Science.gov

Sample records for pathogenicity comparative phylogenetic

  1. Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification.

    PubMed

    Logue, Catherine M; Wannemuehler, Yvonne; Nicholson, Bryon A; Doetkott, Curt; Barbieri, Nicolle L; Nolan, Lisa K

    2017-01-01

    The Clermont scheme has been used for subtyping of Escherichia coli since it was initially described in early 2000. Since then, researchers have used the scheme to type and sub-type commensal E. coli and pathogenic E. coli, such as extraintestinal pathogenic E. coli (ExPEC), and compare their phylogenetic assignment by pathogenicity, serogroup, distribution among ExPEC of different host species and complement of virulence and resistance traits. Here, we compare assignments of human and avian ExPEC and commensal E. coli using the old and revised Clermont schemes to determine if the new scheme provides a refined snapshot of isolate classification. 1,996 E. coli from human hosts and poultry, including 84 human neonatal meningitis E. coli isolates, 88 human vaginal E. coli, 696 human uropathogenic E. coli, 197 healthy human fecal E. coli, 452 avian pathogenic E. coli (APEC), 200 retail poultry E. coli, 80 crop and gizzard E. coli from healthy poultry at slaughter and 199 fecal E. coli from healthy birds at slaughter. All isolates were subject to phylogenetic analysis using the Clermont et al. (2000, 2013) schemes and compared to determine the effect of the new classification on strain designation. Most of the isolates' strain designation remained where they were originally assigned. Greatest designation change occurred in APEC where 53.8% of isolates were reclassified; while classification rates among human strains ranged from 8 to 14%. However, some significant changes were observed for UPEC associated strains with significant (P < 0.05) designation changes observed from A to C and D to E or F phylogenetic types; a similar designation change was noted among NMEC for D to F designation change. Among the APEC significant designation changes were observed from A to C and D to E and F. These studies suggest that the new scheme provides a tighter and more meaningful definition of some ExPEC; while the new typing scheme has a significant impact on APEC classification. A

  2. Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification

    PubMed Central

    Logue, Catherine M.; Wannemuehler, Yvonne; Nicholson, Bryon A.; Doetkott, Curt; Barbieri, Nicolle L.; Nolan, Lisa K.

    2017-01-01

    The Clermont scheme has been used for subtyping of Escherichia coli since it was initially described in early 2000. Since then, researchers have used the scheme to type and sub-type commensal E. coli and pathogenic E. coli, such as extraintestinal pathogenic E. coli (ExPEC), and compare their phylogenetic assignment by pathogenicity, serogroup, distribution among ExPEC of different host species and complement of virulence and resistance traits. Here, we compare assignments of human and avian ExPEC and commensal E. coli using the old and revised Clermont schemes to determine if the new scheme provides a refined snapshot of isolate classification. 1,996 E. coli from human hosts and poultry, including 84 human neonatal meningitis E. coli isolates, 88 human vaginal E. coli, 696 human uropathogenic E. coli, 197 healthy human fecal E. coli, 452 avian pathogenic E. coli (APEC), 200 retail poultry E. coli, 80 crop and gizzard E. coli from healthy poultry at slaughter and 199 fecal E. coli from healthy birds at slaughter. All isolates were subject to phylogenetic analysis using the Clermont et al. (2000, 2013) schemes and compared to determine the effect of the new classification on strain designation. Most of the isolates’ strain designation remained where they were originally assigned. Greatest designation change occurred in APEC where 53.8% of isolates were reclassified; while classification rates among human strains ranged from 8 to 14%. However, some significant changes were observed for UPEC associated strains with significant (P < 0.05) designation changes observed from A to C and D to E or F phylogenetic types; a similar designation change was noted among NMEC for D to F designation change. Among the APEC significant designation changes were observed from A to C and D to E and F. These studies suggest that the new scheme provides a tighter and more meaningful definition of some ExPEC; while the new typing scheme has a significant impact on APEC classification. A

  3. Phylogenetic Comparative Assembly

    NASA Astrophysics Data System (ADS)

    Husemann, Peter; Stoye, Jens

    Recent high throughput sequencing technologies are capable of generating a huge amount of data for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time consuming to close all the gaps in order to acquire the whole genomic sequence. Here we propose an algorithm that takes several related genomes and their phylogenetic relationships into account to create a contig adjacency graph. From this a layout graph can be computed which indicates putative adjacencies of the contigs in order to aid biologists in finishing the complete genomic sequence.

  4. Comparative genomics of the liberibacteral plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative analyses of multiple Liberibacter genomes provide significant insights into the evolutionary history, genetic diversity, and phylogenetic and metabolomic capacities among pathogenic bacteria that have caused tremendous economic losses to agricultural crops. In addition, genomic analyses ...

  5. How does cognition evolve? Phylogenetic comparative psychology.

    PubMed

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  6. Chitinase modifying proteins from phylogenetically distinct lineages of Brassica pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinase modifying proteins (CMPs) are secreted fungal proteases that truncate specific plant class IV chitinases by cleaving peptide bonds in their amino termini. We recently identified a CMP from the Zea mays (maize) pathogen Fusarium verticillioides and found that it is a member of the fungalysi...

  7. Comparing Ontogenetic and Phylogenetic Stages of Human Development

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2005-01-01

    This paper will present evidence to support ontogenetic and phylogenetic parallels and draw from these comparisons to further illuminate our understanding of micro and macro human development. Individual and collective stages of physical, psychological and spiritual development will be compared and their homologous structures examined.…

  8. Phylogenetic concordance analysis shows an emerging pathogen is novel and endemic.

    PubMed

    Storfer, Andrew; Alfaro, Michael E; Ridenhour, Benjamin J; Jancovich, James K; Mech, Stephen G; Parris, Matthew J; Collins, James P

    2007-11-01

    Distinguishing whether pathogens are novel or endemic is critical for controlling emerging infectious diseases, an increasing threat to wildlife and human health. To test the endemic vs. novel pathogen hypothesis, we present a unique analysis of intraspecific host-pathogen phylogenetic concordance of tiger salamanders and an emerging Ranavirus throughout Western North America. There is significant non-concordance of host and virus gene trees, suggesting pathogen novelty. However, non-concordance has likely resulted from virus introductions by human movement of infected salamanders. When human-associated viral introductions are excluded, host and virus gene trees are identical, strongly supporting coevolution and endemism. A laboratory experiment showed an introduced virus strain is significantly more virulent than endemic strains, likely due to artificial selection for high virulence. Thus, our analysis of intraspecific phylogenetic concordance revealed that human introduction of viruses is the mechanism underlying tree non-concordance and possibly disease emergence via artificial selection.

  9. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    SciTech Connect

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  10. Automated ribotyping provides rapid phylogenetic subgroup affiliation of clinical extraintestinal pathogenic Escherichia coli strains.

    PubMed

    Clermont, O; Cordevant, C; Bonacorsi, S; Marecat, A; Lange, M; Bingen, E

    2001-12-01

    Using the automated Riboprinter system, we have initiated the construction of an electronic Riboprint database composed of 72 ECOR reference strains and 15 archetypal virulent strains in order to provide a new simple molecular characterization method. More than 90% of the ECOR strains clustered in their original phylogenetic group. All but one of the archetypal virulent strains had a profile identical to that of one of the ECOR strains and could be easily affiliated with a phylogenetic group. This method appears to be an accurate and practical tool especially for investigating the genetic relationship between clinical extraintestinal pathogenic strains and B2 subgroup ECOR strains or archetypal pathotype strains.

  11. Comparative analysis of twelve Dothideomycete plant pathogens

    SciTech Connect

    Ohm, Robin; Aerts, Andrea; Salamov, Asaf; Goodwin, Stephen B.; Grigoriev, Igor

    2011-03-11

    The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis

  12. Comparative Phylogenomics of Pathogenic and Nonpathogenic Species

    PubMed Central

    Whiston, Emily; Taylor, John W.

    2015-01-01

    The Ascomycete Onygenales order embraces a diverse group of mammalian pathogens, including the yeast-forming dimorphic fungal pathogens Histoplasma capsulatum, Paracoccidioides spp. and Blastomyces dermatitidis, the dermatophytes Microsporum spp. and Trichopyton spp., the spherule-forming dimorphic fungal pathogens in the genus Coccidioides, and many nonpathogens. Although genomes for all of the aforementioned pathogenic species are available, only one nonpathogen had been sequenced. Here, we enhance comparative phylogenomics in Onygenales by adding genomes for Amauroascus mutatus, Amauroascus niger, Byssoonygena ceratinophila, and Chrysosporium queenslandicum—four nonpathogenic Onygenales species, all of which are more closely related to Coccidioides spp. than any other known Onygenales species. Phylogenomic detection of gene family expansion and contraction can provide clues to fungal function but is sensitive to taxon sampling. By adding additional nonpathogens, we show that LysM domain-containing proteins, previously thought to be expanding in some Onygenales, are contracting in the Coccidioides-Uncinocarpus clade, as are the self-nonself recognition Het loci. The denser genome sampling presented here highlights nearly 800 genes unique to Coccidiodes, which have significantly fewer known protein domains and show increased expression in the endosporulating spherule, the parasitic phase unique to Coccidioides spp. These genomes provide insight to gene family expansion/contraction and patterns of individual gene gain/loss in this diverse order—both major drivers of evolutionary change. Our results suggest that gene family expansion/contraction can lead to adaptive radiations that create taxonomic orders, while individual gene gain/loss likely plays a more significant role in branch-specific phenotypic changes that lead to adaptation for species or genera. PMID:26613950

  13. Pathogenicity, sequence and phylogenetic analysis of Malaysian Chicken anaemia virus obtained after low and high passages in MSB-1 cells.

    PubMed

    Chowdhury, S M Z H; Omar, A R; Aini, I; Hair-Bejo, M; Jamaluddin, A A; Md-Zain, B M; Kono, Y

    2003-12-01

    Specific-pathogen-free (SPF) chickens inoculated with low passage Chicken anaemia virus (CAV), SMSC-1 and 3-1 isolates produced lesions suggestive of CAV infection. Repeated passages of the isolates in cell culture until passage 60 (P60) and passage 123 produced viruses that showed a significantly reduced level of pathogenicity in SPF chickens compared to the low passage isolates. Sequence comparison indicated that nucleotide changes in only the coding region of the P60 passage isolates were thought to contribute to virus attenuation. Phylogenetic analysis indicated that SMSC-1 and 3-1 were highly divergent, but their P60 passage derivatives shared significant homology to a Japanese isolate A2.

  14. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  15. Phylogenetic and Morphological Identification of the Novel Pathogen of Rheum palmatum Leaf Spot in Gansu, China

    PubMed Central

    Charkowski, Amy O.; Zeng, Cuiyun; Zhu, Tiantian; Wang, Huizhen; Chen, Honggang

    2016-01-01

    A new leaf spot disease was observed on leaves of Rheum palmatum (Chinese rhubarb) in Northwest China (Gansu Province) starting in 2005. A Septoria-like fungus was isolated and completion of Koch's postulates confirmed that the fungus was the casual agent of the leaf spot disease. Morphology and molecular methods were combined to identify the pathogen. The fungus produced conidiomata pycnidia and the conidia were 2~5 septate, 61.2~134.1 µm in length and 3.53~5.3 µm in width, which is much larger than the known Spetoria species that infects Polygonaceae species. Phylogenic analysis of the internal transcribed spacer region confirmed that this Spetoria-like fungus is within the Spetoria genus but distinct from known Spetoria species. Together, these morphological and phylogenetic data support that the R. palmatum infecting Spetoria strain is a newly-described plant pathogenic species. PMID:27433119

  16. Phylogenetic and Morphological Identification of the Novel Pathogen of Rheum palmatum Leaf Spot in Gansu, China.

    PubMed

    Wang, Yan; Charkowski, Amy O; Zeng, Cuiyun; Zhu, Tiantian; Wang, Huizhen; Chen, Honggang

    2016-06-01

    A new leaf spot disease was observed on leaves of Rheum palmatum (Chinese rhubarb) in Northwest China (Gansu Province) starting in 2005. A Septoria-like fungus was isolated and completion of Koch's postulates confirmed that the fungus was the casual agent of the leaf spot disease. Morphology and molecular methods were combined to identify the pathogen. The fungus produced conidiomata pycnidia and the conidia were 2~5 septate, 61.2~134.1 µm in length and 3.53~5.3 µm in width, which is much larger than the known Spetoria species that infects Polygonaceae species. Phylogenic analysis of the internal transcribed spacer region confirmed that this Spetoria-like fungus is within the Spetoria genus but distinct from known Spetoria species. Together, these morphological and phylogenetic data support that the R. palmatum infecting Spetoria strain is a newly-described plant pathogenic species.

  17. A comparative phylogenetic study of genetics and folk music.

    PubMed

    Pamjav, Horolma; Juhász, Zoltán; Zalán, Andrea; Németh, Endre; Damdin, Bayarlkhagva

    2012-04-01

    Computer-aided comparison of folk music from different nations is one of the newest research areas. We were intrigued to have identified some important similarities between phylogenetic studies and modern folk music. First of all, both of them use similar concepts and representation tools such as multidimensional scaling for modelling relationship between populations. This gave us the idea to investigate whether these connections are merely accidental or if they mirror population migrations from the past. We raised the question; does the complex structure of musical connections display a clear picture and can this system be interpreted by the genetic analysis? This study is the first to systematically investigate the incidental genetic background of the folk music context between different populations. Paternal (42 populations) and maternal lineages (56 populations) were compared based on Fst genetic distances of the Y chromosomal and mtDNA haplogroup frequencies. To test this hypothesis, the corresponding musical cultures were also compared using an automatic overlap analysis of parallel melody styles for 31 Eurasian nations. We found that close musical relations of populations indicate close genetic distances (<0.05) with a probability of 82%. It was observed that there is a significant correlation between population genetics and folk music; maternal lineages have a more important role in folk music traditions than paternal lineages. Furthermore, the combination of these disciplines establishing a new interdisciplinary research field of "music-genetics" can be an efficient tool to get a more comprehensive picture on the complex behaviour of populations in prehistoric time.

  18. Inteins in pathogenic fungi: a phylogenetic tool and perspectives for therapeutic applications.

    PubMed

    Theodoro, Raquel Cordeiro; Bagagli, Eduardo

    2009-05-01

    Inteins or 'internal proteins' are coding sequences that are transcribed and translated with flanking sequences (exteins). After translation, the inteins are excised by an autocatalytic process and the host protein assumes its normal conformation and develops its expected function. These parasitic genetic elements have been found in important, conserved proteins in all three domains of life. Most of the eukaryotic inteins are present in the fungi kingdom and the PRP8 intein is one of the most widespread inteins, occurring in important pathogens such as Cryptococcus neoformans (varieties grubii and neoformans), Cryptococcus gattii, Histoplasma capsulatum and Paracoccidioides brasiliensis. The knowledge of conserved and non-conserved domains in inteins have opened up new opportunities for the study of population variability in pathogenic fungi, including their phylogenetic relationships and recognition or diagnoses of species. Furthermore, inteins in pathogenic fungi should also be considered a promising therapeutic drug target, since once the autocatalytic splicing is inhibited, the host protein, which is typically vital, will not be able to perform its normal function and the fungal cell will not survive or reproduce.

  19. ["Phylogenetic presumptions"--can jurisprudence terms promote comparative biology?].

    PubMed

    Pesenko, Iu A

    2005-01-01

    The paper presents the results of a critical analysis of the "phylogenetic presumptions" conception by means of its comparison with the hypothetic-deductive method of the phylogeny reconstruction within the framework of the evolutionary systematics. Rasnitsyn (1988, 2002) suggested this conception by analogy with the presumption of innocence in jurisprudence, where it has only moral grounds. Premises of all twelve the "phylogenetic presumptions" are known for a long time as the criteria of character homology and polarity or as the criteria of relationship between organisms. Many of them are inductive generalizations based on a large body of data and therefore are currently accepted by most of taxonomists as criteria or corresponding rules, but not as presumptions with the imperative "it is true until the contrary is proved". The application of the juristic term "presumption" in phylogenetics introduces neither methodical profits, nor anything to gain a better insight of problems of the phylogenetic reconstruction. Moreover, it gives ill effects as, by analogy with a judicially charged person and his legal defense, it allows a researcher not to prove or substantiate his statements on characters and relationships. Some of Rasnitsyn's presumptions correspond to criteria, which have been recognized as invalid ones on the reason of their non-operationality (presumption "apomorphic state corresponds more effective adaptation") or insufficient ontological grounds (presumptions "are more complex structure is apomorphic", "the most parsimonious cladogram is preferable", and "one should considered every to be inherited").

  20. Do extreme environments provide a refuge from pathogens? A phylogenetic test using serpentine flax.

    PubMed

    Springer, Yuri P

    2009-11-01

    Abiotically extreme environments are often associated with physiologically stressful conditions, small, low-density populations, and depauperate flora and fauna relative to more benign settings. A possible consequence of this may be that organisms that occupy these stressful habitats receive fitness benefits associated with reductions in the frequency and/or intensity of antagonistic species interactions. I investigated a particular form of this effect, formalized as the "pathogen refuge hypothesis," through a study of 13 species of wild flax that grow on stressful serpentine soils and are often infected by a pathogenic fungal rust. The host species vary in the degree of their serpentine association: some specialize on extreme serpentine soils, while others are generalists that occur on soils with a wide range of serpentine influence. Phylogenetically explicit analyses of soil chemistry and field-measured disease levels indicated that rust disease was significantly less frequent and severe in flax populations growing in more stressful, low-calcium serpentine soils. These findings may help to explain the persistence of extremophile species in habitats where stressful physical conditions often impose strong autecological fitness costs on associated organisms. Ancestral state reconstruction of serpentine soil tolerance (approximated using soil calcium concentrations) suggested that the ability to tolerate extreme serpentine soils may have evolved multiple times within the focal genus.

  1. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review.

    PubMed

    Garamszegi, László Z; Møller, Anders P

    2010-11-01

    Comparative analyses aim to explain interspecific variation in phenotype among taxa. In this context, phylogenetic approaches are generally applied to control for similarity due to common descent, because such phylogenetic relationships can produce spurious similarity in phenotypes (known as phylogenetic inertia or bias). On the other hand, these analyses largely ignore potential biases due to within-species variation. Phylogenetic comparative studies inherently assume that species-specific means from intraspecific samples of modest sample size are biologically meaningful. However, within-species variation is often significant, because measurement errors, within- and between-individual variation, seasonal fluctuations, and differences among populations can all reduce the repeatability of a trait. Although simulations revealed that low repeatability can increase the type I error in a phylogenetic study, researchers only exercise great care in accounting for similarity in phenotype due to common phylogenetic descent, while problems posed by intraspecific variation are usually neglected. A meta-analysis of 194 comparative analyses all adjusting for similarity due to common phylogenetic descent revealed that only a few studies reported intraspecific repeatabilities, and hardly any considered or partially dealt with errors arising from intraspecific variation. This is intriguing, because the meta-analytic data suggest that the effect of heterogeneous sampling can be as important as phylogenetic bias, and thus they should be equally controlled in comparative studies. We provide recommendations about how to handle such effects of heterogeneous sampling.

  2. [Isolation, identification, phylogenetic analysis and related properties of a pathogen in Silurus meridionalis Chen].

    PubMed

    Cao, Hai-jun; Li, Yong-wen; Lei, Yu; Wu, Jiang; Xu, Heng

    2007-02-01

    In October 2005, a large number of adults of Silurus meridionalis Chen died in the mud fish farming of Sichuan province. Later, three predominate strains of bacteria were isolated from the body of moribund fish. By artificial infection tests, strain TWN3 was confirmed to be the pathogen of the disease. Based on the characteristics of morphology, physiology and biochemistry tests, TWN3 was initially identified as Proteus vulgaris, and its G + C content of DNA is 39.1% . After being amplified, the sequence of its 16S rDNA was analyzed in the database of NCBI and it showed that TWN3 had the highest similarity to P. vulgaris, with 99.52% identity. By constructing the molecular phylogenetic dendrogram with Minimum Evolution method in Mega3.1, it was revealed that TWN3 was in the same branch with P. vulgaris. Based on all the results above, TWN3 is identified as P. vulgaris. However, the result of one biochemistry test, growth in KCN, deviates from the description in Bergey's Manual of Systematic Bacteriology. With reference to the Manual above, Proteus vulgaris is divided into two groups, P. vulgaris BG2 and 3. According to the specific biochemical properties, TWN3 is classified as a member of P. vulgaris BG3. Relevant tests of biological properties were also conducted, which showed that this strain has no haemolysis and is sensitive to four kinds of antibiotic such as gentamicin. Moreover, it can strongly cause diseases to mice. The research on the growth property of strain TWN3 indicated that its growth temperature ranges from 10 degrees C to 43 degrees C , optimum 37 degrees C ; growth pH ranges from 4 to 11, optimum 6. Its optimum salinity varies under different temperatures, and it grows best under 1.5 % salinity while 37 degrees C. The aim of these researches is to provide an evidence for the prevention and cure of TWN3. According to the appearance of the diseased Silurus meridionalis Chen and results of artificial infection test on crucian carps, it is considered

  3. Limits to human locomotor performance: phylogenetic origins and comparative perspectives.

    PubMed

    Dudley, R

    2001-09-01

    Studies of human exercise physiology have been conducted from a largely ahistorical perspective. This approach usefully elucidates proximate limits to locomotor performance, but ignores potential sources of biomechanical and physiological variation that derive from adaptation to ancestral environments. Phylogenetic reconstruction suggests that multiple hominoid lineages, including that leading to Homo sapiens, evolved in African highlands at altitudes of 1000-2000 m. The evolution of human locomotor physiology therefore occurred under conditions of hypobaric hypoxia. In contrast to present-day humans running on treadmills or exercising in otherwise rectilinear trajectories, ancestral patterns of hominid locomotion probably involved intermittent knuckle-walking over variable terrain, occasional bouts of arboreality and an evolving capacity for bipedalism. All such factors represent potential axes of locomotor variation at present unstudied in extant hominoid taxa. As with humans, hummingbirds evolved in mid-montane contexts but pose an extreme contrast with respect to body size, locomotor mode and metabolic capacity. Substantial biomechanical and physiological challenges are associated with flight in hypobaria. Nonetheless, hummingbird lineages demonstrate a progressive invasion of higher elevations and a remarkable tolerance to hypoxia during hovering. Upregulation of aerobic capacity and parallel resistance to hypoxia may represent coupled evolutionary adaptations to flight under high-altitude conditions.

  4. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically

    PubMed Central

    Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel

    2015-01-01

    Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082

  5. EcoR phylogenetic analysis and virulence genotyping of avian pathogenic Escherichia coli strains and Escherichia coli isolates from commercial chicken carcasses in southern Brazil.

    PubMed

    Kobayashi, Renata K T; Aquino, Ivani; Ferreira, Ana Lívia da S; Vidotto, Marilda C

    2011-05-01

    Escherichia coli strains designated as avian pathogenic E. coli (APEC) are responsible for avian colibacillosis, an acute and largely systemic disease that promotes significant economic losses in poultry industry worldwide because of mortality increase, medication costs, and condemnation of carcasses. APEC is a subgroup of extraintestinal pathogenic E. coli pathotype, which includes uropathogenic E. coli, neonatal meningitis E. coli, and septicemic E. coli. We isolated E. coli from commercial chicken carcasses in a Brazilian community and compared by polymerase chain reaction-defined phylogenetic group (A, B1, B2, or D) with APEC strains isolated from sick chickens from different poultry farms. A substantial number of strains assigned to phylogenetic E. coli reference collection group B2, which is known to harbor potent extraintestinal human and animal E. coli pathogens, were identified as APEC (26.0%) in both commercial chicken carcasses and retail poultry meat (retail poultry E. coli [RPEC]) (21.25%). The majority of RPEC were classified as group A (35%), whereas the majority of APEC were groups B1 (30.8) and A (27.6%). APEC and RPEC presented the genes pentaplex, iutA, hly, iron, ompT, and iss, but with different virulence profiles. The similarity between APEC and RPEC indicates RPEC as potentially pathogenic strains and supports a possible zoonotic risk for humans.

  6. Cyber-infrastructure for Fusarium (CiF): Three integrated platforms supporting strain identification, phylogenetics, comparative genomics, and knowledge sharing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on ...

  7. Phylogenetics and Taxonomy of the Fungal Vascular Wilt Pathogen Verticillium, with the Descriptions of Five New Species

    PubMed Central

    Inderbitzin, Patrik; Bostock, Richard M.; Davis, R. Michael; Usami, Toshiyuki; Platt, Harold W.; Subbarao, Krishna V.

    2011-01-01

    Knowledge of pathogen biology and genetic diversity is a cornerstone of effective disease management, and accurate identification of the pathogen is a foundation of pathogen biology. Species names provide an ideal framework for storage and retrieval of relevant information, a system that is contingent on a clear understanding of species boundaries and consistent species identification. Verticillium, a genus of ascomycete fungi, contains important plant pathogens whose species boundaries have been ill defined. Using phylogenetic analyses, morphological investigations and comparisons to herbarium material and the literature, we established a taxonomic framework for Verticillium comprising ten species, five of which are new to science. We used a collection of 74 isolates representing much of the diversity of Verticillium, and phylogenetic analyses based on the ribosomal internal transcribed spacer region (ITS), partial sequences of the protein coding genes actin (ACT), elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD) and tryptophan synthase (TS). Combined analyses of the ACT, EF, GPD and TS datasets recognized two major groups within Verticillium, Clade Flavexudans and Clade Flavnonexudans, reflecting the respective production and absence of yellow hyphal pigments. Clade Flavexudans comprised V. albo-atrum and V. tricorpus as well as the new species V. zaregamsianum, V. isaacii and V. klebahnii, of which the latter two were morphologically indistinguishable from V. tricorpus but may differ in pathogenicity. Clade Flavnonexudans comprised V. nubilum, V. dahliae and V. longisporum, as well as the two new species V. alfalfae and V. nonalfalfae, which resembled the distantly related V. albo-atrum in morphology. Apart from the diploid hybrid V. longisporum, each of the ten species corresponded to a single clade in the phylogenetic tree comprising just one ex-type strain, thereby establishing a direct link to a name tied to a herbarium specimen

  8. Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species.

    PubMed

    Inderbitzin, Patrik; Bostock, Richard M; Davis, R Michael; Usami, Toshiyuki; Platt, Harold W; Subbarao, Krishna V

    2011-01-01

    Knowledge of pathogen biology and genetic diversity is a cornerstone of effective disease management, and accurate identification of the pathogen is a foundation of pathogen biology. Species names provide an ideal framework for storage and retrieval of relevant information, a system that is contingent on a clear understanding of species boundaries and consistent species identification. Verticillium, a genus of ascomycete fungi, contains important plant pathogens whose species boundaries have been ill defined. Using phylogenetic analyses, morphological investigations and comparisons to herbarium material and the literature, we established a taxonomic framework for Verticillium comprising ten species, five of which are new to science. We used a collection of 74 isolates representing much of the diversity of Verticillium, and phylogenetic analyses based on the ribosomal internal transcribed spacer region (ITS), partial sequences of the protein coding genes actin (ACT), elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD) and tryptophan synthase (TS). Combined analyses of the ACT, EF, GPD and TS datasets recognized two major groups within Verticillium, Clade Flavexudans and Clade Flavnonexudans, reflecting the respective production and absence of yellow hyphal pigments. Clade Flavexudans comprised V. albo-atrum and V. tricorpus as well as the new species V. zaregamsianum, V. isaacii and V. klebahnii, of which the latter two were morphologically indistinguishable from V. tricorpus but may differ in pathogenicity. Clade Flavnonexudans comprised V. nubilum, V. dahliae and V. longisporum, as well as the two new species V. alfalfae and V. nonalfalfae, which resembled the distantly related V. albo-atrum in morphology. Apart from the diploid hybrid V. longisporum, each of the ten species corresponded to a single clade in the phylogenetic tree comprising just one ex-type strain, thereby establishing a direct link to a name tied to a herbarium specimen

  9. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes.

    PubMed

    Boysen, Anders; Borch, Jonas; Krogh, Thøger Jensen; Hjernø, Karin; Møller-Jensen, Jakob

    2015-09-01

    Comparative studies of pathogenic bacteria and their non-pathogenic counterparts has led to the discovery of important virulence factors thereby generating insight into mechanisms of pathogenesis. Protein-based antigens for vaccine development are primarily selected among unique virulence-related factors produced by the pathogen of interest. However, recent work indicates that proteins that are not unique to the pathogen but instead selectively expressed compared to its non-pathogenic counterpart could also be vaccine candidates or targets for drug development. Modern methods in quantitative proteome analysis have the potential to discover both classes of proteins and hence form an important tool for discovering therapeutic targets. Adherent-invasive Escherichia coli (AIEC) and Enterotoxigenic E. coli (ETEC) are pathogenic variants of E. coli which cause intestinal disease in humans. AIEC is associated with Crohn's disease (CD), a chronic inflammatory condition of the gastrointestinal tract whereas ETEC is the major cause of human diarrhea which affects hundreds of millions annually. In spite of the disease burden associated with these pathogens, effective vaccines conferring long-term protection are still needed. In order to identify proteins with therapeutic potential, we have used mass spectrometry-based Stable Isotope Labeling with Amino acids in Cell culture (SILAC) quantitative proteomics method which allows us to compare the proteomes of pathogenic strains to commensal E. coli. In this study, we grew the pathogenic strains ETEC H10407, AIEC LF82 and the non-pathogenic reference strain E. coli K-12 MG1655 in parallel and used SILAC to compare protein levels in OMVs and culture supernatant. We have identified well-known virulence factors from both AIEC and ETEC, thus validating our experimental approach. In addition we find proteins that are not unique to the pathogenic strains but expressed at levels different from the commensal strain, including the

  10. Phylogenetic origins of African and Neotropical Beauveria bassiana s.l. pathogens of the coffee berry borer, Hypothenemus hampei.

    PubMed

    Rehner, Stephen A; Posada, Francisco; Buckley, Ellen P; Infante, Francisco; Castillo, Alfredo; Vega, Fernando E

    2006-09-01

    A phylogenetic epidemiological study of Beauveria bassiana s.l. was conducted for African and Neotropical pathogens of the coffee berry borer (CBB), Hypothenemus hampei, based on inferences from two nuclear intergenic regions, EFutr and Bloc. CBB pathogens were distributed among four terminal clades, however, the majority of African and Neotropical isolates cluster in a well-supported monophyletic group, informally designated AFNEO_1. Although the relationship between African and Neotropical AFNEO_1 is unresolved, the majority of alleles detected were exclusive to either the African or the Neotropical populations. These fixed genetic differences suggest that their disjunction predates the world trade in coffee. Neotropical AFNEO_1 have a broad host range and CBB pathogens are intermixed phylogenetically with isolates from diverse indigenous insects. Several Neotropical AFNEO_1 isolates were isolated from coffee plants as epiphytes or endophytes, thus plants themselves may potentially serve as reservoirs of pathogens against their insect pests. Topological incongruence between the EFutr and Bloc phylogenies of Neotropical AFNEO_1 may signify that individuals within this population are recombining.

  11. Comparative endocrinology of leptin: Assessing function in a phylogenetic context

    PubMed Central

    Londraville, Richard L.; Macotela, Yazmin; Duff, Robert J.; Easterling, Marietta R.; Liu, Qin; Crespi, Erica J.

    2014-01-01

    As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans. PMID:24525452

  12. Comparative Genomics of Pathogens Causing Brown Spot Disease of Tobacco: Alternaria longipes and Alternaria alternata

    PubMed Central

    Wan, Wenting; Long, Ni; Zhang, Jing; Tan, Yuntao; Duan, Shengchang; Zeng, Yan; Dong, Yang

    2016-01-01

    The genus Alternaria is a group of infectious/contagious pathogenic fungi that not only invade a wide range of crops but also induce severe allergic reactions in a part of the human population. In this study, two strains Alternaria longipes cx1 and Alternaria alternata cx2 were isolated from different brown spot lesions on infected tobacco leaves. Their complete genomes were sequenced, de novo assembled, and comparatively analyzed. Phylogenetic analysis revealed that A. longipes cx1 and A. alternata cx2 diverged 3.3 million years ago, indicating a recent event of speciation. Seventeen non-ribosomal peptide synthetase (NRPS) genes and 13 polyketide synthase (PKS) genes in A. longipes cx1 and 13 NRPS genes and 12 PKS genes in A. alternata cx2 were identified in these two strains. Some of these genes were predicted to participate in the synthesis of non-host specific toxins (non-HSTs), such as tenuazonic acid (TeA), alternariol (AOH) and alternariol monomethyl ether (AME). By comparative genome analysis, we uncovered that A. longipes cx1 had more genes putatively involved in pathogen-plant interaction, more carbohydrate-degrading enzymes and more secreted proteins than A. alternata cx2. In summary, our results demonstrate the genomic distinction between A. longipes cx1 and A. altenata cx2. They will not only improve the understanding of the phylogenetic relationship among genus Alternaria, but more importantly provide valuable genomic resources for the investigation of plant-pathogen interaction. PMID:27159564

  13. Determining the Phylogenetic and Phylogeographic Origin of Highly Pathogenic Avian Influenza (H7N3) in Mexico

    PubMed Central

    Lu, Lu; Lycett, Samantha J.; Leigh Brown, Andrew J.

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter. PMID:25226523

  14. Phylogenetic analysis and pathogenicity of H3 subtype avian influenza viruses isolated from live poultry markets in China

    PubMed Central

    Cui, Hongrui; Shi, Ying; Ruan, Tao; Li, Xuesong; Teng, Qiaoyang; Chen, Hongjun; Yang, Jianmei; Liu, Qinfang; Li, Zejun

    2016-01-01

    H3 subtype influenza A virus is one of the main subtypes that threats both public and animal health. However, the evolution and pathogenicity of H3 avian influenza virus (AIV) circulating in domestic birds in China remain largely unclear. In this study, seven H3 AIVs (four H3N2 and three H3N8) were isolated from poultry in live poultry market (LPM) in China. Phylogenetic analyses of full genomes showed that all viruses were clustered into Eurasian lineage, except N8 genes of two H3N8 isolates fell into North American lineage. Intriguingly, the N8 gene of one H3N8 and PB2, PB1, NP and NS of two H3N2 isolates have close relationship with those of the highly pathogenic H5N8 viruses circulating in Korea and United States, suggesting that the H3-like AIV may contribute internal genes to the highly pathogenic H5N8 viruses. Phylogenetic tree of HA gene and antigenic cross-reactivity results indicated that two antigenically different H3 viruses are circulating in LPM in China. Most of the H3 viruses replicated in mice lung and nasal turbinate without prior adaptation, and the representative H3 viruses infected chickens without causing clinical signs. The reassortment of H3 subtype influenza viruses warrants continuous surveillance in LPM in China. PMID:27270298

  15. Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico.

    PubMed

    Lu, Lu; Lycett, Samantha J; Leigh Brown, Andrew J

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter.

  16. Comparative Genomic Analysis Reveals a Possible Novel Non-Tuberculous Mycobacterium Species with High Pathogenic Potential

    PubMed Central

    Choo, Siew Woh; Dutta, Avirup; Wong, Guat Jah; Wee, Wei Yee; Ang, Mia Yang; Siow, Cheuk Chuen

    2016-01-01

    Mycobacteria have been reported to cause a wide range of human diseases. We present the first whole-genome study of a Non-Tuberculous Mycobacterium, Mycobacterium sp. UM_CSW (referred to hereafter as UM_CSW), isolated from a patient diagnosed with bronchiectasis. Our data suggest that this clinical isolate is likely a novel mycobacterial species, supported by clear evidence from molecular phylogenetic, comparative genomic, ANI and AAI analyses. UM_CSW is closely related to the Mycobacterium avium complex. While it has characteristic features of an environmental bacterium, it also shows a high pathogenic potential with the presence of a wide variety of putative genes related to bacterial virulence and shares very similar pathogenomic profiles with the known pathogenic mycobacterial species. Thus, we conclude that this possible novel Mycobacterium species should be tightly monitored for its possible causative role in human infections. PMID:27035710

  17. Comparative Pathogenicity of United Kingdom Isolates of the Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species

    PubMed Central

    Szekely, Adrien; Johnson, Elizabeth M.

    2016-01-01

    ABSTRACT Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro, with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella, with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella. IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show

  18. Comparing Phylogenetic Trees by Matching Nodes Using the Transfer Distance Between Partitions.

    PubMed

    Bogdanowicz, Damian; Giaro, Krzysztof

    2017-02-08

    Ability to quantify dissimilarity of different phylogenetic trees describing the relationship between the same group of taxa is required in various types of phylogenetic studies. For example, such metrics are used to assess the quality of phylogeny construction methods, to define optimization criteria in supertree building algorithms, or to find horizontal gene transfer (HGT) events. Among the set of metrics described so far in the literature, the most commonly used seems to be the Robinson-Foulds distance. In this article, we define a new metric for rooted trees-the Matching Pair (MP) distance. The MP metric uses the concept of the minimum-weight perfect matching in a complete bipartite graph constructed from partitions of all pairs of leaves of the compared phylogenetic trees. We analyze the properties of the MP metric and present computational experiments showing its potential applicability in tasks related to finding the HGT events.

  19. Deep sequencing increases hepatitis C virus phylogenetic cluster detection compared to Sanger sequencing.

    PubMed

    Montoya, Vincent; Olmstead, Andrea; Tang, Patrick; Cook, Darrel; Janjua, Naveed; Grebely, Jason; Jacka, Brendan; Poon, Art F Y; Krajden, Mel

    2016-09-01

    Effective surveillance and treatment strategies are required to control the hepatitis C virus (HCV) epidemic. Phylogenetic analyses are powerful tools for reconstructing the evolutionary history of viral outbreaks and identifying transmission clusters. These studies often rely on Sanger sequencing which typically generates a single consensus sequence for each infected individual. For rapidly mutating viruses such as HCV, consensus sequencing underestimates the complexity of the viral quasispecies population and could therefore generate different phylogenetic tree topologies. Although deep sequencing provides a more detailed quasispecies characterization, in-depth phylogenetic analyses are challenging due to dataset complexity and computational limitations. Here, we apply deep sequencing to a characterized population to assess its ability to identify phylogenetic clusters compared with consensus Sanger sequencing. For deep sequencing, a sample specific threshold determined by the 50th percentile of the patristic distance distribution for all variants within each individual was used to identify clusters. Among seven patristic distance thresholds tested for the Sanger sequence phylogeny ranging from 0.005-0.06, a threshold of 0.03 was found to provide the maximum balance between positive agreement (samples in a cluster) and negative agreement (samples not in a cluster) relative to the deep sequencing dataset. From 77 HCV seroconverters, 10 individuals were identified in phylogenetic clusters using both methods. Deep sequencing analysis identified an additional 4 individuals and excluded 8 other individuals relative to Sanger sequencing. The application of this deep sequencing approach could be a more effective tool to understand onward HCV transmission dynamics compared with Sanger sequencing, since the incorporation of minority sequence variants improves the discrimination of phylogenetically linked clusters.

  20. Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen Batrachochytrium dendrobatidis.

    PubMed

    Becker, Matthew H; Walke, Jenifer B; Murrill, Lindsey; Woodhams, Douglas C; Reinert, Laura K; Rollins-Smith, Louise A; Burzynski, Elizabeth A; Umile, Thomas P; Minbiole, Kevin P C; Belden, Lisa K

    2015-04-01

    The introduction of next-generation sequencing has allowed for greater understanding of community composition of symbiotic microbial communities. However, determining the function of individual members of these microbial communities still largely relies on culture-based methods. Here, we present results on the phylogenetic distribution of a defensive functional trait of cultured symbiotic bacteria associated with amphibians. Amphibians are host to a diverse community of cutaneous bacteria and some of these bacteria protect their host from the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) by secreting antifungal metabolites. We cultured over 450 bacterial isolates from the skins of Panamanian amphibian species and tested their interactions with Bd using an in vitro challenge assay. For a subset of isolates, we also completed coculture experiments and found that culturing isolates with Bd had no effect on inhibitory properties of the bacteria, but it significantly decreased metabolite secretion. In challenge assays, approximately 75% of the bacterial isolates inhibited Bd to some extent and these inhibitory isolates were widely distributed among all bacterial phyla. Although there was no clear phylogenetic signal of inhibition, three genera, Stenotrophomonas, Aeromonas and Pseudomonas, had a high proportion of inhibitory isolates (100%, 77% and 73%, respectively). Overall, our results demonstrate that antifungal properties are phylogenetically widespread in symbiotic microbial communities of Panamanian amphibians and that some functional redundancy for fungal inhibition occurs in these communities. We hope that these findings contribute to the discovery and development of probiotics for amphibians that can mitigate the threat of chytridiomycosis.

  1. Phylogenetic and pathogenic analyses of two virulent Newcastle disease viruses isolated from Crested Ibis (Nipponia nippon) in China.

    PubMed

    Chen, Shengli; Hao, Huafang; Liu, Qingtian; Wang, Rong; Zhang, Peng; Wang, Xinglong; Du, Enqi; Yang, Zengqi

    2013-06-01

    The crested ibis is one of the most endangered birds in the world, found only in Shaanxi Province in Central China, and it has been reintroduced in Sadogashima in Japan. Two Newcastle disease virus (NDV) isolates were collected from sick crested ibises, and their pathogenic and phylogenetic characteristics were investigated. The results showed that they are virulent, with intracerebral pathogenicity indices of 1.46-1.83 and a mean time of death of 54.4-84.4 h. They shared the same virulent motif (112)-R-R-Q-K-R-F-(117) at the F protein cleavage site. The phylogenetic analysis revealed that both isolates were clustered with class II NDVs, with one in genotype VIId and another in a novel genotype (provisionally designated as VIi). The two isolates shared high homology with the strains isolated from poultry flocks in the same region from 2006 to 2010. We first isolated and characterised the NDV isolates from crested ibises, one of which showed new genetic characteristics and formed a new subgenotype with isolates from pigeons and ostriches in the same area. These data are useful for further epidemiological studies on NDV and the protection of crested ibises.

  2. Distribution of pathogenicity island (PAI) markers and phylogenetic groups in diarrheagenic and commensal Escherichia coli from young children

    PubMed Central

    Naderi, Ghazal; Haghi, Fakhri; Zeighami, Habib; Hemati, Fatemeh; Masoumian, Neda

    2016-01-01

    Aim: This case–control study investigated the various PAI markers, phylogenetic groups and antimicrobial susceptibility among DEC and commensal E. coli isolates. Background: Diarrheagenic Escherichia coli (DEC) is an emerging agent among pathogens that cause diarrheal diseases and represents a major public health problem in developing countries. The major difference in virulence among DEC pathotype and commensals may be related to the presence of specific genomic segments, termed pathogenicity islands (PAIs). Patients and methods: A total of 600 stool specimens from children (450 with and 150 without diarrhea) were collected and various PAI markers, phylogenetic groups and antimicrobial resistance profile among DEC and commensal E. coli isolates were detected. Results: One hundred sixty eight (90.3%) isolates were resistant to one or more antimicrobial agents. PAI markers were detected in a substantial percentage of commensal (90%) and DEC isolates (99.3%) (P> 0.05). The most prevalent PAI marker among DEC and commensal isolates was HPI (91.9% DEC vs. 68% commensal). We found a high number of PAI markers such as SHI-2, She and LEE that were significantly associated with DEC. Several different combinations of PAIs were found among DEC isolates. Comparison of PAIs among DEC and commensal isolates showed that many DEC isolates (94.8%) carried two or more PAI markers, while 76% of commensals had only one PAI marker (P<0.05). According to the phylogenetic classification, group B2 was the most commonly found in the DEC isolates. Furthermore, our results showed that group B2 can be present in commensal isolates (18%). Conclusion: These results indicate that PAI markers are widespread among commensal and DEC isolates and these commensal isolates may be reservoirs for transmission of these markers. PMID:27895858

  3. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach.

    PubMed

    Erickson, David L; Jones, Frank A; Swenson, Nathan G; Pei, Nancai; Bourg, Norman A; Chen, Wenna; Davies, Stuart J; Ge, Xue-Jun; Hao, Zhanqing; Howe, Robert W; Huang, Chun-Lin; Larson, Andrew J; Lum, Shawn K Y; Lutz, James A; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D; Fang-Sun, I; Wright, S Joseph; Wolf, Amy T; Ye, W; Xing, Dingliang; Zimmerman, Jess K; Kress, W John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of

  4. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    PubMed Central

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of

  5. Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics

    PubMed Central

    Klassen, Jonathan L.

    2010-01-01

    Background Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. Methodology/Principal Findings Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. Conclusions/Significance Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This

  6. A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic

    NASA Astrophysics Data System (ADS)

    Lessard-Therrien, Malie; Davies, T. Jonathan; Bolmgren, Kjell

    2014-05-01

    Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54°90'N, 67°16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.

  7. Are pinnipeds functionally different from fissiped carnivores? The importance of phylogenetic comparative analyses.

    PubMed

    Bininda-Emonds, O R; Gittleman, J L

    2000-06-01

    It is widely assumed that adaptations to an aquatic lifestyle are so profound as to produce only obvious differences between pinnipeds and the remaining, largely terrestrial carnivore species ("fissipeds"). Thus, comparative studies of the order Carnivora routinely examine these groups independently. This approach is invalid for two reasons. First, fissipeds are a paraphyletic assemblage, which raises the general issue of when it is appropriate to ignore monophyly as a criterion for inclusion in comparative studies. Second, the claim that most functional characters (beyond a few undoubted characteristic features) are different in pinnipeds and fissipeds has never been quantitatively examined, nor with phylogenetic comparative methods. We test for possible differences between these two groups in relation to 20 morphological, life-history, physiological, and ecological variables. Comparisons employed the method of independent contrasts based on a complete and dated species-level phylogeny of the extant Carnivora. Pinnipeds differ from fissipeds only through evolutionary grade shifts in a limited number of life-history traits: litter weight (vs. gestation length), birth weight, and age of eyes opening (both vs. size). Otherwise, pinnipeds display the same rate of evolution as phylogenetically equivalent fissiped taxa for all variables. Overall functional differences between pinnipeds and fissipeds appear to have been overstated and may be no greater than those among major fissiped groups. Recognition of this fact should lead to a more complete understanding of carnivore biology as a whole through more unified comparative tests. Comparative studies that do not include monophyletic groups for phylogenetically based comparative tests should be reconsidered.

  8. Genomics and Comparative Genomic Analyses Provide Insight into the Taxonomy and Pathogenic Potential of Novel Emmonsia Pathogens

    PubMed Central

    Yang, Ying; Ye, Qiang; Li, Kang; Li, Zongwei; Bo, Xiaochen; Li, Zhen; Xu, Yingchun; Wang, Shengqi; Wang, Peng; Chen, Huipeng; Wang, Junzhi

    2017-01-01

    Over the last 50 years, newly described species of Emmonsia-like fungi have been implicated globally as sources of systemic human mycosis (emmonsiosis). Their ability to convert into yeast-like cells capable of replication and extra-pulmonary dissemination during the course of infection differentiates them from classical Emmonsia species. Immunocompromised patients are at highest risk of emmonsiosis and exhibit high mortality rates. In order to investigate the molecular basis for pathogenicity of the newly described Emmonsia species, genomic sequencing and comparative genomic analyses of Emmonsia sp. 5z489, which was isolated from a non-deliberately immunosuppressed diabetic patient in China and represents a novel seventh isolate of Emmonsia-like fungi, was performed. The genome size of 5z489 was 35.5 Mbp in length, which is ~5 Mbp larger than other Emmonsia strains. Further, 9,188 protein genes were predicted in the 5z489 genome and 16% of the assembly was identified as repetitive elements, which is the largest abundance in Emmonsia species. Phylogenetic analyses based on whole genome data classified 5z489 and CAC-2015a, another novel isolate, as members of the genus Emmonsia. Our analyses showed that divergences among Emmonsia occurred much earlier than other genera within the family Ajellomycetaceae, suggesting relatively distant evolutionary relationships among the genus. Through comparisons of Emmonsia species, we discovered significant pathogenicity characteristics within the genus as well as putative virulence factors that may play a role in the infection and pathogenicity of the novel Emmonsia strains. Moreover, our analyses revealed a novel distribution mode of DNA methylation patterns across the genome of 5z489, with >50% of methylated bases located in intergenic regions. These methylation patterns differ considerably from other reported fungi, where most methylation occurs in repetitive loci. It is unclear if this difference is related to physiological

  9. Dissecting the fungal biology of Bipolaris papendorfii: from phylogenetic to comparative genomic analysis.

    PubMed

    Kuan, Chee Sian; Yew, Su Mei; Toh, Yue Fen; Chan, Chai Ling; Ngeow, Yun Fong; Lee, Kok Wei; Na, Shiang Ling; Yee, Wai-Yan; Hoh, Chee-Choong; Ng, Kee Peng

    2015-06-01

    Bipolaris papendorfii has been reported as a fungal plant pathogen that rarely causes opportunistic infection in humans. Secondary metabolites isolated from this fungus possess medicinal and anticancer properties. However, its genetic fundamental and basic biology are largely unknown. In this study, we report the first draft genome sequence of B. papendorfii UM 226 isolated from the skin scraping of a patient. The assembled 33.4 Mb genome encodes 11,015 putative coding DNA sequences, of which, 2.49% are predicted transposable elements. Multilocus phylogenetic and phylogenomic analyses showed B. papendorfii UM 226 clustering with Curvularia species, apart from other plant pathogenic Bipolaris species. Its genomic features suggest that it is a heterothallic fungus with a putative unique gene encoding the LysM-containing protein which might be involved in fungal virulence on host plants, as well as a wide array of enzymes involved in carbohydrate metabolism, degradation of polysaccharides and lignin in the plant cell wall, secondary metabolite biosynthesis (including dimethylallyl tryptophan synthase, non-ribosomal peptide synthetase, polyketide synthase), the terpenoid pathway and the caffeine metabolism. This first genomic characterization of B. papendorfii provides the basis for further studies on its biology, pathogenicity and medicinal potential.

  10. Dissecting the fungal biology of Bipolaris papendorfii: from phylogenetic to comparative genomic analysis

    PubMed Central

    Kuan, Chee Sian; Yew, Su Mei; Toh, Yue Fen; Chan, Chai Ling; Ngeow, Yun Fong; Lee, Kok Wei; Na, Shiang Ling; Yee, Wai-Yan; Hoh, Chee-Choong; Ng, Kee Peng

    2015-01-01

    Bipolaris papendorfii has been reported as a fungal plant pathogen that rarely causes opportunistic infection in humans. Secondary metabolites isolated from this fungus possess medicinal and anticancer properties. However, its genetic fundamental and basic biology are largely unknown. In this study, we report the first draft genome sequence of B. papendorfii UM 226 isolated from the skin scraping of a patient. The assembled 33.4 Mb genome encodes 11,015 putative coding DNA sequences, of which, 2.49% are predicted transposable elements. Multilocus phylogenetic and phylogenomic analyses showed B. papendorfii UM 226 clustering with Curvularia species, apart from other plant pathogenic Bipolaris species. Its genomic features suggest that it is a heterothallic fungus with a putative unique gene encoding the LysM-containing protein which might be involved in fungal virulence on host plants, as well as a wide array of enzymes involved in carbohydrate metabolism, degradation of polysaccharides and lignin in the plant cell wall, secondary metabolite biosynthesis (including dimethylallyl tryptophan synthase, non-ribosomal peptide synthetase, polyketide synthase), the terpenoid pathway and the caffeine metabolism. This first genomic characterization of B. papendorfii provides the basis for further studies on its biology, pathogenicity and medicinal potential. PMID:25922537

  11. Phylogenetic classification of the frog pathogen Amphibiothecum (Dermosporidium) penneri based on small ribosomal subunit sequencing

    USGS Publications Warehouse

    Feldman, S.H.; Wimsatt, J.H.; Green, D.E.

    2005-01-01

    We determined 1,600 base pairs of DNA sequence in the 18S small ribosomal subunit from two geographically distinct isolates of Dermosporidium penneri. Maximum likelihood and parsimony analysis of these sequences place D. penneri in the order Dermocystida of the class Mesomycetozoea. The 18S rRNA sequences from these two isolates only differ within a single region of 16 contiguous nucleotides. Based on the distant phylogenetic relationship of these organisms to Amphibiocystidium ranae and similarity to Sphaerothecum destruens we propose the organism be renamed Amphibiothecum penneri.

  12. Strains of Pseudomonas syringae pv. syringae from pea are phylogenetically and pathogenically diverse.

    PubMed

    Martín-Sanz, Alberto; de la Vega, Marcelino Pérez; Murillo, Jesús; Caminero, Constantino

    2013-07-01

    Pseudomonas syringae pv. syringae causes extensive yield losses in the pea crop worldwide, although there is little information on its host specialization and its interactions with pea. A collection of 88 putative P. syringae pv. syringae strains (including 39 strains isolated from pea) was characterized by repetitive polymerase chain reaction (rep-PCR), multilocus sequence typing (MLST), and syrB amplification and evaluated for pathogenicity and virulence. rep-PCR data grouped the strains from pea into two groups (1B and 1C) together with strains from other hosts; a third group (1A) was formed exclusively with strains isolated from non-legume species. MLST data included all strains from pea in the genomospecies 1 of P. syringae pathovars defined in previous studies; they were distributed in the same three groups defined by rep-PCR. The inoculations performed in two pea cultivars showed that P. syringae pv. syringae strains from groups 1A and 1C were less virulent than strains from group 1B, suggesting a possible pathogenic specialization in this group. This study shows the existence of genetically and pathogenically distinct P. syringae pv. syringae strain groups from pea, which will be useful for the diagnostic and epidemiology of this pathogen and for disease resistance breeding.

  13. Phylogenetic relationships among clonal groups of extraintestinal pathogenic Escherichia coli as assessed by multi-locus sequence analysis.

    PubMed

    Johnson, James R; Owens, Krista L; Clabots, Connie R; Weissman, Scott J; Cannon, Steven B

    2006-06-01

    The evolutionary origins of extraintestinal pathogenic Escherichia coli (ExPEC) remain uncertain despite these organisms' relevance to human disease. A valid understanding of ExPEC phylogeny is needed as a framework against which the observed distribution of virulence factors and clinical associations can be analyzed. Accordingly, phylogenetic relationships were defined by multi-locus sequence analysis among 44 representatives of selected ExPEC clonal groups and the E. coli Reference (ECOR) collection. Recombination, which significantly obscured the phylogenetic signal for several strains, was dealt with by excluding strains or specific sequences. Conflicting overall phylogenies, and internal phylogenies for virulence-associated phylogenetic group B2, were inferred depending on the specific dataset (i.e., how extensively purged of recombination), outgroup (Salmonella enterica and/or Escherichia fergusonii), and analysis method (neighbor joining, maximum parsimony, maximum likelihood, or Bayesian likelihood). Nonetheless, the major E. coli phylogenetic groups A, B1, and B2 were consistently well resolved, as was a major sub-component of group D and an ECOR 37-O157:H7 clade. Moreover, nine important ExPEC clonal groups within groups B2 and D, characterized by serotypes O6:K2:H1, O18:K1:H7, O6:H31, and O4:K+:H+ (from group B2), and O1:K1:H-, O7:K1:H-, O157:K+:H (non-7), O15:K52:H1, and O11/17/77:K52:H18 ("clonal group A") (from group D), were consistently well resolved, regardless of clinical background (cystitis, pyelonephritis, neonatal meningitis, sepsis, or fecal), host group, geographical origin, and virulence profile. Among the group B2-derived clonal groups the O6:K2:H1 clade appeared basal. Within group D, "clonal group A" and the O15:K52:H1 clonal group were consistently placed with ECOR 47 and ECOR 44, respectively, as nearest neighbors. These findings clarify phylogenetic relationships among key ExPEC clonal groups but also emphasize that recombination

  14. Phylogenetic evidence for extensive horizontal gene transfer of type III secretion system genes among enterobacterial plant pathogens.

    PubMed

    Naum, Marianna; Brown, Eric W; Mason-Gamer, Roberta J

    2009-10-01

    This study uses sequences from four genes, which are involved in the formation of the type III secretion apparatus, to determine the role of horizontal gene transfer in the evolution of virulence genes for the enterobacterial plant pathogens. Sequences of Erwinia, Brenneria, Pectobacterium, Dickeya and Pantoea were compared (a) with one another, (b) with sequences of enterobacterial animal pathogens, and (c) with sequences of plant pathogenic gamma and beta proteobacteria, to evaluate probable paths of lateral exchange leading to the current distribution of virulence determinants among these micro-organisms. Phylogenies were reconstructed based on hrcC, hrcR, hrcJ and hrcV gene sequences using parsimony and maximum-likelihood algorithms. Virulence gene phylogenies were also compared with several housekeeping gene loci in order to evaluate patterns of lateral versus vertical acquisition. The resulting phylogenies suggest that multiple horizontal gene transfer events have occurred both within and among the enterobacterial plant pathogens and plant pathogenic gamma and beta proteobacteria. hrcJ sequences are the most similar, exhibiting anywhere from 2 to 50 % variation at the nucleotide level, with the highest degree of variation present between plant and animal pathogen sequences. hrcV sequences are conserved among plant and animal pathogens at the N terminus. The C-terminal domain is conserved only among the enterobacterial plant pathogens, as are the hrcC and hrcR sequences. Additionally, hrcJ and hrcV sequence phylogenies suggest that at least some type III secretion system virulence genes from enterobacterial plant pathogens are related more closely to those of the genus Pseudomonas, a conclusion neither supported nor refuted by hrcC or hrcR.

  15. Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters

    PubMed Central

    Timme, Ruth E.; Pettengill, James B.; Allard, Marc W.; Strain, Errol; Barrangou, Rodolphe; Wehnes, Chris; Van Kessel, JoAnn S.; Karns, Jeffrey S.; Musser, Steven M.; Brown, Eric W.

    2013-01-01

    The enteric pathogen Salmonella enterica is one of the leading causes of foodborne illness in the world. The species is extremely diverse, containing more than 2,500 named serovars that are designated for their unique antigen characters and pathogenicity profiles—some are known to be virulent pathogens, while others are not. Questions regarding the evolution of pathogenicity, significance of antigen characters, diversity of clustered regularly interspaced short palindromic repeat (CRISPR) loci, among others, will remain elusive until a strong evolutionary framework is established. We present the first large-scale S. enterica subsp. enterica phylogeny inferred from a new reference-free k-mer approach of gathering single nucleotide polymorphisms (SNPs) from whole genomes. The phylogeny of 156 isolates representing 78 serovars (102 were newly sequenced) reveals two major lineages, each with many strongly supported sublineages. One of these lineages is the S. Typhi group; well nested within the phylogeny. Lineage-through-time analyses suggest there have been two instances of accelerated rates of diversification within the subspecies. We also found that antigen characters and CRISPR loci reveal different evolutionary patterns than that of the phylogeny, suggesting that a horizontal gene transfer or possibly a shared environmental acquisition might have influenced the present character distribution. Our study also shows the ability to extract reference-free SNPs from a large set of genomes and then to use these SNPs for phylogenetic reconstruction. This automated, annotation-free approach is an important step forward for bacterial disease tracking and in efficiently elucidating the evolutionary history of highly clonal organisms. PMID:24158624

  16. Phylogenetic and population genetic divergence correspond with habitat for the pathogen Colletotrichum cereale and allied taxa across diverse grass communities.

