Science.gov

Sample records for pathogens cytomegalovirus influenza

  1. Schizophrenia Susceptibility Genes Directly Implicated in the Life Cycles of Pathogens: Cytomegalovirus, Influenza, Herpes simplex, Rubella, and Toxoplasma gondii

    PubMed Central

    Carter, C.J.

    2009-01-01

    Many genes implicated in schizophrenia can be related to glutamatergic transmission and neuroplasticity, oligodendrocyte function, and other families clearly related to neurobiology and schizophrenia phenotypes. Others appear rather to be involved in the life cycles of the pathogens implicated in the disease. For example, aspartylglucosaminidase (AGA), PLA2, SIAT8B, GALNT7, or B3GAT1 metabolize chemical ligands to which the influenza virus, herpes simplex, cytomegalovirus (CMV), rubella, or Toxoplasma gondii bind. The epidermal growth factor receptor (EGR/EGFR) is used by the CMV to gain entry to cells, and a CMV gene codes for an interleukin (IL-10) mimic that binds the host cognate receptor, IL10R. The fibroblast growth factor receptor (FGFR1) is used by herpes simplex. KPNA3 and RANBP5 control the nuclear import of the influenza virus. Disrupted in schizophrenia 1 (DISC1) controls the microtubule network that is used by viruses as a route to the nucleus, while DTNBP1, MUTED, and BLOC1S3 regulate endosomal to lysosomal routing that is also important in viral traffic. Neuregulin 1 activates ERBB receptors releasing a factor, EBP1, known to inhibit the influenza virus transcriptase. Other viral or bacterial components bind to genes or proteins encoded by CALR, FEZ1, FYN, HSPA1B, IL2, HTR2A, KPNA3, MED12, MED15, MICB, NQO2, PAX6, PIK3C3, RANBP5, or TP53, while the cerebral infectivity of the herpes simplex virus is modified by Apolipoprotein E (APOE). Genes encoding for proteins related to the innate immune response, including cytokine related (CCR5, CSF2RA, CSF2RB, IL1B, IL1RN, IL2, IL3, IL3RA, IL4, IL10, IL10RA, IL18RAP, lymphotoxin-alpha, tumor necrosis factor alpha [TNF]), human leukocyte antigen (HLA) antigens (HLA-A10, HLA-B, HLA-DRB1), and genes involved in antigen processing (angiotensin-converting enzyme and tripeptidyl peptidase 2) are all concerned with defense against invading pathogens. Human microRNAs (Hsa-mir-198 and Hsa-mir-206) are predicted to bind

  2. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii.

    PubMed

    Carter, C J

    2009-11-01

    Many genes implicated in schizophrenia can be related to glutamatergic transmission and neuroplasticity, oligodendrocyte function, and other families clearly related to neurobiology and schizophrenia phenotypes. Others appear rather to be involved in the life cycles of the pathogens implicated in the disease. For example, aspartylglucosaminidase (AGA), PLA2, SIAT8B, GALNT7, or B3GAT1 metabolize chemical ligands to which the influenza virus, herpes simplex, cytomegalovirus (CMV), rubella, or Toxoplasma gondii bind. The epidermal growth factor receptor (EGR/EGFR) is used by the CMV to gain entry to cells, and a CMV gene codes for an interleukin (IL-10) mimic that binds the host cognate receptor, IL10R. The fibroblast growth factor receptor (FGFR1) is used by herpes simplex. KPNA3 and RANBP5 control the nuclear import of the influenza virus. Disrupted in schizophrenia 1 (DISC1) controls the microtubule network that is used by viruses as a route to the nucleus, while DTNBP1, MUTED, and BLOC1S3 regulate endosomal to lysosomal routing that is also important in viral traffic. Neuregulin 1 activates ERBB receptors releasing a factor, EBP1, known to inhibit the influenza virus transcriptase. Other viral or bacterial components bind to genes or proteins encoded by CALR, FEZ1, FYN, HSPA1B, IL2, HTR2A, KPNA3, MED12, MED15, MICB, NQO2, PAX6, PIK3C3, RANBP5, or TP53, while the cerebral infectivity of the herpes simplex virus is modified by Apolipoprotein E (APOE). Genes encoding for proteins related to the innate immune response, including cytokine related (CCR5, CSF2RA, CSF2RB, IL1B, IL1RN, IL2, IL3, IL3RA, IL4, IL10, IL10RA, IL18RAP, lymphotoxin-alpha, tumor necrosis factor alpha [TNF]), human leukocyte antigen (HLA) antigens (HLA-A10, HLA-B, HLA-DRB1), and genes involved in antigen processing (angiotensin-converting enzyme and tripeptidyl peptidase 2) are all concerned with defense against invading pathogens. Human microRNAs (Hsa-mir-198 and Hsa-mir-206) are predicted to bind

  3. Aging, cytomegalovirus (CMV) and influenza vaccine responses.

    PubMed

    Frasca, Daniela; Blomberg, Bonnie B

    2016-03-03

    Influenza vaccination is less effective in elderly as compared to young individuals. Several studies have identified immune biomarkers able to predict a protective humoral immune response to the vaccine. In this review, we summarize current knowledge on the effects of aging on influenza vaccine responses and on biomarkers so far identified, and we discuss the relevance of latent cytomegalovirus (CMV) infection on these vaccine responses.

  4. Cytomegalovirus infection improves immune responses to influenza

    PubMed Central

    Furman, David; Jojic, Vladimir; Sharma, Shalini; Shen-Orr, Shai; Angel, Cesar J Lopez; Onengut-Gumuscu, Suna; Kidd, Brian; Maecker, Holden T; Concannon, Patrick; Dekker, Cornelia L; Thomas, Paul G; Davis, Mark M

    2015-01-01

    Cytomegalovirus (CMV) is a beta-herpes virus present in a latent form in most people worldwide. In immunosuppressed individuals, CMV can reactivate and cause serious clinical complications, but the effect of the latent state on healthy people remains elusive. We undertook a systems approach to understand the differences between seropositive and negative subjects and measured hundreds of immune system components from blood samples including cytokines and chemokines, immune cell phenotyping, gene expression, ex vivo cell responses to cytokine stimuli and the antibody response to seasonal influenza vaccination. As expected, we found decreased responses to vaccination and an overall down-regulation of immune components in aged individuals regardless of CMV serostatus. In contrast, CMV-infected young adults exhibited an overall up-regulation of immune components including enhanced antibody responses to influenza vaccination, increased CD8+ T cell sensitivity, and elevated levels of circulating IFN-γ compared to uninfected individuals. Experiments with young mice infected with murine CMV also showed significant protection from an influenza virus challenge compared with uninfected animals, although this effect declined with time. These data show that CMV and its murine equivalent can have a beneficial effect on the immune response of young, healthy individuals, which may explain the continued coexistence of CMV and mammals throughout their evolution. PMID:25834109

  5. Cytomegalovirus infection enhances the immune response to influenza.

    PubMed

    Furman, David; Jojic, Vladimir; Sharma, Shalini; Shen-Orr, Shai S; Angel, Cesar J L; Onengut-Gumuscu, Suna; Kidd, Brian A; Maecker, Holden T; Concannon, Patrick; Dekker, Cornelia L; Thomas, Paul G; Davis, Mark M

    2015-04-01

    Cytomegalovirus (CMV) is a β-herpesvirus present in a latent form in most people worldwide. In immunosuppressed individuals, CMV can reactivate and cause serious clinical complications, but the effect of the latent state on healthy people remains elusive. We undertook a systems approach to understand the differences between seropositive and negative subjects and measured hundreds of immune system components from blood samples including cytokines and chemokines, immune cell phenotyping, gene expression, ex vivo cell responses to cytokine stimuli, and the antibody response to seasonal influenza vaccination. As expected, we found decreased responses to vaccination and an overall down-regulation of immune components in aged individuals regardless of CMV status. In contrast, CMV-seropositive young adults exhibited enhanced antibody responses to influenza vaccination, increased CD8(+) T cell sensitivity, and elevated levels of circulating interferon-γ compared to seronegative individuals. Experiments with young mice infected with murine CMV also showed significant protection from an influenza virus challenge compared with uninfected animals, although this effect declined with time. These data show that CMV and its murine equivalent can have a beneficial effect on the immune response of young, healthy individuals, which may explain the ubiquity of CMV infection in humans and many other species.

  6. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype of...

  7. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  8. Current situation on highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  9. 76 FR 4046 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... Animal and Plant Health Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule and...-4356. SUPPLEMENTARY INFORMATION: Background The Animal and Plant Health Inspection Service...

  10. Impact of Aging and Cytomegalovirus on Immunological Response to Influenza Vaccination and Infection

    PubMed Central

    Merani, Shahzma; Pawelec, Graham; Kuchel, George A.; McElhaney, Janet E.

    2017-01-01

    The number of people over the age of 60 is expected to double by 2050 according to the WHO. This emphasizes the need to ensure optimized resilience to health stressors in late life. In older adults, influenza is one of the leading causes of catastrophic disability (defined as the loss of independence in daily living and self-care activities). Influenza vaccination is generally perceived to be less protective in older adults, with some studies suggesting that the humoral immune response to the vaccine is further impaired in cytomegalovirus (CMV)-seropositive older people. CMV is a β-herpes virus infection that is generally asymptomatic in healthy individuals. The majority of older adults possess serum antibodies against the virus indicating latent infection. Age-related changes in T-cell-mediated immunity are augmented by CMV infection and may be associated with more serious complications of influenza infection. This review focuses on the impact of aging and CMV on immune cell function, the response to influenza infection and vaccination, and how the current understanding of aging and CMV can be used to design a more effective influenza vaccine for older adults. It is anticipated that efforts in this field will address the public health need for improved protection against influenza in older adults, particularly with regard to the serious complications leading to loss of independence. PMID:28769922

  11. [Transmissibility and pathogenicity of influenza viruses].

    PubMed

    Horimoto, Taisuke; Yamada, Shinya; Kawaoka, Yoshihiro

    2010-09-01

    In the spring of 2009, a novel swine-origin H1N1 virus, whose antigenicity is quite different from those of seasonal human H1N1 strains, emerged in Mexico and readily transmitted and spread among humans, resulting in the first influenza pandemic in the 21st century. Molecular analyses of the pandemic H1N1 2009 viruses indicate low-pathogenic features for humans, although worldwide transmission of the virus and a considerable numbers of lethal cases with acute pneumonia have been observed in the first wave of the current pandemic. Here, we review our current molecular knowledge of transmissibility and pathogenicity of influenza viruses and discuss the future aspects of the pandemic virus.

  12. Cytomegalovirus (CMV) seropositivity decreases B cell responses to the influenza vaccine.

    PubMed

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Landin, Ana Marie; Blomberg, Bonnie B

    2015-03-17

    Cytomegalovirus (CMV)-seropositivity has been shown to have a negative effect on influenza vaccine-specific antibody responses. In this paper, we confirm and extend these results showing for the first time, a negative association between CMV-seropositivity and B cell predictive biomarkers of optimal vaccine responses. These biomarkers are switched memory B cells and AID in CpG-stimulated B cell cultures measured before vaccination which positively correlate with the serum response to the influenza vaccine. We also found that CMV-seropositivity is associated with increased levels of B cell-intrinsic inflammation and these both correlate with lower B cell function. Finally, CMV-seropositivity is associated with decreased percentages of individuals responding to the vaccine in both young and elderly individuals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. USGS highly pathogenic avian influenza research strategy

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  14. Highly Pathogenic Avian Influenza Virus Infection in Feral Raccoons, Japan

    PubMed Central

    Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; Sashika, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-01-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health. PMID:21470469

  15. Highly pathogenic avian influenza virus infection in feral raccoons, Japan.

    PubMed

    Horimoto, Taisuke; Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; Sashika, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-04-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health.

  16. [Highly pathogenic avian influenza and wild birds].

    PubMed

    Ito, Toshihiro

    2009-06-01

    Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 prevails worldwide and causes serious problems in poultry industry. The virus is also known as one of the most important zoonotic agents derived from avian species. Because many bird species other than poultry such as chicken and duck are susceptible for HPAIV infection, wild birds are thought to play an important role in distribution and transmission of the virus. However, the ecological role of wild birds as a reservoir of HPAIV in nature has not been completely understood. To define the ecological role of wild birds in distribution of HPAIV, extensive surveillance in wild birds including migratory and resident birds in Japan was conducted. Until now, 3 strains of H5N1 subtype have been isolated. One was isolated from mountain hawk-eagle (Spizaetus nipalensis) which was found sick at Sagara village, Kumamoto prefecture, Japan on January 2007 and ultimately died after a short while. The other two strains were isolated from whooper swans (Cygnus cygnus) which were found at Lake Towada in Aomori prefecture in April and May 2008, respectively. Because the wild birds migrate on a global scale, similar problems could be always happened in any other countries. Consequently, comprehensive surveillance in wild birds with international cooperation is required for efficient global control of HPAI.

  17. Rapidly expanding range of highly pathogenic avian influenza viruses

    USGS Publications Warehouse

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  18. Rapidly Expanding Range of Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Hall, Jeffrey S; Dusek, Robert J; Spackman, Erica

    2015-07-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus' propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  19. Determinants of pathogenicity of H5N1 highly pathogenic avian influenza viruses in ducks

    USDA-ARS?s Scientific Manuscript database

    Ducks have been implicated in the dissemination and evolution of the H5N1 highly pathogenic avian influenza (HPAI) viruses. The pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in very short time. The determinants of pathogenic...

  20. (Highly pathogenic) avian influenza as a zoonotic agent.

    PubMed

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.

  1. Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems

    PubMed Central

    Feare, Chris J.; Renaud, François; Thomas, Frédéric; Gauthier-Clerc, Michel

    2010-01-01

    Understanding of ecologic factors favoring emergence and maintenance of highly pathogenic avian influenza (HPAI) viruses is limited. Although low pathogenic avian influenza viruses persist and evolve in wild populations, HPAI viruses evolve in domestic birds and cause economically serious epizootics that only occasionally infect wild populations. We propose that evolutionary ecology considerations can explain this apparent paradox. Host structure and transmission possibilities differ considerably between wild and domestic birds and are likely to be major determinants of virulence. Because viral fitness is highly dependent on host survival and dispersal in nature, virulent forms are unlikely to persist in wild populations if they kill hosts quickly or affect predation risk or migratory performance. Interhost transmission in water has evolved in low pathogenic influenza viruses in wild waterfowl populations. However, oropharyngeal shedding and transmission by aerosols appear more efficient for HPAI viruses among domestic birds. PMID:20587174

  2. Low-pathogenic avian influenza viruses in wild house mice.

    PubMed

    Shriner, Susan A; VanDalen, Kaci K; Mooers, Nicole L; Ellis, Jeremy W; Sullivan, Heather J; Root, J Jeffrey; Pelzel, Angela M; Franklin, Alan B

    2012-01-01

    Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID(50) equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 10(3.89) (H3N6) to 10(5.06) (H4N6) for the wild bird viruses and 10(2.08) (H6N2) to 10(2.85) (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics.

