, with a particular focus on the role of proteases and HLA-G in the pathogenicity of influenza viruses.

  3. Unfolded protein response in hepatitis C virus infection

    PubMed Central

    Chan, Shiu-Wan

    2014-01-01

    Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical importance. The virus establishes a chronic infection and can progress from chronic hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The mechanisms of viral persistence and pathogenesis are poorly understood. Recently the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic reticulum (ER) stress, has emerged to be a major contributing factor in many human diseases. It is also evident that viruses interact with the host UPR in many different ways and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular type of infection. Here we present evidence for the elicitation of chronic ER stress in HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the various levels of UPR regulation by different viral proteins and finally, we propose several mechanisms by which the virus provokes the UPR. PMID:24904547

  4. Multivalent Glycosylated Nanostructures for Ebola Virus Infection.

    PubMed

    Illescas, Beatriz M; Rojo, Javier; Delgado, Rafael; Martín, Nazario

    2017-04-10

    The infection of humans by lethal pathogens such as Ebola and other related viruses has not been properly addressed so far. In this context, a relevant question arises: what can chemistry do in the search for new strategies and approaches to solve this emergent problem? Although initially a variety of known chemical compounds - for other purposes - have been disappointingly tested against Ebola virus infection, more recently, specific molecules have been prepared. In this Perspective, we present a new approach directed to the design of efficient entry inhibitors to minimize the development of resistance by viral mutations. In particular, we focused on dendrimers as well as fullerene C60 - with a unique symmetrical and 3D globular structure - as biocompatible carbon platforms for the multivalent presentation of carbohydrates. The antiviral activity of these compounds in an Ebola pseudotyped infection model were in the low micromolar range for fullerenes with 12 and 36 mannoses. However, new tridecafullerenes - in which the central alkyne scaffold of [60]fullerene has been connected to 12 sugar-containing [60]fullerene units (total 120 mannoses)- exhibit an outstanding antiviral activity with IC50 in the subnanomolar range! The multivalent presentation of specific carbohydrates by using 3D fullerenes as controlled biocompatible carbon scaffolds represents a real advance being currently the most efficient molecules in vitro against Ebola virus infection. However, additional studies are needed to determine the optimized fullerene-based leads for practical applications.

  5. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks

    PubMed Central

    2013-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations. PMID:23876184

  6. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks.

    PubMed

    Pantin-Jackwood, Mary; Swayne, David E; Smith, Diane; Shepherd, Eric

    2013-07-22

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.

  7. Zika Virus as an Emerging Global Pathogen: Neurological Complications of Zika Virus.

    PubMed

    Beckham, J David; Pastula, Daniel M; Massey, Aaron; Tyler, Kenneth L

    2016-07-01

    Zika virus (ZIKV) is an emerging arthropod-borne virus (arbovirus) in the genus Flavivirus that has caused a widespread outbreak of febrile illness, is associated with neurological disease, and has spread across the Pacific to the Americas in a short period. In this review, we discuss what is currently known about ZIKV, neuroimmunologic complications, and the impact on global human health. Zika virus spread across Africa and Asia in part owing to unique genomic evolutionary conditions and pressures resulting in specific human disease manifestations, complications, and pathogenesis. Recent data suggest that acute ZIKV infection in pregnant women may result in acute infection of fetal tissue and brain tissue, causing microcephaly and potentially severe debilitation of the infant or even death of the fetus. Cases of acute ZIKV are also associated with Guillain-Barré syndrome. With the increased number of cases, new complications such as ocular involvement and sexual transmission have been reported. Zika virus is an emerging viral pathogen with significant consequences on human health throughout the world. Ongoing research into this pathogen is urgently needed to produce viable vaccine and therapeutic options.

  8. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

    PubMed Central

    Abdelwhab, El-Sayed M; Veits, Jutta; Mettenleiter, Thomas C

    2013-01-01

    Avian influenza viruses (AIV) of H5 and H7 subtypes exhibit two different pathotypes in poultry: infection with low pathogenic (LP) strains results in minimal, if any, health disturbances, whereas highly pathogenic (HP) strains cause severe morbidity and mortality. LPAIV of H5 and H7 subtypes can spontaneously mutate into HPAIV. Ten outbreaks caused by HPAIV are known to have been preceded by circulation of a predecessor LPAIV in poultry. Three of them were caused by H5N2 subtype and seven involved H7 subtype in combination with N1, N3, or N7. Here, we review those outbreaks and summarize the genetic changes which resulted in the transformation of LPAIV to HPAIV under natural conditions. Mutations that were found directly in those outbreaks are more likely to be linked to virulence, pathogenesis, and early adaptation of AIV. PMID:23863606

  9. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  10. Rapidly expanding range of highly pathogenic avian influenza viruses

    USGS Publications Warehouse

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  11. Chikungunya virus infection: an overview.

    PubMed

    Caglioti, Claudia; Lalle, Eleonora; Castilletti, Concetta; Carletti, Fabrizio; Capobianchi, Maria Rosaria; Bordi, Licia

    2013-07-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus belonging to the Togaviridae family, first isolated in Tanzania in 1952. The main vectors are mosquitoes from the Aedes species. Recently, the establishment of an envelope mutation increased infectivity for A. albopictus. CHIKV has recently re-emerged causing millions of infections in countries around the Indian Ocean characterized by climate conditions favourable to high vector density. Importation of human cases to European regions with high density of suitable arthropod vectors (such as A. albopictus) may trigger autochthonous outbreaks. The clinical signs of CHIKV infection include non-specific flu-like symptoms, and a characteristic rash accompanied by joint pain that may last for a long time after the resolution of the infection. The death rate is not particularly high, but excess mortality has been observed in concomitance with large CHIKV outbreaks. Deregulation of innate defense mechanisms, such as cytokine inflammatory response, may participate in the main clinical signs of CHIKV infection, and the establishment of persistent (chronic) disease. There is no specific therapy, and prevention is the main countermeasure. Prevention is based on insect control and in avoiding mosquito bites in endemic countries. Diagnosis is based on the detection of virus by molecular methods or by virus culture on the first days of infection, and by detection of an immune response in later stages. CHIKV infection must be suspected in patients with compatible clinical symptoms returning from epidemic/endemic areas. Differential diagnosis should take into account the cross-reactivity with other viruses from the same antigenic complex (i.e. O'nyong-nyong virus).

  12. GoTLR7 but not GoTLR21 mediated antiviral immune responses against low pathogenic H9N2 AIV and Newcastle disease virus infection.

    PubMed

    Yan, Bing; Zhang, Jinyue; Zhang, Wei; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun; Chen, Shun

    2017-01-01

    Aquatic birds are considered the biological and genetic reservoirs of avian influenza virus and play a critical role in the transmission and dissemination of Newcastle Disease Virus (NDV). Both TLR7 and TLR21 are important for the host antiviral immune response. In an in vivo study, goTLR7, not goTLR21, was significantly up-regulated in the lungs of geese at 3 to 7 d after challenge with H9N2. And goOASL expression was induced in the bursa of fabricius, harderian glands and lungs. An increase in goRIG-I was detected in the lung and small intestine, whereas goPKR was increased in the lung but decreased in the thymus. In the in vitro study, goTLR7 and goRIG-I but not goTLR21 were highly induced by H9N2. Moreover, goOASL and goPKR were significantly induced in H9N2-treated PBMCs, whereas goMx was suppressed. The over-expression of goTLR7, not goTLR21, controlled NDV replication in DF-1 cells, resulting in a decrease in viral copies and the viral titres. Furthermore, we explored the cellular localization of goTLR7 and goTLR21 in heterologous (DF-1 and BHK21) and homologous cells (GEF) through ectopic expression of goTLRs. The antiviral functions of goTLR7 and goTLR21 during H9N2 and NDV infection and their cellular locations were reported here for the first time. These results will contribute to better understand the TLR-dependent antiviral immune responses of waterfowl. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Experimental infection of Muscovy ducks with highly pathogenic avian influenza virus (H5N1) belonging to clade 2.2.

    PubMed

    Guionie, Olivier; Guillou-Cloarec, Cécile; Courtois, David; Bougeard, B Stéphanie; Amelot, Michel; Jestin, Véronique

    2010-03-01

    Highly pathogenic (HP) H5N1 avian influenza (AI) is enzootic in several countries of Asia and Africa and constitutes a major threat, at the world level, for both animal and public health. Ducks play an important role in the epidemiology of AI, including HP H5N1 AI. Although vaccination can be a useful tool to control AI, duck vaccination has not proved very efficient in the field, indicating a need to develop new vaccines and a challenge model to evaluate the protection for duck species. Although Muscovy duck is the duck species most often reared in France, the primary duck-producing country in Europe, and is also produced in Asia, it is rarely studied. Our team recently demonstrated a good cross-reactivity with hemagglutinin from clade 2.2 and inferred that this could be a good vaccine candidate for ducks. Two challenges using two French H5N1 HP strains, 1) A/mute swan/France/06299/06 (Swan/06299), clade 2.2.1, and 2) A/mute swan/France/070203/07 (Swan/070203), clade 2.2 (but different from subclade 2.2.1), were performed (each) on 20 Muscovy ducks (including five contacts) inoculated by oculo-nasal route (6 log10 median egg infectious doses per duck). Clinical signs were recorded daily, and cloacal and oropharyngeal swabs were collected throughout the assay. Autopsies were done on all dead ducks, and organs were taken for analyses. Virus was measured by quantitative reverse transcriptase-PCR based on the M gene AI virus. Ducks presented severe nervous signs in both challenges. Swan/070203 strain led to 80% morbidity (12/15 sick ducks) and 73% mortality (11/15 ducks) at 13.5 days postinfection (dpi), whereas Swan/06299 strain produced 100% mortality at 6.5 dpi. Viral RNA load was significantly lower via the cloacal route than via the oropharyngeal route in both trials, presenting a peak in the first challenge at 3.5 dpi and being more stable in the second challenge. The brain was the organ containing the highest viral RNA load in both challenges. Viral RNA load in

  14. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses.

  15. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  16. Nitric oxide and virus infection

    PubMed Central

    Akaike, T; Maeda, H

    2000-01-01

    Nitric oxide (NO) has complex and diverse functions in physiological and pathophysiological phenomena. The mechanisms of many events induced by NO are now well defined, so that a fundamental understanding of NO biology is almost established. Accumulated evidence suggests that NO and oxygen radicals such as superoxide are key molecules in the pathogenesis of various infectious diseases. NO biosynthesis, particularly through expression of an inducible NO synthase (iNOS), occurs in a variety of microbial infections. Although antimicrobial activity of NO is appreciated for bacteria and protozoa, NO has opposing effects in virus infections such as influenza virus pneumonia and certain other neurotropic virus infections. iNOS produces an excessive amount of NO for long periods, which allows generation of a highly reactive nitrogen oxide species, peroxynitrite, via a radical coupling reaction of NO with superoxide. Thus, peroxynitrite causes oxidative tissue injury through potent oxidation and nitration reactions of various biomolecules. NO also appears to affect a host's immune response, with immunopathological consequences. For example, overproduction of NO in virus infections in mice is reported to suppress type 1 helper T-cell-dependent immune responses, leading to type 2 helper T-cell-biased immunological host responses. Thus, NO may be a host response modulator rather than a simple antiviral agent. The unique biological properties of NO are further illustrated by our recent data suggesting that viral mutation and evolution may be accelerated by NO-induced oxidative stress. Here, we discuss these multiple roles of NO in pathogenesis of virus infections as related to both non-specific inflammatory responses and immunological host reactions modulated by NO during infections in vivo. PMID:11106932

  17. Differential immune response of mallard duck peripheral blood mononuclear cells to two highly pathogenic avian influenza H5N1 viruses with distinct pathogenicity in mallard ducks.

    PubMed

    Cui, Zhu; Hu, Jiao; He, Liang; Li, Qunhui; Gu, Min; Wang, Xiaoquan; Hu, Shunlin; Liu, Huimou; Liu, Wenbo; Liu, Xiaowen; Liu, Xiufan

    2014-02-01

    CK10 and GS10 are two H5N1 highly pathogenic influenza viruses of similar genetic background but differ in their pathogenicity in mallard ducks. CK10 is highly pathogenic whereas GS10 is low pathogenic. In this study, strong inflammatory response in terms of the expression level of several cytokines was observed in mallard duck peripheral blood mononuclear cells (PBMC) infected with CK10 while mild response was triggered in those by GS10 infection. Two remarkable and intense peaks of immune response were induced by CK10 infection within 24 hours (at 8 and 24 hours post infection, respectively) without reducing the virus replication. Our observations indicated that sustained and intense innate immune responses may be central to the high pathogenicity caused by CK10 in ducks.

  18. Pathogenicity of reassortant H5N1 highly pathogenic avian influenza viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks, including Egypt. In order to understand which viral genes are contri...

  19. Evaluation of the pathogenicity of West Nile virus (WNV) lineage 2 strains in a SPF chicken model of infection: NS3-249Pro mutation is neither sufficient nor necessary for conferring virulence.

    PubMed

    Dridi, Maha; Van Den Berg, Thierry; Lecollinet, Sylvie; Lambrecht, Benedicte

    2015-10-30

    Lineage 2 West Nile virus (WNV) strains were reported for the first time in Europe in 2004. Despite an almost silent circulation around their entry point in Hungary, an upsurge of pathogenicity occurred in 2010 as 262 people suffered from neuroinvasive disease in Greece. This increase in virulence was imputed to the emergence of a His249Pro mutation in the viral NS3 helicase, as previously evidenced in American crows experimentally infected with the prototype lineage 1 North-American WNV strain. However, since 2003, WNV strains bearing the NS3Pro genotype are regularly isolated in Western-Mediterranean countries without being correlated to any virulent outbreak in vertebrates. We thus sought to evaluate the weight of the NS3249Pro genotype as a virulence marker of WNV in an in vivo avian model of WNV infection. We therefore characterized three genetically-related Eastern-Europe lineage 2 WNV strains in day-old specific pathogen-free (SPF) chickens: Hun2004 and Aus2008 which are both characterized by a NS3249His genotype, and Gr2011 which is characterized by a NS3249Pro genotype. Unlike Hun2004 and Aus2008, Gr2011 was weakly virulent in SPF chicks as Gr2011-induced viremia was lower and waned quicklier than in the Hun2004 and Aus2008 groups. Overall, this study showed that the presence of a proline residue at position 249 of the viral NS3 helicase is neither sufficient nor necessary to confer pathogenicity to any given lineage 2 WNV strain in birds.

  20. Preference by a virus vector for infected plants is reversed after virus acquisition.

    PubMed

    Rajabaskar, Dheivasigamani; Bosque-Pérez, Nilsa A; Eigenbrode, Sanford D

    2014-06-24

    Pathogens and their vectors can interact either directly or indirectly via their shared hosts, with implications for the persistence and spread of the pathogen in host populations. For example, some plant viruses induce changes in host plants that cause the aphids that carry these viruses to settle preferentially on infected plants. Furthermore, relative preference by the vector for infected plants can change to a preference for noninfected plants after virus acquisition by the vector, as has recently been demonstrated in the wheat-Rhopalosiphum padi-Barley yellow dwarf virus pathosystem. Here we document a similar dynamic in the potato-Myzus persicae (Sulzer)-Potato leaf roll virus (PLRV) pathosystem. Specifically, in a dual choice bioassay, nonviruliferous apterous M. persicae settled preferentially on or near potato plants infected with PLRV relative to noninfected (sham-inoculated) control plants, whereas viruliferous M. persicae (carrying PLRV) preferentially settled on or near sham-inoculated potato plants relative to infected plants. The change in preference after virus acquisition also occurred in response to trapped headspace volatiles, and to synthetic mimics of headspace volatile blends from PLRV-infected and sham-inoculated potato plants. The change in preference we document should promote virus spread by increasing rates of virus acquisition and transmission by the vector. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Natural infection of turkeys by infectious laryngotracheitis virus.