    PubMed

    Crouch, Jo Anne; Tredway, Lane P; Clarke, Bruce B; Hillman, Bradley I

    2009-01-01

    Over the past decade, the emergence of anthracnose disease has newly challenged the health of turfgrasses on North American golf courses, resulting in considerable economic loss. The fungus responsible for the outbreaks, Colletotrichum cereale, has also been identified from numerous natural grasses and cereal crops, although disease symptoms are generally absent. Here we utilize phylogenetic and population genetic analyses to determine the role of ecosystem in the advancement of turfgrass anthracnose and assess whether natural grass and/or cereal inhabitants are implicated in the epidemics. Using a four-gene nucleotide data set to diagnose the limits of phylogenetic species and population boundaries, we find that the graminicolous Colletotrichum diverged from a common ancestor into distinct lineages correspondent with host physiology (C3 or C4 photosynthetic pathways). In the C4 lineage, which includes the important cereal pathogens Colletotrichum graminicola, C. sublineolum, C. falcatum, C. eleusines, C. caudatum and several novel species, host specialization predominates, with host-associated lineages corresponding to isolated sibling species. Although the C3 lineage--C. cereale--is comprised of one wide host-range species, it is divided into 10 highly specialized populations corresponding to ecosystem and/or host plant, along with a single generalist population spread across multiple habitat types. Extreme differentiation between the specialized C. cereale populations suggests that asymptomatic nonturfgrass hosts are unlikely reservoirs of infectious disease propagules, but gene flow between the generalist population and the specialized genotypes provides an indirect mechanism for genetic exchange between otherwise isolated populations and ecosystems.

  17. Phylogenetic and pathogenic characterization of novel adenoviruses isolated from long-tailed ducks (Clangula hyemalis).

    PubMed

    Counihan, Katrina L; Skerratt, Lee F; Franson, J Christian; Hollmén, Tuula E

    2015-11-01

    Novel adenoviruses were isolated from a long-tailed duck (Clangula hyemalis) mortality event near Prudhoe Bay, Alaska in 2000. The long-tailed duck adenovirus genome was approximately 27 kb. A 907 bp hexon gene segment was used to design primers specific for the long-tailed duck adenovirus. Nineteen isolates were phylogenetically characterized based on portions of their hexon gene and 12 were most closely related to Goose adenovirus A. The remaining 7 shared no hexon sequences with any known adenoviruses. Experimental infections of mallards with a long-tailed duck reference adenovirus caused mild lymphoid infiltration of the intestine and paint brush hemorrhages of the mucosa and dilation of the intestine. This study shows novel adenoviruses from long-tailed ducks are diverse and provides further evidence that they should be considered in cases of morbidity and mortality in sea ducks. Conserved and specific primers have been developed that will help screen sea ducks for adenoviral infections.

  18. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas.

    PubMed

    Jacobs, Jonathan M; Pesce, Céline; Lefeuvre, Pierre; Koebnik, Ralf

    2015-01-01

    Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors.

  19. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas

    PubMed Central

    Jacobs, Jonathan M.; Pesce, Céline; Lefeuvre, Pierre; Koebnik, Ralf

    2015-01-01

    Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors. PMID:26136759

  20. Morphometrics of the avian small intestine compared with that of nonflying mammals: a phylogenetic approach.

    PubMed

    Lavin, Shana R; Karasov, William H; Ives, Anthony R; Middleton, Kevin M; Garland, Theodore

    2008-01-01

    Flying animals may experience a selective constraint on gut volume because the energetic cost of flight increases and maneuverability decreases with greater digesta load. The small intestine is the primary site of absorption of most nutrients (e.g., carbohydrates, proteins, fat) in both birds and mammals. Therefore, we used a phylogenetically informed approach to compare small intestine morphometric measurements of birds with those of nonflying mammals and to test for effects of diet within each clade. We also compared the fit of nonphylogenetic and phylogenetic models to test for phylogenetic signal after accounting for effects of body mass, clade, and/or diet. We provide a new MATLAB program (Regressionv2.m) that facilitates a flexible model-fitting approach in comparative studies. As compared with nonflying mammals, birds had 51% less nominal small intestine surface area (area of a smooth bore tube) and 32% less volume. For animals <365 g in body mass, birds also had significantly shorter small intestines (20%-33% shorter, depending on body mass). Diet was also a significant factor explaining variation in small intestine nominal surface area of both birds and nonflying mammals, small intestine mass of mammals, and small intestine volume of both birds and nonflying mammals. On the basis of the phylogenetic trees used in our analyses, small intestine length and nominal surface area exhibited statistically significant phylogenetic signal in birds but not in mammals. Thus, for birds, related species tended to be similar in small intestine length and nominal surface area, even after accounting for relations with body mass and diet. A reduced small intestine in birds may decrease the capacity for breakdown and active absorption of nutrients. Birds do not seem to compensate for reduced digestive and absorptive capacity via a longer gut retention time of food, but we found some evidence that birds have an increased mucosal surface area via a greater villus area

  1. Prediction of mitochondrial protein function by comparative physiology and phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-01-01

    According to the endosymbiotic theory, mitochondria originate from a free-living alpha-proteobacteria that established an intracellular symbiosis with the ancestor of present-day eukaryotic cells. During the bacterium-to-organelle transformation, the proto-mitochondrial proteome has undergone a massive turnover, whereby less than 20 % of modern mitochondrial proteomes can be traced back to the bacterial ancestor. Moreover, mitochondrial proteomes from several eukaryotic organisms, for example, yeast and human, show a rather modest overlap, reflecting differences in mitochondrial physiology. Those differences may result from the combination of differential gain and loss of genes and retargeting processes among lineages. Therefore, an evolutionary signature, also called "phylogenetic profile", could be generated for every mitochondrial protein. Here, we present two evolutionary biology approaches to study mitochondrial physiology: the first strategy, which we refer to as "comparative physiology," allows the de novo identification of mitochondrial proteins involved in a physiological function; the second, known as "phylogenetic profiling," allows to predict protein functions and functional interactions by comparing phylogenetic profiles of uncharacterized and known components.

  2. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi

    PubMed Central

    2011-01-01

    Background Millions of humans and animals suffer from superficial infections caused by a group of highly specialized filamentous fungi, the dermatophytes, which exclusively infect keratinized host structures. To provide broad insights into the molecular basis of the pathogenicity-associated traits, we report the first genome sequences of two closely phylogenetically related dermatophytes, Arthroderma benhamiae and Trichophyton verrucosum, both of which induce highly inflammatory infections in humans. Results 97% of the 22.5 megabase genome sequences of A. benhamiae and T. verrucosum are unambiguously alignable and collinear. To unravel dermatophyte-specific virulence-associated traits, we compared sets of potentially pathogenicity-associated proteins, such as secreted proteases and enzymes involved in secondary metabolite production, with those of closely related onygenales (Coccidioides species) and the mould Aspergillus fumigatus. The comparisons revealed expansion of several gene families in dermatophytes and disclosed the peculiarities of the dermatophyte secondary metabolite gene sets. Secretion of proteases and other hydrolytic enzymes by A. benhamiae was proven experimentally by a global secretome analysis during keratin degradation. Molecular insights into the interaction of A. benhamiae with human keratinocytes were obtained for the first time by global transcriptome profiling. Given that A. benhamiae is able to undergo mating, a detailed comparison of the genomes further unraveled the genetic basis of sexual reproduction in this species. Conclusions Our results enlighten the genetic basis of fundamental and putatively virulence-related traits of dermatophytes, advancing future research on these medically important pathogens. PMID:21247460

  3. Phylogenetic, Morphological, and Pathogenic Characterization of Alternaria Species Associated with Fruit Rot of Blueberry in California.

    PubMed

    Zhu, X Q; Xiao, C L

    2015-12-01

    Fruit rot caused by Alternaria spp. is one of the most important factors affecting the postharvest quality and shelf life of blueberry fruit. The aims of this study were to characterize Alternaria isolates using morphological and molecular approaches and test their pathogenicity to blueberry fruit. Alternaria spp. isolates were collected from decayed blueberry fruit in the Central Valley of California during 2012 and 2013. In total, 283 isolates were obtained and five species of Alternaria, including Alternaria alternata, A. tenuissima, A. arborescens, A. infectoria, and A. rosae, were identified based on DNA sequences of the plasma membrane ATPase, Alt a1 and Calmodulin gene regions in combination with morphological characters of the culture and sporulation. Of the 283 isolates, 61.5% were identified as A. alternata, 32.9% were A. arborescens, 5.0% were A. tenuissima, and only one isolate of A. infectoria and one isolate of A. rosae were found. These fungi were able to grow at temperatures from 0 to 35°C, and mycelial growth was arrested at 40°C. Optimal radial growth occurred between 20 to 30°C. Pathogenicity tests showed that all five Alternaria spp. were pathogenic on blueberry fruit at 0, 4, and 20°C, with A. alternata, A. arborescens, and A. tenuissima being the most virulent species, followed by A. infectoria and A. rosae. Previously A. tenuissima has been reported to be the primary cause of Alternaria fruit rot of blueberry worldwide. Our results indicated that the species composition of Alternaria responsible for Alternaria fruit rot in blueberry can be dependent on geographical region. A. alternata, A. arborescens, A. infectoria, and A. rosae are reported for the first time on blueberry in California. This is also the first report of A. infectoria and A. rosae infecting blueberry fruit.

  4. Examining Relationships Among Several Oyster Pathogens in the Genus Bonamia Using Molecular Data, in Phylogenetic Analyses

    NASA Astrophysics Data System (ADS)

    White, D.; Burreson, E.

    2006-12-01

    Bonamiasis is a disease that affects oyster stocks around the world and is caused by intracellular protozoan parasites. Bonamia species can rapidly spread through oyster stocks and cause clinical disease in the host. The type species in the genus, Bonamia ostreae, was described from the European flat oyster Ostrea edulis. Since that time, several bonamia-like species have been observed in the following oyster hosts: Crassostrea ariakensis deployed in North Carolina, USA, Ostrea pulchana from Argentina, Ostrea chilensis from Chile, and in Ostrea angasi from Australia. There is, however, much debate over the species identity of these undescribed Bonamia parasites. An hypothesis that I will test is whether the species of Bonamia that occurs in the aforementioned oysters are representative of one species of Bonamia, Bonamia exitiosa, or are representative of different, currently undescribed, species of Bonamia. To test this hypothesis, molecular techniques to include the polymerase chain reaction (PCR) and simultaneous bi-directional sequencing (SBS) reactions were utilized to target the internal transcribed spacer (ITS) region of the ribosomal RNA gene complex for each of the undescribed Bonamia species and for Bonamia exitiosa. Phylogenetic analysis of the sequenced data in addition to pertinent morphological data, geographic distribution information, and possible host dispersals are included in this study to provide additional information for testing hypotheses developed based on molecular data.

  5. Phylogenetic and pathogenic characterization of novel adenoviruses from long-tailed ducks (Clangula hyemalis)

    USGS Publications Warehouse

    Counihan, Katrina; Skerratt, Lee; Franson, J. Christian; Hollmen, Tuula E.

    2015-01-01

    Novel adenoviruses were isolated from a long-tailed duck (Clangula hyemalis) mortality event near Prudhoe Bay, Alaska in 2000. The long-tailed duck adenovirus genome was approximately 27 kb. A 907 bp hexon gene segment was used to design primers specific for the long-tailed duck adenovirus. Nineteen isolates were phylogenetically characterized based on portions of their hexon gene and 12 were most closely related to Goose adenovirus A. The remaining 7 shared no hexon sequences with any known adenoviruses. Experimental infections of mallards with a long-tailed duck reference adenovirus caused mild lymphoid infiltration of the intestine and paint brush hemorrhages of the mucosa and dilation of the intestine. This study shows novel adenoviruses from long-tailed ducks are diverse and provides further evidence that they should be considered in cases of morbidity and mortality in sea ducks. Conserved and specific primers have been developed that will help screen sea ducks for adenoviral infections.

  6. Molecular Phylogenetic Diversity of Dermatologic and Other Human Pathogenic Fusarial Isolates from Hospitals in Northern and Central Italy▿

    PubMed Central

    Migheli, Quirico; Balmas, Virgilio; Harak, Henry; Sanna, Silvana; Scherm, Barbara; Aoki, Takayuki; O'Donnell, Kerry

    2010-01-01

    Fifty-eight fusaria isolated from 50 Italian patients between 2004 and 2007 were subject to multilocus DNA sequence typing to characterize the spectrum of species and circulating sequence types (STs) associated with dermatological infections, especially onychomycoses and paronychia, and other fusarioses in northern and central Italy. Sequence typing revealed that the isolates were nearly evenly divided among the Fusarium solani species complex (FSSC; n = 18), the F. oxysporum species complex (FOSC; n = 20), and the Gibberella (Fusarium) fujikuroi species complex (GFSC; n = 20). The three-locus typing scheme used for members of the FSSC identified 18 novel STs distributed among six phylogenetically distinct species, yielding an index of discrimination of 1.0. Phylogenetic analysis of the FOSC two-locus data set identified nine STs, including four which were novel, and nine isolates of ST 33, the previously described widespread clonal lineage. With the inclusion of eight epidemiologically unrelated ST 33 isolates, the FOSC typing scheme scored a discrimination index of 0.787. The two-locus GFSC typing scheme, which was primarily designed to identify species, received the lowest discrimination index, with a score of 0.492. The GFSC scheme, however, was used to successfully identify 17 isolates as F. verticillioides, 2 as F. sacchari, and 1 as F. guttiforme. This is the first report that F. guttiforme causes a human mycotic infection, which was supported by detailed morphological analysis. In addition, the results of a pathogenicity experiment revealed that the human isolate of F. guttiforme was able to induce fusariosis of pineapple, heretofore its only known host. PMID:20107100

  7. Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics.

    PubMed

    Harrison, Nicola; Harrison, Richard J; Kidner, Catherine A

    2016-01-01

    Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia.

  8. Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics

    PubMed Central

    Harrison, Nicola; Harrison, Richard J.

    2016-01-01

    Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia. PMID:27058864

  9. Linking Biomarker and Comparative Omics to Pathogens in Legumes.

    PubMed

    Diapari, Marwan

    2016-01-01

    It is envisioned that a more precise study of the association between the traits and biomarkers will dramatically decrease the time and costs required to bring new improved disease resistance lines to market. The field of omics has an enormous potential to assess diseases more precise, including the identification and understanding of pathogenic mechanisms in legume crops, and have been exemplified by a relatively large number of studies. Recently, molecular genetic studies have accumulated a huge amount of genotypic data, through a more affordable next generation sequencing (NGS) technology, causing the omics approaches to fall behind. In this paper I provide an overview of genomics and proteomics and their use in legume crops, including the use of comparative genomics to identify homologous markers within legume crops.

  10. Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters

    PubMed Central

    Macrini, Thomas E; Flynn, John J; Ni, Xijun; Croft, Darin A; Wyss, André R

    2013-01-01

    The phylogenetic relationships of notoungulates, an extinct group of predominantly South American herbivores, remain poorly resolved with respect to both other placental mammals and among one another. Most previous phylogenetic analyses of notoungulates have not included characters of the internal cranium, not least because few such features, including the bony labyrinth, have been described for members of the group. Here we describe the inner ears of the notoungulates Altitypotherium chucalensis (Mesotheriidae), Pachyrukhos moyani (Hegetotheriidae) and Cochilius sp. (Interatheriidae) based on reconstructions of bony labyrinths obtained from computed tomography imagery. Comparisons of the bony labyrinths of these taxa with the basally diverging notoungulate Notostylops murinus (Notostylopidae), an isolated petrosal from Itaboraí, Brazil, referred to Notoungulata, and six therian outgroups, yielded an inner ear character matrix of 25 potentially phylogenetically informative characters, 14 of them novel to this study. Two equivocally optimized character states potentially support a pairing of Mesotheriidae and Hegetotheriidae, whereas four others may be diagnostic of Notoungulata. Three additional characters are potentially informative for diagnosing more inclusive clades: one for crown Placentalia; another for a clade containing Kulbeckia, Zalambdalestes, and Placentalia; and a third for Eutheria (crown Placentalia plus stem taxa). Several other characters are apomorphic for at least one notoungulate in our study and are of potential interest for broader taxonomic sampling within Notoungulata to clarify currently enigmatic interrelationships. Measures of the semicircular canals were used to infer agility (e.g. capable of quick movements vs. lethargic movements) of these taxa. Agility scores calculated from these data generally corroborate interpretations based on postcranial remains of these or closely related species. We provide estimates of the low

  11. Phylogenetic analysis reveals positive correlations between adaptations to diverse hosts in a group of pathogen-like herbivores.

    PubMed

    Peterson, Daniel A; Hardy, Nate B; Morse, Geoffrey E; Stocks, Ian C; Okusu, Akiko; Normark, Benjamin B

    2015-10-01

    A jack of all trades can be master of none-this intuitive idea underlies most theoretical models of host-use evolution in plant-feeding insects, yet empirical support for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the long-term evolution of host use while being difficult to detect in extant populations, but host-use evolution may also be driven by adaptations for generalism. Here we used host-use data from insect collection records to parameterize a phylogenetic model of host-use evolution in armored scale insects, a large family of plant-feeding insects with a simple, pathogen-like life history. We found that a model incorporating positive correlations between evolutionary changes in host performance best fit the observed patterns of diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations to particular hosts also enhance performance on other hosts. In contrast to the widely invoked trade-off model, we advocate a "toolbox" model of host-use evolution in which armored scale insects accumulate a set of independent genetic tools, each of which is under selection for a single function but may be useful on multiple hosts.

  12. Disentangling determinants of egg size in the Geometridae (Lepidoptera) using an advanced phylogenetic comparative method.

    PubMed

    Davis, Robert B; Javoiš, J; Pienaar, J; Õunap, E; Tammaru, T

    2012-01-01

    We present a phylogenetic comparative study assessing the evolutionary determinants of egg size in the moth family Geometridae. These moths were found to show a strong negative allometric relationship between egg size and maternal body size. Using recently developed comparative methods based on an Ornstein-Uhlenbeck process, we show that maternal body size explains over half the variation in egg size. However, other determinants are less clear: ecological factors, previously hypothesized to affect egg size, were not found to have a considerable influence in the Geometridae. The limited role of such third factors suggests a direct causal link between egg size and body size rather than an indirect correlation mediated by some ecological factors. Notably, no large geometrid species lay small eggs. This pattern suggests that maternal body size poses a physical constraint on egg size, but within these limits, there appears to be a rather invariable selection for larger eggs.

  13. Comparative internal structure of dorsal lips and radiolar appendages in Sabellidae (Polychaeta) and phylogenetic implications.

    PubMed

    Capa, María; Nogueira, João Miguel de Matos; Rossi, Maíra Cappellani Silva

    2011-03-01

    Fan worms (Sabellidae) possess paired modified prostomial structures at the base of the radiolar crown, dorso-lateral to the mouth, called dorsal lips. The dorsal lips are involved in the sorting of particles collected by the radiolar crown. The range of variation in the morphology of dorsal lips is extensive, and probably this is not only due to adaptations to different environments and feeding preferences but also due to phylogenetic constraints. In this study, we describe and compare the morphology of dorsal lips in a range of sabellid taxa based on histological cross-sections of these structures, and compare our data and terminology with those of previous studies. Dorsal lips are maintained erect in most taxa by a modified radiole fused to them known as dorsal radiolar appendage. We suggest that dorsal radiolar appendages with an internal supporting axis (cellular or acellular) and probably also the ventral lips are synapomorphies of the family.

  14. Comparative phylogenetic analyses uncover the ancient roots of Indo-European folktales

    PubMed Central

    da Silva, Sara Graça; Tehrani, Jamshid J.

    2016-01-01

    Ancient population expansions and dispersals often leave enduring signatures in the cultural traditions of their descendants, as well as in their genes and languages. The international folktale record has long been regarded as a rich context in which to explore these legacies. To date, investigations in this area have been complicated by a lack of historical data and the impact of more recent waves of diffusion. In this study, we introduce new methods for tackling these problems by applying comparative phylogenetic methods and autologistic modelling to analyse the relationships between folktales, population histories and geographical distances in Indo-European-speaking societies. We find strong correlations between the distributions of a number of folktales and phylogenetic, but not spatial, associations among populations that are consistent with vertical processes of cultural inheritance. Moreover, we show that these oral traditions probably originated long before the emergence of the literary record, and find evidence that one tale (‘The Smith and the Devil’) can be traced back to the Bronze Age. On a broader level, the kinds of stories told in ancestral societies can provide important insights into their culture, furnishing new perspectives on linguistic, genetic and archaeological reconstructions of human prehistory. PMID:26909191

  15. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans

    PubMed Central

    Song, Sheng-Nan; Tang, Pu; Wei, Shu-Jun; Chen, Xue-Xin

    2016-01-01

    The Symphyta is traditionally accepted as a paraphyletic group located in a basal position of the order Hymenoptera. Herein, we conducted a comparative analysis of the mitochondrial genomes in the Symphyta by describing two newly sequenced ones, from Trichiosoma anthracinum, representing the first mitochondrial genome in family Cimbicidae, and Asiemphytus rufocephalus, from family Tenthredinidae. The sequenced lengths of these two mitochondrial genomes were 15,392 and 14,864 bp, respectively. Within the sequenced region, trnC and trnY were rearranged to the upstream of trnI-nad2 in T. anthracinum, while in A. rufocephalus all sequenced genes were arranged in the putative insect ancestral gene arrangement. Rearrangement of the tRNA genes is common in the Symphyta. The rearranged genes are mainly from trnL1 and two tRNA clusters of trnI-trnQ-trnM and trnW-trnC-trnY. The mitochondrial genomes of Symphyta show a biased usage of A and T rather than G and C. Protein-coding genes in Symphyta species show a lower evolutionary rate than those of Apocrita. The Ka/Ks ratios were all less than 1, indicating purifying selection of Symphyta species. Phylogenetic analyses supported the paraphyly and basal position of Symphyta in Hymenoptera. The well-supported phylogenetic relationship in the study is Tenthredinoidea + (Cephoidea + (Orussoidea + Apocrita)). PMID:26879745

  16. Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots

    PubMed Central

    Sarris, Panagiotis F.; Trantas, Emmanouil A.; Baltrus, David A.; Bull, Carolee T.; Wechter, William Patrick; Yan, Shuangchun; Ververidis, Filippos; Almeida, Nalvo F.; Jones, Corbin D.; Dangl, Jeffery L.; Panopoulos, Nickolas J.; Vinatzer, Boris A.; Goumas, Dimitrios E.

    2013-01-01

    Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity. PMID:23555661

  17. Comparative mapping of host–pathogen protein–protein interactions

    PubMed Central

    Shah, Priya S.; Wojcechowskyj, Jason A.; Eckhardt, Manon; Krogan, Nevan J.

    2015-01-01

    Pathogens usurp a variety of host pathways via protein–protein interactions to ensure efficient pathogen replication. Despite the existence of an impressive toolkit of systematic and unbiased approaches, we still lack a comprehensive list of these PPIs and an understanding of their functional implications. Here, we highlight the importance of harnessing genetic diversity of hosts and pathogens for uncovering the biochemical basis of pathogen restriction, virulence, fitness, and pathogenesis. We further suggest that integrating physical interaction data with orthogonal types of data will allow researchers to draw meaningful conclusions both for basic and translational science. PMID:26275922

  18. A unifying comparative phylogenetic framework including traits coevolving across interacting lineages.

    PubMed

    Manceau, Marc; Lambert, Amaury; Morlon, Hélène

    2016-12-20

    - Models of phenotypic evolution fit to phylogenetic comparative data are widely used to make inferences regarding the tempo and mode of trait evolution. A wide range of models is already available for this type of analysis, and the field is still under active development. One of the most needed developments concerns models that better account for the effect of within- and between-clade interspecific interactions on trait evolution, that can result from processes as diverse as competition, predation, parasitism, or mutualism. Here, we begin by developing a very general comparative phylogenetic framework for (multi)-trait evolution that can be applied to both ultrametric and non-ultrametric trees. This framework not only encapsulates many previous models of continuous univariate and multivariate phenotypic evolution, but also paves the way for the consideration of a much broader series of models in which lineages co-evolve, meaning that trait changes in one lineage are influenced by the value of traits in other, interacting lineages. Next, we provide a standard way for deriving the probabilistic distribution of traits at tip branches under our framework. We 25 show that a multivariate normal distribution remains the expected distribution for a broad class of models accounting for interspecific interactions. Our derivations allow us to fit various models efficiently, and in particular greatly reduce the computation time needed to fit the recently proposed phenotype matching model. Finally, we illustrate the utility of our framework by developing a toy model for mutualistic coevolution. Our framework should foster a new era in the study of coevolution from comparative data.

  19. Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae).

    PubMed

    Chapman, Mark A; Chang, JianCheng; Weisman, David; Kesseli, Rick V; Burke, John M

    2007-10-01

    The development of universal markers that can be assayed across taxa, but which are polymorphic within taxa, can facilitate both comparative map-based studies and phylogenetic analyses. Here we describe the development of such markers for use in the Asteraceae, which includes the crops lettuce, sunflower, and safflower as well as dozens of locally important crop and weed species. Using alignments of a conserved orthologous set (COS) of ESTs from lettuce and sunflower and genomic sequences of Arabidopsis, we designed a suite of primer pairs that are conserved across species, but which are predicted to flank introns. We then tested 192 such primer pairs in 8 species from across the family. Of these, 163 produced an amplicon in at least 1 taxon, and 125 amplified in at least half of the taxa surveyed. Thirty-nine amplified in all 8 species. Comparisons amongst sequences within the lettuce and sunflower EST databases indicate that the vast majority of these loci will be polymorphic. As a direct test of the utility of these markers outside the lettuce and sunflower subfamilies, we sequenced a subset of ten loci from a panel of cultivated safflower individuals. All 10 loci proved to be single-locus, and nine of the 10 loci were polymorphic with an average of 12.8 SNPs per kb. Taken together, these loci will provide an initial backbone for comparative genetic analyses within the Asteraceae. Moreover, our results indicate that these loci are phylogenetically informative, and hence can be used to resolve evolutionary relationships between taxa within the family as well as within species.

  20. Comparative Genome Analyses of Vibrio anguillarum Strains Reveal a Link with Pathogenicity Traits

    PubMed Central

    Castillo, Daniel; Alvise, Paul D.; Xu, Ruiqi; Zhang, Faxing; Middelboe, Mathias

    2017-01-01

    ABSTRACT Vibrio anguillarum is a marine bacterium that can cause vibriosis in many fish and shellfish species, leading to high mortalities and economic losses in aquaculture. Although putative virulence factors have been identified, the mechanism of pathogenesis of V. anguillarum is not fully understood. Here, we analyzed whole-genome sequences of a collection of V. anguillarum strains and compared them to virulence of the strains as determined in larval challenge assays. Previously identified virulence factors were globally distributed among the strains, with some genetic diversity. However, the pan-genome revealed that six out of nine high-virulence strains possessed a unique accessory genome that was attributed to pathogenic genomic islands, prophage-like elements, virulence factors, and a new set of gene clusters involved in biosynthesis, modification, and transport of polysaccharides. In contrast, V. anguillarum strains that were medium to nonvirulent had a high degree of genomic homogeneity. Finally, we found that a phylogeny based on the core genomes clustered the strains with moderate to no virulence, while six out of nine high-virulence strains represented phylogenetically separate clusters. Hence, we suggest a link between genotype and virulence characteristics of Vibrio anguillarum, which can be used to unravel the molecular evolution of V. anguillarum and can also be important from survey and diagnostic perspectives. IMPORTANCE Comparative genome analysis of strains of a pathogenic bacterial species can be a powerful tool to discover acquisition of mobile genetic elements related to virulence. Here, we compared 28 V. anguillarum strains that differed in virulence in fish larval models. By pan-genome analyses, we found that six of nine highly virulent strains had a unique core and accessory genome. In contrast, V. anguillarum strains that were medium to nonvirulent had low genomic diversity. Integration of genomic and phenotypic features provides

  1. Genome Sequence of the Thermotolerant Foodborne Pathogen Salmonella enterica Serovar Senftenberg ATCC 43845 and Phylogenetic Analysis of Loci Encoding Increased Protein Quality Control Mechanisms.

    PubMed

    Nguyen, Scott V; Harhay, Gregory P; Bono, James L; Smith, Timothy P L; Harhay, Dayna M

    2017-01-01

    Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica subsp. enterica serovar Senftenberg 775W (ATCC 43845), demonstrated an interesting observation that this strain contains not just one, but two horizontally acquired thermotolerance locus homologs. These two loci reside on a large 341.3-kbp plasmid that is similar to the well-studied IncHI2 R478 plasmid but lacks any antibiotic resistance genes found on R478 or other IncHI2 plasmids. As this historical Salmonella isolate has been in use since 1941, comparative analysis of the plasmid and of the thermotolerance loci contained on the plasmid will provide insight into the evolution of heat resistance loci as well as acquisition of resistance determinants in IncHI2 plasmids. IMPORTANCE Thermal interventions are commonly used in the food industry as a means of mitigating pathogen contamination in food products. Concern over heat-resistant food contaminants has recently increased, with the identification of a conserved locus shown to confer heat resistance in disparate lineages of Gram-negative bacteria. Complete sequence analysis of a historical isolate of Salmonella enterica serovar Senftenberg, used in numerous studies because of its novel heat resistance, revealed that this important strain possesses two distinct copies of this conserved thermotolerance locus, residing on a multireplicon IncHI2/IncHI2A plasmid. Phylogenetic analysis of these loci in comparison with homologs identified in various bacterial genera provides an opportunity to examine the evolution and distribution of loci conferring resistance to environmental stressors, such as heat and desiccation.

  2. Genome Sequence of the Thermotolerant Foodborne Pathogen Salmonella enterica Serovar Senftenberg ATCC 43845 and Phylogenetic Analysis of Loci Encoding Increased Protein Quality Control Mechanisms

    PubMed Central

    Nguyen, Scott V.; Harhay, Gregory P.; Bono, James L.; Smith, Timothy P. L.

    2017-01-01

    ABSTRACT Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica subsp. enterica serovar Senftenberg 775W (ATCC 43845), demonstrated an interesting observation that this strain contains not just one, but two horizontally acquired thermotolerance locus homologs. These two loci reside on a large 341.3-kbp plasmid that is similar to the well-studied IncHI2 R478 plasmid but lacks any antibiotic resistance genes found on R478 or other IncHI2 plasmids. As this historical Salmonella isolate has been in use since 1941, comparative analysis of the plasmid and of the thermotolerance loci contained on the plasmid will provide insight into the evolution of heat resistance loci as well as acquisition of resistance determinants in IncHI2 plasmids. IMPORTANCE Thermal interventions are commonly used in the food industry as a means of mitigating pathogen contamination in food products. Concern over heat-resistant food contaminants has recently increased, with the identification of a conserved locus shown to confer heat resistance in disparate lineages of Gram-negative bacteria. Complete sequence analysis of a historical isolate of Salmonella enterica serovar Senftenberg, used in numerous studies because of its novel heat resistance, revealed that this important strain possesses two distinct copies of this conserved thermotolerance locus, residing on a multireplicon IncHI2/IncHI2A plasmid. Phylogenetic analysis of these loci in comparison with homologs identified in various bacterial genera provides an opportunity to examine the evolution and distribution of loci conferring resistance to environmental stressors, such as heat and desiccation. PMID:28293682

  3. Muscles of facial expression in the chimpanzee (Pan troglodytes): descriptive, comparative and phylogenetic contexts

    PubMed Central

    Burrows, Anne M; Waller, Bridget M; Parr, Lisa A; Bonar, Christopher J

    2006-01-01

    Facial expressions are a critical mode of non-vocal communication for many mammals, particularly non-human primates. Although chimpanzees (Pan troglodytes) have an elaborate repertoire of facial signals, little is known about the facial expression (i.e. mimetic) musculature underlying these movements, especially when compared with some other catarrhines. Here we present a detailed description of the facial muscles of the chimpanzee, framed in comparative and phylogenetic contexts, through the dissection of preserved faces using a novel approach. The arrangement and appearance of muscles were noted and compared with previous studies of chimpanzees and with prosimians, cercopithecoids and humans. The results showed 23 mimetic muscles in P. troglodytes, including a thin sphincter colli muscle, reported previously only in adult prosimians, a bi-layered zygomaticus major muscle and a distinct risorius muscle. The presence of these muscles in such definition supports previous studies that describe an elaborate and highly graded facial communication system in this species that remains qualitatively different from that reported for other non-human primate species. In addition, there are minimal anatomical differences between chimpanzees and humans, contrary to conclusions from previous studies. These results amplify the importance of understanding facial musculature in primate taxa, which may hold great taxonomic value. PMID:16441560

  4. Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen

    PubMed Central

    2014-01-01

    Background Traditional morphological and biological species concepts are difficult to apply to closely related, asexual taxa because of the lack of an active sexual phase and paucity of morphological characters. Phylogenetic species concepts such as genealogical concordance phylogenetic species recognition (GCPSR) have been extensively used; however, methods that incorporate gene tree uncertainty into species recognition may more accurately and objectively delineate species. Using a worldwide sample of Alternaria alternata sensu lato, causal agent of citrus brown spot, the evolutionary histories of four nuclear loci including an endo-polygalacturonase gene, two anonymous loci, and one microsatellite flanking region were estimated using the coalescent. Species boundaries were estimated using several approaches including those that incorporate uncertainty in gene genealogies when lineage sorting and non-reciprocal monophyly of gene trees is common. Results Coalescent analyses revealed three phylogenetic lineages strongly influenced by incomplete lineage sorting and recombination. Divergence of the citrus 2 lineage from the citrus 1 and citrus 3 lineages was supported at most loci. A consensus of species tree estimation methods supported two species of Alternaria causing citrus brown spot worldwide. Based on substitution rates at the endo-polygalacturonase locus, divergence of the citrus 2 and the 1 and 3 lineages was estimated to have occurred at least 5, 400 years before present, predating the human-mediated movement of citrus and associated pathogens out of SE Asia. Conclusions The number of Alternaria species identified as causing brown spot of citrus worldwide using morphological criteria has been overestimated. Little support was found for most of these morphospecies using quantitative species recognition approaches. Correct species delimitation of plant-pathogenic fungi is critical for understanding the evolution of pathogenicity, introductions of pathogens to

  5. Comparative Genomics Reveals Mobile Pathogenicity Chromosomes in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, strains of F. oxysporum exhibit wide host range and are pathogenic to both plant and animal species, reflecting remarkable genetic adapta...

  6. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe ...

  7. Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    PubMed Central

    Desjardins, Christopher A.; Champion, Mia D.; Holder, Jason W.; Muszewska, Anna; Goldberg, Jonathan; Bailão, Alexandre M.; Brigido, Marcelo Macedo; Ferreira, Márcia Eliana da Silva; Garcia, Ana Maria; Grynberg, Marcin; Gujja, Sharvari; Heiman, David I.; Henn, Matthew R.; Kodira, Chinnappa D.; León-Narváez, Henry; Longo, Larissa V. G.; Ma, Li-Jun; Malavazi, Iran; Matsuo, Alisson L.; Morais, Flavia V.; Pereira, Maristela; Rodríguez-Brito, Sabrina; Sakthikumar, Sharadha; Salem-Izacc, Silvia M.; Sykes, Sean M.; Teixeira, Marcus Melo; Vallejo, Milene C.; Walter, Maria Emília Machado Telles; Yandava, Chandri; Young, Sarah; Zeng, Qiandong; Zucker, Jeremy; Felipe, Maria Sueli; Goldman, Gustavo H.; Haas, Brian J.; McEwen, Juan G.; Nino-Vega, Gustavo; Puccia, Rosana; San-Blas, Gioconda; Soares, Celia Maria de Almeida; Birren, Bruce W.; Cuomo, Christina A.

    2011-01-01

    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of

  8. Comparative genomic and phylogenetic approaches to characterize the role of genetic recombination in mycobacterial evolution.

    PubMed

    Smith, Silvia E; Showers-Corneli, Patrice; Dardenne, Caitlin N; Harpending, Henry H; Martin, Darren P; Beiko, Robert G

    2012-01-01

    The genus Mycobacterium encompasses over one hundred named species of environmental and pathogenic organisms, including the causative agents of devastating human diseases such as tuberculosis and leprosy. The success of these human pathogens is due in part to their ability to rapidly adapt to their changing environment and host. Recombination is the fastest way for bacterial genomes to acquire genetic material, but conflicting results about the extent of recombination in the genus Mycobacterium have been reported. We examined a data set comprising 18 distinct strains from 13 named species for evidence of recombination. Genomic regions common to all strains (accounting for 10% to 22% of the full genomes of all examined species) were aligned and concatenated in the chromosomal order of one mycobacterial reference species. The concatenated sequence was screened for evidence of recombination using a variety of statistical methods, with each proposed event evaluated by comparing maximum-likelihood phylogenies of the recombinant section with the non-recombinant portion of the dataset. Incongruent phylogenies were identified by comparing the site-wise log-likelihoods of each tree using multiple tests. We also used a phylogenomic approach to identify genes that may have been acquired through horizontal transfer from non-mycobacterial sources. The most frequent associated lineages (and potential gene transfer partners) in the Mycobacterium lineage-restricted gene trees are other members of suborder Corynebacterinae, but more-distant partners were identified as well. In two examined cases of potentially frequent and habitat-directed transfer (M. abscessus to Segniliparus and M. smegmatis to Streptomyces), observed sequence distances were small and consistent with a hypothesis of transfer, while in a third case (M. vanbaalenii to Streptomyces) distances were larger. The analyses described here indicate that whereas evidence of recombination in core regions within the genus is

  9. Genome Sequencing and Comparative Genomics Analysis Revealed Pathogenic Potential in Penicillium capsulatum as a Novel Fungal Pathogen Belonging to Eurotiales

    PubMed Central

    Yang, Ying; Chen, Min; Li, Zongwei; Al-Hatmi, Abdullah M. S.; de Hoog, Sybren; Pan, Weihua; Ye, Qiang; Bo, Xiaochen; Li, Zhen; Wang, Shengqi; Wang, Junzhi; Chen, Huipeng; Liao, Wanqing

    2016-01-01

    Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptomes of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNPs in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen. PMID:27761131

  10. Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom Archea, Prokaryotes and Eukaryotes.

    PubMed

    Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra

    2014-01-01

    Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry.

  11. Chelatococcus thermostellatus sp. nov., a new thermophile for bioplastic synthesis: comparative phylogenetic and physiological study.

    PubMed

    Ibrahim, Mohammad H A; Lebbe, Liesbeth; Willems, Anne; Steinbüchel, Alexander

    2016-12-01

    The poly(3-hydroxybutyrate), PHB, accumulating thermophilic strain MW9(T), isolated from an aerobic organic waste treatment plant, was characterized by detailed physiological and phylogenetic studies. The strain is a Gram-stain-negative, rod shaped, non-spore forming member of Alphaproteobacteria. It shows optimum growth at 50 °C. Based on 16S rRNA gene sequence similarity, the strain together with five very similar isolates, was affiliated to the genus Chelatococcus (Ibrahim et al. in J Appl Microbiol 109:1579-1590, 2010). Rep-PCR genomic fingerprints and partial dnaK gene sequence also revealed that these isolates are very similar, but differ from other Chelatococcus type strains. The major fatty acids were similar to those of other strains of the genus Chelatococcus. DNA-DNA hybridization of strain MW9(T) with Chelatococcus species type strains revealed 11.0-47.7 % relatedness. G+C content of DNA was 67.1 mol%, which is comparable with the other strains of Chelatococcus species. The physiological and phenotypic characteristics of the new strain MW9(T) are sufficient to differentiate it from previously described species in the genus Chelatococcus. Strain MW9(T) is considered to represent a novel species of the genus Chelatococcus, for which the name Chelatococcus thermostellatus is proposed. The type strain is MW9(T) (=LMG 27009(T) = DSM 28244(T)). Compared to known Chelatococcus strains, strain MW9(T) could be a potent candidate for bioplastic production at elevated temperature.

  12. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae).

    PubMed

    Turner, Cameron R; Derylo, Maksymilian; de Santana, C David; Alves-Gomes, José A; Smith, G Troy

    2007-12-01

    Electrocommunication signals in electric fish are diverse, easily recorded and have well-characterized neural control. Two signal features, the frequency and waveform of the electric organ discharge (EOD), vary widely across species. Modulations of the EOD (i.e. chirps and gradual frequency rises) also function as active communication signals during social interactions, but they have been studied in relatively few species. We compared the electrocommunication signals of 13 species in the largest gymnotiform family, Apteronotidae. Playback stimuli were used to elicit chirps and rises. We analyzed EOD frequency and waveform and the production and structure of chirps and rises. Species diversity in these signals was characterized with discriminant function analyses, and correlations between signal parameters were tested with phylogenetic comparative methods. Signals varied markedly across species and even between congeners and populations of the same species. Chirps and EODs were particularly evolutionarily labile, whereas rises differed little across species. Although all chirp parameters contributed to species differences in these signals, chirp amplitude modulation, frequency modulation (FM) and duration were particularly diverse. Within this diversity, however, interspecific correlations between chirp parameters suggest that mechanistic trade-offs may shape some aspects of signal evolution. In particular, a consistent trade-off between FM and EOD amplitude during chirps is likely to have influenced the evolution of chirp structure. These patterns suggest that functional or mechanistic linkages between signal parameters (e.g. the inability of electromotor neurons increase their firing rates without a loss of synchrony or amplitude of action potentials) constrain the evolution of signal structure.

  13. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    PubMed

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms.

  14. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential

    PubMed Central

    Briand, François-Xavier; Schmitz, Audrey; Ogor, Katell; Le Prioux, Aurélie; Guillou-Cloarec, Cécile; Guillemoto, Carole; Allée, Chantal; Le Bras, Marie-Odile; Hirchaud, Edouard; Quenault, Hélène; Touzain, Fabrice; Cherbonnel-Pansart, Martine; Lemaitre, Evelyne; Courtillon, Céline; Gares, Hélène; Daniel, Patrick; Fediaevsky, Alexandre; Massin, Pascale; Blanchard, Yannick; Eterradossi, Nicolas; van der Werf, Sylvie; Jestin, Véronique; Niqueux, Eric

    2017-01-01

    Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein – with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses – or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential. PMID:28277218

  15. Genetic diversity and phylogenetic analysis of highly pathogenic avian influenza (HPAI) H5N1 viruses circulating in Bangladesh from 2007-2011.

    PubMed

    Mondal, S P; Balasuriya, U B R; Yamage, M

    2013-12-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has been endemic in Bangladesh since its first isolation in February 2007. Phylogenetic analysis of the haemagglutinin (HA) gene of HPAI H5N1 viruses demonstrated that 25 Bangladeshi isolates including two human isolates from 2007-2011 along with some isolates from neighbouring Asian countries (India, Bhutan, Myanmar, Nepal, China and Vietnam) segregate into two distinct clades (2.2 and 2.3). There was clear evidence of introduction of clade 2.3.2 and 2.3.4 viruses in 2011 in addition to clade 2.2 viruses that had been in circulation in Bangladesh since 2007. The data clearly demonstrated the movement of H5N1 strains between Asian countries included in this study due to migration of wild birds and/or illegal movement of poultry across borders. Interestingly, the two human isolates were closely related to the clade 2.2 Bangladeshi chicken isolates indicating that they have originated from chickens. Furthermore, comparative amino acid sequence analysis revealed several substitutions (including 189R>K and 282I>V) in HA protein of some clade 2.2 Bangladeshi viruses including the human isolates, suggesting there was antigenic drift in clade 2.2.3 viruses that were circulating between 2008 and 2011. Overall, the data imply genetic diversity among circulating viruses and multiple introductions of H5N1 viruses with an increased risk of human infections in Bangladesh, and establishment of H5N1 virus in wild and domestic bird populations, which demands active surveillance.

  16. Comparative assessment of performance and genome dependence among phylogenetic profiling methods

    PubMed Central

    Snitkin, Evan S; Gustafson, Adam M; Mellor, Joseph; Wu, Jie; DeLisi, Charles

    2006-01-01

    Background The rapidly increasing speed with which genome sequence data can be generated will be accompanied by an exponential increase in the number of sequenced eukaryotes. With the increasing number of sequenced eukaryotic genomes comes a need for bioinformatic techniques to aid in functional annotation. Ideally, genome context based techniques such as proximity, fusion, and phylogenetic profiling, which have been so successful in prokaryotes, could be utilized in eukaryotes. Here we explore the application of phylogenetic profiling, a method that exploits the evolutionary co-occurrence of genes in the assignment of functional linkages, to eukaryotic genomes. Results In order to evaluate the performance of phylogenetic profiling in eukaryotes, we assessed the relative performance of commonly used profile construction techniques and genome compositions in predicting functional linkages in both prokaryotic and eukaryotic organisms. When predicting linkages in E. coli with a prokaryotic profile, the use of continuous values constructed from transformed BLAST bit-scores performed better than profiles composed of discretized E-values; the use of discretized E-values resulted in more accurate linkages when using S. cerevisiae as the query organism. Extending this analysis by incorporating several eukaryotic genomes in profiles containing a majority of prokaryotes resulted in similar overall accuracy, but with a surprising reduction in pathway diversity among the most significant linkages. Furthermore, the application of phylogenetic profiling using profiles composed of only eukaryotes resulted in the loss of the strong correlation between common KEGG pathway membership and profile similarity score. Profile construction methods, orthology definitions, ontology and domain complexity were explored as possible sources of the poor performance of eukaryotic profiles, but with no improvement in results. Conclusion Given the current set of completely sequenced eukaryotic

  17. Comparative analysis of glutaredoxin domains from bacterial opportunistic pathogens.

    PubMed

    Leeper, Thomas; Zhang, Suxin; Van Voorhis, Wesley C; Myler, Peter J; Varani, Gabriele

    2011-09-01

    Glutaredoxin proteins (GLXRs) are essential components of the glutathione system that reductively detoxify substances such as arsenic and peroxides and are important in the synthesis of DNA via ribonucleotide reductases. NMR solution structures of glutaredoxin domains from two Gram-negative opportunistic pathogens, Brucella melitensis and Bartonella henselae, are presented. These domains lack the N-terminal helix that is frequently present in eukaryotic GLXRs. The conserved active-site cysteines adopt canonical proline/tyrosine-stabilized geometries. A difference in the angle of α-helix 2 relative to the β-sheet surface and the presence of an extended loop in the human sequence suggests potential regulatory regions and/or protein-protein interaction motifs. This observation is consistent with mutations in this region that suppress defects in GLXR-ribonucleotide reductase interactions. These differences between the human and bacterial forms are adjacent to the dithiol active site and may permit species-selective drug design.

  18. Phylogenetic Analysis of Downy Mildew Pathogens of Opium Poppy and PCR-Based In Planta and Seed Detection of Peronospora arborescens.

    PubMed

    Landa, Blanca B; Montes-Borrego, Miguel; Muñoz-Ledesma, Francisco J; Jiménez-Díaz, Rafael M

    2007-11-01

    ABSTRACT Severe downy mildew diseases of opium poppy (Papaver somniferum) can be caused by Peronospora arborescens and P. cristata, but differentiating between the two pathogens is difficult because they share morphological features and a similar host range. In Spain, where severe epidemics of downy mildew of opium poppy have occurred recently, the pathogen was identified as P. arborescens on the basis of morphological traits. In this current study, sequence homology and phylogenetic analyses of the internal transcribed spacer regions (ITS) of the ribosomal DNA (rDNA) were carried out with DNA from P. arborescens and P. cristata from diverse geographic origins, which suggested that only P. arborescens occurs in cultivated Papaver somniferum in Spain. Moreover, analyses of the rDNA ITS region from 27 samples of downy-mildew-affected tissues from all opium-poppy-growing regions in Spain showed that genetic diversity exists within P. arborescens populations in Spain and that these are phylogenetically distinct from P. cristata. P. cristata instead shares a more recent, common ancestor with a range of Peronospora species that includes those found on host plants that are not members of the Papaveraceae. Species-specific primers and a PCR assay protocol were developed that differentiated P. arborescens and P. cristata and proved useful for the detection of P. arborescens in symptomatic and asymptomatic opium poppy plant parts. Use of these primers demonstrated that P. arborescens can be transmitted in seeds and that commercial seed stocks collected from crops with high incidence of the disease were frequently infected. Field experiments conducted in microplots free from P. arborescens using seed stocks harvested from infected capsules further demonstrated that transmission from seedborne P. arborescens to opium poppy plants can occur. Therefore, the specific-PCR detection protocol developed in this study can be of use for epidemiological studies and diagnosing the

  19. Systematics of Plant-Pathogenic and Related Streptomyces Species Based on Phylogenetic Analyses of Multiple Gene Loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 10 species of Streptomyces implicated as the etiological agents in scab disease of potatoes or soft rot disease of sweet potatoes are distributed among 7 different phylogenetic clades in analyses based on 16S rRNA gene sequences, but high sequence similarity of this gene among Streptomyces speci...

  20. Molecular diagnostics, field validation, and phylogenetic analysis of Quahog Parasite Unknown (QPX), a pathogen of the hard clam Mercenaria mercenaria.

    PubMed

    Stokes, N A; Ragone Calvo, L M; Reece, K S; Burreson, E M

    2002-12-10

    Quahog Parasite Unknown (QPX) is a protistan parasite that causes disease and mortality in the hard clam Mercenaria mercenaria. PCR primers and DNA oligonucleotide probes were designed and evaluated for sensitivity and specificity for the QPX organism specifically and for the phylum Labyrinthulomycota in general. The best performing QPX-specific primer pair amplified a 665 bp region of the QPX small-subunit ribosomal DNA (SSU rDNA) and detected as little as 1 fg cloned QPX SSU rDNA and 20 fg QPX genomic DNA. The primers did not amplify DNA of uninfected hard clams M. mercenaria or of the thraustochytrids Schizochytrium aggregatum, Thraustochytrium aureum, and T. striatum. The general labyrinthulomycete primers, which were designed to offer broader specificity than the QPX primers, amplified a 435 bp region of SSU rDNA from QPX, and a 436 to 437 bp region of SSU rDNA from S. aggregatum, T. aureum, and T. striatum, but did not amplify that of the clam M. mercenaria. Field validation of the QPX-specific primer pair, through comparative sampling of 224 clams collected over a 16 mo period from a QPX endemic site in Virginia, USA, indicated that the PCR assay is equivalent to histological diagnosis if initially negative PCR products are reamplified. Oligonucleotide DNA probes specific for QPX and the phylum Labyrinthulomycota were evaluated for in situ hybridization assays of cell smears or paraffin-embedded tissues. Two DNA probes for QPX offered limited sensitivity when used independently; however, when used together as a probe cocktail, sensitivity was greatly enhanced. The probe cocktail hybridized to putative QPX organisms in tissues of hard clams collected from Virginia, New Jersey, Massachusetts and Canada, suggesting that the QPX organisms in these areas are either very closely related or the same species. The QPX probe cocktail did not hybridize with clam tissue or with the thraustochytrids S. aggregatum, T. aureum, and T. striatum. The labyrinthulomycete DNA

  1. Comparative analysis of mitochondrial genomes in Diplura (hexapoda, arthropoda): taxon sampling is crucial for phylogenetic inferences.

    PubMed

    Chen, Wan-Jun; Koch, Markus; Mallatt, Jon M; Luan, Yun-Xia

    2014-01-01

    Two-pronged bristletails (Diplura) are traditionally classified into three major superfamilies: Campodeoidea, Projapygoidea, and Japygoidea. The interrelationships of these three superfamilies and the monophyly of Diplura have been much debated. Few previous studies included Projapygoidea in their phylogenetic considerations, and its position within Diplura still is a puzzle from both morphological and molecular points of view. Until now, no mitochondrial genome has been sequenced for any projapygoid species. To fill in this gap, we determined and annotated the complete mitochondrial genome of Octostigma sinensis (Octostigmatidae, Projapygoidea), and of three more dipluran species, one each from the Campodeidae, Parajapygidae, and Japygidae. All four newly sequenced dipluran mtDNAs encode the same set of genes in the same gene order as shared by most crustaceans and hexapods. Secondary structure truncations have occurred in trnR, trnC, trnS1, and trnS2, and the reduction of transfer RNA D-arms was found to be taxonomically correlated, with Campodeoidea having experienced the most reduction. Partitioned phylogenetic analyses, based on both amino acids and nucleotides of the protein-coding genes plus the ribosomal RNA genes, retrieve significant support for a monophyletic Diplura within Pancrustacea, with Projapygoidea more closely related to Campodeoidea than to Japygoidea. Another key finding is that monophyly of Diplura cannot be recovered unless Projapygoidea is included in the phylogenetic analyses; this explains the dipluran polyphyly found by past mitogenomic studies. Including Projapygoidea increased the sampling density within Diplura and probably helped by breaking up a long-branch-attraction artifact. This finding provides an example of how proper sampling is significant for phylogenetic inference.

  2. Comparative Morphology of Premolar Foramen in Lagomorphs (Mammalia: Glires) and Its Functional and Phylogenetic Implications

    PubMed Central

    Fostowicz-Frelik, Łucja; Meng, Jin

    2013-01-01

    Lagomorphs (a group that consists of pikas, hares, rabbits and allies) are notable for their conservative morphology retained for most of their over 50 million years evolutionary history. On the other hand, their remarkable morphological uniformity partly stems from a considerable number of homoplasies in cranial and dental structures that hamper phylogenetic analyses. The premolar foramen, an opening in the palate of lagomorphs, has been characterized as an important synapomorphy of one clade, Ochotonidae (pikas). Within Lagomorpha, however, its phylogenetic distribution is much wider, the foramen being present not only in all ochotonids but also in leporids and stem taxa; its morphology and incidence also varies considerably across the order, even intraspecifically. In this study, we provide a broad survey of the taxonomic distribution of the premolar foramen in extant and fossil Lagomorpha and describe in detail the morphological variation of this character within the group. Micro-computed tomography was used to examine the hard palate and infraorbital groove morphology in Poelagus (Leporidae) and Ochotona. Scans revealed the course and contacts of the canal behind the premolar foramen and structural differences between the two crown clades. We propose that the premolar foramen has evolved independently in several lineages of Lagomorpha, and we discuss development and function of this foramen in the lagomorph skull. This study shows the importance of comprehensive studies on phylogenetically informative non-dental characters in Lagomorpha. PMID:24278178

  3. Comparative Genomics of Sibling Fungal Pathogenic Taxa Identifies Adaptive Evolution without Divergence in Pathogenicity Genes or Genomic Structure

    PubMed Central

    Sillo, Fabiano; Garbelotto, Matteo; Friedman, Maria; Gonthier, Paolo

    2015-01-01

    It has been estimated that the sister plant pathogenic fungal species Heterobasidion irregulare and Heterobasidion annosum may have been allopatrically isolated for 34–41 Myr. They are now sympatric due to the introduction of the first species from North America into Italy, where they freely hybridize. We used a comparative genomic approach to 1) confirm that the two species are distinct at the genomic level; 2) determine which gene groups have diverged the most and the least between species; 3) show that their overall genomic structures are similar, as predicted by the viability of hybrids, and identify genomic regions that instead are incongruent; and 4) test the previously formulated hypothesis that genes involved in pathogenicity may be less divergent between the two species than genes involved in saprobic decay and sporulation. Results based on the sequencing of three genomes per species identified a high level of interspecific similarity, but clearly confirmed the status of the two as distinct taxa. Genes involved in pathogenicity were more conserved between species than genes involved in saprobic growth and sporulation, corroborating at the genomic level that invasiveness may be determined by the two latter traits, as documented by field and inoculation studies. Additionally, the majority of genes under positive selection and the majority of genes bearing interspecific structural variations were involved either in transcriptional or in mitochondrial functions. This study provides genomic-level evidence that invasiveness of pathogenic microbes can be attained without the high levels of pathogenicity presumed to exist for pathogens challenging naïve hosts. PMID:26527650

  4. Comparative Genomics of the Staphylococcus intermedius Group of Animal Pathogens

    PubMed Central

    Ben Zakour, Nouri L.; Beatson, Scott A.; van den Broek, Adri H. M.; Thoday, Keith L.; Fitzgerald, J. Ross

    2012-01-01

    The Staphylococcus intermedius group consists of three closely related coagulase-positive bacterial species including S. intermedius, Staphylococcus pseudintermedius, and Staphylococcus delphini. S. pseudintermedius is a major skin pathogen of dogs, which occasionally causes severe zoonotic infections of humans. S. delphini has been isolated from an array of different animals including horses, mink, and pigeons, whereas S. intermedius has been isolated only from pigeons to date. Here we provide a detailed analysis of the S. pseudintermedius whole genome sequence in comparison to high quality draft S. intermedius and S. delphini genomes, and to other sequenced staphylococcal species. The core genome of the SIG was highly conserved with average nucleotide identity (ANI) between the three species of 93.61%, which is very close to the threshold of species delineation (95% ANI), highlighting the close-relatedness of the SIG species. However, considerable variation was identified in the content of mobile genetic elements, cell wall-associated proteins, and iron and sugar transporters, reflecting the distinct ecological niches inhabited. Of note, S. pseudintermedius ED99 contained a clustered regularly interspaced short palindromic repeat locus of the Nmeni subtype and S. intermedius contained both Nmeni and Mtube subtypes. In contrast to S. intermedius and S. delphini and most other staphylococci examined to date, S. pseudintermedius contained at least nine predicted reverse transcriptase Group II introns. Furthermore, S. pseudintermedius ED99 encoded several transposons which were largely responsible for its multi-resistant phenotype. Overall, the study highlights extensive differences in accessory genome content between closely related staphylococcal species inhabiting distinct host niches, providing new avenues for research into pathogenesis and bacterial host-adaptation. PMID:22919635

  5. Detection and identification by PCR of a highly virulent phylogenetic subgroup among extraintestinal pathogenic Escherichia coli B2 strains.

    PubMed

    Bidet, Philippe; Metais, Arnaud; Mahjoub-Messai, Farah; Durand, Lionel; Dehem, Marie; Aujard, Yannick; Bingen, Edouard; Nassif, Xavier; Bonacorsi, Stéphane

    2007-04-01

    Closely related Escherichia coli B2 strains O1:K1, O2:K1, O18:K1, and O45:K1 constitute a major subgroup causing extraintestinal infections. A DNA pathoarray analysis was used to develop a PCR specific for this subgroup that was included in the multiplex phylogenetic-grouping PCR method. Our PCR may serve to identify this virulent subgroup among different ecological niches.