  3. Low-Pathogenic Avian Influenza Viruses in Wild House Mice

    PubMed Central

    Shriner, Susan A.; VanDalen, Kaci K.; Mooers, Nicole L.; Ellis, Jeremy W.; Sullivan, Heather J.; Root, J. Jeffrey; Pelzel, Angela M.; Franklin, Alan B.

    2012-01-01

    Background Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. Methodology/Principal Findings We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID50 equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 103.89 (H3N6) to 105.06 (H4N6) for the wild bird viruses and 102.08 (H6N2) to 102.85 (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Conclusions/Significance Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics. PMID:22720076

  4. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  5. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  6. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  7. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  8. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  9. Pathogenicity of two Egyptian H5N1 highly pathogenic avian influenza viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    Domestic ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Interestingly, the pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in ducks. These changes in vir...

  10. Pathogenicity of reassortant H5N1 highly pathogenic avian influenza viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks, including Egypt. In order to understand which viral genes are contri...

  11. Highly pathogenic avian influenza virus among wild birds in Mongolia

    USDA-ARS?s Scientific Manuscript database

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  12. Highly pathogenic avian influenza challenge studies in waterfowl

    USDA-ARS?s Scientific Manuscript database

    Waterfowl are the natural hosts of avian influenza (AI) virus. The majority of AI viruses are classified as low pathogenicity (LP) based on their virulence in chickens, which are the reference species for pathotype testing and can be any of the 16 hemagglutinin subtypes (H1-16). Circulation of H5 ...

  13. Rapidly expanding range of highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    The recent introduction of highly pathogenic avian influenza virus (HPAIV) H5N8 into Europe and North America poses significant risks to poultry industries and wildlife populations and warrants continued and heightened vigilance. First discovered in South Korean poultry and wild birds in early 2014...

  14. Humoral response to influenza vaccination in relation to pre-vaccination antibody titres, vaccination history, cytomegalovirus serostatus and CD4/CD8 ratio.

    PubMed

    Strindhall, Jan; Ernerudh, Jan; Mörner, Andreas; Waalen, Kristian; Löfgren, Sture; Matussek, Andreas; Bengner, Malin

    2016-01-01

    Annual vaccination against influenza virus is generally recommended to elderly and chronically ill, but the relative importance of factors influencing the outcome is not fully understood. In this study of 88 individuals all aged 69 years, the increase in haemagglutinin-inhibiting (HI) antibodies to trivalent inactivated influenza vaccine was correlated with HI titres before vaccination, prior vaccinations against influenza, cytomegalovirus serostatus and, as an estimate of immune risk profile, the ratio between CD4 + and CD8 + T cells. Vaccine responses were impaired by high pre-existing HI antibody titres. For influenza B repeated vaccinations and an inverse CD4/CD8 ratio had a negative impact on the vaccine response. Cytomegalovirus seropositivity had no apparent effect on HI titres before or after vaccination. It is concluded that both pre-existing HI antibodies and previous vaccinations to influenza may influence the humoral response to influenza vaccination and that a CD4/CD8 ratio < 1 may indicate an impaired ability to respond to repeated antigenic stimulation.

  15. Use of specific-pathogen-free (SPF) rhesus macaques to better model oral pediatric cytomegalovirus infection.

    PubMed

    dela Pena, Myra G; Strelow, Lisa; Barry, Peter A; Abel, Kristina

    2012-06-01

    Congenital human cytomegalovirus (HCMV) infection can result in lifelong neurological deficits. Seronegative pregnant woman often acquire primary HCMV from clinically asymptomatic, but HCMV-shedding children. Potential age-related differences in viral and immune parameters of primary RhCMV infection were examined in an oral rhesus CMV infection model in specific pathogen free macaques. RhCMV shedding was measured by real time PCR in plasma, saliva and urine. Immune parameters, including neutralizing and binding antibodies and RhCMV-specific T cell responses, were assessed in longitudinally collected blood samples. The oral RhCMV infection model in infant SPF rhesus macaques demonstrated that (i) the susceptibility to oral RhCMV infection declines with age, and (ii) infant macaques shed RhCMV more persistently and at higher titers compared to adult macaques. (iii) The oral infant RhCMV infection model appears to reflect viral pathogenesis in human HCMV-infected children. Larger studies are needed to define immune parameters associated with better control of RhCMV in adult compared to young animals. © 2012 John Wiley & Sons A/S.

  16. Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses

    PubMed Central

    Mooney, Alaina J; Tompkins, S Mark

    2013-01-01

    Influenza A viruses continue to emerge and re-emerge, causing outbreaks, epidemics and occasionally pandemics. While the influenza vaccines licensed for public use are generally effective against seasonal influenza, issues arise with production, immunogenicity, and efficacy in the case of vaccines against pandemic and emerging influenza viruses, and highly pathogenic avian influenza virus in particular. Thus, there is need of improved influenza vaccines and vaccination strategies. This review discusses advances in alternative influenza vaccines, touching briefly on licensed vaccines and vaccine antigens; then reviewing recombinant subunit vaccines, virus-like particle vaccines and DNA vaccines, with the main focus on virus-vectored vaccine approaches. PMID:23440999

  17. Pathogenicity and transmission of H5 and H7 highly pathogenic avian influenza viruses in mallards

    USDA-ARS?s Scientific Manuscript database

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010 and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses...

  18. USGS role and response to highly pathogenic avian influenza

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  19. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  20. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  1. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  2. 75 FR 69046 - Notice of Determination of the High Pathogenic Avian Influenza Subtype H5N1 Status of Czech...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... Pathogenic Avian Influenza Subtype H5N1 Status of Czech Republic and Sweden AGENCY: Animal and Plant Health... the highly pathogenic avian influenza (HPAI) subtype H5N1 status of the Czech Republic and Sweden... status of the Czech Republic and Sweden relative to highly pathogenic avian influenza (HPAI) subtype H5N1...

  3. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  4. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  5. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 10(3) EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 10(6) EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  6. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 103 EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 106 EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  7. Comparison of pathogenicities of H7 avian influenza viruses via intranasal and conjunctival inoculation in cynomolgus macaques.

    PubMed

    Shichinohe, Shintaro; Itoh, Yasushi; Nakayama, Misako; Ozaki, Hiroichi; Soda, Kosuke; Ishigaki, Hirohito; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2016-06-01

    The outbreak of H7N9 low pathogenic avian influenza viruses in China has attracted attention to H7 influenza virus infection in humans. Since we have shown that the pathogenicity of H1N1 and H5N1 influenza viruses in macaques was almost the same as that in humans, we compared the pathogenicities of H7 avian influenza viruses in cynomolgus macaques via intranasal and conjunctival inoculation, which mimics natural infection in humans. H7N9 virus, as well as H7N7 highly pathogenic avian influenza virus, showed more efficient replication and higher pathogenicity in macaques than did H7N1 and H7N3 highly pathogenic avian influenza viruses. These results are different from pathogenicity in chickens as reported previously. Therefore, our results obtained in macaques help to estimate the pathogenicity of H7 avian influenza viruses in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Macaque Proteome Response to Highly Pathogenic Avian Influenza and 1918 Reassortant Influenza Virus Infections▿ †

    PubMed Central

    Brown, Joseph N.; Palermo, Robert E.; Baskin, Carole R.; Gritsenko, Marina; Sabourin, Patrick J.; Long, James P.; Sabourin, Carol L.; Bielefeldt-Ohmann, Helle; García-Sastre, Adolfo; Albrecht, Randy; Tumpey, Terrence M.; Jacobs, Jon M.; Smith, Richard D.; Katze, Michael G.

    2010-01-01

    The host proteome response and molecular mechanisms that drive disease in vivo during infection by a human isolate of the highly pathogenic avian influenza virus (HPAI) and 1918 pandemic influenza virus remain poorly understood. This study presents a comprehensive characterization of the proteome response in cynomolgus macaque (Macaca fascicularis) lung tissue over 7 days of infection with HPAI (the most virulent), a reassortant virus containing 1918 hemagglutinin and neuraminidase surface proteins (intermediate virulence), or a human seasonal strain (least virulent). A high-sensitivity two-dimensional liquid chromatography-tandem mass spectroscopy strategy and functional network analysis were implemented to gain insight into response pathways activated in macaques during influenza virus infection. A macaque protein database was assembled and used in the identification of 35,239 unique peptide sequences corresponding to approximately 4,259 proteins. Quantitative analysis identified an increase in expression of 400 proteins during viral infection. The abundance levels of a subset of these 400 proteins produced strong correlations with disease progression observed in the macaques, distinguishing a “core” response to viral infection from a “high” response specific to severe disease. Proteome expression profiles revealed distinct temporal response kinetics between viral strains, with HPAI inducing the most rapid response. While proteins involved in the immune response, metabolism, and transport were increased rapidly in the lung by HPAI, the other viruses produced a delayed response, characterized by an increase in proteins involved in oxidative phosphorylation, RNA processing, and translation. Proteomic results were integrated with previous genomic and pathological analysis to characterize the dynamic nature of the influenza virus infection process. PMID:20844032

  9. Highly Pathogenic Avian Influenza H5N1, Thailand, 2004

    PubMed Central

    Chaitaweesub, Prasit; Songserm, Thaweesak; Chaisingh, Arunee; Hoonsuwan, Wirongrong; Buranathai, Chantanee; Parakamawongsa, Tippawon; Premashthira, Sith; Amonsin, Alongkorn; Gilbert, Marius; Nielen, Mirjam; Stegeman, Arjan

    2005-01-01

    In January 2004, highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first confirmed in poultry and humans in Thailand. Control measures, e.g., culling poultry flocks, restricting poultry movement, and improving hygiene, were implemented. Poultry populations in 1,417 villages in 60 of 76 provinces were affected in 2004. A total of 83% of infected flocks confirmed by laboratories were backyard chickens (56%) or ducks (27%). Outbreaks were concentrated in the Central, the southern part of the Northern, and Eastern Regions of Thailand, which are wetlands, water reservoirs, and dense poultry areas. More than 62 million birds were either killed by HPAI viruses or culled. H5N1 virus from poultry caused 17 human cases and 12 deaths in Thailand; a number of domestic cats, captive tigers, and leopards also died of the H5N1 virus. In 2005, the epidemic is ongoing in Thailand. PMID:16318716

  10. Free-grazing ducks and highly pathogenic avian influenza, Thailand.

    PubMed

    Gilbert, Marius; Chaitaweesub, Prasit; Parakamawongsa, Tippawon; Premashthira, Sith; Tiensin, Thanawat; Kalpravidh, Wantanee; Wagner, Hans; Slingenbergh, Jan

    2006-02-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004-May 2005). Results demonstrate a strong association between H5N1 virus in Thailand and abundance of free-grazing ducks and, to a lesser extent, native chickens, cocks, wetlands, and humans. Wetlands used for double-crop rice production, where free-grazing duck feed year round in rice paddies, appear to be a critical factor in HPAI persistence and spread. This finding could be important for other duck-producing regions in eastern and southeastern Asian countries affected by HPAI.

  11. Free-grazing Ducks and Highly Pathogenic Avian Influenza, Thailand

    PubMed Central

    Chaitaweesub, Prasit; Parakamawongsa, Tippawon; Premashthira, Sith; Tiensin, Thanawat; Kalpravidh, Wantanee; Wagner, Hans; Slingenbergh, Jan

    2006-01-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004–May 2005). Results demonstrate a strong association between H5N1 virus in Thailand and abundance of free-grazing ducks and, to a lesser extent, native chickens, cocks, wetlands, and humans. Wetlands used for double-crop rice production, where free-grazing duck feed year round in rice paddies, appear to be a critical factor in HPAI persistence and spread. This finding could be important for other duck-producing regions in eastern and southeastern Asian countries affected by HPAI. PMID:16494747

  12. Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia.

    PubMed

    Mangiri, Amalya; Iuliano, A Danielle; Wahyuningrum, Yunita; Praptiningsih, Catharina Y; Lafond, Kathryn E; Storms, Aaron D; Samaan, Gina; Ariawan, Iwan; Soeharno, Nugroho; Kreslake, Jennifer M; Storey, J Douglas; Uyeki, Timothy M

    2017-01-01

    Indonesia has reported highest number of fatal human cases of highly pathogenic avian influenza (HPAI) A (H5N1) virus infection worldwide since 2005. There are limited data available on seasonal and pandemic influenza in Indonesia. During 2012, we conducted a survey of clinicians in two districts in western Java, Indonesia, to assess knowledge, attitudes, and practices (KAP) of clinical diagnosis, testing, and treatment of patients with seasonal influenza, pandemic influenza, or HPAI H5N1 virus infections. Overall, a very low percentage of physician participants reported ever diagnosing hospitalized patients with seasonal, pandemic, or HPAI H5N1 influenza. Use of influenza testing was low in outpatients and hospitalized patients, and use of antiviral treatment was very low for clinically diagnosed influenza patients. Further research is needed to explore health system barriers for influenza diagnostic testing and availability of antivirals for treatment of influenza in Indonesia. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  13. Highly pathogenic avian influenza virus among wild birds in Mongolia.

    PubMed

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J; Leung, Connie Y H; Peiris, J S Malik; Spackman, Erica; Swayne, David E; Joly, Damien O

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005-2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.

  14. Highly Pathogenic Avian Influenza Virus among Wild Birds in Mongolia

    PubMed Central

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B.; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J.; Leung, Connie Y. H.; Peiris, J. S. Malik; Spackman, Erica; Swayne, David E.; Joly, Damien O.

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study. PMID:22984464

  15. Genetic characterization of highly pathogenic H5 influenza viruses from poultry in Taiwan, 2015.

    PubMed

    Huang, Pei-Yu; Lee, Chang-Chun David; Yip, Chun-Hung; Cheung, Chung-Lam; Yu, Guangchuang; Lam, Tommy Tsan-Yuk; Smith, David K; Zhu, Huachen; Guan, Yi

    2016-03-01

    Phylogenetic analysis of the highly pathogenic avian influenza (HPAI) H5 viruses causing recent outbreaks in Taiwan showed that they belonged to the Asian HPAI H5 lineage, clade 2.3.4.4 viruses, and were apparently introduced by migratory birds. These viruses reassorted with Eurasian influenza gene pool viruses and formed five genotypic variants. As Taiwan has a similar influenza ecosystem to southern China, the HPAI H5 lineage could become established and enzootic in the island.

  16. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus

    PubMed Central

    McGregor, Alistair

    2016-01-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107–179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model. PMID:27387220

  17. Impact of poultry vaccines on control of H5N1 high pathogenicity avian influenza

    USDA-ARS?s Scientific Manuscript database

    Use of vaccines against avian influenza (AI) have been sporadic in poultry until 2002 when the H5N1 high pathogenicity avian influenza (HPAI) spread from China to Hong Kong, and then multiple southeast Asian countries in 2003-2004, and to Europe in 2005, and Africa in 2006. Over the past 40 years, ...