    PubMed

    Portz, Cristiana; Beltrão, Nilzane; Furian, Thales Quedi; Júnior, Alfredo Bianco; Macagnan, Marisa; Griebeler, Josiane; Lima Rosa, Carlos André Veiga; Colodel, Edson Moleta; Driemeier, David; Back, Alberto; Barth Schatzmayr, Ortrud Monika; Canal, Cláudio Wageck

    2008-09-18

    The infectious laryngotracheitis virus (ILTV) is an important respiratory pathogen of chickens that also infects pheasants and peafowl. Epidemiologically non-related commercial turkey flocks with clinical signs such as tracheitis, swollen sinuses, conjunctivitis and expectoration of bloody mucus were examined for the presence of the virus. Laboratory ILTV detection was performed by virus isolation in embryonated eggs and cell cultures, PCR and sequencing of amplification products, histopathology, indirect immunofluorescence and electron microscopy. One ILTV turkey isolate was also experimentally inoculated into susceptible chickens and turkeys, reproducing a mild respiratory disease. This is the first description of natural infections with ILTV in turkeys.

  2. Dengue virus antibodies enhance Zika virus infection

    PubMed Central

    Paul, Lauren M; Carlin, Eric R; Jenkins, Meagan M; Tan, Amanda L; Barcellona, Carolyn M; Nicholson, Cindo O; Michael, Scott F; Isern, Sharon

    2016-01-01

    For decades, human infections with Zika virus (ZIKV), a mosquito-transmitted flavivirus, were sporadic, associated with mild disease, and went underreported since symptoms were similar to other acute febrile diseases. Recent reports of severe disease associated with ZIKV have greatly heightened awareness. It is anticipated that ZIKV will continue to spread in the Americas and globally where competent Aedes mosquito vectors are found. Dengue virus (DENV), the most common mosquito-transmitted human flavivirus, is both well-established and the source of outbreaks in areas of recent ZIKV introduction. DENV and ZIKV are closely related, resulting in substantial antigenic overlap. Through antibody-dependent enhancement (ADE), anti-DENV antibodies can enhance the infectivity of DENV for certain classes of immune cells, causing increased viral production that correlates with severe disease outcomes. Similarly, ZIKV has been shown to undergo ADE in response to antibodies generated by other flaviviruses. We tested the neutralizing and enhancing potential of well-characterized broadly neutralizing human anti-DENV monoclonal antibodies (HMAbs) and human DENV immune sera against ZIKV using neutralization and ADE assays. We show that anti-DENV HMAbs, cross-react, do not neutralize, and greatly enhance ZIKV infection in vitro. DENV immune sera had varying degrees of neutralization against ZIKV and similarly enhanced ZIKV infection. Our results suggest that pre-existing DENV immunity may enhance ZIKV infection in vivo and may lead to increased disease severity. Understanding the interplay between ZIKV and DENV will be critical in informing public health responses and will be particularly valuable for ZIKV and DENV vaccine design and implementation strategies. PMID:28090318

  3. Dengue virus antibodies enhance Zika virus infection.

    PubMed

    Paul, Lauren M; Carlin, Eric R; Jenkins, Meagan M; Tan, Amanda L; Barcellona, Carolyn M; Nicholson, Cindo O; Michael, Scott F; Isern, Sharon

    2016-12-01

    For decades, human infections with Zika virus (ZIKV), a mosquito-transmitted flavivirus, were sporadic, associated with mild disease, and went underreported since symptoms were similar to other acute febrile diseases. Recent reports of severe disease associated with ZIKV have greatly heightened awareness. It is anticipated that ZIKV will continue to spread in the Americas and globally where competent Aedes mosquito vectors are found. Dengue virus (DENV), the most common mosquito-transmitted human flavivirus, is both well-established and the source of outbreaks in areas of recent ZIKV introduction. DENV and ZIKV are closely related, resulting in substantial antigenic overlap. Through antibody-dependent enhancement (ADE), anti-DENV antibodies can enhance the infectivity of DENV for certain classes of immune cells, causing increased viral production that correlates with severe disease outcomes. Similarly, ZIKV has been shown to undergo ADE in response to antibodies generated by other flaviviruses. We tested the neutralizing and enhancing potential of well-characterized broadly neutralizing human anti-DENV monoclonal antibodies (HMAbs) and human DENV immune sera against ZIKV using neutralization and ADE assays. We show that anti-DENV HMAbs, cross-react, do not neutralize, and greatly enhance ZIKV infection in vitro. DENV immune sera had varying degrees of neutralization against ZIKV and similarly enhanced ZIKV infection. Our results suggest that pre-existing DENV immunity may enhance ZIKV infection in vivo and may lead to increased disease severity. Understanding the interplay between ZIKV and DENV will be critical in informing public health responses and will be particularly valuable for ZIKV and DENV vaccine design and implementation strategies.

  4. Protection and Virus Shedding of Falcons Vaccinated against Highly Pathogenic Avian Influenza A Virus (H5N1)

    PubMed Central

    Hafez, Hafez M.; Klopfleisch, Robert; Lüschow, Dörte; Prusas, Christine; Teifke, Jens P.; Rudolf, Miriam; Grund, Christian; Kalthoff, Donata; Mettenleiter, Thomas; Beer, Martin; Harder, Timm

    2007-01-01

    Because fatal infections with highly pathogenic avian influenza A (HPAI) virus subtype H5N1 have been reported in birds of prey, we sought to determine detailed information about the birds’ susceptibility and protection after vaccination. Ten falcons vaccinated with an inactivated influenza virus (H5N2) vaccine seroconverted. We then challenged 5 vaccinated and 5 nonvaccinated falcons with HPAI (H5N1). All vaccinated birds survived; all unvaccinated birds died within 5 days. For the nonvaccinated birds, histopathologic examination showed tissue degeneration and necrosis, immunohistochemical techniques showed influenza virus antigen in affected tissues, and these birds shed high levels of infectious virus from the oropharynx and cloaca. Vaccinated birds showed no influenza virus antigen in tissues and shed virus at lower titers from the oropharynx only. Vaccination could protect these valuable birds and, through reduced virus shedding, reduce risk for transmission to other avian species and humans. PMID:18217549

  5. Protection and virus shedding of falcons vaccinated against highly pathogenic avian influenza A virus (H5N1).

    PubMed

    Lierz, Michael; Hafez, Hafez M; Klopfleisch, Robert; Lüschow, Dörte; Prusas, Christine; Teifke, Jens P; Rudolf, Miriam; Grund, Christian; Kalthoff, Donata; Mettenleiter, Thomas; Beer, Martin; Hardert, Timm

    2007-11-01

    Because fatal infections with highly pathogenic avian influenza A (HPAI) virus subtype H5N1 have been reported in birds of prey, we sought to determine detailed information about the birds' susceptibility and protection after vaccination. Ten falcons vaccinated with an inactivated influenza virus (H5N2) vaccine seroconverted. We then challenged 5 vaccinated and 5 nonvaccinated falcons with HPAI (H5N1). All vaccinated birds survived; all unvaccinated birds died within 5 days. For the nonvaccinated birds, histopathologic examination showed tissue degeneration and necrosis, immunohistochemical techniques showed influenza virus antigen in affected tissues, and these birds shed high levels of infectious virus from the oropharynx and cloaca. Vaccinated birds showed no influenza virus antigen in tissues and shed virus at lower titers from the oropharynx only. Vaccination could protect these valuable birds and, through reduced virus shedding, reduce risk for transmission to other avian species and humans.

  6. Comparison of the pathogenicity of the USDA challenge virus strain to a field strain of infectious laryngotracheitis virus.

    PubMed

    Koski, Danielle M; Predgen, Ann S; Trampel, Darrell W; Conrad, Sandra K; Narwold, Debra R; Hermann, Joseph R

    2015-07-01

    Infectious laryngotracheitis virus (ILTV) causes respiratory disease in chickens. This alphaherpesvirus infects laryngeal tracheal epithelial cells and causes outbreaks culminating in decreases in egg production, respiratory distress in chickens and mortality. There are several different vaccines to combat symptoms of the virus, including chicken embryo origin, tissue culture origin and recombinant vaccines. All vaccines licensed for use in the U.S. are tested for efficacy and potency according to U.S. federal regulation using a vaccine challenge assay involving the use of an ILT challenge virus. This challenge virus is provided to biologics companies by the Center for Veterinary Biologics (CVB), United States Department of Agriculture (USDA). The current USDA challenge virus originated from a vaccine strain and has been subjected to multiple passages in eggs, and may not represent what is currently circulating in the field. The objective of this study was to evaluate and compare the pathogenicity of USDA's challenge virus strain to the pathogenicity of a recent ILT field isolate. Using the challenge virus and various dilutions of the field isolate, clinical signs, mortality and pathology were evaluated in chickens. Results indicate that the field isolate at a 1:20 dilution is comparable in pathogenicity to the USDA challenge virus at a 1:4 dilution, and that the ILTV field isolate is a viable candidate that could be used as a challenge virus when evaluating vaccine efficacy. Published by Elsevier Ltd.

  7. Infection of Differentiated Porcine Airway Epithelial Cells by Influenza Virus: Differential Susceptibility to Infection by Porcine and Avian Viruses

    PubMed Central

    Punyadarsaniya, Darsaniya; Liang, Chi-Hui; Winter, Christine; Petersen, Henning; Rautenschlein, Silke; Hennig-Pauka, Isabel; Schwegmann-Wessels, Christel; Wu, Chung-Yi; Wong, Chi-Huey; Herrler, Georg

    2011-01-01

    Background Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. Methodology/Principal Findings To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. Conclusions/Significance Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine. PMID:22174804

  8. Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses.

    PubMed

    Punyadarsaniya, Darsaniya; Liang, Chi-Hui; Winter, Christine; Petersen, Henning; Rautenschlein, Silke; Hennig-Pauka, Isabel; Schwegmann-Wessels, Christel; Wu, Chung-Yi; Wong, Chi-Huey; Herrler, Georg

    2011-01-01

    Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine.

  9. Detection of viruses and atypical bacteria associated with acute respiratory infection of children in Hubei, China.

    PubMed

    Wu, Zegang; Li, Yan; Gu, Jian; Zheng, Hongyun; Tong, Yongqing; Wu, Qing

    2014-02-01

    Acute respiratory infection is the major cause of disease and death in children, particularly in developing countries. However, the spectrum of pathogenic viruses and atypical bacteria that exist in many of these countries remains incompletely characterized. The aim of this study was to examine the spectrum of pathogenic viruses and atypical bacteria associated with acute respiratory infection in children under the age of 16. A total of 10 435 serum sera specimens were collected from hospitalized children presenting with acute respiratory infection symptoms. Indirect immunofluorescence assays were performed to detect immunoglobulin M antibodies against nine common pathogens: mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila, coxiella burnetii and chamydophila pneumonia. Of the 10 435 specimens examined, 7046 tested positive for at least one pathogen. Among all of the tested pathogens, mycoplasma pneumonia had the highest detection rate (56.9%). Influenza virus A and influenza virus B epidemics occurred during both winter and summer. The detection rate of respiratory syncytial virus and adenovirus was higher in spring. Cases of mixed infection were more complex: 4136 specimens (39.6%) tested positive for ≥2 pathogens. There were statistically significant difference in detection rates of mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila and chamydophila pneumonia among different age groups (P < 0.05). The most common pathogens causing acute respiratory infection among children in Hubei of China were mycoplasma pneumonia, influenza virus B and respiratory syncytial virus. The detection rates for each pathogen displayed specific seasonal and age group variations. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  10. In vivo replication of pathogenic and attenuated strains of Junin virus in different cell populations of lymphatic tissue.

    PubMed Central

    Laguens, M; Chambó, J G; Laguens, R P

    1983-01-01

    Lymphatic tissue is one of the main sites for replication of Junin virus. To characterize which cells are involved in that replication, the presence of Junin virus in purified populations of macrophages and dendritic cells from the spleens of guinea pigs infected with pathogenic and attenuated strains was investigated by immunofluorescence and intracerebral inoculation into newborn mice. The pathogenic strain was present both in macrophages and in dendritic cells, but the attenuated strain selectively infected dendritic cells. These observations suggest that the pathogenic behavior and replication efficiency of these two strains of Junin virus may be related to a difference in cell targets. Images PMID:6309667

  11. Neonatal Herpes Simplex Virus Infection.

    PubMed

    James, Scott H; Kimberlin, David W

    2015-09-01

    Herpes simplex virus (HSV) 1 and HSV-2 infections are highly prevalent worldwide and are characterized by establishing lifelong infection with periods of latency interspersed with periodic episodes of reactivation. Acquisition of HSV by an infant during the peripartum or postpartum period results in neonatal HSV disease, a rare but significant infection that can be associated with severe morbidity and mortality, especially if there is dissemination or central nervous system involvement. Diagnostic and therapeutic advances have led to improvements in mortality and, to a lesser extent, neurodevelopmental outcomes, but room exists for further improvement.

  12. Neonatal herpes simplex virus infection.

    PubMed

    Cherpes, Thomas L; Matthews, Dean B; Maryak, Samantha A

    2012-12-01

    Neonatal herpes, seen roughly in 1 of 3000 live births in the United States, is the most serious manifestation of herpes simplex virus (HSV) infection in the perinatal period. Although acyclovir therapy decreases infant mortality associated with perinatal HSV transmission, development of permanent neurological disabilities is not uncommon. Mother-to-neonate HSV transmission is most efficient when maternal genital tract HSV infection is acquired proximate to the time of delivery, signifying that neonatal herpes prevention strategies need to focus on decreasing the incidence of maternal infection during pregnancy and more precisely identifying infants most likely to benefit from prophylactic antiviral therapy.

  13. Hepatitis Virus Infections in Poultry.

    PubMed

    Yugo, Danielle M; Hauck, Ruediger; Shivaprasad, H L; Meng, Xiang-Jin

    2016-09-01

    Viral hepatitis in poultry is a complex disease syndrome caused by several viruses belonging to different families including avian hepatitis E virus (HEV), duck hepatitis B virus (DHBV), duck hepatitis A virus (DHAV-1, -2, -3), duck hepatitis virus Types 2 and 3, fowl adenoviruses (FAdV), and turkey hepatitis virus (THV). While these hepatitis viruses share the same target organ, the liver, they each possess unique clinical and biological features. In this article, we aim to review the common and unique features of major poultry hepatitis viruses in an effort to identify the knowledge gaps and aid the prevention and control of poultry viral hepatitis. Avian HEV is an Orthohepevirus B in the family Hepeviridae that naturally infects chickens and consists of three distinct genotypes worldwide. Avian HEV is associated with hepatitis-splenomegaly syndrome or big liver and spleen disease in chickens, although the majority of the infected birds are subclinical. Avihepadnaviruses in the family of Hepadnaviridae have been isolated from ducks, snow geese, white storks, grey herons, cranes, and parrots. DHBV evolved with the host as a noncytopathic form without clinical signs and rarely progressed to chronicity. The outcome for DHBV infection varies by the host's ability to elicit an immune response and is dose and age dependent in ducks, thus mimicking the pathogenesis of human hepatitis B virus (HBV) infections and providing an excellent animal model for human HBV. DHAV is a picornavirus that causes a highly contagious virus infection in ducks with up to 100% flock mortality in ducklings under 6 wk of age, while older birds remain unaffected. The high morbidity and mortality has an economic impact on intensive duck production farming. Duck hepatitis virus Types 2 and 3 are astroviruses in the family of Astroviridae with similarity phylogenetically to turkey astroviruses, implicating the potential for cross-species infections between strains. Duck astrovirus (DAstV) causes

  14. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) avian influenza viruses (AIV) present an on going threat to the U.S. poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection. Because the early events of AIV infection can occur on tracheal ep...

  15. Greater virulence of highly pathogenic H5N1 influenza virus in cats than in dogs.

    PubMed

    Kim, Heui Man; Park, Eun Hye; Yum, Jung; Kim, Hyun Soo; Seo, Sang Heui

    2015-01-01

    Highly pathogenic H5N1 influenza virus continues to infect animals and humans. We compared the infectivity and pathogenesis of H5N1 virus in domestic cats and dogs to find out which animal is more susceptible to H5N1 influenza virus. When cats and dogs were infected with the H5N1 virus, cats suffered from severe outcomes including death, whereas dogs did not show any mortality. Viruses were shed in the nose and rectum of cats and in the nose of dogs. Viruses were detected in brain, lung, kidney, intestine, liver, and serum in the infected cats, but only in the lung in the infected dogs. Genes encoding inflammatory cytokines and chemokines, Toll-like receptors, and apoptotic factors were more highly expressed in the lungs of cats than in those of dogs. Our results suggest that the intensive monitoring of dogs is necessary to prevent human infection by H5N1 influenza virus, since infected dogs may not show clear clinical signs, in contrast to infected cats.