  6. Comparative cytogenetic analysis of some species of the Dendropsophus microcephalus group (Anura, Hylidae) in the light of phylogenetic inferences

    PubMed Central

    2013-01-01

    Background Dendropsophus is a monophyletic anuran genus with a diploid number of 30 chromosomes as an important synapomorphy. However, the internal phylogenetic relationships of this genus are poorly understood. Interestingly, an intriguing interspecific variation in the telocentric chromosome number has been useful in species identification. To address certain uncertainties related to one of the species groups of Dendropsophus, the D. microcephalus group, we carried out a cytogenetic analysis combined with phylogenetic inferences based on mitochondrial sequences, which aimed to aid in the analysis of chromosomal characters. Populations of Dendropsophus nanus, Dendropsophus walfordi, Dendropsophus sanborni, Dendropsophus jimi and Dendropsophus elianeae, ranging from the extreme south to the north of Brazil, were cytogenetically compared. A mitochondrial region of the ribosomal 12S gene from these populations, as well as from 30 other species of Dendropsophus, was used for the phylogenetic inferences. Phylogenetic relationships were inferred using maximum parsimony and Bayesian analyses. Results The species D. nanus and D. walfordi exhibited identical karyotypes (2n = 30; FN = 52), with four pairs of telocentric chromosomes and a NOR located on metacentric chromosome pair 13. In all of the phylogenetic hypotheses, the paraphyly of D. nanus and D. walfordi was inferred. D. sanborni from Botucatu-SP and Torres-RS showed the same karyotype as D. jimi, with 5 pairs of telocentric chromosomes (2n = 30; FN = 50) and a terminal NOR in the long arm of the telocentric chromosome pair 12. Despite their karyotypic similarity, these species were not found to compose a monophyletic group. Finally, the phylogenetic and cytogenetic analyses did not cluster the specimens of D. elianeae according to their geographical occurrence or recognized morphotypes. Conclusions We suggest that a taxonomic revision of the taxa D. nanus and D. walfordi is quite necessary. We also

  7. Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms

    PubMed Central

    2011-01-01

    Background Microorganisms produce cell-wall-degrading enzymes as part of their strategies for plant invasion/nutrition. Among these, pectin lyases (PNLs) catalyze the depolymerization of esterified pectin by a β-elimination mechanism. PNLs are grouped together with pectate lyases (PL) in Family 1 of the polysaccharide lyases, as they share a conserved structure in a parallel β-helix. The best-characterized fungal pectin lyases are obtained from saprophytic/opportunistic fungi in the genera Aspergillus and Penicillium and from some pathogens such as Colletotrichum gloeosporioides. The organism used in the present study, Colletotrichum lindemuthianum, is a phytopathogenic fungus that can be subdivided into different physiological races with different capacities to infect its host, Phaseolus vulgaris. These include the non-pathogenic and pathogenic strains known as races 0 and 1472, respectively. Results Here we report the isolation and sequence analysis of the Clpnl2 gene, which encodes the pectin lyase 2 of C. lindemuthianum, and its expression in pathogenic and non-pathogenic races of C. lindemuthianum grown on different carbon sources. In addition, we performed a phylogenetic analysis of the deduced amino acid sequence of Clpnl2 based on reported sequences of PNLs from other sources and compared the three-dimensional structure of Clpnl2, as predicted by homology modeling, with those of other organisms. Both analyses revealed an early separation of bacterial pectin lyases from those found in fungi and oomycetes. Furthermore, two groups could be distinguished among the enzymes from fungi and oomycetes: one comprising enzymes from mostly saprophytic/opportunistic fungi and the other formed mainly by enzymes from pathogenic fungi and oomycetes. Clpnl2 was found in the latter group and was grouped together with the pectin lyase from C. gloeosporioides. Conclusions The Clpnl2 gene of C. lindemuthianum shares the characteristic elements of genes coding for pectin

  8. Comparative genomics and phylogenetic discordance of cultivated tomato and close wild relatives.

    PubMed

    Strickler, Susan R; Bombarely, Aureliano; Munkvold, Jesse D; York, Thomas; Menda, Naama; Martin, Gregory B; Mueller, Lukas A

    2015-01-01

    Background. Studies of ancestry are difficult in the tomato because it crosses with many wild relatives and species in the tomato clade that have diverged very recently. As a result, the phylogeny in relation to its closest relatives remains uncertain. By using the coding sequence from Solanum lycopersicum, S. galapagense, S. pimpinellifolium, S. corneliomuelleri, and S. tuberosum and the genomic sequence from S. lycopersicum 'Heinz', an heirloom line, S. lycopersicum 'Yellow Pear', and two of cultivated tomato's closest relatives, S. galapagense and S. pimpinellifolium, we have aimed to resolve the phylogenies of these closely related species as well as identify phylogenetic discordance in the reference cultivated tomato. Results. Divergence date estimates suggest that the divergence of S. lycopersicum, S. galapagense, and S. pimpinellifolium happened less than 0.5 MYA. Phylogenies based on 8,857 coding sequences support grouping of S. lycopersicum and S. galapagense, although two secondary trees are also highly represented. A total of 25 genes in our analysis had sites with evidence of positive selection along the S. lycopersicum lineage. Whole genome phylogenies showed that while incongruence is prevalent in genomic comparisons between these genotypes, likely as a result of introgression and incomplete lineage sorting, a primary phylogenetic history was strongly supported. Conclusions. Based on analysis of these genotypes, S. galapagense appears to be closely related to S. lycopersicum, suggesting they had a common ancestor prior to the arrival of an S. galapagense ancestor to the Galápagos Islands, but after divergence of the sequenced S. pimpinellifolium. Genes showing selection along the S. lycopersicum lineage may be important in domestication or selection occurring post-domestication. Further analysis of intraspecific data in these species will help to establish the evolutionary history of cultivated tomato. The use of an heirloom line is helpful in

  9. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    PubMed

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders.

  10. Comparative sperm ultrastructure of twelve leptodactylid frog species with insights into their phylogenetic relationships.

    PubMed

    Santos, Julio Sérgio; Introíni, Gisele Orlandi; Veiga-Menoncello, Ana Cristina Prado; Blasco, Ailin; Rivera, Miryan; Recco-Pimentel, Shirlei Maria

    2016-12-01

    The spermatozoa of representatives of three Neotropical frog subfamilies, Leiuperinae, Leptodactylinae and Paratelmatobiinae, were observed using Transmission Electron Microscopy, with the aim of identifying ultrastructural traits that provide insights into the phylogenetic relationships among these anurans, which are currently unclear. In the leiuperines, spermatozoa of Physalaemus albifrons, P. cicada, P. deimaticus and P. feioi were characterized by an acrosomal vesicle covering the subacrosomal cone that was not observed in the spermatozoa of Physalaemus centralis and P. cuvieri. The tail of the spermatozoa of P. albifrons, P. centralis, P. cicada, P. cuvieri, P. deimaticus, and P. feioi presented a long undulating membrane, whereas Engystomops petersi and E. freibergi, which form a sister clade to Physalaemus, had an axial fiber, which were absent in Physalaemus. Other leiuperine, E. puyango had an abaxonemal bulb-like swelling distally to the paraxonemal rod, which were also absent in Physalaemus. These differences support the revalidation of Engystomops as a true taxon, distinct from Physalaemus. The tail of the spermatozoa of E. petersi and E. freibergi was similar to that of Paratelmatobius poecilogaster (Paratelmatobiinae). The spermatozoa of Leptodactylus natalenis (Leptodactylinae) had undulating membrane and axial fiber, in contrast with Adenomera marmorata, which lacked these structures. Morphological differences between A. marmorata and L. natalensis sperm cells appeared to validate the allocation of A. marmorata into a genus distinct from Leptodactylus. Overall, dissimilarities in the spermatozoa of the leptodactylids provided an important phylogenetic signal for the understanding of their taxonomic relationships.

  11. Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is a major cause of food-borne illness in the US, leading to more deaths than any other food-related pathogen. This is an extremely diverse bacterial species consisting of six subspecies and over 2500 named serovars. Examining the evolutionary history within Salmonella with techn...

  12. The phylogenetic placement of hypocrealean insect pathogens in the genus Polycephalomyces: an application of One Fungus One Name.

    PubMed

    Kepler, Ryan; Ban, Sayaka; Nakagiri, Akira; Bischoff, Joseph; Hywel-Jones, Nigel; Owensby, Catherine Alisha; Spatafora, Joseph W

    2013-09-01

    Understanding the systematics and evolution of clavicipitoid fungi has been greatly aided by the application of molecular phylogenetics. They are now classified in three families, largely driven by reevaluation of the morphologically and ecologically diverse genus Cordyceps. Although reevaluation of morphological features of both sexual and asexual states were often found to reflect the structure of phylogenies based on molecular data, many species remain of uncertain placement due to a lack of reliable data or conflicting morphological characters. A rigid, darkly pigmented stipe and the production of a Hirsutella-like anamorph in culture were taken as evidence for the transfer of the species Cordyceps cuboidea, Cordyceps prolifica, and Cordyceps ryogamiensis to the genus Ophiocordyceps. Data from ribosomal DNA supported these species as a single group, but were unable to infer deeper relationships in Hypocreales. Here, molecular data for ribosomal and protein coding DNA from specimens of Ophiocordyceps cuboidea, Ophiocordyceps ryogamiensis, Ophiocordyceps paracuboidea, Ophiocordyceps prolifica, Cordyceps ramosopulvinata, Cordyceps nipponica, and isolates of Polycephalomyces were combined with a broadly sampled dataset of Hypocreales. Phylogenetic analyses of these data revealed that these species represent a clade distinct from the other clavicipitoid genera. Applying the recently adopted single system of nomenclature, new taxonomic combinations are proposed for these species in the genus Polycephalomyces, which has been historically reserved for asexual or anamorphic taxa.

  13. Comparative pathogenicity of avian encephalomyelitis viruses in chicken embryos.

    PubMed

    Miyamae, T

    1975-07-01

    Multiplications of wild, various embryo-adapting and completely embryo-adapted avian encephalomyelitis (AE) viruses in chicken embryos were compared by the fluorescent-antibody technique (FAT). With a wild AE virus, viral antigens were randomly seen in the central nervous system (CNS), appearing least often in the cerebellum. Other organs seldom became test positive, except for heart and kidney. Even with 4 chicken brain-passaged viruses in the process of embryo adaptation, there was little augmentation of antigens except in the alimentary tract. However, the 2 midpassage viruses showed a peculiar localization of antigens in the white matter of the lumbosacral cord, together with the appearance of test-positive spinal ganglion cells. With 2 strains of embryo-adapted AE virus, the antigens appeared first in the spinal ganglion cells and secondly in the lumbosacral cord and then spread to the cerebrum. Subsequently, clinical signs of AE were evident. This peculiar invasion order was a prominent feature.

  14. Is horizontal transmission really a problem for phylogenetic comparative methods? A simulation study using continuous cultural traits

    PubMed Central

    Currie, Thomas E.; Greenhill, Simon J.; Mace, Ruth

    2010-01-01

    Phylogenetic comparative methods (PCMs) provide a potentially powerful toolkit for testing hypotheses about cultural evolution. Here, we build on previous simulation work to assess the effect horizontal transmission between cultures has on the ability of both phylogenetic and non-phylogenetic methods to make inferences about trait evolution. We found that the mode of horizontal transmission of traits has important consequences for both methods. Where traits were horizontally transmitted separately, PCMs accurately reported when trait evolution was not correlated even at the highest levels of horizontal transmission. By contrast, linear regression analyses often incorrectly concluded that traits were correlated. Where simulated trait evolution was not correlated and traits were horizontally transmitted as a pair, both methods inferred increased levels of positive correlation with increasing horizontal transmission. Where simulated trait evolution was correlated, increasing rates of separate horizontal transmission led to decreasing levels of inferred correlation for both methods, but increasing rates of paired horizontal transmission did not. Furthermore, the PCM was also able to make accurate inferences about the ancestral state of traits. These results suggest that under certain conditions, PCMs can be robust to the effects of horizontal transmission. We discuss ways that future work can investigate the mode and tempo of horizontal transmission of cultural traits. PMID:21041214

  15. Phylogenetic and pathogenic analysis of a novel H6N2 avian influenza virus isolated from a green peafowl in a wildlife park.

    PubMed

    Fan, Zhaobin; Ci, Yanpeng; Ma, Yixin; Liu, Liling; Ma, Jianzhang; Li, D Yanbing; Chen, Hualan

    2014-12-01

    H6 subtype avian influenza virus, which has been circulating among different species, causes considerable concern for both veterinary medicine and public health. We isolated a strain of H6N2 avian influenza virus from healthy green peafowl (Pavo muticus) in Qinghuangdao Wildlife Park in Hebei Province, China, in 2012. A phylogenetic analysis indicated that the isolated H6N2 strain had the same gene constellation as southern China strains, which were predominantly isolated from waterfowl distributed in Shantou, Guangxi, and Hunan in 2001-2010. The isolate showed no and low pathogenicity in chickens and ducks, respectively. However, it replicated efficiently in the lungs and turbinate of infected mice, resulting in thickened alveolar septa and moderate interstitial pneumonia. This finding raises concerns that the H6N2 subtype maybe evolve into a novel endemic avian influenza virus. Therefore, periodical surveillance of avian influenza viruses must be undertaken to monitor the advent of novel viruses.

  16. Differential Communications between Fungi and Host Plants Revealed by Secretome Analysis of Phylogenetically Related Endophytic and Pathogenic Fungi

    PubMed Central

    Xu, Xihui; He, Qin; Zhang, Chulong

    2016-01-01

    During infection, both phytopathogenic and endophytic fungi form intimate contact with living plant cells, and need to resist or disable host defences and modify host metabolism to adapt to their host. Fungi can achieve these changes by secreting proteins and enzymes. A comprehensive comparison of the secretomes of both endophytic and pathogenic fungi can improve our understanding of the interactions between plants and fungi. Although Magnaporthe oryzae, Gaeumannomyces graminis, and M. poae are economically important fungal pathogens, and the related species Harpophora oryzae is an endophyte, they evolved from a common pathogenic ancestor. We used a pipeline analysis to predict the H. oryzae, M. oryzae, G. graminis, and M. poae secretomes and identified 1142, 1370, 1001, and 974 proteins, respectively. Orthologue gene analyses demonstrated that the M. oryzae secretome evolved more rapidly than those of the other three related species, resulting in many species-specific secreted protein-encoding genes, such as avirulence genes. Functional analyses highlighted the abundance of proteins involved in the breakdown of host plant cell walls and oxidation-reduction processes. We identified three novel motifs in the H. and M. oryzae secretomes, which may play key roles in the interaction between rice and H. oryzae. Furthermore, we found that expression of the H. oryzae secretome involved in plant cell wall degradation was downregulated, but the M. oryzae secretome was upregulated with many more upregulated genes involved in oxidation-reduction processes. The divergent in planta expression patterns of the H. and M. oryzae secretomes reveal differences that are associated with mutualistic and pathogenic interactions, respectively. PMID:27658302

  17. Phylogenetic study-based hemagglutinin (HA) gene of highly pathogenic avian influenza virus (H5N1) detected from backyard chickens in Iran, 2015.

    PubMed

    Ghafouri, Syed Ali; Langeroudi, Arash Ghalyanchi; Maghsoudloo, Hossein; Tehrani, Farshad; Khaltabadifarahani, Reza; Abdollahi, Hamed; Fallah, Mohammad Hossein

    2017-02-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have been diversified into multiple phylogenetic clades over the past decade and are highly genetically variable. In June 2015, one outbreak of HPAI H5N1 in backyard chickens was reported in the Nogardan village of the Mazandaran Province. Tracheal tissues were taken from the dead domestic chickens (n = 10) and processed for RT-PCR. The positive samples (n = 10) were characterized as HPAI H5N1 by sequencing analysis for the hemagglutinin and neuraminidase genes. Phylogenetic analysis of the samples revealed that the viruses belonged to clade 2.3.2.1c, and cluster with the HPAI H5N1 viruses isolated from different avian species in Bulgaria, Romania, and Nigeria in 2015. They were not closely related to other H5N1 isolates detected in previous years in Iran. Our study provides new insights into the evolution and genesis of H5N1 influenza in Iran and has important implications for targeting surveillance efforts to rapidly identify the spread of the virus into and within Iran.

  18. Proteomics and phylogenetic analysis of the cathepsin L protease family of the helminth pathogen Fasciola hepatica: expansion of a repertoire of virulence-associated factors.

    PubMed

    Robinson, Mark W; Tort, Jose F; Lowther, Jonathan; Donnelly, Sheila M; Wong, Emily; Xu, Weibo; Stack, Colin M; Padula, Matthew; Herbert, Ben; Dalton, John P

    2008-06-01

    Cathepsin L proteases secreted by the helminth pathogen Fasciola hepatica have functions in parasite virulence including tissue invasion and suppression of host immune responses. Using proteomics methods alongside phylogenetic studies we characterized the profile of cathepsin L proteases secreted by adult F. hepatica and hence identified those involved in host-pathogen interaction. Phylogenetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) and two clades specific to infective juvenile stages (Clades 3 and 4). Consistent with these observations our proteomics studies identified representatives from Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F. hepatica secretory products. Clades 1 and 2 account for 67.39 and 27.63% of total secreted cathepsin Ls, respectively, suggesting that their expansion was positively driven and that these proteases are most critical for parasite survival and adaptation. Sequence comparison studies revealed that the expansion of cathepsin Ls by gene duplication was followed by residue changes in the S2 pocket of the active site. Our biochemical studies showed that these changes result in alterations in substrate binding and suggested that the divergence of the cathepsin L family produced a repertoire of enzymes with overlapping and complementary substrate specificities that could cleave host macromolecules more efficiently. Although the cathepsin Ls are produced as zymogens containing a prosegment and mature domain, all secreted enzymes identified by MS were processed to mature active enzymes. The prosegment region was highly conserved between the clades except at the boundary of prosegment and mature enzyme. Despite the lack of conservation at this section, sites for exogenous cleavage by asparaginyl endopeptidases and a Leu-Ser[downward arrow]His motif for

  19. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both Monocots and Dicots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Sequencing multiple strains of the same pathogen further reveals information concerning pathogen diversity and the molecular basis of vi...

  20. Correlation of Metabolic Variables with the Number of ORFs in Human Pathogenic and Phylogenetically Related Non- or Less-Pathogenic Bacteria.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Garcia-Guevara, Jose Fernando; Rodríguez-Vázquez, Katya

    2016-06-01

    To date, a few works have performed a correlation of metabolic variables in bacteria; however specific correlations with these variables have not been reported. In this work, we included 36 human pathogenic bacteria and 18 non- or less-pathogenic-related bacteria and obtained all metabolic variables, including enzymes, metabolic pathways, enzymatic steps and specific metabolic pathways, and enzymatic steps of particular metabolic processes, from a reliable metabolic database (KEGG). Then, we correlated the number of the open reading frames (ORF) with these variables and with the proportions of these variables, and we observed a negative correlation with the proportion of enzymes (r = -0.506, p < 0.0001), metabolic pathways (r = -0.871, p < 00.0001), enzymatic reactions (r = -0.749, p < 00.0001), and with the proportions of central metabolism variables as well as a positive correlation with the proportions of multistep reactions (r = 0.650, p < 00.0001) and secondary metabolism variables. The proportion of multifunctional reactions (r: -0.114, p = 0.41) and the proportion of enzymatic steps (r: -0.205, p = 0.14) did not present a significant correlation. These correlations indicate that as the size of a genome (measured in the number of ORFs) increases, the proportion of genes that encode enzymes significantly diminishes (especially those related to central metabolism), suggesting that when essential metabolic pathways are complete, an increase in the number of ORFs does not require a similar increase in the metabolic pathways and enzymes, but only a slight increase is sufficient to cope with a large genome.

  1. The Basic Helix-Loop-Helix Protein Family: Comparative Genomics and Phylogenetic Analysis

    PubMed Central

    Ledent, Valérie; Vervoort, Michel

    2001-01-01

    The basic Helix-Loop-Helix (bHLH) proteins are transcription factors that play important roles during the development of various metazoans including fly, nematode, and vertebrates. They are also involved in human diseases, particularly in cancerogenesis. We made an extensive search for bHLH sequences in the completely sequenced genomes of Caenorhabditis elegans and of Drosophila melanogaster. We found 35 and 56 different genes, respectively, which may represent the complete set of bHLH of these organisms. A phylogenetic analysis of these genes, together with a large number (>350) of bHLH from other sources, led us to define 44 orthologous families among which 36 include bHLH from animals only, and two have representatives in both yeasts and animals. In addition, we identified two bHLH motifs present only in yeast, and four that are present only in plants; however, the latter number is certainly an underestimate. Most animal families (35/38) comprise fly, nematode, and vertebrate genes, suggesting that their common ancestor, which lived in pre-Cambrian times (600 million years ago) already owned as many as 35 different bHLH genes. PMID:11337472

  2. Complete Plastid Genome Sequencing of Four Tilia Species (Malvaceae): A Comparative Analysis and Phylogenetic Implications

    PubMed Central

    Cai, Jie; Ma, Peng-Fei; Li, Hong-Tao; Li, De-Zhu

    2015-01-01

    Tilia is an ecologically and economically important genus in the family Malvaceae. However, there is no complete plastid genome of Tilia sequenced to date, and the taxonomy of Tilia is difficult owing to frequent hybridization and polyploidization. A well-supported interspecific relationships of this genus is not available due to limited informative sites from the commonly used molecular markers. We report here the complete plastid genome sequences of four Tilia species determined by the Illumina technology. The Tilia plastid genome is 162,653 bp to 162,796 bp in length, encoding 113 unique genes and a total number of 130 genes. The gene order and organization of the Tilia plastid genome exhibits the general structure of angiosperms and is very similar to other published plastid genomes of Malvaceae. As other long-lived tree genera, the sequence divergence among the four Tilia plastid genomes is very low. And we analyzed the nucleotide substitution patterns and the evolution of insertions and deletions in the Tilia plastid genomes. Finally, we build a phylogeny of the four sampled Tilia species with high supports using plastid phylogenomics, suggesting that it is an efficient way to resolve the phylogenetic relationships of this genus. PMID:26566230

  3. Complete Plastid Genome Sequencing of Four Tilia Species (Malvaceae): A Comparative Analysis and Phylogenetic Implications.

    PubMed

    Cai, Jie; Ma, Peng-Fei; Li, Hong-Tao; Li, De-Zhu

    2015-01-01

    Tilia is an ecologically and economically important genus in the family Malvaceae. However, there is no complete plastid genome of Tilia sequenced to date, and the taxonomy of Tilia is difficult owing to frequent hybridization and polyploidization. A well-supported interspecific relationships of this genus is not available due to limited informative sites from the commonly used molecular markers. We report here the complete plastid genome sequences of four Tilia species determined by the Illumina technology. The Tilia plastid genome is 162,653 bp to 162,796 bp in length, encoding 113 unique genes and a total number of 130 genes. The gene order and organization of the Tilia plastid genome exhibits the general structure of angiosperms and is very similar to other published plastid genomes of Malvaceae. As other long-lived tree genera, the sequence divergence among the four Tilia plastid genomes is very low. And we analyzed the nucleotide substitution patterns and the evolution of insertions and deletions in the Tilia plastid genomes. Finally, we build a phylogeny of the four sampled Tilia species with high supports using plastid phylogenomics, suggesting that it is an efficient way to resolve the phylogenetic relationships of this genus.

  4. Your place or mine? A phylogenetic comparative analysis of marital residence in Indo-European and Austronesian societies

    PubMed Central

    Fortunato, Laura; Jordan, Fiona

    2010-01-01

    Accurate reconstruction of prehistoric social organization is important if we are to put together satisfactory multidisciplinary scenarios about, for example, the dispersal of human groups. Such considerations apply in the case of Indo-European and Austronesian, two large-scale language families that are thought to represent Neolithic expansions. Ancestral kinship patterns have mostly been inferred through reconstruction of kin terminologies in ancestral proto-languages using the linguistic comparative method, and through geographical or distributional arguments based on the comparative patterns of kin terms and ethnographic kinship ‘facts’. While these approaches are detailed and valuable, the processes through which conclusions have been drawn from the data fail to provide explicit criteria for systematic testing of alternative hypotheses. Here, we use language trees derived using phylogenetic tree-building techniques on Indo-European and Austronesian vocabulary data. With these trees, ethnographic data and Bayesian phylogenetic comparative methods, we statistically reconstruct past marital residence and infer rates of cultural change between different residence forms, showing Proto-Indo-European to be virilocal and Proto-Malayo-Polynesian uxorilocal. The instability of uxorilocality and the rare loss of virilocality once gained emerge as common features of both families. PMID:21041215

  5. Phylogenetic and pathogenic analyses of three H5N1 avian influenza viruses (clade 2.3.2.1) isolated from wild birds in Northeast China.

    PubMed

    Fan, Zhaobin; Ci, Yanpeng; Liu, Liling; Ma, Yixin; Jia, Ying; Wang, Deli; Guan, Yuntao; Tian, Guobin; Ma, Jianzhang; Li, Yanbing; Chen, Hualan

    2015-01-01

    From April to September 2012, periodic surveillance of avian influenza H5N1 viruses from different wild bird species was conducted in Northeast China. Three highly pathogenic avian influenza (HPAI) H5N1 viruses were isolated from a yellow-browed warbler, common shoveler, and mallard. To trace the genetic lineage of the isolates, nucleotide sequences of all eight gene segments were determined and phylogenetically analyzed. The data indicated that three viruses belonged to the same antigenic virus group: clade 2.3.2.1. To investigate the pathogenicity of these three viruses in different hosts, chickens, ducks, and mice were inoculated. The results showed that chickens were susceptible to each of the three HPAI H5N1 viruses, resulting in 100% mortality within 2-6 days after infection, whereas the three isolates exhibited distinctly different virulence in ducks and mice. The results of this study demonstrated that HPAI H5N1 viruses of clade 2.3.2.1 are still circulating in wild birds through overlapping migratory flyways. Therefore, continuous monitoring of H5N1 in both domestic and wild birds is necessary to prevent a potentially wider outbreak.

  6. The pathogen-inducible promoter of defense-related LsGRP1 gene from Lilium functioning in phylogenetically distinct species of plants.

    PubMed

    Lin, Chia-Hua; Chen, Chao-Ying

    2017-01-01

    A suitable promoter greatly enhances the efficiency of target gene expression of plant molecular breeding and farming; however, only very few promoters are available for economically important non-graminaceous ornamental monocots. In this study, an 868-bp upstream region of defense-related LsGRP1 of Lilium, named PLsGRP1, was cloned by genome walking and proven to exhibit promoter activity in Nicotiana benthamiana and Lilium 'Stargazer' as assayed by agroinfiltration-based β-glucuronidase (GUS) expression system. Many putative biotic stress-, abiotic stress- and physiological regulation-related cis-acting elements were found in PLsGRP1. Serial deletion analysis of PLsGRP1 performed in Nicotiana tabacum var. Wisconsin 38 accompanied with types of treatments indicated that 868-bp PLsGRP1 was highly induced upon pathogen challenges and cold stress while the 131-bp 3'-end region of PLsGRP1 could be dramatically induced by many kinds of abiotic stresses, biotic stresses and phytohormone treatments. Besides, transient GUS expression in a fern, gymnosperms, monocots and dicots revealed good promotor activity of PLsGRP1 in many phylogenetically distinct plant species. Thus, pathogen-inducible PLsGRP1 and its 131-bp 3'-end region are presumed potential as tools for plant molecular breeding and farming.

  7. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    SciTech Connect

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  8. Morphological and comparative genomic analyses of pathogenic and non-pathogenic Fusarium solani isolated from Dalbergia sissoo.

    PubMed

    Arif, M; Zaidi, N W; Haq, Q M R; Singh, Y P; Taj, G; Kar, C S; Singh, U S

    2015-06-01

    Sissoo or shisham (Dalbergia sissoo Roxb.) is one of the finest wood of South Asia. Fusarium solani is a causal organism of sissoo wilt, decline, or dieback. It is also a potential causal organism associated with other valuable tree species. Thirty-eight Fusarium isolates including 24 F. solani and 14 Fusarium sp., were obtained in 2005 from different geographical locations in India. All 38 (18 pathogenic and 20 non-pathogenic) isolates were characterized for genomic analysis, growth behaviour, pigmentation and sensitivity to carbendazim. Based on growth pattern, growth rate, pigmentation and sensitivity to carbendazim, all 38 isolates showed a wide range of variability, but no correlation with pathogenicity or geographical distribution. Three techniques were used for comparative genomic analysis: random amplified polymorphic DNA (RAPD); inter simple sequence repeats (ISSR); and simple sequence repeats (SSR). A total of 90 primers targeting different genome regions resulted a total of 1159 loci with an average of 12.88 loci per primer. These primers showed high genomic variability among the isolates. The maximum loci (14.64) per primer were obtained with RAPD. The total variation of the first five principal components for RAPD, ISSR, SSR and combined analysis were estimated as 47.42, 48.21, 46.30 and 46.78 %, respectively. Among the molecular markers, highest Pearson correlation value (r = 0.957) was recorded with combination of RAPD and SSR followed by RAPD and ISSR (r = 0.952), and SSR and ISSR (r = 0.942). The combination of these markers would be similarly effective as single marker system i.e. RAPD, ISSR and SSR. Based on polymorphic information content (PIC = 0.619) and highest coefficient (r = 0.995), RAPD was found to be the most efficient marker system compared to ISSR and SSR. This study will assist in understanding the population biology of wilt causing phytopathogen, F. solani, and in assisting with integrated disease management measures.

  9. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.

  10. The Complete Chloroplast Genomes of Three Cardiocrinum (Liliaceae) Species: Comparative Genomic and Phylogenetic Analyses

    PubMed Central

    Lu, Rui-Sen; Li, Pan; Qiu, Ying-Xiong

    2017-01-01

    The genus Cardiocrinum (Endlicher) Lindley (Liliaceae) comprises three herbaceous perennial species that are distributed in East Asian temperate-deciduous forests. Although all three Cardiocrinum species have horticultural and medical uses, studies related to species identification and molecular phylogenetic analysis of this genus have not been reported. Here, we report the complete chloroplast (cp) sequences of each Cardiocrinum species using Illumina paired-end sequencing technology. The cp genomes of C. giganteum, C. cathayanum, and C. cordatum were found to be 152,653, 152,415, and 152,410 bp in length, respectively, including a pair of inverted repeat (IR) regions (26,364–26,500 bp) separated by a large single-copy (LSC) region (82,186–82,368 bp) and a small single-copy (SSC) region (17,309–17,344 bp). Each cp genome contained the same 112 unique genes consisting of 30 transfer RNA genes, 4 ribosomal RNA genes, and 78 protein-coding genes. Gene content, gene order, AT content, and IR/SC boundary structures were almost the same among the three Cardiocrinum cp genomes, yet their lengths varied due to contraction/expansion of the IR/SC borders. Simple sequence repeat (SSR) analysis further indicated the richest SSRs in these cp genomes to be A/T mononucleotides. A total of 45, 57, and 45 repeats were identified in C. giganteum, C. cathayanum, and C. cordatum, respectively. Six cpDNA markers (rps19, rpoC2-rpoC1, trnS-psbZ, trnM-atpE, psaC-ndhE, ycf15-ycf1) with the percentage of variable sites higher than 0.95% were identified. Phylogenomic analyses of the complete cp genomes and 74 protein-coding genes strongly supported the monophyly of Cardiocrinum and a sister relationship between C. cathayanum and C. cordatum. The availability of these cp genomes provides valuable genetic information for further population genetics and phylogeography studies on Cardiocrinum. PMID:28119727

  11. Comparative analysis of mt LSU rRNA secondary structures of Odonates: structural variability and phylogenetic signal.

    PubMed

    Misof, B; Fleck, G

    2003-12-01

    Secondary structures of the most conserved part of the mt 16S rRNA gene, domains IV and V, have been recently analysed in a comparative study. However, full secondary structures of the mt LSU rRNA molecule are published for only a few insect species. The present study presents full secondary structures of domains I, II, IV and V of Odonates and one representative of mayflies, Ephemera sp. The reconstructions are based on a comparative approach and minimal consensus structures derived from sequence alignments. The inferred structures exhibit remarkable similarities to the published Drosophila melanogaster model, which increases confidence in these structures. Structural variance within Odonates is homoplastic, and neighbour-joining trees based on tree edit distances do not correspond to any of the phylogenetically expected patterns. However, despite homoplastic quantitative structural variation, many similarities between Odonates and Ephemera sp. suggest promising character sets for higher order insect systematics that merit further investigations.

  12. Comparative innate immune interactions of human and bovine secretory IgA with pathogenic and non-pathogenic bacteria.

    PubMed

    Hodgkinson, Alison J; Cakebread, Julie; Callaghan, Megan; Harris, Paul; Brunt, Rachel; Anderson, Rachel C; Armstrong, Kelly M; Haigh, Brendan

    2017-03-01

    Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers.

  13. The evolution of body size, antennal size and host use in parasitoid wasps (Hymenoptera: Chalcidoidea): a phylogenetic comparative analysis.

    PubMed

    Symonds, Matthew R E; Elgar, Mark A

    2013-01-01

    Chalcidoid wasps represent one of the most speciose superfamilies of animals known, with ca. 23,000 species described of which many are parasitoids. They are extremely diverse in body size, morphology and, among the parasitoids, insect hosts. Parasitic chalcidoids utilise a range of behavioural adaptations to facilitate exploitation of their diverse insect hosts, but how host use might influence the evolution of body size and morphology is not known in this group. We used a phylogenetic comparative analysis of 126 chalcidoid species to examine whether body size and antennal size showed evolutionary correlations with aspects of host use, including host breadth (specificity), host identity (orders of insects parasitized) and number of plant associates. Both morphological features and identity of exploited host orders show strong phylogenetic signal, but host breadth does not. Larger body size in these wasps was weakly associated with few plant genera, and with more specialised host use, and chalcidoid wasps that parasitize coleopteran hosts tend to be larger. Intriguingly, chalcidoid wasps that parasitize hemipteran hosts are both smaller in size in the case of those parasitizing the suborder Sternorrhyncha and have relatively larger antennae, particularly in those that parasitize other hemipteran suborders. These results suggest there are adaptations in chalcidoid wasps that are specifically associated with host detection and exploitation.

  14. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis.

    PubMed

    Kushwaha, Hariom; Gupta, Shubhra; Singh, Vinay Kumar; Rastogi, Smita; Yadav, Dinesh

    2011-11-01

    The Dof (DNA binding with One Finger) family represents a classic zinc-finger transcription factors involved with multifarious roles exclusively in plants. There exists great diversity in terms of number of Dof genes observed in different crops. In current study, a total of 28 putative Dof genes have been predicted in silico from the recently available whole genome shotgun sequence of Sorghum bicolor (L.) Moench (with assigned accession numbers TPA:BK006983-BK007006 and TPA:BK007079-BK007082). The predicted SbDof genes are distributed on nine out of ten chromosomes of sorghum and most of these genes lack introns based on canonical intron/exon structure. Phylogenetic analysis of 28 SbDof proteins resulted in four subgroups constituting six clusters. The comparative phylogenetic analysis of these Dof proteins along with 30 rice and 36 Arabidopsis Dof proteins revealed six major groups similar to what has been observed earlier for rice and Arabidopsis. Motif analysis revealed the presence of conserved 50-52 amino acids Dof domain uniformly distributed across all the 28 Dof proteins of sorghum. The in silico cis-regulatory elements analysis of these SbDof genes suggested its diverse functions associated with light responsiveness, endosperm specific gene expression, hormone responsiveness, meristem specific expression and stress responsiveness.

  15. The Evolution of Body Size, Antennal Size and Host Use in Parasitoid Wasps (Hymenoptera: Chalcidoidea): A Phylogenetic Comparative Analysis

    PubMed Central

    Symonds, Matthew R. E.; Elgar, Mark A.

    2013-01-01

    Chalcidoid wasps represent one of the most speciose superfamilies of animals known, with ca. 23,000 species described of which many are parasitoids. They are extremely diverse in body size, morphology and, among the parasitoids, insect hosts. Parasitic chalcidoids utilise a range of behavioural adaptations to facilitate exploitation of their diverse insect hosts, but how host use might influence the evolution of body size and morphology is not known in this group. We used a phylogenetic comparative analysis of 126 chalcidoid species to examine whether body size and antennal size showed evolutionary correlations with aspects of host use, including host breadth (specificity), host identity (orders of insects parasitized) and number of plant associates. Both morphological features and identity of exploited host orders show strong phylogenetic signal, but host breadth does not. Larger body size in these wasps was weakly associated with few plant genera, and with more specialised host use, and chalcidoid wasps that parasitize coleopteran hosts tend to be larger. Intriguingly, chalcidoid wasps that parasitize hemipteran hosts are both smaller in size in the case of those parasitizing the suborder Sternorrhyncha and have relatively larger antennae, particularly in those that parasitize other hemipteran suborders. These results suggest there are adaptations in chalcidoid wasps that are specifically associated with host detection and exploitation. PMID:24205189

  16. The Comparative Method, Hypothesis Testing and Phylogenetic Analysis--An Introductory Laboratory.

    ERIC Educational Resources Information Center

    Singer, Fred; Hagen, Joel B.; Sheehy, Robert R.

    2001-01-01

    Presents a laboratory sequence that allows students to use traditional comparative methods, scientific methodology, and modern molecular data bases to test hypotheses of evolutionary relationships. (Contains 13 references.) (ASK)

  17. Comparative Genomics Reveals Insight into Virulence Strategies of Plant Pathogenic Oomycetes

    PubMed Central

    Adhikari, Bishwo N.; Hamilton, John P.; Zerillo, Marcelo M.; Tisserat, Ned; Lévesque, C. André; Buell, C. Robin

    2013-01-01

    The kingdom Stramenopile includes diatoms, brown algae, and oomycetes. Plant pathogenic oomycetes, including Phytophthora, Pythium and downy mildew species, cause devastating diseases on a wide range of host species and have a significant impact on agriculture. Here, we report comparative analyses on the genomes of thirteen straminipilous species, including eleven plant pathogenic oomycetes, to explore common features linked to their pathogenic lifestyle. We report the sequencing, assembly, and annotation of six Pythium genomes and comparison with other stramenopiles including photosynthetic diatoms, and other plant pathogenic oomycetes such as Phytophthora species, Hyaloperonospora arabidopsidis, and Pythium ultimum var. ultimum. Novel features of the oomycete genomes include an expansion of genes encoding secreted effectors and plant cell wall degrading enzymes in Phytophthora species and an over-representation of genes involved in proteolytic degradation and signal transduction in Pythium species. A complete lack of classical RxLR effectors was observed in the seven surveyed Pythium genomes along with an overall reduction of pathogenesis-related gene families in H. arabidopsidis. Comparative analyses revealed fewer genes encoding enzymes involved in carbohydrate metabolism in Pythium species and H. arabidopsidis as compared to Phytophthora species, suggesting variation in virulence mechanisms within plant pathogenic oomycete species. Shared features between the oomycetes and diatoms revealed common mechanisms of intracellular signaling and transportation. Our analyses demonstrate the value of comparative genome analyses for exploring the evolution of pathogenesis and survival mechanisms in the oomycetes. The comparative analyses of seven Pythium species with the closely related oomycetes, Phytophthora species and H. arabidopsidis, and distantly related diatoms provide insight into genes that underlie virulence. PMID:24124466

  18. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes.

    PubMed

    Adhikari, Bishwo N; Hamilton, John P; Zerillo, Marcelo M; Tisserat, Ned; Lévesque, C André; Buell, C Robin

    2013-01-01

    The kingdom Stramenopile includes diatoms, brown algae, and oomycetes. Plant pathogenic oomycetes, including Phytophthora, Pythium and downy mildew species, cause devastating diseases on a wide range of host species and have a significant impact on agriculture. Here, we report comparative analyses on the genomes of thirteen straminipilous species, including eleven plant pathogenic oomycetes, to explore common features linked to their pathogenic lifestyle. We report the sequencing, assembly, and annotation of six Pythium genomes and comparison with other stramenopiles including photosynthetic diatoms, and other plant pathogenic oomycetes such as Phytophthora species, Hyaloperonospora arabidopsidis, and Pythium ultimum var. ultimum. Novel features of the oomycete genomes include an expansion of genes encoding secreted effectors and plant cell wall degrading enzymes in Phytophthora species and an over-representation of genes involved in proteolytic degradation and signal transduction in Pythium species. A complete lack of classical RxLR effectors was observed in the seven surveyed Pythium genomes along with an overall reduction of pathogenesis-related gene families in H. arabidopsidis. Comparative analyses revealed fewer genes encoding enzymes involved in carbohydrate metabolism in Pythium species and H. arabidopsidis as compared to Phytophthora species, suggesting variation in virulence mechanisms within plant pathogenic oomycete species. Shared features between the oomycetes and diatoms revealed common mechanisms of intracellular signaling and transportation. Our analyses demonstrate the value of comparative genome analyses for exploring the evolution of pathogenesis and survival mechanisms in the oomycetes. The comparative analyses of seven Pythium species with the closely related oomycetes, Phytophthora species and H. arabidopsidis, and distantly related diatoms provide insight into genes that underlie virulence.

  19. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens.

    PubMed

    Klosterman, Steven J; Subbarao, Krishna V; Kang, Seogchan; Veronese, Paola; Gold, Scott E; Thomma, Bart P H J; Chen, Zehua; Henrissat, Bernard; Lee, Yong-Hwan; Park, Jongsun; Garcia-Pedrajas, Maria D; Barbara, Dez J; Anchieta, Amy; de Jonge, Ronnie; Santhanam, Parthasarathy; Maruthachalam, Karunakaran; Atallah, Zahi; Amyotte, Stefan G; Paz, Zahi; Inderbitzin, Patrik; Hayes, Ryan J; Heiman, David I; Young, Sarah; Zeng, Qiandong; Engels, Reinhard; Galagan, James; Cuomo, Christina A; Dobinson, Katherine F; Ma, Li-Jun

    2011-07-01

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and

  20. Coalescent species delimitation in milksnakes (genus Lampropeltis) and impacts on phylogenetic comparative analyses.

    PubMed

    Ruane, Sara; Bryson, Robert W; Pyron, R Alexander; Burbrink, Frank T

    2014-03-01

    Both gene-tree discordance and unrecognized diversity are sources of error for accurate estimation of species trees, and can affect downstream diversification analyses by obscuring the correct number of nodes, their density, and the lengths of the branches subtending them. Although the theoretical impact of gene-tree discordance on evolutionary analyses has been examined previously, the effect of unsampled and cryptic diversity has not. Here, we examine how delimitation of previously unrecognized diversity in the milksnake (Lampropeltis triangulum) and use of a species-tree approach affects both estimation of the Lampropeltis phylogeny and comparative analyses with respect to the timing of diversification. Coalescent species delimitation indicates that L. triangulum is not monophyletic and that there are multiple species of milksnake, which increases the known species diversity in the genus Lampropeltis by 40%. Both genealogical and temporal discordance occurs between gene trees and the species tree, with evidence that mitochondrial DNA (mtDNA) introgression is a main factor. This discordance is further manifested in the preferred models of diversification, where the concatenated gene tree strongly supports an early burst of speciation during the Miocene, in contrast to species-tree estimates where diversification follows a birth-death model and speciation occurs mostly in the Pliocene and Pleistocene. This study highlights the crucial interaction among coalescent-based phylogeography and species delimitation, systematics, and species diversification analyses.

  1. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – A wild ancestor of cultivated buckwheat

    PubMed Central

    Logacheva, Maria D; Samigullin, Tahir H; Dhingra, Amit; Penin, Aleksey A

    2008-01-01

    Background Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. Results We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae) to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. Conclusion Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic analysis of the dataset

  2. Candidatus Sodalis melophagi sp. nov.: Phylogenetically Independent Comparative Model to the Tsetse Fly Symbiont Sodalis glossinidius

    PubMed Central

    Chrudimský, Tomáš; Husník, Filip; Nováková, Eva; Hypša, Václav

    2012-01-01

    Bacteria of the genus Sodalis live in symbiosis with various groups of insects. The best known member of this group, a secondary symbiont of tsetse flies Sodalis glossinidius, has become one of the most important models in investigating establishment and evolution of insect-bacteria symbiosis. It represents a bacterium in the early/intermediate state of the transition towards symbiosis, which allows for exploring such interesting topics as: usage of secretory systems for entering the host cell, tempo of the genome modification, and metabolic interaction with a coexisting primary symbiont. In this study, we describe a new Sodalis species which could provide a useful comparative model to the tsetse symbiont. It lives in association with Melophagus ovinus, an insect related to tsetse flies, and resembles S. glossinidius in several important traits. Similar to S. glossinidius, it cohabits the host with another symbiotic bacterium, the bacteriome-harbored primary symbiont of the genus Arsenophonus. As a typical secondary symbiont, Candidatus Sodalis melophagi infects various host tissues, including bacteriome. We provide basic morphological and molecular characteristics of the symbiont and show that these traits also correspond to the early/intermediate state of the evolution towards symbiosis. Particularly, we demonstrate the ability of the bacterium to live in insect cell culture as well as in cell-free medium. We also provide basic characteristics of type three secretion system and using three reference sequences (16 S rDNA, groEL and spaPQR region) we show that the bacterium branched within the genus Sodalis, but originated independently of the two previously described symbionts of hippoboscoids. We propose the name Candidatus Sodalis melophagi for this new bacterium. PMID:22815743

  3. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics?

    PubMed

    Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo

    2014-01-01

    In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  4. LAMP Detection Assays for Boxwood Blight Pathogens: A Comparative Genomics Approach

    PubMed Central

    Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel; Marra, Robert E.; Crouch, Jo Anne

    2016-01-01

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well as three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. This comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens. PMID:27199028

  5. LAMP detection assays for boxwood blight pathogens: A comparative genomics approach

    SciTech Connect

    Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel; Marra, Robert E.; Crouch, Jo Anne

    2016-05-20

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well as three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. In conclusion, this comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.

  6. LAMP detection assays for boxwood blight pathogens: A comparative genomics approach

    DOE PAGES

    Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel; ...

    2016-05-20

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well asmore » three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. In conclusion, this comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.« less

  7. Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8.

    PubMed

    Hane, James K; Anderson, Jonathan P; Williams, Angela H; Sperschneider, Jana; Singh, Karam B

    2014-05-01

    Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level "hypermutation" of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R

  8. Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8

    PubMed Central

    Hane, James K.; Anderson, Jonathan P.; Williams, Angela H.; Sperschneider, Jana; Singh, Karam B.

    2014-01-01

    Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level “hypermutation” of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the

  9. Comparative Genomics of a Plant-Pathogenic Fungus, Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence

    PubMed Central

    Manning, Viola A.; Pandelova, Iovanna; Dhillon, Braham; Wilhelm, Larry J.; Goodwin, Stephen B.; Berlin, Aaron M.; Figueroa, Melania; Freitag, Michael; Hane, James K.; Henrissat, Bernard; Holman, Wade H.; Kodira, Chinnappa D.; Martin, Joel; Oliver, Richard P.; Robbertse, Barbara; Schackwitz, Wendy; Schwartz, David C.; Spatafora, Joseph W.; Turgeon, B. Gillian; Yandava, Chandri; Young, Sarah; Zhou, Shiguo; Zeng, Qiandong; Grigoriev, Igor V.; Ma, Li-Jun; Ciuffetti, Lynda M.

    2013-01-01

    Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes. PMID:23316438

  10. Comparative Genomics of a Plant-Pathogenic Fungus, Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence

    SciTech Connect

    Manning, Viola A.; Pandelova, Iovanna; Dhillon, Braham; Wilhelm, Larry J.; Goodwin, Stephen B.; Berlin, Aaron M.; Figueroa, Melania; Freitag, Michael; Hane, James K.; Henrissat, Bernard; Holman, Wade H.; Kodira, Chinnappa D.; Martin, Joel; Oliver, Richard P.; Robbertse, Barbara; Schackwitz, Wendy; Schwartz, David C.; Spatafora, Joseph W.; Turgeon, B. Gillian; Yandava, Chandri; Young, Sarah; Zhou, Shiguo; Zeng, Qiandong; Grigoriev, Igor V.; Ma, Li-Jun; Ciuffetti, Lynda M.

    2012-08-16

    Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.

  11. The evolution of reproductive diversity in Afrobatrachia: A phylogenetic comparative analysis of an extensive radiation of African frogs.

    PubMed

    Portik, Daniel M; Blackburn, David C

    2016-09-01

    The reproductive modes of anurans (frogs and toads) are the most diverse of terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades. Terrestrialized anuran breeding strategies have evolved repeatedly from the plesiomorphic fully aquatic reproductive mode, a process thought to occur through intermediate reproductive stages. Several selective forces have been proposed for the evolution of terrestrialized reproductive traits, but factors such as water systems and co-evolution with ecomorphologies have not been investigated. We examined these topics in a comparative phylogenetic framework using Afrobatrachian frogs, an ecologically and reproductively diverse clade representing more than half of the total frog diversity found in Africa (∼400 species). We infer direct development has evolved twice independently from terrestrialized reproductive modes involving subterranean or terrestrial oviposition, supporting evolution through intermediate stages. We also detect associations between specific ecomorphologies and oviposition sites, and demonstrate arboreal species exhibit an overall shift toward using lentic water systems for breeding. These results indicate that changes in microhabitat use associated with ecomorphology, which allow access to novel sites for reproductive behavior, oviposition, or larval development, may also promote reproductive mode diversity in anurans.

  12. Comparative analysis of the complete mitochondrial genomes of three geographical topmouth culter (Culter alburnus) groups and implications for their phylogenetics.

    PubMed

    Shi, Jianwu; Wang, Dexia; Wang, Junhua; Sheng, Junqing; Peng, Kou; Hu, Beijuan; Zeng, Liugen; Xiao, Minghe; Hong, Yijiang

    2017-03-01

    Topmouth culter (C. alburnus) is an important commercial fish in China. We compared the nucleotide variations in the mtDNA genomes among three geographical groups of Culter alburnus: Liangzi Lake, Hubei Province (referred to as LZH); Taihu Lake, Jiangsu Province (TH); and Poyang Lake, Jiangxi Province (PYH). The similarity of whole mtDNA genomes ranged from 0.992 to 0.999. The similarity among 13 protein-coding genes, 2 rRNA genes, and the D-loop sequences was found to range from 0.982 to 0.996. This is useful data for future designing work for making specific molecular marker for distinguishing individuals of C. alburnus from the three geographical groups. An extended termination-associated sequence (ETAS) and several conserved blocks (CSB-F, CSB-E, CSB-D, CSB1, CSB2, and CSB3) were identified in the mtDNA control regions. A phylogenetic analysis shows a monophyletic relationship of the LZF-female and the LZF-male. However, the analysis also showed paraphyletic relationships for the other two geological groups. This result will be useful for the future breeding work of C. alburnus.

  13. Comparative Mitochondrial Genome Analysis of Eligma narcissus and other Lepidopteran Insects Reveals Conserved Mitochondrial Genome Organization and Phylogenetic Relationships

    PubMed Central

    Dai, Li-Shang; Zhu, Bao-Jian; Zhao, Yue; Zhang, Cong-Fen; Liu, Chao-Liang

    2016-01-01

    In this study, we sequenced the complete mitochondrial genome of Eligma narcissus and compared it with 18 other lepidopteran species. The mitochondrial genome (mitogenome) was a circular molecule of 15,376 bp containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and an adenine (A) + thymine (T) − rich region. The positive AT skew (0.007) indicated the occurrence of more As than Ts. The arrangement of 13 PCGs was similar to that of other sequenced lepidopterans. All PCGs were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which was initiated by the CGA sequence, as observed in other lepidopterans. The results of the codon usage analysis indicated that Asn, Ile, Leu, Tyr and Phe were the five most frequent amino acids. All tRNA genes were shown to be folded into the expected typical cloverleaf structure observed for mitochondrial tRNA genes. Phylogenetic relationships were analyzed based on the nucleotide sequences of 13 PCGs from other insect mitogenomes, which confirmed that E. narcissus is a member of the Noctuidae superfamily. PMID:27222440

  14. The evolution of reproductive diversity in Afrobatrachia: A phylogenetic comparative analysis of an extensive radiation of African frogs

    PubMed Central

    Portik, Daniel M.; Blackburn, David C.

    2016-01-01

    The reproductive modes of anurans (frogs and toads) are the most diverse of terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades. Terrestrialized anuran breeding strategies have evolved repeatedly from the plesiomorphic fully aquatic reproductive mode, a process thought to occur through intermediate reproductive stages. Several selective forces have been proposed for the evolution of terrestrialized reproductive traits, but factors such as water systems and co‐evolution with ecomorphologies have not been investigated. We examined these topics in a comparative phylogenetic framework using Afrobatrachian frogs, an ecologically and reproductively diverse clade representing more than half of the total frog diversity found in Africa (∼400 species). We infer direct development has evolved twice independently from terrestrialized reproductive modes involving subterranean or terrestrial oviposition, supporting evolution through intermediate stages. We also detect associations between specific ecomorphologies and oviposition sites, and demonstrate arboreal species exhibit an overall shift toward using lentic water systems for breeding. These results indicate that changes in microhabitat use associated with ecomorphology, which allow access to novel sites for reproductive behavior, oviposition, or larval development, may also promote reproductive mode diversity in anurans. PMID:27402182

  15. Comparative Transcriptome Analysis between the Fungal Plant Pathogens Sclerotinia sclerotiorum and S. trifoliorum Using RNA Sequencing.

    PubMed

    Qiu, Dan; Xu, Liangsheng; Vandemark, George; Chen, Weidong

    2016-03-01

    The fungal plant pathogens Sclerotinia sclerotiorum and S. trifoliorum are morphologically similar, but differ considerably in host range. In an effort to elucidate mechanisms of the host range difference, transcriptomes of the 2 species at vegetative growth stage were compared to gain further insight into commonality and uniqueness in gene expression and pathogenic mechanisms of the 2 closely related pathogens. A total of 23133 and 21043 unique transcripts were obtained from S. sclerotiorum and S. trifoliorum, respectively. Approximately 43% of the transcripts were genes with known functions for both species. Among 1411 orthologous contigs, about 10% (147) were more highly (>3-fold) expressed in S. trifoliorum than in S. sclerotiorum, and about 12% (173) of the orthologs were more highly (>3-fold) expressed in S. sclerotiorum than in S. trifoliorum. The expression levels of genes on the supercontig 30 have the highest correlation coefficient value between the 2 species. Twenty-seven contigs were found to be new and unique for S. trifoliorum. Additionally, differences in expressed genes involved in pathogenesis like oxalate biosynthesis and endopolygalacturonases were detected between the 2 species. The analyses of the transcriptomes not only discovered similarities and uniqueness in gene expression between the 2 closely related species, providing additional information for annotation the S. sclerotiorum genome, but also provided foundation for comparing the transcriptomes with host-infecting transcriptomes.

  16. Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes.

    PubMed

    Dunning Hotopp, Julie C; Grifantini, Renata; Kumar, Nikhil; Tzeng, Yih Ling; Fouts, Derrick; Frigimelica, Elisabetta; Draghi, Monia; Giuliani, Marzia Monica; Rappuoli, Rino; Stephens, David S; Grandi, Guido; Tettelin, Hervé

    2006-12-01

    To better understand Neisseria meningitidis genomes and virulence, microarray comparative genome hybridization (mCGH) data were collected from one Neisseria cinerea, two Neisseria lactamica, two Neisseria gonorrhoeae and 48 Neisseria meningitidis isolates. For N. meningitidis, these isolates are from diverse clonal complexes, invasive and carriage strains, and all major serogroups. The microarray platform represented N. meningitidis strains MC58, Z2491 and FAM18, and N. gonorrhoeae FA1090. By comparing hybridization data to genome sequences, the core N. meningitidis genome and insertions/deletions (e.g. capsule locus, type I secretion system) related to pathogenicity were identified, including further characterization of the capsule locus, bioinformatics analysis of a type I secretion system, and identification of some metabolic pathways associated with intracellular survival in pathogens. Hybridization data clustered meningococcal isolates from similar clonal complexes that were distinguished by the differential presence of six distinct islands of horizontal transfer. Several of these islands contained prophage or other mobile elements, including a novel prophage and a transposon carrying portions of a type I secretion system. Acquisition of some genetic islands appears to have occurred in multiple lineages, including transfer between N. lactamica and N. meningitidis. However, island acquisition occurs infrequently, such that the genomic-level relationship is not obscured within clonal complexes. The N. meningitidis genome is characterized by the horizontal acquisition of multiple genetic islands; the study of these islands reveals important sets of genes varying between isolates and likely to be related to pathogenicity.

  17. Comparative genotypic and pathogenic examination of Campylobacter concisus isolates from diarrheic and non-diarrheic humans

    PubMed Central

    2011-01-01

    Background Campylobacter concisus is an emerging enteric pathogen, yet it is commonly isolated from feces and the oral cavities of healthy individuals. This genetically complex species is comprised of several distinct genomospecies which may vary in pathogenic potential. Results We compared pathogenic and genotypic properties of C. concisus fecal isolates from diarrheic and healthy humans residing in the same geographic region. Analysis of amplified fragment length polymorphism (AFLP) profiles delineated two main clusters. Isolates assigned to AFLP cluster 1 belonged to genomospecies A (based on genomospecies-specific differences in the 23S rRNA gene) and were predominantly isolated from healthy individuals. This cluster also contained a reference oral strain. Isolates assigned to this cluster induced greater expression of epithelial IL-8 mRNA and more frequently contained genes coding for the zonnula occludins toxin and the S-layer RTX. Furthermore, isolates from healthy individuals induced greater apoptotic DNA fragmentation and increased metabolic activity than those from diarrheic individuals, and isolates assigned to genomospecies A (of which the majority were from healthy individuals) exhibited higher haemolytic activity compared to genomospecies B isolates. In contrast, AFLP cluster 2 was predominated by isolates belonging to genomospecies B and those from diarrheic individuals. Isolates from this cluster displayed greater mean epithelial invasion and translocation than cluster 1 isolates. Conclusion Two main genetically distinct clusters (i.e., genomospecies) were identified among C. concisus fecal isolates from healthy and diarrheic individuals. Strains within these clusters differed with respect to clinical presentation and pathogenic properties, supporting the hypothesis that pathogenic potential varies between genomospecies. ALFP cluster 2 isolates were predominantly from diarrheic patients, and exhibited higher levels of epithelial invasion and

  18. A unique DNA repair and recombination gene (recN) sequence for identification and intraspecific molecular typing of bacterial wilt pathogen Ralstonia solanacearum and its comparative analysis with ribosomal DNA sequences.

    PubMed

    Kumar, Aundy; Prameela, Thekkan Puthiyaveedu; Suseelabhai, Rajamma

    2013-06-01

    Ribosomal gene sequences are a popular choice for identification of bacterial species and, often, for making phylogenetic interpretations. Although very popular, the sequences of 16S rDNA and 16-23S intergenic sequences often fail to differentiate closely related species of bacteria. The availability of complete genome sequences of bacteria, in the recent years, has accelerated the search for new genome targets for phylogenetic interpretations. The recently published full genome data of nine strains of R. solanacearum, which causes bacterial wilt of crop plants, has provided enormous genomic choices for phylogenetic analysis in this globally important plant pathogen. We have compared a gene candidate recN, which codes for DNA repair and recombination function, with 16S rDNA/16-23S intergenic ribosomal gene sequences for identification and intraspecific phylogenetic interpretations in R. solanacearum. recN gene sequence analysis of R. solanacearum revealed subgroups within phylotypes (or newly proposed species within plant pathogenic genus, Ralstonia), indicating its usefulness for intraspecific genotyping. The taxonomic discriminatory power of recN gene sequence was found to be superior to ribosomal DNA sequences. In all, the recN-sequence-based phylogenetic tree generated with the Bayesian model depicted 21 haplotypes against 15 and 13 haplotypes obtained with 16S rDNA and 16-23S rDNA intergenic sequences, respectively. Besides this, we have observed high percentage of polymorphic sites (S 23.04%), high rate of mutations (Eta 276) and high codon bias index (CBI 0.60), which makes the recN an ideal gene candidate for intraspecific molecular typing of this important plant pathogen.

  19. Comparative proteomic analysis of extracellular secreted proteins expressed by two pathogenic Acanthamoeba castellanii clinical isolates and a non-pathogenic ATCC strain.