  18. Comparative susceptibility of avian species to low pathogenic avian influenza viruses of the H13 subtype

    USDA-ARS?s Scientific Manuscript database

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  19. Susceptibility of Swine to Low Pathogenic H5 and H7 Avian Influenza Viruses

    USDA-ARS?s Scientific Manuscript database

    Introduction: The emergence of the 2009 pandemic H1N1 influenza virus from swine origin viruses (1) reinforced the concern about transmission of animal influenza viruses to man. This follows the transmission of highly pathogenic H5N1 viruses from birds to people identified in the late 1990s and cont...

  20. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza

    USDA-ARS?s Scientific Manuscript database

    Since 1959, 31 epizootics of high pathogenicity avian influenza (HPAI) have occurred in birds. Rapid detection and accurate identification of HPAI has been critical to controlling such epizootics in poultry. Specific paradigms for the detection and diagnosis of avian influenza virus (AIV) in poultry...

  1. The role of vaccines and vaccination in high pathogenicity avian influenza control and eradication

    USDA-ARS?s Scientific Manuscript database

    Thirty epizootics of high pathogenicity avian influenza (HPAI) have occurred in the world since influenza was identified as the etiology in 1955. Twenty-four of the epizootics were eradicated by using stamping-out programs composed of education, biosecurity, rapid diagnostics and surveillance, and ...

  2. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Background. Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian ...

  3. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses from an avian reservoir, and then generate mammalian adaptable influenza A viruses (IAVs) is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and...

  4. Amino acid substitutions in PB1 of avian influenza viruses influence pathogenicity and transmissibility in chickens.

    PubMed

    Suzuki, Yasushi; Uchida, Yuko; Tanikawa, Taichiro; Maeda, Naohiro; Takemae, Nobuhiro; Saito, Takehiko

    2014-10-01

    Amino acid substitutions were introduced into avian influenza virus PB1 in order to characterize the interaction between polymerase activity and pathogenicity. Previously, we used recombinant viruses containing the hemagglutinin (HA) and neuraminidase (NA) genes from the highly pathogenic avian influenza virus (HPAIV) H5N1 strain and other internal genes from two low-pathogenicity avian influenza viruses isolated from chicken and wild-bird hosts (LP and WB, respectively) to demonstrate that the pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 in chickens is regulated by the PB1 gene (Y. Uchida et al., J. Virol. 86:2686-2695, 2012, doi:http://dx.doi.org/10.1128/JVI.06374-11). In the present study, we introduced a C38Y substitution into WB PB1 and demonstrated that this substitution increased both polymerase activity in DF-1 cells in vitro and the pathogenicity of the recombinant viruses in chickens. The V14A substitution in LP PB1 reduced polymerase activity but did not affect pathogenicity in chickens. Interestingly, the V14A substitution reduced viral shedding and transmissibility. These studies demonstrate that increased polymerase activity correlates directly with enhanced pathogenicity, while decreased polymerase activity does not always correlate with pathogenicity and requires further analysis. We identified 2 novel amino acid substitutions in the avian influenza virus PB1 gene that affect the characteristics of highly pathogenic avian influenza viruses (HPAIVs) of the H5N1 subtype, such as viral replication and polymerase activity in vitro and pathogenicity and transmissibly in chickens. An amino acid substitution at residue 38 in PB1 directly affected pathogenicity in chickens and was associated with changes in polymerase activity in vitro. A substitution at residue 14 reduced polymerase activity in vitro, while its effects on pathogenicity and transmissibility depended on the constellation of internal genes. Copyright

  5. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

    PubMed Central

    Abdelwhab, El-Sayed M; Veits, Jutta; Mettenleiter, Thomas C

    2013-01-01

    Avian influenza viruses (AIV) of H5 and H7 subtypes exhibit two different pathotypes in poultry: infection with low pathogenic (LP) strains results in minimal, if any, health disturbances, whereas highly pathogenic (HP) strains cause severe morbidity and mortality. LPAIV of H5 and H7 subtypes can spontaneously mutate into HPAIV. Ten outbreaks caused by HPAIV are known to have been preceded by circulation of a predecessor LPAIV in poultry. Three of them were caused by H5N2 subtype and seven involved H7 subtype in combination with N1, N3, or N7. Here, we review those outbreaks and summarize the genetic changes which resulted in the transformation of LPAIV to HPAIV under natural conditions. Mutations that were found directly in those outbreaks are more likely to be linked to virulence, pathogenesis, and early adaptation of AIV. PMID:23863606

  6. Emergence of a Highly Pathogenic Avian Influenza Virus from a Low-Pathogenic Progenitor

    PubMed Central

    Fusaro, Alice; Nelson, Martha I.; Bonfanti, Lebana; Mulatti, Paolo; Hughes, Joseph; Murcia, Pablo R.; Schivo, Alessia; Valastro, Viviana; Moreno, Ana; Holmes, Edward C.; Cattoli, Giovanni

    2014-01-01

    ABSTRACT Avian influenza (AI) viruses of the H7 subtype have the potential to evolve into highly pathogenic (HP) viruses that represent a major economic problem for the poultry industry and a threat to global health. However, the emergence of HPAI viruses from low-pathogenic (LPAI) progenitor viruses currently is poorly understood. To investigate the origin and evolution of one of the most important avian influenza epidemics described in Europe, we investigated the evolutionary and spatial dynamics of the entire genome of 109 H7N1 (46 LPAI and 63 HPAI) viruses collected during Italian H7N1 outbreaks between March 1999 and February 2001. Phylogenetic analysis revealed that the LPAI and HPAI epidemics shared a single ancestor, that the HPAI strains evolved from the LPAI viruses in the absence of reassortment, and that there was a parallel emergence of mutations among HPAI and later LPAI lineages. Notably, an ultradeep-sequencing analysis demonstrated that some of the amino acid changes characterizing the HPAI virus cluster were already present with low frequency within several individual viral populations from the beginning of the LPAI H7N1 epidemic. A Bayesian phylogeographic analysis revealed stronger spatial structure during the LPAI outbreak, reflecting the more rapid spread of the virus following the emergence of HPAI. The data generated in this study provide the most complete evolutionary and phylogeographic analysis of epidemiologically intertwined high- and low-pathogenicity viruses undertaken to date and highlight the importance of implementing prompt eradication measures against LPAI to prevent the appearance of viruses with fitness advantages and unpredictable pathogenic properties. IMPORTANCE The Italian H7 AI epidemic of 1999 to 2001 was one of the most important AI outbreaks described in Europe. H7 viruses have the ability to evolve into HP forms from LP precursors, although the mechanisms underlying this evolutionary transition are only poorly

  7. Quantifying Transmission of Highly Pathogenic and Low Pathogenicity H7N1 Avian Influenza in Turkeys

    PubMed Central

    Saenz, Roberto A.; Essen, Steve C.; Brookes, Sharon M.; Iqbal, Munir; Wood, James L. N.; Grenfell, Bryan T.; McCauley, John W.; Brown, Ian H.; Gog, Julia R.

    2012-01-01

    Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999–2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5–2.7) per day for HPAI, 2.01 (1.6–2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3–1.7) days) than for LPAI (7.65 (7.0–8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, is significantly lower for HPAI (3.01 (2.2–4.0)) than for LPAI (15.3 (11.8–19.7)). The comparison of transmission rates and are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size. PMID:23028760

  8. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    USGS Publications Warehouse

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  9. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    PubMed Central

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S.; DeLiberto, Thomas J.

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  10. Control strategies for highly pathogenic avian influenza: a global perspective.

    PubMed

    Lubroth, J

    2007-01-01

    Comprehensive programmes for the prevention, detection and control of highly pathogenic avian influenza (HPAI) require a national dimension and relevant national legislation in which veterinary services can conduct surveillance, competent diagnosis and rapid response. Avian influenza was controlled and prevented by vaccination long before the current H5N1 crisis. The use of vaccine cannot be separated from other essential elements of a vaccination campaign, which include education in poultry production practices, such as hygiene, all in-all out production concepts, separation of species, biosecurity (bio-exclusion to keep the disease out and biocontainment to keep the disease from spreading once suspected or detected), competence in giving the vaccine and the role of vaccination teams, post-vaccination monitoring to ensure efficacy and to detect the circulation of wild-type virus, surveillance and buffer zones in outbreak areas, and performance indicators to determine when vaccination can cease. Reporting of disease can be improved through well-structured, adequately financed veterinary services and also by fair compensation for producers who suffer financial loss. A rapid response to suspected cases of HPAI should be ensured in simulation exercises involving various sectors of the food production and marketing chain, policy-makers, official veterinary structures and other government personnel. As for other transboundary animal diseases, national approaches must be part of a regional strategy and regional networks for cooperation and information sharing, which in turn reflect global policies and international standards, such as the quality of vaccines, reporting obligations, humane interventions, cleaning and disinfection methods, restocking times, monitoring and safe trade.

  11. An avian outbreak associated with panzootic equine influenza in 1872: an early example of highly pathogenic avian influenza?

    PubMed

    Morens, David M; Taubenberger, Jeffery K

    2010-11-01

    An explosive fatal epizootic in poultry, prairie chickens, turkeys, ducks and geese, occurred over much of the populated United States between 15 November and 15 December 1872. To our knowledge the scientific literature contains no mention of the nationwide 1872 poultry outbreak. To understand avian influenza in a historical context. The epizootic progressed in temporal-geographic association with a well-reported panzootic of equine influenza that had begun in Canada during the last few days of September 1872. The 1872 avian epizootic was universally attributed at the time to equine influenza, a disease then of unknown etiology but widely believed to be caused by the same transmissible respiratory agent that caused human influenza. Another microbial agent could have caused the avian outbreak; however, its strong temporal and geographic association with the equine panzootic, and its clinical and epidemiologic features, are most consistent with highly pathogenic avian influenza. The avian epizootic could thus have been an early instance of highly pathogenic avian influenza. © 2010 Blackwell Publishing Ltd.

  12. Cytomegalovirus and immunotherapy: opportunistic pathogen, novel target for cancer and a promising vaccine vector.

    PubMed

    Quinn, Michael; Erkes, Dan A; Snyder, Christopher M

    2016-02-01

    Cytomegalovirus (CMV) is a β-herpesvirus that infects most people in the world and is almost always asymptomatic in the healthy host. However, CMV persists for life, requiring continuous immune surveillance to prevent disease and thus, CMV is a frequent complication in immune compromised patients. Many groups have been exploring the potential for adoptive T-cell therapies to control CMV reactivation as well as the progression of solid tumors harboring CMV. In addition, CMV itself is being explored as a vaccine vector for eliciting potent T-cell responses. This review will discuss key features of the basic biology of CMV-specific T cells as well as highlighting unanswered questions and ongoing work in the development of T-cell-based immunotherapies to target CMV.

  13. A vaccine prepared from a non-pathogenic H5N1 influenza virus strain from the influenza virus library conferred protective immunity to chickens against the challenge with antigenically drifted highly pathogenic avian influenza virus.

    PubMed

    Samad, Rozanah Asmah Abdul; Nomura, Naoki; Tsuda, Yoshimi; Manzoor, Rashid; Kajihara, Masahiro; Tomabechi, Daisuke; Sasaki, Takashi; Kokumai, Norihide; Ohgitani, Toshiaki; Okamatsu, Masatoshi; Takada, Ayato; Sakoda, Yoshihiro; Kida, Hiroshi

    2011-02-01

    Inactivated influenza virus vaccine prepared from a non-pathogenic influenza virus strain A/duck/Hokkaido/Vac-1/2004 (H5N1) from the virus library conferred protective immunity to chickens against the challenge of antigenically drifted highly pathogenic avian influenza virus (HPAIV), A/whooper swan/Hokkaido/1/2008 (H5N1). The efficacy of the vaccine was comparable to that prepared from genetically modified HPAIV strain deltaRRRRK rg-A/ whooper swan/Mongolia/3/2005 (H5N1), which is more antigenically related to the challenge virus strain, in chickens.

  14. Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany.

    PubMed

    Harder, Timm; Maurer-Stroh, Sebastian; Pohlmann, Anne; Starick, Elke; Höreth-Böntgen, Detlef; Albrecht, Karin; Pannwitz, Gunter; Teifke, Jens; Gunalan, Vithiagaran; Lee, Raphael T C; Sauter-Louis, Carola; Homeier, Timo; Staubach, Christoph; Wolf, Carola; Strebelow, Günter; Höper, Dirk; Grund, Christian; Conraths, Franz J; Mettenleiter, Thomas C; Beer, Martin

    2015-05-01

    Highly pathogenic avian influenza (H5N8) virus, like the recently described H5N8 strain from Korea, was detected in November 2014 in farmed turkeys and in a healthy common teal (Anas crecca) in northeastern Germany. Infected wild birds possibly introduced this virus.

  15. Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany

    PubMed Central

    Maurer-Stroh, Sebastian; Pohlmann, Anne; Starick, Elke; Höreth-Böntgen, Detlef; Albrecht, Karin; Pannwitz, Gunter; Teifke, Jens; Gunalan, Vithiagaran; Lee, Raphael T.C.; Sauter-Louis, Carola; Homeier, Timo; Staubach, Christoph; Wolf, Carola; Strebelow, Günter; Höper, Dirk; Grund, Christian; Conraths, Franz J.; Mettenleiter, Thomas C.; Beer, Martin

    2015-01-01

    Highly pathogenic avian influenza (H5N8) virus, like the recently described H5N8 strain from Korea, was detected in November 2014 in farmed turkeys and in a healthy common teal (Anas crecca) in northeastern Germany. Infected wild birds possibly introduced this virus. PMID:25897703

  16. Is low pathogenic avian influenza virus virulent for wild waterbirds?

    PubMed Central

    Kuiken, Thijs

    2013-01-01

    Although low pathogenic avian influenza virus (LPAIV) is traditionally considered to have adapted to its wild waterbird host to become avirulent, recent studies have suggested that LPAIV infection might after all have clinical effects. Therefore, I reviewed the literature on LPAIV infections in wild waterbirds. The virulence of LPAIV was assessed in 17 studies on experimental infections and nine studies on natural infections. Reported evidence for virulence were reductions in return rate, feeding rate, body weight, long-range movement and reproductive success, as well as pathological changes in infected organs. However, major caveats in studies of experimental infections were unnatural route of LPAIV inoculation, animal husbandry not simulating natural stressors and low sensitivity of clinical assessment. Major caveats in studies of natural infections were incomplete measurement of LPAIV infection burden, quasi-experimental design and potential misclassification of birds. After taking these caveats into account, the only remaining evidence for virulence was that presence and intensity of LPAIV infection were negatively correlated with body weight. Based on this correlation, together with the demonstrated LPAIV tropism for the intestinal tract, I hypothesize that LPAIV reduces digestive tract function, and suggest how future studies could be directed to test this hypothesis. PMID:23740783

  17. Toll-like receptor pre-stimulation protects mice against lethal infection with highly pathogenic influenza viruses.

    PubMed

    Shinya, Kyoko; Okamura, Tadashi; Sueta, Setsuko; Kasai, Noriyuki; Tanaka, Motoko; Ginting, Teridah E; Makino, Akiko; Eisfeld, Amie J; Kawaoka, Yoshihiro

    2011-03-04

    Since the beginning of the 20th century, humans have experienced four influenza pandemics, including the devastating 1918 'Spanish influenza'. Moreover, H5N1 highly pathogenic avian influenza (HPAI) viruses are currently spreading worldwide, although they are not yet efficiently transmitted among humans. While the threat of a global pandemic involving a highly pathogenic influenza virus strain looms large, our mechanisms to address such a catastrophe remain limited. Here, we show that pre-stimulation of Toll-like receptors (TLRs) 2 and 4 increased resistance against influenza viruses known to induce high pathogenicity in animal models. Our data emphasize the complexity of the host response against different influenza viruses, and suggest that TLR agonists might be utilized to protect against lethality associated with highly pathogenic influenza virus infection in humans.