  16. Dengue Virus Infection in Africa

    PubMed Central

    Kuritsky, Joel N.; Letson, G. William; Margolis, Harold S.

    2011-01-01

    Reported incidence of dengue has increased worldwide in recent decades, but little is known about its incidence in Africa. During 1960–2010, a total of 22 countries in Africa reported sporadic cases or outbreaks of dengue; 12 other countries in Africa reported dengue only in travelers. The presence of disease and high prevalence of antibody to dengue virus in limited serologic surveys suggest endemic dengue virus infection in all or many parts of Africa. Dengue is likely underrecognized and underreported in Africa because of low awareness by health care providers, other prevalent febrile illnesses, and lack of diagnostic testing and systematic surveillance. Other hypotheses to explain low reported numbers of cases include cross-protection from other endemic flavivirus infections, genetic host factors protecting against infection or disease, and low vector competence and transmission efficiency. Population-based studies of febrile illness are needed to determine the epidemiology and true incidence of dengue in Africa. PMID:21801609

  17. Honey Bee Infecting Lake Sinai Viruses.

    PubMed

    Daughenbaugh, Katie F; Martin, Madison; Brutscher, Laura M; Cavigli, Ian; Garcia, Emma; Lavin, Matt; Flenniken, Michelle L

    2015-06-23

    Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV) group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV), and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.

  18. Honey Bee Infecting Lake Sinai Viruses

    PubMed Central

    Daughenbaugh, Katie F.; Martin, Madison; Brutscher, Laura M.; Cavigli, Ian; Garcia, Emma; Lavin, Matt; Flenniken, Michelle L.

    2015-01-01

    Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV) group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV), and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels. PMID:26110586

  19. Differential Adsorption of Occluded and Nonoccluded Insect-Pathogenic Viruses to Soil-Forming Minerals

    PubMed Central

    Christian, Peter D.; Richards, Andrew R.; Williams, Trevor

    2006-01-01

    Soil represents the principal environmental reservoir of many insect-pathogenic viruses. We compared the adsorption and infectivity of one occluded and two nonoccluded viruses, Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) (Baculoviridae), Cricket paralysis virus (CrPV) (Dicistroviridae), and Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae), respectively, in mixtures with a selection of soil-forming minerals. The relative infective titers of HaSNPV and CrPV were unchanged or slightly reduced in the presence of different minerals compared to their titers in the absence of the mineral. In contrast, the infective titer of IIV-6 varied according to the mineral being tested. In adsorption studies, over 98% of HaSNPV occlusion bodies were adsorbed by all the minerals, and a particularly high affinity was observed with ferric oxide, attapulgite, and kaolinite. In contrast, the adsorption of CrPV and IIV-6 differed markedly with mineral type, with low affinity to bentonites and high affinity to ferric oxide and kaolinite. We conclude that interactions between soil-forming minerals and insect viruses appear to be most important in nucleopolyhedroviruses, followed by invertebrate iridescent viruses, and least important in CrPV, which may reflect the ecology of these pathogens. Moreover, soils with a high content of iron oxides or kaolinite would likely represent highly effective reservoirs for insect-pathogenic viruses. PMID:16820456

  20. Pathogenicity of the Novel A/H7N9 Influenza Virus in Mice

    PubMed Central

    Mok, Chris Ka Pun; Lee, Horace Hok Yeung; Chan, Michael Chi Wai; Sia, Sin Fun; Lestra, Maxime; Nicholls, John Malcolm; Zhu, Huachen; Guan, Yi; Peiris, Joseph Malik Sriyal

    2013-01-01

    ABSTRACT A novel avian-origin influenza A/H7N9 virus infecting humans was first identified in March 2013 and, as of 30 May 2013, has caused 132 human infections leading to 33 deaths. Phylogenetic studies suggest that this virus is a reassortant, with the surface hemagglutinin (HA) and neuraminidase (NA) genes being derived from duck and wild-bird viruses, respectively, while the six “internal gene segments” were derived from poultry H9N2 viruses. Here we determine the pathogenicity of a human A/Shanghai/2/2013 (Sh2/H7N9) virus in healthy adult mice in comparison with that of A/chicken/Hong Kong/HH8/2010 (ck/H9N2) virus, highly pathogenic avian influenza (HPAI) A/Hong Kong/483/1997 (483/H5N1) virus, and a duck influenza A H7N9 virus of different genetic derivation, A/duck/Jiangxi/3286/2009 (dk/H7N9). Intranasal infection of mice with Sh2/H7N9 virus doses of 103, 104, and 105 PFU led to significant weight loss without fatality. This virus was more pathogenic than dk/H7N9 and ck/H9N2 virus, which has six internal gene segments that are genetically similar to Sh2/H7N9. Sh2/H7N9 replicated well in the nasal cavity and lung, but there was no evidence of virus dissemination beyond the respiratory tract. Mice infected with Sh2/H7N9 produced higher levels of proinflammatory cytokines in the lung and serum than did ck/H9N2 and dk/H7N9 but lower levels than 483/H5N1. Cytokine induction was positively correlated with virus load in the lung at early stages of infection. Our results suggest that Sh2/H7N9 virus is able to replicate and cause disease in mice without prior adaptation but is less pathogenic than 483/H5N1 virus. PMID:23820393

  1. Functional RNA during Zika virus infection.

    PubMed

    Göertz, Giel P; Abbo, Sandra R; Fros, Jelke J; Pijlman, Gorben P

    2017-08-31

    Zika virus (ZIKV; family Flaviviridae; genus Flavivirus) is a pathogenic mosquito-borne RNA virus that currently threatens human health in the Americas, large parts of Asia and occasionally elsewhere in the world. ZIKV infection is often asymptomatic but can cause severe symptoms including congenital microcephaly and Guillain-Barré syndrome. The positive single-stranded RNA genome of the mosquito-borne ZIKV requires effective replication in two evolutionary distinct hosts - mosquitoes and primates. In addition to some of the viral proteins, the ZIKV genomic RNA and functional RNAs produced thereof aid in the establishment of productive infection and the evasion of host cell antiviral responses. ZIKV has evolved to contain a nucleotide composition and RNA modifications, such as methylation and the formation of G-quadruplexes that allow effective replication in both hosts. Furthermore, a number of host factors interact with the viral genome to modulate RNA replication. Importantly, the ZIKV genome produces non-coding subgenomic flavivirus RNA (sfRNA) due to stalling of host 5'- 3' ribonucleases on viral RNA structures in the 3' untranslated region (UTR). This sfRNA (sfRNA) exerts important proviral functions such as antagonizing the innate interferon response and RNA interference. Here, we discuss the ZIKV genomic RNA and functional RNAs thereof to assess their significance during ZIKV infection. Understanding the details of the ZIKV infection cycle will aid in the development of effective antiviral strategies and safe vaccines. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. THE INFECTION OF MICE WITH SWINE INFLUENZA VIRUS

    PubMed Central

    Shope, Richard E.

    1935-01-01

    The experiments confirm the earlier observation of Andrewes, Laidlaw and Smith that the swine influenza virus is pathogenic for white mice when administered intranasally. Two field strains of the swine influenza virus were found to differ in their initial pathogenicity for mice. One strain was apparently fully pathogenic even in its 1st mouse passage while the other required 2 or 3 mouse passages to acquire full virulence for this species. Both strains, however, were initially infectious for mice, without the necessity of intervening ferret passages. There is no evidence that bacteria play any significant rôle in the mouse disease though essential in that of swine, and fatal pneumonias can be produced in mice by pure virus infections. Mice surviving the virus disease are immune to reinfection for at least a month. In mice the disease is not contagious though it is notably so in swine. The virus, while regularly producing fatal pneumonias when administered intranasally to mice, appears to be completely innocuous when given subcutaneously or intraperitoneally. Prolonged serial passage of the virus in mice does not influence its infectivity or virulence for swine or ferrets. It is a stable virus so far as its infectivity is concerned, and can be transferred at will from any one of its three known susceptible hosts to any other. In discussing these facts the stability of the swine influenza virus has been contrasted with the apparent instability of freshly isolated strains of the human influenza virus. Though the mouse is an un-natural host for the virus it is, nevertheless, useful for the study of those aspects of swine influenza which have to do with the virus only. PMID:19870434

  3. Assessment of pathogenicity and antigenicity of American lineage influenza H5N2 viruses in Taiwan.

    PubMed

    Lin, Chun-Yang; Chia, Min-Yuan; Chen, Po-Ling; Yeh, Chia-Tsui; Cheng, Ming-Chu; Su, Ih-Jen; Lee, Min-Shi

    2017-08-01

    During December 2003 and March 2004, large scale epidemics of low-pathogenic avian influenza (LPAI) H5N2 occurred in poultry farms in central and southern Taiwan. Based on genomic analysis, these H5N2 viruses contain HA and NA genes of American-lineage H5N2 viruses and six internal genes from avian influenza A/H6N1 viruses endemic in poultry in Taiwan. After disappearing for several years, these novel influenza H5N2 viruses caused outbreaks in poultry farms again in 2008, 2010 and 2012, and have evolved into high pathogenic AI (HPAI) since 2010. Moreover, asymptomatic infections of influenza H5N2 were detected serologically in poultry workers in 2012. Therefore, we evaluated antigenicity and pathogenicity of the novel H5N2 viruses in ferrets. We found that no significant antigenic difference was detected among the novel H5N2 viruses isolated from 2003 to 2014 and the novel H5N2 viruses could cause mild infections in ferrets. Monitoring zoonotic transmission of the novel H5N2 viruses is necessary. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen

    PubMed Central

    Sébastien, Alexandra; Lester, Philip J.; Hall, Richard J.; Wang, Jing; Moore, Nicole E.; Gruber, Monica A. M.

    2015-01-01

    When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader. PMID:26562935

  5. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen.

    PubMed

    Sébastien, Alexandra; Lester, Philip J; Hall, Richard J; Wang, Jing; Moore, Nicole E; Gruber, Monica A M

    2015-09-01

    When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader.

  6. Is There Still Room for Novel Viral Pathogens in Pediatric Respiratory Tract Infections?

    PubMed Central

    Taboada, Blanca; Espinoza, Marco A.; Isa, Pavel; Aponte, Fernando E.; Arias-Ortiz, María A.; Monge-Martínez, Jesús; Rodríguez-Vázquez, Rubén; Díaz-Hernández, Fidel; Zárate-Vidal, Fernando; Wong-Chew, Rosa María; Firo-Reyes, Verónica; del Río-Almendárez, Carlos N.; Gaitán-Meza, Jesús; Villaseñor-Sierra, Alberto; Martínez-Aguilar, Gerardo; Salas-Mier, Ma. del Carmen; Noyola, Daniel E.; Pérez-Gónzalez, Luis F.; López, Susana; Santos-Preciado, José I.; Arias, Carlos F.

    2014-01-01

    Viruses are the most frequent cause of respiratory disease in children. However, despite the advanced diagnostic methods currently in use, in 20 to 50% of respiratory samples a specific pathogen cannot be detected. In this work, we used a metagenomic approach and deep sequencing to examine respiratory samples from children with lower and upper respiratory tract infections that had been previously found negative for 6 bacteria and 15 respiratory viruses by PCR. Nasal washings from 25 children (out of 250) hospitalized with a diagnosis of pneumonia and nasopharyngeal swabs from 46 outpatient children (out of 526) were studied. DNA reads for at least one virus commonly associated to respiratory infections was found in 20 of 25 hospitalized patients, while reads for pathogenic respiratory bacteria were detected in the remaining 5 children. For outpatients, all the samples were pooled into 25 DNA libraries for sequencing. In this case, in 22 of the 25 sequenced libraries at least one respiratory virus was identified, while in all other, but one, pathogenic bacteria were detected. In both patient groups reads for respiratory syncytial virus, coronavirus-OC43, and rhinovirus were identified. In addition, viruses less frequently associated to respiratory infections were also found. Saffold virus was detected in outpatient but not in hospitalized children. Anellovirus, rotavirus, and astrovirus, as well as several animal and plant viruses were detected in both groups. No novel viruses were identified. Adding up the deep sequencing results to the PCR data, 79.2% of 250 hospitalized and 76.6% of 526 ambulatory patients were positive for viruses, and all other children, but one, had pathogenic respiratory bacteria identified. These results suggest that at least in the type of populations studied and with the sampling methods used the odds of finding novel, clinically relevant viruses, in pediatric respiratory infections are low. PMID:25412469

  7. Is there still room for novel viral pathogens in pediatric respiratory tract infections?

    PubMed

    Taboada, Blanca; Espinoza, Marco A; Isa, Pavel; Aponte, Fernando E; Arias-Ortiz, María A; Monge-Martínez, Jesús; Rodríguez-Vázquez, Rubén; Díaz-Hernández, Fidel; Zárate-Vidal, Fernando; Wong-Chew, Rosa María; Firo-Reyes, Verónica; del Río-Almendárez, Carlos N; Gaitán-Meza, Jesús; Villaseñor-Sierra, Alberto; Martínez-Aguilar, Gerardo; Salas-Mier, Ma del Carmen; Noyola, Daniel E; Pérez-Gónzalez, Luis F; López, Susana; Santos-Preciado, José I; Arias, Carlos F

    2014-01-01

    Viruses are the most frequent cause of respiratory disease in children. However, despite the advanced diagnostic methods currently in use, in 20 to 50% of respiratory samples a specific pathogen cannot be detected. In this work, we used a metagenomic approach and deep sequencing to examine respiratory samples from children with lower and upper respiratory tract infections that had been previously found negative for 6 bacteria and 15 respiratory viruses by PCR. Nasal washings from 25 children (out of 250) hospitalized with a diagnosis of pneumonia and nasopharyngeal swabs from 46 outpatient children (out of 526) were studied. DNA reads for at least one virus commonly associated to respiratory infections was found in 20 of 25 hospitalized patients, while reads for pathogenic respiratory bacteria were detected in the remaining 5 children. For outpatients, all the samples were pooled into 25 DNA libraries for sequencing. In this case, in 22 of the 25 sequenced libraries at least one respiratory virus was identified, while in all other, but one, pathogenic bacteria were detected. In both patient groups reads for respiratory syncytial virus, coronavirus-OC43, and rhinovirus were identified. In addition, viruses less frequently associated to respiratory infections were also found. Saffold virus was detected in outpatient but not in hospitalized children. Anellovirus, rotavirus, and astrovirus, as well as several animal and plant viruses were detected in both groups. No novel viruses were identified. Adding up the deep sequencing results to the PCR data, 79.2% of 250 hospitalized and 76.6% of 526 ambulatory patients were positive for viruses, and all other children, but one, had pathogenic respiratory bacteria identified. These results suggest that at least in the type of populations studied and with the sampling methods used the odds of finding novel, clinically relevant viruses, in pediatric respiratory infections are low.

  8. Probiotics in respiratory virus infections.

    PubMed

    Lehtoranta, L; Pitkäranta, A; Korpela, R

    2014-08-01

    Viral respiratory infections are the most common diseases in humans. A large range of etiologic agents challenge the development of efficient therapies. Research suggests that probiotics are able to decrease the risk or duration of respiratory infection symptoms. However, the antiviral mechanisms of probiotics are unclear. The purpose of this paper is to review the current knowledge on the effects of probiotics on respiratory virus infections and to provide insights on the possible antiviral mechanisms of probiotics. A PubMed and Scopus database search was performed up to January 2014 using appropriate search terms on probiotic and respiratory virus infections in cell models, in animal models, and in humans, and reviewed for their relevance. Altogether, thirty-three clinical trials were reviewed. The studies varied highly in study design, outcome measures, probiotics, dose, and matrices used. Twenty-eight trials reported that probiotics had beneficial effects in the outcome of respiratory tract infections (RTIs) and five showed no clear benefit. Only eight studies reported investigating viral etiology from the respiratory tract, and one of these reported a significant decrease in viral load. Based on experimental studies, probiotics may exert antiviral effects directly in probiotic-virus interaction or via stimulation of the immune system. Although probiotics seem to be beneficial in respiratory illnesses, the role of probiotics on specific viruses has not been investigated sufficiently. Due to the lack of confirmatory studies and varied data available, more randomized, double-blind, and placebo-controlled trials in different age populations investigating probiotic dose response, comparing probiotic strains/genera, and elucidating the antiviral effect mechanisms are necessary.