    PubMed

    Huang, Jian-Ming; Lin, Wei-Chen; Li, Sung-Chou; Shih, Min-Hsiu; Chan, Wen-Ching; Shin, Jyh-Wei; Huang, Fu-Chin

    2016-07-01

    Acanthamoeba keratitis (AK) is a serious ocular disease caused by pathogenic Acanthamoeba gaining entry through wounds in the corneal injury; generally, patients at risk for contracting AK wear contact lenses, usually over a long period of time. Moreover, pathogenic Acanthamoeba causes serious consequences: it makes the cornea turbid and difficult to operate on, including procedures such as enucleation of the eyeball. At present, diagnosis of this disease is not straightforward, and treatment is very demanding. We have established the comparative transcriptome and extracellular secreted proteomic database according to the non-pathogenic strain ATCC 30010 and the pathogenic strains NCKU_B and NCKU_D. We identified 44 secreted proteins successfully, 10 consensus secreted proteins and 34 strain-specific secreted proteins. These proteins may provide targets for therapy and immuno-diagnosis of Acanthamoeba infections. This study shows a suitable approach to identify secreted proteins in Acanthamoeba and provides new perspectives for the study of molecules potentially involved in the AK.

  20. Comparative Genomic Analysis of Malaria Mosquito Vector-Associated Novel Pathogen Elizabethkingia anophelis

    PubMed Central

    Teo, Jeanette; Tan, Sean Yang-Yi; Liu, Yang; Tay, Martin; Ding, Yichen; Li, Yingying; Kjelleberg, Staffan; Givskov, Michael; Lin, Raymond T.P.; Yang, Liang

    2014-01-01

    Acquisition of Elizabethkingia infections in intensive care units (ICUs) has risen in the past decade. Treatment of Elizabethkingia infections is challenging due to the lack of effective therapeutic regimens, leading to a high mortality rate. Elizabethkingia infections have long been attributed to Elizabethkingia meningoseptica. Recently, we used whole-genome sequencing to reveal that E. anophelis is the pathogenic agent for an Elizabethkingia outbreak at two ICUs. We performed comparative genomic analysis of seven hospital-isolated E. anophelis strains with five available Elizabethkingia spp. genomes deposited in the National Center for Biotechnology Information Database. A pan-genomic approach was applied to identify the core- and pan-genome for the Elizabethkingia genus. We showed that unlike the hospital-isolated pathogen E. meningoseptica ATCC 12535 strain, the hospital-isolated E. anophelis strains have genome content and organization similar to the E. anophelis Ag1 and R26 strains isolated from the midgut microbiota of the malaria mosquito vector Anopheles gambiae. Both the core- and accessory genomes of Elizabethkingia spp. possess genes conferring antibiotic resistance and virulence. Our study highlights that E. anophelis is an emerging bacterial pathogen for hospital environments. PMID:24803570

  1. Comparative genomic analysis of malaria mosquito vector-associated novel pathogen Elizabethkingia anophelis.

    PubMed

    Teo, Jeanette; Tan, Sean Yang-Yi; Liu, Yang; Tay, Martin; Ding, Yichen; Li, Yingying; Kjelleberg, Staffan; Givskov, Michael; Lin, Raymond T P; Yang, Liang

    2014-05-06

    Acquisition of Elizabethkingia infections in intensive care units (ICUs) has risen in the past decade. Treatment of Elizabethkingia infections is challenging due to the lack of effective therapeutic regimens, leading to a high mortality rate. Elizabethkingia infections have long been attributed to Elizabethkingia meningoseptica. Recently, we used whole-genome sequencing to reveal that E. anophelis is the pathogenic agent for an Elizabethkingia outbreak at two ICUs. We performed comparative genomic analysis of seven hospital-isolated E. anophelis strains with five available Elizabethkingia spp. genomes deposited in the National Center for Biotechnology Information Database. A pan-genomic approach was applied to identify the core- and pan-genome for the Elizabethkingia genus. We showed that unlike the hospital-isolated pathogen E. meningoseptica ATCC 12535 strain, the hospital-isolated E. anophelis strains have genome content and organization similar to the E. anophelis Ag1 and R26 strains isolated from the midgut microbiota of the malaria mosquito vector Anopheles gambiae. Both the core- and accessory genomes of Elizabethkingia spp. possess genes conferring antibiotic resistance and virulence. Our study highlights that E. anophelis is an emerging bacterial pathogen for hospital environments.

  2. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink.

    PubMed Central

    Hadlow, W J; Race, R E; Kennedy, R C

    1983-01-01

    Information was sought on the comparative pathogenicity of four North American strains (isolates) of Aleutian disease virus for royal pastel (a non-Aleutian genotype) and sapphire (an Aleutian genotype) mink. The four strains (Utah-1, Ontario [Canada], Montana, and Pullman [Washington]), all of mink origin, were inoculated intraperitoneally and intranasally in serial 10-fold dilutions. As indicated by the appearance of specific antibody (counterimmunoelectrophoresis test), all strains readily infected both color phases of mink, and all strains were equally pathogenic for sapphire mink. Not all strains, however, regularly caused Aleutian disease in pastel mink. Infection of pastel mink with the Utah-1 strain invariably led to fatal disease. Infection with the Ontario strain caused fatal disease nearly as often. The Pullman strain, by contrast, almost never caused disease in infected pastel mink. The pathogenicity of the Montana strain for this color phase was between these extremes. These findings emphasize the need to distinguish between infection and disease when mink are exposed to Aleutian disease virus. The distinction has important implications for understanding the natural history of Aleutian disease virus infection in ranch mink. PMID:6193063

  3. Comparative Analysis of Protein Glycosylation Pathways in Humans and the Fungal Pathogen Candida albicans

    PubMed Central

    Martínez-Duncker, Iván; Díaz-Jímenez, Diana F.; Mora-Montes, Héctor M.

    2014-01-01

    Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans: N-linked glycosylation, O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets for C. albicans infection. PMID:25104959

  4. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation

    PubMed Central

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  5. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation.

    PubMed

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  6. The Complete Chloroplast Genome Sequence of Ampelopsis: Gene Organization, Comparative Analysis, and Phylogenetic Relationships to Other Angiosperms

    PubMed Central

    Raman, Gurusamy; Park, SeonJoo

    2016-01-01

    Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of this study will

  7. Characterization of the Xanthomonas translucens Complex Using Draft Genomes, Comparative Genomics, Phylogenetic Analysis, and Diagnostic LAMP Assays.

    PubMed

    Langlois, Paul A; Snelling, Jacob; Hamilton, John P; Bragard, Claude; Koebnik, Ralf; Verdier, Valérie; Triplett, Lindsay R; Blom, Jochen; Tisserat, Ned A; Leach, Jan E

    2017-03-21

    Prevalence of Xanthomonas translucens, which causes cereal leaf streak (CLS) in cereal crops and bacterial wilt in forage and turfgrass species, has increased in many regions in recent years. Because the pathogen is seedborne in economically important cereals, it is a concern for international and interstate germplasm exchange and, thus, reliable and robust protocols for its detection in seed are needed. However, historical confusion surrounding the taxonomy within the species has complicated the development of accurate and reliable diagnostic tools for X. translucens. Therefore, we sequenced genomes of 15 X. translucens strains representing six different pathovars and compared them with additional publicly available X. translucens genome sequences to obtain a genome-based phylogeny for robust classification of this species. Our results reveal three main clusters: one consisting of pv. cerealis, one consisting of pvs. undulosa and translucens, and a third consisting of pvs. arrhenatheri, graminis, phlei, and poae. Based on genomic differences, diagnostic loop-mediated isothermal amplification (LAMP) primers were developed that clearly distinguish strains that cause disease on cereals, such as pvs. undulosa, translucens, hordei, and secalis, from strains that cause disease on noncereal hosts, such as pvs. arrhenatheri, cerealis, graminis, phlei, and poae. Additional LAMP assays were developed that selectively amplify strains belonging to pvs. cerealis and poae, distinguishing them from other pathovars. These primers will be instrumental in diagnostics when implementing quarantine regulations to limit further geographic spread of X. translucens pathovars.

  8. Phylogenetic Analyses of Shigella and Enteroinvasive Escherichia coli for the Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation.

    PubMed

    Pettengill, Emily A; Pettengill, James B; Binet, Rachel

    2015-01-01

    As a leading cause of bacterial dysentery, Shigella represents a significant threat to public health and food safety. Related, but often overlooked, enteroinvasive Escherichia coli (EIEC) can also cause dysentery. Current typing methods have limited ability to identify and differentiate between these pathogens despite the need for rapid and accurate identification of pathogens for clinical treatment and outbreak response. We present a comprehensive phylogeny of Shigella and EIEC using whole genome sequencing of 169 samples, constituting unparalleled strain diversity, and observe a lack of monophyly between Shigella and EIEC and among Shigella taxonomic groups. The evolutionary relationships in the phylogeny are supported by analyses of population structure and hierarchical clustering patterns of translated gene homolog abundance. Lastly, we identified a panel of 404 single nucleotide polymorphism (SNP) markers specific to each phylogenetic cluster for more accurate identification of Shigella and EIEC. Our findings show that Shigella and EIEC are not distinct evolutionary groups within the E. coli genus and, thus, EIEC as a group is not the ancestor to Shigella. The multiple analyses presented provide evidence for reconsidering the taxonomic placement of Shigella. The SNP markers offer more discriminatory power to molecular epidemiological typing methods involving these bacterial pathogens.

  9. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea.

    PubMed

    Trantas, Emmanouil A; Licciardello, Grazia; Almeida, Nalvo F; Witek, Kamil; Strano, Cinzia P; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E; Jones, Jonathan D G; Guttman, David S; Catara, Vittoria; Sarris, Panagiotis F

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes.

  10. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    PubMed Central

    Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874

  11. Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen Edwardsiella ictaluri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The bacterial pathogen Edwardsiella ictaluri is a primary cause of mortality in channel catfish raised commercially in aquaculture farms. Additional treatment and diagnostic regimes are needed for this enteric pathogen, motivating the discovery and characterization of bacteriophages spe...

  12. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives

    PubMed Central

    Sharpton, Thomas J.; Stajich, Jason E.; Rounsley, Steven D.; Gardner, Malcolm J.; Wortman, Jennifer R.; Jordar, Vinita S.; Maiti, Rama; Kodira, Chinnappa D.; Neafsey, Daniel E.; Zeng, Qiandong; Hung, Chiung-Yu; McMahan, Cody; Muszewska, Anna; Grynberg, Marcin; Mandel, M. Alejandra; Kellner, Ellen M.; Barker, Bridget M.; Galgiani, John N.; Orbach, Marc J.; Kirkland, Theo N.; Cole, Garry T.; Henn, Matthew R.; Birren, Bruce W.; Taylor, John W.

    2009-01-01

    While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans. Infection results from environmental exposure to Coccidiodies, which is believed to grow as a soil saprophyte in arid deserts. To investigate hypotheses about the life history and evolution of Coccidioides, the genomes of several Onygenales, including C. immitis and C. posadasii; a close, nonpathogenic relative, Uncinocarpus reesii; and a more diverged pathogenic fungus, Histoplasma capsulatum, were sequenced and compared with those of 13 more distantly related Ascomycetes. This analysis identified increases and decreases in gene family size associated with a host/substrate shift from plants to animals in the Onygenales. In addition, comparison among Onygenales genomes revealed evolutionary changes in Coccidioides that may underlie its infectious phenotype, the identification of which may facilitate improved treatment and prevention of coccidioidomycosis. Overall, the results suggest that Coccidioides species are not soil saprophytes, but that they have evolved to remain associated with their dead animal hosts in soil, and that Coccidioides metabolism genes, membrane-related proteins, and putatively antigenic compounds have evolved in response to interaction with an animal host. PMID:19717792

  13. Comparative hybridization reveals extensive genome variation in the AIDS-associated pathogen Cryptococcus neoformans

    PubMed Central

    Hu, Guanggan; Liu, Iris; Sham, Anita; Stajich, Jason E; Dietrich, Fred S; Kronstad, James W

    2008-01-01

    Background Genome variability can have a profound influence on the virulence of pathogenic microbes. The availability of genome sequences for two strains of the AIDS-associated fungal pathogen Cryptococcus neoformans presented an opportunity to use comparative genome hybridization (CGH) to examine genome variability between strains of different mating type, molecular subtype, and ploidy. Results Initially, CGH was used to compare the approximately 100 kilobase MATa and MATα mating-type regions in serotype A and D strains to establish the relationship between the Log2 ratios of hybridization signals and sequence identity. Subsequently, we compared the genomes of the environmental isolate NIH433 (MATa) and the clinical isolate NIH12 (MATα) with a tiling array of the genome of the laboratory strain JEC21 derived from these strains. In this case, CGH identified putative recombination sites and the origins of specific segments of the JEC21 genome. Similarly, CGH analysis revealed marked variability in the genomes of strains representing the VNI, VNII, and VNB molecular subtypes of the A serotype, including disomy for chromosome 13 in two strains. Additionally, CGH identified differences in chromosome content between three strains with the hybrid AD serotype and revealed that chromosome 1 from the serotype A genome is preferentially retained in all three strains. Conclusion The genomes of serotypes A, D, and AD strains exhibit extensive variation that spans the range from small differences (such as regions of divergence, deletion, or amplification) to the unexpected disomy for chromosome 13 in haploid strains and preferential retention of specific chromosomes in naturally occurring diploids. PMID:18294377

  14. Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences

    NASA Technical Reports Server (NTRS)

    Villanueva, E.; Delihas, N.; Luehrsen, K. R.; Fox, G. E.; Gibson, J.

    1985-01-01

    The complete nucleotide sequences of 5S ribosomal RNAs from Rhodocyclus gelatinosa, Rhodobacter sphaeroides, and Pseudomonas cepacia were determined. Comparisons of these 5S RNA sequences show that rather than being phylogenetically related to one another, the two photosynthetic bacterial 5S RNAs share more sequence and signature homology with the RNAs of two nonphotosynthetic strains. Rhodobacter sphaeroides is specifically related to Paracoccus denitrificans and Rc. gelatinosa is related to Ps. cepacia. These results support earlier 16S ribosomal RNA studies and add two important groups to the 5S RNA data base. Unique 5S RNA structural features previously found in P. denitrificans are present also in the 5S RNA of Rb. sphaeroides; these provide the basis for subdivisional signatures. The immediate consequence of obtaining these new sequences is that it is possible to clarify the phylogenetic origins of the plant mitochondrion. In particular, a close phylogenetic relationship is found between the plant mitochondria and members of the alpha subdivision of the purple photosynthetic bacteria, namely, Rb. sphaeroides, P. denitrificans, and Rhodospirillum rubrum.

  15. Comparative analysis of DNA polymorphisms and phylogenetic relationships among Syzygium cumini Skeels based on phenotypic characters and RAPD technique.

    PubMed

    Singh, Jitendra P; Singh, Ak; Bajpai, Anju; Ahmad, Iffat Zareen

    2014-01-01

    The Indian black berry (Syzygium cumini Skeels) has a great nutraceutical and medicinal properties. As in other fruit crops, the fruit characteristics are important attributes for differentiation were also determined for different accessions of S. cumini. The fruit weight, length, breadth, length: breadth ratio, pulp weight, pulp content, seed weight and pulp: seed ratio significantly varied in different accessions. Molecular characterization was carried out using PCR based RAPD technique. Out of 80 RAPD primers, only 18 primers produced stable polymorphisms that were used to examine the phylogenetic relationship. A sum of 207 loci were generated out of which 201 loci found polymorphic. The average genetic dissimilarity was 97 per cent among jamun accessions. The phylogenetic relationship was also determined by principal coordinates analysis (PCoA) that explained 46.95 per cent cumulative variance. The two-dimensional PCoA analysis showed grouping of the different accessions that were plotted into four sub-plots, representing clustering of accessions. The UPGMA (r = 0.967) and NJ (r = 0.987) dendrogram constructed based on the dissimilarity matrix revealed a good degree of fit with the cophenetic correlation value. The dendrogram grouped the accessions into three main clusters according to their eco-geographical regions which given useful insight into their phylogenetic relationships.

  16. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans.

    PubMed

    Holland, Linda M; Schröder, Markus S; Turner, Siobhán A; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G; Butler, Geraldine

    2014-09-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis.

  17. Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans

    PubMed Central

    Holland, Linda M.; Schröder, Markus S.; Turner, Siobhán A.; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G.; Butler, Geraldine

    2014-01-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. PMID:25233198

  18. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  19. Comparative chloroplast genomes of photosynthetic orchids: insights into evolution of the Orchidaceae and development of molecular markers for phylogenetic applications.

    PubMed

    Luo, Jing; Hou, Bei-Wei; Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu

    2014-01-01

    The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family.

  20. Comparative Chloroplast Genomes of Photosynthetic Orchids: Insights into Evolution of the Orchidaceae and Development of Molecular Markers for Phylogenetic Applications

    PubMed Central

    Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu

    2014-01-01

    The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family. PMID:24911363

  1. Comparative Genomics and Phylogenetic Analyses of Newly Cloned Genomic Regions From the Citrus Huanglongbing (HLB)-associated Bacterium Candidatus Liberibacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB), or citrus greening disease, caused by Candidatus Liberibacter species, is a serious threat to citrus production worldwide. The pathogen is a gram negative, unculturable, phloem-limited bacterium, with little known genomic information. Here, we report cloning and characterizatio...

  2. Comparative genomics of Clavibacter michiganensis subspecies, pathogens of important agricultural crops

    PubMed Central

    2017-01-01

    Subspecies of Clavibacter michiganensis are important phytobacterial pathogens causing devastating diseases in several agricultural crops. The genome organizations of these pathogens are poorly understood. Here, the complete genomes of 5 subspecies (C. michiganensis subsp. michiganensis, Cmi; C. michiganensis subsp. sepedonicus, Cms; C. michiganensis subsp. nebraskensis, Cmn; C. michiganensis subsp. insidiosus, Cmi and C. michiganensis subsp. capsici, Cmc) were analyzed. This study assessed the taxonomic position of the subspecies based on 16S rRNA and genome-based DNA homology and concludes that there is ample evidence to elevate some of the subspecies to species-level. Comparative genomics analysis indicated distinct genomic features evident on the DNA structural atlases and annotation features. Based on orthologous gene analysis, about 2300 CDSs are shared across all the subspecies; and Cms showed the highest number of subspecies-specific CDS, most of which are mobile elements suggesting that Cms could be more prone to translocation of foreign genes. Cms and Cmi had the highest number of pseudogenes, an indication of potential degenerating genomes. The stress response factors that may be involved in cold/heat shock, detoxification, oxidative stress, osmoregulation, and carbon utilization are outlined. For example, the wco-cluster encoding for extracellular polysaccharide II is highly conserved while the sucrose-6-phosphate hydrolase that catalyzes the hydrolysis of sucrose-6-phosphate yielding glucose-6-phosphate and fructose is highly divergent. A unique second form of the enzyme is only present in Cmn NCPPB 2581. Also, twenty-eight plasmid-borne CDSs in the other subspecies were found to have homologues in the chromosomal genome of Cmn which is known not to carry plasmids. These CDSs include pathogenesis-related factors such as Endocellulases E1 and Beta-glucosidase. The results presented here provide an insight of the functional organization of the genomes of

  3. Comparative Genome Analysis Provides Insights into the Pathogenicity of Flavobacterium psychrophilum

    PubMed Central

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Dalsgaard, Inger; Madsen, Lone; Espejo, Romilio

    2016-01-01

    Flavobacterium psychrophilum is a fish pathogen in salmonid aquaculture worldwide that causes cold water disease (CWD) and rainbow trout fry syndrome (RTFS). Comparative genome analyses of 11 F. psychrophilum isolates representing temporally and geographically distant populations were used to describe the F. psychrophilum pan-genome and to examine virulence factors, prophages, CRISPR arrays, and genomic islands present in the genomes. Analysis of the genomic DNA sequences were complemented with selected phenotypic characteristics of the strains. The pan genome analysis showed that F. psychrophilum could hold at least 3373 genes, while the core genome contained 1743 genes. On average, 67 new genes were detected for every new genome added to the analysis, indicating that F. psychrophilum possesses an open pan genome. The putative virulence factors were equally distributed among isolates, independent of geographic location, year of isolation and source of isolates. Only one prophage-related sequence was found which corresponded to the previously described prophage 6H, and appeared in 5 out of 11 isolates. CRISPR array analysis revealed two different loci with dissimilar spacer content, which only matched one sequence in the database, the temperate bacteriophage 6H. Genomic Islands (GIs) were identified in F. psychrophilum isolates 950106-1/1 and CSF 259–93, associated with toxins and antibiotic resistance. Finally, phenotypic characterization revealed a high degree of similarity among the strains with respect to biofilm formation and secretion of extracellular enzymes. Global scale dispersion of virulence factors in the genomes and the abilities for biofilm formation, hemolytic activity and secretion of extracellular enzymes among the strains suggested that F. psychrophilum isolates have a similar mode of action on adhesion, colonization and destruction of fish tissues across large spatial and temporal scales of occurrence. Overall, the genomic characterization and

  4. A Phylogenetic Comparative Study of Bantu Kinship Terminology Finds Limited Support for Its Co-Evolution with Social Organisation.

    PubMed

    Guillon, Myrtille; Mace, Ruth

    2016-01-01

    The classification of kin into structured groups is a diverse phenomenon which is ubiquitous in human culture. For populations which are organized into large agropastoral groupings of sedentary residence but not governed within the context of a centralised state, such as our study sample of 83 historical Bantu-speaking groups of sub-Saharan Africa, cultural kinship norms guide all aspects of everyday life and social organization. Such rules operate in part through the use of differing terminological referential systems of familial organization. Although the cross-cultural study of kinship terminology was foundational in Anthropology, few modern studies have made use of statistical advances to further our sparse understanding of the structuring and diversification of terminological systems of kinship over time. In this study we use Bayesian Markov Chain Monte Carlo methods of phylogenetic comparison to investigate the evolution of Bantu kinship terminology and reconstruct the ancestral state and diversification of cousin terminology in this family of sub-Saharan ethnolinguistic groups. Using a phylogenetic tree of Bantu languages, we then test the prominent hypothesis that structured variation in systems of cousin terminology has co-evolved alongside adaptive change in patterns of descent organization, as well as rules of residence. We find limited support for this hypothesis, and argue that the shaping of systems of kinship terminology is a multifactorial process, concluding with possible avenues of future research.

  5. A Phylogenetic Comparative Study of Bantu Kinship Terminology Finds Limited Support for Its Co-Evolution with Social Organisation

    PubMed Central

    Guillon, Myrtille; Mace, Ruth

    2016-01-01

    The classification of kin into structured groups is a diverse phenomenon which is ubiquitous in human culture. For populations which are organized into large agropastoral groupings of sedentary residence but not governed within the context of a centralised state, such as our study sample of 83 historical Bantu-speaking groups of sub-Saharan Africa, cultural kinship norms guide all aspects of everyday life and social organization. Such rules operate in part through the use of differing terminological referential systems of familial organization. Although the cross-cultural study of kinship terminology was foundational in Anthropology, few modern studies have made use of statistical advances to further our sparse understanding of the structuring and diversification of terminological systems of kinship over time. In this study we use Bayesian Markov Chain Monte Carlo methods of phylogenetic comparison to investigate the evolution of Bantu kinship terminology and reconstruct the ancestral state and diversification of cousin terminology in this family of sub-Saharan ethnolinguistic groups. Using a phylogenetic tree of Bantu languages, we then test the prominent hypothesis that structured variation in systems of cousin terminology has co-evolved alongside adaptive change in patterns of descent organization, as well as rules of residence. We find limited support for this hypothesis, and argue that the shaping of systems of kinship terminology is a multifactorial process, concluding with possible avenues of future research. PMID:27008364

  6. Chronic Bacterial Pathogens: Mechanisms of Persistence

    PubMed Central

    Byndloss, Mariana X.; Tsolis, Renee M

    2015-01-01

    Summary Many bacterial pathogens can cause acute infections that are cleared with onset of adaptive immunity, however a subset of these pathogens can establish persistent, and sometimes lifelong infections. While bacteria causing chronic infections are phylogenetically diverse, they share common features in their interactions with the host that enable a protracted period of colonization. This chapter will compare the persistence strategies of two chronic pathogens from the Proteobacteria, Brucella abortus, and Salmonella enterica serovar Typhi (S. Typhi) to consider how these two pathogens, which are very different at the genomic level, can utilize common strategies to evade immune clearance to cause chronic intracellular infections of the mononuclear phagocyte system. PMID:27227304

  7. Comparing nucleic acid lateral flow and electrochemical genosensing for the simultaneous detection of foodborne pathogens.

    PubMed

    Ben Aissa, A; Jara, J J; Sebastián, R M; Vallribera, A; Campoy, S; Pividori, M I

    2017-02-15

    Due to the increasing need of rapid tests for application in low resource settings, WHO summarized their ideal features under the acronym ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, Delivered to those who need it). In this work, two different platforms for the rapid and simultaneous testing of the foodborne pathogens E. coli O157:H7 and Salmonella enterica, in detail a nucleic acid lateral flow and an electrochemical magneto-genosensor are presented and compared in terms of their analytical performance. The DNA of the bacteria was amplified by polymerase chain reaction using a quadruple-tagging set of primers specific for E. coli eaeA (151bp) and Salmonella enterica yfiR (375bp) genes. During the amplification, the amplicons were labelled at the same time with biotin/digoxigenin or biotin/fluorescein tags, respectively. The nucleic acid lateral flow assay was based on the use of streptavidin gold nanoparticles for the labelling of the tagged amplicon from E. coli and Salmonella. The visual readout was achieved when the gold-modified amplicons were captured by the specific antibodies. The features of this approach are discussed and compared with an electrochemical magneto-genosensor. Although nucleic acid lateral flow showed higher limit of detection, this strategy was able to clearly distinguish positive and negative samples of both bacteria being considered as a rapid and promising detection tool for bacteria screening.

  8. Comparative population genomics of Fusarium graminearum reveals adaptive divergence among cereal head blight pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we sequenced the genomes of 60 Fusarium graminearum, the major fungal pathogen responsible for Fusarium head blight (FHB) in cereal crops world-wide. To investigate adaptive evolution of FHB pathogens, we performed population-level analyses to characterize genomic structure, signatures...

  9. LAMP detection assays for boxwood blight pathogens: a comparative genomics approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity, and where gen...

  10. A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens.

    PubMed

    Katz, Lee S; Griswold, Taylor; Williams-Newkirk, Amanda J; Wagner, Darlene; Petkau, Aaron; Sieffert, Cameron; Van Domselaar, Gary; Deng, Xiangyu; Carleton, Heather A

    2017-01-01

    Modern epidemiology of foodborne bacterial pathogens in industrialized countries relies increasingly on whole genome sequencing (WGS) techniques. As opposed to profiling techniques such as pulsed-field gel electrophoresis, WGS requires a variety of computational methods. Since 2013, United States agencies responsible for food safety including the CDC, FDA, and USDA, have been performing whole-genome sequencing (WGS) on all Listeria monocytogenes found in clinical, food, and environmental samples. Each year, more genomes of other foodborne pathogens such as Escherichia coli, Campylobacter jejuni, and Salmonella enterica are being sequenced. Comparing thousands of genomes across an entire species requires a fast method with coarse resolution; however, capturing the fine details of highly related isolates requires a computationally heavy and sophisticated algorithm. Most L. monocytogenes investigations employing WGS depend on being able to identify an outbreak clade whose inter-genomic distances are less than an empirically determined threshold. When the difference between a few single nucleotide polymorphisms (SNPs) can help distinguish between genomes that are likely outbreak-associated and those that are less likely to be associated, we require a fine-resolution method. To achieve this level of resolution, we have developed Lyve-SET, a high-quality SNP pipeline. We evaluated Lyve-SET by retrospectively investigating 12 outbreak data sets along with four other SNP pipelines that have been used in outbreak investigation or similar scenarios. To compare these pipelines, several distance and phylogeny-based comparison methods were applied, which collectively showed that multiple pipelines were able to identify most outbreak clusters and strains. Currently in the US PulseNet system, whole genome multi-locus sequence typing (wgMLST) is the preferred primary method for foodborne WGS cluster detection and outbreak investigation due to its ability to name standardized

  11. A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens

    PubMed Central

    Katz, Lee S.; Griswold, Taylor; Williams-Newkirk, Amanda J.; Wagner, Darlene; Petkau, Aaron; Sieffert, Cameron; Van Domselaar, Gary; Deng, Xiangyu; Carleton, Heather A.

    2017-01-01

    Modern epidemiology of foodborne bacterial pathogens in industrialized countries relies increasingly on whole genome sequencing (WGS) techniques. As opposed to profiling techniques such as pulsed-field gel electrophoresis, WGS requires a variety of computational methods. Since 2013, United States agencies responsible for food safety including the CDC, FDA, and USDA, have been performing whole-genome sequencing (WGS) on all Listeria monocytogenes found in clinical, food, and environmental samples. Each year, more genomes of other foodborne pathogens such as Escherichia coli, Campylobacter jejuni, and Salmonella enterica are being sequenced. Comparing thousands of genomes across an entire species requires a fast method with coarse resolution; however, capturing the fine details of highly related isolates requires a computationally heavy and sophisticated algorithm. Most L. monocytogenes investigations employing WGS depend on being able to identify an outbreak clade whose inter-genomic distances are less than an empirically determined threshold. When the difference between a few single nucleotide polymorphisms (SNPs) can help distinguish between genomes that are likely outbreak-associated and those that are less likely to be associated, we require a fine-resolution method. To achieve this level of resolution, we have developed Lyve-SET, a high-quality SNP pipeline. We evaluated Lyve-SET by retrospectively investigating 12 outbreak data sets along with four other SNP pipelines that have been used in outbreak investigation or similar scenarios. To compare these pipelines, several distance and phylogeny-based comparison methods were applied, which collectively showed that multiple pipelines were able to identify most outbreak clusters and strains. Currently in the US PulseNet system, whole genome multi-locus sequence typing (wgMLST) is the preferred primary method for foodborne WGS cluster detection and outbreak investigation due to its ability to name standardized

  12. Application of comparative phylogenomics to study the evolution of Yersinia enterocolitica and to identify genetic differences relating to pathogenicity.

    PubMed

    Howard, Sarah L; Gaunt, Michael W; Hinds, Jason; Witney, Adam A; Stabler, Richard; Wren, Brendan W

    2006-05-01

    Yersinia enterocolitica, an important cause of human gastroenteritis generally caused by the consumption of livestock, has traditionally been categorized into three groups with respect to pathogenicity, i.e., nonpathogenic (biotype 1A), low pathogenicity (biotypes 2 to 5), and highly pathogenic (biotype 1B). However, genetic differences that explain variation in pathogenesis and whether different biotypes are associated with specific nonhuman hosts are largely unknown. In this study, we applied comparative phylogenomics (whole-genome comparisons of microbes with DNA microarrays combined with Bayesian phylogenies) to investigate a diverse collection of 94 strains of Y. enterocolitica consisting of 35 human, 35 pig, 15 sheep, and 9 cattle isolates from nonpathogenic, low-pathogenicity, and highly pathogenic biotypes. Analysis confirmed three distinct statistically supported clusters composed of a nonpathogenic clade, a low-pathogenicity clade, and a highly pathogenic clade. Genetic differences revealed 125 predicted coding sequences (CDSs) present in all highly pathogenic strains but absent from the other clades. These included several previously uncharacterized CDSs that may encode novel virulence determinants including a hemolysin, a metalloprotease, and a type III secretion effector protein. Additionally, 27 CDSs were identified which were present in all 47 low-pathogenicity strains and Y. enterocolitica 8081 but absent from all nonpathogenic 1A isolates. Analysis of the core gene set for Y. enterocolitica revealed that 20.8% of the genes were shared by all of the strains, confirming this species as highly heterogeneous, adding to the case for the existence of three subspecies of Y. enterocolitica. Further analysis revealed that Y. enterocolitica does not cluster according to source (host).

  13. Comparative Analysis of Immune Cells Activation and Cytotoxicity upon Exposure Pathogen and Glycoconjugates

    NASA Astrophysics Data System (ADS)

    Saheb, Entsar; Tarasenko, Olga

    2010-04-01

    Peripheral mononuclear cells (PMNC) including macrophages are key players in the immune responses against pathogens. Any infection could be attenuated if PMNC would be activated and capable to kill pathogen on exposure. It was shown that glycoconjugates (GCs) play an important role in adhesion to, activation, and recognition of pathogens. Nitric oxide (NO) is a regulatory molecule released by immune cells against pathogens that include bacteria, protozoa, helminthes, and fungi. NO is a highly reactive and diffusible molecule that controls replication or intracellular killing of pathogens during infection and immune responses against infections caused by pathogens. Avirulent Bacillus anthracis Sterne spores were used as a model in our study. The purpose of this study was two-fold: A) to analyze PMNC activation through NO production and B) to determine the cytotoxicity effect based on lactate dehydrogenase (LDH) upon exposure to pathogen exerted by GCs. The latter were used "prior to," "during," and "following" PMNC exposure to pathogen in order to modulate immune responses to spores during phagocytosis. Post-phagocytosis study involved the assessment of NO and LDH release by macrophages upon exposure to spores. Results have shown that untreated PMNC released low levels of NO. However, in the presence of GCs, PMNC were activated and produced high levels of NO under all experimental conditions. In addition, the results showed that GC1, GC3 are capable of increasing PMNC activity as evidenced by higher NO levels under the "prior," "during" and "following" to pathogen exposure conditions. On the other hand, GCs were capable of controlling cytotoxicity and decreased LDH levels during phagocytosis of spores. Our findings suggest that GCs stimulate NO production by activating PMNC and decrease cytotoxicity caused by pathogens on PMNC.

  14. Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis

    PubMed Central

    Tkaczuk, Karolina L; Obarska, Agnieszka; Bujnicki, Janusz M

    2006-01-01

    Background Recently, HEN1 protein from Arabidopsis thaliana was discovered as an essential enzyme in plant microRNA (miRNA) biogenesis. HEN1 transfers a methyl group from S-adenosylmethionine to the 2'-OH or 3'-OH group of the last nucleotide of miRNA/miRNA* duplexes produced by the nuclease Dicer. Previously it was found that HEN1 possesses a Rossmann-fold methyltransferase (RFM) domain and a long N-terminal extension including a putative double-stranded RNA-binding motif (DSRM). However, little is known about the details of the structure and the mechanism of action of this enzyme, and about its phylogenetic origin. Results Extensive database searches were carried out to identify orthologs and close paralogs of HEN1. Based on the multiple sequence alignment a phylogenetic tree of the HEN1 family was constructed. The fold-recognition approach was used to identify related methyltransferases with experimentally solved structures and to guide the homology modeling of the HEN1 catalytic domain. Additionally, we identified a La-like predicted RNA binding domain located C-terminally to the DSRM domain and a domain with a peptide prolyl cis/trans isomerase (PPIase) fold, but without the conserved PPIase active site, located N-terminally to the catalytic domain. Conclusion The bioinformatics analysis revealed that the catalytic domain of HEN1 is not closely related to any known RNA:2'-OH methyltransferases (e.g. to the RrmJ/fibrillarin superfamily), but rather to small-molecule methyltransferases. The structural model was used as a platform to identify the putative active site and substrate-binding residues of HEN and to propose its mechanism of action. PMID:16433904

  15. Comparative genomic analysis of the swine pathogen Bordetella bronchisepticastrain KM22.

    PubMed

    Nicholson, Tracy L; Shore, Sarah M; Register, Karen B; Bayles, Darrell O; Kingsley, Robert A; Brunelle, Brain W

    2016-01-01

    The well-characterized Bordetella bronchiseptica strain KM22, originally isolated from a pig with atrophic rhinitis, has been used to develop a reproducible swine respiratory disease model. The goal of this study was to identify genetic features unique to KM22 by comparing the genome sequence of KM22 to the laboratory reference strain RB50. To gain a broader perspective of the genetic relationship of KM22 among other B. bronchiseptica strains, selected genes of KM22 were then compared to five other B. bronchiseptica strains isolated from different hosts. Overall, the KM22 genome sequence is more similar to the genome sequences of the strains isolated from animals than the strains isolated from humans. The majority of virulence gene expression in Bordetella is positively regulated by the two-component sensory transduction system BvgAS. bopN, bvgA, fimB, and fimC were the most highly conserved BvgAS-regulated genes present in all seven strains analyzed. In contrast, the BvgAS-regulated genes present in all seven strains with the highest sequence divergence werefimN, fim2, fhaL, andfhaS. A total of eight major fimbrial subunit genes were identified in KM22. Quantitative real-time PCR data demonstrated that seven of the eight fimbrial subunit genes identified in KM22 are expressed and regulated by BvgAS. The annotation of the KM22 genome sequence, coupled with the comparative genomic analyses reported in this study, can be used to facilitate the development of vaccines with improved efficacy towards B. bronchiseptica in swine to decrease the prevalence and disease burden caused by this pathogen.

  16. Comparative genomics of the Fusarium fujikuroi species complex: biosynthetic pathways metabolite production and plant pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium is a huge genus of filamentous fungi causing plant diseases in a wide range of host plants that result in high economic losses to world agriculture every year. Phylogenetic studies have shown that the genus Fusarium consists of different species complexes. One of them is the “Fusarium fujik...

  17. Comparative Study of Eis-like Enzymes from Pathogenic and Nonpathogenic Bacteria

    PubMed Central

    Green, Keith D.; Pricer, Rachel E.; Stewart, Megan N.; Garneau-Tsodikova, Sylvie

    2016-01-01

    Antibiotic resistance is a growing problem worldwide. Of particular importance is the resistance of Mycobacterium tuberculosis (Mtb) to currently available antibiotics used in the treatment of infected patients. Up-regulation of an aminoglycoside (AG) acetyltransferase, the enhanced intracellular survival (Eis) protein of Mtb (Eis_Mtb), is responsible for resistance to the second-line injectable drug kanamycin A in a number of Mtb clinical isolates. This acetyltransferase is known to modify AGs, not at a single position, as usual for this type of enzyme, but at multiple amine sites. We identified, using in silico techniques, 22 homologues from a wide variety of bacteria, that we then cloned, purified, and biochemically studied. From the selected Eis homologues, 7 showed the ability to modify AGs to various degrees and displayed both similarities and differences when compared to Eis_Mtb. In addition, an inhibitor proved to be active against all homologues tested. Our findings show that this family of acetyltransferase enzymes exists in both mycobacteria and non-mycobacteria and in both pathogenic and nonpathogenic species. The bacterial strains described herein should be monitored for rising resistance rates to AGs. PMID:27622743

  18. Comparative Methylome Analysis of the Occasional Ruminant Respiratory Pathogen Bibersteinia trehalosi

    PubMed Central

    Smith, Timothy P. L.; Blom, Jochen; Roberts, Richard J.

    2016-01-01

    We examined and compared both the methylomes and the modification-related gene content of four sequenced strains of Bibersteinia trehalosi isolated from the nasopharyngeal tracts of Nebraska cattle with symptoms of bovine respiratory disease complex. The methylation patterns and the encoded DNA methyltransferase (MTase) gene sets were different between each strain, with the only common pattern being that of Dam (GATC). Among the observed patterns were three novel motifs attributable to Type I restriction-modification systems. In some cases the differences in methylation patterns corresponded to the gain or loss of MTase genes, or to recombination at target recognition domains that resulted in changes of enzyme specificity. However, in other cases the differences could be attributed to differential expression of the same MTase gene across strains. The most obvious regulatory mechanism responsible for these differences was slipped strand mispairing within short sequence repeat regions. The combined action of these evolutionary forces allows for alteration of different parts of the methylome at different time scales. We hypothesize that pleiotropic transcriptional modulation resulting from the observed methylomic changes may be involved with the switch between the commensal and pathogenic states of this common member of ruminant microflora. PMID:27556252

  19. Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics

    PubMed Central

    Pang, Maoda; Jiang, Jingwei; Xie, Xing; Wu, Yafeng; Dong, Yuhao; Kwok, Amy H. Y.; Zhang, Wei; Yao, Huochun; Lu, Chengping; Leung, Frederick C.; Liu, Yongjie

    2015-01-01

    Outbreaks in fish of motile Aeromonad septicemia (MAS) caused by Aeromonas hydrophila have caused a great concern worldwide. Here, for the first time, we provide two complete genomes of epidemic A. hydrophila strains isolated in China. To gain an insight into the pathogenicity of epidemic A. hydrophila, we performed comparative genomic analyses of five epidemic strains belonging to sequence type (ST) 251, together with the environmental strain ATCC 7966T. We found that the known virulence factors, including a type III secretion system, a type VI secretion system and lateral flagella, are not required for the high virulence of the ST251 clonal group. Additionally, our work identifies three utilization pathways for myo-inositol, sialic acid and L-fucose providing clues regarding the factors that underlie the epidemic and virulent nature of ST251 A. hydrophila. Based on the geographical distribution and biological resources of the ST251 clonal group, we conclude that ST251 is a high-risk clonal group of A. hydrophila which may be responsible for the MAS outbreaks in China and the southeastern United States. PMID:26014286

  20. Comparative Genomics Suggests That the Human Pathogenic Fungus Pneumocystis jirovecii Acquired Obligate Biotrophy through Gene Loss

    PubMed Central

    Cissé, Ousmane H.; Pagni, Marco; Hauser, Philippe M.

    2014-01-01

    Pneumocystis jirovecii is a fungal parasite that colonizes specifically humans and turns into an opportunistic pathogen in immunodeficient individuals. The fungus is able to reproduce extracellularly in host lungs without eliciting massive cellular death. The molecular mechanisms that govern this process are poorly understood, in part because of the lack of an in vitro culture system for Pneumocystis spp. In this study, we explored the origin and evolution of the putative biotrophy of P. jirovecii through comparative genomics and reconstruction of ancestral gene repertoires. We used the maximum parsimony method and genomes of related fungi of the Taphrinomycotina subphylum. Our results suggest that the last common ancestor of Pneumocystis spp. lost 2,324 genes in relation to the acquisition of obligate biotrophy. These losses may result from neutral drift and affect the biosyntheses of amino acids and thiamine, the assimilation of inorganic nitrogen and sulfur, and the catabolism of purines. In addition, P. jirovecii shows a reduced panel of lytic proteases and has lost the RNA interference machinery, which might contribute to its genome plasticity. Together with other characteristics, that is, a sex life cycle within the host, the absence of massive destruction of host cells, difficult culturing, and the lack of virulence factors, these gene losses constitute a unique combination of characteristics which are hallmarks of both obligate biotrophs and animal parasites. These findings suggest that Pneumocystis spp. should be considered as the first described obligate biotrophs of animals, whose evolution has been marked by gene losses. PMID:25062922

  1. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  2. Phylogenetic Trees From Sequences

    NASA Astrophysics Data System (ADS)

    Ryvkin, Paul; Wang, Li-San

    In this chapter, we review important concepts and approaches for phylogeny reconstruction from sequence data.We first cover some basic definitions and properties of phylogenetics, and briefly explain how scientists model sequence evolution and measure sequence divergence. We then discuss three major approaches for phylogenetic reconstruction: distance-based phylogenetic reconstruction, maximum parsimony, and maximum likelihood. In the third part of the chapter, we review how multiple phylogenies are compared by consensus methods and how to assess confidence using bootstrapping. At the end of the chapter are two sections that list popular software packages and additional reading.

  3. Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in Pseudomonas.

    PubMed

    Mithani, Aziz; Hein, Jotun; Preston, Gail M

    2011-01-01

    Plant pathogenic pseudomonads such as Pseudomonas syringae colonize plant surfaces and tissues and have been reported to be nutritionally specialized relative to nonpathogenic pseudomonads. We performed comparative analyses of metabolic networks reconstructed from genome sequence data in order to investigate the hypothesis that P. syringae has evolved to be metabolically specialized for a plant pathogenic lifestyle. We used the metabolic network comparison tool Rahnuma and complementary bioinformatic analyses to compare the distribution of 1,299 metabolic reactions across nine genome-sequenced strains of Pseudomonas, including three strains of P. syringae. The two pathogenic Pseudomonas species analyzed, P. syringae and the opportunistic human pathogen P. aeruginosa, each displayed a high level of intraspecies metabolic similarity compared with nonpathogenic Pseudomonas. The three P. syringae strains lacked a significant number of reactions predicted to be present in all other Pseudomonas strains analyzed, which is consistent with the hypothesis that P. syringae is adapted for growth in a nutritionally constrained environment. Pathway predictions demonstrated that some of the differences detected in metabolic network comparisons could account for differences in amino acid assimilation ability reported in experimental analyses. Parsimony analysis and reaction neighborhood approaches were used to model the evolution of metabolic networks and amino acid assimilation pathways in pseudomonads. Both methods supported a model of Pseudomonas evolution in which the common ancestor of P. syringae had experienced a significant number of deletion events relative to other nonpathogenic pseudomonads. We discuss how the characteristic metabolic features of P. syringae could reflect adaptation to a pathogenic lifestyle.

  4. Comparative analysis of transcript abundance in Pinus sylvestris after challenge with a saprotrophic, pathogenic or mutualistic fungus.

    PubMed

    Adomas, Aleksandra; Heller, Gregory; Olson, Ake; Osborne, Jason; Karlsson, Magnus; Nahalkova, Jarmila; Van Zyl, Len; Sederoff, Ron; Stenlid, Jan; Finlay, Roger; Asiegbu, Frederick O

    2008-06-01

    To investigate functional differences in the recognition and response mechanisms of conifer roots to fungi with different trophic strategies, Pinus sylvestris L. was challenged with a saprotrophic fungus Trichoderma aureoviride Rifai. The results were compared with separate studies investigating pine interactions with a pathogen, Heterobasidion annosum (Fr.) Bref. sensu stricto and an ectomycorrhizal symbiont, Laccaria bicolor Maire (Orton). Global changes in the expression of 2109 conifer genes were assayed 1, 5 and 15 days after inoculation. Gene expression data from a cDNA microarray were analyzed by the 2-interconnected mixed linear model statistical approach. The total number of genes differentially expressed compared with the uninfected control was similar after challenge with the pathogen and the ectomycorrhizal symbiont, but the number of differentially expressed genes increased over time for H. annosum, and decreased for L. bicolor. Inoculation of pine roots with T. aureoviride resulted overall in a much lower number of genes with changed transcript levels compared with inoculation with H. annosum or L. bicolor. Functional classification of the differentially expressed genes revealed that the ectomycorrhizal fungus triggered transient induction of defence-related genes. The response and induction of defence against the pathogen was delayed and the magnitude increased over time. Thus, there were specific transcriptional responses depending on whether the conifer roots were challenged with mutualistic, saprotrophic or pathogenic fungi. This suggests that pine trees are able to recognize diverse fungal species and specifically distinguish whether they are pathogenic, neutral or beneficial microbial agents.

  5. Molecular phylogenetics and comparative modeling of MnSOD, an enzyme involved during environmental stress conditions in Oryza sativa.

    PubMed

    Tripathi, Vijay; Tripathi, Pooja

    2014-12-01

    Superoxide dismutases are a class of enzymes that catalyze the dismutation of superoxide into oxygen and hydrogen peroxide. As such, they are an important antioxidant defense in nearly all cells exposed to oxygen. Superoxide dismutase (SOD) acts as first line of defense against oxidative and genetic stress. Manganese superoxide dismutase (MnSOD), found in mitochondria or peroxisomes, contains Mn (III) at the active site. The three dimensional structure of MnSOD of Oryza sativa is not yet available in protein data bank so we have predicted the structure model of O. sativa MnSOD using homology modeling. The predicted model can further be explored for identification of ligand binding sites which may be useful for understanding specific role in functional site residues during catalysis. This study also demonstrated that the phylogenetic analysis of O. sativa MnSOD protein with distinct dicot and monocot plant species. The MnSOD protein of O. sativa has shown similarity with both monocot and as well as dicot plant species.

  6. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases

    PubMed Central

    Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  7. Molecular Genetic Variation in Emmonsia crescens and Emmonsia parva, Etiologic Agents of Adiaspiromycosis, and Their Phylogenetic Relationship to Blastomyces dermatitidis (Ajellomyces dermatitidis) and Other Systemic Fungal Pathogens

    PubMed Central

    Peterson, Stephen W.; Sigler, Lynne

    1998-01-01

    Emmonsia crescens, an agent of adiaspiromycosis, Blastomyces dermatitidis, the agent of blastomycosis, and Histoplasma capsulatum, the agent of histoplasmosis, are known to form meiotic (sexual) stages in the ascomycete genus Ajellomyces (Onygenaceae, Onygenales), but no sexual stage is known for E. parva, the type species of the genus Emmonsia. To evaluate relationships among members of the putative Ajellomyces clade, large-subunit ribosomal and internal transcribed spacer region DNA sequences were determined from PCR-amplified DNA fragments. Sequences were analyzed phylogenetically to evaluate the genetic variation within the genus Emmonsia and evolutionary relationships to other taxa. E. crescens and E. parva are distinct species. E. crescens isolates are placed into two groups that correlate with their continents of origin. Considerable variation occurred among isolates previously classified as E. parva. Most isolates are placed into two closely related groups, but the remaining isolates, including some from human sources, are phylogenetically distinct and represent undescribed species. Strains of B. dermatitidis are a sister species of E. parva. Paracoccidioides brasiliensis and Histoplasma capsulatum are ancestral to most Emmonsia isolates, and P. brasiliensis, which has no known teleomorph, falls within the Ajellomyces clade. PMID:9738044

  8. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    USGS Publications Warehouse

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  9. [Comparative study of the pathogenicity and antigenicity of 6 Paracoccidioides brasiliensis strains].

    PubMed

    Finquelievich, J L; Negroni, R; Iovannitti, C A; de Elías Costa, M R

    1993-01-01

    A comparative study of antigenicity and pathogenicity for rats of six Paracoccidioides brasiliensis strains was carried out. The antigenic capacity "in vitro" of cytoplasmic extract from each strain was determined by immunodiffusion test against 6 serum samples obtained from rats experimentally infected with Paracoccidioides brasiliensis, that had presented positive reactions with a metabolic control antigen. The cytoplasmic extracts were used at final concentration of 100 mg/ml. All of them showed 2 or 3 precipitation bands in this assay. One hundred twenty Wistar rats both sexes weighing approximately 200 g, were inoculated intracardiacally with suspensions of the yeast phase of different P. brasiliensis strains. Two concentrations containing 3 x 10(7) and 5 x 10(7) cells/ml of each isolate were prepared. The inoculated animals were divided in two groups, one was left to its spontaneous outcome and the percentages of deaths were registered and the other rats were sacrificed at 14, 28, 56 and 70 days post-infection. The following parameters were taken into account for evaluation: A) presence of macroscopic granulomas in lung, liver, spleen and kidney; B) presence of P. brasiliensis in microscopic exams of the same organs, in wet preparations and in histologic sections stained by H&E; C) culture of lung and D) immunodiffusion test using pre-mortem serum samples and the homologous antigen. The correlation between the most important parameters studied in each strain are summarized as follow: As no significant differences between the two inocula employed for each strain was observed, the before mention results are the average of those obtained with each inoculation doses.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators.

    PubMed

    Haack, Sheridan K; Duris, Joseph W; Fogarty, Lisa R; Kolpin, Dana W; Focazio, Michael J; Furlong, Edward T; Meyer, Michael T

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL(-1), human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions.

  11. The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis

    PubMed Central

    Brown, Neil A.; Antoniw, John; Hammond-Kosack, Kim E.

    2012-01-01

    The fungus Fusarium graminearum forms an intimate association with the host species wheat whilst infecting the floral tissues at anthesis. During the prolonged latent period of infection, extracellular communication between live pathogen and host cells must occur, implying a role for secreted fungal proteins. The wheat cells in contact with fungal hyphae subsequently die and intracellular hyphal colonisation results in the development of visible disease symptoms. Since the original genome annotation analysis was done in 2007, which predicted the secretome using TargetP, the F. graminearum gene call has changed considerably through the combined efforts of the BROAD and MIPS institutes. As a result of the modifications to the genome and the recent findings that suggested a role for secreted proteins in virulence, the F. graminearum secretome was revisited. In the current study, a refined F. graminearum secretome was predicted by combining several bioinformatic approaches. This strategy increased the probability of identifying truly secreted proteins. A secretome of 574 proteins was predicted of which 99% was supported by transcriptional evidence. The function of the annotated and unannotated secreted proteins was explored. The potential role(s) of the annotated proteins including, putative enzymes, phytotoxins and antifungals are discussed. Characterisation of the unannotated proteins included the analysis of Pfam domains and features associated with known fungal effectors, for example, small size, cysteine-rich and containing internal amino acid repeats. A comprehensive comparative genomic analysis involving 57 fungal and oomycete genomes revealed that only a small number of the predicted F. graminearum secreted proteins can be considered to be either species or sequenced strain specific. PMID:22493673

  12. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation.

    PubMed

    Cesbron, Sophie; Briand, Martial; Essakhi, Salwa; Gironde, Sophie; Boureau, Tristan; Manceau, Charles; Fischer-Le Saux, Marion; Jacques, Marie-Agnès

    2015-01-01

    The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.

  13. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation

    PubMed Central

    Cesbron, Sophie; Briand, Martial; Essakhi, Salwa; Gironde, Sophie; Boureau, Tristan; Manceau, Charles; Fischer-Le Saux, Marion; Jacques, Marie-Agnès

    2015-01-01

    The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment. PMID:26734033

  14. State-of-the-art Echinococcus and Taenia: phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis.

    PubMed

    Nakao, Minoru; Yanagida, Tetsuya; Okamoto, Munehiro; Knapp, Jenny; Nkouawa, Agathe; Sako, Yasuhito; Ito, Akira

    2010-05-01

    The taxonomy of tapeworms belonging to the family Taeniidae has been controversial because of the paucity of adult phenotypic characters and the great plasticity of larvae in intermediate hosts. The family consists of the medically important two genera Echinococcus and Taenia, which are closely related to each other. Cladistic approaches using the molecular data of DNA and the numerical data of morphologic characters are clarifying phylogenetic relationships among the members of these genera. The nucleotide data of worldwide taeniid parasites accumulated in public DNA databases may provide a basis for the development of molecular diagnostic tools, and make it possible to identify the parasites, at least the human Taenia spp. by non-morphologists. Furthermore, the detection of intraspecific genetic variations prompts evolutionary and ecological studies to address fundamental questions of parasite distributional patterns. Here, we introduce the recent advances of taeniid phylogeny and its application to molecular diagnosis.

  15. Phylogenetic analysis of a novel H6N6 avian influenza virus isolated from a green peafowl in China and its pathogenic potential in mice.

    PubMed

    Fan, Zhaobin; Ci, Yanpeng; Ma, Yixin; Liu, Liling; Wang, Deli; Ma, Jianzhang; Li, Yanbing; Chen, Hualan

    2014-12-01

    To explore the ecology of the H6 subtype avian influenza viruses in Hebei Province, China, a long-term surveillance was conducted in 2012 among domestic poultry and birds in a wildlife park. In this study, we report the characterization of a novel H6N6 avian influenza virus isolated from a healthy green peafowl in Qinghuangdao Wildlife Park in 2012. A phylogenetic analysis indicated that the isolated H6N6 strain has the same gene constellation as the ST3367-like strains, which are mainly distributed in southern and eastern China. A mouse experiment showed that the isolate replicated efficiently in the lungs and turbinates of infected mice without previous adaptation, resulting in locally thickened alveolar septa and interstitial pneumonia. Further studies of the H6 subtype viruses are required to clarify their evolutionary pattern in north China, which will benefit disease control and pandemic preparedness for novel viruses.

  16. Using Population and Comparative Genomics to Understand the Genetic Basis of Effector-Driven Fungal Pathogen Evolution

    PubMed Central

    Plissonneau, Clémence; Benevenuto, Juliana; Mohd-Assaad, Norfarhan; Fouché, Simone; Hartmann, Fanny E.; Croll, Daniel

    2017-01-01

    Epidemics caused by fungal plant pathogens pose a major threat to agro-ecosystems and impact global food security. High-throughput sequencing enabled major advances in understanding how pathogens cause disease on crops. Hundreds of fungal genomes are now available and analyzing these genomes highlighted the key role of effector genes in disease. Effectors are small secreted proteins that enhance infection by manipulating host metabolism. Fungal genomes carry 100s of putative effector genes, but the lack of homology among effector genes, even for closely related species, challenges evolutionary and functional analyses. Furthermore, effector genes are often found in rapidly evolving chromosome compartments which are difficult to assemble. We review how population and comparative genomics toolsets can be combined to address these challenges. We highlight studies that associated genome-scale polymorphisms with pathogen lifestyles and adaptation to different environments. We show how genome-wide association studies can be used to identify effectors and other pathogenicity-related genes underlying rapid adaptation. We also discuss how the compartmentalization of fungal genomes into core and accessory regions shapes the evolution of effector genes. We argue that an understanding of genome evolution provides important insight into the trajectory of host-pathogen co-evolution. PMID:28217138

  17. Control of human pathogenic Yersinia enterocolitica in minced meat: Comparative analysis of different interventions using a risk assessment approach.

    PubMed

    Van Damme, I; De Zutter, L; Jacxsens, L; Nauta, M J

    2017-06-01

    This study aimed to evaluate the effect of different processing scenarios along the farm-to-fork chain on the contamination of minced pork with human pathogenic Y. enterocolitica. A modular process risk model (MPRM) was used to perform the assessment of the concentrations of pathogenic Y. enterocolitica in minced meat produced in industrial meat processing plants. The model described the production of minced pork starting from the contamination of pig carcasses with pathogenic Y. enterocolitica just before chilling. The endpoints of the assessment were (i) the proportion of 0.5 kg minced meat packages that contained pathogenic Y. enterocolitica and (ii) the proportion of 0.5 kg minced meat packages that contained more than 10³ pathogenic Y. enterocolitica at the end of storage, just before consumption of raw pork or preparation. Comparing alternative scenarios to the baseline model showed that the initial contamination and different decontamination procedures of carcasses have an important effect on the proportion of highly contaminated minced meat packages at the end of storage. The addition of pork cheeks and minimal quantities of tonsillar tissue into minced meat also had a large effect on the endpoint estimate. Finally, storage time and temperature at consumer level strongly influenced the number of highly contaminated packages.

  18. Using Population and Comparative Genomics to Understand the Genetic Basis of Effector-Driven Fungal Pathogen Evolution.

    PubMed

    Plissonneau, Clémence; Benevenuto, Juliana; Mohd-Assaad, Norfarhan; Fouché, Simone; Hartmann, Fanny E; Croll, Daniel

    2017-01-01

    Epidemics caused by fungal plant pathogens pose a major threat to agro-ecosystems and impact global food security. High-throughput sequencing enabled major advances in understanding how pathogens cause disease on crops. Hundreds of fungal genomes are now available and analyzing these genomes highlighted the key role of effector genes in disease. Effectors are small secreted proteins that enhance infection by manipulating host metabolism. Fungal genomes carry 100s of putative effector genes, but the lack of homology among effector genes, even for closely related species, challenges evolutionary and functional analyses. Furthermore, effector genes are often found in rapidly evolving chromosome compartments which are difficult to assemble. We review how population and comparative genomics toolsets can be combined to address these challenges. We highlight studies that associated genome-scale polymorphisms with pathogen lifestyles and adaptation to different environments. We show how genome-wide association studies can be used to identify effectors and other pathogenicity-related genes underlying rapid adaptation. We also discuss how the compartmentalization of fungal genomes into core and accessory regions shapes the evolution of effector genes. We argue that an understanding of genome evolution provides important insight into the trajectory of host-pathogen co-evolution.

  19. Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three strains of pathogenic bacteria were treated with condensed tannins (CT) purified from eight different woody plant species to investigate their inhibition effect on the growth of these bacteria in vitro. Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were tested against low...