  18. Increased virulence in ducks of H5N1 highly pathogenic avian influenza viruses from Egypt

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks. Since 2006, H5N1 HPAI outbreaks in Egypt have been occurring in po...

  19. Characterization of low pathogenicity H5N1 avian influenza viruses from North America

    USDA-ARS?s Scientific Manuscript database

    Wild bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low pathogenic H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 ...

  20. The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions

    PubMed Central

    Shitrit, Alina; Shani, Odem; Le-Trilling, Vu Thuy Khanh; Trilling, Mirko; Friedlander, Gilgi; Tanenbaum, Marvin; Stern-Ginossar, Noam

    2015-01-01

    Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV) does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus. PMID:26599541

  1. Characterization of H5N1 highly pathogenic mink influenza viruses in eastern China.

    PubMed

    Jiang, Wenming; Wang, Suchun; Zhang, Chuanmei; Li, Jinping; Hou, Guangyu; Peng, Cheng; Chen, Jiming; Shan, Hu

    2017-03-01

    Members of the H5 subtype of highly pathogenic avian influenza viruses pose a great threat to both poultry and humans with severe consequences for both industry and public health sectors. Here, we isolated and characterized two H5N1 highly pathogenic influenza viruses in deceased mink from eastern China. Phylogenetic analyses showed that the G15 and XB15 viruses belonged to clade 2.3.2.1b and 2.3.2.1e, respectively. Both of these viruses were highly pathogenic in chickens. They were also shown to exhibit moderate to high pathogenicity in mice without pre-adaptation. Further, the mink influenza viruses had severe antigenic drift with corresponding Re-6 vaccine and current vaccines may fail to confer protection against these H5N1 viruses in poultry.

  2. Development of breeding populations of rhesus macaques (Macaca mulatta) that are specific pathogen-free for rhesus cytomegalovirus.

    PubMed

    Barry, Peter A; Strelow, Lisa

    2008-02-01

    Development of breeding colonies of rhesus macaques (Macaca mulatta) that are specific pathogen-free (SPF) for rhesus cytomegalovirus (RhCMV) is relatively straightforward and requires few modifications from current SPF programs. Infants separated from the dam at or within a few days of birth and cohoused with similarly treated animals remain RhCMV seronegative indefinitely, provided they are never directly or indirectly exposed to a RhCMV-infected monkey. By systematically cohousing seronegative animals into larger social cohorts, breeding populations of animals SPF for RhCMV can be established. The additional costs involved in expanding the current definition of SPF status to include RhCMV are incremental compared with the money already being spent on existing SPF efforts. Moreover, the large increase in research opportunities available for RhCMV-free animals arguably would far exceed the development costs. Potential new areas of research and further expansion of existing research efforts involving these newly defined SPF animals would have direct implications for improvements in human health.

  3. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    PubMed Central

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  4. Role for proteases and HLA-G in the pathogenicity of influenza A viruses.

    PubMed

    Foucault, Marie-Laure; Moules, Vincent; Rosa-Calatrava, Manuel; Riteau, Béatrice

    2011-07-01

    Influenza is one of the most common infectious diseases in humans occurring as seasonal epidemic and sporadic pandemic outbreaks. The ongoing infections of humans with avian H5N1 influenza A viruses (IAV) and the past 2009 pandemic caused by the quadruple human/avian/swine reassortant (H1N1) virus highlights the permanent threat caused by these viruses. This review aims to describe the interaction between the virus and the host, with a particular focus on the role of proteases and HLA-G in the pathogenicity of influenza viruses.

  5. Congenital cytomegalovirus

    MedlinePlus

    ... Churchill Livingstone; 2014:chap 140. Swanson EC. Congenital cytomegalovirus infection: new prospects for prevention and therapy. Pediatr Clin ... and the A.D.A.M. Editorial team. Cytomegalovirus Infections Read more Latest Health News Read more Health ...

  6. Single vaccination provides limited protection to ducks and geese against H5N1 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Since 2002, high pathogenicity avian influenza has spread from Asia to Europe and into Africa causing the largest epizootic of high pathogenicity avian influenza (HPAI) of the last 50 years including infecting domestic and wild waterfowl. Our study was conducted to investigate whether single vaccina...

  7. Survivability of Eurasian H5N1 highly pathogenic avian influenza viruses in water varies between strains

    USDA-ARS?s Scientific Manuscript database

    Aquatic habitats play critical role in the transmission and maintenance of low pathogenic avian influenza (LPAI) viruses in wild waterfowl; however the importance of these environments in the ecology of H5N1 highly pathogenic avian influenza (HPAI) viruses is unknown. In laboratory-based studies, L...

  8. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    USDA-ARS?s Scientific Manuscript database

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza ...

  9. Experimental infection of mallard ducks with different subtype H5 and H7 highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of some Asian lineage H5N1 HPAIVs which can cause severe disease in ducks. With ...

  10. Nutritional impact of highly pathogenic avian influenza in Kenya.

    PubMed

    Iannotti, Lora; Roy, Devesh

    2013-09-01

    Outbreaks of highly pathogenic avian influenza (HPAI) (virus type H5N1) have led to extensive bird culling and other control measures throughout the world, with implications especially for the livelihoods of the poor. There is limited empirical evidence for the impact of HPAI on poultry consumption and nutrition of vulnerable populations. To test the effect of reduced per capita poultry consumption at the household level due to an HPAI event on anthropometric measurements of children. This study used data from the Kenya Integrated Household Budget Survey (KIHBS) 2004/05 to characterize the nutritional status of young children 6 to 36 months of age, household dietary diversity (number of food groups consumed), and determinants of anthropometric outcomes, including z-scores for height-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ). Propensity score matching (PSM) was applied to ascertain the nutritional impacts of reduced poultry consumption arising from an HPAI event. Thirty-four percent of the children were stunted (HAZ < -2 SD), 16% were underweight (WAZ < -2 SD), and 8% were wasted (WHZ < -2 SD), with the highest prevalences in the Coast, Eastern, North Eastern, Nyanza, and Rift Valley provinces. On average, households reported consuming food from 2.5 +/- 1.3 food groups per week. Consistently significant determinants of anthropometric outcomes in these children were child's age, child's sex, household level of education, and various income and wealth determinants. PSM demonstrated that a reduction of consumption of poultry meat and eggs due to HPAI infection would increase the prevalence of stunting by 3.9 percentage points (Average Treatment Effect on the Treated (ATT), p = .06), increase the prevalence of underweight by 5 percentage points, and reduce WAZ by 0.16 (ATT, p = .03). Through the household dietary diversity and consumption pathways, HPAI could have nutrition-related consequences with public health significance. In the event of HPAI

  11. Haemophilus influenzae: using comparative genomics to accurately identify a highly recombinogenic human pathogen.

    PubMed

    Price, Erin P; Sarovich, Derek S; Nosworthy, Elizabeth; Beissbarth, Jemima; Marsh, Robyn L; Pickering, Janessa; Kirkham, Lea-Ann S; Keil, Anthony D; Chang, Anne B; Smith-Vaughan, Heidi C

    2015-08-27

    Haemophilus influenzae is an opportunistic bacterial pathogen that exclusively colonises humans and is associated with both acute and chronic disease. Despite its clinical significance, accurate identification of H. influenzae is a non-trivial endeavour. H. haemolyticus can be misidentified as H. influenzae from clinical specimens using selective culturing methods, reflecting both the shared environmental niche and phenotypic similarities of these species. On the molecular level, frequent genetic exchange amongst Haemophilus spp. has confounded accurate identification of H. influenzae, leading to both false-positive and false-negative results with existing speciation assays. Whole-genome single-nucleotide polymorphism data from 246 closely related global Haemophilus isolates, including 107 Australian isolate genomes generated in this study, were used to construct a whole-genome phylogeny. Based on this phylogeny, H. influenzae could be differentiated from closely related species. Next, a H. influenzae-specific locus, fucP, was identified, and a novel TaqMan real-time PCR assay targeting fucP was designed. PCR specificity screening across a panel of clinically relevant species, coupled with in silico analysis of all species within the order Pasteurellales, demonstrated that the fucP assay was 100 % specific for H. influenzae; all other examined species failed to amplify. This study is the first of its kind to use large-scale comparative genomic analysis of Haemophilus spp. to accurately delineate H. influenzae and to identify a species-specific molecular signature for this species. The fucP assay outperforms existing H. influenzae targets, most of which were identified prior to the next-generation genomics era and thus lack validation across a large number of Haemophilus spp. We recommend use of the fucP assay in clinical and research laboratories for the most accurate detection and diagnosis of H. influenzae infection and colonisation.

  12. Human infection with highly pathogenic H5N1 influenza virus.

    PubMed

    Gambotto, Andrea; Barratt-Boyes, Simon M; de Jong, Menno D; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-04-26

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of H5N1 influenza viruses and their capacity for transmission from birds to human beings has raised worldwide concern about an impending human influenza pandemic similar to the notorious H1N1 Spanish influenza of 1918. Since many aspects of H5N1 influenza research are rapidly evolving, we aim in this Seminar to provide an up-to-date discussion on select topics of interest to influenza clinicians and researchers. We summarise the clinical features and diagnosis of infection and present therapeutic options for H5N1 infection of people. We also discuss ideas relating to virus transmission, host restriction, and pathogenesis. Finally, we discuss vaccine development in view of the probable importance of vaccination in pandemic control.

  13. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  14. Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A(H7N8) virus

    USGS Publications Warehouse

    Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng

    2017-01-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.

  15. Modelling the impact of co-circulating low pathogenic avian influenza viruses on epidemics of highly pathogenic avian influenza in poultry.

    PubMed

    Nickbakhsh, Sema; Hall, Matthew D; Dorigatti, Ilaria; Lycett, Samantha J; Mulatti, Paolo; Monne, Isabella; Fusaro, Alice; Woolhouse, Mark E J; Rambaut, Andrew; Kao, Rowland R

    2016-12-01

    It is well known that highly pathogenic avian influenza (HPAI) viruses emerge through mutation of precursor low pathogenic avian influenza (LPAI) viruses in domestic poultry populations. The potential for immunological cross-protection between these pathogenic variants is recognised but the epidemiological impact during co-circulation is not well understood. Here we use mathematical models to investigate whether altered flock infection parameters consequent to primary LPAI infections can impact on the spread of HPAI at the population level. First we used mechanistic models reflecting the co-circulatory dynamics of LPAI and HPAI within a single commercial poultry flock. We found that primary infections with LPAI led to HPAI prevalence being maximised under a scenario of high but partial cross-protection. We then tested the population impact in spatially-explicit simulations motivated by a major avian influenza A(H7N1) epidemic that afflicted the Italian poultry industry in 1999-2001. We found that partial cross-protection can lead to a prolongation of HPAI epidemic duration. Our findings have implications for the control of HPAI in poultry particularly for settings in which LPAI and HPAI frequently co-circulate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    USDA-ARS?s Scientific Manuscript database

    There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a surrogate for humans in influenza pathogenicity a...

  17. The roles of hemagglutinin Phe-95 in receptor binding and pathogenicity of influenza B virus.

    PubMed

    Ni, Fengyun; Mbawuike, Innocent Nnadi; Kondrashkina, Elena; Wang, Qinghua

    2014-02-01

    Diverged ~4000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1-H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H1-15 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus.

  18. The Roles of Hemagglutinin Phe-95 in Receptor Binding and Pathogenicity of Influenza B Virus

    PubMed Central

    Ni, Fengyun; Mbawuike, Innocent Nnadi; Kondrashkina, Elena; Wang, Qinghua

    2014-01-01

    Diverged ~4,000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1~H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H3 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus. PMID:24503069

  19. Pathogenicity of modified bat influenza virus with different M genes and its reassortment potential with swine influenza A virus.

    PubMed

    Yang, Jianmei; Lee, Jinhwa; Ma, Jingjiao; Lang, Yuekun; Nietfeld, Jerome; Li, Yuhao; Duff, Michael; Li, Yonghai; Yang, Yuju; Liu, Haixia; Zhou, Bin; Wentworth, David E; Richt, Juergen A; Li, Zejun; Ma, Wenjun

    2017-01-18

    In our previous studies the reassortant virus containing only the PR8 H1N1 matrix (M) gene in the background of the modified bat influenza Bat09:mH1mN1 virus could be generated. However, whether M genes from other origins can be rescued in the background of the Bat09:mH1mN1 virus and whether the resulting novel reassortant virus is virulent remain unknown. Herein, two reassortant viruses were generated in the background of the Bat09:mH1mN1 virus containing either a North American or a Eurasian swine influenza virus M gene. These two reassortant viruses and the reassortant virus with PR8 M as well as the control Bat09:mH1mN1 virus replicated efficiently in cultured cells, while the reassortant virus with PR8 M grew to a higher titer than the other three viruses in tested cells. Mouse studies showed that reassortant viruses with either North American or Eurasian swine influenza virus M genes did not enhance virulence, whereas the reassortant virus with PR8 M gene displayed higher pathogenicity when compared to the Bat09:mH1mN1 virus. This is most likely due to the fact that the PR8 H1N1 virus is a mouse-adapted virus. Furthermore, reassortment potential between the Bat09:mH1mN1 virus and an H3N2 swine influenza virus (A/swine/Texas/4199-2/1998) was investigated using co-infection of MDCK cells, but no reassortant viruses were detected. Taken together, our results indicate that the modified bat influenza virus is most likely incapable of reassortment with influenza A viruses with in vitro co-infection experiments, although reassortant viruses with different M genes can be generated by reverse genetics.

  20. Novel Eurasian Highly Pathogenic Avian Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014

    PubMed Central

    Ip, Hon S.; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues. PMID:25898265

  1. The pathogenicity of H7 subtype avian influenza viruses in chickens, turkeys and ducks

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) viruses infect numerous avian species, and low pathogenicity (LP) AI viruses of the H7 subtype are typically reported to produce mild or subclinical infections in both wild aquatic birds and domestic poultry. However relatively little work has been done to compare LPAI viruses ...