  9. Human Jamestown canyon virus infection --- Montana, 2009.

    PubMed

    2011-05-27

    Jamestown Canyon virus (JCV) is a mosquito-borne zoonotic pathogen belonging to the California serogroup of bunyaviruses. Although JCV is widely distributed throughout temperate North America, reports of human JCV infection in the United States are rare. This is the first report of human JCV infection detected in Montana, one of only 15 cases reported in the United States since 2004, when JCV became reportable. On May 26, 2009, a man aged 51 years with no travel history outside of Montana went to a local emergency department immediately following onset of fever, severe frontal headache, dizziness, left-sided numbness, and tingling. His blood pressure was elevated. Stroke was ruled out, oxygen was administered, medication was prescribed for hypertension, and the patient was sent home. One week later, the patient visited his primary-care physician complaining of continued neurologic symptoms consistent with acute febrile encephalitis and recent mosquito bites. Although West Nile virus (WNV) disease was diagnosed based on detection of WNV-immunoglobulin M (IgM) and G (IgG) antibodies, subsequent testing indicated that the WNV antibodies were from a past infection and that his illness was caused by JCV. The final diagnosis of JCV infection was based on positive JCV-specific IgM enzyme-linked immunosorbent assay (ELISA) results and a fourfold rise in paired sample JCV plaque reduction neutralization test (PRNT) titers. This finding represents a previously unrecognized risk for JCV infection in Montana; clinicians should consider JCV infection when assessing patients for suspected arboviral infections.

  10. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton.

    PubMed

    Suttle, C A; Chan, A M; Cottrell, M T

    1991-03-01

    Viruses may be major structuring elements of phytoplankton communities and hence important regulators of nutrient and energy fluxes in aquatic environments. In order to ascertain whether viruses are potentially important in dictating phytoplankton community structure, it is essential to determine the extent to which representative phytoplankton taxa are susceptible to viral infection. We used a spiral ultrafiltration cartridge (30,000-molecular-weight cutoff) to concentrate viruses from seawater at efficiencies approaching 100%. Natural virus communities were concentrated from stations in the Gulf of Mexico, a barrier island pass, and a hypersaline lagoon (Laguna Madre) and added to cultures of potential phytoplankton hosts. By following changes in in vivo fluorescence over time, it was possible to isolate several viruses that were pathogens to a variety of marine phytoplankton, including a prasinophyte (Micromonas pusilla), a pennate diatom (likely a Navicula sp.), a centric diatom (of unknown taxa), and a chroococcoid cyanobacterium (a Synechococcus sp.). As well, we observed changes in fluorescence in cultures of a cryptophyte (a Rhodomonas sp.) and a chlorophyte (Nannochloropsis oculata) which were consistent with the presence of viral pathogens. Although pathogens were isolated from all stations, all the pathogens were not isolated from every station. Filterability studies on the viruses infecting M. pusilla and the Navicula sp. showed that the viruses were consistently infective after filtration through polycarbonate and glass-fiber filters but were affected by most other filter types. Establishment of phytoplankton-pathogen systems will be important in elucidating the effect that viruses have on primary producers in aquatic systems.

  11. Structure of deformed wing virus, a major honey bee pathogen

    PubMed Central

    Škubník, Karel; Nováček, Jiří; Füzik, Tibor; Přidal, Antonín; Paxton, Robert J.; Plevka, Pavel

    2017-01-01

    The worldwide population of western honey bees (Apis mellifera) is under pressure from habitat loss, environmental stress, and pathogens, particularly viruses that cause lethal epidemics. Deformed wing virus (DWV) from the family Iflaviridae, together with its vector, the mite Varroa destructor, is likely the major threat to the world’s honey bees. However, lack of knowledge of the atomic structures of iflaviruses has hindered the development of effective treatments against them. Here, we present the virion structures of DWV determined to a resolution of 3.1 Å using cryo-electron microscopy and 3.8 Å by X-ray crystallography. The C-terminal extension of capsid protein VP3 folds into a globular protruding (P) domain, exposed on the virion surface. The P domain contains an Asp-His-Ser catalytic triad that is, together with five residues that are spatially close, conserved among iflaviruses. These residues may participate in receptor binding or provide the protease, lipase, or esterase activity required for entry of the virus into a host cell. Furthermore, nucleotides of the DWV RNA genome interact with VP3 subunits. The capsid protein residues involved in the RNA binding are conserved among honey bee iflaviruses, suggesting a putative role of the genome in stabilizing the virion or facilitating capsid assembly. Identifying the RNA-binding and putative catalytic sites within the DWV virion structure enables future analyses of how DWV and other iflaviruses infect insect cells and also opens up possibilities for the development of antiviral treatments. PMID:28270616

  12. Structure of deformed wing virus, a major honey bee pathogen.

    PubMed

    Škubník, Karel; Nováček, Jiří; Füzik, Tibor; Přidal, Antonín; Paxton, Robert J; Plevka, Pavel

    2017-03-21

    The worldwide population of western honey bees (Apis mellifera) is under pressure from habitat loss, environmental stress, and pathogens, particularly viruses that cause lethal epidemics. Deformed wing virus (DWV) from the family Iflaviridae, together with its vector, the mite Varroa destructor, is likely the major threat to the world's honey bees. However, lack of knowledge of the atomic structures of iflaviruses has hindered the development of effective treatments against them. Here, we present the virion structures of DWV determined to a resolution of 3.1 Å using cryo-electron microscopy and 3.8 Å by X-ray crystallography. The C-terminal extension of capsid protein VP3 folds into a globular protruding (P) domain, exposed on the virion surface. The P domain contains an Asp-His-Ser catalytic triad that is, together with five residues that are spatially close, conserved among iflaviruses. These residues may participate in receptor binding or provide the protease, lipase, or esterase activity required for entry of the virus into a host cell. Furthermore, nucleotides of the DWV RNA genome interact with VP3 subunits. The capsid protein residues involved in the RNA binding are conserved among honey bee iflaviruses, suggesting a putative role of the genome in stabilizing the virion or facilitating capsid assembly. Identifying the RNA-binding and putative catalytic sites within the DWV virion structure enables future analyses of how DWV and other iflaviruses infect insect cells and also opens up possibilities for the development of antiviral treatments.

  13. Tobacco Mosaic Virus Infection Results in an Increase in Recombination Frequency and Resistance to Viral, Bacterial, and Fungal Pathogens in the Progeny of Infected Tobacco Plants1[C][W][OA

    PubMed Central

    Kathiria, Palak; Sidler, Corinne; Golubov, Andrey; Kalischuk, Melanie; Kawchuk, Lawrence M.; Kovalchuk, Igor

    2010-01-01

    Our previous experiments showed that infection of tobacco (Nicotiana tabacum) plants with Tobacco mosaic virus (TMV) leads to an increase in homologous recombination frequency (HRF). The progeny of infected plants also had an increased rate of rearrangements in resistance gene-like loci. Here, we report that tobacco plants infected with TMV exhibited an increase in HRF in two consecutive generations. Analysis of global genome methylation showed the hypermethylated genome in both generations of plants, whereas analysis of methylation via 5-methyl cytosine antibodies demonstrated both hypomethylation and hypermethylation. Analysis of the response of the progeny of infected plants to TMV, Pseudomonas syringae, or Phytophthora nicotianae revealed a significant delay in symptom development. Infection of these plants with TMV or P. syringae showed higher levels of induction of PATHOGENESIS-RELATED GENE1 gene expression and higher levels of callose deposition. Our experiments suggest that viral infection triggers specific changes in progeny that promote higher levels of HRF at the transgene and higher resistance to stress as compared with the progeny of unstressed plants. However, data reported in these studies do not establish evidence of a link between recombination frequency and stress resistance. PMID:20498336

  14. Viruses of fish: an overview of significant pathogens.

    PubMed

    Crane, Mark; Hyatt, Alex

    2011-11-01

    The growing global demand for seafood together with the limited capacity of the wild-capture sector to meet this demand has seen the aquaculture industry continue to grow around the world. A vast array of aquatic animal species is farmed in high density in freshwater, brackish and marine systems where they are exposed to new environments and potentially new diseases. On-farm stresses may compromise their ability to combat infection, and farming practices facilitate rapid transmission of disease. Viral pathogens, whether they have been established for decades or whether they are newly emerging as disease threats, are particularly challenging since there are few, if any, efficacious treatments, and the development of effective viral vaccines for delivery in aquatic systems remains elusive. Here, we review a few of the more significant viral pathogens of finfish, including aquabirnaviruses and infectious hematopoietic necrosis virus which have been known since the first half of the 20th century, and more recent viral pathogens, for example betanodaviruses, that have emerged as aquaculture has undergone a dramatic expansion in the past few decades.

  15. Viruses of Fish: An Overview of Significant Pathogens

    PubMed Central

    Crane, Mark; Hyatt, Alex

    2011-01-01

    The growing global demand for seafood together with the limited capacity of the wild-capture sector to meet this demand has seen the aquaculture industry continue to grow around the world. A vast array of aquatic animal species is farmed in high density in freshwater, brackish and marine systems where they are exposed to new environments and potentially new diseases. On-farm stresses may compromise their ability to combat infection, and farming practices facilitate rapid transmission of disease. Viral pathogens, whether they have been established for decades or whether they are newly emerging as disease threats, are particularly challenging since there are few, if any, efficacious treatments, and the development of effective viral vaccines for delivery in aquatic systems remains elusive. Here, we review a few of the more significant viral pathogens of finfish, including aquabirnaviruses and infectious hematopoietic necrosis virus which have been known since the first half of the 20th century, and more recent viral pathogens, for example betanodaviruses, that have emerged as aquaculture has undergone a dramatic expansion in the past few decades. PMID:22163333

  16. Newly Emergent Highly Pathogenic H5N9 Subtype Avian Influenza A Virus

    PubMed Central

    Yu, Yang; Wang, Xingbo; Jin, Tao; Wang, Hailong; Si, Weiying; Yang, Hui; Wu, Jiusheng; Yan, Yan; Liu, Guang; Sang, Xiaoyu; Wu, Xiaopeng; Gao, Yuwei; Xia, Xianzhu; Yu, Xinfen; Pan, Jingcao; Gao, George F.

    2015-01-01

    ABSTRACT The novel H7N9 avian influenza virus (AIV) was demonstrated to cause severe human respiratory infections in China. Here, we examined poultry specimens from live bird markets linked to human H7N9 infection in Hangzhou, China. Metagenomic sequencing revealed mixed subtypes (H5, H7, H9, N1, N2, and N9). Subsequently, AIV subtypes H5N9, H7N9, and H9N2 were isolated. Evolutionary analysis showed that the hemagglutinin gene of the novel H5N9 virus originated from A/Muscovy duck/Vietnam/LBM227/2012 (H5N1), which belongs to clade 2.3.2.1. The neuraminidase gene of the novel H5N9 virus originated from human-infective A/Hangzhou/1/2013 (H7N9). The six internal genes were similar to those of other H5N1, H7N9, and H9N2 virus strains. The virus harbored the PQRERRRKR/GL motif characteristic of highly pathogenic AIVs at the HA cleavage site. Receptor-binding experiments demonstrated that the virus binds α-2,3 sialic acid but not α-2,6 sialic acid. Identically, pathogenicity experiments also showed that the virus caused low mortality rates in mice. This newly isolated H5N9 virus is a highly pathogenic reassortant virus originating from H5N1, H7N9, and H9N2 subtypes. Live bird markets represent a potential transmission risk to public health and the poultry industry. IMPORTANCE This investigation confirms that the novel H5N9 subtype avian influenza A virus is a reassortant strain originating from H5N1, H7N9, and H9N2 subtypes and is totally different from the H5N9 viruses reported before. The novel H5N9 virus acquired a highly pathogenic H5 gene and an N9 gene from human-infecting subtype H7N9 but caused low mortality rates in mice. Whether this novel H5N9 virus will cause human infections from its avian host and become a pandemic subtype is not known yet. It is therefore imperative to assess the risk of emergence of this novel reassortant virus with potential transmissibility to public health. PMID:26085150

  17. Aquatic eutrophication promotes pathogenic infection in amphibians.

    PubMed

    Johnson, Pieter T J; Chase, Jonathan M; Dosch, Katherine L; Hartson, Richard B; Gross, Jackson A; Larson, Don J; Sutherland, Daniel R; Carpenter, Stephen R

    2007-10-02

    The widespread emergence of human and wildlife diseases has challenged ecologists to understand how large-scale agents of environmental change affect host-pathogen interactions. Accelerated eutrophication of aquatic ecosystems owing to nitrogen and phosphorus enrichment is a pervasive form of environmental change that has been implicated in the emergence of diseases through direct and indirect pathways. We provide experimental evidence linking eutrophication and disease in a multihost parasite system. The trematode parasite Ribeiroia ondatrae sequentially infects birds, snails, and amphibian larvae, frequently causing severe limb deformities and mortality. Eutrophication has been implicated in the emergence of this parasite, but definitive evidence, as well as a mechanistic understanding, have been lacking until now. We show that the effects of eutrophication cascade through the parasite life cycle to promote algal production, the density of snail hosts, and, ultimately, the intensity of infection in amphibians. Infection also negatively affected the survival of developing amphibians. Mechanistically, eutrophication promoted amphibian disease through two distinctive pathways: by increasing the density of infected snail hosts and by enhancing per-snail production of infectious parasites. Given forecasted increases in global eutrophication, amphibian extinctions, and similarities between Ribeiroia and important human and wildlife pathogens, our results have broad epidemiological and ecological significance.

  18. Infection of Murine Macrophages by Salmonella enterica Serovar Heidelberg Blocks Murine Norovirus Infectivity and Virus-induced Apoptosis.

    PubMed

    Agnihothram, Sudhakar S; Basco, Maria D S; Mullis, Lisa; Foley, Steven L; Hart, Mark E; Sung, Kidon; Azevedo, Marli P

    2015-01-01

    Gastroenteritis caused by bacterial and viral pathogens constitutes a major public health threat in the United States accounting for 35% of hospitalizations. In particular, Salmonella enterica and noroviruses cause the majority of gastroenteritis infections, with emergence of sporadic outbreaks and incidence of increased infections. Although mechanisms underlying infections by these pathogens have been individually studied, little is known about the mechanisms regulating co-infection by these pathogens. In this study, we utilized RAW 264.7 murine macrophage cells to investigate the mechanisms governing co-infection with S. enterica serovar Heidelberg and murine norovirus (MNV). We demonstrate that infection of RAW 264.7 cells with S. enterica reduces the replication of MNV, in part by blocking virus entry early in the virus life cycle, and inducing antiviral cytokines later in the infection cycle. In particular, bacterial infection prior to, or during MNV infection affected virus entry, whereas MNV entry remained unaltered when the virus infection preceded bacterial invasion. This block in virus entry resulted in reduced virus replication, with the highest impact on replication observed during conditions of co-infection. In contrast, bacterial replication showed a threefold increase in MNV-infected cells, despite the presence of antibiotic in the medium. Most importantly, we present evidence that the infection of MNV-infected macrophages by S. enterica blocked MNV-induced apoptosis, despite allowing efficient virus replication. This apoptosis blockade was evidenced by reduction in DNA fragmentation and absence of poly-ADP ribose polymerase (PARP), caspase 3 and caspase 9 cleavage events. Our study suggests a novel mechanism of pathogenesis whereby initial co-infection with these pathogens could result in prolonged infection by either of these pathogens or both together.