  20. Verticillium comparative genomics yields insights into niche adaptation by plant vascular wilt pathogens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual losses. The characteristic vascular wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels. To gain insights into the mechan...

  1. Verticillium comparative genomics yields insights into niche adaptation by plant vascular wilt pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species worldwide, causing recurring crop losses estimated in the billions of dollars annually. Plant pathogenic Verticillium species are soilborne, and produce dormant structures that enable survival for years in ...

  2. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmola...

  3. Comparative population genomics of fusarium graminearum reveals adaptive divergence among cereal head blight pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the last decade, a combination of molecular surveillance and population genetic analyses have significantly altered our understanding of Fusarium graminearum, the major FHB pathogen in North America. In addition to the native NA1 population (largely 15ADON toxin type) and the invasive NA2 pop...

  4. Capacity building efforts and perceptions for wildlife surveillance to detect zoonotic pathogens: comparing stakeholder perspectives

    PubMed Central

    2014-01-01

    Background The capacity to conduct zoonotic pathogen surveillance in wildlife is critical for the recognition and identification of emerging health threats. The PREDICT project, a component of United States Agency for International Development’s Emerging Pandemic Threats program, has introduced capacity building efforts to increase zoonotic pathogen surveillance in wildlife in global ‘hot spot’ regions where zoonotic disease emergence is likely to occur. Understanding priorities, challenges, and opportunities from the perspectives of the stakeholders is a key component of any successful capacity building program. Methods A survey was administered to wildlife officials and to PREDICT-implementing in-country project scientists in 16 participating countries in order to identify similarities and differences in perspectives between the groups regarding capacity needs for zoonotic pathogen surveillance in wildlife. Results Both stakeholder groups identified some human-animal interfaces (i.e. areas of high contact between wildlife and humans with the potential risk for disease transmission), such as hunting and markets, as important for ongoing targeting of wildlife surveillance. Similarly, findings regarding challenges across stakeholder groups showed some agreement in that a lack of sustainable funding across regions was the greatest challenge for conducting wildlife surveillance for zoonotic pathogens (wildlife officials: 96% and project scientists: 81%). However, the opportunity for improving zoonotic pathogen surveillance capacity identified most frequently by wildlife officials as important was increasing communication or coordination among agencies, sectors, or regions (100% of wildlife officials), whereas the most frequent opportunities identified as important by project scientists were increasing human capacity, increasing laboratory capacity, and the growing interest or awareness regarding wildlife disease or surveillance programs (all identified by 69% of

  5. Horizontal gene transfer and the rock record: comparative genomics of phylogenetically distant bacteria that induce wrinkle structure formation in modern sediments.

    PubMed

    Flood, B E; Bailey, J V; Biddle, J F

    2014-03-01

    Wrinkle structures are sedimentary features that are produced primarily through the trapping and binding of siliciclastic sediments by mat-forming micro-organisms. Wrinkle structures and related sedimentary structures in the rock record are commonly interpreted to represent the stabilizing influence of cyanobacteria on sediments because cyanobacteria are known to produce similar textures and structures in modern tidal flat settings. However, other extant bacteria such as filamentous representatives of the family Beggiatoaceae can also interact with sediments to produce sedimentary features that morphologically resemble many of those associated with cyanobacteria-dominated mats. While Beggiatoa spp. and cyanobacteria are metabolically and phylogenetically distant, genomic analyses show that the two groups share hundreds of homologous genes, likely as the result of horizontal gene transfer. The comparative genomics results described here suggest that some horizontally transferred genes may code for phenotypic traits such as filament formation, chemotaxis, and the production of extracellular polymeric substances that potentially underlie the similar biostabilizing influences of these organisms on sediments. We suggest that the ecological utility of certain basic life modes such as the construction of mats and biofilms, coupled with the lateral mobility of genes in the microbial world, introduces an element of uncertainty into the inference of specific phylogenetic origins from gross morphological features preserved in the ancient rock record.

  6. Comparative analysis of single nucleotide polymorphisms in the nuclear, chloroplast, and mitochondrial genomes in identification of phylogenetic association among seven melon (Cucumis melo L.) cultivars.

    PubMed

    Zhu, Qianglong; Gao, Peng; Liu, Shi; Amanullah, Sikandar; Luan, Feishi

    2016-12-01

    A variety of melons are cultivated worldwide, and their specific biological properties make them an attractive model for molecular studies. This study aimed to investigate the single nucleotide polymorphisms (SNPs) from the mitochondrial, chloroplast, and nuclear genomes of seven melon accessions (Cucumis melo L.) to identify the phylogenetic relationships among melon cultivars with the Illumina HiSeq 2000 platform and bioinformatical analyses. The data showed that there were a total of 658 mitochondrial SNPs (207-295 in each), while there were 0-60 chloroplast SNPs among these seven melon cultivars, compared to the reference genome. Bioinformatical analysis showed that the mitochondrial tree topology was unable to separate the melon features, whereas the maximum parsimony/neighbor joining (MP/NJ) tree of the chloroplast SNPs could define melon features such as seed length, width, thickness, 100-seed weight, and type. SNPs of the nuclear genome were better than the mitochondrial and chloroplast SNPs in the identification of melon features. The data demonstrated the usefulness of mitochondrial, chloroplast, and nuclear SNPs in identification of phylogenetic associations among these seven melon cultivars.

  7. Comparative genome analysis and phylogenetic relationship of order Liliales insight from the complete plastid genome sequences of two Lilies (Lilium longiflorum and Alstroemeria aurea).

    PubMed

    Kim, Jung Sung; Kim, Joo-Hwan

    2013-01-01

    Monocots are one of the most diverse, successful and economically important clades of angiosperms. We attempt to analyse the complete plastid genome sequences of two lilies and their lengths were 152,793bp in Lilium longiflorum (Liliaceae) and 155,510bp in Alstroemeria aurea (Alstroemeriaceae). Phylogenetic analyses were performed for 28 taxa including major lineages of monocots using the sequences of 79 plastid genes for clarifying the phylogenetic relationship of the order Liliales. The sister relationship of Liliales and Asparagales-commelinids was improved with high resolution. Comparative analyses of inter-familial and inter-specific sequence variation were also carried out among three families of Liliaceae, Smilacaceae, and Alstroemeriaceae, and between two Lilium species of L. longflorum and L. superbum. Gene content and order were conserved in the order Liliales except infA loss in Smilax and Alstroemeria. IR boundaries were similar in IRa, however, IRb showed different extension patterns as JLB of Smilax and JSB in Alstroemeria. Ka/Ks ratio was high in matK among the pair-wise comparison of three families and the most variable genes were psaJ, ycf1, rpl32, rpl22, matK, and ccsA among the three families and rps15, rpoA, matK, and ndhF between Lilium.

  8. Comparative Genome Analysis and Phylogenetic Relationship of Order Liliales Insight from the Complete Plastid Genome Sequences of Two Lilies (Lilium longiflorum and Alstroemeria aurea)

    PubMed Central

    Kim, Jung Sung; Kim, Joo-Hwan

    2013-01-01

    Monocots are one of the most diverse, successful and economically important clades of angiosperms. We attempt to analyse the complete plastid genome sequences of two lilies and their lengths were 152,793bp in Liliumlongiflorum (Liliaceae) and 155,510bp in Alstroemeriaaurea (Alstroemeriaceae). Phylogenetic analyses were performed for 28 taxa including major lineages of monocots using the sequences of 79 plastid genes for clarifying the phylogenetic relationship of the order Liliales. The sister relationship of Liliales and Asparagales-commelinids was improved with high resolution. Comparative analyses of inter-familial and inter-specific sequence variation were also carried out among three families of Liliaceae, Smilacaceae, and Alstroemeriaceae, and between two Lilium species of L. longflorum and L. superbum. Gene content and order were conserved in the order Liliales except infA loss in Smilax and Alstroemeria. IR boundaries were similar in IRa, however, IRb showed different extension patterns as JLB of Smilax and JSB in Alstroemeria. Ka/Ks ratio was high in matK among the pair-wise comparison of three families and the most variable genes were psaJ, ycf1, rpl32, rpl22, matK, and ccsA among the three families and rps15, rpoA, matK, and ndhF between Lilium. PMID:23950788

  9. Comparative analysis of single nucleotide polymorphisms in the nuclear, chloroplast, and mitochondrial genomes in identification of phylogenetic association among seven melon (Cucumis melo L.) cultivars

    PubMed Central

    Zhu, Qianglong; Gao, Peng; Liu, Shi; Amanullah, Sikandar; Luan, Feishi

    2016-01-01

    A variety of melons are cultivated worldwide, and their specific biological properties make them an attractive model for molecular studies. This study aimed to investigate the single nucleotide polymorphisms (SNPs) from the mitochondrial, chloroplast, and nuclear genomes of seven melon accessions (Cucumis melo L.) to identify the phylogenetic relationships among melon cultivars with the Illumina HiSeq 2000 platform and bioinformatical analyses. The data showed that there were a total of 658 mitochondrial SNPs (207–295 in each), while there were 0–60 chloroplast SNPs among these seven melon cultivars, compared to the reference genome. Bioinformatical analysis showed that the mitochondrial tree topology was unable to separate the melon features, whereas the maximum parsimony/neighbor joining (MP/NJ) tree of the chloroplast SNPs could define melon features such as seed length, width, thickness, 100-seed weight, and type. SNPs of the nuclear genome were better than the mitochondrial and chloroplast SNPs in the identification of melon features. The data demonstrated the usefulness of mitochondrial, chloroplast, and nuclear SNPs in identification of phylogenetic associations among these seven melon cultivars. PMID:28163587

  10. Comparative genomic analysis of a neurotoxigenic Clostridium species using partial genome sequence: Phylogenetic analysis of a few conserved proteins involved in cellular processes and metabolism.

    PubMed

    Alam, Syed Imteyaz; Dixit, Aparna; Tomar, Arvind; Singh, Lokendra

    2010-04-01

    Clostridial organisms produce neurotoxins, which are generally regarded as the most potent toxic substances of biological origin and potential biological warfare agents. Clostridium tetani produces tetanus neurotoxin and is responsible for the fatal tetanus disease. In spite of the extensive immunization regimen, the disease is an important cause of death especially among neonates. Strains of C. tetani have not been genetically characterized except the complete genome sequencing of strain E88. The present study reports the genetic makeup and phylogenetic affiliations of an environmental strain of this bacterium with respect to C. tetani E88 and other clostridia. A shot gun library was constructed from the genomic DNA of C. tetani drde, isolated from decaying fish sample. Unique clones were sequenced and sequences compared with its closest relative C. tetani E88. A total of 275 clones were obtained and 32,457 bases of non-redundant sequence were generated. A total of 150 base changes were observed over the entire length of sequence obtained, including, additions, deletions and base substitutions. Of the total 120 ORFs detected, 48 exhibited closest similarity to E88 proteins of which three are hypothetical proteins. Eight of the ORFs exhibited similarity with hypothetical proteins from other organisms and 10 aligned with other proteins from unrelated organisms. There is an overall conservation of protein sequences among the two strains of C. tetani and. Selected ORFs involved in cellular processes and metabolism were subjected to phylogenetic analysis.

  11. Comparative evaluation of two commercial multiplex panels for detection of gastrointestinal pathogens by use of clinical stool specimens.

    PubMed

    Khare, Reeti; Espy, Mark J; Cebelinski, Elizabeth; Boxrud, David; Sloan, Lynne M; Cunningham, Scott A; Pritt, Bobbi S; Patel, Robin; Binnicker, Matthew J

    2014-10-01

    The detection of pathogens associated with gastrointestinal disease may be important in certain patient populations, such as immunocompromised hosts, the critically ill, or individuals with prolonged disease that is refractory to treatment. In this study, we evaluated two commercially available multiplex panels (the FilmArray gastrointestinal [GI] panel [BioFire Diagnostics, Salt Lake City, UT] and the Luminex xTag gastrointestinal pathogen panel [GPP] [Luminex Corporation, Toronto, Canada]) using Cary-Blair stool samples (n = 500) submitted to our laboratory for routine GI testing (e.g., culture, antigen testing, microscopy, and individual real-time PCR). At the time of this study, the prototype (non-FDA-cleared) FilmArray GI panel targeted 23 pathogens (14 bacterial, 5 viral, and 4 parasitic), and testing of 200 μl of Cary-Blair stool was recommended. In contrast, the Luminex GPP assay was FDA cleared for the detection of 11 pathogens (7 bacterial, 2 viral, and 2 parasitic), but had the capacity to identify 4 additional pathogens using a research-use-only protocol. Importantly, the Luminex assay was FDA cleared for 100 μl raw stool; however, 100 μl Cary-Blair stool was tested by the Luminex assay in this study. Among 230 prospectively collected samples, routine testing was positive for one or more GI pathogens in 19 (8.3%) samples, compared to 76 (33.0%) by the FilmArray and 69 (30.3%) by the Luminex assay. Clostridium difficile (12.6 to 13.9% prevalence) and norovirus genogroup I (GI)/GII (5.7 to 13.9% prevalence) were two of the pathogens most commonly detected by both assays among prospective samples. Sapovirus was also commonly detected (5.7% positive rate) by the FilmArray assay. Among 270 additional previously characterized samples, both multiplex panels demonstrated high sensitivity (>90%) for the majority of targets, with the exception of several pathogens, notably Aeromonas sp. (23.8%) by FilmArray and Yersinia enterocolitica (48.1%) by the Luminex

  12. Comparative In silico Analysis of Butyrate Production Pathways in Gut Commensals and Pathogens

    PubMed Central

    Anand, Swadha; Kaur, Harrisham; Mande, Sharmila S.

    2016-01-01

    Biosynthesis of butyrate by commensal bacteria plays a crucial role in maintenance of human gut health while dysbiosis in gut microbiome has been linked to several enteric disorders. Contrastingly, butyrate shows cytotoxic effects in patients with oral diseases like periodontal infections and oral cancer. In addition to these host associations, few syntrophic bacteria couple butyrate degradation with sulfate reduction and methane production. Thus, it becomes imperative to understand the distribution of butyrate metabolism pathways and delineate differences in substrate utilization between pathogens and commensals. The bacteria utilize four pathways for butyrate production with different initial substrates (Pyruvate, 4-aminobutyrate, Glutarate and Lysine) which follow a polyphyletic distribution. A comprehensive mining of complete/draft bacterial genomes indicated conserved juxtaposed genomic arrangement in all these pathways. This gene context information was utilized for an accurate annotation of butyrate production pathways in bacterial genomes. Interestingly, our analysis showed that inspite of a beneficial impact of butyrate in gut, not only commensals, but a few gut pathogens also possess butyrogenic pathways. The results further illustrated that all the gut commensal bacteria (Faecalibacterium, Roseburia, Butyrivibrio, and commensal species of Clostridia etc) ferment pyruvate for butyrate production. On the contrary, the butyrogenic gut pathogen Fusobacterium utilizes different amino acid metabolism pathways like those for Glutamate (4-aminobutyrate and Glutarate) and Lysine for butyrogenesis which leads to a concomitant release of harmful by-products like ammonia in the process. The findings in this study indicate that commensals and pathogens in gut have divergently evolved to produce butyrate using distinct pathways. No such evolutionary selection was observed in oral pathogens (Porphyromonas and Filifactor) which showed presence of pyruvate as well as

  13. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity.

    PubMed

    Clarke, Christopher R; Hayes, Byron W; Runde, Brendan J; Markel, Eric; Swingle, Bryan M; Vinatzer, Boris A

    2016-01-01

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to move towards favorable environmental conditions. Chemotactic sensing of the plant surface is a potential mechanism through which foliar plant pathogens home in on wounds or stomata, but chemotactic systems in foliar plant pathogens are not well characterized. Comparative genomics of the plant pathogen Pseudomonas syringae pathovar tomato (Pto) implicated annotated chemotaxis genes in the recent adaptations of one Pto lineage. We therefore characterized the chemosensory system of Pto. The Pto genome contains two primary chemotaxis gene clusters, che1 and che2. The che2 cluster is flanked by flagellar biosynthesis genes and similar to the canonical chemotaxis gene clusters of other bacteria based on sequence and synteny. Disruption of the primary phosphorelay kinase gene of the che2 cluster, cheA2, eliminated all swimming and surface motility at 21 °C but not 28 °C for Pto. The che1 cluster is located next to Type IV pili biosynthesis genes but disruption of cheA1 has no observable effect on twitching motility for Pto. Disruption of cheA2 also alters in planta fitness of the pathogen with strains lacking functional cheA2 being less fit in host plants but more fit in a non-host interaction.

  14. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    PubMed Central

    Hayes, Byron W.; Runde, Brendan J.; Markel, Eric; Swingle, Bryan M.; Vinatzer, Boris A.

    2016-01-01

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to move towards favorable environmental conditions. Chemotactic sensing of the plant surface is a potential mechanism through which foliar plant pathogens home in on wounds or stomata, but chemotactic systems in foliar plant pathogens are not well characterized. Comparative genomics of the plant pathogen Pseudomonas syringae pathovar tomato (Pto) implicated annotated chemotaxis genes in the recent adaptations of one Pto lineage. We therefore characterized the chemosensory system of Pto. The Pto genome contains two primary chemotaxis gene clusters, che1 and che2. The che2 cluster is flanked by flagellar biosynthesis genes and similar to the canonical chemotaxis gene clusters of other bacteria based on sequence and synteny. Disruption of the primary phosphorelay kinase gene of the che2 cluster, cheA2, eliminated all swimming and surface motility at 21 °C but not 28 °C for Pto. The che1 cluster is located next to Type IV pili biosynthesis genes but disruption of cheA1 has no observable effect on twitching motility for Pto. Disruption of cheA2 also alters in planta fitness of the pathogen with strains lacking functional cheA2 being less fit in host plants but more fit in a non-host interaction. PMID:27812402

  15. Phylogenetic relationships of Phytophthora andina, a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogen Phytophthora infestans.

    PubMed

    Gómez-Alpizar, Luis; Hu, Chia-Hui; Oliva, Ricardo; Forbes, Gregory; Ristaino, Jean Beagle

    2008-01-01

    Phylogenetic relationships of Phytophthora infestans sensu lato in the Andean highlands of South America were examined. Three clonal lineages (US-1, EC-1, EC-3) and one heterogeneous lineage (EC-2) were found in association with different host species in genus Solanum. The EC-2 lineage includes two mitochondrial (mtDNA) haplotypes, Ia and Ic. Isolates of P. infestans sensu lato EC-2 fit the morphological description of P. infestans but are different from any genotypes of P. infestans described to date. All isolates of P. infestans sensu lato from Ecuador were amplified by a P. infestans specific primer (PINF), and restriction fragment length patterns were identical in isolates amplified with ITS primers 4 and 5. The EC-1 clonal lineage of P. infestans sensu lato from S. andreanum, S. columbianum, S. paucijugum, S. phureja, S. regularifolium, S. tuberosum and S. tuquerense was confirmed to be P. infestans based on sequences of the cytochrome oxidase I (cox I) gene and intron 1 of ras gene. The EC-2 isolates with the Ic haplotype formed a distinct branch in the same clade with P. infestans and P. mirabilis, P. phaseoli and P. ipomoeae for both cox I and ras intron 1 phylogenies and were identified as the newly described species P. andina. Ras intron 1 sequence data suggests that P. andina might have arisen via hybridization between P. infestans and P. mirabilis.

  16. Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis

    PubMed Central

    Facey, Paul D.; Méric, Guillaume; Hitchings, Matthew D.; Pachebat, Justin A.; Hegarty, Matt J.; Chen, Xiaorui; Morgan, Laura V.A.; Hoeppner, James E.; Whitten, Miranda M.A.; Kirk, William D.J.; Dyson, Paul J.; Sheppard, Sam K.; Sol, Ricardo Del

    2015-01-01

    Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. PMID:26185096

  17. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    PubMed

    Qhanya, Lehlohonolo Benedict; Matowane, Godfrey; Chen, Wanping; Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  18. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens

    PubMed Central

    Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  19. Comparative analysis of pathogenic organisms in cockroaches from different community settings in Edo State, Nigeria.

    PubMed

    Isaac, Clement; Orue, Philip Ogbeide; Iyamu, Mercy Itohan; Ehiaghe, Joy Imuetiyan; Isaac, Osesojie

    2014-04-01

    Cockroaches are abundant in Nigeria and are seen to harbour an array of pathogens. Environmental and sanitary conditions associated with demographic/socio-economic settings of an area could contribute to the prevalence of disease pathogens in cockroaches. A total of 246 cockroaches (Periplaneta americana) in urban (Benin, n=91), semi-urban (Ekpoma, n=75) and rural (Emuhi, n=70) settings in Edo State, Nigeria were collected within and around households. The external body surfaces and alimentary canal of these cockroaches were screened for bacterial, fungal, and parasitological infections. Bacillus sp. and Escherichia coli were the most common bacteria in cockroaches. However, Enterococcus faecalis could not be isolated in cockroaches trapped from Ekpoma and Emuhi. Aspergillus niger was the most prevalent fungus in Benin and Ekpoma, while Mucor sp. was predominant in Emuhi. Parasitological investigations revealed the preponderance of Ascaris lumbricoides in Benin and Emuhi, while Trichuris trichura was the most predominant in Ekpoma. The prevalence and burden of infection in cockroaches is likely to be a reflection of the sanitary conditions of these areas. Also, cockroaches in these areas making incursions in homes may increase the risk of human infections with these disease agents.

  20. Microevolutionary traits and comparative population genomics of the emerging pathogenic fungus Cryptococcus gattii

    PubMed Central

    Voelz, Kerstin; Henk, Daniel A.; Johnston, Simon A.; May, Robin C.

    2016-01-01

    Emerging fungal pathogens cause an expanding burden of disease across the animal kingdom, including a rise in morbidity and mortality in humans. Yet, we currently have only a limited repertoire of available therapeutic interventions. A greater understanding of the mechanisms of fungal virulence and of the emergence of hypervirulence within species is therefore needed for new treatments and mitigation efforts. For example, over the past decade, an unusual lineage of Cryptococcus gattii, which was first detected on Vancouver Island, has spread to the Canadian mainland and the Pacific Northwest infecting otherwise healthy individuals. The molecular changes that led to the development of this hypervirulent cryptococcal lineage remain unclear. To explore this, we traced the history of similar microevolutionary events that can lead to changes in host range and pathogenicity. Here, we detail fine-resolution mapping of genetic differences between two highly related Cryptococcus gattii VGIIc isolates that differ in their virulence traits (phagocytosis, vomocytosis, macrophage death, mitochondrial tubularization and intracellular proliferation). We identified a small number of single site variants within coding regions that potentially contribute to variations in virulence. We then extended our methods across multiple lineages of C. gattii to study how selection is acting on key virulence genes within different lineages. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080992

  1. Comparative Analysis of Pathogenic Organisms in Cockroaches from Different Community Settings in Edo State, Nigeria

    PubMed Central

    Orue, Philip Ogbeide; Iyamu, Mercy Itohan; Ehiaghe, Joy Imuetiyan; Isaac, Osesojie

    2014-01-01

    Cockroaches are abundant in Nigeria and are seen to harbour an array of pathogens. Environmental and sanitary conditions associated with demographic/socio-economic settings of an area could contribute to the prevalence of disease pathogens in cockroaches. A total of 246 cockroaches (Periplaneta americana) in urban (Benin, n=91), semi-urban (Ekpoma, n=75) and rural (Emuhi, n=70) settings in Edo State, Nigeria were collected within and around households. The external body surfaces and alimentary canal of these cockroaches were screened for bacterial, fungal, and parasitological infections. Bacillus sp. and Escherichia coli were the most common bacteria in cockroaches. However, Enterococcus faecalis could not be isolated in cockroaches trapped from Ekpoma and Emuhi. Aspergillus niger was the most prevalent fungus in Benin and Ekpoma, while Mucor sp. was predominant in Emuhi. Parasitological investigations revealed the preponderance of Ascaris lumbricoides in Benin and Emuhi, while Trichuris trichura was the most predominant in Ekpoma. The prevalence and burden of infection in cockroaches is likely to be a reflection of the sanitary conditions of these areas. Also, cockroaches in these areas making incursions in homes may increase the risk of human infections with these disease agents. PMID:24850961

  2. A HindIII BAC library construction of Mesobuthus martensii Karsch (Scorpiones:Buthidae): an important genetic resource for comparative genomics and phylogenetic analysis.

    PubMed

    Li, Songryong; Ma, Yibao; Jang, Shenghun; Wu, Yingliang; Liu, Hui; Cao, Zhijian; Li, Wenxin

    2009-12-01

    Scorpions are "living but sophisticated fossils" that have changed little in their morphology since their first appearance over the past 450 million years ago. To provide a genetic resource for understanding the evolution of scorpion genome and the relationships between scorpions and other organisms, we first determined the genome size of the scorpion Mesobuthus martensii Karsch (about 600 Mbp) in the order Scorpiones and constructed a HindIII BAC library of the male scorpion M. martensii Karsch from China. The BAC library consists of a total of 46,080 clones with an average insert size of 100 kb, providing a 7.7-fold coverage of the scorpion haploid genome size of 600 Mbp as revealed in this study. High-density colony hybridization-based library screening was performed using 18S-5.8S-28S rRNA gene that is one of the most commonly used phylogenetic markers. Both library screening and PCR identification results revealed six positive BAC clones which were overlapped, and formed a contig of approximately 120 kb covering the rDNA. BAC DNA sequencing analysis determined the complete sequence of M. martensii Karsch rDNA unit that has a total length of 8779 bp, including 1813 bp 18s rDNA, 157 bp 5.8s rDNA, 3823 bp 28s rDNA, 530 bp ETS, 2168 bp ITS1 and 288 bp ITS2. Interestingly, some tandem repeats are present in the rRNA intergenic sequence (IGS) and ITS1/2 regions. These results demonstrated that the BAC library of the scorpion M. martensii Karsch and the complete sequence of rDNA unit will provide important genetic resources and tools for comparative genomics and phylogenetic analysis.

  3. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications.

    PubMed

    Chang, Ching-Chun; Lin, Hsien-Chia; Lin, I-Pin; Chow, Teh-Yuan; Chen, Hong-Hwa; Chen, Wen-Huei; Cheng, Chia-Hsiung; Lin, Chung-Yen; Liu, Shu-Mei; Chang, Chien-Chang; Chaw, Shu-Miaw

    2006-02-01

    Whether the Amborella/Amborella-Nymphaeales or the grass lineage diverged first within the angiosperms has recently been debated. Central to this issue has been focused on the artifacts that might result from sampling only grasses within the monocots. We therefore sequenced the entire chloroplast genome (cpDNA) of Phalaenopsis aphrodite, Taiwan moth orchid. The cpDNA is a circular molecule of 148,964 bp with a comparatively short single-copy region (11,543 bp) due to the unusual loss and truncation/scattered deletion of certain ndh subunits. An open reading frame, orf91, located in the complementary strand of the rrn23 was reported for the first time. A comparison of nucleotide substitutions between P. aphrodite and the grasses indicates that only the plastid expression genes have a strong positive correlation between nonsynonymous (Ka) and synonymous (Ks) substitutions per site, providing evidence for a generation time effect, mainly across these genes. Among the intron-containing protein-coding genes of the sampled monocots, the Ks of the genes are significantly correlated to transitional substitutions of their introns. We compiled a concatenated 61 protein-coding gene alignment for the available 20 cpDNAs of vascular plants and analyzed the data set using Bayesian inference, maximum parsimony, and neighbor-joining (NJ) methods. The analyses yielded robust support for the Amborella/Amborella-Nymphaeales-basal hypothesis and for the orchid and grasses together being a monophyletic group nested within the remaining angiosperms. However, the NJ analysis using Ka, the first two codon positions, or amino acid sequences, respectively, supports the monocots-basal hypothesis. We demonstrated that these conflicting angiosperm phylogenies are most probably linked to the transitional sites at all codon positions, especially at the third one where the strong base-composition bias and saturation effect take place.

  4. Comparative efficacy and pathogenicity of keratinophilic soil fungi against Culex quinquefasciatus larvae.

    PubMed

    Mohanty, Suman Sundar; Prakash, Soam

    2010-09-01

    Out of seven fungal species belonging to four genera isolated from pond and wallow soils using feathers of Pavo cristatus as bait, four species viz., Aspergillus flavus, Aspergillus niger, Chrysosporium pseudomerdarium and Trichophyton ajelloi were most frequent. Chrysosporium and Trichophyton spp. were more pathogenic on Culex quinquefasciatus larvae than Aspergillus and Penicillium. The bioefficacy tests conducted as per the protocol of World Health Organization and the LC(50) values calculated by the Probit analysis showed that 3(rd)-instar C. quinquefasciatus were more susceptible to the conidia of above fungi. Highest mortality was observed in the larvae of C. quinquefasciatus when exposed to T. ajelloi. The density of fungal conidia was greatest on the ventral brush, palmate hair and anal region of the mosquito larvae after exposing for 72 hours. The potentiality of these fungi for use in the control of C. quinquefasciatus is discussed which can be exploited as a suitable biocontrol agent in the tropics.

  5. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus

    PubMed Central

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the “harmful” internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs. PMID:26973600

  6. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus.

    PubMed

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs.

  7. Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes.

    PubMed

    Sharma, Rahul; Xia, Xiaojuan; Riess, Kai; Bauer, Robert; Thines, Marco

    2015-08-27

    Ceraceosorus bombacis is an early-diverging lineage of smut fungi and a pathogen of cotton trees (Bombax ceiba). To study the evolutionary genomics of smut fungi in comparison with other fungal and oomycete pathogens, the genome of C. bombacis was sequenced and comparative genomic analyses were performed. The genome of 26.09 Mb encodes for 8,024 proteins, of which 576 are putative-secreted effector proteins (PSEPs). Orthology analysis revealed 30 ortholog PSEPs among six Ustilaginomycotina genomes, the largest groups of which are lytic enzymes, such as aspartic peptidase and glycoside hydrolase. Positive selection analyses revealed the highest percentage of positively selected PSEPs in C. bombacis compared with other Ustilaginomycotina genomes. Metabolic pathway analyses revealed the absence of genes encoding for nitrite and nitrate reductase in the genome of the human skin pathogen Malassezia globosa, but these enzymes are present in the sequenced plant pathogens in smut fungi. Interestingly, these genes are also absent in cultivable oomycete animal pathogens, while nitrate reductase has been lost in cultivable oomycete plant pathogens. Similar patterns were also observed for obligate biotrophic and hemi-biotrophic fungal and oomycete pathogens. Furthermore, it was found that both fungal and oomycete animal pathogen genomes are lacking cutinases and pectinesterases. Overall, these findings highlight the parallel evolution of certain genomic traits, revealing potential common evolutionary trajectories among fungal and oomycete pathogens, shaping the pathogen genomes according to their lifestyle.

  8. A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae).

    PubMed

    Denton, John S S; Adams, Dean C

    2015-09-01

    The interplay between evolutionary rates and modularity influences the evolution of organismal body plans by both promoting and constraining the magnitude and direction of trait response to ecological conditions. However, few studies have examined whether the best-fit hypothesis of modularity is the same as the shape subset with the greatest difference in evolutionary rate. Here, we develop a new phylogenetic comparative method for comparing evolutionary rates among high-dimensional traits, and apply this method to analyze body shape evolution in bioluminescent lanternfishes. We frame the study of evolutionary rates and modularity through analysis of three hypotheses derived from the literature on fish development, biomechanics, and bioluminescent communication. We show that a development-informed partitioning of shape exhibits the greatest evolutionary rate differences among modules, but that a hydrodynamically informed partitioning is the best-fit modularity hypothesis. Furthermore, we show that bioluminescent lateral photophores evolve at a similar rate as, and are strongly integrated with, body shape in lanternfishes. These results suggest that overlapping life-history constraints on development and movement define axes of body shape evolution in lanternfishes, and that the positions of their lateral photophore complexes are likely a passive outcome of the interaction of these ecological pressures.

  9. The phylogenetic diversity of metagenomes.

    PubMed

    Kembel, Steven W; Eisen, Jonathan A; Pollard, Katherine S; Green, Jessica L

    2011-01-01

    Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context.

  10. Comparative genomics reveals multiple genetic backgrounds of human pathogenicity in the Trypanosoma brucei complex.

    PubMed

    Sistrom, Mark; Evans, Benjamin; Bjornson, Robert; Gibson, Wendy; Balmer, Oliver; Mäser, Pascal; Aksoy, Serap; Caccone, Adalgisa

    2014-10-05

    The Trypanosoma brucei complex contains a number of subspecies with exceptionally variable life histories, including zoonotic subspecies, which are causative agents of human African trypanosomiasis (HAT) in sub-Saharan Africa. Paradoxically, genomic variation between taxa is extremely low. We analyzed the whole-genome sequences of 39 isolates across the T. brucei complex from diverse hosts and regions, identifying 608,501 single nucleotide polymorphisms that represent 2.33% of the nuclear genome. We show that human pathogenicity occurs across a wide range of parasite genotypes, and taxonomic designation does not reflect genetic variation across the group, as previous studies have suggested based on a small number of genes. This genome-wide study allowed the identification of significant host and geographic location associations. Strong purifying selection was detected in genomic regions associated with cytoskeleton structure, and regulatory genes associated with antigenic variation, suggesting conservation of these regions in African trypanosomes. In agreement with expectations drawn from meiotic reciprocal recombination, differences in average linkage disequilibrium between chromosomes in T. brucei correlate positively with chromosome size. In addition to insights into the life history of a diverse group of eukaryotic parasites, the documentation of genomic variation across the T. brucei complex and its association with specific hosts and geographic localities will aid in the development of comprehensive monitoring tools crucial to the proposed elimination of HAT by 2020, and on a shorter term, for monitoring the feared merger between the two human infective parasites, T. brucei rhodesiense and T. b. gambiense, in northern Uganda.

  11. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae

    PubMed Central

    Laue, Bridget E.; Sharp, Paul M.; Green, Sarah

    2016-01-01

    Summary The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae. PMID:27145446

  12. Comparative genomics of phylogenetically diverse unicellular eukaryotes provide new insights into the genetic basis for the evolution of the programmed cell death machinery.

    PubMed

    Nedelcu, Aurora M

    2009-03-01

    Programmed cell death (PCD) represents a significant component of normal growth and development in multicellular organisms. Recently, PCD-like processes have been reported in single-celled eukaryotes, implying that some components of the PCD machinery existed early in eukaryotic evolution. This study provides a comparative analysis of PCD-related sequences across more than 50 unicellular genera from four eukaryotic supergroups: Unikonts, Excavata, Chromalveolata, and Plantae. A complex set of PCD-related sequences that correspond to domains or proteins associated with all main functional classes--from ligands and receptors to executors of PCD--was found in many unicellular lineages. Several PCD domains and proteins previously thought to be restricted to animals or land plants are also present in unicellular species. Noteworthy, the yeast, Saccharomyces cerevisiae--used as an experimental model system for PCD research, has a rather reduced set of PCD-related sequences relative to other unicellular species. The phylogenetic distribution of the PCD-related sequences identified in unicellular lineages suggests that the genetic basis for the evolution of the complex PCD machinery present in extant multicellular lineages has been established early in the evolution of eukaryotes. The shaping of the PCD machinery in multicellular lineages involved the duplication, co-option, recruitment, and shuffling of domains already present in their unicellular ancestors.

  13. Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii

    PubMed Central

    Batra, Dhwani; Replogle, Adam; Rowe, Lori A.; Pritt, Bobbi S.; Petersen, Jeannine M.

    2016-01-01

    Borrelia mayonii, a Borrelia burgdorferi sensu lato (Bbsl) genospecies, was recently identified as a cause of Lyme borreliosis (LB) among patients from the upper midwestern United States. By microscopy and PCR, spirochete/genome loads in infected patients were estimated at 105 to 106 per milliliter of blood. Here, we present the full chromosome and plasmid sequences of two B. mayonii isolates, MN14-1420 and MN14-1539, cultured from blood of two of these patients. Whole genome sequencing and assembly was conducted using PacBio long read sequencing (Pacific Biosciences RSII instrument) followed by hierarchical genome-assembly process (HGAP). The B. mayonii genome is ~1.31 Mbp in size (26.9% average GC content) and is comprised of a linear chromosome, 8 linear and 7 circular plasmids. Consistent with its taxonomic designation as a new Bbsl genospecies, the B. mayonii linear chromosome shares only 93.83% average nucleotide identity with other genospecies. Both B. mayonii genomes contain plasmids similar to B. burgdorferi sensu stricto lp54, lp36, lp28-3, lp28-4, lp25, lp17, lp5, 5 cp32s, cp26, and cp9. The vls locus present on lp28-10 of B. mayonii MN14-1420 is remarkably long, being comprised of 24 silent vls cassettes. Genetic differences between the two B. mayonii genomes are limited and include 15 single nucleotide variations as well as 7 fewer silent vls cassettes and a lack of the lp5 plasmid in MN14-1539. Notably, 68 homologs to proteins present in B. burgdorferi sensu stricto appear to be lacking from the B. mayonii genomes. These include the complement inhibitor, CspZ (BB_H06), the fibronectin binding protein, BB_K32, as well as multiple lipoproteins and proteins of unknown function. This study shows the utility of long read sequencing for full genome assembly of Bbsl genomes, identifies putative genome regions of B. mayonii that may be linked to clinical manifestation or tissue tropism, and provides a valuable resource for pathogenicity, diagnostic and

  14. Comparative Transcriptome Analysis of Vibrio splendidus JZ6 Reveals the Mechanism of Its Pathogenicity at Low Temperatures

    PubMed Central

    Liu, Rui; Chen, Hao; Zhang, Ran; Zhou, Zhi; Hou, Zhanhui; Gao, Dahai; Zhang, Huan; Wang, Lingling

    2016-01-01

    Yesso scallop-pathogenic Vibrio splendidus strain JZ6 was found to have the highest virulence at 10°C, while its pathogenicity was significantly reduced with increased temperature and completely incapacitated at 28°C. In the present study, comparative transcriptome analyses of JZ6 and another nonpathogenic V. splendidus strain, TZ19, were conducted at two crucial culture temperatures (10°C and 28°C) in order to determine the possible mechanism of temperature regulation of virulence. Comparisons among four libraries, constructed from JZ6 and TZ19 cultured at 10°C and 28°C (designated JZ6_10, JZ6_28, TZ19_10, and TZ19_28), revealed that 241 genes were possibly related to the increased virulence of JZ6 at 10°C. There were 10 genes, including 2 encoding Flp pilus assembly proteins (FlhG and VS_2437), 6 encoding proteins of the “Vibrio cholerae pathogenic cycle” (ToxS, CqsA, CqsS, RpoS, HapR, and Vsm), and 2 encoding proteins in the Sec-dependent pathway (SecE and FtsY), that were significantly upregulated in JZ6_10 (P < 0.05) compared to those in JZ6_28, TZ19_10, and TZ19_28, which were supposed to be responsible for adhesion, quorum sensing, virulence, and protein secretion of V. splendidus. When cultured at 10°C, JZ6 cells were larger and tended to aggregate more than those cultured at 28°C. The virulence factor (extracellular metalloprotease) was also found to be highly expressed in the extracellular product (ECP) of JZ6 at 10°C, and this ECP exhibited obvious cytotoxicity to oyster primary hemocytes, A549 cells, and L929 cells. These results indicated that low temperatures (10°C) could enhance adhesion, activate the quorum sensing systems, upregulate virulence factor synthesis and secretion, and, lastly, increase the pathogenicity of JZ6. PMID:26801576

  15. Comparative Genomics of the Zoonotic Pathogen Ehrlichia chaffeensis Reveals Candidate Type IV Effectors and Putative Host Cell Targets

    PubMed Central

    Noroy, Christophe; Meyer, Damien F.

    2017-01-01

    During infection, some intracellular pathogenic bacteria use a dedicated multiprotein complex known as the type IV secretion system to deliver type IV effector (T4E) proteins inside the host cell. These T4Es allow the bacteria to evade host defenses and to subvert host cell processes to their own advantage. Ehrlichia chaffeensis is a tick-transmitted obligate intracellular pathogenic bacterium, which causes human monocytic ehrlichiosis. Using comparative whole genome analysis, we identified the relationship between eight available E. chaffeensis genomes isolated from humans and show that these genomes are highly conserved. We identified the candidate core type IV effectome of E. chaffeensis and some conserved intracellular adaptive strategies. We assigned the West Paces strain to genetic group II and predicted the repertoires of T4Es encoded by E. chaffeensis genomes, as well as some putative host cell targets. We demonstrated that predicted T4Es are preferentially distributed in gene sparse regions of the genome. In addition to the identification of the two known type IV effectors of Anaplasmataceae, we identified two novel candidates T4Es, ECHLIB_RS02720 and ECHLIB_RS04640, which are not present in all E. chaffeensis strains and could explain some variations in inter-strain virulence. We also identified another novel candidate T4E, ECHLIB_RS02720, a hypothetical protein exhibiting EPIYA, and NLS domains as well as a classical type IV secretion signal, suggesting an important role inside the host cell. Overall, our results agree with current knowledge of Ehrlichia molecular pathogenesis, and reveal novel candidate T4Es that require experimental validation. This work demonstrates that comparative effectomics enables identification of important host pathways targeted by the bacterial pathogen. Our study, which focuses on the type IV effector repertoires among several strains of E. chaffeensis species, is an original approach and provides rational putative targets

  16. Comparative methylome analysis of the occasional ruminant respiratory pathogen Bibersteinia trehalosi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four strains of Bibersteinia trehalosi have been sequenced and both their genomes and methylomes compared. Three of the strains, 188, 189 and 192, are very similar while strain 190 is significantly different in several aspects. Within these strains differential methylation patterns are observed an...

  17. Molecular phylogenetics before sequences

    PubMed Central

    Ragan, Mark A; Bernard, Guillaume; Chan, Cheong Xin

    2014-01-01

    From 1971 to 1985, Carl Woese and colleagues generated oligonucleotide catalogs of 16S/18S rRNAs from more than 400 organisms. Using these incomplete and imperfect data, Carl and his colleagues developed unprecedented insights into the structure, function, and evolution of the large RNA components of the translational apparatus. They recognized a third domain of life, revealed the phylogenetic backbone of bacteria (and its limitations), delineated taxa, and explored the tempo and mode of microbial evolution. For these discoveries to have stood the test of time, oligonucleotide catalogs must carry significant phylogenetic signal; they thus bear re-examination in view of the current interest in alignment-free phylogenetics based on k-mers. Here we consider the aims, successes, and limitations of this early phase of molecular phylogenetics. We computationally generate oligonucleotide sets (e-catalogs) from 16S/18S rRNA sequences, calculate pairwise distances between them based on D2 statistics, compute distance trees, and compare their performance against alignment-based and k-mer trees. Although the catalogs themselves were superseded by full-length sequences, this stage in the development of computational molecular biology remains instructive for us today. PMID:24572375

  18. Comparative pathogenicity, biocontrol efficacy, and multilocus sequence typing of Verticillium nonalfalfae from the invasive Ailanthus altissima and other hosts.

    PubMed

    Kasson, M T; Short, D P G; O'Neal, E S; Subbarao, K V; Davis, D D

    2014-03-01

    Verticillium wilt, caused by Verticillium nonalfalfae, is currently killing tens of thousands of highly invasive Ailanthus altissima trees within the forests in Pennsylvania, Ohio, and Virginia and is being considered as a biological control agent of Ailanthus. However, little is known about the pathogenicity and virulence of V. nonalfalfae isolates from other hosts on Ailanthus, or the genetic diversity among V. nonalfalfae from confirmed Ailanthus wilt epicenters and from locations and hosts not associated with Ailanthus wilt. Here, we compared the pathogenicity and virulence of several V. nonalfalfae and V. alfalfae isolates, evaluated the efficacy of the virulent V. nonalfalfae isolate VnAa140 as a biocontrol agent of Ailanthus in Pennsylvania, and performed multilocus sequence typing of V. nonalfalfae and V. alfalfae. Inoculations of seven V. nonalfalfae and V. alfalfae isolates from six plant hosts on healthy Ailanthus seedlings revealed that V. nonalfalfae isolates from hosts other than Ailanthus were not pathogenic on Ailanthus. In the field, 100 canopy Ailanthus trees were inoculated across 12 stands with VnAa140 from 2006 to 2009. By 2011, natural spread of the fungus had resulted in the mortality of >14,000 additional canopy Ailanthus trees, 10,000 to 15,000 Ailanthus sprouts, and nearly complete eradication of Ailanthus from several smaller inoculated stands, with the exception of a few scattered vegetative sprouts that persisted in the understory for several years before succumbing. All V. nonalfalfae isolates associated with the lethal wilt of Ailanthus, along with 18 additional isolates from 10 hosts, shared the same multilocus sequence type (MLST), MLST 1, whereas three V. nonalfalfae isolates from kiwifruit shared a second sequence type, MLST 2. All V. alfalfae isolates included in the study shared the same MLST and included the first example of V. alfalfae infecting a non-lucerne host. Our results indicate that V. nonalfalfae is host adapted and

  19. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    PubMed Central

    Ebbensgaard, Anna; Mordhorst, Hanne; Overgaard, Michael Toft; Nielsen, Claus Gyrup; Aarestrup, Frank Møller; Hansen, Egon Bech

    2015-01-01

    Analysis of a Selected Set of Antimicrobial Peptides The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. Cap18 Shows a High Broad Spectrum Antimicrobial Activity Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our

  20. Comparative in vitro activity of antimycotic agents against pathogenic vaginal yeast isolates.

    PubMed

    Lynch, M E; Sobel, J D

    1994-01-01

    Although numerous antimycotic agents are available for the treatment of yeast vaginitis there is little comparative data on the in vitro activity of these drugs. In the present two-part study, in vitro macro-broth dilution sensitivity tests were performed on a total of 377 clinical vaginal yeast isolates of nine different species. Antimycotics surveyed included amphotericin B, 5-fluorocytosine and eight azole derivatives. Results show that all vaginal Candida albicans isolates were uniformly sensitive at low concentration to all 10 antimycotics tested. However, non-albicans species, especially Candida glabrata and Saccharomyces cerevisiae, manifested several-fold increases in minimal inhibitory concentrations to all azoles tested except butoconazole. In particular, the in vitro potency of fluconazole and terconazole against species other than C. albicans was relatively poor, whereas the drugs demonstrating the best activity were itraconazole, butoconazole and saperconazole. Susceptibility testing of vaginal C. albicans isolates is not routinely indicated, even in patients with recurrent vaginitis and should be reserved for selected organisms, especially non-albicans species, in patients with clinical failure only.

  1. Sequencing and Comparative Genome Analysis of Two Pathogenic Streptococcus gallolyticus Subspecies: Genome Plasticity, Adaptation and Virulence

    PubMed Central

    Teng, Yu-Ting; Wu, Hui-Lun; Liu, Yen-Ming; Wu, Keh-Ming; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2011-01-01

    Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2). The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops. PMID:21633709

  2. Sequencing and comparative genome analysis of two pathogenic Streptococcus gallolyticus subspecies: genome plasticity, adaptation and virulence.

    PubMed

    Lin, I-Hsuan; Liu, Tze-Tze; Teng, Yu-Ting; Wu, Hui-Lun; Liu, Yen-Ming; Wu, Keh-Ming; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2011-01-01

    Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2). The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops.

  3. Comparative genomics of the pine pathogens and beetle symbionts in the genus Grosmannia.

    PubMed

    Massoumi Alamouti, Sepideh; Haridas, Sajeet; Feau, Nicolas; Robertson, Gordon; Bohlmann, Jörg; Breuil, Colette

    2014-06-01

    Studies on beetle/tree fungal symbionts typically characterize the ecological and geographic distributions of the fungal populations. There is limited understanding of the genome-wide evolutionary processes that act within and between species as such fungi adapt to different environments, leading to physiological differences and reproductive isolation. Here, we assess genomic evidence for such evolutionary processes by extending our recent work on Grosmannia clavigera, which is vectored by the mountain pine beetle and jeffrey pine beetle. We report the genome sequences of an additional 11 G. clavigera (Gc) sensu lato strains from the two known sibling species, Grosmannia sp. (Gs) and Gc. The 12 fungal genomes are structurally similar, showing large-scale synteny within and between species. We identified 103,430 single-nucleotide variations that separated the Grosmannia strains into divergent Gs and Gc clades, and further divided each of these clades into two subclades, one of which may represent an additional species. Comparing variable genes between these lineages, we identified truncated genes and potential pseudogenes, as well as seven genes that show evidence of positive selection. As these variable genes are involved in secondary metabolism and in detoxifying or utilizing host-tree defense chemicals (e.g., polyketide synthases, oxidoreductases, and mono-oxygenases), their variants may reflect adaptation to the specific chemistries of the host trees Pinus contorta, P. ponderosa, and P. jeffreyi. This work provides a comprehensive resource for developing informative markers for landscape population genomics of these ecologically and economically important fungi, and an approach that could be extended to other beetle-tree-associated fungi.

  4. Comparative virulence of urinary and bloodstream isolates of extra-intestinal pathogenic Escherichia coli in a Galleria mellonella model.

    PubMed

    Ciesielczuk, Holly; Betts, Jonathon; Phee, Lynnette; Doumith, Michel; Hope, Russell; Woodford, Neil; Wareham, David W

    2015-01-01

    Extra-intestinal pathogenic Escherichia coli (ExPEC) are a significant cause of urinary tract infections and bacteraemia worldwide. Currently no single virulence factor or ExPEC lineage has been identified as the sole contributor to severe extra-intestinal infection and/or urosepsis. Galleria mellonella has recently been established as a simple model for studying the comparative virulence of ExPEC. In this study we investigated the virulence of 40 well-characterized ExPEC strains, in G. mellonella, by measuring mortality (larvae survival), immune recognition/response (melanin production) and cell damage (lactate dehydrogenase production). Although mortality was similar between urinary and bloodstream isolates, it was heightened for community-associated infections, complicated UTIs and urinary-source bacteraemia. Isolates of ST131 and those possessing afa/dra, ompT and serogroup O6 were also associated with heightened virulence.

  5. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi

    PubMed Central

    Parsons, Marilyn; Worthey, Elizabeth A; Ward, Pauline N; Mottram, Jeremy C

    2005-01-01

    Background The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness, and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells. However, the ways in which the parasites respond to their environment and coordinate intracellular processes are poorly understood. As a part of an effort to understand parasite signaling functions, we report the results of a genome-wide analysis of protein kinases (PKs) of these three trypanosomatids. Results Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs) and atypical PKs (aPKs) revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are orthologous across the three species. This is approximately 30% of the number in the human host and double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC, STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are uncommon in trypanosomatid ePKs. Conclusion Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome, suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been possible to ascribe function

  6. Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records

    USGS Publications Warehouse

    Ginsberg, Howard S.

    2008-01-01

    Ticks are often infected with more than one pathogen, and several field surveys have documented nonrandom levels of coinfection. Levels of coinfection by pathogens in four tick species were analyzed using published infection data. Coinfection patterns of pathogens in field-collected ticks include numerous cases of higher or lower levels of coinfection than would be expected due to chance alone, but the vast majority of these cases can be explained on the basis of vertebrate host associations of the pathogens, without invoking interactions between pathogens within ticks. Nevertheless, some studies have demonstrated antagonistic interactions, and some have suggested potential mutualisms, between pathogens in ticks. Negative or positive interactions between pathogens within ticks can affect pathogen prevalence, and thus transmission patterns. Probabilistic projections suggest that the effect on transmission depends on initial conditions. When the number of tick bites is relatively low (e.g., for ticks biting humans) changes in prevalence in ticks are predicted to have a commensurate effects on pathogen transmission. In contrast, when the number of tick bites is high (e.g., for wild animal hosts) changes in pathogen prevalence in ticks have relatively little effect on levels of transmission to reservoir hosts, and thus on natural transmission cycles.

  7. Genome sequencing and comparative analysis of the carrot bacterial blight pathogen, Xanthomonas hortorum pv. carotae M081, for insights into pathogenicity and applications in molecular diagnostics.

    PubMed

    Kimbrel, Jeffrey A; Givan, Scott A; Temple, Todd N; Johnson, Kenneth B; Chang, Jeff H

    2011-08-01

    Xanthomonas hortorum pv. carotae (Xhc) is an economically important pathogen of carrots. Its ability to epiphytically colonize foliar surfaces and infect seeds can result in bacterial blight of carrots when grown in warm and humid regions. We used high-throughput sequencing to determine the genome sequence of isolate M081 of Xhc. The short reads were de novo assembled and the resulting contigs were ordered using a syntenic reference genome sequence from X. campestris pv. campestris ATCC 33913. The improved, high-quality draft genome sequence of Xhc M081 is the first for its species. Despite its distance from other sequenced xanthomonads, Xhc M081 still shared a large inventory of orthologous genes, including many clusters of virulence genes common to other foliar pathogenic species of Xanthomonas. We also mined the genome sequence and identified at least 21 candidate type III effector genes. Two were members of the avrBs2 and xopQ families that demonstrably elicit effector-triggered immunity. We showed that expression in planta of these two type III effectors from Xhc M081 was sufficient to elicit resistance gene-mediated hypersensitive responses in heterologous plants, indicating a possibility for resistance gene-mediated control of Xhc. Finally, we identified regions unique to the Xhc M081 genome sequence, and demonstrated their potential in the design of molecular diagnostics for this pathogen.

  8. Phylogenetic metrics of community similarity.

    PubMed

    Ives, Anthony R; Helmus, Matthew R

    2010-11-01

    We derive a new metric of community similarity that takes into account the phylogenetic relatedness among species. This metric, phylogenetic community dissimilarity (PCD), can be partitioned into two components, a nonphylogenetic component that reflects shared species between communities (analogous to Sørensen' s similarity metric) and a phylogenetic component that reflects the evolutionary relationships among nonshared species. Therefore, even if a species is not shared between two communities, it will increase the similarity of the two communities if it is phylogenetically related to species in the other community. We illustrate PCD with data on fish and aquatic macrophyte communities from 59 temperate lakes. Dissimilarity between fish communities associated with environmental differences between lakes often has a phylogenetic component, whereas this is not the case for macrophyte communities. With simulations, we then compare PCD with two other metrics of phylogenetic community similarity, II(ST) and UniFrac. Of the three metrics, PCD was best at identifying environmental drivers of community dissimilarity, showing lower variability and greater statistical power. Thus, PCD is a statistically powerful metric that separates the effects of environmental drivers on compositional versus phylogenetic components of community structure.

  9. A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter.

    PubMed

    Méric, Guillaume; Yahara, Koji; Mageiros, Leonardos; Pascoe, Ben; Maiden, Martin C J; Jolley, Keith A; Sheppard, Samuel K

    2014-01-01

    The increasing availability of hundreds of whole bacterial genomes provides opportunities for enhanced understanding of the genes and alleles responsible for clinically important phenotypes and how they evolved. However, it is a significant challenge to develop easy-to-use and scalable methods for characterizing these large and complex data and relating it to disease epidemiology. Existing approaches typically focus on either homologous sequence variation in genes that are shared by all isolates, or non-homologous sequence variation--focusing on genes that are differentially present in the population. Here we present a comparative genomics approach that simultaneously approximates core and accessory genome variation in pathogen populations and apply it to pathogenic species in the genus Campylobacter. A total of 7 published Campylobacter jejuni and Campylobacter coli genomes were selected to represent diversity across these species, and a list of all loci that were present at least once was compiled. After filtering duplicates a 7-isolate reference pan-genome, of 3,933 loci, was defined. A core genome of 1,035 genes was ubiquitous in the sample accounting for 59% of the genes in each isolate (average genome size of 1.68 Mb). The accessory genome contained 2,792 genes. A Campylobacter population sample of 192 genomes was screened for the presence of reference pan-genome loci with gene presence defined as a BLAST match of ≥ 70% identity over ≥ 50% of the locus length--aligned using MUSCLE on a gene-by-gene basis. A total of 21 genes were present only in C. coli and 27 only in C. jejuni, providing information about functional differences associated with species and novel epidemiological markers for population genomic analyses. Homologs of these genes were found in several of the genomes used to define the pan-genome and, therefore, would not have been identified using a single reference strain approach.

  10. Comparative Respiratory Pathogenicity and Dynamic Tissue Distribution of Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and its Attenuated Strain in Piglets.

    PubMed

    Liu, C; Zhang, W; Gong, W; Zhang, D; She, R; Xu, B; Ning, Y

    2015-07-01

    The outbreak of highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) in 2006 devastated the Chinese swine industry. HP-PRRS virus is still the predominant strain in mainland China, rather than the classical PRRSV strain, and the attenuated live vaccine remains the preferred choice for protecting piglets against HP-PRRSV infection. To fully evaluate the safety of strain GDr180, the 180th attenuated virus of the HP-PRRSV strain GD, we used clinicopathological, microscopical, ultrastructural, serological and molecular biological methods to assess the different clinical manifestations and respiratory characteristics of piglets inoculated with HP-PRRSV strain GD or strain GDr180. The 5-week-old piglets inoculated with strain GD displayed marked clinical signs, including fever, anorexia, dyspnoea and tachypnoea. Significant interstitial pneumonia was present, characterized by thickened alveolar septa infiltrated with mononuclear cells and cell debris. However, the piglets inoculated with strain GDr180 and the negative control piglets showed neither clinical signs nor microscopical or ultrastructural lesions. Ultrastructural observation of the piglets' tracheas and examination of the dynamic tissue distributions of PRRSV strain GD and attenuated strain GDr180, by immunohistochemistry and fluorescence quantitative reverse transcription-polymerase chain reaction, confirmed significant differences in their pathogenicity and distribution in the respiratory systems of piglets. The differences in pathogenicity are attributable to the different severity of the pathological changes in the pigs inoculated with the two strains. Thus, the HP-PRRSV GDr180 strain is practically harmless to the respiratory systems of piglets and may be a safe candidate for inducing immunity against HP-PRRS.

  11. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence.

    PubMed

    Alfaro, Michael E; Zoller, Stefan; Lutzoni, François

    2003-02-01

    Bayesian Markov chain Monte Carlo sampling has become increasingly popular in phylogenetics as a method for both estimating the maximum likelihood topology and for assessing nodal confidence. Despite the growing use of posterior probabilities, the relationship between the Bayesian measure of confidence and the most commonly used confidence measure in phylogenetics, the nonparametric bootstrap proportion, is poorly understood. We used computer simulation to investigate the behavior of three phylogenetic confidence methods: Bayesian posterior probabilities calculated via Markov chain Monte Carlo sampling (BMCMC-PP), maximum likelihood bootstrap proportion (ML-BP), and maximum parsimony bootstrap proportion (MP-BP). We simulated the evolution of DNA sequence on 17-taxon topologies under 18 evolutionary scenarios and examined the performance of these methods in assigning confidence to correct monophyletic and incorrect monophyletic groups, and we examined the effects of increasing character number on support value. BMCMC-PP and ML-BP were often strongly correlated with one another but could provide substantially different estimates of support on short internodes. In contrast, BMCMC-PP correlated poorly with MP-BP across most of the simulation conditions that we examined. For a given threshold value, more correct monophyletic groups were supported by BMCMC-PP than by either ML-BP or MP-BP. When threshold values were chosen that fixed the rate of accepting incorrect monophyletic relationship as true at 5%, all three methods recovered most of the correct relationships on the simulated topologies, although BMCMC-PP and ML-BP performed better than MP-BP. BMCMC-PP was usually a less biased predictor of phylogenetic accuracy than either bootstrapping method. BMCMC-PP provided high support values for correct topological bipartitions with fewer characters than was needed for nonparametric bootstrap.