  2. High pathogenicity avian influenza virus in the reproductive tract of chickens

    USDA-ARS?s Scientific Manuscript database

    Infection with high pathogenicity avian influenza virus (HPAIV) has been associated with a wide range of clinical manifestations in poultry including severe depression in egg production and isolation of HPAIV from eggs laid by infected hens. To evaluate the pathobiology in the reproductive tract of...

  3. Highly pathogenic avian influenza virus and generation of novel reassortants, United States, 2014-2015

    USDA-ARS?s Scientific Manuscript database

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North Americ...

  4. Global assessments of high pathogenicity avian influenza control, including vaccination programs

    USDA-ARS?s Scientific Manuscript database

    There have been 32 epizootics of H5 or H7 high pathogenicity avian influenza (HPAI) from 1959 to early 2013. The largest has been the H5N1 HPAI which began in Guangdong China in 1996, and has affected over 250 million poultry and/or wild birds in 63 countries. For most countries, stamping-out progra...

  5. Airborne transmission of H5N1 high pathogenicity avian influenza viruses during simulated home slaughter

    USDA-ARS?s Scientific Manuscript database

    Most H5N1 human infections have occurred following exposure to H5N1 high pathogenicity avian influenza (HPAI) virus-infected poultry, especially when poultry are home slaughtered or slaughtered in live poultry markets. Previous studies have demonstrated that slaughter of clade 1 isolate A/Vietnam/1...

  6. Highly pathogenic avian influenza (H5N1) outbreaks in wild birds and poultry, South Korea.

    PubMed

    Kim, Hye-Ryoung; Lee, Youn-Jeong; Park, Choi-Kyu; Oem, Jae-Ku; Lee, O-Soo; Kang, Hyun-Mi; Choi, Jun-Gu; Bae, You-Chan

    2012-03-01

    Highly pathogenic avian influenza (H5N1) among wild birds emerged simultaneously with outbreaks in domestic poultry in South Korea during November 2010-May 2011. Phylogenetic analysis showed that these viruses belonged to clade 2.3.2, as did viruses found in Mongolia, the People's Republic of China, and Russia in 2009 and 2010.

  7. Novel Eurasian highly pathogenic influenza A H5 viruses in wild birds, Washington, USA

    USGS Publications Warehouse

    Ip, Hon S.; Kim Torchetti, Mia; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara L.; Shearn-Bochsler, Valerie I.; Killian, Mary Lea; Pederson, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  8. Changing pathobiology of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic waterfowl

    USDA-ARS?s Scientific Manuscript database

    The Eurasian-African lineage of H5N1 highly pathogenic avian influenza (HPAI) viruses has evolved into many genetic lineages and multiple sublineages. The divergent strains that have arisen express distinct pathobiological features and increased virulence for many bird species including domestic wa...

  9. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    PubMed

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  10. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used ...

  11. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreas...

  12. Update on H7N3 highly pathogenic avian influenza in Mexico

    USDA-ARS?s Scientific Manuscript database

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Jalisco, Mexico. This region is responsible for approximately 55% of the eggs produced in Mexico, and infection with this virus seve...

  13. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  14. Novel Reassortant Highly Pathogenic Avian Influenza (H5N8) Virus in Zoos, India.

    PubMed

    Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Tripathi, Sushil; Shukla, Shweta; Agarwal, Sonam; Dubey, Garima; Nagi, Raunaq Singh; Singh, Vijendra Pal; Tosh, Chakradhar

    2017-04-01

    Highly pathogenic avian influenza (H5N8) viruses were detected in waterfowl at 2 zoos in India in October 2016. Both viruses were different 7:1 reassortants of H5N8 viruses isolated in May 2016 from wild birds in the Russian Federation and China, suggesting virus spread during southward winter migration of birds.

  15. Adaptive heterosubtypic immunity to low pathogenic avian influenza viruses in experimentally infected mallards

    USDA-ARS?s Scientific Manuscript database

    Mallards are widely recognized as reservoirs for Influenza A viruses (IAV), however host factors that might prompt seasonality and trends in subtype diversity of IAV such as adaptive heterosubtypic immunity (HSI) are not well understood. We inoculated mallards with a prevailing H3N8 low pathogenic a...

  16. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) avian influenza viruses (AIV) present an on going threat to the U.S. poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection. Because the early events of AIV infection can occur on tracheal ep...

  17. Gene expression responses to highly pathogenic avian influenza H5N1 virus infections in ducks

    USDA-ARS?s Scientific Manuscript database

    Differences in host response to infection with avian influenza (AI) viruses were investigated by identifying genes differentially expressed in tissues of infected ducks. Clear differences in pathogenicity were observed among ducks inoculated with five H5N1 HPAI viruses. Virus titers in tissues cor...

  18. Novel Reassortant Highly Pathogenic Avian Influenza (H5N8) Virus in Zoos, India

    PubMed Central

    Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V.; Tripathi, Sushil; Shukla, Shweta; Agarwal, Sonam; Dubey, Garima; Nagi, Raunaq Singh; Singh, Vijendra Pal

    2017-01-01

    Highly pathogenic avian influenza (H5N8) viruses were detected in waterfowl at 2 zoos in India in October 2016. Both viruses were different 7:1 reassortants of H5N8 viruses isolated in May 2016 from wild birds in the Russian Federation and China, suggesting virus spread during southward winter migration of birds. PMID:28117031

  19. Chlorine inactivation of H5N1 highly pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Two Asian strains of H5N1 highly pathogenic avian influenza virus were studied to determine their resistance to chlorination. Experiments were conducted at two pH levels (pH 7 and 8) at 5 C. CT (chlorine concentration x exposure time) values were calculated for different levels of inactivation. R...

  20. High doses of highly pathogenic avian influenza virus in chicken meat are required to infect ferrets

    USDA-ARS?s Scientific Manuscript database

    H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused natural and experimental infections in various animals through consumption of infected bird carcasses and meat. However, little is known about the quantity of virus required and if all HPAIV subtypes can cause infections following c...

  1. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis o...

  2. Pathogenesis and transmission of highly pathogenic avian influenza H5Nx in swine

    USDA-ARS?s Scientific Manuscript database

    Introduction Influenza A viruses (IAV) periodically transmit between pigs, people, and birds. If two IAV strains infect the same host, genes can reassort to generate progeny virus with potential to be more infectious or avoid immunity. Pigs pose a risk for such reassortment. Highly pathogenic avian ...

  3. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  4. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4

    USDA-ARS?s Scientific Manuscript database

    Novel subtypes of Eurasian-origin (Goose/Guangdong lineage) H5 highly pathogenic avian influenza (HPAI) viruses belonging to clade 2.3.4 such as H5N2, H5N5, H5N6, and H5N8 have been identified in China since 2008 and subsequently evolved into four genetically distinct groups (A – D) of clade 2.3.4.4...

  5. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R; Suarez, David L; Stallknecht, David E; Swayne, David E

    2016-11-01

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses.

  6. ZMPSTE24 defends against influenza and other pathogenic viruses.

    PubMed

    Fu, Bishi; Wang, Lingyan; Li, Shitao; Dorf, Martin E

    2017-02-28

    Zinc metallopeptidase STE24 (ZMPSTE24) is a transmembrane metalloprotease whose catalytic activity is critical for processing lamin A on the inner nuclear membrane and clearing clogged translocons on the endoplasmic reticulum. We now report ZMPSTE24 is a virus-specific effector that restricts enveloped RNA and DNA viruses, including influenza A, Zika, Ebola, Sindbis, vesicular stomatitis, cowpox, and vaccinia, but not murine leukemia or adenovirus. ZMPSTE24-mediated antiviral action is independent of protease activity. Coimmunoprecipitation studies indicate ZMPSTE24 can complex with proteins of the interferon-induced transmembrane protein (IFITM) family. IFITM proteins impede viral entry, and ZMPSTE24 expression is necessary for IFITM antiviral activity. In vivo studies demonstrate ZMPSTE24-deficient mice display higher viral burdens, enhanced cytokine production, and increased mortality after influenza infection. Collectively, these findings identify ZMPSTE24 as an intrinsic broad-spectrum antiviral protein and provide insights into antiviral defense mechanisms.

  7. [Interspecies transmission, adaptation to humans and pathogenicity of animal influenza viruses].

    PubMed

    Munier, S; Moisy, D; Marc, D; Naffakh, N

    2010-04-01

    The emergence in 2009 of a novel A(H1N1)v influenza virus of swine origin and the regular occurrence since 2003 of human cases of infection with A(H5N1) avian influenza viruses underline the zoonotic and pandemic potential of type A influenza viruses. Influenza viruses from the wild aquatic birds reservoir usually do not replicate efficiently in humans. Domestic poultry and swine can act as intermediate hosts for the acquisition of determinants that increase the potential of transmission and adaptation to humans, through the accumulation of mutations or by genetic reassortment. The rapid evolution of influenza viruses following interspecies transmission probably results from the selection of genetic variations that favor optimal interactions between viral proteins and cellular factors, leading to an increased multiplication potential and a better escape to the host antiviral response. Whereas influenza viruses usually cause asymptomatic infections in wild aquatic birds, they may be highly pathogenic in other species. Molecular determinants of host-specificity and pathogenesis have been identified in most viral genes, notably in genes that encode viral surface glycoproteins, proteins involved in the viral genome replication, and proteins that counteract the host immune response. However, our knowledge of these numerous and interdependant determinants remains incomplete, and the molecular mechanisms involved are still to be understood.

  8. Assessment of pathogenicity and antigenicity of American lineage influenza H5N2 viruses in Taiwan.

    PubMed

    Lin, Chun-Yang; Chia, Min-Yuan; Chen, Po-Ling; Yeh, Chia-Tsui; Cheng, Ming-Chu; Su, Ih-Jen; Lee, Min-Shi

    2017-08-01

    During December 2003 and March 2004, large scale epidemics of low-pathogenic avian influenza (LPAI) H5N2 occurred in poultry farms in central and southern Taiwan. Based on genomic analysis, these H5N2 viruses contain HA and NA genes of American-lineage H5N2 viruses and six internal genes from avian influenza A/H6N1 viruses endemic in poultry in Taiwan. After disappearing for several years, these novel influenza H5N2 viruses caused outbreaks in poultry farms again in 2008, 2010 and 2012, and have evolved into high pathogenic AI (HPAI) since 2010. Moreover, asymptomatic infections of influenza H5N2 were detected serologically in poultry workers in 2012. Therefore, we evaluated antigenicity and pathogenicity of the novel H5N2 viruses in ferrets. We found that no significant antigenic difference was detected among the novel H5N2 viruses isolated from 2003 to 2014 and the novel H5N2 viruses could cause mild infections in ferrets. Monitoring zoonotic transmission of the novel H5N2 viruses is necessary. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  10. Microarray analysis following infection with highly pathogenic avian influenza H5N1 virus in naive and vaccinated SPF chickens

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) is a viral disease of poultry that remains a constant threat to commercial poultry throughout the world. Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) H5N1 have originated in Southeast Asia and spread to several European, Middle Eastern, and A...

  11. Highly pathogenic H5N1 avian influenza viruses differentially affect gene expression in primary chicken embryo fibroblasts

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza viruses cause severe clinical disease associated with high mortality in chickens and other gallinaceous species. However, the mechanism by which different strains of avian influenza viruses overcome host response in birds is still unclear. In the present study, ch...

  12. Analysis by single-gene reassortment demonstrates that the 1918 influenza virus is functionally compatible with a low-pathogenicity avian influenza virus in mice.

    PubMed

    Qi, Li; Davis, A Sally; Jagger, Brett W; Schwartzman, Louis M; Dunham, Eleca J; Kash, John C; Taubenberger, Jeffery K

    2012-09-01

    The 1918-1919 "Spanish" influenza pandemic is estimated to have caused 50 million deaths worldwide. Understanding the origin, virulence, and pathogenic properties of past pandemic influenza viruses, including the 1918 virus, is crucial for current public health preparedness and future pandemic planning. The origin of the 1918 pandemic virus has not been resolved, but its coding sequences are very like those of avian influenza virus. The proteins encoded by the 1918 virus differ from typical low-pathogenicity avian influenza viruses at only a small number of amino acids in each open reading frame. In this study, a series of chimeric 1918 influenza viruses were created in which each of the eight 1918 pandemic virus gene segments was replaced individually with the corresponding gene segment of a prototypical low-pathogenicity avian influenza (LPAI) H1N1 virus in order to investigate functional compatibility of the 1918 virus genome with gene segments from an LPAI virus and to identify gene segments and mutations important for mammalian adaptation. This set of eight "7:1" chimeric viruses was compared to the parental 1918 and LPAI H1N1 viruses in intranasally infected mice. Seven of the 1918 LPAI 7:1 chimeric viruses replicated and caused disease equivalent to the fully reconstructed 1918 virus. Only the chimeric 1918 virus containing the avian influenza PB2 gene segment was attenuated in mice. This attenuation could be corrected by the single E627K amino acid change, further confirming the importance of this change in mammalian adaptation and mouse pathogenicity. While the mechanisms of influenza virus host switch, and particularly mammalian host adaptation are still only partly understood, these data suggest that the 1918 virus, whatever its origin, is very similar to avian influenza virus.

  13. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza.

    PubMed

    Ypma, Rolf J F; Jonges, Marcel; Bataille, Arnaud; Stegeman, Arjan; Koch, Guus; van Boven, Michiel; Koopmans, Marion; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-03-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as a possible cause of transmission between farms. Here we provide statistical evidence that the direction of spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.

  14. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus.

    PubMed

    Xu, Yifei; Ramey, Andrew M; Bowman, Andrew S; DeLiberto, Thomas J; Killian, Mary L; Krauss, Scott; Nolting, Jacqueline M; Torchetti, Mia Kim; Reeves, Andrew B; Webby, Richard J; Stallknecht, David E; Wan, Xiu-Feng

    2017-05-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.IMPORTANCE In January 2016, a novel H7N8 HPAI virus caused a disease outbreak in turkeys in Indiana, USA. To determine the origin of this virus, we sequenced and analyzed 441 wild-bird origin influenza virus strains isolated from wild birds inhabiting North America. We found that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Our results suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore

  15. Differential Host Response, Rather Than Early Viral Replication Efficiency, Correlates with Pathogenicity Caused by Influenza Viruses

    PubMed Central

    Askovich, Peter S.; Sanders, Catherine J.; Rosenberger, Carrie M.; Diercks, Alan H.; Dash, Pradyot; Navarro, Garnet; Vogel, Peter; Doherty, Peter C.; Thomas, Paul G.; Aderem, Alan

    2013-01-01

    Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB –mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains. PMID:24073225

  16. Differential host response, rather than early viral replication efficiency, correlates with pathogenicity caused by influenza viruses.

    PubMed

    Askovich, Peter S; Sanders, Catherine J; Rosenberger, Carrie M; Diercks, Alan H; Dash, Pradyot; Navarro, Garnet; Vogel, Peter; Doherty, Peter C; Thomas, Paul G; Aderem, Alan

    2013-01-01

    Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB -mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains.