  19. Effects of influenza A virus infection on migrating mallard ducks.

    PubMed

    Latorre-Margalef, Neus; Gunnarsson, Gunnar; Munster, Vincent J; Fouchier, Ron A M; Osterhaus, Albert D M E; Elmberg, Johan; Olsen, Björn; Wallensten, Anders; Haemig, Paul D; Fransson, Thord; Brudin, Lars; Waldenström, Jonas

    2009-03-22

    The natural reservoir of influenza A virus is waterfowl, particularly dabbling ducks (genus Anas). Although it has long been assumed that waterfowl are asymptomatic carriers of the virus, a recent study found that low-pathogenic avian influenza (LPAI) infection in Bewick's swans (Cygnus columbianus bewickii) negatively affected stopover time, body mass and feeding behaviour. In the present study, we investigated whether LPAI infection incurred ecological or physiological costs to migratory mallards (Anas platyrhynchos) in terms of body mass loss and staging time, and whether such costs could influence the likelihood for long-distance dispersal of the avian influenza virus by individual ducks. During the autumn migrations of 2002-2007, we collected faecal samples (n=10918) and biometric data from mallards captured and banded at Ottenby, a major staging site in a flyway connecting breeding and wintering areas of European waterfowl. Body mass was significantly lower in infected ducks than in uninfected ducks (mean difference almost 20 g over all groups), and the amount of virus shed by infected juveniles was negatively correlated with body mass. There was no general effect of infection on staging time, except for juveniles in September, in which birds that shed fewer viruses stayed shorter than birds that shed more viruses. LPAI infection did not affect speed or distance of subsequent migration. The data from recaptured individuals showed that the maximum duration of infection was on average 8.3 days (s.e. 0.5), with a mean minimum duration of virus shedding of only 3.1 days (s.e. 0.1). Shedding time decreased during the season, suggesting that mallards acquire transient immunity for LPAI infection. In conclusion, deteriorated body mass following infection was detected, but it remains to be seen whether this has more long-term fitness effects. The short virus shedding time suggests that individual mallards are less likely to spread the virus at continental or

  20. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor.

    PubMed

    Levin, Sofia; Sela, Noa; Chejanovsky, Nor

    2016-11-24

    Varroa destructor infestation of Apis mellifera colonies carries and/or promotes replication of honey bee viruses like the Deformed wing virus, the Varroa destructor virus-1, the Acute bee paralysis virus, the Israeli acute bee paralysis virus and the Kashmir bee virus that have been well described and characterized; but viruses exclusively associated with Varroa were not found. To look for viruses that may associate with- or infect V. destructor we performed deep sequencing (RNA-seq) of RNA extracted from honey bees and mites in Varroa-infested untreated colonies. Comparative bioinformatic analysis of the two separate contig-assemblies generated from the sequences' reads annotated using Blastx enabled identification of new viruses unique to Varroa and absent in A. mellifera: an Iflavirus and a virus with homology to Ixodes scapularis associated virus 2, that we named Varroa destructor virus 2 (VDV-2) and 3(VDV-3), respectively. We validated these findings sequencing the mite- and honey bee-viromes and in separate mites and honey bees randomly sampled. The complete genomes of VDV-2 and VDV-3 bear 9576 nucleotides and 4202 nucleotides, respectively. Phylogenetic analysis of VDV-3 suggests that it belongs to a new group of viruses. Our results open venues for investigating the pathogenicity of these V. destructor viruses.

  1. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor

    PubMed Central

    Levin, Sofia; Sela, Noa; Chejanovsky, Nor

    2016-01-01

    Varroa destructor infestation of Apis mellifera colonies carries and/or promotes replication of honey bee viruses like the Deformed wing virus, the Varroa destructor virus-1, the Acute bee paralysis virus, the Israeli acute bee paralysis virus and the Kashmir bee virus that have been well described and characterized; but viruses exclusively associated with Varroa were not found. To look for viruses that may associate with- or infect V. destructor we performed deep sequencing (RNA-seq) of RNA extracted from honey bees and mites in Varroa-infested untreated colonies. Comparative bioinformatic analysis of the two separate contig-assemblies generated from the sequences’ reads annotated using Blastx enabled identification of new viruses unique to Varroa and absent in A. mellifera: an Iflavirus and a virus with homology to Ixodes scapularis associated virus 2, that we named Varroa destructor virus 2 (VDV-2) and 3(VDV-3), respectively. We validated these findings sequencing the mite- and honey bee-viromes and in separate mites and honey bees randomly sampled. The complete genomes of VDV-2 and VDV-3 bear 9576 nucleotides and 4202 nucleotides, respectively. Phylogenetic analysis of VDV-3 suggests that it belongs to a new group of viruses. Our results open venues for investigating the pathogenicity of these V. destructor viruses. PMID:27883042

  2. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses.

    PubMed

    Park, Sehee; Il Kim, Jin; Lee, Ilseob; Bae, Joon-Yong; Yoo, Kirim; Nam, Misun; Kim, Juwon; Sook Park, Mee; Song, Ki-Joon; Song, Jin-Won; Kee, Sun-Ho; Park, Man-Seong

    2017-09-07

    It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs.

  3. Novel Reassortant H5N6 Influenza A Virus from the Lao People's Democratic Republic Is Highly Pathogenic in Chickens.

    PubMed

    Butler, Jeffrey; Stewart, Cameron R; Layton, Daniel S; Phommachanh, Phouvong; Harper, Jennifer; Payne, Jean; Evans, Ryan M; Valdeter, Stacey; Walker, Som; Harvey, Gemma; Shan, Songhua; Bruce, Matthew P; Rootes, Christina L; Gough, Tamara J; Rohringer, Andreas; Peck, Grantley R; Fardy, Sarah J; Karpala, Adam J; Johnson, Dayna; Wang, Jianning; Douangngeun, Bounlom; Morrissy, Christopher; Wong, Frank Y K; Bean, Andrew G D; Bingham, John; Williams, David T

    2016-01-01

    Avian influenza viruses of H5 subtype can cause highly pathogenic disease in poultry. In March 2014, a new reassortant H5N6 subtype highly pathogenic avian influenza virus emerged in Lao People's Democratic Republic. We have assessed the pathogenicity, pathobiology and immunological responses associated with this virus in chickens. Infection caused moderate to advanced disease in 6 of 6 chickens within 48 h of mucosal inoculation. High virus titers were observed in blood and tissues (kidney, spleen, liver, duodenum, heart, brain and lung) taken at euthanasia. Viral antigen was detected in endothelium, neurons, myocardium, lymphoid tissues and other cell types. Pro-inflammatory cytokines were elevated compared to non-infected birds. Our study confirmed that this new H5N6 reassortant is highly pathogenic, causing disease in chickens similar to that of Asian H5N1 viruses, and demonstrated the ability of such clade 2.3.4-origin H5 viruses to reassort with non-N1 subtype viruses while maintaining a fit and infectious phenotype. Recent detection of influenza H5N6 poultry infections in Lao PDR, China and Viet Nam, as well as six fatal human infections in China, demonstrate that these emergent highly pathogenic H5N6 viruses may be widely established in several countries and represent an emerging threat to poultry and human populations.

  4. Pediatric human immunodeficiency virus infection.

    PubMed Central

    Domachowske, J B

    1996-01-01

    In the past decade, an increase in pediatric human immunodeficiency virus (HIV) infection has had a substantial impact on childhood morbidity and mortality worldwide. The vertical transmission of HIV from mother to infant accounts for the vast majority of these cases. Identification of HIV-infected pregnant women needs to be impoved so that appropriate therapy can be initiated for both mothers and infants. While recent data demonstrate a dramatic decrease in HIV transmission from a subset of women treated with zidovudine during pregnancy, further efforts at reducing transmission are desperately needed. This review focuses on vertically transmitted HIV infection in children, its epidemiology, diagnostic criteria, natural history, and clinical manifestations including infectious and noninfectious complications. An overview of the complex medical management of these children ensues, including the use of antiretroviral therapy. Opportunistic infection prophylaxis is reviewed, along with the important role of other supportive therapies. PMID:8894346

  5. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    PubMed

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains.IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  6. Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses.

    PubMed

    Wu, Zu-Qun; Zhang, Yi; Zhao, Na; Yu, Zhao; Pan, Hao; Chan, Ta-Chien; Zhang, Zhi-Ruo; Liu, She-Lan

    2017-03-04

    This study aimed to assess the mortality risks for human infection with high (HPAI) and low (LPAI) pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR) was far higher than the LPAI CFR [66.0% (293/444) vs. 68.75% (11/16) vs. 40.4% (265/656) vs. 0.0% (0/18) in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43) vs. 43.3% (42/97), p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80) vs. 8.33% (9/108) for H5N1, p = 0.046; 58.6% (156/266) vs. 34.8% (135/388) for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43) vs. 45.2% (19/42), p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections.

  7. Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses

    PubMed Central

    Wu, Zu-Qun; Zhang, Yi; Zhao, Na; Yu, Zhao; Pan, Hao; Chan, Ta-Chien; Zhang, Zhi-Ruo; Liu, She-Lan

    2017-01-01

    This study aimed to assess the mortality risks for human infection with high (HPAI) and low (LPAI) pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR) was far higher than the LPAI CFR [66.0% (293/444) vs. 68.75% (11/16) vs. 40.4% (265/656) vs. 0.0% (0/18) in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43) vs. 43.3% (42/97), p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80) vs. 8.33% (9/108) for H5N1, p = 0.046; 58.6% (156/266) vs. 34.8% (135/388) for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43) vs. 45.2% (19/42), p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections. PMID:28273867

  8. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    PubMed Central

    Weynberg, Karen D.; Voolstra, Christian R.; Neave, Matthew J.; Buerger, Patrick; van Oppen, Madeleine J. H.

    2015-01-01

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements. PMID:26644037

  9. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used ...

  10. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Background. Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian ...

  11. Pathogenicity and transmissibility of North American triple reassortant swine influenza A viruses in ferrets.

    PubMed

    Barman, Subrata; Krylov, Petr S; Fabrizio, Thomas P; Franks, John; Turner, Jasmine C; Seiler, Patrick; Wang, David; Rehg, Jerold E; Erickson, Gene A; Gramer, Marie; Webster, Robert G; Webby, Richard J

    2012-01-01

    North American triple reassortant swine (TRS) influenza A viruses have caused sporadic human infections since 2005, but human-to-human transmission has not been documented. These viruses have six gene segments (PB2, PB1, PA, HA, NP, and NS) closely related to those of the 2009 H1N1 pandemic viruses. Therefore, understanding of these viruses' pathogenicity and transmissibility may help to identify determinants of virulence of the 2009 H1N1 pandemic viruses and to elucidate potential human health threats posed by the TRS viruses. Here we evaluated in a ferret model the pathogenicity and transmissibility of three groups of North American TRS viruses containing swine-like and/or human-like HA and NA gene segments. The study was designed only to detect informative and significant patterns in the transmissibility and pathogenicity of these three groups of viruses. We observed that irrespective of their HA and NA lineages, the TRS viruses were moderately pathogenic in ferrets and grew efficiently in both the upper and lower respiratory tracts. All North American TRS viruses studied were transmitted between ferrets via direct contact. However, their transmissibility by respiratory droplets was related to their HA and NA lineages: TRS viruses with human-like HA and NA were transmitted most efficiently, those with swine-like HA and NA were transmitted minimally or not transmitted, and those with swine-like HA and human-like NA (N2) showed intermediate transmissibility. We conclude that the lineages of HA and NA may play a crucial role in the respiratory droplet transmissibility of these viruses. These findings have important implications for pandemic planning and warrant confirmation.

  12. Molecular probes for identification of pathogenic viruses in mosquitoes.

    USDA-ARS?s Scientific Manuscript database

    Viral pathogens that cause disease in mosquitoes belong to three major groups: baculoviruses (DBVs) (Baculoviridae: Deltabaculovirus); iridoviruses (MIVs) (Iridoviridae: Chloriridovirus); and cytoplasmic polyhedrosis viruses (CPVs) (Reoviridae: Cypovirus). Baculoviruses and iridoviruses are DNA vir...

  13. Severity of Bovine Tuberculosis Is Associated with Co-Infection with Common Pathogens in Wild Boar

    PubMed Central

    Risco, David; Serrano, Emmanuel; Fernández-Llario, Pedro; Cuesta, Jesús M.; Gonçalves, Pilar; García-Jiménez, Waldo L.; Martínez, Remigio; Cerrato, Rosario; Velarde, Roser; Gómez, Luis; Segalés, Joaquím; Hermoso de Mendoza, Javier

    2014-01-01

    Co-infections with parasites or viruses drive tuberculosis dynamics in humans, but little is known about their effects in other non-human hosts. This work aims to investigate the relationship between Mycobacterium bovis infection and other pathogens in wild boar (Sus scrofa), a recognized reservoir of bovine tuberculosis (bTB) in Mediterranean ecosystems. For this purpose, it has been assessed whether contacts with common concomitant pathogens are associated with the development of severe bTB lesions in 165 wild boar from mid-western Spain. The presence of bTB lesions affecting only one anatomic location (cervical lymph nodes), or more severe patterns affecting more than one location (mainly cervical lymph nodes and lungs), was assessed in infected animals. In addition, the existence of contacts with other pathogens such as porcine circovirus type 2 (PCV2), Aujeszky's disease virus (ADV), swine influenza virus, porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and Metastrongylus spp, was evaluated by means of serological, microbiological and parasitological techniques. The existence of contacts with a structured community of pathogens in wild boar infected by M. bovis was statistically investigated by null models. Association between this community of pathogens and bTB severity was examined using a Partial Least Squares regression approach. Results showed that adult wild boar infected by M. bovis had contacted with some specific, non-random pathogen combinations. Contact with PCV2, ADV and infection by Metastrongylus spp, was positively correlated to tuberculosis severity. Therefore, measures against these concomitant pathogens such as vaccination or deworming, might be useful in tuberculosis control programmes in the wild boar. However, given the unexpected consequences of altering any community of organisms, further research should evaluate the impact of such measures under

  14. Severity of bovine tuberculosis is associated with co-infection with common pathogens in wild boar.

    PubMed

    Risco, David; Serrano, Emmanuel; Fernández-Llario, Pedro; Cuesta, Jesús M; Gonçalves, Pilar; García-Jiménez, Waldo L; Martínez, Remigio; Cerrato, Rosario; Velarde, Roser; Gómez, Luis; Segalés, Joaquím; Hermoso de Mendoza, Javier

    2014-01-01

    Co-infections with parasites or viruses drive tuberculosis dynamics in humans, but little is known about their effects in other non-human hosts. This work aims to investigate the relationship between Mycobacterium bovis infection and other pathogens in wild boar (Sus scrofa), a recognized reservoir of bovine tuberculosis (bTB) in Mediterranean ecosystems. For this purpose, it has been assessed whether contacts with common concomitant pathogens are associated with the development of severe bTB lesions in 165 wild boar from mid-western Spain. The presence of bTB lesions affecting only one anatomic location (cervical lymph nodes), or more severe patterns affecting more than one location (mainly cervical lymph nodes and lungs), was assessed in infected animals. In addition, the existence of contacts with other pathogens such as porcine circovirus type 2 (PCV2), Aujeszky's disease virus (ADV), swine influenza virus, porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and Metastrongylus spp, was evaluated by means of serological, microbiological and parasitological techniques. The existence of contacts with a structured community of pathogens in wild boar infected by M. bovis was statistically investigated by null models. Association between this community of pathogens and bTB severity was examined using a Partial Least Squares regression approach. Results showed that adult wild boar infected by M. bovis had contacted with some specific, non-random pathogen combinations. Contact with PCV2, ADV and infection by Metastrongylus spp, was positively correlated to tuberculosis severity. Therefore, measures against these concomitant pathogens such as vaccination or deworming, might be useful in tuberculosis control programmes in the wild boar. However, given the unexpected consequences of altering any community of organisms, further research should evaluate the impact of such measures under

  15. Human pathogenic viruses are retained in and released by Candida albicans biofilm in vitro.

    PubMed

    Mazaheritehrani, Elham; Sala, Arianna; Orsi, Carlotta Francesca; Neglia, Rachele Giovanna; Morace, Giulia; Blasi, Elisabetta; Cermelli, Claudio

    2014-01-22

    Candida albicans is the most prevalent human fungal pathogen associated with biofilm formation on indwelling medical devices. Under this form, Candida represents an infectious reservoir difficult to eradicate and possibly responsible for systemic, often lethal infections. Currently, no information is available on the occurrence and persistence of pathogenic viruses within C. albicans biofilm. Therefore, the aim of this study was to investigate whether Herpes Simplex Virus type 1 (HSV-1) and Coxsackievirus type B5 (CVB5) can be encompassed in Candida biofilm, retain their infectivity and then be released. Thus, cell-free virus inocula or HSV-1-infected cells were added to 24h-old fungal biofilm in tissue culture plates; 48 h later, the biofilm was detached by washing and energetic scratching and the presence of virus in the rescued material was end-point titrated on VERO cells. Planktonic Candida cultures and samples containing only medium were run in parallel as controls. We found that both HSV-1 and CVB5 free virus particles, as well as HSV-1 infected cells remain embedded in the biofilm retaining their infectivity. As a second step, the influence of biofilm on virus sensitivity to sodium hypochlorite and to specific neutralizing antibodies was investigated. The results showed that virus encompassment in fungal biofilm reduces virus sensitivity to chemical inactivation but does not affect antibody neutralization. Overall, these data provide the first in vitro evidence that viruses can be encompassed within Candida biofilm and then be released. Thus, it may be speculated that Candida biofilm can be a reservoir of viruses too, posing a further health risk.