  12. Comparative analysis of three Magnaporthaceae mitochondrial genomes reveals group I introns in the soil-inhabiting pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparison of the mitochrondrial genomes of two soilborne grass pathogens, M. poae of turfgrass and Gaemannomyces graminis var. triciti (Ggt) of wheat, was made to the foliar rice blast pathogen, Magnaporthe oryzae. We sought to extend observations from nuclear-coded genes that the soilborne patho...

  13. Comparative genomic analysis of the swine pathogen Bordetella bronchiseptica strain KM22 to other B. bronchiseptica sequenced genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    B. bronchiseptica is pervasive in swine and plays multiple roles in respiratory disease as well as enhancing colonization by other bacterial pathogens and increasing the severity of disease associated with both viral and bacterial pathogens. The goal of this study was to use the genome sequence of K...

  14. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacter...

  15. A comprehensive multilocus phylogeny of the Neotropical cotingas (Cotingidae, Aves) with a comparative evolutionary analysis of breeding system and plumage dimorphism and a revised phylogenetic classification.

    PubMed

    Berv, Jacob S; Prum, Richard O

    2014-12-01

    The Neotropical cotingas (Cotingidae: Aves) are a group of passerine birds that are characterized by extreme diversity in morphology, ecology, breeding system, and behavior. Here, we present a comprehensive phylogeny of the Neotropical cotingas based on six nuclear and mitochondrial loci (∼7500 bp) for a sample of 61 cotinga species in all 25 genera, and 22 species of suboscine outgroups. Our taxon sample more than doubles the number of cotinga species studied in previous analyses, and allows us to test the monophyly of the cotingas as well as their intrageneric relationships with high resolution. We analyze our genetic data using a Bayesian species tree method, and concatenated Bayesian and maximum likelihood methods, and present a highly supported phylogenetic hypothesis. We confirm the monophyly of the cotingas, and present the first phylogenetic evidence for the relationships of Phibalura flavirostris as the sister group to Ampelion and Doliornis, and the paraphyly of Lipaugus with respect to Tijuca. In addition, we resolve the diverse radiations within the Cotinga, Lipaugus, Pipreola, and Procnias genera. We find no support for Darwin's (1871) hypothesis that the increase in sexual selection associated with polygynous breeding systems drives the evolution of color dimorphism in the cotingas, at least when analyzed at a broad categorical scale. Finally, we present a new comprehensive phylogenetic classification of all cotinga species.

  16. Analysis of MIC and disk diffusion testing variables for gepotidacin and comparator agents against select bacterial pathogens.

    PubMed

    Koeth, L K; DiFranco-Fisher, J M; Scangarella-Oman, N E; Miller, L A

    2017-03-22

    This study was conducted to determine the effect of testing parameters on the in vitro activity of gepotidacin, a new triazaacenaphthylene antibacterial agent for the treatment of conventional and biothreat pathogens. CLSI methods, and variations of these methods were used to test 10 Staphylococcus aureus, 10 Streptococcus pneumoniae, 10 Haemophilus influenzae, and 5 Escherichia coli by MIC and 30 S. aureus, 15 S. pneumoniae and 15 S. pyogenes by disk diffusion (DD) methods. Levofloxacin and linezolid were tested as comparator agents for MIC and DD methods, respectively. Broth microdilution (BMD), macrodilution (MD) and agar dilution (AD) methods were compared. Variations in media, temperature, incubation time, CO2 and inoculum concentration were tested by all methods and pH, calcium, magnesium, zinc, potassium, thymidine and polysorbate 80 were tested by BMD and DD. The addition of albumin, serum and lung surfactant was studied by BMD. The variables that impacted results the most were high inoculum and pH 5.5 (no growth of H. influenzae and S. pneumoniae by BMD). Gepotidacin AD MIC results were increased and disk zone diameters were decreased for all species in 10% CO2 incubation. The following variables had a minimal effect on gepotidacin results: pH, agar method atmospheric condition, temperature, and addition of serum and albumin for broth methods. There were also some slight differences in gepotidacin disk results between disk manufacturers and some agar types, and also with potassium and thymidine for S. pneumoniae For all other variations, gepotidacin MIC and disk results were considered comparable to reference results.

  17. [Foundations of the new phylogenetics].

    PubMed

    Pavlinov, I Ia

    2004-01-01

    of cladogram construing and thus made phylogenetic reconstructions operational and repetitive. The above phenetic formula "kinship = similarity" appeared to be a keystone for development of the genophyletics. Within numerical phyletics, a lot of computer programs were elaborated which allow to manipulate with evolutionary scenario during phylogenetic reconstructions. They make it possible to reconstruct both clado- and semogeneses based on the same formalized methods. Multiplicity of numerical approaches indicates that, just as in the case of numerical phenetics, choice of adequate method(s) should be based on biologically sound theory. The main input of genophyletics (= molecular phylogenetics) into the new phylogenetics was due to completely new factology which makes it possible to compare directly such far distant taxa as prokaryotes and higher eukaryotes. Genophyletics is based on the theory of neutral evolution borrowed from microevolutionary theory and on the molecular clock hypothesis which is now considered largely inadequate. The future developments of genophyletics will be aimed at clarification of such fundamental (and "classical" by origin) problems as application of character and homology concepts to molecular structures. The new phylogenetics itself is differentiated into several schools caused basically by diversity of various approaches existing within each of its "roots". Cladistics makes new phylogenetics splitted into evolutionary and parsimonious ontological viewpoints. Numerical phyletics divides it into statistical and (again) parsimonious methodologies. Molecular phylogenetics is opposite by its factological basis to morphological one. The new phylogenetics has significance impact onto the "newest" systematics. From one side, it gives ontological status back to macrotaxa they have lost due to "new" systematics based on population thinking. From another side, it rejects some basical principles of classical phylogenetic (originally Linnean

  18. Comparative evaluation of rRNA depletion procedures for the improved analysis of bacterial biofilm and mixed pathogen culture transcriptomes.

    PubMed

    Petrova, Olga E; Garcia-Alcalde, Fernando; Zampaloni, Claudia; Sauer, Karin

    2017-01-24

    Global transcriptomic analysis via RNA-seq is often hampered by the high abundance of ribosomal (r)RNA in bacterial cells. To remove rRNA and enrich coding sequences, subtractive hybridization procedures have become the approach of choice prior to RNA-seq, with their efficiency varying in a manner dependent on sample type and composition. Yet, despite an increasing number of RNA-seq studies, comparative evaluation of bacterial rRNA depletion methods has remained limited. Moreover, no such study has utilized RNA derived from bacterial biofilms, which have potentially higher rRNA:mRNA ratios and higher rRNA carryover during RNA-seq analysis. Presently, we evaluated the efficiency of three subtractive hybridization-based kits in depleting rRNA from samples derived from biofilm, as well as planktonic cells of the opportunistic human pathogen Pseudomonas aeruginosa. Our results indicated different rRNA removal efficiency for the three procedures, with the Ribo-Zero kit yielding the highest degree of rRNA depletion, which translated into enhanced enrichment of non-rRNA transcripts and increased depth of RNA-seq coverage. The results indicated that, in addition to improving RNA-seq sensitivity, efficient rRNA removal enhanced detection of low abundance transcripts via qPCR. Finally, we demonstrate that the Ribo-Zero kit also exhibited the highest efficiency when P. aeruginosa/Staphylococcus aureus co-culture RNA samples were tested.

  19. Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (η) in pathogenic yeast Candida albicans

    PubMed Central

    Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman

    2017-01-01

    Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π–π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity. PMID:28120914

  20. Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (η) in pathogenic yeast Candida albicans

    NASA Astrophysics Data System (ADS)

    Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman

    2017-01-01

    Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π–π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.

  1. Comparative evaluation of rRNA depletion procedures for the improved analysis of bacterial biofilm and mixed pathogen culture transcriptomes

    PubMed Central

    Petrova, Olga E.; Garcia-Alcalde, Fernando; Zampaloni, Claudia; Sauer, Karin

    2017-01-01

    Global transcriptomic analysis via RNA-seq is often hampered by the high abundance of ribosomal (r)RNA in bacterial cells. To remove rRNA and enrich coding sequences, subtractive hybridization procedures have become the approach of choice prior to RNA-seq, with their efficiency varying in a manner dependent on sample type and composition. Yet, despite an increasing number of RNA-seq studies, comparative evaluation of bacterial rRNA depletion methods has remained limited. Moreover, no such study has utilized RNA derived from bacterial biofilms, which have potentially higher rRNA:mRNA ratios and higher rRNA carryover during RNA-seq analysis. Presently, we evaluated the efficiency of three subtractive hybridization-based kits in depleting rRNA from samples derived from biofilm, as well as planktonic cells of the opportunistic human pathogen Pseudomonas aeruginosa. Our results indicated different rRNA removal efficiency for the three procedures, with the Ribo-Zero kit yielding the highest degree of rRNA depletion, which translated into enhanced enrichment of non-rRNA transcripts and increased depth of RNA-seq coverage. The results indicated that, in addition to improving RNA-seq sensitivity, efficient rRNA removal enhanced detection of low abundance transcripts via qPCR. Finally, we demonstrate that the Ribo-Zero kit also exhibited the highest efficiency when P. aeruginosa/Staphylococcus aureus co-culture RNA samples were tested. PMID:28117413

  2. Comparative proteomic analysis of two pathogenic Tritrichomonas foetus genotypes: there is more to the proteome than meets the eye.

    PubMed

    Stroud, Leah J; Šlapeta, Jan; Padula, Matthew P; Druery, Dylan; Tsiotsioras, George; Coorssen, Jens R; Stack, Colin M

    2017-03-01

    Certain clinical isolates of Tritrichomonas foetus infect the urogenital tract of cattle while others infect the gastrointestinal tract of cats. Previous studies have identified subtle genetic differences between these isolates with the term "genotype" adopted to reflect host origin. The aim of this work was to seek evidence of host-specific adaptation and to clarify the relationship between T. foetus genotypes. To do this we characterised the proteomes of both genotypes using two-dimensional gel electrophoresis (2DE) coupled with LC-MS/MS. Our comparative analysis of the data revealed that both genotypes exhibited largely similar proteoform profiles; however differentiation was possible with 24 spots identified as having a four-fold or greater change. Deeper analysis using 2DE zymography and protease-specific fluorogenic substrates revealed marked differences in cysteine protease (CP) expression profiles between the two genotypes. These variances in CP activities could also account for the pathogenic and histopathological differences previously observed between T. foetus genotypes in cross-infection studies. Our findings highlight the importance of CPs as major determinants of parasite virulence and provide a foundation for future host-parasite interaction studies, with direct implications for the development of vaccines or drugs targeting T. foetus.

  3. Novel Drug Targets for Food-Borne Pathogen Campylobacter jejuni: An Integrated Subtractive Genomics and Comparative Metabolic Pathway Study

    PubMed Central

    Mehla, Kusum

    2015-01-01

    Abstract Campylobacters are a major global health burden and a cause of food-borne diarrheal illness and economic loss worldwide. In developing countries, Campylobacter infections are frequent in children under age two and may be associated with mortality. In developed countries, they are a common cause of bacterial diarrhea in early adulthood. In the United States, antibiotic resistance against Campylobacter is notably increased from 13% in 1997 to nearly 25% in 2011. Novel drug targets are urgently needed but remain a daunting task to accomplish. We suggest that omics-guided drug discovery is timely and worth considering in this context. The present study employed an integrated subtractive genomics and comparative metabolic pathway analysis approach. We identified 16 unique pathways from Campylobacter when compared against H. sapiens with 326 non-redundant proteins; 115 of these were found to be essential in the Database of Essential Genes. Sixty-six proteins among these were non-homologous to the human proteome. Six membrane proteins, of which four are transporters, have been proposed as potential vaccine candidates. Screening of 66 essential non-homologous proteins against DrugBank resulted in identification of 34 proteins with drug-ability potential, many of which play critical roles in bacterial growth and survival. Out of these, eight proteins had approved drug targets available in DrugBank, the majority serving crucial roles in cell wall synthesis and energy metabolism and therefore having the potential to be utilized as drug targets. We conclude by underscoring that screening against these proteins with inhibitors may aid in future discovery of novel therapeutics against campylobacteriosis in ways that will be pathogen specific, and thus have minimal toxic effect on host. Omics-guided drug discovery and bioinformatics analyses offer the broad potential for veritable advances in global health relevant novel therapeutics. PMID:26061459

  4. A multi-locus analysis of phylogenetic relationships within grass subfamily Pooideae (Poaceae) inferred from sequences of nuclear single copy gene regions compared with plastid DNA.

    PubMed

    Hochbach, Anne; Schneider, Julia; Röser, Martin

    2015-06-01

    To investigate phylogenetic relationships within the grass subfamily Pooideae we studied about 50 taxa covering all recognized tribes, using one plastid DNA (cpDNA) marker (matK gene-3'trnK exon) and for the first time four nuclear single copy gene loci. DNA sequence information from two parts of the nuclear genes topoisomerase 6 (Topo6) spanning the exons 8-13 and 17-19, the exons 9-13 encoding plastid acetyl-CoA-carboxylase (Acc1) and the partial exon 1 of phytochrome B (PhyB) were generated. Individual and nuclear combined data were evaluated using maximum parsimony, maximum likelihood and Bayesian methods. All of the phylogenetic results show Brachyelytrum and the tribe Nardeae as earliest diverging lineages within the subfamily. The 'core' Pooideae (Hordeeae and the Aveneae/Poeae tribe complex) are also strongly supported, as well as the monophyly of the tribes Brachypodieae, Meliceae and Stipeae (except PhyB). The beak grass tribe Diarrheneae and the tribe Duthieeae are not monophyletic in some of the analyses. However, the combined nuclear DNA (nDNA) tree yields the highest resolution and the best delimitation of the tribes, and provides the following evolutionary hypothesis for the tribes: Brachyelytrum, Nardeae, Duthieeae, Meliceae, Stipeae, Diarrheneae, Brachypodieae and the 'core' Pooideae. Within the individual datasets, the phylogenetic trees obtained from Topo6 exon 8-13 shows the most interesting results. The divergent positions of some clone sequences of Ampelodesmos mauritanicus and Trikeraia pappiformis, for instance, may indicate a hybrid origin of these stipoid taxa.

  5. Comparative 16S rRNA Analysis of Lake Bacterioplankton Reveals Globally Distributed Phylogenetic Clusters Including an Abundant Group of Actinobacteria

    PubMed Central

    Glöckner, Frank Oliver; Zaichikov, Evgeny; Belkova, Natalia; Denissova, Ludmilla; Pernthaler, Jakob; Pernthaler, Annelie; Amann, Rudolf

    2000-01-01

    In a search for cosmopolitan phylogenetic clusters of freshwater bacteria, we recovered a total of 190 full and partial 16S ribosomal DNA (rDNA) sequences from three different lakes (Lake Gossenköllesee, Austria; Lake Fuchskuhle, Germany; and Lake Baikal, Russia). The phylogenetic comparison with the currently available rDNA data set showed that our sequences fall into 16 clusters, which otherwise include bacterial rDNA sequences of primarily freshwater and soil, but not marine, origin. Six of the clusters were affiliated with the α, four were affiliated with the β, and one was affiliated with the γ subclass of the Proteobacteria; four were affiliated with the Cytophaga-Flavobacterium-Bacteroides group; and one was affiliated with the class Actinobacteria (formerly known as the high-G+C gram-positive bacteria). The latter cluster (hgcI) is monophyletic and so far includes only sequences directly retrieved from aquatic environments. Fluorescence in situ hybridization (FISH) with probes specific for the hgcI cluster showed abundances of up to 1.7 × 105 cells ml−1 in Lake Gossenköllesee, with strong seasonal fluctuations, and high abundances in the two other lakes investigated. Cell size measurements revealed that Actinobacteria in Lake Gossenköllesee can account for up to 63% of the bacterioplankton biomass. A combination of phylogenetic analysis and FISH was used to reveal 16 globally distributed sequence clusters and to confirm the broad distribution, abundance, and high biomass of members of the class Actinobacteria in freshwater ecosystems. PMID:11055963

  6. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.

    PubMed

    Smith, Adam R; Proffitt, Melissa R; Ho, Winnie W; Mullaney, Claire B; Maldonado-Ocampo, Javier A; Lovejoy, Nathan R; Alves-Gomes, José A; Smith, G Troy

    2016-10-18

    The electric communication signals of weakly electric ghost knifefishes (Gymnotiformes: Apteronotidae) provide a valuable model system for understanding the evolution and physiology of behavior. Apteronotids produce continuous wave-type electric organ discharges (EODs) that are used for electrolocation and communication. The frequency and waveform of EODs, as well as the structure of transient EOD modulations (chirps), vary substantially across species. Understanding how these signals have evolved, however, has been hampered by the lack of a well-supported phylogeny for this family. We constructed a molecular phylogeny for the Apteronotidae by using sequence data from three genes (cytochrome c oxidase subunit 1, recombination activating gene 2, and cytochrome oxidase B) in 32 species representing 13 apteronotid genera. This phylogeny and an extensive database of apteronotid signals allowed us to examine signal evolution by using ancestral state reconstruction (ASR) and phylogenetic generalized least squares (PGLS) models. Our molecular phylogeny largely agrees with another recent sequence-based phylogeny and identified five robust apteronotid clades: (i) Sternarchorhamphus+Orthosternarchus, (ii) Adontosternarchus, (iii) Apteronotus+Parapteronotus, (iv) Sternarchorhynchus, and (v) a large clade including Porotergus, 'Apteronotus', Compsaraia, Sternarchogiton, Sternarchella, and Magosternarchus. We analyzed novel chirp recordings from two apteronotid species (Orthosternarchus tamandua and Sternarchorhynchus mormyrus), and combined data from these species with that from previously recorded species in our phylogenetic analyses. Some signal parameters in O. tamandua were plesiomorphic (e.g., low frequency EODs and chirps with little frequency modulation that nevertheless interrupt the EOD), suggesting that ultra-high frequency EODs and "big" chirps evolved after apteronotids diverged from other gymnotiforms. In contrast to previous studies, our PGLS analyses using the

  7. Phylogenetic character mapping of proteomic diversity shows high correlation with subspecific phylogenetic diversity in Trypanosoma cruzi

    PubMed Central

    Telleria, Jenny; Biron, David G.; Brizard, Jean-Paul; Demettre, Edith; Séveno, Martial; Barnabé, Christian; Ayala, Francisco J.; Tibayrenc, Michel

    2010-01-01

    We performed a phylogenetic character mapping on 26 stocks of Trypanosoma cruzi, the parasite responsible for Chagas disease, and 2 stocks of the sister taxon T. cruzi marinkellei to test for possible associations between T. cruzi–subspecific phylogenetic diversity and levels of protein expression, as examined by proteomic analysis and mass spectrometry. We observed a high level of correlation (P < 10−4) between genetic distance, as established by multilocus enzyme electrophoresis, and proteomic dissimilarities estimated by proteomic Euclidian distances. Several proteins were found to be specifically associated to T. cruzi phylogenetic subdivisions (discrete typing units). This study explores the previously uncharacterized links between infraspecific phylogenetic diversity and gene expression in a human pathogen. It opens the way to searching for new vaccine and drug targets and for identification of specific biomarkers at the subspecific level of pathogens. PMID:21059959

  8. Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source

    PubMed Central

    Champion, Olivia L.; Gaunt, Michael W.; Gundogdu, Ozan; Elmi, Abdi; Witney, Adam A.; Hinds, Jason; Dorrell, Nick; Wren, Brendan W.

    2005-01-01

    Campylobacter jejuni is the predominant cause of bacterial gastroenteritis worldwide, but traditional typing methods are unable to discriminate strains from different sources that cause disease in humans. We report the use of genomotyping (whole-genome comparisons of microbes using DNA microarrays) combined with Bayesian-based algorithms to model the phylogeny of this major food-borne pathogen. In this study 111 C. jejuni strains were examined by genomotyping isolates from humans with a spectrum of C. jejuni-associated disease (70 strains), chickens (17 strains), bovines (13 strains), ovines (5 strains), and the environment (6 strains). From these data, the Bayesian phylogeny of the isolates revealed two distinct clades unequivocally supported by Bayesian probabilities (P = 1); a livestock clade comprising 31/35 (88.6%) of the livestock isolates and a “nonlivestock” clade comprising further clades of environmental isolates. Several genes were identified as characteristic of strains in the livestock clade. The most prominent was a cluster of six genes (cj1321 to cj1326) within the flagellin glycosylation locus, which were confirmed by PCR analysis as genetic markers in six additional chicken-associated strains. Surprisingly these studies show that the majority (39/70, 55.7%) of C. jejuni human isolates were found in the nonlivestock clade, suggesting that most C. jejuni infections may be from nonlivestock (and possibly nonagricultural) sources. This study has provided insight into a previously unidentified reservoir of C. jejuni infection that may have implications in disease-control strategies. The comparative phylogenomics approach described provides a robust methodological prototype that should be applicable to other microbes. PMID:16230626

  9. Experimental infection and comparative genomic analysis of a highly pathogenic PRRSV-HBR strain at different passage levels.

    PubMed

    Wei, Yanwu; Li, Shengbin; Huang, Liping; Tang, Qinghai; Liu, Jianbo; Liu, Dan; Wang, Yiping; Wu, Hongli; Liu, Changming

    2013-10-25

    A highly pathogenic strain of porcine reproductive and respiratory syndrome virus (PRRSV-HBR) was passaged on Marc-145 cells for 125 passages. In order to elucidate the change in virulence of PRRSV-HBR strain during the process of passage in vitro, swine infection experiment was performed with the viruses of low (F5 and F10) and high passage (F125). In addition, to identify the mutations related to the change in virulence of PRRSV-HBR strain, we compared and analyzed the genomic sequences of the F5, F10 and F125 of the strain. The virulence of F125 was significantly lower than that of F5 in the virus-infected pigs. In comparison with F5 and F125, there were 45 amino acids (aa) mutations and a deletion of 2 continuous aa by means of the virus genome sequence analysis. For these mutations, 33 aa (73.3%) occurred in the viral nonstructural proteins and the other 12 aa (26.7%) were contained in the viral structural proteins. Of the mutations, only 15 aa (33.3%) appeared in F10 and 30 aa (66.7%) occurred during passage from F10 to F125. The data showed that the latter 30 aa mutations were probably associated with attenuation of PRRSV-HBR strain, and that the change in virulence of the virus was determined by multiple alterations both in the structural and nonstructural genes. The virulence of PRRSV-HBR strain was remarkably attenuated after serial passages, and it can be used as vaccine candidate for control of the PRRS.

  10. Phylogenetic analysis of Bacillus cereus isolates from severe systemic infections using multilocus sequence typing scheme.

    PubMed

    Vassileva, Maria; Torii, Keizo; Oshimoto, Megumi; Okamoto, Akira; Agata, Norio; Yamada, Keiko; Hasegawa, Tadao; Ohta, Michio

    2006-01-01

    Bacillus cereus strains from cases of severe or lethal systemic infections, including respiratory symptoms cases, were analyzed using multilocus sequence typing scheme of B. cereus MLST database. The isolates were evenly distributed between the two main clades, and 60% of them had allele profiles new to the database. Half of the collection's strains clustered in a lineage neighboring Bacillus anthracis phylogenetic origin. Strains from lethal cases with respiratory symptoms were allocated in both main clades. This is the first report of strains causing respiratory symptoms to be identified as genetically distant from B. anthracis. The phylogenetic location of the presented here strains was compared with all previously submitted to the database isolates from systemic infections, and were found to appear in the same clusters where clinical isolates from other studies had been assigned. It seems that the pathogenic strains are forming clusters on the phylogenetic tree.

  11. apex: phylogenetics with multiple genes.

    PubMed

    Jombart, Thibaut; Archer, Frederick; Schliep, Klaus; Kamvar, Zhian; Harris, Rebecca; Paradis, Emmanuel; Goudet, Jérome; Lapp, Hilmar

    2017-01-01

    Genetic sequences of multiple genes are becoming increasingly common for a wide range of organisms including viruses, bacteria and eukaryotes. While such data may sometimes be treated as a single locus, in practice, a number of biological and statistical phenomena can lead to phylogenetic incongruence. In such cases, different loci should, at least as a preliminary step, be examined and analysed separately. The r software has become a popular platform for phylogenetics, with several packages implementing distance-based, parsimony and likelihood-based phylogenetic reconstruction, and an even greater number of packages implementing phylogenetic comparative methods. Unfortunately, basic data structures and tools for analysing multiple genes have so far been lacking, thereby limiting potential for investigating phylogenetic incongruence. In this study, we introduce the new r package apex to fill this gap. apex implements new object classes, which extend existing standards for storing DNA and amino acid sequences, and provides a number of convenient tools for handling, visualizing and analysing these data. In this study, we introduce the main features of the package and illustrate its functionalities through the analysis of a simple data set.

  12. Can long-range PCR be used to amplify genetically divergent mitochondrial genomes for comparative phylogenetics? A case study within spiders (Arthropoda: Araneae).

    PubMed

    Briscoe, Andrew G; Goodacre, Sara; Masta, Susan E; Taylor, Martin I; Arnedo, Miquel A; Penney, David; Kenny, John; Creer, Simon

    2013-01-01

    The development of second generation sequencing technology has resulted in the rapid production of large volumes of sequence data for relatively little cost, thereby substantially increasing the quantity of data available for phylogenetic studies. Despite these technological advances, assembling longer sequences, such as that of entire mitochondrial genomes, has not been straightforward. Existing studies have been limited to using only incomplete or nominally intra-specific datasets resulting in a bottleneck between mitogenome amplification and downstream high-throughput sequencing. Here we assess the effectiveness of a wide range of targeted long-range PCR strategies, encapsulating single and dual fragment primer design approaches to provide full mitogenomic coverage within the Araneae (Spiders). Despite extensive rounds of optimisation, full mitochondrial genome PCR amplifications were stochastic in most taxa, although 454 Roche sequencing confirmed the successful amplification of 10 mitochondrial genomes out of the 33 trialled species. The low success rates of amplification using long-Range PCR highlights the difficulties in consistently obtaining genomic amplifications using currently available DNA polymerases optimised for large genomic amplifications and suggests that there may be opportunities for the use of alternative amplification methods.

  13. Comparative genome‐wide analysis of small RNAs of major Gram‐positive pathogens: from identification to application

    PubMed Central

    Mraheil, Mobarak A.; Billion, André; Kuenne, Carsten; Pischimarov, Jordan; Kreikemeyer, Bernd; Engelmann, Susanne; Hartke, Axel; Giard, Jean‐Christophe; Rupnik, Maja; Vorwerk, Sonja; Beier, Markus; Retey, Julia; Hartsch, Thomas; Jacob, Anette; Cemič, Franz; Hemberger, Jürgen; Chakraborty, Trinad; Hain, Torsten

    2010-01-01

    Summary In the recent years, the number of drug‐ and multi‐drug‐resistant microbial strains has increased rapidly. Therefore, the need to identify innovative approaches for development of novel anti‐infectives and new therapeutic targets is of high priority in global health care. The detection of small RNAs (sRNAs) in bacteria has attracted considerable attention as an emerging class of new gene expression regulators. Several experimental technologies to predict sRNA have been established for the Gram‐negative model organism Escherichia coli. In many respects, sRNA screens in this model system have set a blueprint for the global and functional identification of sRNAs for Gram‐positive microbes, but the functional role of sRNAs in colonization and pathogenicity for Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Clostridium difficile is almost completely unknown. Here, we report the current knowledge about the sRNAs of these socioeconomically relevant Gram‐positive pathogens, overview the state‐of‐the‐art high‐throughput sRNA screening methods and summarize bioinformatics approaches for genome‐wide sRNA identification and target prediction. Finally, we discuss the use of modified peptide nucleic acids (PNAs) as a novel tool to inactivate potential sRNA and their applications in rapid and specific detection of pathogenic bacteria. PMID:21255362

  14. Comparative Study of different msDNA (multicopy single-stranded DNA) structures and phylogenetic comparison of reverse transcriptases (RTs): evidence for vertical inheritance.

    PubMed

    Das, Rasel; Shimamoto, Tadashi; Hosen, Sultan Mohammad Zahid; Arifuzzaman, Mohammad

    2011-01-01

    The multi-copy single-stranded DNA (msDNA) is yielded by the action of reverse transcriptase of retro-element in a wide range of pathogenic bacteria. Upon this phenomenon, it has been shown that msDNA is only produced by Eubacteria because many Eubacteria species contained reverse transcriptase in their special retro-element. We have screened around 111 Archaea at KEGG (Kyoto Encyclopedia of Genes and Genomes) database available at genome net server and observed three Methanosarcina species (M.acetivorans, M.barkeri and M.mazei), which also contained reverse transcriptase in their genome sequences. This observation of reverse transcriptase in Archaea raises questions regarding the origin of this enzyme. The evolutionary relationship between these two domains of life (Eubacteria and Archaea) hinges upon the phenomenon of retrons. Interestingly, the evolutionary trees based on the reverse transcriptases (RTs) and 16S ribosomal RNAs point out that all the Eubacteria RTs were descended from Archaea RTs during their evolutionary times. In addition, we also have shown some significant structural features among the newly identified msDNA-Yf79 in Yersinia frederiksenii with other of its related msDNAs (msDNA-St85, msDNA-Vc95, msDNA-Vp96, msDNA-Ec78 and msDNA-Ec83) from pathogenic bacteria. Together the degree of sequence conservation among these msDNAs, the evolutionary trees and the distribution of these ret (reverse transcriptase) genes suggest a possible evolutionary scenario. The single common ancestor of the organisms of Eubacteria and Archaea subgroups probably achieved this ret gene during their evolution through the vertical descent rather than the horizontal transformations followed by integration into this organism genome by a mechanism related to phage recognition and/or transposition.

  15. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors.

    PubMed

    Ruhe, Jonas; Agler, Matthew T; Placzek, Aleksandra; Kramer, Katharina; Finkemeier, Iris; Kemen, Eric M

    2016-01-01

    Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche

  16. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors

    PubMed Central

    Ruhe, Jonas; Agler, Matthew T.; Placzek, Aleksandra; Kramer, Katharina; Finkemeier, Iris; Kemen, Eric M.

    2016-01-01

    Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche

  17. Molecular phylogenetics: testing evolutionary hypotheses.

    PubMed

    Walsh, David A; Sharma, Adrian K

    2009-01-01

    A common approach for investigating evolutionary relationships between genes and organisms is to compare extant DNA or protein sequences and infer an evolutionary tree. This methodology is known as molecular phylogenetics and may be the most informative means for exploring phage evolution, since there are few morphological features that can be used to differentiate between these tiny biological entities. In addition, phage genomes can be mosaic, meaning different genes or genomic regions can exhibit conflicting evolutionary histories due to lateral gene transfer or homologous recombination between different phage genomes. Molecular phylogenetics can be used to identify and study such genome mosaicism. This chapter provides a general introduction to the theory and methodology used to reconstruct phylogenetic relationships from molecular data. Also included is a discussion on how the evolutionary history of different genes within the same set of genomes can be compared, using a collection of T4-type phage genomes as an example. A compilation of programs and packages that are available for conducting phylogenetic analyses is supplied as an accompanying appendix.

  18. Comparing the efficacy of hyper-pure chlorine-dioxide with other oral antiseptics on oral pathogen microorganisms and biofilm in vitro.

    PubMed

    Herczegh, Anna; Gyurkovics, Milán; Agababyan, Hayk; Ghidán, Agoston; Lohinai, Zsolt

    2013-09-01

    This study examines the antibacterial properties of sodium hypochlorite (NaOCl), chlorhexidine gluconate (CHX), Listerine®, and high purity chlorine dioxide (Solumium, ClO2) on selected common oral pathogen microorganisms and on dental biofilm in vitro. Antimicrobial activity of oral antiseptics was compared to the gold standard phenol. We investigated Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Veillonella alcalescens, Eikenella corrodens, Actinobacillus actinomycetemcomitans and Candida albicans as some important representatives of the oral pathogens. Furthermore, we collected dental plaque from the upper first molars of healthy young students. Massive biofilm was formed in vitro and its reduction was measured after treating it with mouthrinses: CHX, Listerine® or hyper pure ClO2. Their biofilm disrupting effect was measured after dissolving the crystal violet stain from biofilm by photometer. The results have showed that hyper pure ClO2 solution is more effective than other currently used disinfectants in case of aerobic bacteria and Candida yeast. In case of anaerobes its efficiency is similar to CHX solution. The biofilm dissolving effect of hyper pure ClO2 is significantly stronger compared to CHX and Listerine® after 5 min treatment. In conclusion, hyper pure ClO2 has a potent disinfectant efficacy on oral pathogenic microorganisms and a powerful biofilm dissolving effect compared to the current antiseptics, therefore high purity ClO2 may be a new promising preventive and therapeutic adjuvant in home oral care and in dental or oral surgery practice.

  19. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity

    PubMed Central

    Bosi, Emanuele; Monk, Jonathan M.; Aziz, Ramy K.; Fondi, Marco; Nizet, Victor; Palsson, Bernhard Ø.

    2016-01-01

    Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus. These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world. PMID:27286824

  20. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    PubMed Central

    2015-01-01

    Phytopathogenic fungi form intimate associations with host plant species and cause disease. To be successful, fungal pathogens communicate with a susceptible host through the secretion of proteinaceous effectors, hydrolytic enzymes and metabolites. Sclerotinia sclerotiorum and Botrytis cinerea are economically important necrotrophic fungal pathogens that cause disease on numerous crop species. Here, a powerful bioinformatics pipeline was used to predict the refined S. sclerotiorum and B. cinerea secretomes, identifying 432 and 499 proteins respectively. Analyses focusing on S. sclerotiorum revealed that 16% of the secretome encoding genes resided in small, sequence heterogeneous, gene clusters that were distributed over 13 of the 16 predicted chromosomes. Functional analyses highlighted the importance of plant cell hydrolysis, oxidation-reduction processes and the redox state to the S. sclerotiorum and B. cinerea secretomes and potentially host infection. Only 8% of the predicted proteins were distinct between the two secretomes. In contrast to S. sclerotiorum, the B. cinerea secretome lacked CFEM- or LysM-containing proteins. The 115 fungal and oomycete genome comparison identified 30 proteins specific to S. sclerotiorum and B. cinerea, plus 11 proteins specific to S. sclerotiorum and 32 proteins specific to B. cinerea. Expressed sequence tag (EST) and proteomic analyses showed that 246 S. sclerotiorum secretome encoding genes had EST support, including 101 which were only expressed in vitro and 49 which were only expressed in planta, whilst 42 predicted proteins were experimentally proven to be secreted. These detailed in silico analyses of two important necrotrophic pathogens will permit informed choices to be made when candidate effector proteins are selected for function analyses in planta. PMID:26107498

  1. Comparative pathogenicity study of ten different betanodavirus strains in experimentally infected European sea bass, Dicentrarchus labrax (L.).

    PubMed

    Vendramin, N; Toffan, A; Mancin, M; Cappellozza, E; Panzarin, V; Bovo, G; Cattoli, G; Capua, I; Terregino, C

    2014-04-01

    Viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN), is a severe pathological condition caused by RNA viruses belonging to the Nodaviridae family, genus Betanodavirus. The disease, described in more than 50 fish species worldwide, is considered as the most serious viral threat affecting marine farmed species in the Mediterranean region, thus representing one of the bottlenecks for further development of the aquaculture industry. To date, four different genotypes have been identified, namely red-spotted grouper nervous necrosis virus (RGNNV), striped jack nervous necrosis virus (SJNNV), tiger puffer nervous necrosis virus and barfin flounder nervous necrosis virus, with the RGNNV genotype appearing as the most widespread in the Mediterranean region, although SJNNV-type strains and reassortant viruses have also been reported. The existence of these genetically different strains could be the reason for the differences in mortality observed in the field. However, very little experimental data are available on the pathogenicity of these viruses in farmed fish. Therefore, in this study, the pathogenicity of 10 isolates has been assessed with an in vivo trial. The investigation was conducted using the European sea bass, the first target fish species for the disease in the Mediterranean basin. Naive fish were challenged by immersion and clinical signs and mortality were recorded for 68 days; furthermore, samples collected at selected time points were analysed to evaluate the development of the infection. Finally, survivors were weighed to estimate the growth reduction. The statistically supported results obtained in this study demonstrated different pathogenicity patterns, underlined the potential risk represented by different strains in the transmission of the infection to highly susceptible species and highlighted the indirect damage caused by a clinical outbreak of VER/VNN.

  2. Comparative Genomic Analysis of Two Vibrio toranzoniae Strains with Different Virulence Capacity Reveals Clues on Its Pathogenicity for Fish

    PubMed Central

    Lasa, Aide; Gibas, Cynthia J.; Romalde, Jesús L.

    2017-01-01

    Vibrio toranzoniae is a Gram-negative bacterium of the Splendidus clade within the Vibrio genus. V. toranzoniae was first isolated from healthy clams in Galicia (Spain) but recently was also identified associated to disease outbreaks of red conger eel in Chile. Experimental challenges showed that the Chilean isolates were able to produce fish mortalities but not the strains isolated from clams. The aim of the present study was to determine the differences at the genomic level between the type strain of the species (CECT 7225T) and the strain R17, isolated from red conger eel in Chile, which could explain their different virulent capacity. The genome-based comparison showed high homology between both strains but differences were observed in certain gene clusters that include some virulence factors. Among these, we found that iron acquisition systems and capsule synthesis genes were the main differential features between both genomes that could explain the differences in the pathogenicity of the strains. Besides, the studied genomes presented genomic islands and toxins, and the R17 strain presented CRISPR sequences that are absent on the type strain. Taken together, this analysis provided important insights into virulence factors of V. toranzoniae that will lead to a better understanding of the pathogenic process. PMID:28194141

  3. Comparative Genomic Analysis of Two Vibrio toranzoniae Strains with Different Virulence Capacity Reveals Clues on Its Pathogenicity for Fish.

    PubMed

    Lasa, Aide; Gibas, Cynthia J; Romalde, Jesús L

    2017-01-01

    Vibrio toranzoniae is a Gram-negative bacterium of the Splendidus clade within the Vibrio genus. V. toranzoniae was first isolated from healthy clams in Galicia (Spain) but recently was also identified associated to disease outbreaks of red conger eel in Chile. Experimental challenges showed that the Chilean isolates were able to produce fish mortalities but not the strains isolated from clams. The aim of the present study was to determine the differences at the genomic level between the type strain of the species (CECT 7225(T)) and the strain R17, isolated from red conger eel in Chile, which could explain their different virulent capacity. The genome-based comparison showed high homology between both strains but differences were observed in certain gene clusters that include some virulence factors. Among these, we found that iron acquisition systems and capsule synthesis genes were the main differential features between both genomes that could explain the differences in the pathogenicity of the strains. Besides, the studied genomes presented genomic islands and toxins, and the R17 strain presented CRISPR sequences that are absent on the type strain. Taken together, this analysis provided important insights into virulence factors of V. toranzoniae that will lead to a better understanding of the pathogenic process.

  4. SUNPLIN: Simulation with Uncertainty for Phylogenetic Investigations

    PubMed Central

    2013-01-01

    Background Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. Results In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. Conclusion We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets. PMID:24229408

  5. Phylogenetic analysis of hemagglutinin and neuraminidase genes of highly pathogenic avian influenza H5N1 Egyptian strains isolated from 2006 to 2008 indicates heterogeneity with multiple distinct sublineages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian lineage H5N1 Highly pathogenic avian influenza (HPAI) virus caused widespread outbreaks in Egypt in 2006 and eventually become enzootic in poultry. Although outbreaks have a seasonal pattern with most occurring during the cooler winter months, it remains unclear if this seasonality ref...

  6. Multigene Phylogenetic Analysis of Pathogenic Candida Species in the Kazachstania (Arxiozyma) telluris Complex and Description of Their Ascosporic States as Kazachstania bovina sp. nov., K. heterogenica sp. nov., K. pintolopesii sp. nov., and K. slooffiae sp. nov.

    PubMed Central

    Kurtzman, Cletus P.; Robnett, Christie J.; Ward, Jerrold M.; Brayton, Cory; Gorelick, Peter; Walsh, Thomas J.

    2005-01-01

    A yeast causing widespread infection of laboratory mice was identified from 26S rRNA gene sequences as Candida pintolopesii. To determine the relationship of C. pintolopesii with other members of the Kazachstania (Arxiozyma) telluris species complex, nucleotide sequences from domains 1 and 2 of the 26S rRNA gene, the mitochondrial small-subunit rRNA gene, and the RNA polymerase II gene were phylogenetically analyzed. That analysis resolved the 48 strains examined into five closely related species: K. telluris, Candida bovina, C. pintolopesii, Candida slooffiae, and a previously unknown species. One or more strains of each of the last four species formed an ascosporic state much like that of K. telluris. To place these ascosporogenous strains taxonomically, it is proposed that they be assigned to the teleomorphic genus Kazachstania as K. bovina (type strain NRRL Y-7283, CBS 9732, from the nasal passage of a pigeon), K. heterogenica (type strain NRRL Y-27499, CBS 2675, from rodent feces), K. pintolopesii (type strain NRRL Y-27500, CBS 2985, from the peritoneal fluid of a dead guinea pig), and K. slooffiae (type strain NRRL YB-4349, CBS 9733, from the cecum of a horse). On the basis of multigene sequence analyses, K. heterogenica appears to be a hybrid of K. pintolopesii and a presently unknown species. With the exception of K. bovina, the phylogenetically defined species show a moderate degree of host specificity. PMID:15634957

  7. Comparative in vitro activity of carbapenems against major Gram-negative pathogens: results of Asia-Pacific surveillance from the COMPACT II study.

    PubMed

    Kiratisin, Pattarachai; Chongthaleong, Anan; Tan, Thean Yen; Lagamayo, Evelina; Roberts, Sally; Garcia, Jemelyn; Davies, Todd

    2012-04-01

    Resistance rates amongst Gram-negative pathogens are increasing in the Asia-Pacific region. The Comparative Activity of Carbapenem Testing (COMPACT) II study surveyed the carbapenem susceptibility and minimum inhibitory concentrations (MICs) of doripenem, imipenem and meropenem against 1260 major Gram-negative pathogens isolated from hospitalised patients at 20 centres in five Asia-Pacific countries (New Zealand, the Philippines, Singapore, Thailand and Vietnam) during 2010. Pseudomonas aeruginosa (n=625), Enterobacteriaceae (n=500), and other Gram-negative pathogens including Acinetobacter baumannii (n=135) were collected from patients with bloodstream infection (32.2%), nosocomial pneumonia including ventilator-associated pneumonia (58.1%), and complicated intra-abdominal infection (9.7%), with 36.7% being isolated from patients in an Intensive Care Unit. As high as 29.8% of P. aeruginosa and 73.0% of A. baumannii isolates were not susceptible to at least a carbapenem, whereas the majority of Enterobacteriaceae (97.2%) were susceptible to all carbapenems. Respective MIC(50)/MIC(90) values (MICs for 50% and 90% of the organisms, respectively) of doripenem, imipenem and meropenem were: 0.38/8, 1.5/32 and 0.38/16 mg/L for P. aeruginosa; 0.023/0.094, 0.25/0.5 and 0.032/0.094 mg/L for Enterobacteriaceae; and 32/64, 32/128 and 32/64 mg/L for A. baumannii. Doripenem and meropenem had comparable activity against P. aeruginosa, both being more active than imipenem. All carbapenems were highly potent against Enterobacteriaceae, although imipenem demonstrated higher MIC values than doripenem and meropenem. The three carbapenems showed less activity against A. baumannii. The high prevalence of carbapenem resistance amongst important nosocomial pathogens (P. aeruginosa and A. baumannii) warrants rigorous infection control measures and appropriate antimicrobial use in the Asia-Pacific region.

  8. Profiling phylogenetic informativeness.

    PubMed

    Townsend, Jeffrey P

    2007-04-01

    The resolution of four controversial topics in phylogenetic experimental design hinges upon the informativeness of characters about the historical relationships among taxa. These controversies regard the power of different classes of phylogenetic character, the relative utility of increased taxonomic versus character sampling, the differentiation between lack of phylogenetic signal and a historical rapid radiation, and the design of taxonomically broad phylogenetic studies optimized by taxonomically sparse genome-scale data. Quantification of the informativeness of characters for resolution of phylogenetic hypotheses during specified historical epochs is key to the resolution of these controversies. Here, such a measure of phylogenetic informativeness is formulated. The optimal rate of evolution of a character to resolve a dated four-taxon polytomy is derived. By scaling the asymptotic informativeness of a character evolving at a nonoptimal rate by the derived asymptotic optimum, and by normalizing so that net phylogenetic informativeness is equivalent for all rates when integrated across all of history, an informativeness profile across history is derived. Calculation of the informativeness per base pair allows estimation of the cost-effectiveness of character sampling. Calculation of the informativeness per million years allows comparison across historical radiations of the utility of a gene for the inference of rapid adaptive radiation. The theory is applied to profile the phylogenetic informativeness of the genes BRCA1, RAG1, GHR, and c-myc from a muroid rodent sequence data set. Bounded integrations of the phylogenetic profile of these genes over four epochs comprising the diversifications of the muroid rodents, the mammals, the lobe-limbed vertebrates, and the early metazoans demonstrate the differential power of these genes to resolve the branching order among ancestral lineages. This measure of phylogenetic informativeness yields a new kind of information

  9. Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures.

    PubMed

    Thapa, Dinesh; Louis, Petra; Losa, Riccardo; Zweifel, Béatrice; Wallace, R John

    2015-02-01

    A static batch culture system inoculated with human faeces was used to determine the influence of essential oil compounds (EOCs) on mixed faecal microbiota. Bacteria were quantified using quantitative PCR of 16S rRNA genes. Incubation for 24 h of diluted faeces from six individuals caused enrichment of Bifidobacterium spp., but proportions of other major groups were unaffected. Thymol and geraniol at 500 p.p.m. suppressed total bacteria, resulting in minimal fermentation. Thymol at 100 p.p.m. had no effect, nor did eugenol or nerolidol at 100 or 500 p.p.m. except for a slight suppression of Eubacterium hallii. Methyl isoeugenol at 100 or 500 p.p.m. suppressed the growth of total bacteria, accompanied by a large fall in the molar proportion of propionate formed. The relative abundance of Faecalibacterium prausnitzii was unaffected except with thymol at 500 p.p.m. The ability of EOCs to control numbers of the pathogen Clostridium difficile was investigated in a separate experiment, in which the faecal suspensions were amended by the addition of pure culture of C. difficile. Numbers of C. difficile were suppressed by thymol and methyl isoeugenol at 500 p.p.m. and to a lesser extent at 100 p.p.m. Eugenol and geraniol gave rather similar suppression of C. difficile numbers at both 100 and 500 p.p.m. Nerolidol had no significant effect. It was concluded from these and previous pure-culture experiments that thymol and geraniol at around 100 p.p.m. could be effective in suppressing pathogens in the small intestine, with no concern for beneficial commensal colonic bacteria in the distal gut.

  10. Conservation of the S10-spc-α Locus within Otherwise Highly Plastic Genomes Provides Phylogenetic Insight into the Genus Leptospira

    PubMed Central

    Zuerner, Richard L.; Ahmed, Niyaz; Bulach, Dieter M.; Quinteiro, Javier; Hartskeerl, Rudy A.

    2008-01-01

    S10-spc-α is a 17.5 kb cluster of 32 genes encoding ribosomal proteins. This locus has an unusual composition and organization in Leptospira interrogans. We demonstrate the highly conserved nature of this region among diverse Leptospira and show its utility as a phylogenetically informative region. Comparative analyses were performed by PCR using primer sets covering the whole locus. Correctly sized fragments were obtained by PCR from all L. interrogans strains tested for each primer set indicating that this locus is well conserved in this species. Few differences were detected in amplification profiles between different pathogenic species, indicating that the S10-spc-α locus is conserved among pathogenic Leptospira. In contrast, PCR analysis of this locus using DNA from saprophytic Leptospira species and species with an intermediate pathogenic capacity generated varied results. Sequence alignment of the S10-spc-α locus from two pathogenic species, L. interrogans and L. borgpetersenii, with the corresponding locus from the saprophyte L. biflexa serovar Patoc showed that genetic organization of this locus is well conserved within Leptospira. Multilocus sequence typing (MLST) of four conserved regions resulted in the construction of well-defined phylogenetic trees that help resolve questions about the interrelationships of pathogenic Leptospira. Based on the results of secY sequence analysis, we found that reliable species identification of pathogenic Leptospira is possible by comparative analysis of a 245 bp region commonly used as a target for diagnostic PCR for leptospirosis. Comparative analysis of Leptospira strains revealed that strain H6 previously classified as L. inadai actually belongs to the pathogenic species L. interrogans and that L. meyeri strain ICF phylogenetically co-localized with the pathogenic clusters. These findings demonstrate that the S10-spc-α locus is highly conserved throughout the genus and may be more useful in comparing evolution of

  11. Phylogenetics of Lophodermium from pine.

    PubMed

    Ortiz-García, Sol; Gernandt, David S; Stone, Jeffrey K; Johnston, Peter R; Chapela, Ignacio H; Salas-Lizana, Rodolfo; Alvarez-Buylla, Elena R

    2003-01-01

    Lophodermium comprises ascomycetous fungi that are both needle-cast pathogens and asymptomatic endophytes on a diversity of plant hosts. It is distinguished from other genera in the family Rhytismataceae by its filiform ascospores and ascocarps that open by a longitudinal slit. Nucleotide sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA were used to infer phylogenetic relationships within Lophodermium. Twenty-nine sequences from approximately 11 species of Lophodermium were analyzed together with eight sequences from isolates thought to represent six other genera of Rhytismataceae: Elytroderma, Lirula, Meloderma, Terriera, Tryblidiopsis and Colpoma. Two putative Meloderma desmazieresii isolates occurred within the Lophodermium clade but separate from one another, one grouped with L. indianum and the other with L. nitens. An isolate of Elytroderma deformans also occurred within the Lophodermium clade but on a solitary branch. The occurrence of these genera within the Lophodermium clade might be due to problems in generic concepts in Rhytismataceae, such as emphasis on spore morphology to delimit genera, to difficulty of isolating Rhytismataceae needle pathogens from material that also is colonized by Lophodermium or to a combination of both factors. We also evaluated the congruence of host distribution and several morphological characters on the ITS phylogeny. Lophodermium species from pine hosts formed a monophyletic sister group to Lophodermium species from more distant hosts from the southern hemisphere, but not to L. piceae from Picea. The ITS topology indicated that Lophodermium does not show strict cospeciation with pines at deeper branches, although several closely related isolates have closely related hosts. Pathogenic species occupy derived positions in the pine clade, suggesting that pathogenicity has evolved from endophytism. A new combination is proposed, Terriera minor (Tehon) P.R. Johnst.

  12. Efficacy of Instant Hand Sanitizers against Foodborne Pathogens Compared with Hand Washing with Soap and Water in Food Preparation Settings: A Systematic Review.

    PubMed

    Foddai, Antonio C G; Grant, Irene R; Dean, Moira

    2016-06-01

    Hands can be a vector for transmitting pathogenic microorganisms to foodstuffs and drinks, and to the mouths of susceptible hosts. Hand washing is the primary barrier to prevent transmission of enteric pathogens via cross-contamination from infected persons. Conventional hand washing involves the use of water, soap, and friction to remove dirt and microorganisms. The availability of hand sanitizing products for use when water and soap are unavailable has increased in recent years. The aim of this systematic review was to collate scientific information on the efficacy of hand sanitizers compared with washing hands with soap and water for the removal of foodborne pathogens from the hands of food handlers. An extensive literature search was carried out using three electronic databases: Web of Science, Scopus, and PubMed. Twenty-eight scientific publications were ultimately included in the review. Analysis of this literature revealed various limitations in the scientific information owing to the absence of a standardized protocol for evaluating the efficacy of hand products and variation in experimental conditions. However, despite conflicting results, scientific evidence seems to support the historical skepticism about the use of waterless hand sanitizers in food preparation settings. Water and soap appear to be more effective than waterless products for removal of soil and microorganisms from hands. Alcohol-based products achieve rapid and effective inactivation of various bacteria, but their efficacy is generally lower against nonenveloped viruses. The presence of food debris significantly affects the microbial inactivation rate of hand sanitizers.

  13. [Comparative evaluation of in vitro activities of carbapenems against gram-negative pathogens: Turkish data of COMPACT study].

    PubMed

    Korten, Volkan; Söyletir, Güner; Yalçın, Ata Nevzat; Oğünç, Dilara; Dokuzoğuz, Başak; Esener, Harika; Ulusoy, Sercan; Tünger, Alper; Aygen, Bilgehan; Sümerkan, Bülent; Arman, Dilek; Dizbay, Murat; Akova, Murat; Hasçelik, Gülşen; Eraksoy, Haluk; Başaran, Seniha; Köksal, Iftihar; Bayramoğlu, Gülçin; Akalın, Halis; Sınırtaş, Melda

    2011-04-01

    The aim of this study was to determine the in vitro activities of doripenem, imipenem, and meropenem against clinical gram-negative isolates. A total of 596 clinical isolates were obtained from intensive care unit (ICU) and non-ICU patients in 10 centers over Turkey between September-December 2008. The origin of the isolates was patients with nosocomial pneumonia (42.4%), bloodstream infections (%40.4), and complicated intraabdominal infections (17.1%). Of the isolates, 51.8% were obtained from ICU patients. The study isolates consisted of Pseudomonas spp. in 49.8%, Enterobacteriaceae in 40.3%, and other gram-negative agents in 9.9%. The minimum inhibitory concentrations (MIC) for doripenem, imipenem and meropenem were determined for all isolates in each center using Etest® strips (AB Biodisk, Solna, Sweden). Of the isolates, 188 (31.5%) were resistant to at least one of the carbapenems. MIC50 of doripenem against Pseudomonas spp. Was 1 mg/L which was similar to that of meropenem and two-fold lower than imipenem. Susceptibility to carbapenems in P.aeruginosa was 64% for doripenem at an MIC level of 2 mg/L, 53.9% and 63% for imipenem and meropenem at an MIC level of 4 mg/L, respectively. Doripenem and meropenem showed similar activity with the MIC90 of 0.12 mg/L whereas imipenem was four-fold less active at 0.5 mg/L. Against other gramnegative pathogens, mostly Acinetobacter spp., MIC50 was 8 mg/L for doripenem and 32 mg/L for other two carbapenems. P.aeruginosa isolates were inhibited 84.2% with doripenem and 72.1% with meropenem at the MIC level of 8 mg/L. Doripenem generally showed similar or slightly better activity than meropenem and better activity than imipenem against pathogens collected in this study. Against Pseudomonas spp., doripenem was the most active of the three carbapenems. Doripenem and meropenem were equally active against Enterobacteriaceae and at least four-fold more active than imipenem. It was concluded that doripenem seemed to be a promising

  14. Modelling the Impact and Cost-Effectiveness of Biomarker Tests as Compared with Pathogen-Specific Diagnostics in the Management of Undifferentiated Fever in Remote Tropical Settings

    PubMed Central

    Lubell, Yoel; Althaus, Thomas; Blacksell, Stuart D.; Paris, Daniel H.; Mayxay, Mayfong; Pan-Ngum, Wirichada; White, Lisa J.; Day, Nicholas P. J.; Newton, Paul N.

    2016-01-01

    Background Malaria accounts for a small fraction of febrile cases in increasingly large areas of the malaria endemic world. Point-of-care tests to improve the management of non-malarial fevers appropriate for primary care are few, consisting of either diagnostic tests for specific pathogens or testing for biomarkers of host response that indicate whether antibiotics might be required. The impact and cost-effectiveness of these approaches are relatively unexplored and methods to do so are not well-developed. Methods We model the ability of dengue and scrub typhus rapid tests to inform antibiotic treatment, as compared with testing for elevated C-Reactive Protein (CRP), a biomarker of host-inflammation. Using data on causes of fever in rural Laos, we estimate the proportion of outpatients that would be correctly classified as requiring an antibiotic and the likely cost-effectiveness of the approaches. Results Use of either pathogen-specific test slightly increased the proportion of patients correctly classified as requiring antibiotics. CRP testing was consistently superior to the pathogen-specific tests, despite heterogeneity in causes of fever. All testing strategies are likely to result in higher average costs, but only the scrub typhus and CRP tests are likely to be cost-effective when considering direct health benefits, with median cost per disability adjusted life year averted of approximately $48 USD and $94 USD, respectively. Conclusions Testing for viral infections is unlikely to be cost-effective when considering only direct health benefits to patients. Testing for prevalent bacterial pathogens can be cost-effective, having the benefit of informing not only whether treatment is required, but also as to the most appropriate antibiotic; this advantage, however, varies widely in response to heterogeneity in causes of fever. Testing for biomarkers of host inflammation is likely to be consistently cost-effective despite high heterogeneity, and can also offer

  15. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution

    PubMed Central

    Kendall, Michelle; Colijn, Caroline

    2016-01-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287

  16. Phylogenetic lineages in Entomophthoromycota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomophthoromycota Humber is one of five major phylogenetic lineages among the former phylum Zygomycota. These early terrestrial fungi share evolutionarily ancestral characters such as coenocytic mycelium and gametangiogamy as a sexual process resulting in zygospore formation. Previous molecular st...

  17. Antimicrobial resistance, virulence profiles, and phylogenetic groups of fecal Escherichia coli isolates: a comparative analysis between dogs and their owners in Japan.

    PubMed

    Harada, Kazuki; Okada, Erika; Shimizu, Takae; Kataoka, Yasushi; Sawada, Takuo; Takahashi, Toshio

    2012-03-01

    In this study, fecal Escherichia coli isolates (n=188) from 34 dog-owner pairs and 26 healthy control humans (2 isolates per individual) were tested for susceptibility to 6 antimicrobials and screened for virulence genes. Genetic diversity between canine and owner isolates was evaluated by pulsed-field gel electrophoresis (PFGE). Canine isolates exhibited significantly different rates of resistance to four and two antimicrobials, compared to control and owner isolates, respectively. Of the genes examined, the prevalence of sfa, hly, and cnf genes in canine isolates were higher than in control isolates, but not than in owner isolates. These results suggest that characteristics of owner isolates are somewhat similar to canine isolates, compared to isolates from non-dog owners. In addition, PFGE analysis revealed that transfer of E. coli between owners and their dogs had occurred within 3/34 (8.8%) households. Considering the effects of dog ownership on the population of E. coli isolates from owners, further epidemiological studies are required.

  18. In vitro activity of tigecycline and comparators against Gram-negative pathogens isolated from blood in Europe (2004-2009).

    PubMed

    Andrasevic, Arjana Tambic; Dowzicky, Michael J

    2012-02-01

    Here we report on the antimicrobial resistance amongst Gram-negative isolates (excluding Acinetobacter spp.) collected from blood culture sources at European study sites as part of the global Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) from the study start in 2004 until August 2009. All isolates were collected and tested for minimum inhibitory concentrations using Clinical and Laboratory Standards Institute methodology. Over the collection period, extended-spectrum β-lactamase (ESBL) production was recorded in 21.1% of Klebsiella pneumoniae, 2.6% of Klebsiella oxytoca and 11.3% of Escherichia coli, primarily in Croatia, Greece, Hungary, Italy, Poland, Romania and the Slovak Republic. ESBL rates stabilised amongst K. pneumoniae over 2006-2009, but doubled amongst E. coli in 2008-2009. The patterns of antimicrobial resistance changed accordingly for both organisms. Generally, Greece had the highest antimicrobial resistance for K. pneumoniae, Italy for E. coli, Serratia marcescens and Enterobacter spp., and Croatia for Pseudomonas aeruginosa. High resistance rates amongst K. pneumoniae were also seen in Croatia and Italy. Imipenem resistance amongst K. pneumoniae was reported exclusively in Greece (13.8%); amongst other Enterobacteriaceae, imipenem resistance was absent or low. Similarly, meropenem resistance was low amongst the Enterobacteriaceae except K. pneumoniae from Greece (42.6%). Across Europe, the most active antimicrobial agents against the Enterobacteriaceae were tigecycline, amikacin and the carbapenems, each with <10% resistance each year. Against the other antimicrobials, significant increases in non-susceptibility were reported for K. pneumoniae and E. coli, both important causative pathogens of bacteraemia.