  17. Preliminary Epidemiology of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017.

    PubMed

    Zhou, Lei; Tan, Yi; Kang, Min; Liu, Fuqiang; Ren, Ruiqi; Wang, Yali; Chen, Tao; Yang, Yiping; Li, Chao; Wu, Jie; Zhang, Hengjiao; Li, Dan; Greene, Carolyn M; Zhou, Suizan; Iuliano, A Danielle; Havers, Fiona; Ni, Daxin; Wang, Dayan; Feng, Zijian; Uyeki, Timothy M; Li, Qun

    2017-08-01

    We compared the characteristics of cases of highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) A(H7N9) virus infections in China. HPAI A(H7N9) case-patients were more likely to have had exposure to sick and dead poultry in rural areas and were hospitalized earlier than were LPAI A(H7N9) case-patients.

  18. Preliminary Epidemiology of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017

    PubMed Central

    Zhou, Lei; Tan, Yi; Kang, Min; Liu, Fuqiang; Ren, Ruiqi; Wang, Yali; Chen, Tao; Yang, Yiping; Li, Chao; Wu, Jie; Zhang, Hengjiao; Li, Dan; Greene, Carolyn M.; Zhou, Suizan; Iuliano, A. Danielle; Havers, Fiona; Ni, Daxin; Wang, Dayan; Feng, Zijian; Uyeki, Timothy M.

    2017-01-01

    We compared the characteristics of cases of highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) A(H7N9) virus infections in China. HPAI A(H7N9) case-patients were more likely to have had exposure to sick and dead poultry in rural areas and were hospitalized earlier than were LPAI A(H7N9) case-patients. PMID:28580900

  19. Competition between low and high pathogenicity avian influenza in a two-patch system.

    PubMed

    Saucedo, Omar; Martcheva, M

    2017-06-01

    Over the last decade, the epidemiology of avian influenza has undergone a significant transformation. Not only have we seen an increase in the number of outbreaks of the deadly strain known as highly pathogenic avian influenza (HPAI), but the number of birds infected, and the cost of control has risen drastically. Live poultry markets play a huge role in the bird to bird transmission of avian influenza. We develop a two patch model to determine the competition between low pathogenic avian influenza (LPAI) and HPAI strains when migration is present. We define the two patches as live poultry markets in which the patches are connected through migration. We use a system of differential equations to analyze the existence-stability of the LPAI and HPAI equilibria and established results for the critical threshold R0. We observed that in general migration in both directions increases the abundance of poultry infected with the HPAI strain. Migration promotes the coexistence in Patch 2 while in Patch 1 the region of coexistence fluctuates when migration is active between both patches. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Wild bird surveillance for highly pathogenic avian influenza H5 in North America

    USGS Publications Warehouse

    Flint, Paul L.; Pearce, John M.; Franson, J. Christian; Derksen, Dirk V.

    2015-01-01

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  1. Wild bird surveillance for highly pathogenic avian influenza H5 in North America.

    PubMed

    Flint, Paul L; Pearce, John M; Franson, J Christian; Derksen, Dirk V

    2015-09-28

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  2. Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination.

    PubMed

    Swayne, D E; Pavade, G; Hamilton, K; Vallat, B; Miyagishima, K

    2011-12-01

    Twenty-nine distinct epizootics of high-pathogenicity avian influenza (HPAI) have occurred since 1959. The H5N1 HPAI panzootic affecting Asia, Africa and Eastern Europe has been the largest among these, affecting poultry and/or wild birds in 63 countries. A stamping-out programme achieved eradication in 24 of these epizootics (and is close to achieving eradication in the current H5N2 epizootic in South African ostriches), but vaccination was added to the control programmes in four epizootics when stamping out alone was not effective. During the 2002 to 2010 period, more than 113 billion doses of avian influenza (AI) vaccine were used in at-risk national poultry populations of over 131 billion birds. At two to three doses per bird for the 15 vaccinating countries, the average national vaccination coverage rate was 41.9% and the global AI vaccine coverage rate was 10.9% for all poultry. The highest national coverage rate was nearly 100% for poultry in Hong Kong and the lowest national coverage was less than 0.01% for poultry in Israel and The Netherlands. Inactivated AI vaccines accounted for 95.5% and live recombinant virus vaccines for 4.5% of the vaccines used. Most of these vaccines were used in the H5N1 HPAI panzootic, with more than 99% employed in the People's Republic of China, Egypt, Indonesia and Vietnam. Implementation of vaccination in these four countries occurred after H5N1 HPAI became enzootic in domestic poultry and vaccination did not result in the enzootic infections. Vaccine usage prevented clinical disease and mortality in chickens, and maintained rural livelihoods and food security during HPAI outbreaks. Low-pathogenicity notifiable avian influenza (LPNAI) became reportable to the World Organisation for Animal Health in 2006 because some H5 and H7 low-pathogenicity avian influenza (LPAI) viruses have the potential to mutate to HPAI viruses. Fewer outbreaks of LPNAI have been reported than of HPAI and only six countries used vaccine in control

  3. Dynamics of low and high pathogenic avian influenza in wild and domestic bird populations.

    PubMed

    Tuncer, Necibe; Torres, Juan; Martcheva, Maia; Barfield, Michael; Holt, Robert D

    2016-01-01

    This paper introduces a time-since-recovery structured, multi-strain, multi-population model of avian influenza. Influenza A viruses infect many species of wild and domestic birds and are classified into two groups based on their ability to cause disease: low pathogenic avian influenza (LPAI) and high pathogenic avian influenza (HPAI). Prior infection with LPAI provides partial immunity towards HPAI. The model introduced in this paper structures LPAI-recovered birds (wild and domestic) with time-since-recovery and includes cross-immunity towards HPAI that can fade with time. The model has a unique disease-free equilibrium (DFE), unique LPAI-only and HPAI-only equilibria and at least one coexistence equilibrium. We compute the reproduction numbers of LPAI ([Formula: see text]) and HPAI ([Formula: see text]) and show that the DFE is locally asymptotically stable when [Formula: see text] and [Formula: see text]. A unique LPAI-only (HPAI-only) equilibrium exists when [Formula: see text] ([Formula: see text]) and it is locally asymptotically stable if HPAI (LPAI) cannot invade the equilibrium, that is, if the invasion number [Formula: see text] ([Formula: see text]). We show using numerical simulations that the ODE version of the model, which is obtained by discarding the time-since-recovery structures (making cross-immunity constant), can exhibit oscillations, and also that the pathogens LPAI and HPAI can coexist with sustained oscillations in both populations. Through simulations, we show that even if both populations (wild and domestic) are sinks when alone, LPAI and HPAI can persist in both populations combined. Thus, reducing the reproduction numbers of LPAI and HPAI in each population to below unity is not enough to eradicate the disease. The pathogens can continue to coexist in both populations unless transmission between the populations is reduced.

  4. Characterization of Highly Pathogenic Avian Influenza Virus A(H5N6), Japan, November 2016

    PubMed Central

    Okamatsu, Masatoshi; Ozawa, Makoto; Soda, Kosuke; Takakuwa, Hiroki; Haga, Atsushi; Hiono, Takahiro; Matsuu, Aya; Uchida, Yuko; Iwata, Ritsuko; Matsuno, Keita; Kuwahara, Masakazu; Yabuta, Toshiyo; Usui, Tatsufumi; Ito, Hiroshi; Onuma, Manabu; Saito, Takehiko; Otsuki, Koichi; Ito, Toshihiro; Kida, Hiroshi

    2017-01-01

    Highly pathogenic avian influenza viruses (HPAIVs) A(H5N6) were concurrently introduced into several distant regions of Japan in November 2016. These viruses were classified into the genetic clade 2.3.4.4c and were genetically closely related to H5N6 HPAIVs recently isolated in South Korea and China. In addition, these HPAIVs showed further antigenic drift. PMID:28322695

  5. Risk Maps for the Spread of Highly Pathogenic Avian Influenza in Poultry

    PubMed Central

    Boender, Gert Jan; Hagenaars, Thomas J; Bouma, Annemarie; Nodelijk, Gonnie; Elbers, Armin R. W; de Jong, Mart C. M; van Boven, Michiel

    2007-01-01

    Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spread of highly transmissible animal diseases between farms based on outbreak data. The method allows for the identification of high-risk areas for propagating spread in an epidemiologically underpinned manner. A central concept is the transmission kernel, which determines the probability of pathogen transmission from infected to uninfected farms as a function of interfarm distance. The authors show how an estimate of the transmission kernel naturally provides estimates of the critical farm density and local reproduction numbers, which allows one to evaluate the effectiveness of control strategies. For avian influenza, the analyses show that there are two poultry-dense areas in The Netherlands where epidemic spread is possible, and in which local control measures are unlikely to be able to halt an unfolding epidemic. In these regions an epidemic can only be brought to an end by the depletion of susceptible farms by infection or massive culling. The analyses provide an estimate of the spatial range over which highly pathogenic avian influenza viruses spread between farms, and emphasize that control measures aimed at controlling such outbreaks need to take into account the local density of farms. PMID:17447838

  6. Highly Pathogenic Avian Influenza A(H7N3) Virus in Poultry Workers, Mexico, 2012

    PubMed Central

    Lopez-Martinez, Irma; Balish, Amanda; Barrera-Badillo, Gisela; Jones, Joyce; Nuñez-García, Tatiana E.; Jang, Yunho; Aparicio-Antonio, Rodrigo; Azziz-Baumgartner, Eduardo; Belser, Jessica A.; Ramirez-Gonzalez, José E.; Pedersen, Janice C.; Ortiz-Alcantara, Joanna; Gonzalez-Duran, Elizabeth; Shu, Bo; Emery, Shannon L.; Poh, Mee K.; Reyes-Teran, Gustavo; Vazquez-Perez, Joel A.; Avila-Rios, Santiago; Uyeki, Timothy; Lindstrom, Stephen; Villanueva, Julie; Tokars, Jerome; Ruiz-Matus, Cuitláhuac; Gonzalez-Roldan, Jesus F.; Schmitt, Beverly; Klimov, Alexander; Cox, Nancy; Kuri-Morales, Pablo; Diaz-Quiñonez, José Alberto

    2013-01-01

    We identified 2 poultry workers with conjunctivitis caused by highly pathogenic avian influenza A(H7N3) viruses in Jalisco, Mexico. Genomic and antigenic analyses of 1 isolate indicated relatedness to poultry and wild bird subtype H7N3 viruses from North America. This isolate had a multibasic cleavage site that might have been derived from recombination with host rRNA. PMID:23965808

  7. Highly pathogenic avian influenza A(H7N3) virus in poultry workers, Mexico, 2012.

    PubMed

    Lopez-Martinez, Irma; Balish, Amanda; Barrera-Badillo, Gisela; Jones, Joyce; Nuñez-García, Tatiana E; Jang, Yunho; Aparicio-Antonio, Rodrigo; Azziz-Baumgartner, Eduardo; Belser, Jessica A; Ramirez-Gonzalez, José E; Pedersen, Janice C; Ortiz-Alcantara, Joanna; Gonzalez-Duran, Elizabeth; Shu, Bo; Emery, Shannon L; Poh, Mee K; Reyes-Teran, Gustavo; Vazquez-Perez, Joel A; Avila-Rios, Santiago; Uyeki, Timothy; Lindstrom, Stephen; Villanueva, Julie; Tokars, Jerome; Ruiz-Matus, Cuitláhuac; Gonzalez-Roldan, Jesus F; Schmitt, Beverly; Klimov, Alexander; Cox, Nancy; Kuri-Morales, Pablo; Davis, C Todd; Diaz-Quiñonez, José Alberto

    2013-01-01

    We identified 2 poultry workers with conjunctivitis caused by highly pathogenic avian influenza A(H7N3) viruses in Jalisco, Mexico. Genomic and antigenic analyses of 1 isolate indicated relatedness to poultry and wild bird subtype H7N3 viruses from North America. This isolate had a multibasic cleavage site that might have been derived from recombination with host rRNA.

  8. Cytomegalovirus UL128 homolog mutants that form a pentameric complex produce virus with impaired epithelial and trophoblast cell tropism and altered pathogenicity in the guinea pig.

    PubMed

    Coleman, Stewart; Choi, K Yeon; McGregor, Alistair

    2017-09-01

    Guinea pig cytomegalovirus (GPCMV) encodes a homolog pentameric complex (PC) for specific cell tropism and congenital infection. In human cytomegalovirus, the PC is an important antibody neutralizing target and GPCMV studies will aid in the development of intervention strategies. Deletion mutants of the C-terminal domains of unique PC proteins (UL128, UL130 and UL131 homologs) were unable to form a PC in separate transient expression assays. Minor modifications to the UL128 homolog (GP129) C-terminal domain enabled PC formation but viruses encoding these mutants had altered tropism to renal and placental trophoblast cells. Mutation of the presumptive CC chemokine motif encoded by GP129 was investigated by alanine substitution of the CC motif (codons 26-27) and cysteines (codons 47 and 62). GP129 chemokine mutants formed PC but GP129 chemokine mutant viruses had reduced epitropism. A GP129 chemokine mutant virus pathogenicity study demonstrated reduced viral load to target organs but highly extended viremia. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Homo- and Heterosubtypic Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza Virus Infection in Wood Ducks (Aix sponsa)

    PubMed Central

    Costa, Taiana P.; Brown, Justin D.; Howerth, Elizabeth W.; Stallknecht, David E.; Swayne, David E.

    2011-01-01

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations. PMID:21253608

  10. Homo- and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa).

    PubMed

    Costa, Taiana P; Brown, Justin D; Howerth, Elizabeth W; Stallknecht, David E; Swayne, David E

    2011-01-06

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.

  11. Domestic Pigs Have Low Susceptibility to H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Lipatov, Aleksandr S.; Kwon, Yong Kuk; Sarmento, Luciana V.; Lager, Kelly M.; Spackman, Erica; Suarez, David L.; Swayne, David E.

    2008-01-01

    Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are one of the natural hosts where such reassortment events could occur. Virological, histological and serological features of H5N1 virus infection in pigs were characterized in this study. Two- to three-week-old domestic piglets were intranasally inoculated with 106 EID50 of A/Vietnam/1203/04 (VN/04), A/chicken/Indonesia/7/03 (Ck/Indo/03), A/Whooper swan/Mongolia/244/05 (WS/Mong/05), and A/Muscovy duck/Vietnam/ 209/05 (MDk/VN/05) viruses. Swine H3N2 and H1N1 viruses were studied as a positive control for swine influenza virus infection. The pathogenicity of the H5N1 HPAI viruses was also characterized in mouse and ferret animal models. Intranasal inoculation of pigs with H5N1 viruses or consumption of infected chicken meat did not result in severe disease. Mild weight loss was seen in pigs inoculated with WS/Mong/05, Ck/Indo/03 H5N1 and H1N1 swine influenza viruses. WS/Mong/05, Ck/Indo/03 and VN/04 viruses were detected in nasal swabs of inoculated pigs mainly on days 1 and 3. Titers of H5N1 viruses in nasal swabs were remarkably lower compared with those of swine influenza viruses. Replication of all four H5N1 viruses in pigs was restricted to the respiratory tract, mainly to the lungs. Titers of H5N1 viruses in the lungs were lower than those of swine viruses. WS/Mong/05 virus was isolated from trachea and tonsils, and MDk/VN/05 virus was isolated from nasal turbinate of infected pigs. Histological examination revealed mild to moderate bronchiolitis and multifocal alveolitis in the lungs of pigs infected with H5N1 viruses, while infection with swine influenza viruses resulted in severe tracheobronchitis and bronchointerstitial pneumonia. Pigs had low

  12. The multigenic nature of the differences in pathogenicity of H5N1 highly pathogenic avian influenza viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    The Eurasian H5N1 highly pathogenic avian influenza (HPAI) viruses have evolved into many genetic lineages. The divergent strains that have arisen express distinct pathobiological features and increased virulence for many bird species including domestic waterfowl. The pathogenicity of H5N1 HPAI vi...