  16. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs.

    PubMed

    Lohse, Louise; Jackson, Terry; Bøtner, Anette; Belsham, Graham J

    2012-05-24

    The surface exposed capsid proteins, VP1, VP2 and VP3, of foot-and-mouth disease virus (FMDV) determine its antigenicity and the ability of the virus to interact with host-cell receptors. Hence, modification of these structural proteins may alter the properties of the virus.In the present study we compared the pathogenicity of different FMDVs in young pigs. In total 32 pigs, 7-weeks-old, were exposed to virus, either by direct inoculation or through contact with inoculated pigs, using cell culture adapted (O1K B64), chimeric (O1K/A-TUR and O1K/O-UKG) or field strain (O-UKG/34/2001) viruses. The O1K B64 virus and the two chimeric viruses are identical to each other except for the capsid coding region.Animals exposed to O1K B64 did not exhibit signs of disease, while pigs exposed to each of the other viruses showed typical clinical signs of foot-and-mouth disease (FMD). All pigs infected with the O1K/O-UKG chimera or the field strain (O-UKG/34/2001) developed fulminant disease. Furthermore, 3 of 4 in-contact pigs exposed to the O1K/O-UKG virus died in the acute phase of infection, likely from myocardial infection. However, in the group exposed to the O1K/A-TUR chimeric virus, only 1 pig showed symptoms of disease within the time frame of the experiment (10 days). All pigs that developed clinical disease showed a high level of viral RNA in serum and infected pigs that survived the acute phase of infection developed a serotype specific antibody response. It is concluded that the capsid coding sequences are determinants of FMDV pathogenicity in pigs.

  17. Avian influenza virus infections in humans.

    PubMed

    Wong, Samson S Y; Yuen, Kwok-Yung

    2006-01-01

    Seroepidemiologic and virologic studies since 1889 suggested that human influenza pandemics were caused by H1, H2, and H3 subtypes of influenza A viruses. If not for the 1997 avian A/H5N1 outbreak in Hong Kong of China, subtype H2 is the likely candidate for the next pandemic. However, unlike previous poultry outbreaks of highly pathogenic avian influenza due to H5 that were controlled by depopulation with or without vaccination, the presently circulating A/H5N1 genotype Z virus has since been spreading from Southern China to other parts of the world. Migratory birds and, less likely, bird trafficking are believed to be globalizing the avian influenza A/H5N1 epidemic in poultry. More than 200 human cases of avian influenza virus infection due to A/H5, A/H7, and A/H9 subtypes mainly as a result of poultry-to-human transmission have been reported with a > 50% case fatality rate for A/H5N1 infections. A mutant or reassortant virus capable of efficient human-to-human transmission could trigger another influenza pandemic. The recent isolation of this virus in extrapulmonary sites of human diseases suggests that the high fatality of this infection may be more than just the result of a cytokine storm triggered by the pulmonary disease. The emergence of resistance to adamantanes (amantadine and rimantadine) and recently oseltamivir while H5N1 vaccines are still at the developmental stage of phase I clinical trial are causes for grave concern. Moreover, the to-be pandemic strain may have little cross immunogenicity to the presently tested vaccine strain. The relative importance and usefulness of airborne, droplet, or contact precautions in infection control are still uncertain. Laboratory-acquired avian influenza H7N7 has been reported, and the laboratory strains of human influenza H2N2 could also be the cause of another pandemic. The control of this impending disaster requires more research in addition to national and international preparedness at various levels. The

  18. BK virus infection in human immunodeficiency virus-infected patients.

    PubMed

    Ledesma, J; Muñoz, P; Garcia de Viedma, D; Cabrero, I; Loeches, B; Montilla, P; Gijon, P; Rodriguez-Sanchez, B; Bouza, E

    2012-07-01

    The aim of this study is to evaluate the prevalence of BK virus (BKV) infection in HIV-positive patients receiving highly active antiretroviral therapy (HAART) in our hospital. The presence of BKV was analysed in urine and plasma samples from 78 non-selected HIV-infected patients. Clinical data were recorded using a pre-established protocol. We used a nested PCR to amplify a specific region of the BKV T-large antigen. Positive samples were quantified using real-time PCR. Mean CD4 count in HIV-infected patients was 472 cells/mm3 and median HIV viral load was <50 copies/mL. BKV viraemia was detected in only 1 HIV-positive patient, but 57.7% (45 out of 78) had BKV viruria, which was more common in patients with CD4 counts>500 cells/mm3 (74.3% vs 25.7%; p=0.007). Viruria was present in 21.7% of healthy controls (5 out of 23 samples, p=0.02). All viral loads were low (<100 copies/mL), and we could not find any association between BKV infection and renal or neurological manifestations. We provide an update on the prevalence of BKV in HIV-infected patients treated with HAART. BKV viruria was more common in HIV-infected patients; however, no role for BKV has been demonstrated in this population.

  19. Systemic spread and propagation of a plant-pathogenic virus in European honeybees, Apis mellifera.

    PubMed

    Li, Ji Lian; Cornman, R Scott; Evans, Jay D; Pettis, Jeffery S; Zhao, Yan; Murphy, Charles; Peng, Wen Jun; Wu, Jie; Hamilton, Michele; Boncristiani, Humberto F; Zhou, Liang; Hammond, John; Chen, Yan Ping

    2014-01-21

    Emerging and reemerging diseases that result from pathogen host shifts are a threat to the health of humans and their domesticates. RNA viruses have extremely high mutation rates and thus represent a significant source of these infectious diseases. In the present study, we showed that a plant-pathogenic RNA virus, tobacco ringspot virus (TRSV), could replicate and produce virions in honeybees, Apis mellifera, resulting in infections that were found throughout the entire body. Additionally, we showed that TRSV-infected individuals were continually present in some monitored colonies. While intracellular life cycle, species-level genetic variation, and pathogenesis of the virus in honeybee hosts remain to be determined, the increasing prevalence of TRSV in conjunction with other bee viruses from spring toward winter in infected colonies was associated with gradual decline of host populations and winter colony collapse, suggesting the negative impact of the virus on colony survival. Furthermore, we showed that TRSV was also found in ectoparasitic Varroa mites that feed on bee hemolymph, but in those instances the virus was restricted to the gastric cecum of Varroa mites, suggesting that Varroa mites may facilitate the spread of TRSV in bees but do not experience systemic invasion. Finally, our phylogenetic analysis revealed that TRSV isolates from bees, bee pollen, and Varroa mites clustered together, forming a monophyletic clade. The tree topology indicated that the TRSVs from arthropod hosts shared a common ancestor with those from plant hosts and subsequently evolved as a distinct lineage after transkingdom host alteration. This study represents a unique example of viruses with host ranges spanning both the plant and animal kingdoms. Pathogen host shifts represent a major source of new infectious diseases. Here we provide evidence that a pollen-borne plant virus, tobacco ringspot virus (TRSV), also replicates in honeybees and that the virus systemically invades and

  20. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios

    PubMed Central

    Armijo, Grace; Schlechter, Rudolf; Agurto, Mario; Muñoz, Daniela; Nuñez, Constanza; Arce-Johnson, Patricio

    2016-01-01

    Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant–pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed. PMID:27066032

  1. Comparison of the Pathogenicity of Nipah Virus Isolates from Bangladesh and Malaysia in the Syrian Hamster

    PubMed Central

    DeBuysscher, Blair L.; de Wit, Emmie; Munster, Vincent J.; Scott, Dana; Feldmann, Heinz; Prescott, Joseph

    2013-01-01

    Nipah virus is a zoonotic pathogen that causes severe disease in humans. The mechanisms of pathogenesis are not well described. The first Nipah virus outbreak occurred in Malaysia, where human disease had a strong neurological component. Subsequent outbreaks have occurred in Bangladesh and India and transmission and disease processes in these outbreaks appear to be different from those of the Malaysian outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including vaccine and pathogenesis studies, have utilized a virus isolate from the original Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus replication, pathology and death when compared to NiV-B-infected animals. NiV-M infection also resulted in the activation of host immune response genes at an earlier time point. Pathogenicity was not only a result of direct effects of virus replication, but likely also had an immunopathogenic component. The differences observed between NiV-M and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. Characterization of the hamster model for NiV-B infection allows for further research of the strain of Nipah virus responsible for the more recent outbreaks in humans. This model can be used to study NiV-B pathogenesis, transmission, and countermeasures that could be used to control outbreaks. PMID:23342177

  2. Pathogenesis in Eurasian tree sparrows inoculated with H5N1 highly pathogenic avian influenza virus and experimental virus transmission from tree sparrows to chickens.

    PubMed

    Yamamoto, Yu; Nakamura, Kikuyasu; Yamada, Manabu; Mase, Masaji

    2013-06-01

    Small wild birds that routinely enter poultry farms may be possible vectors of Asian lineage H5N1 highly pathogenic avian influenza virus. In this study, we conducted experimental infections using wild-caught Eurasian tree sparrows (Passer montanus) to evaluate their possible epidemiological involvement in virus transmission. When tree sparrows were intranasally inoculated with the virus at a low or high dose, all sparrows excluding euthanatized birds died within 11 days after inoculation. Viruses were frequently isolated from the drinking water, oral swabs, and visceral organs of the sparrows. Immunohistochemical analysis revealed that the virus replicated strongly in the central nervous system, heart, and adrenal gland following primary infection in the upper respiratory tract and a probable subsequent viremic stage. In the contact infection study using virus-inoculated sparrows and untreated contact chickens, more than half of all chickens died from viral infection. In the virus transmission study in which chickens were given drinking water collected from virus-inoculated sparrows, mortality due to viral infection was observed in chickens. Our data suggest that Eurasian tree sparrows could be biological vectors of the H5N1 highly pathogenic avian influenza virus. In addition to frequent virus detection in the drinking water of sparrows, the results of the virus transmission study suggest that waterborne pathways could be important for viral transmission from tree sparrows to poultry.

  3. Pneumonia Virus of Mice Severe Respiratory Virus Infection in a Natural Host

    PubMed Central

    Rosenberg, Helene F.; Domachowske, Joseph B.

    2008-01-01

    Pneumonia virus of mice (PVM; family Paramyxoviridae, genus Pneumovirus) is a natural mouse pathogen that is closely related to the human and bovine respiratory syncytial viruses. Among the prominent features of this infection, robust replication of PVM takes place in bronchial epithelial cells in response to a minimal virus inoculum. Virus replication in situ results in local production of proinflammatory cytokines (MIP-1α, MIP-2, MCP-1 and IFNγ) and granulocyte recruitment to the lung. If left unchecked, PVM infection and the ensuing inflammatory response ultimately lead to pulmonary edema, respiratory compromise and death. In this review, we consider the recent studies using the PVM model that have provided important insights into the role of the inflammatory response in the pathogenesis of severe respiratory virus infection. We also highlight several works that have elucidated acquired immune responses to this pathogen, including T cell responses and the development of humoral immunity. Finally, we consider several immunomodulatory strategies that have been used successfully to reduce morbidity and mortality when administered to PVM infected, symptomatic mice, and thus hold promise as realistic therapeutic strategies for severe respiratory virus infections in human subjects. PMID:18471897

  4. Domestic Pigs Are Susceptible to Infection with Influenza B Viruses

    PubMed Central

    Ran, Zhiguang; Shen, Huigang; Lang, Yuekun; Kolb, Elizabeth A.; Turan, Nuri; Zhu, Laihua; Ma, Jingjiao; Bawa, Bhupinder; Liu, Qinfang; Liu, Haixia; Quast, Megan; Sexton, Gabriel; Krammer, Florian; Hause, Ben M.; Christopher-Hennings, Jane; Nelson, Eric A.; Richt, Juergen

    2015-01-01

    ABSTRACT Influenza B virus (IBV) causes seasonal epidemics in humans. Although IBV has been isolated from seals, humans are considered the primary host and reservoir of this important pathogen. It is unclear whether other animal species can support the replication of IBV and serve as a reservoir. Swine are naturally infected with both influenza A and C viruses. To determine the susceptibility of pigs to IBV infection, we conducted a serological survey for U.S. Midwest domestic swine herds from 2010 to 2012. Results of this study showed that antibodies to IBVs were detected in 38.5% (20/52) of sampled farms, and 7.3% (41/560) of tested swine serum samples were positive for IBV antibodies. Furthermore, swine herds infected with porcine reproductive and respiratory syndrome virus (PRRSV) showed a higher prevalence of IBV antibodies in our 2014 survey. In addition, IBV was detected in 3 nasal swabs collected from PRRSV-seropositive pigs by real-time RT-PCR and sequencing. Finally, an experimental infection in pigs, via intranasal and intratracheal routes, was performed using one representative virus from each of the two genetically and antigenically distinct lineages of IBVs: B/Brisbane/60/2008 (Victoria lineage) and B/Yamagata/16/1988 (Yamagata lineage). Pigs developed influenza-like symptoms and lung lesions, and they seroconverted after virus inoculation. Pigs infected with B/Brisbane/60/2008 virus successfully transmitted the virus to sentinel animals. Taken together, our data demonstrate that pigs are susceptible to IBV infection; therefore, they warrant further surveillance and investigation of swine as a potential host for human IBV. IMPORTANCE IBV is an important human pathogen, but its ability to infect other species, for example, pigs, is not well understood. We showed serological evidence that antibodies to two genetically and antigenically distinct lineages of IBVs were present among domestic pigs, especially in swine herds previously infected with PRRSV

  5. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens.

    PubMed

    Dash, Sandeep Kumar; Kumar, Manoj; Kataria, Jag Mohan; Nagarajan, Shanmugasundaram; Tosh, Chakradhar; Murugkar, Harshad V; Kulkarni, Diwakar D

    2016-06-01

    Low pathogenic avian influenza H9N2 and highly pathogenic avian influenza H5N1 viruses continue to co-circulate in chickens. Prior infection with low pathogenic avian influenza can modulate the outcome of H5N1 infection. In India, low pathogenic H9N2 and highly pathogenic H5N1 avian influenza viruses are co-circulating in poultry. Herein, by using chickens with prior infection of A/chicken/India/04TI05/2012 (H9N2) virus we explored the outcome of infection with H5N1 virus A/turkey/India/10CA03/2012 natural PB1 gene reassortant from H9N2. Four groups (E1-E4) of SPF chickens (n = 6) prior inoculated with 10(6) EID50 of H9N2 virus were challenged with 10(6) EID50 of H5N1 natural reassortant (PB1-H9N2) virus at days 1 (group E1); 3 (group E2); 7 (group E3) and 14 (group E4) post H9N2 inoculation. The survival percentage in groups E1-E4 was 0, 100, 66.6 and 50%, respectively. Virus shedding periods for groups E1-E4 were 3, 4, 7 and 9 days, respectively post H5N1 challenge. Birds of group E1 and E2 were shedding both H9N2 and H5N1 viruses and mean viral RNA copy number was higher in oropharyngeal swabs than cloacal swabs. In group, E3 and E4 birds excreted only H5N1 virus and mean viral RNA copy number was higher in most cloacal swabs than oral swabs. These results indicate that prior infection with H9N2 virus could protect from lethal challenge of reassortant H5N1 virus as early as with three days prior H9N2 inoculation and protection decreased in groups E3 and E4 as time elapsed. However, prior infection with H9N2 did not prevent infection with H5N1 virus and birds continue to excrete virus in oropharyngeal and cloacal swabs. Amino acid substitution K368E was found in HA gene of excreted H5N1 virus of group E3. Hence, concurrent infection can also cause emergence of viruses with mutations leading to virus evolution. The results of this study are important for the surveillance and epidemiological data analysis where both H9N2 and H5N1 viruses are co-circulating.