  19. DNA Sequence and Comparative Genomics of pAPEC-O2-R, an Avian Pathogenic Escherichia coli Transmissible R Plasmid

    PubMed Central

    Johnson, Timothy J.; Siek, Kylie E.; Johnson, Sara J.; Nolan, Lisa K.

    2005-01-01

    In this study, a 101-kb IncF plasmid from an avian pathogenic Escherichia coli (APEC) strain (APEC O2) was sequenced and analyzed, providing the first completed APEC plasmid sequence. This plasmid, pAPEC-O2-R, has functional transfer and antimicrobial resistance-encoding regions. The resistance-encoding region encodes resistance to eight groups of antimicrobial agents, including silver and other heavy metals, quaternary ammonium compounds, tetracycline, sulfonamides, aminoglycosides, trimethoprim, and beta-lactam antimicrobial agents. This region of the plasmid is unique among previously described IncF plasmids in that it possesses a class 1 integron that harbors three gene cassettes and a heavy metal resistance operon. This region spans 33 kb and is flanked by the RepFII plasmid replicon and an assortment of plasmid maintenance genes. pAPEC-O2-R also contains a 32-kb transfer region that is nearly identical to that found in the E. coli F plasmid, rendering it transferable by conjugation to plasmid-less strains of bacteria, including an APEC strain, a fecal E. coli strain from an apparently healthy bird, a Salmonella enterica serovar Typhimurium strain, and a uropathogenic E. coli strain from humans. Differences in the G+C contents of individual open reading frames suggest that various regions of pAPEC-O2-R had dissimilar origins. The presence of pAPEC-O2-R-like plasmids that encode resistance to multiple antimicrobial agents and that are readily transmissible from APEC to other bacteria suggests the possibility that such plasmids may serve as a reservoir of resistance genes for other bacteria of animal and human health significance. PMID:16251312

  20. Comparative activity and mechanism of action of three types of bovine antimicrobial peptides against pathogenic Prototheca spp.

    PubMed

    Tomasinsig, Linda; Skerlavaj, Barbara; Scarsini, Michele; Guida, Filomena; Piccinini, Renata; Tossi, Alessandro; Zanetti, Margherita

    2012-02-01

    The yeast-like algae of the genus Prototheca are ubiquitous saprophytes causing infections in immunocompromised patients and granulomatous mastitis in cattle. Few available therapies and the rapid spread of resistant strains worldwide support the need for novel drugs against protothecosis. Host defence antimicrobial peptides inactivate a wide array of pathogens and are a rich source of leads, with the advantage of being largely unaffected by microbial resistance mechanisms. Three structurally diverse bovine peptides [BMAP-28, Bac5 and lingual antimicrobial peptide (LAP)] have thus been tested for their capacity to inactivate Prototheca spp. In minimum inhibitory concentration (MIC) assays, they were all effective in the micromolar range against clinical mastitis isolates as well as a Prototheca wickerhamii reference strain. BMAP-28 sterilized Prototheca cultures within 30-60 min at its MIC, induced cell permeabilization with near 100% release of cellular adenosine triphosphate and resulted in extensive surface blebbing and release of intracellular material as observed by scanning electron microscopy. Bac5 and LAP inactivated Prototheca following 3-6 h incubation at fourfold their MIC and did not result in detectable surface damage despite 70-90% killing, suggesting they act via non-lytic mechanisms. In circular dichroism studies, the conformation of BMAP-28, but not that of Bac5 or LAP, was affected by interaction with liposomes mimicking algal membranes. Our results indicate that BMAP-28, Bac5 and LAP kill Prototheca with distinct potencies, killing kinetics, and modes of action and may be appropriate for protothecal mastitis treatment. In addition, the ability of Bac5 and LAP to act via non-lytic mechanisms may be exploited for the development of target-selective drugs.

  1. Comparative Genomic and Phylogenetic Analyses of Gammaproteobacterial glg Genes Traced the Origin of the Escherichia coli Glycogen glgBXCAP Operon to the Last Common Ancestor of the Sister Orders Enterobacteriales and Pasteurellales

    PubMed Central

    Almagro, Goizeder; Viale, Alejandro M.; Montero, Manuel; Rahimpour, Mehdi; Muñoz, Francisco José; Baroja-Fernández, Edurne; Bahaji, Abdellatif; Zúñiga, Manuel; González-Candelas, Fernando; Pozueta-Romero, Javier

    2015-01-01

    Production of branched α-glucan, glycogen-like polymers is widely spread in the Bacteria domain. The glycogen pathway of synthesis and degradation has been fairly well characterized in the model enterobacterial species Escherichia coli (order Enterobacteriales, class Gammaproteobacteria), in which the cognate genes (branching enzyme glgB, debranching enzyme glgX, ADP-glucose pyrophosphorylase glgC, glycogen synthase glgA, and glycogen phosphorylase glgP) are clustered in a glgBXCAP operon arrangement. However, the evolutionary origin of this particular arrangement and of its constituent genes is unknown. Here, by using 265 complete gammaproteobacterial genomes we have carried out a comparative analysis of the presence, copy number and arrangement of glg genes in all lineages of the Gammaproteobacteria. These analyses revealed large variations in glg gene presence, copy number and arrangements among different gammaproteobacterial lineages. However, the glgBXCAP arrangement was remarkably conserved in all glg-possessing species of the orders Enterobacteriales and Pasteurellales (the E/P group). Subsequent phylogenetic analyses of glg genes present in the Gammaproteobacteria and in other main bacterial groups indicated that glg genes have undergone a complex evolutionary history in which horizontal gene transfer may have played an important role. These analyses also revealed that the E/P glgBXCAP genes (a) share a common evolutionary origin, (b) were vertically transmitted within the E/P group, and (c) are closely related to glg genes of some phylogenetically distant betaproteobacterial species. The overall data allowed tracing the origin of the E. coli glgBXCAP operon to the last common ancestor of the E/P group, and also to uncover a likely glgBXCAP transfer event from the E/P group to particular lineages of the Betaproteobacteria. PMID:25607991

  2. RAP-1a is the main rhoptry-associated-protein-1 (RAP-1) recognized during infection with Babesia sp. BQ1 (Lintan) (B. motasi-like phylogenetic group), a pathogen of sheep in China.

    PubMed

    Niu, Qingli; Bonsergent, Claire; Rogniaux, Hélène; Guan, Guiquan; Malandrin, Laurence; Moreau, Emmanuelle

    2016-12-15

    Babesia sp. BQ1 (Lintan) is one of the parasites isolated from infected sheep in China that belongs to the B. motasi-like phylogenetic group. The rhoptry-associated-protein 1 (rap-1) locus in this group consists of a complex organization of 12 genes of three main types: 6 rap-1a variants intercalated with 5 identical copies of rap-1b and a single 3' ending rap-1c gene. In the present study, transcription analysis performed by standard RT-PCR demonstrated that the three different rap-1 gene types and the four rap-1a variants were transcribed by the parasite cultivated in vitro. Peptides, specific for each rap-1 type gene, were selected in putative linear B-epitopes and used to raise polyclonal rabbit antisera. Using these sera, the same expression pattern of RAP-1 proteins was found in parasites cultivated in vitro or collected from acute infection whereas only RAP-1a67 was detectable in merozoite extracts. However, ELISA performed with recombinant RAP-1a67, RAP-1b or RAP-1c and sera from infected sheep demonstrated that RAP-1a67 is the main RAP-1 recognized during infection, even if some infected sheep also recognized RAP-1b and/or RAP-1c.

  3. Four phenotypically and phylogenetically distinct lineages in Phytophthora lateralis.

    PubMed

    Brasier, Clive M; Franceschini, Selma; Vettraino, Anna Maria; Hansen, Everett M; Green, Sarah; Robin, Cecile; Webber, Joan F; Vannini, Andrea

    2012-12-01

    Until recently Phytophthora lateralis was known only as the cause of dieback and mortality of Chamaecyparis lawsoniana in its native range in the Pacific Northwest (PNW). Since the 1990s however disease outbreaks have occurred increasingly on ornamental C. lawsoniana in Europe; and in 2007 the pathogen was discovered in soil around old growth Chamaecyparis obtusa in Taiwan, where it may be endemic. When the phenotypes of over 150 isolates of P. lateralis from Taiwan, across the PNW (British Columbia to California) and from France, the Netherlands and the UK were compared three growth rate groups were resolved: one slow growing from Taiwan, one fast growing from the PNW and Europe, and one of intermediate growth from a small area of the UK. Within these growth groups distinct subtypes were identified based on colony patterns and spore metrics and further discriminated in a multivariate analysis. The assumption that the three main growth groups represented phylogenetic units was tested by comparative sequencing of two mitochondrial and three nuclear genes. This assumption was confirmed. In addition two phenotype clusters within the Taiwan growth group were also shown to be phylogenetically distinct. These four phenotypically and genotypically unique populations are informally designated as the PNW lineage, the UK lineage, the Taiwan J lineage, and the Taiwan K lineage. Their characteristics and distribution are described and their evolution, taxonomic, and plant health significance is discussed.

  4. Comparing Data Input Requirements of Statistical vs. Process-based Watershed Models Applied for Prediction of Fecal Indicator and Pathogen Levels in Recreational Beaches

    NASA Astrophysics Data System (ADS)

    Molina, M.; Cyterski, M.; Whelan, G.; Zepp, R. G.

    2014-12-01

    Same day prediction of fecal indicator bacteria (FIB) concentrations and bather protection from the risk of exposure to pathogens are two important goals of implementing a modeling program at recreational beaches. Sampling efforts for modelling applications can be expensive and time consuming and can lead to the collection of large data sets that go unused. In this study, we assessed the accuracy, sensitivity and specificity of model prediction of FIB concentrations (culturable and qPCR) using environmental data collected onsite vs. publicly available data (such as EnDDaT) with the goal of offering states and beach managers a cost efficient alternative for model development. Multilinear regression (MLR) models were developed to predict the concentration of enterococci in fresh and marine beaches using model input data from on-site monitoring equipment as well as publicly available, near-site data. False negative and false positive predictions of each model were calculated via a threshold analysis. Comparison of model performance at a Great Lake beach revealed that adding on-site data inputs yielded about a 38% higher adjusted R-square (indicating a better fit to the data) and better predictive performance compared to using only publicly available data inputs. Although the models using both datasets were 14% better at predicting regulatory exceedances, the model using only publicly available data was slightly better at predicting non-exceedances. We also compared MLR model input data requirements with the input data requirements needed to develop watershed process models. In a simulation where six different manure-based contaminant sources were evaluated to determine the health risk impacts to a receptor location downstream from the sources of contamination, the watershed model predicted the distributions of three waterborne pathogens (Salmonella, Cryptosporidium, and E. coli 0157) based on rainfall impacting the watershed. Although this type of analysis identifies

  5. Phylogenetically resolving epidemiologic linkage

    PubMed Central

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-01-01

    Although the use of phylogenetic trees in epidemiological investigations has become commonplace, their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. We confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results. PMID:26903617

  6. The phylogenetic likelihood library.

    PubMed

    Flouri, T; Izquierdo-Carrasco, F; Darriba, D; Aberer, A J; Nguyen, L-T; Minh, B Q; Von Haeseler, A; Stamatakis, A

    2015-03-01

    We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as likelihood calculations, model parameter as well as branch length optimization, and tree space exploration. The highly optimized and parallelized implementation of the phylogenetic likelihood function and a thorough documentation provide a framework for rapid development of scalable parallel phylogenetic software. By example of two likelihood-based phylogenetic codes we show that the PLL improves the sequential performance of current software by a factor of 2-10 while requiring only 1 month of programming time for integration. We show that, when numerical scaling for preventing floating point underflow is enabled, the double precision likelihood calculations in the PLL are up to 1.9 times faster than those in BEAGLE. On an empirical DNA dataset with 2000 taxa the AVX version of PLL is 4 times faster than BEAGLE (scaling enabled and required). The PLL is available at http://www.libpll.org under the GNU General Public License (GPL).

  7. Phylogenetically resolving epidemiologic linkage

    SciTech Connect

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-02-22

    The use of phylogenetic trees in epidemiological investigations has become commonplace, but their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. Moreover, we confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results.

  8. Phylogenetically resolving epidemiologic linkage

    DOE PAGES

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-02-22

    The use of phylogenetic trees in epidemiological investigations has become commonplace, but their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the truemore » transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. Moreover, we confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results.« less

  9. Comparative analysis of detection limits and specificity of molecular diagnostic markers for three pathogens (Microsporidia, Nosema spp.) in the key pollinators Apis mellifera and Bombus terrestris.

    PubMed

    Erler, Silvio; Lommatzsch, Stefanie; Lattorff, H Michael G

    2012-04-01

    Global pollinator decline has recently been discussed in the context of honey and bumble bee infections from various pathogens including viruses, bacteria, microsporidia and mites. The microsporidian pathogens Nosema apis, Nosema ceranae and Nosema bombi may in fact be major candidates contributing to this decline. Different molecular and non-molecular detection methods have been developed; however, a comparison, especially of the highly sensitive PCR based methods, is currently lacking. Here, we present the first comparative quantitative real-time PCR study of nine Nosema spp. primers within the framework of primer specificity and sensitivity. With the help of dilution series of defined numbers of spores, we reveal six primer pairs amplifying N. apis, six for N. bombi and four for N. ceranae. All appropriate primer pairs detected an amount of at least 10(4) spores, the majority of which were even as sensitive to detect such low amounts as 10(3) to ten spores. Species specificity of primers was observed for N. apis and N. bombi, but not for N. ceranae. Additionally, we did not find any significant correlation for the amplified fragments with PCR efficiency or the limit of detection. We discuss our findings on the background of false positive and negative results using quantitative real-time PCR. On the basis of these results, future research might be based on appropriate primer selection depending on the experimental needs. Primers may be selected on the basis of specificity or sensitivity. Pathogen species and load may be determined with higher precision enhancing all kinds of diagnostic studies.

  10. Vestige: Maximum likelihood phylogenetic footprinting

    PubMed Central

    Wakefield, Matthew J; Maxwell, Peter; Huttley, Gavin A

    2005-01-01

    Background Phylogenetic footprinting is the identification of functional regions of DNA by their evolutionary conservation. This is achieved by comparing orthologous regions from multiple species and identifying the DNA regions that have diverged less than neutral DNA. Vestige is a phylogenetic footprinting package built on the PyEvolve toolkit that uses probabilistic molecular evolutionary modelling to represent aspects of sequence evolution, including the conventional divergence measure employed by other footprinting approaches. In addition to measuring the divergence, Vestige allows the expansion of the definition of a phylogenetic footprint to include variation in the distribution of any molecular evolutionary processes. This is achieved by displaying the distribution of model parameters that represent partitions of molecular evolutionary substitutions. Examination of the spatial incidence of these effects across regions of the genome can identify DNA segments that differ in the nature of the evolutionary process. Results Vestige was applied to a reference dataset of the SCL locus from four species and provided clear identification of the known conserved regions in this dataset. To demonstrate the flexibility to use diverse models of molecular evolution and dissect the nature of the evolutionary process Vestige was used to footprint the Ka/Ks ratio in primate BRCA1 with a codon model of evolution. Two regions of putative adaptive evolution were identified illustrating the ability of Vestige to represent the spatial distribution of distinct molecular evolutionary processes. Conclusion Vestige provides a flexible, open platform for phylogenetic footprinting. Underpinned by the PyEvolve toolkit, Vestige provides a framework for visualising the signatures of evolutionary processes across the genome of numerous organisms simultaneously. By exploiting the maximum-likelihood statistical framework, the complex interplay between mutational processes, DNA repair and

  11. Phylogeographic diversity of pathogenic and non-pathogenic hantaviruses in slovenia.

    PubMed

    Korva, Miša; Knap, Nataša; Rus, Katarina Resman; Fajs, Luka; Grubelnik, Gašper; Bremec, Matejka; Knapič, Tea; Trilar, Tomi; Županc, Tatjana Avšič

    2013-12-10

    Slovenia is a very diverse country from a natural geography point of view, with many different habitats within a relatively small area, in addition to major geological and climatic differences. It is therefore not surprising that several small mammal species have been confirmed to harbour hantaviruses: A. flavicollis (Dobrava virus), A. agrarius (Dobrava virus-Kurkino), M. glareolus (Puumala virus), S. areanus (Seewis virus),M. agrestis, M. arvalis and M. subterraneus (Tula virus). Three of the viruses, namely the Dobrava, Dobrava-Kurkino and Puumala viruses, cause disease in humans, with significant differences in the severity of symptoms. Due to changes in haemorrhagic fever with renal syndrome cases (HFRS) epidemiology, a detailed study on phylogenetic diversity and molecular epidemiology of pathogenic and non-pathogenic hantaviruses circulating in ecologically diverse endemic regions was performed. The study presents one of the largest collections of hantavirus L, M and S sequences obtained from hosts and patients within a single country. Several genetic lineages were determined for each hantavirus species, with higher diversity among non-pathogenic compared to pathogenic viruses. For pathogenic hantaviruses, a significant geographic clustering of human- and rodent-derived sequences was confirmed. Several geographic and ecological factors were recognized as influencing and limiting the formation of endemic areas.

  12. Phylogenetic signal in plant pathogen–host range

    PubMed Central

    Gilbert, Gregory S.; Webb, Campbell O.

    2007-01-01

    What determines which plant species are susceptible to a given plant pathogen is poorly understood. Experimental inoculations with fungal pathogens of plant leaves in a tropical rain forest show that most fungal pathogens are polyphagous but that most plant species in a local community are resistant to any given pathogen. The likelihood that a pathogen can infect two plant species decreases continuously with phylogenetic distance between the plants, even to ancient evolutionary distances. This phylogenetic signal in host range allows us to predict the likely host range of plant pathogens in a local community, providing an important tool for plant ecology, design of agronomic systems, quarantine regulations in international trade, and risk analysis of biological control agents. In particular, the results suggest that the rate of spread and ecological impacts of a disease through a natural plant community will depend strongly on the phylogenetic structure of the community itself and that current regulatory approaches strongly underestimate the local risks of global movement of plant pathogens or their hosts. PMID:17360396

  13. Phylogenetic lineages in Pseudocercospora

    PubMed Central

    Crous, P.W.; Braun, U.; Hunter, G.C.; Wingfield, M.J.; Verkley, G.J.M.; Shin, H.-D.; Nakashima, C.; Groenewald, J.Z.

    2013-01-01

    Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general

  14. A phylogenetic foundation for comparative mammalian genomics.

    PubMed

    Waddell, P J; Kishino, H; Ota, R

    2001-01-01

    A major effort is being undertaken to sequence an array of mammalian genomes. Coincidentally, the evolutionary relationships of the 18 presently recognized orders of placental mammals are only just being resolved. In this work we construct and analyse the largest alignments of amino acid sequence data to date. Our findings allow us to set up a series of superordinal groups (clades) to act as prior hypotheses for further testing. Important findings include strong evidence for a clade of Euarchonta+Glires (=Supraprimates) comprised of primates, flying lemurs, tree shrews, lagomorphs and rodents. In addition, there is good evidence for a clade of all placental mammals except Xenarthra and Afrotheria (=Boreotheria) and for the previously recognised clades Laurasiatheria, Scrotifera, Fereuungulata, Ferae, Afrotheria, Euarchonta, Glires, and Eulipotyphla. Accordingly, a revised classification of the placental mammals is put forward. Using this and molecular divergence-time methods, the ages of the superordinal splits are estimated. While results are strongly consistent with the earliest superordinal divergences all being >65 mybp (Cretaceous period), they suffer from greater uncertainty than presently appreciated. The early primate split of tarsiers from the anthropoid lineage at ~55 mybp is seen to be an especially informative fossil calibration point. A statistical framework for testing clades using SINE data is presented and reveals significant support for the tarsier/anthropoid clade, as well as the clades Cetruminantia and Whippomorpha. Results also underline our thesis that while sequence analysis can help set up hypothesised clades, SINEs obtainable from sequencing 1-2 MB regions of placental genomes are essential to testing them. In contrast, derivations suggest that empirical Bayesian methods for sequence data may not be robust estimators of clades. Our findings, including the study of genes such as TP53, make a good case for the tree shrew as a closer relative of primates than rodents, while also showing a slower rate of evolution in key cell cycle genes. Tree shrews are consequently high value experimental animals and a strong candidate for a genome sequencing initiative.

  15. Salmonella infection in grey seals (Halichoerus grypus), a marine mammal sentinel species: pathogenicity and molecular typing of Salmonella strains compared with human and livestock isolates.

    PubMed

    Baily, Johanna L; Foster, Geoffrey; Brown, Derek; Davison, Nicholas J; Coia, John E; Watson, Eleanor; Pizzi, Romain; Willoughby, Kim; Hall, Ailsa J; Dagleish, Mark P

    2016-03-01

    Microbial pollution of the marine environment through land-sea transfer of human and livestock pathogens is of concern. Salmonella was isolated from rectal swabs of free-ranging and stranded grey seal pups (21.1%; 37/175) and compared with strains from the same serovars isolated from human clinical cases, livestock, wild mammals and birds in Scotland, UK to characterize possible transmission routes using pulsed-field gel electrophoresis and multi-locus variable number of tandem repeat analyses. A higher prevalence of Salmonella was found in pups exposed to seawater, suggesting that this may represent a source of this pathogen. Salmonella Bovismorbificans was the most common isolate (18.3% pups; 32/175) and was indistinguishable from isolates found in Scottish cattle. Salmonella Typhimurium was infrequent (2.3% pups; 4/175), mostly similar to isolates found in garden birds and, in one case, identical to a highly multidrug resistant strain isolated from a human child. Salmonella Haifa was rare (1.1% pups; 2/175), but isolates were indistinguishable from that of a human clinical isolate. These results suggest that S. Bovismorbificans may circulate between grey seal and cattle populations and that both S. Typhimurium and S. Haifa isolates are shared with humans, raising concerns of microbial marine pollution.

  16. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis.

    PubMed

    Qian, Yongqiang; Tan, Dun-Xian; Reiter, Russel J; Shi, Haitao

    2015-10-28

    Melatonin is an important secondary messenger in plant innate immunity against the bacterial pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 in the salicylic acid (SA)- and nitric oxide (NO)-dependent pathway. However, the metabolic homeostasis in melatonin-mediated innate immunity is unknown. In this study, comparative metabolomic analysis found that the endogenous levels of both soluble sugars (fructose, glucose, melibose, sucrose, maltose, galatose, tagatofuranose and turanose) and glycerol were commonly increased after both melatonin treatment and Pst DC3000 infection in Arabidopsis. Further studies showed that exogenous pre-treatment with fructose, glucose, sucrose, or glycerol increased innate immunity against Pst DC3000 infection in wild type (Col-0) Arabidopsis plants, but largely alleviated their effects on the innate immunity in SA-deficient NahG plants and NO-deficient mutants. This indicated that SA and NO are also essential for sugars and glycerol-mediated disease resistance. Moreover, exogenous fructose, glucose, sucrose and glycerol pre-treatments remarkably increased endogenous NO level, but had no significant effect on the endogenous melatonin level. Taken together, this study highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in SA and NO-dependent pathway in Arabidopsis.

  17. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3-Genes, Genomes, Genetics.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrenophora tritici-repentis is a necrotrophic fungal pathogen and causal agent of tan spot disease of wheat, which has increased significantly over the last few decades. Pathogenicity by this fungus is due to host-selective toxins. These toxins are recognized by their host plant in a genotype-speci...

  18. Quantifying phylogenetic beta diversity: distinguishing between 'true' turnover of lineages and phylogenetic diversity gradients.

    PubMed

    Leprieur, Fabien; Albouy, Camille; De Bortoli, Julien; Cowman, Peter F; Bellwood, David R; Mouillot, David

    2012-01-01

    The evolutionary dissimilarity between communities (phylogenetic beta diversity PBD) has been increasingly explored by ecologists and biogeographers to assess the relative roles of ecological and evolutionary processes in structuring natural communities. Among PBD measures, the PhyloSor and UniFrac indices have been widely used to assess the level of turnover of lineages over geographical and environmental gradients. However, these indices can be considered as 'broad-sense' measures of phylogenetic turnover as they incorporate different aspects of differences in evolutionary history between communities that may be attributable to phylogenetic diversity gradients. In the present study, we extend an additive partitioning framework proposed for compositional beta diversity to PBD. Specifically, we decomposed the PhyloSor and UniFrac indices into two separate components accounting for 'true' phylogenetic turnover and phylogenetic diversity gradients, respectively. We illustrated the relevance of this framework using simple theoretical and archetypal examples, as well as an empirical study based on coral reef fish communities. Overall, our results suggest that using PhyloSor and UniFrac may greatly over-estimate the level of spatial turnover of lineages if the two compared communities show contrasting levels of phylogenetic diversity. We therefore recommend that future studies use the 'true' phylogenetic turnover component of these indices when the studied communities encompass a large phylogenetic diversity gradient.

  19. Comparing Retention and Transport of a Human Pathogenic Virus and a Surrogate Bacteriophage in Porous Media (Invited)

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Attinti, R.

    2010-12-01

    Accurate assessment of risks associated with virus contamination of groundwater requires sound understanding of interactions between viruses and porous media. Although retention and transport of bacteriophages, as surrogates of human enteric viruses (HEVs), have been investigated quite extensively, similar studies with emerging HEVs are largely missing. Thus, whether bacteriophages are suitable models for evaluating environmental fate of HEVs remains unknown. Moreover, traditional colloidal theories (e.g., DLVO and filtration theory) may not apply to viruses because of their complex surface morphology and properties. We conducted column experiments to compare retention and transport of a HEV (Adenovirus 41) and a model bacteriophage (PhiX174) in saturated sand columns in terms of their breakthrough behavior, mass recovery, and competition for attachment sites. In addition, adhesion forces between viruses and sand particles were measured with atomic force microscopy (AFM). Applicability of classic DLVO theory to describe virus-solid interactions will also be discussed.

  20. The Comparative Evaluation of the Antimicrobial Effect of Propolis with Chlorhexidine against Oral Pathogens: An In Vitro Study

    PubMed Central

    Akca, Gülçin; Topçu, Fulya Toksoy; Macit, Enis; Pikdöken, Levent; Özgen, I. Şerif

    2016-01-01

    This study aimed to compare the antimicrobial effectiveness of ethanolic extract of propolis (EEP) to chlorhexidine gluconate (CHX) on planktonic Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Lactobacillus salivarius subsp. salivarius, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Porphyromonas gingivalis, Staphylococcus aureus, Enterococcus faecalis, Actinomyces israelii, Candida albicans, and their single-species biofilms by agar dilution and broth microdilution test methods. Both agents inhibited the growth of all planktonic species. On the other hand, CHX exhibited lower minimum bactericidal concentrations than EEP against biofilms of A. actinomycetemcomitans, S. aureus, and E. faecalis whereas EEP yielded a better result against Lactobacilli and P. intermedia. The bactericidal and fungicidal concentrations of both agents were found to be equal against biofilms of Streptecocci, P. gingivalis, A. israelii, and C. albicans. The results of this study revealed that propolis was more effective in inhibiting Gram-positive bacteria than the Gram-negative bacteria in their planktonic state and it was suggested that EEP could be as effective as CHX on oral microorganisms in their biofilm state. PMID:26949701

  1. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens.

    PubMed

    Jungblut, P R; Schaible, U E; Mollenkopf, H J; Zimny-Arndt, U; Raupach, B; Mattow, J; Halada, P; Lamer, S; Hagens, K; Kaufmann, S H

    1999-09-01

    In 1993, the WHO declared tuberculosis a global emergency on the basis that there are 8 million new cases per year. The complete genome of the strain H37Rv of the causative microorganism, Mycobacterium tuberculosis, comprising 3924 genes has been sequenced. We compared the proteomes of two non-virulent vaccine strains of M. bovis BCG (Chicago and Copenhagen) with two virulent strains of M. tuberculosis (H37Rv and Erdman) to identify protein candidates of value for the development of vaccines, diagnostics and therapeutics. The mycobacterial strains were analysed by two-dimensional electrophoresis (2-DE) combining non-equilibrium pH gradient electrophoresis (NEPHGE) with SDS-PAGE. Distinct and characteristic proteins were identified by mass spectrometry and introduced into a dynamic 2-DE database (http://www.mpiib-berlin.mpg.de/2D-PAGE). Silver-stained 2-DE patterns of mycobacterial cell proteins or culture supernatants contained 1800 or 800 spots, respectively, from which 263 were identified. Of these, 54 belong to the culture supernatant. Sixteen and 25 proteins differing in intensity or position between M. tuberculosis H37Rv and Erdman, and H37Rv and M. bovis BCG Chicago, respectively, were identified and categorized into protein classes. It is to be hoped that the availability of the mycobacterial proteome will facilitate the design of novel measures for prevention and therapy of one of the great health threats, tuberculosis.

  2. The Comparative Evaluation of the Antimicrobial Effect of Propolis with Chlorhexidine against Oral Pathogens: An In Vitro Study.

    PubMed

    Akca, A Eralp; Akca, Gülçin; Topçu, Fulya Toksoy; Macit, Enis; Pikdöken, Levent; Özgen, I Şerif

    2016-01-01

    This study aimed to compare the antimicrobial effectiveness of ethanolic extract of propolis (EEP) to chlorhexidine gluconate (CHX) on planktonic Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Lactobacillus salivarius subsp. salivarius, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Porphyromonas gingivalis, Staphylococcus aureus, Enterococcus faecalis, Actinomyces israelii, Candida albicans, and their single-species biofilms by agar dilution and broth microdilution test methods. Both agents inhibited the growth of all planktonic species. On the other hand, CHX exhibited lower minimum bactericidal concentrations than EEP against biofilms of A. actinomycetemcomitans, S. aureus, and E. faecalis whereas EEP yielded a better result against Lactobacilli and P. intermedia. The bactericidal and fungicidal concentrations of both agents were found to be equal against biofilms of Streptecocci, P. gingivalis, A. israelii, and C. albicans. The results of this study revealed that propolis was more effective in inhibiting Gram-positive bacteria than the Gram-negative bacteria in their planktonic state and it was suggested that EEP could be as effective as CHX on oral microorganisms in their biofilm state.

  3. A Universal Phylogenetic Tree.

    ERIC Educational Resources Information Center

    Offner, Susan

    2001-01-01

    Presents a universal phylogenetic tree suitable for use in high school and college-level biology classrooms. Illustrates the antiquity of life and that all life is related, even if it dates back 3.5 billion years. Reflects important evolutionary relationships and provides an exciting way to learn about the history of life. (SAH)

  4. Comparative analysis of the XopD type III secretion (T3S) effector family in plant pathogenic bacteria.

    PubMed

    Kim, Jung-Gun; Taylor, Kyle W; Mudgett, Mary Beth

    2011-10-01

    XopD is a type III effector protein that is required for Xanthomonas campestris pathovar vesicatoria (Xcv) growth in tomato. It is a modular protein consisting of an N-terminal DNA-binding domain, two ethylene-responsive element binding factor-associated amphiphilic repression (EAR) transcriptional repressor motifs and a C-terminal small ubiquitin-related modifier (SUMO) protease. In tomato, XopD functions as a transcriptional repressor, resulting in the suppression of defence responses at late stages of infection. A survey of available genome sequences for phytopathogenic bacteria revealed that XopD homologues are limited to species within three genera of Proteobacteria--Xanthomonas, Acidovorax and Pseudomonas. Although the EAR motif(s) and SUMO protease domain are conserved in all XopD-like proteins, variation exists in the length and sequence identity of the N-terminal domains. Comparative analysis of the DNA sequences surrounding xopD and xopD-like genes led to revised annotation of the xopD gene. Edman degradation sequence analysis and functional complementation studies confirmed that the xopD gene from Xcv encodes a 760-amino-acid protein with a longer N-terminal domain than previously predicted. None of the XopD-like proteins studied complemented Xcv ΔxopD mutant phenotypes in tomato leaves, suggesting that the N-terminus of XopD defines functional specificity. Xcv ΔxopD strains expressing chimeric fusion proteins containing the N-terminus of XopD fused to the EAR motif(s) and SUMO protease domain of the XopD-like protein from X. campestris pathovar campestris strain B100 were fully virulent in tomato, demonstrating that the N-terminus of XopD controls specificity in tomato.

  5. Comparative effects of micafungin, caspofungin, and anidulafungin against a difficult-to-treat fungal opportunistic pathogen, Candida glabrata.

    PubMed

    Spreghini, Elisabetta; Orlando, Fiorenza; Sanguinetti, Maurizio; Posteraro, Brunella; Giannini, Daniele; Manso, Esther; Barchiesi, Francesco

    2012-03-01

    The aim of this study was to compare the in vitro and in vivo activities of micafungin, caspofungin, and anidulafungin against Candida glabrata. The MICs against 28 clinical isolates showed that the overall susceptibilities to caspofungin and to micafungin were not statistically different in the absence of human serum, whereas the isolates were less susceptible to micafungin than to caspofungin in its presence. Minimum fungicidal concentrations, as well as time-kill experiments, showed that caspofungin was more active than anidulafungin, while micafungin was superior to either caspofungin or anidulafungin without serum; its addition rendered caspofungin and micafungin equally effective. A murine model of systemic candidiasis against a C. glabrata-susceptible isolate was performed to study the effects of all three echinocandins, and kidney burden counts showed that caspofungin, micafungin, and anidulafungin were active starting from 0.25, 1, and 5 mg/kg of body weight/day, respectively. Two echinocandin-resistant strains of C. glabrata were selected: C. glabrata 30, a laboratory strain harboring the mutation Fks2p-P667T, and C. glabrata 51, a clinical isolate harboring the mutation Fks2p-D666G. Micafungin activity was shown to be as effective as or more effective than that of caspofungin or anidulafungin in terms of MICs. In vivo studies against these resistant strains showed that micafungin was active starting from 1 mg/kg/day, while caspofungin was effective only when administrated at higher doses of 5 or 10 mg/kg/day. Although a trend toward colony reduction was observed with the highest doses of anidulafungin, a significant statistical difference was never reached.

  6. Phylogenetic placement of the Spirosomaceae

    NASA Technical Reports Server (NTRS)

    Woese, C. R.; Maloy, S.; Mandelco, L.; Raj, H. D.

    1990-01-01

    Comparative analysis of 16S rRNA sequences shows that the family Spirosomaceae belongs within the eubacterial phylum defined by the flavobacteria and bacteriodes. Its constituent genera, Spirosoma, Flectobacillus, and Runella form a monophyletic grouping therein. The phylogenetic assignment is based not only upon evolutionary distance analysis, but also upon sequence signatures and higher order structural synapomorphies in 16S rRNA. Another genus peripherally associated with the Spirosomaceae, Ancylobacter ("Microcyclus"), does not cluster with the flavobacteria and their relatives, but rather belongs to the alpha subdivision of the purple bacteria.

  7. Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure.

    PubMed

    Rasche, Frank; Hödl, Verania; Poll, Christian; Kandeler, Ellen; Gerzabek, Martin H; van Elsas, Jan D; Sessitsch, Angela

    2006-05-01

    A greenhouse experiment was performed to analyze a potential effect of genetically modified potatoes expressing antibacterial compounds (attacin/cecropin, T4 lysozyme) and their nearly isogenic, nontransformed parental wild types on rhizosphere bacterial communities. To compare plant transformation-related variations with commonly accepted impacts caused by altered environmental conditions, potatoes were cultivated under different environmental conditions, for example using contrasting soil types. Further, plants were challenged with the blackleg pathogen Erwinia carotovora ssp. atroseptica. Rhizosphere soil samples were obtained at the stem elongation and early flowering stages. The activities of various extracellular rhizosphere enzymes involved in the C-, P- and N-nutrient cycles were determined as the rates of fluorescence of enzymatically hydrolyzed substrates containing the highly fluorescent compounds 4-methylumbelliferone or 7-amino-4-methyl coumarin. The structural diversity of the bacterial communities was assessed by 16S rRNA-based terminal restriction fragment length polymorphism analysis, and 16S rRNA gene clone libraries were established for the flowering conventional and T4 lysozyme-expressing Desirée lines grown on the chernozem soil, each line treated with and without E. carotovora ssp. atroseptica. Both genetic transformation events induced a differentiation in the activity rates and structures of associated bacterial communities. In general, T4 lysozyme had a stronger effect than attacin/cecropin. In comparison with the other factors, the impact of the genetic modification was only transient and minor, or comparable to the dominant variations caused by soil type, plant genotype, vegetation stage and pathogen exposure.

  8. Phylogenetic Inference From Conserved sites Alignments

    SciTech Connect

    grundy, W.N.; Naylor, G.J.P.

    1999-08-15

    Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements.

  9. Orthologous repeats and mammalian phylogenetic inference

    PubMed Central

    Bashir, Ali; Ye, Chun; Price, Alkes L.; Bafna, Vineet

    2005-01-01

    Determining phylogenetic relationships between species is a difficult problem, and many phylogenetic relationships remain unresolved, even among eutherian mammals. Repetitive elements provide excellent markers for phylogenetic analysis, because their mode of evolution is predominantly homoplasy-free and unidirectional. Historically, phylogenetic studies using repetitive elements have relied on biological methods such as PCR analysis, and computational inference is limited to a few isolated repeats. Here, we present a novel computational method for inferring phylogenetic relationships from partial sequence data using orthologous repeats. We apply our method to reconstructing the phylogeny of 28 mammals, using more than 1000 orthologous repeats obtained from sequence data available from the NISC Comparative Sequencing Program. The resulting phylogeny has robust bootstrap numbers, and broadly matches results from previous studies which were obtained using entirely different data and methods. In addition, we shed light on some of the debatable aspects of the phylogeny. With rapid expansion of available partial sequence data, computational analysis of repetitive elements holds great promise for the future of phylogenetic inference. PMID:15998912

  10. Maximizing the phylogenetic diversity of seed banks.

    PubMed

    Griffiths, Kate E; Balding, Sharon T; Dickie, John B; Lewis, Gwilym P; Pearce, Tim R; Grenyer, Richard

    2015-04-01

    Ex situ conservation efforts such as those of zoos, botanical gardens, and seed banks will form a vital complement to in situ conservation actions over the coming decades. It is therefore necessary to pay the same attention to the biological diversity represented in ex situ conservation facilities as is often paid to protected-area networks. Building the phylogenetic diversity of ex situ collections will strengthen our capacity to respond to biodiversity loss. Since 2000, the Millennium Seed Bank Partnership has banked seed from 14% of the world's plant species. We assessed the taxonomic, geographic, and phylogenetic diversity of the Millennium Seed Bank collection of legumes (Leguminosae). We compared the collection with all known legume genera, their known geographic range (at country and regional levels), and a genus-level phylogeny of the legume family constructed for this study. Over half the phylogenetic diversity of legumes at the genus level was represented in the Millennium Seed Bank. However, pragmatic prioritization of species of economic importance and endangerment has led to the banking of a less-than-optimal phylogenetic diversity and prioritization of range-restricted species risks an underdispersed collection. The current state of the phylogenetic diversity of legumes in the Millennium Seed Bank could be substantially improved through the strategic banking of relatively few additional taxa. Our method draws on tools that are widely applied to in situ conservation planning, and it can be used to evaluate and improve the phylogenetic diversity of ex situ collections.

  11. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We sequenced and compared the genomes of Dothideomycete fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum that are related phylogenetically, but have different lifestyles and infect different hosts. C. fulvum is a biotroph that infects tomato, while D. septosporum is a hemibiotr...

  12. Comparative Pathogenomics of Bacteria Causing Infectious Diseases in Fish

    PubMed Central

    Sudheesh, Ponnerassery S.; Al-Ghabshi, Aliya; Al-Mazrooei, Nashwa; Al-Habsi, Saoud

    2012-01-01

    Fish living in the wild as well as reared in the aquaculture facilities are susceptible to infectious diseases caused by a phylogenetically diverse collection of bacterial pathogens. Control and treatment options using vaccines and drugs are either inadequate, inefficient, or impracticable. The classical approach in studying fish bacterial pathogens has been looking at individual or few virulence factors. Recently, genome sequencing of a number of bacterial fish pathogens has tremendously increased our understanding of the biology, host adaptation, and virulence factors of these important pathogens. This paper attempts to compile the scattered literature on genome sequence information of fish pathogenic bacteria published and available to date. The genome sequencing has uncovered several complex adaptive evolutionary strategies mediated by horizontal gene transfer, insertion sequence elements, mutations and prophage sequences operating in fish pathogens, and how their genomes evolved from generalist environmental strains to highly virulent obligatory pathogens. In addition, the comparative genomics has allowed the identification of unique pathogen-specific gene clusters. The paper focuses on the comparative analysis of the virulogenomes of important fish bacterial pathogens, and the genes involved in their evolutionary adaptation to different ecological niches. The paper also proposes some new directions on finding novel vaccine and chemotherapeutic targets in the genomes of bacterial pathogens of fish. PMID:22675651

  13. A Model of an Integrated Immune System Pathway in Homo sapiens and Its Interaction with Superantigen Producing Expression Regulatory Pathway in Staphylococcus aureus: Comparing Behavior of Pathogen Perturbed and Unperturbed Pathway

    PubMed Central

    Tomar, Namrata; De, Rajat K.

    2013-01-01

    Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the

  14. Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5; ST Complex 95, ST140) Shares Close Relationship with ST95 APEC O1:K1 and Human ExPEC O18:K1 Strains

    PubMed Central

    Pan, Zihao; Hu, Lin; Wang, Shaohui; Wang, Haojin; Leung, Frederick C.; Dai, Jianjun; Fan, Hongjie

    2014-01-01

    Avian pathogenic E. coli and human extraintestinal pathogenic E. coli serotypes O1, O2 and O18 strains isolated from different hosts are generally located in phylogroup B2 and ST complex 95, and they share similar genetic characteristics and pathogenicity, with no or minimal host specificity. They are popular objects for the study of ExPEC genetic characteristics and pathogenesis in recent years. Here, we investigated the evolution and genetic blueprint of APEC pathotype by performing phylogenetic and comparative genome analysis of avian pathogenic E. coli strain IMT5155 (O2:K1:H5; ST complex 95, ST140) with other E. coli pathotypes. Phylogeny analyses indicated that IMT5155 has closest evolutionary relationship with APEC O1, IHE3034, and UTI89. Comparative genomic analysis showed that IMT5155 and APEC O1 shared significant genetic overlap/similarities with human ExPEC dominant O18:K1 strains (IHE3034 and UTI89). Furthermore, the unique PAI I5155 (GI-12) was identified and found to be conserved in APEC O2 serotype isolates. GI-7 and GI-16 encoding two typical T6SSs in IMT5155 might be useful markers for the identification of ExPEC dominant serotypes (O1, O2, and O18) strains. IMT5155 contained a ColV plasmid p1ColV5155, which defined the APEC pathotype. The distribution analysis of 10 sequenced ExPEC pan-genome virulence factors among 47 sequenced E. coli strains provided meaningful information for B2 APEC/ExPEC-specific virulence factors, including several adhesins, invasins, toxins, iron acquisition systems, and so on. The pathogenicity tests of IMT5155 and other APEC O1:K1 and O2:K1 serotypes strains (isolated in China) through four animal models showed that they were highly virulent for avian colisepticemia and able to cause septicemia and meningitis in neonatal rats, suggesting zoonotic potential of these APEC O1:K1 and O2:K1 isolates. PMID:25397580

  15. Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes.

    PubMed Central

    Gunderson, J H; Elwood, H; Ingold, A; Kindle, K; Sogin, M L

    1987-01-01

    The phylogenetic relationships among the chlorophyte Chlamydomonas reinhardtii, the chrysophyte Ochromonas danica, and the oomycete Achyla bisexualis were explored by comparing the sequences of their small-subunit ribosomal RNA coding regions. Comparisons of similarity values or inspection of phylogenetic trees constructed by distance matrix methods reveal a very close relationship between oomycetes and chrysophytes. The separation of chrysophytes from chlorophytes is comparable to that of plants from animals, and both separations are far antedated by the divergence of a number of other protist groups. PMID:3475703

  16. Comparative analysis of receptor-binding specificity and pathogenicity in natural reassortant and non-reassortant H3N2 swine influenza virus.

    PubMed

    Cong, Yanlong; Sun, Yixue; Wang, Weili; Meng, Qingfeng; Ran, Wei; Zhu, Lisai; Yang, Guilian; Yang, Wentao; Yang, Lihua; Wang, Chunfeng; Ding, Zhuang

    2014-01-10

    Genetic reassortment between human and avian influenza viruses can create pandemic viruses. Influenza surveillance of pigs in Jilin Province, in China during 2007-2008 revealed that there were two distinguishable genotypes: a human-like H3N2 genotype and a double-reassortant genotype derived from the human H3N2 and avian H5 viruses. In this study, viral infection potential, replication kinetics, and pathogenicity were compared. The solid-phase binding assay demonstrated that both viruses prominently maintained a preference for the human-type receptor and the reassortant A/swine/Jilin/37/2008 (Sw/JL/37/08) showed relatively higher binding affinities than the non-reassortant A/swine/Jilin/19/2007 (Sw/JL/19/07). Replication kinetics showed that Sw/JL/37/08 had higher replicability in MDCK cells than Sw/JL/19/07. The mouse experiments clearly revealed that Sw/JL/37/08 had higher virulence than Sw/JL/19/07 as measured by more significant body weight loss, higher viral lung load, delayed viral clearance from lungs, and more severe pulmonary lesions. Sequence analysis indicated that the absence of glycosylation sites at residue 126 of HA and 93 of NA, as well as the characteristic NS1 C-terminal PL residues of ESEV may account for the increased replication and pathogenicity of Sw/JL/37/08. These results may imply that human may have infection risk by the reassortant swine influenza virus and emphasize the necessity for enhanced viral surveillance strategies, which monitor reassortment events in nature to reduce the public health threat posed by influenza viruses with the potential for human-to-human transmission currently circulating in pig populations.

  17. Refuting phylogenetic relationships

    PubMed Central

    Bucknam, James; Boucher, Yan; Bapteste, Eric

    2006-01-01

    Background Phylogenetic methods are philosophically grounded, and so can be philosophically biased in ways that limit explanatory power. This constitutes an important methodologic dimension not often taken into account. Here we address this dimension in the context of concatenation approaches to phylogeny. Results We discuss some of the limits of a methodology restricted to verificationism, the philosophy on which gene concatenation practices generally rely. As an alternative, we describe a software which identifies and focuses on impossible or refuted relationships, through a simple analysis of bootstrap bipartitions, followed by multivariate statistical analyses. We show how refuting phylogenetic relationships could in principle facilitate systematics. We also apply our method to the study of two complex phylogenies: the phylogeny of the archaea and the phylogeny of the core of genes shared by all life forms. While many groups are rejected, our results left open a possible proximity of N. equitans and the Methanopyrales, of the Archaea and the Cyanobacteria, and as well the possible grouping of the Methanobacteriales/Methanoccocales and Thermosplasmatales, of the Spirochaetes and the Actinobacteria and of the Proteobacteria and firmicutes. Conclusion It is sometimes easier (and preferable) to decide which species do not group together than which ones do. When possible topologies are limited, identifying local relationships that are rejected may be a useful alternative to classical concatenation approaches aiming to find a globally resolved tree on the basis of weak phylogenetic markers. Reviewers This article was reviewed by Mark Ragan, Eugene V Koonin and J Peter Gogarten. PMID:16956399

  18. Virulence, Antimicrobial Resistance Properties and Phylogenetic Background of Non-H7 Enteropathogenic Escherichia coli O157

    PubMed Central

    Ferdous, Mithila; Kooistra-Smid, Anna M. D.; Zhou, Kai; Rossen, John W. A.; Friedrich, Alexander W.

    2016-01-01

    Escherichia coli (E.coli) O157 that do not produce Shiga toxin and do not possess flagellar antigen H7 are of diverse H serotypes. In this study, the antibiotic resistance properties, genotype of a set of virulence associated genes and the phylogenetic background of E. coli O157:non-H7 groups were compared. Whole genome sequencing was performed on fourteen O157:non-H7 isolates collected in the STEC-ID-net study. The genomes were compared with E. coli O157 genomes and a typical Enteropathogenic E. coli (tEPEC) genome downloaded from NCBI. Twenty-six (86%) of the analyzed genomes had the intimin encoding gene eae but of different types mostly correlating with their H types, e.g., H16, H26, H39, and H45 carried intimin type ε, β, κ, and α, respectively. They belonged to several E. coli phylogenetic groups, i.e., to phylogenetic group A, B1, B2, and D. Seven (50%) of our collected O157:non-H7 isolates were resistant to two or more antibiotics. Several mobile genetic elements, such as plasmids, insertion elements, and pathogenicity islands, carrying a set of virulence and resistance genes were found in the E. coli O157:non-H7 isolates. Core genome phylogenetic analysis showed that O157:non-H7 isolates probably evolved from different phylogenetic lineages and were distantly related to the E. coli O157:H7 lineage. We hypothesize that independent acquisition of mobile genetic elements by isolates of different lineages have contributed to the different molecular features of the O157:non-H7 strains. Although distantly related to the STEC O157, E. coli O157:non-H7 isolates from multiple genetic background could be considered as pathogen of concern for their diverse virulence and antibiotic resistance properties. PMID:27733849

  19. Comparative histopathology of Opisthorchis felineus and Opisthorchis viverrini in a hamster model: an implication of high pathogenicity of the European liver fluke.

    PubMed

    Lvova, Maria N; Tangkawattana, Sirikachorn; Balthaisong, Suwit; Katokhin, Alexey V; Mordvinov, Viatcheslav A; Sripa, Banchob

    2012-03-01

    European liver fluke (Opisthorchis felineus) and Asian liver fluke (Opisthorchis viverrini) are similar in morphology but comparative pathology of the infections has not been described. We therefore did comparative histopathology of both parasites in an experimental animal model. The study was conducted in 3 groups of 105 Syrian golden hamsters; the first and second groups fed with 50 metacercariae of O. felineus (OF) or O. viverrini (OV) and the last group was uninfected controls. Five hamsters in each group were euthanized on weeks 1, 2, 4, 8, 12 and 24 post-infection. The liver tissue was fixed and processed for routine histopathology and immunohistochemistry for proliferation markers (BrdU or PCNA). Overall, the liver histopathology of O. felineus and O. viverrini infection was generally similar. However, various histopathogical features including intense inflammation, fibrosis, biliary and goblet cell hyperplasia and dysplasia occurred earlier in the OF group. In addition, the existence of precancerous lesions such as cholangiofibrosis in a long-term infection was observed only in this group. O. felineus is larger in size than O. viverrini which, together with its excreted and secreted antigens, likely is crucial in the induction of liver fluke induced disease. The differences in nature and timing of the histopathological profile indicate that opisthorchiasis caused by the European liver fluke O. felineus is more pathogenic than its Asian relative O. viverrini.

  20. A taxonomic and phylogenetic re-appraisal of the genus Curvularia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species of Curvularia are important plant and human pathogens worldwide. In this study, the genus Curvularia is re-assessed based on molecular phylogenetic analysis and morphological observations of available isolates and specimens. A multi-gene phylogenetic tree inferred from ITS, TEF and GPDH gene...

  1. Genomic Repeat Abundances Contain Phylogenetic Signal

    PubMed Central

    Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464

  2. Estimating Bayesian Phylogenetic Information Content

    PubMed Central

    Lewis, Paul O.; Chen, Ming-Hui; Kuo, Lynn; Lewis, Louise A.; Fučíková, Karolina; Neupane, Suman; Wang, Yu-Bo; Shi, Daoyuan

    2016-01-01

    Measuring the phylogenetic information content of data has a long history in systematics. Here we explore a Bayesian approach to information content estimation. The entropy of the posterior distribution compared with the entropy of the prior distribution provides a natural way to measure information content. If the data have no information relevant to ranking tree topologies beyond the information supplied by the prior, the posterior and prior will be identical. Information in data discourages consideration of some hypotheses allowed by the prior, resulting in a posterior distribution that is more concentrated (has lower entropy) than the prior. We focus on measuring information about tree topology using marginal posterior distributions of tree topologies. We show that both the accuracy and the computational efficiency of topological information content estimation improve with use of the conditional clade distribution, which also allows topological information content to be partitioned by clade. We explore two important applications of our method: providing a compelling definition of saturation and detecting conflict among data partitions that can negatively affect analyses of concatenated data. [Bayesian; concatenation; conditional clade distribution; entropy; information; phylogenetics; saturation.] PMID:27155008

  3. Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species.

    PubMed

    Huguet-Tapia, Jose C; Lefebure, Tristan; Badger, Jonathan H; Guan, Dongli; Pettis, Gregg S; Stanhope, Michael J; Loria, Rosemary

    2016-01-29

    Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer.

  4. Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species

    PubMed Central

    Huguet-Tapia, Jose C.; Lefebure, Tristan; Badger, Jonathan H.; Guan, Dongli; Stanhope, Michael J.

    2016-01-01

    Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer. PMID:26826232

  5. A comparative, cross-species investigation of the properties and roles of transferrin- and lactoferrin-binding protein B from pathogenic bacteria.

    PubMed

    Ostan, N; Morgenthau, A; Yu, R H; Gray-Owen, S D; Schryvers, A B

    2017-02-01

    Pathogenic bacteria from the families Neisseriaeceae and Moraxellaceae acquire iron from their host using surface receptors that have the ability to hijack iron from the iron-sequestering host proteins transferrin (Tf) and lactoferrin (Lf). The process of acquiring iron from Tf has been well-characterized, including the role of the surface lipoprotein transferrin-binding protein B (TbpB). In contrast, the only well-defined role for the homologue, LbpB, is in its protection against cationic antimicrobial peptides, which is mediated by regions present in some LbpBs that are highly enriched in glutamic or aspartic acid. In this study we compare the Tf-TbpB and the Lf-LbpB interactions and examine the protective effect of LbpB against extracts from human and transgenic mouse neutrophils to gains insights into the physiological roles of LbpB. The results indicate that in contrast to the Tf-TbpB interaction, Lf-LbpB interaction is sensitive to pH and varies between species. In addition, the results with transgenic mouse neutrophils raise the question of whether there is species specificity in the cleavage of Lf to generate cationic antimicrobial peptides or differences in the potency of peptides derived from mouse and human Lf.

  6. Comparative analysis of the Hrp pathogenicity island of Rubus- and Spiraeoideae-infecting Erwinia amylovora strains identifies the IT region as a remnant of an integrative conjugative element.

    PubMed

    Mann, Rachel A; Blom, Jochen; Bühlmann, Andreas; Plummer, Kim M; Beer, Steven V; Luck, Joanne E; Goesmann, Alexander; Frey, Jürg E; Rodoni, Brendan C; Duffy, Brion; Smits, Theo H M

    2012-08-01

    The Hrp pathogenicity island (hrpPAI) of Erwinia amylovora not only encodes a type III secretion system (T3SS) and other genes required for pathogenesis on host plants, but also includes the so-called island transfer (IT) region, a region that originates from an integrative conjugative element (ICE). Comparative genomic analysis of the IT regions of two Spiraeoideae- and three Rubus-infecting strains revealed that the regions in Spiraeoideae-infecting strains were syntenic and highly conserved in length and genetic information, but that the IT regions of the Rubus-infecting strains varied in gene content and length, showing a mosaic structure. None of the ICEs in E. amylovora strains were complete, as conserved ICE genes and the left border were missing, probably due to reductive genome evolution. Comparison of the hrpPAI region of E. amylovora strains to syntenic regions from other Erwinia spp. indicates that the hrpPAI and the IT regions are the result of several insertion and deletion events that have occurred within the ICE. It also suggests that the T3SS was present in a common ancestor of the pathoadapted Erwinia spp. and that insertion and deletion events in the IT region occurred during speciation.

  7. Robust Identification of Noncoding RNA from Transcriptomes Requires Phylogenetically-Informed Sampling

    PubMed Central

    Lai, Alicia Sook-Wei; Eldai, Hisham; Liu, Wenting; McGimpsey, Stephanie; Wheeler, Nicole E.; Biggs, Patrick J.; Thomson, Nick R.; Barquist, Lars; Poole, Anthony M.; Gardner, Paul P.

    2014-01-01

    Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling. PMID:25357249

  8. [Analysis phylogenetic relationship of Gynostemma (Cucurbitaceae)].

    PubMed

    Qin, Shuang-shuang; Li, Hai-tao; Wang, Zhou-yong; Cui, Zhan-hu; Yu, Li-ying

    2015-05-01

    The sequences of ITS, matK, rbcL and psbA-trnH of 9 Gynostemma species or variety including 38 samples were compared and analyzed by molecular phylogeny method. Hemsleya macrosperma was designated as outgroup. The MP and NJ phylogenetic tree of Gynostemma was built based on ITS sequence, the results of PAUP phylogenetic analysis showed the following results: (1) The eight individuals of G. pentaphyllum var. pentaphyllum were not supported as monophyletic in the strict consensus trees and NJ trees. (2) It is suspected whether G. longipes and G. laxum should be classified as the independent species. (3)The classification of subgenus units of Gynostemma plants is supported.

  9. Constructing Student Problems in Phylogenetic Tree Construction.

    ERIC Educational Resources Information Center

    Brewer, Steven D.

    Evolution is often equated with natural selection and is taught from a primarily functional perspective while comparative and historical approaches, which are critical for developing an appreciation of the power of evolutionary theory, are often neglected. This report describes a study of expert problem-solving in phylogenetic tree construction.…

  10. Spatial predictions of phylogenetic diversity in conservation decision making.

    PubMed

    Pio, Dorothea V; Broennimann, Olivier; Barraclough, Timothy G; Reeves, Gail; Rebelo, Anthony G; Thuiller, Wilfried; Guisan, Antoine; Salamin, Nicolas

    2011-12-01

    Considering genetic relatedness among species has long been argued as an important step toward measuring biological diversity more accurately, rather than relying solely on species richness. Some researchers have correlated measures of phylogenetic diversity and species richness across a series of sites and suggest that values of phylogenetic diversity do not differ enough from those of species richness to justify their inclusion in conservation planning. We compared predictions of species richness and 10 measures of phylogenetic diversity by creating distribution models for 168 individual species of a species-rich plant family, the Cape Proteaceae. When we used average amounts of land set aside for conservation to compare areas selected on the basis of species richness with areas selected on the basis of phylogenetic diversity, correlations between species richness and different measures of phylogenetic diversity varied considerably. Correlations between species richness and measures that were based on the length of phylogenetic tree branches and tree shape were weaker than those that were based on tree shape alone. Elevation explained up to 31% of the segregation of species rich versus phylogenetically rich areas. Given these results, the increased availability of molecular data, and the known ecological effect of phylogenetically rich communities, consideration of phylogenetic diversity in conservation decision making may be feasible and informative.