  13. Variation in infectivity and adaptation of wild duck- and poultry-origin high pathogenicity and low pathogenicity avian influenza viruses for poultry

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) viruses vary in their adaptation which impacts transmission between and infection of different bird species. We determine the intranasal mean bird infectious doses (BID50) for 11 high pathogenicity (HP) AI viruses for layer type chickens (LC), and three low pathogenicity (LP) A...

  14. Outbreaks of highly pathogenic avian influenza in Europe: the risks associated with wild birds.

    PubMed

    Artois, M; Bicout, D; Doctrinal, D; Fouchier, R; Gavier-Widen, D; Globig, A; Hagemeijer, W; Mundkur, T; Munster, V; Olsen, B

    2009-04-01

    The infection of wild birds by highly pathogenic strains of avian influenza (Al) virus was virtually unknown--apart from one instance of the disease appearing in common terns in South Africa in 1961--before the Asian strain of highly pathogenic AI virus (AIV), H5N1, began to expand across the world. Outbreaks of clinical disease in Eurasia have resulted in visible mortality among populations of free-ranging wild birds in a multitude of species. The circulation pattern of influenza viruses in natural ecosystems results from a selection pressure towards strains which are indirectly transmitted by droppings from water birds and contaminated fomites, and which exhibit low pathogenicity. Some of these viruses, of the subtypes H5 or H7, can mutate into highly pathogenic strains after being introduced into domestic poultry farms. The maintenance of highly pathogenic AIV (HPAIV) H5N1 in several parts of the world exposes wild birds to infected poultry, resulting in long-distance virus transmission. There is great concern that these wild birds may, in turn, propagate these HPAIV or introduce them into domestic birds. Rigorous disease control and biosecurity measures to protect poultry farms are the only solution presently available to mitigate such a risk.

  15. Genetic evolution of H5 highly pathogenic avian influenza virus in domestic poultry in Vietnam between 2011 and 2013.

    PubMed

    Lee, Eun-Kyoung; Kang, Hyun-Mi; Kim, Kwang-Il; Choi, Jun-Gu; To, Thanh Long; Nguyen, Tho Dang; Song, Byung-Min; Jeong, Jipseol; Choi, Kang-Seuk; Kim, Ji-Ye; Lee, Hee-Soo; Lee, Youn-Jeong; Kim, Jae-Hong

    2015-04-01

    In spite of highly pathogenic avian influenza H5N1 vaccination campaigns for domestic poultry, H5N1 viruses continue to circulate in Vietnam. To estimate the prevalence of avian influenza virus in Vietnam, surveillance was conducted between November 2011 and February 2013. Genetic analysis of 312 highly pathogenic avian influenza H5 viruses isolated from poultry in Vietnam was conducted and possible genetic relationships with strains from neighboring countries were investigated. As previously reported, phylogenetic analysis of the avian influenza virus revealed two H5N1 HPAI clades that were circulating in Vietnam. Clade 1.1, related to Cambodian strains, was predominant in the southern provinces, while clade 2.3.2.1 viruses were predominant in the northern and central provinces. Sequence analysis revealed evidence of active genetic evolution. In the gene constellation of clade 2.3.2.1, genotypes A, B, and B(II) existed during the 2011/2012 winter season. In June 2012, new genotype C emerged by reassortment between genotype A and genotype B(II), and this genotype was predominant in 2013 in the northern and central provinces. Interestingly, enzootic Vietnamese clade 2.3.2.1C H5 virus subsequently reassorted with N2, which originated from wild birds, to generate H5N2 highly pathogenic avian influenza, which was isolated from duck in the northeast region. This investigation indicated that H5N1 outbreaks persist in Vietnam and cause genetic reassortment with circulating viruses. It is necessary to strengthen active influenza surveillance to eradicate highly pathogenic avian influenza viruses and sever the link between highly pathogenic avian influenza and other circulating influenza viruses.

  16. Ice as a reservoir for pathogenic human viruses: specifically, caliciviruses, influenza viruses, and enteroviruses.

    PubMed

    Smith, Alvin W; Skilling, Douglas E; Castello, John D; Rogers, Scott O

    2004-01-01

    Hundreds of isolates of viable bacteria and fungi have been recovered from ancient ice and permafrost. Evidence supports the hypothesis that viral pathogens also are preserved in ice repositories, such as glaciers, ice sheets, and lake ice. Proof may depend upon narrowing the search by applying specific criteria, which would target candidate viruses. Such criteria include viral pathogens likely to occur in great abundance, likely to be readily transported into ice, and then participate in ongoing disease cycles suggestive of their having been deposited in and subsequently released from ice. Caliciviruses, influenza A, and some enteroviruses appear to satisfy all three criteria. Environmental ice appears to be an important abiotic reservoir for pathogenic microbes. World health and eradication of specific pathogens could be affected by this huge reservoir. Copyright 2004 Elsevier Ltd.

  17. Reassortant low-pathogenic avian influenza H5N2 viruses in African wild birds.

    PubMed

    Snoeck, Chantal J; Adeyanju, Adeniyi T; De Landtsheer, Sébastien; Ottosson, Ulf; Manu, Shiiwua; Hagemeijer, Ward; Mundkur, Taej; Muller, Claude P

    2011-05-01

    To investigate the presence and persistence of avian influenza virus in African birds, we monitored avian influenza in wild and domestic birds in two different regions in Nigeria. We found low-pathogenic avian influenza (LPAI) H5N2 viruses in three spur-winged geese (Plectropterus gambensis) in the Hadejia-Nguru wetlands. Phylogenetic analyses revealed that all of the genes, except the non-structural (NS) genes, of the LPAI H5N2 viruses were more closely related to genes recently found in wild and domestic birds in Europe. The NS genes formed a sister group to South African and Zambian NS genes. This suggested that the Nigerian LPAI H5N2 viruses found in wild birds were reassortants exhibiting an NS gene that circulated for at least 7 years in African birds and is part of the African influenza gene pool, and genes that were more recently introduced into Africa from Eurasia, most probably by intercontinental migratory birds. Interestingly the haemagglutinin and neuraminidase genes formed a sister branch to highly pathogenic avian influenza (HPAI) H5N2 strains found in the same wild bird species in the same wetland only 1 year earlier. However, they were not the closest known relatives of each other, suggesting that their presence in the wetland resulted from two separate introductions. The presence of LPAI H5N2 in wild birds in the Hadejia-Nguru wetlands, where wild birds and poultry occasionally mix, provides ample opportunity for infection across species boundaries, with the potential risk of generating HPAI viruses after extensive circulation in poultry.

  18. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4.

    PubMed

    Lee, Dong-Hun; Bertran, Kateri; Kwon, Jung-Hoon; Swayne, David E

    2017-08-31

    Novel subtypes of Asian-origin (Goose/Guangdong lineage) H5 highly pathogenic avian influenza (HPAI) viruses belonging to clade 2.3.4, such as H5N2, H5N5, H5N6, and H5N8, have been identified in China since 2008 and have since evolved into four genetically distinct clade 2.3.4.4 groups (A-D). Since 2014, HPAI clade 2.3.4.4 viruses have spread rapidly via migratory wild aquatic birds and have evolved through reassortment with prevailing local low pathogenicity avian influenza viruses. Group A H5N8 viruses and its reassortant viruses caused outbreaks in wide geographic regions (Asia, Europe, and North America) during 2014-2015. Novel reassortant Group B H5N8 viruses caused outbreaks in Asia, Europe, and Africa during 2016-2017. Novel reassortant Group C H5N6 viruses caused outbreaks in Korea and Japan during the 2016-2017 winter season. Group D H5N6 viruses caused outbreaks in China and Vietnam. A wide range of avian species, including wild and domestic waterfowl, domestic poultry, and even zoo birds, seem to be permissive for infection by and/or transmission of clade 2.3.4.4 HPAI viruses. Further, compared to previous H5N1 HPAI viruses, these reassortant viruses show altered pathogenicity in birds. In this review, we discuss the evolution, global spread, and pathogenicity of H5 clade 2.3.4.4 HPAI viruses.

  19. Characterization of two low pathogenic avian influenza viruses isolated in Hungary in 2007.

    PubMed

    Szeleczky, Zsófia; Bálint, Adám; Gyarmati, Péter; Metreveli, Giorgi; Dán, Adám; Ursu, Krisztina; Belák, Sándor; Lomniczi, Béla; Kiss, István

    2010-09-28

    Two low pathogenic (LP) avian influenza virus strains, A/mallard/Hungary/19616/07 (H3N8) and A/mute swan/Hungary/5973/07 (H7N7), isolated as part of the National Surveillance Program in Hungary, were fully sequenced and characterized. The two viruses showed the closest phylogenetic relationship regarding their acidic polymerase genes. The H7N7 Hungarian virus and some H5N2 influenza viruses isolated from Korean pigs appeared to have their basic polymerase gene 1 from a relatively recent common ancestor. The matrix gene nucleotide sequence of each Hungarian virus showed close relationship with contemporaneous Czech H3N8 mallard isolates, which belonged to distinct phylogenetic branches. The non-structural protein genes belonged to different alleles, rendering a peculiar characteristic to the H7N7 isolate compared to the so far analyzed Eurasian H7 viruses. The surface glycoprotein genes of the H3N8 isolate showed a close phylogenetic relationship and high nucleotide identities to H3N8 subtype isolates from Northern Europe collected in 2003-2006, and to an H3N2 isolate in Italy in 2006, extending the perceptions of this HA subtype across Northern and Southern Europe close to this period. These findings provide further data to the diversity of influenza viruses found in wild migratory birds and present useful information for large scale studies on influenza virus evolution.

  20. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection.

    PubMed

    Zhang, Kun; Xu, Wei Wei; Zhang, Zhaowei; Liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-05-02

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.

  1. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection

    PubMed Central

    Zhang, Kun; wei Xu, Wei; Zhang, Zhaowei; liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R.; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-01-01

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses. PMID:28418930

  2. Characterization of duck H5N1 influenza viruses with differing pathogenicity in mallard (Anas platyrhynchos) ducks.

    PubMed

    Tang, Yinghua; Wu, Peipei; Peng, Daxin; Wang, Xiaobo; Wan, Hongquan; Zhang, Pinghu; Long, Jinxue; Zhang, Wenjun; Li, Yanfang; Wang, Wenbin; Zhang, Xiaorong; Liu, Xiufan

    2009-12-01

    A number of H5N1 influenza outbreaks have occurred in aquatic birds in Asia. As aquatic birds are the natural reservoir of influenza A viruses and do not usually show clinical disease upon infection, the repeated H5N1 outbreaks have highlighted the importance of continuous surveillance on H5N1 viruses in aquatic birds. In the present study we characterized the biological properties of four H5N1 avian influenza viruses, which had been isolated from ducks, in different animal models. In specific pathogen free (SPF) chickens, all four isolates were highly pathogenic. In SPF mice, the S and Y isolates were moderately pathogenic. However, in mallard ducks, two isolates had low pathogenicity, while the other two were highly pathogenic and caused lethal infection. A representative isolate with high pathogenicity in ducks caused systemic infection and replicated effectively in all 10 organs tested in challenged ducks, whereas a representative isolate with low pathogenicity in ducks was only detected in some organs in a few challenged ducks. Comparison of complete genomic sequences from the four isolates showed that the same amino acid residues that have been reported to be associated with virulence and host adaption/restriction of influenza viruses were present in the PB2, HA, NA, M and NS genes, while the amino acid residues at the HA cleavage site were diverse. From these results it appeared that the virulence of H5N1 avian influenza viruses was increased for ducks and that amino acid substitutions at the HA cleavage site might have contributed to the differing pathogenicity of these isolates in mallards. A procedure for the intravenous pathogenicity index test in a mallard model for assessing the virulence of H5/H7 subtype avian influenza viruses in waterfowl is described.

  3. Cytomegalovirus iritis.

    PubMed

    Cheng, L; Rao, N A; Keefe, K S; Avila, C P; Macdonald, J C; Freeman, W R

    1998-11-01

    We describe a case of focal cytomegalovirus iritis in a patient with acquired immunodeficiency syndrome (AIDS) who had CMV retinitis. The autopsy showed histologic evidence of focal iritis in the left eye. This iritis was characterized by infiltration of acute inflammatory cells mixed with cytomegalic cells, which was confirmed by CMV-specific immunohistochemical staining. The case suggested that cytomegalovirus could be a direct causative agent of infectious iritis in AIDS patients.

  4. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses.

    PubMed

    Park, Sehee; Il Kim, Jin; Lee, Ilseob; Bae, Joon-Yong; Yoo, Kirim; Nam, Misun; Kim, Juwon; Sook Park, Mee; Song, Ki-Joon; Song, Jin-Won; Kee, Sun-Ho; Park, Man-Seong

    2017-09-07

    It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs.

  5. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    SciTech Connect

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J.

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  6. Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity.

    PubMed

    DuBois, Rebecca M; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J; White, Stephen W; Russell, Charles J

    2011-12-01

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 Å resolution and two structures of HP HA at 2.95 and 3.10 Å resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  7. Xenotransplantation and porcine cytomegalovirus.

    PubMed

    Denner, Joachim

    2015-01-01

    Porcine microorganisms may be transmitted to the human recipient when xenotransplantation with pig cells, tissues, and organs will be performed. Most of such microorganisms can be eliminated from the donor pig by specified or designated pathogen-free production of the animals. As human cytomegalovirus causes severe transplant rejection in allotransplantation, considerable concern is warranted on the potential pathogenicity of porcine cytomegalovirus (PCMV) in the setting of xenotransplantation. On the other hand, despite having a similar name, PCMV is different from HCMV. The impact of PCMV infection on pigs is known; however, the influence of PCMV on the human transplant recipient is unclear. However, first transplantations of pig organs infected with PCMV into non-human primates were associated with a significant reduction of the survival time of the transplants. Sensitive detection methods and strategies for elimination of PCMV from donor herds are required.

  8. Immunologic evaluation of 10 different adjuvants for use in vaccines for chickens against highly pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza viruses (AIV) are a threat to poultry production worldwide. Vaccination is utilized as a component of control programs for both high pathogenicity (HP) and low pathogenicity (LP) AIV. Over 95% of all AIV vaccine used in poultry are inactivated, adjuvanted products. To identify the be...