  6. Influenza virus respiratory infection and transmission following ocular inoculation in ferrets

    USDA-ARS?s Scientific Manuscript database

    While influenza viruses are a common respiratory pathogen, sporadic reports of conjunctivitis following human infection demonstrates the ability of this virus to cause disease outside of the respiratory tract. The ocular surface represents both a potential site of virus replication and a portal of e...

  7. Zika virus and the never-ending story of emerging pathogens and transfusion medicine.

    PubMed

    Marano, Giuseppe; Pupella, Simonetta; Vaglio, Stefania; Liumbruno, Giancarlo M; Grazzini, Giuliano

    2016-03-01

    In the last few years, the transfusion medicine community has been paying special attention to emerging vector-borne diseases transmitted by arboviruses. Zika virus is the latest of these pathogens and is responsible for major outbreaks in Africa, Asia and, more recently, in previously infection-naïve territories of the Pacific area. Many issues regarding this emerging pathogen remain unclear and require further investigation. National health authorities have adopted different prevention strategies. The aim of this review article is to discuss the currently available, though limited, information and the potential impact of this virus on transfusion medicine.

  8. Genesis and Dissemination of Highly Pathogenic H5N6 Avian Influenza Viruses.

    PubMed

    Yang, Lei; Zhu, Wenfei; Li, Xiaodan; Bo, Hong; Zhang, Ye; Zou, Shumei; Gao, Rongbao; Dong, Jie; Zhao, Xiang; Chen, Wenbing; Dong, Libo; Zou, Xiaohui; Xing, Yongcai; Wang, Dayan; Shu, Yuelong

    2017-03-01

    Clade 2.3.4.4 highly pathogenic avian influenza viruses (H5Nx) have spread from Asia to other parts of the world. Since 2014, human infections with clade 2.3.4.4 highly pathogenic avian influenza H5N6 viruses have been continuously reported in China. To investigate the genesis of the virus, we analyzed 123 H5 or N6 environmental viruses sampled from live-poultry markets or farms from 2012 to 2015 in Mainland China. Our results indicated that clade 2.3.4.4 H5N2/N6/N8 viruses shared the same hemagglutinin gene as originated in early 2009. From 2012 to 2015, the genesis of highly pathogenic avian influenza H5N6 viruses occurred via two independent pathways. Three major reassortant H5N6 viruses (reassortants A, B, and C) were generated. Internal genes of reassortant A and B viruses and reassortant C viruses derived from clade 2.3.2.1c H5N1 and H9N2 viruses, respectively. Many mammalian adaption mutations and antigenic variations were detected among the three reassortant viruses. Considering their wide circulation and dynamic reassortment in poultry, we highly recommend close monitoring of the viruses in poultry and humans. IMPORTANCE Since 2014, clade 2.3.4.4 highly pathogenic avian influenza (H5Nx) viruses have caused many outbreaks in both wild and domestic birds globally. Severe human cases with novel H5N6 viruses in this group were also reported in China in 2014 and 2015. To investigate the genesis of the genetic diversity of these H5N6 viruses, we sequenced 123 H5 or N6 environmental viruses sampled from 2012 to 2015 in China. Sequence analysis indicated that three major reassortants of these H5N6 viruses had been generated by two independent evolutionary pathways. The H5N6 reassortant viruses had been detected in most provinces of southern China and neighboring countries. Considering the mammalian adaption mutations and antigenic variation detected, the spread of these viruses should be monitored carefully due to their pandemic potential.

  9. High-pathogenicity avian influenza virus in the reproductive tract of chickens.

    PubMed

    Sá e Silva, M; Rissi, D R; Pantin-Jackwood, M; Swayne, D E

    2013-11-01

    Infection with high-pathogenicity avian influenza virus (HPAIV) has been associated with a wide range of clinical manifestations in poultry, including severe depression in egg production and isolation of HPAIV from eggs laid by infected hens. To evaluate the pathobiology in the reproductive tract of chickens, adult hens were inoculated intranasally with 3 HPAIV strains. All 3 strains induced lesions in the reproductive tract 36 to 72 hours after inoculation. Positive immunostaining was observed in all segments of the reproductive tract, occurring predominantly in stromal cells and superficial germinal epithelium of the ovary, in mucosal epithelial cells and less often glandular epithelium throughout the oviduct, and in vascular endothelium. This study generates important data and explains previously reported virus isolation from yolk, due to ovarian virus replication, and virus recovery from albumin, due to virus replication in epithelial cells in several segments of the oviduct.

  10. Virus-host interactions: new insights and advancements in drug development against viral pathogens.

    PubMed

    Prasad, Minakshi; Ranjan, Koushlesh; Brar, Basanti; Shah, Ikbal; Lalmbe, Upendra; Manimegalai, J; Vashisht, Bhavya; Gaury, Madhusudan; Kumar, Pawan; Khurana, Sandip Kumar; Prasad, Gaya; Rawat, Jagveer; Yadav, Vikas; Kumar, Sunil; Rao, Rekha

    2017-09-24

    Viruses are the most devastating pathogens of almost all life forms including humans and animals. Viruses can replicate very fast and may affect any metabolic and physiological function of the host cell. Therefore, it has been a challenge to develop a universal and common treatment against viral pathogens, in contrast to bacterial pathogens. Virus-host interaction is a complex phenomenon and often is virus- and host cell-specific. Exciting new insights into the molecular pathogenesis and host-virus interactions have been gained over the past few decades. These advances have enabled researchers to design better antiviral drugs. Clinical adequacy of antiviral drugs and their bioavailability are important parameters for effective treatment of viral infections. The problems associated with effective delivery of a drug in a safe and desired quantity have led to the search for (and design of) better drug delivery systems. In recent past, several new antiviral drugs have been developed, which have high therapeutic effectiveness against life-threatening viral diseases such as HIV, hepatitis B virus, herpes virus, dengue virus, and influenza virus infections. The majority of recent advances in antiviral drug discovery were possible due to developments in allied fields such as in vitro virus cultivation technology, molecular biology of viral-genome-encoded enzymes, complete-genome-sequence-based studies of viruses, and identification of suitable targets for antiviral drugs in viral genomes. Recently, several novel drug delivery approaches including small interfering RNAs (siRNAs) have emerged to aid antiviral therapy. The present review is aimed at providing an update on research and development efforts being made to create effective antiviral chemotherapeutic agents and approaches to their delivery to appropriate cells or tissues. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds.

    PubMed

    Swayne, David E

    2007-03-01

    Avian influenza (AI) viruses are a diverse group of viruses that can be divided into 144 subtypes, based on different combinations of the 16 hemagglutinin and nine neuraminidase subtypes, and two pathotypes (low and high pathogenicity [HP]), based on lethality for the major poultry species, the chicken. However, other criteria are important in understanding the complex biology of AI viruses, including host adaptation, transmissibility, infectivity, tissue tropism, and lesion, and disease production. Overall, such pathobiological features vary with host species and virus strain. Experimentally, HPAI viruses typically produce a similar severe, systemic disease with high mortality in chickens and other gallinaceous birds. However, these same viruses usually produce no clinical signs of infection or only mild disease in domestic ducks and wild birds. Over the past decade, the emergent HPAI viruses have shifted to increased virulence for chickens as evident by shorter mean death times and a greater propensity for massive disseminated replication in vascular endothelial cells. Importantly, the Asian H5N1 HPAI viruses have changed from producing inconsistent respiratory infections in 2-wk-old domestic ducks to some strains being highly lethal in ducks with virus in multiple internal organs and brain. However, the high lethality for ducks is inversely related to age, unlike these viruses in gallinaceous poultry, which are highly lethal irrespective of the host age. The most recent Asian H5N1 HPAI viruses have infected some wild birds, producing systemic infections and death. Across all bird species, the ability to produce severe disease and death is associated with high virus replication titers in the host, especially in specific tissues such as brain and heart.

  12. Can plant viruses cross the kingdom border and be pathogenic to humans?

    PubMed

    Balique, Fanny; Lecoq, Hervé; Raoult, Didier; Colson, Philippe

    2015-04-20

    Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.

  13. Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?

    PubMed Central

    Balique, Fanny; Lecoq, Hervé; Raoult, Didier; Colson, Philippe

    2015-01-01

    Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans. PMID:25903834

  14. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection

    NASA Astrophysics Data System (ADS)

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-01

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  15. Centrality in the host–pathogen interactome is associated with pathogen fitness during infection

    PubMed Central

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-01

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host–pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host–pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host–pathogen interactome should be explored as promising targets for antimicrobial drug design. PMID:28090086

  16. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

    PubMed

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-10-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.

  17. An experimental study of the pathogenicity of a duck hepatitis A virus genotype C isolate in specific pathogen free ducklings.

    PubMed

    Zhang, Huanrong; Pi, JinKui; Tang, Cheng; Yue, Hua; Yang, Falong

    2012-12-01

    Duck hepatitis A virus genotype C (DHAV-C), recognized recently, is one of the pathogens causing fatal duck viral hepatitis in ducklings, especially in Asia. To demonstrate the pathogenesis of the DHAV-C isolate, 3-day-old specific pathogen free ducklings were inoculated subcutaneously with a DHAV-C isolate and the clinical signs were observed. Virus distribution, histological and apoptotic morphological changes of various tissues were examined at different times post inoculation. The serial, characteristic changes included haemorrhage and swelling of the liver. Apoptotic cells and virus antigen staining were found in all of the tissues examined. Where more virus antigen staining was detected, there were more severe histopathological and apoptotic changes. The amount of virus antigen and the histological and apoptotic morphological changes agreed with each other and became increasingly severe with length of time after infection. Apoptotic cells were ubiquitously distributed, especially among lymphocytes, macrophages and monocytes in immune organs such as the bursa of Fabricius, thymus and spleen, and in liver, kidney and cerebral cells. Necrosis was also observed within 72 h post inoculation in all organs examined, except the cerebrum, and was characterized by cell swelling and collapsed plasma membrane. These results suggest that the recent outbreak of disease caused by DHAV-C virus is pantropic, causing apoptosis and necrosis of different organs. The apoptosis and necrosis caused by the DHAV-C field strain in this study is associated with pathogenesis and DHAV-C-induced lesions.

  18. Risk reduction modeling of high pathogenicity avian influenza virus titers in non-pasteurized liquid egg obtained from infected but undetected chicken flocks

    USDA-ARS?s Scientific Manuscript database

    Control of highly pathogenic avian influenza (HPAI) has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a containment area under permit. Non-pasteurized liquid egg (NPLE) is one such commodity for which movements ma...

  19. Pathogenesis and pathobiology of avian influenza virus infection in birds.

    PubMed

    Pantin-Jackwood, M J; Swayne, D E

    2009-04-01

    Avian influenza (AI) viruses vary in their ability to produce infection, disease and death in different bird species. Based on the pathobiological effect in chickens, AI viruses (AIV) are categorised as low pathogenic (LPAIV) or highly pathogenic (HPAIV). Typically, LPAIV cause asymptomatic infections in wild aquatic birds, but when introduced into domesticated poultry, infections may be asymptomatic or produce clinical signs and lesions reflecting pathophysiological damage to the respiratory, digestive and reproductive systems. The HPAIV have primarily been seen in gallinaceous poultry, producing high morbidity and mortality, and systemic disease with necrosis and inflammation in multiple visceral organs, nervous and cardiovascular systems, and the integument. Although HPAIV have rarely infected domestic waterfowl or wild birds, the Eurasian-African H5N1 HPAIV have evolved over the past decade with the unique capacity to infect and cause disease in domestic ducks and wild birds, producing a range of syndromes including asymptomatic respiratory and digestive tract infections; systemic disease limited to two or three critical organs, usually the brain, heart and pancreas; and severe disseminated infection and death as seen in gallinaceous poultry. Although experimental studies using intranasal inoculation have produced infection in a variety of wild bird species, the inefficiency of contact transmission in some of them, for example, passerines and Columbiformes, suggests they are unlikely to be a reservoir for the viruses, while others such as some wild Anseriformes, can be severely affected and could serve as a dissemination host over intermediate distances.

  20. Calicivirus infection in human immunodeficiency virus seropositive children and adults.

    PubMed

    Rodríguez-Guillén, L; Vizzi, E; Alcalá, A C; Pujol, F H; Liprandi, F; Ludert, J E

    2005-06-01

    The importance of enteric viral infections in HIV-related diarrhea is uncertain. Human caliciviruses have emerged as a leading cause of acute diarrhea worldwide. To evaluate the importance of calicivirus infections in HIV-related diarrhea. Study design 151 fecal samples collected from children and adults infected with HIV, with and without diarrhea, were examined. In addition, 89 fecal samples from non HIV-infected children and adults were also tested. Samples were analyzed by RT-PCR using primer sets specific to Norovirus genogroup I or genogroup II as well as primers designed to react with both Noroviruses and Sapovirus genus. Viruses were detected with equal frequencies in stools from HIV infected and non-infected adults (12%). However, specimens from HIV infected children were more likely than those of HIV-negative children to have caliciviruses (51% versus 24%, P<0.05). Viral infections were not significantly associated with diarrhea neither in children nor in adults, regardless of HIV status. Viruses genetically related to the common Lordsdale virus (Norovirus genogroup II) and London/92 virus (Sapovirus) clusters were detected circulating among children. These results suggest that caliciviruses may be an important opportunistic pathogen in children infected with HIV.

  1. Analysis by single-gene reassortment demonstrates that the 1918 influenza virus is functionally compatible with a low-pathogenicity avian influenza virus in mice.

    PubMed

    Qi, Li; Davis, A Sally; Jagger, Brett W; Schwartzman, Louis M; Dunham, Eleca J; Kash, John C; Taubenberger, Jeffery K

    2012-09-01

    The 1918-1919 "Spanish" influenza pandemic is estimated to have caused 50 million deaths worldwide. Understanding the origin, virulence, and pathogenic properties of past pandemic influenza viruses, including the 1918 virus, is crucial for current public health preparedness and future pandemic planning. The origin of the 1918 pandemic virus has not been resolved, but its coding sequences are very like those of avian influenza virus. The proteins encoded by the 1918 virus differ from typical low-pathogenicity avian influenza viruses at only a small number of amino acids in each open reading frame. In this study, a series of chimeric 1918 influenza viruses were created in which each of the eight 1918 pandemic virus gene segments was replaced individually with the corresponding gene segment of a prototypical low-pathogenicity avian influenza (LPAI) H1N1 virus in order to investigate functional compatibility of the 1918 virus genome with gene segments from an LPAI virus and to identify gene segments and mutations important for mammalian adaptation. This set of eight "7:1" chimeric viruses was compared to the parental 1918 and LPAI H1N1 viruses in intranasally infected mice. Seven of the 1918 LPAI 7:1 chimeric viruses replicated and caused disease equivalent to the fully reconstructed 1918 virus. Only the chimeric 1918 virus containing the avian influenza PB2 gene segment was attenuated in mice. This attenuation could be corrected by the single E627K amino acid change, further confirming the importance of this change in mammalian adaptation and mouse pathogenicity. While the mechanisms of influenza virus host switch, and particularly mammalian host adaptation are still only partly understood, these data suggest that the 1918 virus, whatever its origin, is very similar to avian influenza virus.

  2. Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany.

    PubMed

    Harder, Timm; Maurer-Stroh, Sebastian; Pohlmann, Anne; Starick, Elke; Höreth-Böntgen, Detlef; Albrecht, Karin; Pannwitz, Gunter; Teifke, Jens; Gunalan, Vithiagaran; Lee, Raphael T C; Sauter-Louis, Carola; Homeier, Timo; Staubach, Christoph; Wolf, Carola; Strebelow, Günter; Höper, Dirk; Grund, Christian; Conraths, Franz J; Mettenleiter, Thomas C; Beer, Martin

    2015-05-01

    Highly pathogenic avian influenza (H5N8) virus, like the recently described H5N8 strain from Korea, was detected in November 2014 in farmed turkeys and in a healthy common teal (Anas crecca) in northeastern Germany. Infected wild birds possibly introduced this virus.