  11. Morphological and molecular convergences in mammalian phylogenetics.

    PubMed

    Zou, Zhengting; Zhang, Jianzhi

    2016-09-02

    Phylogenetic trees reconstructed from molecular sequences are often considered more reliable than those reconstructed from morphological characters, in part because convergent evolution, which confounds phylogenetic reconstruction, is believed to be rarer for molecular sequences than for morphologies. However, neither the validity of this belief nor its underlying cause is known. Here comparing thousands of characters of each type that have been used for inferring the phylogeny of mammals, we find that on average morphological characters indeed experience much more convergences than amino acid sites, but this disparity is explained by fewer states per character rather than an intrinsically higher susceptibility to convergence for morphologies than sequences. We show by computer simulation and actual data analysis that a simple method for identifying and removing convergence-prone characters improves phylogenetic accuracy, potentially enabling, when necessary, the inclusion of morphologies and hence fossils for reliable tree inference.

  12. Morphological and molecular convergences in mammalian phylogenetics

    PubMed Central

    Zou, Zhengting; Zhang, Jianzhi

    2016-01-01

    Phylogenetic trees reconstructed from molecular sequences are often considered more reliable than those reconstructed from morphological characters, in part because convergent evolution, which confounds phylogenetic reconstruction, is believed to be rarer for molecular sequences than for morphologies. However, neither the validity of this belief nor its underlying cause is known. Here comparing thousands of characters of each type that have been used for inferring the phylogeny of mammals, we find that on average morphological characters indeed experience much more convergences than amino acid sites, but this disparity is explained by fewer states per character rather than an intrinsically higher susceptibility to convergence for morphologies than sequences. We show by computer simulation and actual data analysis that a simple method for identifying and removing convergence-prone characters improves phylogenetic accuracy, potentially enabling, when necessary, the inclusion of morphologies and hence fossils for reliable tree inference. PMID:27585543

  13. Molecular phylogenetics of the hummingbird genus Coeligena.

    PubMed

    Parra, Juan Luis; Remsen, J V; Alvarez-Rebolledo, Mauricio; McGuire, Jimmy A

    2009-11-01

    Advances in the understanding of biological radiations along tropical mountains depend on the knowledge of phylogenetic relationships among species. Here we present a species-level molecular phylogeny based on a multilocus dataset for the Andean hummingbird genus Coeligena. We compare this phylogeny to previous hypotheses of evolutionary relationships and use it as a framework to understand patterns in the evolution of sexual dichromatism and in the biogeography of speciation within the Andes. Previous phylogenetic hypotheses based mostly on similarities in coloration conflicted with our molecular phylogeny, emphasizing the unreliability of color characters for phylogenetic inference. Two major clades, one monochromatic and the other dichromatic, were found in Coeligena. Closely related species were either allopatric or parapatric on opposite mountain slopes. No sister lineages replaced each other along an elevational gradient. Our results indicate the importance of geographic isolation for speciation in this group and the potential interaction between isolation and sexual selection to promote diversification.

  14. Pathogen Phytosensing: Plants to Report Plant Pathogens.

    PubMed

    Mazarei, Mitra; Teplova, Irina; Hajimorad, M Reza; Stewart, C Neal

    2008-04-14

    Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or 'phytosensors', by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable

  15. Entanglement, Invariants, and Phylogenetics

    NASA Astrophysics Data System (ADS)

    Sumner, J. G.

    2007-10-01

    This thesis develops and expands upon known techniques of mathematical physics relevant to the analysis of the popular Markov model of phylogenetic trees required in biology to reconstruct the evolutionary relationships of taxonomic units from biomolecular sequence data. The techniques of mathematical physics are plethora and have been developed for some time. The Markov model of phylogenetics and its analysis is a relatively new technique where most progress to date has been achieved by using discrete mathematics. This thesis takes a group theoretical approach to the problem by beginning with a remarkable mathematical parallel to the process of scattering in particle physics. This is shown to equate to branching events in the evolutionary history of molecular units. The major technical result of this thesis is the derivation of existence proofs and computational techniques for calculating polynomial group invariant functions on a multi-linear space where the group action is that relevant to a Markovian time evolution. The practical results of this thesis are an extended analysis of the use of invariant functions in distance based methods and the presentation of a new reconstruction technique for quartet trees which is consistent with the most general Markov model of sequence evolution.

  16. Phylogenetic trees in bioinformatics

    SciTech Connect

    Burr, Tom L

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  17. Disentangling the phylogenetic and ecological components of spider phenotypic variation.

    PubMed

    Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo

    2014-01-01

    An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.

  18. Relating phylogenetic trees to transmission trees of infectious disease outbreaks.

    PubMed

    Ypma, Rolf J F; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-11-01

    Transmission events are the fundamental building blocks of the dynamics of any infectious disease. Much about the epidemiology of a disease can be learned when these individual transmission events are known or can be estimated. Such estimations are difficult and generally feasible only when detailed epidemiological data are available. The genealogy estimated from genetic sequences of sampled pathogens is another rich source of information on transmission history. Optimal inference of transmission events calls for the combination of genetic data and epidemiological data into one joint analysis. A key difficulty is that the transmission tree, which describes the transmission events between infected hosts, differs from the phylogenetic tree, which describes the ancestral relationships between pathogens sampled from these hosts. The trees differ both in timing of the internal nodes and in topology. These differences become more pronounced when a higher fraction of infected hosts is sampled. We show how the phylogenetic tree of sampled pathogens is related to the transmission tree of an outbreak of an infectious disease, by the within-host dynamics of pathogens. We provide a statistical framework to infer key epidemiological and mutational parameters by simultaneously estimating the phylogenetic tree and the transmission tree. We test the approach using simulations and illustrate its use on an outbreak of foot-and-mouth disease. The approach unifies existing methods in the emerging field of phylodynamics with transmission tree reconstruction methods that are used in infectious disease epidemiology.

  19. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism.

    PubMed

    Davies, T Jonathan; Kraft, Nathan J B; Salamin, Nicolas; Wolkovich, Elizabeth M

    2012-02-01

    The tendency for more closely related species to share similar traits and ecological strategies can be explained by their longer shared evolutionary histories and represents phylogenetic conservatism. How strongly species traits co-vary with phylogeny can significantly impact how we analyze cross-species data and can influence our interpretation of assembly rules in the rapidly expanding field of community phylogenetics. Phylogenetic conservatism is typically quantified by analyzing the distribution of species values on the phylogenetic tree that connects them. Many phylogenetic approaches, however, assume a completely sampled phylogeny: while we have good estimates of deeper phylogenetic relationships for many species-rich groups, such as birds and flowering plants, we often lack information on more recent interspecific relationships (i.e., within a genus). A common solution has been to represent these relationships as polytomies on trees using taxonomy as a guide. Here we show that such trees can dramatically inflate estimates of phylogenetic conservatism quantified using S. P. Blomberg et al.'s K statistic. Using simulations, we show that even randomly generated traits can appear to be phylogenetically conserved on poorly resolved trees. We provide a simple rarefaction-based solution that can reliably retrieve unbiased estimates of K, and we illustrate our method using data on first flowering times from Thoreau's woods (Concord, Massachusetts, USA).

  20. Comparative studies of Campylobacter jejuni genomic diversity reveal the importance of core and dispensable genes in the biology of this enigmatic food-borne pathogen

    PubMed Central

    Duong, Tri; Konkel, Michael E.

    2009-01-01

    Summary of recent events MLST, DNA microarrays, and genome sequencing has allowed for a greater understanding of the metabolic capacity and epidemiology of Campylobacter jejuni. While strain-specific genes may provide an isolate a selective advantage in environments and contribute to the organism's pathogenicity, recent work indicates that C. jejuni pathogenicity is dictated by variations in the nucleotide sequence of core genes. Challenges facing C. jejuni researchers include determining: a) the degree to which genomic diversity enables this bacterium to persist in particular environments; b) if C. jejuni virulence and disease severity can be predicted based on genotype; c) the set of core and variable genes whose products contribute to virulence; and d) the genes in which nucleotide changes can affect a strain's pathogenicity. PMID:19346123

  1. Host–pathogen coevolution in human tuberculosis

    PubMed Central

    Gagneux, Sebastien

    2012-01-01

    Tuberculosis (TB) is a disease of antiquity. Yet TB today still causes more adult deaths than any other single infectious disease. Recent studies show that contrary to the common view postulating an animal origin for TB, Mycobacterium tuberculosis complex (MTBC), the causative agent of TB, emerged as a human pathogen in Africa and colonized the world accompanying the Out-of-Africa migrations of modern humans. More recently, evolutionarily ‘modern’ lineages of MTBC expanded as a consequence of the global human population increase, and spread throughout the world following waves of exploration, trade and conquest. While epidemiological data suggest that the different phylogenetic lineages of MTBC might have adapted to different human populations, overall, the phylogenetically ‘modern’ MTBC lineages are more successful in terms of their geographical spread compared with the ‘ancient’ lineages. Interestingly, the global success of ‘modern’ MTBC correlates with a hypo-inflammatory phenotype in macrophages, possibly reflecting higher virulence, and a shorter latency in humans. Finally, various human genetic variants have been associated with different MTBC lineages, suggesting an interaction between human genetic diversity and MTBC variation. In summary, the biology and the epidemiology of human TB have been shaped by the long-standing association between MTBC and its human host. PMID:22312052

  2. Phylogenetic constraints on ecosystem functioning.

    PubMed

    Gravel, Dominique; Bell, Thomas; Barbera, Claire; Combe, Marine; Pommier, Thomas; Mouquet, Nicolas

    2012-01-01

    There is consensus that biodiversity losses will result in declining ecosystem functioning if species have different functional traits. Phylogenetic diversity has recently been suggested as a predictor of ecosystem functioning because it could approximate the functional complementarity among species. Here we describe an experiment that takes advantage of the rapid evolutionary response of bacteria to disentangle the role of phylogenetic and species diversity. We impose a strong selection regime on marine bacterial lineages and assemble the ancestral and evolved lines in microcosms of varying lineage and phylogenetic diversity. We find that the relationship between phylogenetic diversity and productivity is strong for the ancestral lineages but brakes down for the evolved lineages. Our results not only emphasize the potential of using phylogeny to evaluate ecosystem functioning, but also they warn against using phylogenetics as a proxy for functional diversity without good information on species evolutionary history.

  3. Comparing Data Input Requirements of Statistical vs. Process-based Watershed Models Applied for Prediction of Fecal Indicator and Pathogen Levels in Recreational Beaches

    EPA Science Inventory

    Same day prediction of fecal indicator bacteria (FIB) concentrations and bather protection from the risk of exposure to pathogens are two important goals of implementing a modeling program at recreational beaches. Sampling efforts for modelling applications can be expensive and t...

  4. Comparative transcriptome analysis reveals a preformed defense system in apple root of a resistant genotype of G.935 in the absence of pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two apple rootstock genotypes G.935 and B.9 were recently demonstrated to exhibit distinct resistance responses following infection by P. ultimum. As part of an effort to elucidate the genetic regulation of apple root resistance to soilborne pathogens, we hypothesized that pre-inoculation transcript...

  5. Mitochondrial phylogenetics and evolution of mysticete whales.

    PubMed

    Sasaki, Takeshi; Nikaido, Masato; Hamilton, Healy; Goto, Mutsuo; Kato, Hidehiro; Kanda, Naohisa; Pastene, Luis; Cao, Ying; Fordyce, R; Hasegawa, Masami; Okada, Norihiro

    2005-02-01

    The phylogenetic relationships among baleen whales (Order: Cetacea) remain uncertain despite extensive research in cetacean molecular phylogenetics and a potential morphological sample size of over 2 million animals harvested. Questions remain regarding the number of species and the monophyly of genera, as well as higher order relationships. Here, we approach mysticete phylogeny with complete mitochondrial genome sequence analysis. We determined complete mtDNA sequences of 10 extant Mysticeti species, inferred their phylogenetic relationships, and estimated node divergence times. The mtDNA sequence analysis concurs with previous molecular studies in the ordering of the principal branches, with Balaenidae (right whales) as sister to all other mysticetes base, followed by Neobalaenidae (pygmy right whale), Eschrichtiidae (gray whale), and finally Balaenopteridae (rorquals + humpback whale). The mtDNA analysis further suggests that four lineages exist within the clade of Eschrichtiidae + Balaenopteridae, including a sister relationship between the humpback and fin whales, and a monophyletic group formed by the blue, sei, and Bryde's whales, each of which represents a newly recognized phylogenetic relationship in Mysticeti. We also estimated the divergence times of all extant mysticete species, accounting for evolutionary rate heterogeneity among lineages. When the mtDNA divergence estimates are compared with the mysticete fossil record, several lineages have molecular divergence estimates strikingly older than indicated by paleontological data. We suggest this discrepancy reflects both a large amount of ancestral polymorphism and long generation times of ancestral baleen whale populations.

  6. On the analysis of phylogenetically paired designs

    PubMed Central

    Funk, Jennifer L; Rakovski, Cyril S; Macpherson, J Michael

    2015-01-01

    As phylogenetically controlled experimental designs become increasingly common in ecology, the need arises for a standardized statistical treatment of these datasets. Phylogenetically paired designs circumvent the need for resolved phylogenies and have been used to compare species groups, particularly in the areas of invasion biology and adaptation. Despite the widespread use of this approach, the statistical analysis of paired designs has not been critically evaluated. We propose a mixed model approach that includes random effects for pair and species. These random effects introduce a “two-layer” compound symmetry variance structure that captures both the correlations between observations on related species within a pair as well as the correlations between the repeated measurements within species. We conducted a simulation study to assess the effect of model misspecification on Type I and II error rates. We also provide an illustrative example with data containing taxonomically similar species and several outcome variables of interest. We found that a mixed model with species and pair as random effects performed better in these phylogenetically explicit simulations than two commonly used reference models (no or single random effect) by optimizing Type I error rates and power. The proposed mixed model produces acceptable Type I and II error rates despite the absence of a phylogenetic tree. This design can be generalized to a variety of datasets to analyze repeated measurements in clusters of related subjects/species. PMID:25750719

  7. Phylogenetic diversity and antibacterial activity of culturable fungi derived from the zoanthid Palythoa haddoni in the South China Sea.

    PubMed

    Qin, Xiao-Yan; Yang, Kai-Lin; Li, Jing; Wang, Chang-Yun; Shao, Chang-Lun

    2015-02-01

    Investigation on diversity of culturable fungi mainly focused on sponges and corals, yet little attention had been paid to the fungal communities associated with zoanthid corals. In this study, a total of 193 culturable fungal strains were isolated from the zoanthid Palythoa haddoni collected in the South China Sea, of which 49 independent isolates were identified using both morphological characteristics and internal transcribed spacer (ITS) sequence analyses. Thirty-five strains were selected for phylogenetic analysis based on fungal ITS sequences. The results indicated that 18 genera within eight taxonomic orders of two phyla (seven orders of the phylum Ascomycota and one order of the phylum Basidiomycota) together with one unidentified fungal strain have been achieved, and Cladosporium sp. represented the dominant culturable genus. Particularly, 14 genera were isolated from a zoanthid for the first time. The antibacterial activities of organic extracts of mycelia and fermentation broth of 49 identified fungi were evaluated, and 29 (59.2 %) of the isolates displayed broad-spectrum or selective antibacterial activity. More interestingly, more than 60 % of the active fungal strains showed strong activity against two aquatic pathogenic bacteria Nocardia brasiliensis and Vibrio parahaemolyticus, compared with other pathogenic bacteria, indicating that zoanthid-derived fungi may protect its host against pathogens. This is the first report of systematically phylogenetic diversity and extensively antibacterial activity of zoanthid-derived fungi.

  8. Phylogenetic molecular function annotation

    NASA Astrophysics Data System (ADS)

    Engelhardt, Barbara E.; Jordan, Michael I.; Repo, Susanna T.; Brenner, Steven E.

    2009-07-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called "phylogenomics") is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods.

  9. Phylogenetic molecular function annotation

    PubMed Central

    Engelhardt, Barbara E; Jordan, Michael I; Repo, Susanna T; Brenner, Steven E

    2010-01-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called “phylogenomics”) is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods. PMID:20664722

  10. Comparative Secretome Analysis of Ralstonia solanacearum Type 3 Secretion-Associated Mutants Reveals a Fine Control of Effector Delivery, Essential for Bacterial Pathogenicity.

    PubMed

    Lonjon, Fabien; Turner, Marie; Henry, Céline; Rengel, David; Lohou, David; van de Kerkhove, Quitterie; Cazalé, Anne-Claire; Peeters, Nemo; Genin, Stéphane; Vailleau, Fabienne

    2016-02-01

    Ralstonia solanacearum, the causal agent of bacterial wilt, exerts its pathogenicity through more than a hundred secreted proteins, many of them depending directly on the functionality of a type 3 secretion system. To date, only few type 3 effectors have been identified as required for bacterial pathogenicity, notably because of redundancy among the large R. solanacearum effector repertoire. In order to identify groups of effectors collectively promoting disease on susceptible hosts, we investigated the role of putative post-translational regulators in the control of type 3 secretion. A shotgun secretome analysis with label-free quantification using tandem mass spectrometry was performed on the R. solanacearum GMI1000 strain. There were 228 proteins identified, among which a large proportion of type 3 effectors, called Rip (Ralstonia injected proteins). Thanks to this proteomic approach, RipBJ was identified as a new effector specifically secreted through type 3 secretion system and translocated into plant cells. A focused Rip secretome analysis using hpa (hypersensitive response and pathogenicity associated) mutants revealed a fine secretion regulation and specific subsets of Rips with different secretion patterns. We showed that a set of Rips (RipF1, RipW, RipX, RipAB, and RipAM) are secreted in an Hpa-independent manner. We hypothesize that these Rips could be preferentially involved in the first stages of type 3 secretion. In addition, the secretion of about thirty other Rips is controlled by HpaB and HpaG. HpaB, a candidate chaperone was shown to positively control secretion of numerous Rips, whereas HpaG was shown to act as a negative regulator of secretion. To evaluate the impact of altered type 3 effectors secretion on plant pathogenesis, the hpa mutants were assayed on several host plants. HpaB was required for bacterial pathogenicity on multiple hosts whereas HpaG was found to be specifically required for full R. solanacearum pathogenicity on the legume

  11. Comparative antigenic proteins and proteomics of pathogenic Yersinia enterocolitica bio-serotypes 1B/O: 8 and 2/O: 9 cultured at 25°C and 37°C.

    PubMed

    Gu, Wenpeng; Wang, Xin; Qiu, Haiyan; Luo, Xia; Xiao, Di; Xiao, Yuchun; Tang, Liuying; Kan, Biao; Jing, Huaiqi

    2012-09-01

    Yersinia enterocolitica is a Gram-negative enteric pathogen responsible for a number of gastrointestinal disorders; the most pathogenic bio-serotype is 1B/O: 8. In this study, we compared the antigenicity of the outer membrane proteins and proteomics of the whole-cell proteins of a pathogenic bio-serotype 2/O: 9 isolated in China and a bio-serotype 1B/O: 8 strain isolated in Japan. Using two-dimensional gel electrophoresis, we showed that the outer membrane proteins A (OmpA), C (OmpC) and F (OmpF) were the major antigens for both strains, although proteins located on the bacterial cell membrane and enzymes involved in energy metabolism were also identified as antigenic. We compared the whole-cell proteins of the two strains cultured at 25°C and 37°C and found portions of the outer membrane proteins (OmpX, OmpF and OmpA) were downregulated when the bacteria were cultured at 37°C, whereas urease subunit gamma (UreA), urease subunit alpha (UreC) and urease accessory protein (UreE), which are involved in urease synthesis, were upregulated when the bacteria were grown at 37°C. These observations will lay a foundation to selection of diagnostic markers for pathogenic Yersinia enterocolitica, and maybe contribute to choose the vaccine targets.

  12. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria.

    PubMed

    Gao, Beile; Gupta, Radhey S

    2012-03-01

    The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.

  13. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    PubMed Central

    Gao, Beile

    2012-01-01

    Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973

  14. Zika Virus: Emergence, Phylogenetics, Challenges, and Opportunities.

    PubMed

    Rajah, Maaran M; Pardy, Ryan D; Condotta, Stephanie A; Richer, Martin J; Sagan, Selena M

    2016-11-11

    Zika virus (ZIKV) is an emerging arthropod-borne pathogen that has recently gained notoriety due to its rapid and ongoing geographic expansion and its novel association with neurological complications. Reports of ZIKV-associated Guillain-Barré syndrome as well as fetal microcephaly place emphasis on the need to develop preventative measures and therapeutics to combat ZIKV infection. Thus, it is imperative that models to study ZIKV replication and pathogenesis and the immune response are developed in conjunction with integrated vector control strategies to mount an efficient response to the pandemic. This paper summarizes the current state of knowledge on ZIKV, including the clinical features, phylogenetic analyses, pathogenesis, and the immune response to infection. Potential challenges in developing diagnostic tools, treatment, and prevention strategies are also discussed.

  15. Phylogenetics and the Human Microbiome

    PubMed Central

    Matsen, Frederick A.

    2015-01-01

    The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work. PMID:25102857

  16. Phylogenetics and the human microbiome.

    PubMed

    Matsen, Frederick A

    2015-01-01

    The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work.

  17. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Somanathan Pillai, Smitha; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  18. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, D. E.; Suarez, D. L.; Senne, D. A.; Pedersen, J. C.; Killian, M. L.; Pasick, J.; Handel, K.; Pillai, S. P. S.; Lee, C. -W.; Stallknecht, D.; Slemons, R.; Ip, H. S.; Deliberto, T.

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10 5.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  19. Phylogenetic relationships among Ehrlichia ruminantium isolates.

    PubMed

    Allsopp, M T E P; Van Heerden, H; Steyn, H C; Allsopp, B A

    2003-06-01

    Ehrlichia ruminantium, the causative agent of heartwater, is a tick-borne pathogen infecting ruminants throughout sub-Saharan Africa and on some Caribbean islands. The most reliable test for E. ruminantium is PCR-based, but this gives positive results in some areas free of clinical heartwater and of the known Amblyomma spp. tick vectors. To investigate the molecular basis for this finding we have sequenced and carried out phylogenetic analysis of a range of genes from a number of E. ruminantium isolates. The genes include ribonuclease III and cytochrome c oxidase assembly protein genes (the pCS20 region), groESL, citrate synthase (gltA), and 16S ribosomal RNA. Relationships among major antigenic protein (map1) genes have been exhaustively investigated in a previous study that showed that the genes are variable in length, have non-synonymous mutations, and show no geographical specificity among isolates. The 16S sequences are highly conserved, except in the V1 loop region. The pCS20, groESL, and gltA genes show only single nucleotide polymorphisms (SNPs) dispersed throughout the sequenced regions. Phylogenetic analysis using pCS20 data differentiates the western African isolates into a single clade, which also includes a southern African isolate. All other southern African isolates and a Caribbean isolate fall into a further clade, which is subdivided into two groups. Sequence variation within this clade is greater than that within the western African clade, suggesting that E. ruminantium originated in southern Africa.

  20. Comparative study of the pathogenicity of seabed isolates of Fusarium equiseti and the effect of the composition of the mineral salt medium and temperature on mycelial growth.

    PubMed

    Palmero, D; de Cara, M; Iglesias, C; Gálvez, L; Tello, J C

    2011-07-01

    The pathogenicity of seven strains of Fusarium equiseti isolated from seabed soil was evaluated on different host plants showing pre and post emergence damage. Radial growth of 27 strains was measured on culture media previously adjusted to different osmotic potentials with either KCl or NaCl (-1.50 to -144.54 bars) at 15°, 25° and 35° C. Significant differences and interactive effects were observed in the response of mycelia to osmotic potential and temperature.

  1. Comparable polyfunctionality of ectromelia virus- and vaccinia virus-specific murine T cells despite markedly different in vivo replication and pathogenicity.

    PubMed

    Hersperger, Adam R; Siciliano, Nicholas A; Eisenlohr, Laurence C

    2012-07-01

    Vaccinia virus (VACV) stimulates long-term immunity against highly pathogenic orthopoxvirus infection of humans (smallpox) and mice (mousepox [ectromelia virus {ECTV}]) despite the lack of a natural host-pathogen relationship with either of these species. Previous research revealed that VACV is able to induce polyfunctional CD8(+) T-cell responses after immunization of humans. However, the degree to which the functional profile of T cells induced by VACV is similar to that generated during natural poxvirus infection remains unknown. In this study, we monitored virus-specific T-cell responses following the dermal infection of C57BL/6 mice with ECTV or VACV. Using polychromatic flow cytometry, we measured levels of degranulation, cytokine expression (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]), and the cytolytic mediator granzyme B. We observed that the functional capacities of T cells induced by VACV and ECTV were of a similar quality in spite of the markedly different replication abilities and pathogenic outcomes of these viruses. In general, a significant fraction (≥50%) of all T-cell responses were positive for at least three functions both during acute infection and into the memory phase. In vivo killing assays revealed that CD8(+) T cells specific for both viruses were equally cytolytic (∼80% target cell lysis after 4 h), consistent with the similar levels of granzyme B and degranulation detected among these cells. Collectively, these data provide a mechanism to explain the ability of VACV to induce protective T-cell responses against pathogenic poxviruses in their natural hosts and provide further support for the use of VACV as a vaccine platform able to induce polyfunctional T cells.

  2. Comparative study of the pathogenicity of seabed isolates of Fusarium equiseti and the effect of the composition of the mineral salt medium and temperature on mycelial growth

    PubMed Central

    Palmero, D.; de Cara, M.; Iglesias, C.; Gálvez, L.; Tello, J.C.

    2011-01-01

    The pathogenicity of seven strains of Fusarium equiseti isolated from seabed soil was evaluated on different host plants showing pre and post emergence damage. Radial growth of 27 strains was measured on culture media previously adjusted to different osmotic potentials with either KCl or NaCl (-1.50 to -144.54 bars) at 15°, 25° and 35° C. Significant differences and interactive effects were observed in the response of mycelia to osmotic potential and temperature. PMID:24031710

  3. Comparative Genomics of Listeria Sensu Lato: Genus-Wide Differences in Evolutionary Dynamics and the Progressive Gain of Complex, Potentially Pathogenicity-Related Traits through Lateral Gene Transfer.

    PubMed

    Chiara, Matteo; Caruso, Marta; D'Erchia, Anna Maria; Manzari, Caterina; Fraccalvieri, Rosa; Goffredo, Elisa; Latorre, Laura; Miccolupo, Angela; Padalino, Iolanda; Santagada, Gianfranco; Chiocco, Doriano; Pesole, Graziano; Horner, David S; Parisi, Antonio

    2015-07-15

    Historically, genome-wide and molecular characterization of the genus Listeria has concentrated on the important human pathogen Listeria monocytogenes and a small number of closely related species, together termed Listeria sensu strictu. More recently, a number of genome sequences for more basal, and nonpathogenic, members of the Listeria genus have become available, facilitating a wider perspective on the evolution of pathogenicity and genome level evolutionary dynamics within the entire genus (termed Listeria sensu lato). Here, we have sequenced the genomes of additional Listeria fleischmannii and Listeria newyorkensis isolates and explored the dynamics of genome evolution in Listeria sensu lato. Our analyses suggest that acquisition of genetic material through gene duplication and divergence as well as through lateral gene transfer (mostly from outside Listeria) is widespread throughout the genus. Novel genetic material is apparently subject to rapid turnover. Multiple lines of evidence point to significant differences in evolutionary dynamics between the most basal Listeria subclade and all other congeners, including both sensu strictu and other sensu lato isolates. Strikingly, these differences are likely attributable to stochastic, population-level processes and contribute to observed variation in genome size across the genus. Notably, our analyses indicate that the common ancestor of Listeria sensu lato lacked flagella, which were acquired by lateral gene transfer by a common ancestor of Listeria grayi and Listeria sensu strictu, whereas a recently functionally characterized pathogenicity island, responsible for the capacity to produce cobalamin and utilize ethanolamine/propane-2-diol, was acquired in an ancestor of Listeria sensu strictu.

  4. Genomic perspectives on the evolution and spread of bacterial pathogens.

    PubMed

    Bentley, Stephen D; Parkhill, Julian

    2015-12-22

    Since the first complete sequencing of a free-living organism, Haemophilus influenzae, genomics has been used to probe both the biology of bacterial pathogens and their evolution. Single-genome approaches provided information on the repertoire of virulence determinants and host-interaction factors, and, along with comparative analyses, allowed the proposal of hypotheses to explain the evolution of many of these traits. These analyses suggested many bacterial pathogens to be of relatively recent origin and identified genome degradation as a key aspect of host adaptation. The advent of very-high-throughput sequencing has allowed for detailed phylogenetic analysis of many important pathogens, revealing patterns of global and local spread, and recent evolution in response to pressure from therapeutics and the human immune system. Such analyses have shown that bacteria can evolve and transmit very rapidly, with emerging clones showing adaptation and global spread over years or decades. The resolution achieved with whole-genome sequencing has shown considerable benefits in clinical microbiology, enabling accurate outbreak tracking within hospitals and across continents. Continued large-scale sequencing promises many further insights into genetic determinants of drug resistance, virulence and transmission in bacterial pathogens.

  5. Genomic perspectives on the evolution and spread of bacterial pathogens

    PubMed Central

    Bentley, Stephen D.

    2015-01-01

    Since the first complete sequencing of a free-living organism, Haemophilus influenzae, genomics has been used to probe both the biology of bacterial pathogens and their evolution. Single-genome approaches provided information on the repertoire of virulence determinants and host-interaction factors, and, along with comparative analyses, allowed the proposal of hypotheses to explain the evolution of many of these traits. These analyses suggested many bacterial pathogens to be of relatively recent origin and identified genome degradation as a key aspect of host adaptation. The advent of very-high-throughput sequencing has allowed for detailed phylogenetic analysis of many important pathogens, revealing patterns of global and local spread, and recent evolution in response to pressure from therapeutics and the human immune system. Such analyses have shown that bacteria can evolve and transmit very rapidly, with emerging clones showing adaptation and global spread over years or decades. The resolution achieved with whole-genome sequencing has shown considerable benefits in clinical microbiology, enabling accurate outbreak tracking within hospitals and across continents. Continued large-scale sequencing promises many further insights into genetic determinants of drug resistance, virulence and transmission in bacterial pathogens. PMID:26702036

  6. Comparative Secretome Analysis of Ralstonia solanacearum Type 3 Secretion-Associated Mutants Reveals a Fine Control of Effector Delivery, Essential for Bacterial Pathogenicity*

    PubMed Central

    Lonjon, Fabien; Turner, Marie; Henry, Céline; Rengel, David; Lohou, David; van de Kerkhove, Quitterie; Cazalé, Anne-Claire; Peeters, Nemo; Genin, Stéphane; Vailleau, Fabienne

    2016-01-01

    Ralstonia solanacearum, the causal agent of bacterial wilt, exerts its pathogenicity through more than a hundred secreted proteins, many of them depending directly on the functionality of a type 3 secretion system. To date, only few type 3 effectors have been identified as required for bacterial pathogenicity, notably because of redundancy among the large R. solanacearum effector repertoire. In order to identify groups of effectors collectively promoting disease on susceptible hosts, we investigated the role of putative post-translational regulators in the control of type 3 secretion. A shotgun secretome analysis with label-free quantification using tandem mass spectrometry was performed on the R. solanacearum GMI1000 strain. There were 228 proteins identified, among which a large proportion of type 3 effectors, called Rip (Ralstonia injected proteins). Thanks to this proteomic approach, RipBJ was identified as a new effector specifically secreted through type 3 secretion system and translocated into plant cells. A focused Rip secretome analysis using hpa (hypersensitive response and pathogenicity associated) mutants revealed a fine secretion regulation and specific subsets of Rips with different secretion patterns. We showed that a set of Rips (RipF1, RipW, RipX, RipAB, and RipAM) are secreted in an Hpa-independent manner. We hypothesize that these Rips could be preferentially involved in the first stages of type 3 secretion. In addition, the secretion of about thirty other Rips is controlled by HpaB and HpaG. HpaB, a candidate chaperone was shown to positively control secretion of numerous Rips, whereas HpaG was shown to act as a negative regulator of secretion. To evaluate the impact of altered type 3 effectors secretion on plant pathogenesis, the hpa mutants were assayed on several host plants. HpaB was required for bacterial pathogenicity on multiple hosts whereas HpaG was found to be specifically required for full R. solanacearum pathogenicity on the legume

  7. Phylogenetic structure of angiosperm communities during tropical forest succession.

    PubMed

    Letcher, Susan G

    2010-01-07

    The phylogenetic structure of ecological communities can shed light on assembly processes, but the focus of phylogenetic structure research thus far has been on mature ecosystems. Here, I present the first investigation of phylogenetic community structure during succession. In a replicated chronosequence of 30 sites in northeastern Costa Rica, I found strong phylogenetic overdispersion at multiple scales: species present at local sites were a non-random assemblage, more distantly related than chance would predict. Phylogenetic overdispersion was evident when comparing the species present at each site with the regional species pool, the species pool found in each age category to the regional pool or the species present at each site to the pool of species found in sites of that age category. Comparing stem size classes within each age category, I found that during early succession, phylogenetic overdispersion is strongest in small stems. Overdispersion strengthens and spreads into larger size classes as succession proceeds, corroborating an existing model of forest succession. This study is the first evidence that succession leaves a distinct signature in the phylogenetic structure of communities.

  8. Phylogenetics: bats united, microbats divided.

    PubMed

    Springer, Mark S

    2013-11-18

    Phylogenetic analyses on four new bat genomes provide convincing support for the placement of bats relative to other placental mammals, suggest that microbats are an unnatural group, and have important implications for understanding the evolution of echolocation.

  9. Prevalence of avian-pathogenic Escherichia coli strain O1 genomic islands among extraintestinal and commensal E. coli isolates.

    PubMed

    Johnson, Timothy J; Wannemuehler, Yvonne; Kariyawasam, Subhashinie; Johnson, James R; Logue, Catherine M; Nolan, Lisa K

    2012-06-01

    Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types.

  10. Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential.

    PubMed

    Wicker, Emmanuel; Grassart, Laurence; Coranson-Beaudu, Régine; Mian, Danièle; Guilbaud, Caroline; Fegan, Mark; Prior, Philippe

    2007-11-01

    We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America.

  11. Phylogenetic proximity revealed by neurodevelopmental event timings.

    PubMed

    Nagarajan, Radhakrishnan; Clancy, Barbara

    2008-01-01

    Statistical properties such as distribution and correlation signatures were investigated using a temporal database of common neurodevelopmental events in the three species most frequently used in experimental studies, rat, mouse, and macaque. There was a fine nexus between phylogenetic proximity and empirically derived dates of the occurrences of 40 common events including the neurogenesis of cortical layers and outgrowth milestones of developing axonal projections. Exponential and power-law approximations to the distribution of the events reveal strikingly similar decay patterns in rats and mice when compared to macaques. Subsequent hierarchical clustering of the common event timings also captures phylogenetic proximity, an association further supported by multivariate linear regression data. These preliminary results suggest that statistical analyses of the timing of developmental milestones may offer a novel measure of phylogenetic classifications. This may have added pragmatic value in the specific support it offers for the reliability of rat/mouse comparative modeling, as well as in the broader implications for the potential of meta-analyses using databases assembled from the extensive empirical literature.

  12. Alignment-free phylogenetics and population genetics.

    PubMed

    Haubold, Bernhard

    2014-05-01

    Phylogenetics and population genetics are central disciplines in evolutionary biology. Both are based on comparative data, today usually DNA sequences. These have become so plentiful that alignment-free sequence comparison is of growing importance in the race between scientists and sequencing machines. In phylogenetics, efficient distance computation is the major contribution of alignment-free methods. A distance measure should reflect the number of substitutions per site, which underlies classical alignment-based phylogeny reconstruction. Alignment-free distance measures are either based on word counts or on match lengths, and I apply examples of both approaches to simulated and real data to assess their accuracy and efficiency. While phylogeny reconstruction is based on the number of substitutions, in population genetics, the distribution of mutations along a sequence is also considered. This distribution can be explored by match lengths, thus opening the prospect of alignment-free population genomics.

  13. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005.

    PubMed

    Adlhoch, C; Gossner, C; Koch, G; Brown, I; Bouwstra, R; Verdonck, F; Penttinen, P; Harder, T

    2014-12-18

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.

  14. THE COMPARING OF ANTIMICROBIAL ACTIVITY OF CSN1S2 PROTEIN OF FRESH MILK AND YOGHURT GOAT BREED ETHAWAH INHIBITED THE PATHOGENIC BACTERIA

    PubMed Central

    Triprisila, Lidwina Faraline; Suharjono, Suharjono; Christianto, Antonius; Fatchiyah, Fatchiyah

    2016-01-01

    Background: Goat milk is reported to have antimicrobial activity of several pathogen bacteria that contained on food materials. The research related with antimicrobial activity of Alpha-S2 casein from goat milk is relatively less than other casein components. Herein, we reported the antimicrobial activity of caprine Alpha-S2 Casein (CSN1S2) protein from Ethawah breed goat milk and yoghurt in Gram positive (Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus) and negative pathogen bacteria (Escherichia coli, Salmonella typhi and Shigella flexneri). Those bacteria were known as pathogens that caused gastrointestinal infection. Methods: Serial dilution and agar diffusion analysis with three different concentrations of caprine CSN1S2, 1.25 mg/ml, 2.5 mg/ml, and 5 mg/ml were used to test the inhibition effect of protein on the viability of bacteria cells. The inhibitory activity of caprine CSN1S2 was based on dose dependent manner. Agar diffusion analysis was showed the larger diameter of clear zone at B. cereus and S. flexneri. Results: The serial dilution analysis was shown the inhibition of almost in all groups of bacteria with concentration 5 mg/ml higher by CSN1S2 protein of goat fresh milk than yogurt. The inhibitory activity caprine CSN1S2 protein of fresh milk was shown a vary inhibition clear zone with optimal concentration 5 mg/ml, however CSN1S2 protein of goat yogurt intermediate effectively was only in gram negative bacteria. The weakness bacteria against inhibition activity caprine CSN1S2 protein was B. cereus (Gram positive) and S. flexneri (Gram negative). Meanwhile the strongest bacteria against inhibition activity caprine CSN1S2 protein was S. typhi (Gram negative), may cause in this bacteria has lipopolysaccharide prevent to interact with that protein as proper. Conclusion: This study result concluded that the caprine CSN1S2 protein has inhibition activity in opposition to pathogenic bacteria by optimal concentration 5 mg/ml in all

  15. Application of proteomics in phylogenetic and evolutionary studies.

    PubMed

    Navas, Alfonso; Albar, Juan Pablo

    2004-02-01

    There are few papers that deal specifically with evolutionary studies and proteomics. However, applying proteomics to these studies promises to open new perspectives apropos the construction of phylogenetic trees and the detection of evolutionary changes. Principles and methods of phylogenetic systematics could be used to compare and evaluate proteomes. This would permit the detection and characterization of specific proteins that have evolutionary value in defining monophyly, paraphyly, and polyphyly.

  16. Comparative Genomics of H. pylori and Non-Pylori Helicobacter Species to Identify New Regions Associated with Its Pathogenicity and Adaptability

    PubMed Central

    Lu, Qun-Feng; Li, Song-Bo; Wang, Ju-Ping; Chen, Yu-Li

    2016-01-01

    The genus Helicobacter is a group of Gram-negative, helical-shaped pathogens consisting of at least 36 bacterial species. Helicobacter pylori (H. pylori), infecting more than 50% of the human population, is considered as the major cause of gastritis, peptic ulcer, and gastric cancer. However, the genetic underpinnings of H. pylori that are responsible for its large scale epidemic and gastrointestinal environment adaption within human beings remain unclear. Core-pan genome analysis was performed among 75 representative H. pylori and 24 non-pylori Helicobacter genomes. There were 1173 conserved protein families of H. pylori and 673 of all 99 Helicobacter genus strains. We found 79 genome unique regions, a total of 202,359bp, shared by at least 80% of the H. pylori but lacked in non-pylori Helicobacter species. The operons, genes, and sRNAs within the H. pylori unique regions were considered as potential ones associated with its pathogenicity and adaptability, and the relativity among them has been partially confirmed by functional annotation analysis. However, functions of at least 54 genes and 10 sRNAs were still unclear. Our analysis of protein-protein interaction showed that 30 genes within them may have the cooperation relationship. PMID:28078297

  17. New Pseudomonas spp. Are Pathogenic to Citrus

    PubMed Central

    Beiki, Farid; Busquets, Antonio; Gomila, Margarita; Rahimian, Heshmat; Lalucat, Jorge; García-Valdés, Elena

    2016-01-01

    Five putative novel Pseudomonas species shown to be pathogenic to citrus have been characterized in a screening of 126 Pseudomonas strains isolated from diseased citrus leaves and stems in northern Iran. The 126 strains were studied using a polyphasic approach that included phenotypic characterizations and phylogenetic multilocus sequence analysis. The pathogenicity of these strains against 3 cultivars of citrus is demonstrated in greenhouse and field studies. The strains were initially grouped phenotypically and by their partial rpoD gene sequences into 11 coherent groups in the Pseudomonas fluorescens phylogenetic lineage. Fifty-three strains that are representatives of the 11 groups were selected and analyzed by partial sequencing of their 16S rRNA and gyrB genes. The individual and concatenated partial sequences of the three genes were used to construct the corresponding phylogenetic trees. The majority of the strains were identified at the species level: P. lurida (5 strains), P. monteilii (2 strains), P. moraviensis (1 strain), P. orientalis (16 strains), P. simiae (7 strains), P. syringae (46 strains, distributed phylogenetically in at least 5 pathovars), and P. viridiflava (2 strains). This is the first report of pathogenicity on citrus of P. orientalis, P. simiae, P. lurida, P. moraviensis and P. monteilii strains. The remaining 47 strains that could not be identified at the species level are considered representatives of at least 5 putative novel Pseudomonas species that are not yet described. PMID:26919540

  18. New Pseudomonas spp. Are Pathogenic to Citrus.

    PubMed

    Beiki, Farid; Busquets, Antonio; Gomila, Margarita; Rahimian, Heshmat; Lalucat, Jorge; García-Valdés, Elena

    2016-01-01

    Five putative novel Pseudomonas species shown to be pathogenic to citrus have been characterized in a screening of 126 Pseudomonas strains isolated from diseased citrus leaves and stems in northern Iran. The 126 strains were studied using a polyphasic approach that included phenotypic characterizations and phylogenetic multilocus sequence analysis. The pathogenicity of these strains against 3 cultivars of citrus is demonstrated in greenhouse and field studies. The strains were initially grouped phenotypically and by their partial rpoD gene sequences into 11 coherent groups in the Pseudomonas fluorescens phylogenetic lineage. Fifty-three strains that are representatives of the 11 groups were selected and analyzed by partial sequencing of their 16S rRNA and gyrB genes. The individual and concatenated partial sequences of the three genes were used to construct the corresponding phylogenetic trees. The majority of the strains were identified at the species level: P. lurida (5 strains), P. monteilii (2 strains), P. moraviensis (1 strain), P. orientalis (16 strains), P. simiae (7 strains), P. syringae (46 strains, distributed phylogenetically in at least 5 pathovars), and P. viridiflava (2 strains). This is the first report of pathogenicity on citrus of P. orientalis, P. simiae, P. lurida, P. moraviensis and P. monteilii strains. The remaining 47 strains that could not be identified at the species level are considered representatives of at least 5 putative novel Pseudomonas species that are not yet described.

  19. Substrate-specific gene expression in Batrachochytrium dendrobatidis, the chytrid pathogen of amphibians.

    PubMed

    Rosenblum, Erica Bree; Poorten, Thomas J; Joneson, Suzanne; Settles, Matthew

    2012-01-01

    Determining the mechanisms of host-pathogen interaction is critical for understanding and mitigating infectious disease. Mechanisms of fungal pathogenicity are of particular interest given the recent outbreaks of fungal diseases in wildlife populations. Our study focuses on Batrachochytrium dendrobatidis (Bd), the chytrid pathogen responsible for amphibian declines around the world. Previous studies have hypothesized a role for several specific families of secreted proteases as pathogenicity factors in Bd, but the expression of these genes has only been evaluated in laboratory growth conditions. Here we conduct a genome-wide study of Bd gene expression under two different nutrient conditions. We compare Bd gene expression profiles in standard laboratory growth media and in pulverized host tissue (i.e., frog skin). A large proportion of genes in the Bd genome show increased expression when grown in host tissue, indicating the importance of studying pathogens on host substrate. A number of gene classes show particularly high levels of expression in host tissue, including three families of secreted proteases (metallo-, serine- and aspartyl-proteases), adhesion genes, lipase-3 encoding genes, and a group of phylogenetically unusual crinkler-like effectors. We discuss the roles of these different genes as putative pathogenicity factors and discuss what they can teach us about Bd's metabolic targets, host invasion, and pathogenesis.

  20. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens

    PubMed Central

    Monteil, Caroline L.; Yahara, Koji; Studholme, David J.; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E.

    2016-01-01

    Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae. PMID:28348830

  1. Constructing physical and genomic maps for Puccinia striiformis f. sp. tritici,the wheat stripe rust pathogen, by comparing its EST sequences to the genomic sequence of P. graminis f. sp. tritici,the wheat stem rust pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wheat stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst), does not have a known alternate host for sexual reproduction, which makes it impossible to study gene linkages through classic genetic and molecular mapping approaches. In this study, we compared 4,219 Pst expression sequence t...

  2. Comparative sequence analysis of the eastern equine encephalitis virus pathogenic strains FL91-4679 and GA97 to other North American strains.

    PubMed

    Platteborze, Peter L; Kondig, John P; Schoepp, Randal J; Wasieloski, Leonar P

    2005-08-01

    Eastern equine encephalitis (EEE) virus is a significant public health concern due to the high mortality rates observed in infected humans, equines and game birds. The EEE genomic sequences available prior to this report are based on laboratory strains with unknown passage histories that may contain an array of cell culture adaptations. Here we report the complete genomic sequences of two recently isolated EEE pathogenic strains with low passage histories. FL91-4697 was isolated in Florida from Aedes albopictus mosquitoes and GA97 was derived from brain tissue of a human fatality that occurred in 1997. Sequence alignment of these new genomes with the documented EEE's permitted us to generate a North American consensus sequence and identify regions of significant diversity. Sequence analysis of the FL91-4679 genome was essential to the production of an EEE infectious clone that is being used to create live attenuated vaccine candidates.

  3. Occurrence of Cryptosporidium and Giardia in sewage sludge and solid waste landfill leachate and quantitative comparative analysis of sanitization treatments on pathogen inactivation.

    PubMed

    Graczyk, Thaddeus K; Kacprzak, Malgorzata; Neczaj, Ewa; Tamang, Leena; Graczyk, Halshka; Lucy, Frances E; Girouard, Autumn S

    2008-01-01

    Circulation of Cryptosporidum and Giardia in the environment can be facilitated by spreading of sewage sludge on agricultural or livestock grazing lands or depositing in landfills. Solid waste landfill leachate and sewage sludge samples were quantitatively tested for C. parvum and C. hominis oocysts, and G. lamblia cysts by the combined multiplexed fluorescence in situ hybridization (FISH) and immunofluorescent antibody (IFA) method. Subsequently, the effects of four sanitization treatments (i.e., ultrasound and microwave energy disintegrations, and quicklime and top-soil stabilization) on inactivation of these pathogens were determined. The landfill leachate samples were positive for Giardia, and sewage sludge samples for both Cryptosporididium and Giardia. The overall concentration of G. lamblia cysts (mean; 24.2/g) was significantly higher (P<0.01) than the concentration of C. parvum and C. hominis oocysts (mean; 14.0/g). Sonication reduced the load of G. lamblia cysts to non-detectable levels in 12 of 21 samples (57.1%), and in 5 of 6 samples (83.3%) for C. parvum and C. hominis. Quicklime stabilization treatment was 100% effective in inactivation of Cryptosporidium and Giardia, and microwave energy disintegration lacked the efficacy. Top-soil stabilization treatment reduced gradually the load of both pathogens which was consistent with the serial dilution of sewage sludge with the soil substrate. This study demonstrated that sewage sludge and landfill leachate contained high numbers of potentially viable, human-virulent species of Cryptosporidium and Giardia, and that sonication and quicklime stabilization were the most effective treatments for sanitization of sewage sludge and solid waste landfill leachates.

  4. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources.

    PubMed

    Fernández-Alarcón, Claudia; Singer, Randall S; Johnson, Timothy J

    2011-01-01

    Incompatibility group A/C (IncA/C) plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR) phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2) gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2) plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.

  5. Phylogenetic Approaches Toward Crocodylian History

    NASA Astrophysics Data System (ADS)

    Brochu, Christopher A.

    A review of crocodylian phylogeny reveals a more complex history than might have been anticipated from a direct reading of the fossil record without consideration of phylogenetic relationships. The three main extant crocodylian lineagesGavialoidea, Alligatoroidea, Crocodyloideaare known from fossils in the Late Cretaceous, and the group is found nearly worldwide during the Cenozoic. Some groups have distributions that are best explained by the crossing of marine barriers during the Tertiary. Early Tertiary crocodylian faunas are phylogenetically composite, and clades tend to be morphologically uniform and geographically widespread. Later in the Tertiary, Old World crocodylian faunas are more endemic. Crocodylian phylogeneticists face numerous challenges, the most important being the phylogenetic relationships and time of divergence of the two living gharials (Gavialis gangeticus and Tomistoma schlegelii), the relationships among living true crocodiles (Crocodylus), and the relationships among caimans.

  6. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae

    PubMed Central

    Liu, Hui; Xu, Qiuyuan; He, Pengcheng; Santiago, Louis S.; Yang, Keming; Ye, Qing

    2015-01-01

    The early diverged Magnoliaceae shows a historical temperate-tropical distribution among lineages indicating divergent evolution, yet which ecophysiological traits are phylogenetically conserved, and whether these traits are involved in correlated evolution remain unclear. Integrating phylogeny and 20 ecophysiological traits of 27 species, from the four largest sections of Magnoliaceae, we tested the phylogenetic signals of these traits and the correlated evolution between trait pairs. Phylogenetic niche conservatism (PNC) in water-conducting and nutrient-use related traits was identified, and correlated evolution of several key functional traits was demonstrated. Among the three evergreen sections of tropical origin, Gwillimia had the lowest hydraulic-photosynthetic capacity and the highest drought tolerance compared with Manglietia and Michelia. Contrastingly, the temperate centred deciduous section, Yulania, showed high rates of hydraulic conductivity and photosynthesis at the cost of drought tolerance. This study elucidated the regulation of hydraulic and photosynthetic processes in the temperate-tropical adaptations for Magnoliaceae species, which led to strong phylogenetic signals and PNC in ecophysiological traits across divergent lineages of Magnoliaceae. PMID:26179320

  7. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae.

    PubMed

    Liu, Hui; Xu, Qiuyuan; He, Pengcheng; Santiago, Louis S; Yang, Keming; Ye, Qing

    2015-07-16

    The early diverged Magnoliaceae shows a historical temperate-tropical distribution among lineages indicating divergent evolution, yet which ecophysiological traits are phylogenetically conserved, and whether these traits are involved in correlated evolution remain unclear. Integrating phylogeny and 20 ecophysiological traits of 27 species, from the four largest sections of Magnoliaceae, we tested the phylogenetic signals of these traits and the correlated evolution between trait pairs. Phylogenetic niche conservatism (PNC) in water-conducting and nutrient-use related traits was identified, and correlated evolution of several key functional traits was demonstrated. Among the three evergreen sections of tropical origin, Gwillimia had the lowest hydraulic-photosynthetic capacity and the highest drought tolerance compared with Manglietia and Michelia. Contrastingly, the temperate centred deciduous section, Yulania, showed high rates of hydraulic conductivity and photosynthesis at the cost of drought tolerance. This study elucidated the regulation of hydraulic and photosynthetic processes in the temperate-tropical adaptations for Magnoliaceae species, which led to strong phylogenetic signals and PNC in ecophysiological traits across divergent lineages of Magnoliaceae.

  8. Host Specificity of Bacterial Pathogens

    PubMed Central

    Bäumler, Andreas; Fang, Ferric C.

    2013-01-01

    Most pathogens are able to infect multiple hosts but some are highly adapted to a single-host species. A detailed understanding of the basis of host specificity can provide important insights into molecular pathogenesis, the evolution of pathogenic microbes, and the potential for pathogens to cross the species barrier to infect new hosts. Comparative genomics and the development of humanized mouse models have provided important new tools with which to explore the basis of generalism and specialism. This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica. PMID:24296346

  9. Lagenidium giganteum pathogenicity in mammals.

    PubMed

    Vilela, Raquel; Taylor, John W; Walker, Edward D; Mendoza, Leonel

    2015-02-01

    Infections of mammals by species in the phylum Oomycota taxonomically and molecularly similar to known Lagenidium giganteum strains have increased. During 2013-2014, we conducted a phylogenetic study of 21 mammalian Lagenidium isolates; we found that 11 cannot be differentiated from L. giganteum strains that the US Environmental Protection Agency approved for biological control of mosquitoes; these strains were later unregistered and are no longer available. L. giganteum strains pathogenic to mammals formed a strongly supported clade with the biological control isolates, and both types experimentally infected mosquito larvae. However, the strains from mammals grew well at 25°C and 37°C, whereas the biological control strains developed normally at 25°C but poorly at higher temperatures. The emergence of heat-tolerant strains of L. giganteum pathogenic to lower animals and humans is of environmental and public health concern.

  10. Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages.

    PubMed

    Huang, Shan; Bininda-Emonds, Olaf R P; Stephens, Patrick R; Gittleman, John L; Altizer, Sonia

    2014-05-01

    Most parasites infect multiple hosts, but what factors determine the range of hosts a given parasite can infect? Understanding the broad scale determinants of parasite distributions across host lineages is important for predicting pathogen emergence in new hosts and for estimating pathogen diversity in understudied host species. In this study, we used a new data set on 793 parasite species reported from free-ranging populations of 64 carnivore species to examine the factors that influence parasite sharing between host species. Our results showed that parasites are more commonly shared between phylogenetically related host species pairs. Additionally, host species with higher similarity in biological traits and greater geographic range overlap were also more likely to share parasite species. Of three measures of phylogenetic relatedness considered here, the number divergence events that separated host species pairs most strongly influenced the likelihood of parasite sharing. We also showed that viruses and helminths tend to infect carnivore hosts within more restricted phylogenetic ranges than expected by chance. Overall, our results underscore the importance of host evolutionary history in determining parasite host range, even when simultaneously considering other factors such as host ecology and geographic distribution.

  11. Exploration of phylogenetic data using a global sequence analysis method

    PubMed Central

    Chapus, Charles; Dufraigne, Christine; Edwards, Scott; Giron, Alain; Fertil, Bernard; Deschavanne, Patrick

    2005-01-01

    Background Molecular phylogenetic methods are based on alignments of nucleic or peptidic sequences. The tremendous increase in molecular data permits phylogenetic analyses of very long sequences and of many species, but also requires methods to help manage large datasets. Results Here we explore the phylogenetic signal present in molecular data by genomic signatures, defined as the set of frequencies of short oligonucleotides present in DNA sequences. Although violating many of the standard assumptions of traditional phylogenetic analyses – in particular explicit statements of homology inherent in character matrices – the use of the signature does permit the analysis of very long sequences, even those that are unalignable, and is therefore most useful in cases where alignment is questionable. We compare the results obtained by traditional phylogenetic methods to those inferred by the signature method for two genes: RAG1, which is easily alignable, and 18S RNA, where alignments are often ambiguous for some regions. We also apply this method to a multigene data set of 33 genes for 9 bacteria and one archea species as well as to the whole genome of a set of 16 γ-proteobacteria. In addition to delivering phylogenetic results comparable to traditional methods, the comparison of signatures for the sequences involved in the bacterial example identified putative candidates for horizontal gene transfers. Conclusion The signature method is therefore a fast tool for exploring phylogenetic data, providing not only a pretreatment for discovering new sequence relationships, but also for identifying cases of sequence evolution that could confound traditional phylogenetic analysis. PMID:16280081

  12. A Phylogenetic and Phenotypic Analysis of Salmonella enterica Serovar Weltevreden, an Emerging Agent of Diarrheal Disease in Tropical Regions

    PubMed Central

    Makendi, Carine; Page, Andrew J.; Wren, Brendan W.; Le Thi Phuong, Tu; Clare, Simon; Hale, Christine; Goulding, David; Klemm, Elizabeth J.; Pickard, Derek; Okoro, Chinyere; Hunt, Martin; Thompson, Corinne N.; Phu Huong Lan, Nguyen; Tran Do Hoang, Nhu; Thwaites, Guy E.; Le Hello, Simon; Brisabois, Anne; Weill, François-Xavier; Baker, Stephen; Dougan, Gordon

    2016-01-01

    Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies. PMID:26867150

  13. The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium

    PubMed Central

    2013-01-01

    Background The importance of flagella and chemotaxis genes in host pathogen interaction in Salmonella enterica is mainly based on studies of the broad host range serovar, S. Typhimurium, while little is known on the importance in host specific and host adapted serovars, such as S. Dublin. In the current study we have used previously characterized insertion mutants in flagella and chemotaxis genes to investigate this and possible differences in the importance between the two serovars. Results fliC (encoding the structural protein of the flagella) was essential for adhesion and fliC and cheB (CheB restores the chemotaxis system to pre-stimulus conformation) were essential for invasion of S. Dublin into epithelial Int407 cells. In S. Typhimurium, both lack of flagella (fliC/fljB double mutant) and cheB influenced adhesion, and invasion was influenced by lack of both cheA (the histidine-kinase of the chemotaxis system), fliC/fljB and cheB mutation. Uptake in J774A.1 macrophage cells was significantly reduced in cheA, cheB and fliC mutants of S. Dublin, while cheA was dispensable in S. Typhimurium. Removal of flagella in both serotypes caused an increased ability to propagate intracellular in J774 macrophage cells and decreased cytotoxicity toward these cells. Flagella and chemotaxis genes were found not to influence the oxidative response. The induction of IL-6 from J774A-1 cells depended on the presence of flagella in S. Typhimurium, whilst this was not the case following challenge with S. Dublin. Addition of fliC from S. Typhimurium in trans to a fliC mutant of S. Dublin increased cytotoxicity but it did not increase the IL-6 production. Flagella were demonstrated to contribute to the outcome of infection following oral challenge of mice in S. Dublin, while an S. Typhimurium fliC/fljB mutant showed increased virulence following intra peritoneal challenge. Conclusions The results showed that flagella and chemotaxis genes differed in their role in host pathogen

  14. Tropism and Pathogenicity of Rickettsiae

    PubMed Central

    Uchiyama, Tsuneo

    2012-01-01

    Rickettsiae are obligate intracellular parasitic bacteria that cause febrile exanthematous illnesses such as Rocky Mountain spotted fever, Mediterranean spotted fever, epidemic, and murine typhus, etc. Although the vector ranges of each Rickettsia species are rather restricted; i.e., ticks belonging to Arachnida and lice and fleas belonging to Insecta usually act as vectors for spotted fever group (SFG) and typhus group (TG) rickettsiae, respectively, it would be interesting to elucidate the mechanisms controlling the vector tropism of rickettsiae. This review discusses the factors determining the vector tropism of rickettsiae. In brief, the vector tropism of rickettsiae species is basically consistent with their tropism toward cultured tick and insect cells. The mechanisms responsible for rickettsiae pathogenicity are also described. Recently, genomic analyses of rickettsiae have revealed that they possess several genes that are homologous to those affecting the pathogenicity of other bacteria. Analyses comparing the genomes of pathogenic and non-pathogenic strains of rickettsiae have detected many factors that are related to rickettsial