  3. Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany

    PubMed Central

    Maurer-Stroh, Sebastian; Pohlmann, Anne; Starick, Elke; Höreth-Böntgen, Detlef; Albrecht, Karin; Pannwitz, Gunter; Teifke, Jens; Gunalan, Vithiagaran; Lee, Raphael T.C.; Sauter-Louis, Carola; Homeier, Timo; Staubach, Christoph; Wolf, Carola; Strebelow, Günter; Höper, Dirk; Grund, Christian; Conraths, Franz J.; Mettenleiter, Thomas C.; Beer, Martin

    2015-01-01

    Highly pathogenic avian influenza (H5N8) virus, like the recently described H5N8 strain from Korea, was detected in November 2014 in farmed turkeys and in a healthy common teal (Anas crecca) in northeastern Germany. Infected wild birds possibly introduced this virus. PMID:25897703

  4. Peptide inhibitors against herpes simplex virus infections.

    PubMed

    Galdiero, Stefania; Falanga, Annarita; Tarallo, Rossella; Russo, Luigi; Galdiero, Emilia; Cantisani, Marco; Morelli, Giancarlo; Galdiero, Massimiliano

    2013-03-01

    Herpes simplex virus (HSV) is a significant human pathogen causing mucocutaneous lesions primarily in the oral or genital mucosa. Although acyclovir (ACV) and related nucleoside analogs provide successful treatment, HSV remains highly prevalent worldwide and is a major cofactor for the spread of human immunodeficiency virus. Encephalitis, meningitis, and blinding keratitis are among the most severe diseases caused by HSV. ACV resistance poses an important problem for immunocompromised patients and highlights the need for new safe and effective agents; therefore, the development of novel strategies to eradicate HSV is a global public health priority. Despite the continued global epidemic of HSV and extensive research, there have been few major breakthroughs in the treatment or prevention of the virus since the introduction of ACV in the 1980s. A therapeutic strategy at the moment not fully addressed is the use of small peptide molecules. These can be either modeled on viral proteins or derived from antimicrobial peptides. Any peptide that interrupts protein-protein or viral protein-host cell membrane interactions is potentially a novel antiviral drug and may be a useful tool for elucidating the mechanisms of viral entry. This review summarizes current knowledge and strategies in the development of synthetic and natural peptides to inhibit HSV infectivity.

  5. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink.

    PubMed Central

    Hadlow, W J; Race, R E; Kennedy, R C

    1983-01-01

    Information was sought on the comparative pathogenicity of four North American strains (isolates) of Aleutian disease virus for royal pastel (a non-Aleutian genotype) and sapphire (an Aleutian genotype) mink. The four strains (Utah-1, Ontario [Canada], Montana, and Pullman [Washington]), all of mink origin, were inoculated intraperitoneally and intranasally in serial 10-fold dilutions. As indicated by the appearance of specific antibody (counterimmunoelectrophoresis test), all strains readily infected both color phases of mink, and all strains were equally pathogenic for sapphire mink. Not all strains, however, regularly caused Aleutian disease in pastel mink. Infection of pastel mink with the Utah-1 strain invariably led to fatal disease. Infection with the Ontario strain caused fatal disease nearly as often. The Pullman strain, by contrast, almost never caused disease in infected pastel mink. The pathogenicity of the Montana strain for this color phase was between these extremes. These findings emphasize the need to distinguish between infection and disease when mink are exposed to Aleutian disease virus. The distinction has important implications for understanding the natural history of Aleutian disease virus infection in ranch mink. PMID:6193063

  6. Differences in the detection of highly pathogenic avian influenza H5N1 virus in feather samples from 4-week-old and 24-week-old infected Pekin ducks (Anas platyrhynchos var. domestica).

    PubMed

    Aiello, Roberta; Beato, Maria Serena; Mancin, Marzia; Rigoni, Michela; Tejeda, Aurora Romero; Maniero, Silvia; Capua, Ilaria; Terregino, Calogero

    2013-08-30

    Previous studies have reported the detection of H5N1 HPAI virus in feathers from ducks naturally and experimentally infected and suggested that feather calami (FC) could be used as diagnostic samples for the early detection of H5N1 HPAI infections. Ducks are readily infected with H5N1 HPAI viruses although the development of clinical signs and deaths were reported as age-related with younger birds being more susceptible. The correlation between age and virus localisation in FC of infected ducks has not been studied to date. In the present study juvenile (4-week-old) and adult (24-week-old) Pekin ducks (Anas platyrhynchos var. domestica) were infected experimentally with a clade 2.2 H5N1 HPAI virus (A/duck/Nigeria/1071-23/2007). Tracheal (Tr) and cloacal (Cl) swabs and FC were collected at 3, 5, 7 and 10 days post infection and tested by RRT-PCR and a double antibody sandwich-ELISA (DAS-ELISA) developed in house. Virus was detected in swabs and FC of challenged ducks with a higher rate of detection in juvenile ducks. In this age group virus was detected over a longer period of time in FC compared to swabs. Our study showed that FC samples collected from young ducks are a valid diagnostic specimen for H5N1 HPAI virus detection. The DAS-ELISA on FC proved to be a suitable alternative diagnostic test when molecular and/or virus isolation techniques are not available therefore it could be useful in the diagnosis of H5N1 HPAI infections in under-resourced countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Pathogenicity and transmission of H5 and H7 highly pathogenic avian influenza viruses in mallards

    USDA-ARS?s Scientific Manuscript database

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010 and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses...

  8. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep.

    PubMed

    Bin Tarif, Abid; Lasecka, Lidia; Holzer, Barbara; Baron, Michael D

    2012-10-19

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus.

  9. Parasites can enhance infections of fish with bacterial pathogens

    USDA-ARS?s Scientific Manuscript database

    In aquaculture systems, fish are commonly infected by multiple pathogens, including parasites. Parasite Ichthyophthirius multifiliis (Ich) and bacterium Edwardsiella ictaluri are two common pathogens of cultured channel catfish. The objectives were to 1) evaluate the susceptibility of Ich parasitize...

  10. Looking at protists as a source of pathogenic viruses.

    PubMed

    La Scola, Bernard

    2014-12-01

    In the environment, protozoa are predators of bacteria and feed on them. The possibility that some protozoa could be a source of human pathogens is consistent with the discovery that free-living amoebae were the reservoir of Legionella pneumophila, the agent of Legionnaires' disease. Later, while searching for Legionella in the environment using amoeba co-culture, the first giant virus, Acanthamoeba polyphaga mimivirus, was discovered. Since then, many other giant viruses have been isolated, including Marseilleviridae, Pithovirus sibericum, Cafeteria roenbergensis virus and Pandoravirus spp. The methods used to isolate all of these viruses are herein reviewed. By analogy to Legionella, it was originally suspected that these viruses could be human pathogens. After showing by indirect evidence, such as sero-epidemiologic studies, that it was possible for these viruses to be human pathogens, the recent isolation of some of these viruses (belonging to the Mimiviridae and Marseilleviridae families) in humans in the context of pathologic conditions shows that they are opportunistic human pathogens in some instances.

  11. Infection Strategies of Bacterial and Viral Pathogens through Pathogen–Human Protein–Protein Interactions

    PubMed Central

    Durmuş Tekir, Saliha; Çakir, Tunahan; Ülgen, Kutlu Ö

    2012-01-01

    Since ancient times, even in today’s modern world, infectious diseases cause lots of people to die. Infectious organisms, pathogens, cause diseases by physical interactions with human proteins. A thorough analysis of these interspecies interactions is required to provide insights about infection strategies of pathogens. Here we analyzed the most comprehensive available pathogen–human protein interaction data including 23,435 interactions, targeting 5,210 human proteins. The data were obtained from the newly developed pathogen–host interaction search tool, PHISTO. This is the first comprehensive attempt to get a comparison between bacterial and viral infections. We investigated human proteins that are targeted by bacteria and viruses to provide an overview of common and special infection strategies used by these pathogen types. We observed that in the human protein interaction network the proteins targeted by pathogens have higher connectivity and betweenness centrality values than those proteins not interacting with pathogens. The preference of interacting with hub and bottleneck proteins is found to be a common infection strategy of all types of pathogens to manipulate essential mechanisms in human. Compared to bacteria, viruses tend to interact with human proteins of much higher connectivity and centrality values in the human network. Gene Ontology enrichment analysis of the human proteins targeted by pathogens indicates crucial clues about the infection mechanisms of bacteria and viruses. As the main infection strategy, bacteria interact with human proteins that function in immune response to disrupt human defense mechanisms. Indispensable viral strategy, on the other hand, is the manipulation of human cellular processes in order to use that transcriptional machinery for their own genetic material transcription. A novel observation about pathogen–human systems is that the human proteins targeted by both pathogens are enriched in the regulation of

  12. A mouse model for testing the pathogenicity of equine herpes virus-1 strains.

    PubMed

    van Woensel, P A; Goovaerts, D; Markx, D; Visser, N

    1995-07-01

    A mouse model was developed for testing the pathogenicity of equine herpes virus-1 (EHV-1) strains. The model was validated with EHV-1 strains that are known to be of a low or high pathogenicity in horses. From all parameters tested, the safety index, which was calculated from the body weights of the mice after infection, proved to be the best predictive parameter. When this parameter was used, good and reliable correlations were found with the pathogenicity of the EHV-1 strains in horses. This method enabled the differentiation between the two experimental EHV-1 strains whose genetic backgrounds were supposedly equal.

  13. Pathogenicity of different rabies virus isolates and protection test in vaccinated mice.

    PubMed

    Cunha, Elenice M S; Nassar, Alessandra F C; Lara, Maria do Carmo C S H; Villalobos, Eliana C M; Sato, Go; Kobayashi, Yuki; Shoji, Youko; Itou, Takuya; Sakai, Takeo; Ito, Fumio H

    2010-01-01

    This study was aimed to evaluate and compare the pathogenicity of rabies virus isolated from bats and dogs, and to verify the efficacy of a commercial rabies vaccine against these isolates. For evaluation of pathogenicity, mice were inoculated by the intramuscular route (IM) with 500MICLD₅₀/0.03 mL of the viruses. The cross-protection test was performed by vaccinating groups of mice by the subcutaneous route and challenged through the intracerebral (IC) route. Isolates were fully pathogenic when inoculated by the IC route. When inoculated intramuscularly, the pathogenicity observed showed different death rates: 60.0% for the Desmodus rotundus isolate; 50.0% for dog and Nyctinomops laticaudatus isolates; 40.0% for Artibeus lituratus isolate; 9.5% Molossus molossus isolate; and 5.2% for the Eptesicus furinalis isolate. Mice receiving two doses of the vaccine and challenged by the IC route with the isolates were fully protected. Mice receiving only one dose of vaccine were partially protected against the dog isolate. The isolates from bats were pathogenic by the IC route in mice. However, when inoculated through the intramuscular route, the same isolates were found with different degrees of pathogenicity. The results of this work suggest that a commercial vaccine protects mice from infection with bat rabies virus isolates, in addition to a canine rabies virus isolate.

  14. Hepatitis B virus infection in Indonesia

    PubMed Central

    Yano, Yoshihiko; Utsumi, Takako; Lusida, Maria Inge; Hayashi, Yoshitake

    2015-01-01

    Approximately 240 million people are chronically infected with hepatitis B virus (HBV), 75% of whom reside in Asia. Approximately 600000 of infected patients die each year due to HBV-related diseases or hepatocellular carcinoma (HCC). The endemicity of hepatitis surface antigen in Indonesia is intermediate to high with a geographical difference. The risk of HBV infection is high in hemodialysis (HD) patients, men having sex with men, and health care workers. Occult HBV infection has been detected in various groups such as blood donors, HD patients, and HIV-infected individuals and children. The most common HBV subgenotype in Indonesia is B3 followed by C1. Various novel subgenotypes of HBV have been identified throughout Indonesia, with the novel HBV subgenotypes C6-C16 and D6 being successfully isolated. Although a number of HBV subgenotypes have been discovered in Indonesia, genotype-related pathogenicity has not yet been elucidated in detail. Therefore, genotype-related differences in the prognosis of liver disease and their effects on treatments need to be determined. A previous study conducted in Indonesia revealed that hepatic steatosis was associated with disease progression. Pre-S2 mutations and mutations at C1638T and T1753V in HBV/B3 have been associated with advanced liver diseases including HCC. However, drug resistance to lamivudine, which is prominent in Indonesia, remains obscure. Although the number of studies on HBV in Indonesia has been increasing, adequate databases on HBV infection are limited. We herein provided an overview of the epidemiology and clinical characteristics of HBV infection in Indonesia. PMID:26478663

  15. Hepatitis B virus infection in Indonesia.

    PubMed

    Yano, Yoshihiko; Utsumi, Takako; Lusida, Maria Inge; Hayashi, Yoshitake

    2015-10-14

    Approximately 240 million people are chronically infected with hepatitis B virus (HBV), 75% of whom reside in Asia. Approximately 600000 of infected patients die each year due to HBV-related diseases or hepatocellular carcinoma (HCC). The endemicity of hepatitis surface antigen in Indonesia is intermediate to high with a geographical difference. The risk of HBV infection is high in hemodialysis (HD) patients, men having sex with men, and health care workers. Occult HBV infection has been detected in various groups such as blood donors, HD patients, and HIV-infected individuals and children. The most common HBV subgenotype in Indonesia is B3 followed by C1. Various novel subgenotypes of HBV have been identified throughout Indonesia, with the novel HBV subgenotypes C6-C16 and D6 being successfully isolated. Although a number of HBV subgenotypes have been discovered in Indonesia, genotype-related pathogenicity has not yet been elucidated in detail. Therefore, genotype-related differences in the prognosis of liver disease and their effects on treatments need to be determined. A previous study conducted in Indonesia revealed that hepatic steatosis was associated with disease progression. Pre-S2 mutations and mutations at C1638T and T1753V in HBV/B3 have been associated with advanced liver diseases including HCC. However, drug resistance to lamivudine, which is prominent in Indonesia, remains obscure. Although the number of studies on HBV in Indonesia has been increasing, adequate databases on HBV infection are limited. We herein provided an overview of the epidemiology and clinical characteristics of HBV infection in Indonesia.

  16. [Zika virus infection in pregnancy].

    PubMed

    Varjasi, Gabriella; Póka, Róbert

    2017-04-01

    The Zika virus is a flavivirus spread by mosquitoes. Its primary vectors are the Aedes aegypti and the Aedes albopictus. Before 2007 it sporadically caused benign morbidity. Since 2015, it started spreading "explosively" in America, especially in Brazil. In August 2016 they reported cases from New York and Poland, too. Most of the infections don't produce any symptoms, but can cause grave complications. The most important lesion is microcephalia that forms in fetuses. Microcephalia's most serious consequence is mental retardation, which puts great burden on both the family and the society. The viral infection increases the incidence of Guillain-Barré syndrome. This is an acute autoimmune disease which causes demyelination and, in the worst cases, it can also be fatal. Yet we do not possess adequate and specific vaccination nor antiviral therapy, although, since July 2016, the effectiveness of a DNA based vaccine is being tested on humans. More than half of the world's population lives in areas contaminated by infected mosquitoes so there is a great need for the development of an effective method against the vector mosquitoes. Sadly, even the vector control strategies aren't effective enough to push back the epidemic. Pregnant or fertile women must take the highest precautions against mosquito bites, especially if they travel to regions ravaged by the epidemic. The safest solution would be to postpone both the trip and the childbearing. In Europe, the vectors aren't spread enough to cause major threat, except maybe the warmer regions bordered by the Mediterranean Sea. However, it is possible that in the near future other viruses spread by Aedes mosquitoes could appear. Naturally, the travellers and immigrants, who came from endemic regions can also contribute to the spread of the epidemic. Thanks to the changes in global weather, there were reported findings of mosquitoes of the Aedes albopictus species in Hungary, which are slowly invading the continent, although

  17. Mechanisms of Severe Mortality-Associated Bacterial Co-infections Following Influe