  9. Characaterization of H5N1 highly pathogenic avian influenza viruses isolated from poultry in Pakistan 2006-2008

    USDA-ARS?s Scientific Manuscript database

    Nine avian influenza viruses (AIV), H5N1 subtype, were isolated from dead poultry in the Karachi region of Pakistan from 2006-2008. The intravenous pathogenicity indices and HA protein cleavage sites of all nine viruses were consistent with highly pathogenic AIV. Based on phylogenetic analysis of ...

  10. Vaccination of gallinaceous poultry for H5N1 highly pathogenic avian influenza: Current questions and new technology

    USDA-ARS?s Scientific Manuscript database

    Historically, vaccination for avian influenza virus (AIV) in poultry has not been routine for either high pathogenicity (HP) AIV or low pathogenicity (LP) AIV although it has been used in some locations in recent years where AIV is present (i.e. vaccine is not used unless there is a known challenge)...

  11. Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin.

    PubMed

    Nao, Naganori; Yamagishi, Junya; Miyamoto, Hiroko; Igarashi, Manabu; Manzoor, Rashid; Ohnuma, Aiko; Tsuda, Yoshimi; Furuyama, Wakako; Shigeno, Asako; Kajihara, Masahiro; Kishida, Noriko; Yoshida, Reiko; Takada, Ayato

    2017-02-14

    Highly pathogenic avian influenza viruses with H5 and H7 hemagglutinin (HA) subtypes evolve from low-pathogenic precursors through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been observed to occur naturally only in these HA subtypes, little is known about the genetic basis for the acquisition of the polybasic HA cleavage site. Here we show that consecutive adenine residues and a stem-loop structure, which are frequently found in the viral RNA region encoding amino acids around the cleavage site of low-pathogenic H5 and H7 viruses isolated from waterfowl reservoirs, are important for nucleotide insertions into this RNA region. A reporter assay to detect nontemplated nucleotide insertions and deep-sequencing analysis of viral RNAs revealed that an increased number of adenine residues and enlarged stem-loop structure in the RNA region accelerated the multiple adenine and/or guanine insertions required to create codons for basic amino acids. Interestingly, nucleotide insertions associated with the HA cleavage site motif were not observed principally in the viral RNA of other subtypes tested (H1, H2, H3, and H4). Our findings suggest that the RNA editing-like activity is the key mechanism for nucleotide insertions, providing a clue as to why the acquisition of the polybasic HA cleavage site is restricted to the particular HA subtypes.IMPORTANCE Influenza A viruses are divided into subtypes based on the antigenicity of the viral surface glycoproteins hemagglutinin (HA) and neuraminidase. Of the 16 HA subtypes (H1 to -16) maintained in waterfowl reservoirs of influenza A viruses, H5 and H7 viruses often become highly pathogenic through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been known since the 1980s, the genetic basis for nucleotide insertions has remained unclear. This study shows the potential role of the viral RNA secondary structure for

  12. Cost Analysis of Various Low Pathogenic Avian Influenza Surveillance Systems in the Dutch Egg Layer Sector

    PubMed Central

    Rutten, Niels; Gonzales, José L.; Elbers, Armin R. W.; Velthuis, Annet G. J.

    2012-01-01

    Background As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood samples to survey egg layer farms. To support future decision making about AI surveillance economic criteria are important. Therefore a cost analysis is performed on systems that use either blood or eggs as sampled material. Methodology/Principal Findings The effectiveness of surveillance using egg or blood samples was evaluated using scenario tree models. Then an economic model was developed that calculates the total costs for eight surveillance systems that have equal effectiveness. The model considers costs for sampling, sample preparation, sample transport, testing, communication of test results and for the confirmation test on false positive results. The surveillance systems varied in sampled material (eggs or blood), sampling location (farm or packing station) and location of sample preparation (laboratory or packing station). It is shown that a hypothetical system in which eggs are sampled at the packing station and samples prepared in a laboratory had the lowest total costs (i.e. € 273,393) a year. Compared to this a hypothetical system in which eggs are sampled at the farm and samples prepared at a laboratory, and the currently implemented system in which blood is sampled at the farm and samples prepared at a laboratory have 6% and 39% higher costs respectively. Conclusions/Significance This study shows that surveillance for avian influenza on egg yolk samples can be done at lower costs than surveillance based on blood samples. The model can be used in future comparison of surveillance systems for different pathogens and hazards. PMID:22523543

  13. International standards and guidelines for vaccination of poultry against highly pathogenic avian influenza.

    PubMed

    Bruschke, C; Brückner, G; Vallat, B

    2007-01-01

    The current strain of highly pathogenic avian influenza (HPAI), H5N1, has caused an unprecedented situation, spreading over three continents, with severe economic and social consequences. The strategy of the World Organisation for Animal Health (OIE) focuses on the following key actions: early warning, early detection, rapid confirmation of suspected cases, rapid response and rapid and transparent notification. Vaccination is one means that can be used to control the virus. During the current H5N1 outbreak, the OIE received many requests from member countries for guidance in deciding whether to vaccinate and in the design of vaccination programmes. The OIE has published a general information document on vaccination against avian influenza and a document giving guidelines for decision-making, including a checklist of essentials for establishing a vaccination programme.

  14. Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses.

    PubMed

    Zimmer, Gert; Locher, Samira; Berger Rentsch, Marianne; Halbherr, Stefan J

    2014-08-01

    Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment. © 2014 The Authors.

  15. An outbreak of highly pathogenic H5N1 avian influenza in Korea, 2008.

    PubMed

    Kim, Hye-Ryoung; Park, Choi-Kyu; Lee, Youn-Jeong; Woo, Gye-Hyeong; Lee, Kyoung-Ki; Oem, Jae-Ku; Kim, Seong-Hee; Jean, Young-Hwa; Bae, Yu-Chan; Yoon, Soon-Seek; Roh, In-Soon; Jeong, Ok-Mi; Kim, Ha-Young; Choi, Jeong-Soo; Byun, Jae-Won; Song, Yun-Kyung; Kwon, Jun-Hun; Joo, Yi-Seok

    2010-03-24

    In spite of intensive surveillance programs for the control of HPAI, an outbreak of highly pathogenic avian influenza (HPAI) H5N1 in Korea in April 2008 caused serious damage to poultry farms, as did previous outbreaks in 2003/2004 and 2006/2007. Six viruses were selected from the Korean 2008 isolates for genetic analysis, and all eight gene segments from each of the influenza viruses were sequenced. A phylogenetic analysis showed that all of the viruses were of the same virus type and that the hemagglutinin (HA) gene was clustered with that of clade 2.3.2 viruses. However, the internal and neuraminidase (NA) genes were closely related to those of the clade 2.3.4 viruses (recent human and bird isolates from Southeast Asia).

  16. The live bird market system and low-pathogenic avian influenza prevention in southern California.

    PubMed

    Yee, Karen S; Carpenter, Tim E; Mize, Sarah; Cardona, Carol J

    2008-06-01

    Although live bird markets (LBMs) have been associated with outbreaks of avian influenza (AI), there are some LBM systems where AI outbreaks are extremely rare events. The California LBMs have not had any detected avian influenza viruses (AIVs) since December 2005. Responses to a detailed questionnaire on the practices and characteristics of the participants in the California low-pathogenic (LP) AI control program have been described to characterize possible reasons for the lack of AI outbreaks in LBMs. Compliance with an LPAI control program that contains active surveillance, prevention, and rapid response measures by those involved in the LBM system, rendering services to dispose of carcasses, no wholesalers, and few third-party bird deliveries was associated with the lack of LPAIV circulating in the Southern California LBM system.

  17. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  18. An H5N1 highly pathogenic avian influenza virus that invaded Japan through waterfowl migration.

    PubMed

    Kajihara, Masahiro; Matsuno, Keita; Simulundu, Edgar; Muramatsu, Mieko; Noyori, Osamu; Manzoor, Rashid; Nakayama, Eri; Igarashi, Manabu; Tomabechi, Daisuke; Yoshida, Reiko; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Ito, Kimihito; Kida, Hiroshi; Takada, Ayato

    2011-08-01

    In 2010, an H5N1 highly pathogenic avian influenza virus (HPAIV) was isolated from feces of apparently healthy ducks migrating southward in Hokkaido, the northernmost prefecture of Japan. The H5N1 HPAIVs were subsequently detected in domestic and wild birds at multiple sites corresponding to the flyway of the waterfowl having stopovers in the Japanese archipelago. The Hokkaido isolate was genetically nearly identical to H5N1 HPAIVs isolated from swans in the spring of 2009 and 2010 in Mongolia, but less pathogenic in experimentally infected ducks than the 2009 Mongolian isolate. These findings suggest that H5N1 HPAIVs with relatively mild pathogenicity might be selected and harbored in the waterfowl population during the 2009-2010 migration seasons. Our data provide "early warning" signals for preparedness against the unprecedented situation in which the waterfowl reservoirs serve as perpetual sources and disseminators of HPAIVs.

  19. Epidemiological Surveillance of Low Pathogenic Avian Influenza Virus (LPAIV) from Poultry in Guangxi Province, Southern China

    PubMed Central

    Peng, Yi; Xie, Zhi-xun; Liu, Jia-bo; Pang, Yao-shan; Deng, Xian-wen; Xie, Zhi-qin; Xie, Li-ji; Fan, Qing; Luo, Si-si

    2013-01-01

    Low pathogenic avian influenza virus (LPAIV) usually causes mild disease or asymptomatic infection in poultry. However, some LPAIV strains can be transmitted to humans and cause severe infection. Genetic rearrangement and recombination of even low pathogenic influenza may generate a novel virus with increased virulence, posing a substantial risk to public health. Southern China is regarded as the world “influenza epicenter”, due to a rash of outbreaks of influenza in recent years. In this study, we conducted an epidemiological survey of LPAIV at different live bird markets (LBMs) in Guangxi province, Southern China. From January 2009 to December 2011, we collected 3,121 cotton swab samples of larynx, trachea and cloaca from the poultry at LBMs in Guangxi. Virus isolation, hemagglutination inhibition (HI) assay, and RT-PCR were used to detect and subtype LPAIV in the collected samples. Of the 3,121 samples, 336 samples (10.8%) were LPAIV positive, including 54 (1.7%) in chicken and 282 (9.1%) in duck. The identified LPAIV were H3N1, H3N2, H6N1, H6N2, H6N5, H6N6, H6N8, and H9N2, which are combinations of seven HA subtypes (H1, H3, H4, H6, H9, H10 and H11) and five NA subtypes (N1, N2, N5, N6 and N8). The H3 and H9 subtypes are predominant in the identified LPAIVs. Among the 336 cases, 29 types of mixed infection of different HA subtypes were identified in 87 of the cases (25.9%). The mixed infections may provide opportunities for genetic recombination. Our results suggest that the LPAIV epidemiology in poultry in the Guangxi province in southern China is complicated and highlights the need for further epidemiological and genetic studies of LPAIV in this area. PMID:24204754

  20. Influenza A Virus Acquires Enhanced Pathogenicity and Transmissibility after Serial Passages in Swine

    PubMed Central

    Wei, Kai; Sun, Honglei; Sun, Zhenhong; Sun, Yipeng; Kong, Weili; Pu, Juan; Ma, Guangpeng; Yin, Yanbo; Yang, Hanchun; Guo, Xin; Chang, Kin-Chow

    2014-01-01

    ABSTRACT Genetic and phylogenetic analyses suggest that the pandemic H1N1/2009 virus was derived from well-established swine influenza lineages; however, there is no convincing evidence that the pandemic virus was generated from a direct precursor in pigs. Furthermore, the evolutionary dynamics of influenza virus in pigs have not been well documented. Here, we subjected a recombinant virus (rH1N1) with the same constellation makeup as the pandemic H1N1/2009 virus to nine serial passages in pigs. The severity of infection sequentially increased with each passage. Deep sequencing of viral quasispecies from the ninth passage found five consensus amino acid mutations: PB1 A469T, PA 1129T, NA N329D, NS1 N205K, and NEP T48N. Mutations in the hemagglutinin (HA) protein, however, differed greatly between the upper and lower respiratory tracts. Three representative viral clones with the five consensus mutations were selected for functional evaluation. Relative to the parental virus, the three viral clones showed enhanced replication and polymerase activity in vitro and enhanced replication, pathogenicity, and transmissibility in pigs, guinea pigs, and ferrets in vivo. Specifically, two mutants of rH1N1 (PB1 A469T and a combination of NS1 N205K and NEP T48N) were identified as determinants of transmissibility in guinea pigs. Crucially, one mutant viral clone with the five consensus mutations, which also carried D187E, K211E, and S289N mutations in its HA, additionally was able to infect ferrets by airborne transmission as effectively as the pandemic virus. Our findings demonstrate that influenza virus can acquire viral characteristics that are similar to those of the pandemic virus after limited serial passages in pigs. IMPORTANCE We demonstrate here that an engineered reassortant swine influenza virus, with the same gene constellation pattern as the pandemic H1N1/2009 virus and subjected to only nine serial passages in pigs, acquired greatly enhanced virulence and

  1. Efficacy of inactivated influenza vaccines for protection of poultry against the H7N9 low pathogenic avian influenza virus isolated in China during 2013

    USDA-ARS?s Scientific Manuscript database

    The recent outbreak in China of avian influenza (AI) H7N9 in birds and humans underscores the interspecies movement of these viruses. Interestingly, the genetic composition of these H7N9 viruses appears to be solely of avian origin and of low pathogenicity in birds. Although few isolations of these ...

  2. Assessment of reduced vaccine dose on efficacy of an inactivated avian influenza vaccine against an H5N1 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) vaccines have emerged to be a viable emergency tool for use in a comprehensive strategy for dealing with high pathogenicity (HP) AI in developed countries. However, the available doses of inactivated AI vaccine are limited to national vaccine banks and inventory stocks of some ...

  3. Protection against H7N3 high pathogenicity avian influenza in chickens immunized with a recombinant fowlpox and an inactivated avian influenza vaccines

    USDA-ARS?s Scientific Manuscript database

    Beginning on June 2012, an H7N3 highly pathogenic avian influenza (HPAI) epizootic was reported in the State of Jalisco (Mexico), with some 22.4 million chickens that died, were slaughtered on affected farms or were preemptively culled on neighboring farms. In the current study, layer chickens were ...

  4. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine

    USDA-ARS?s Scientific Manuscript database

    The negative impact of high pathogenicity avian influenza virus (HPAIV) infection on egg production and deposition of virus in eggs, as well as any protective effect of vaccination, is unknown. Individually housed non-vaccinated, sham-vaccinated and inactivated H5N9 vaccinated once or twice adult Wh...

  5. Protection of poultry against the 2012 Mexican H7N3 highly pathogenic avian influenza virus with inactivated H7 avian influenza vaccines

    USDA-ARS?s Scientific Manuscript database

    In June of 2012, an outbreak of highly pathogenic avian influenza (HPAI) H7N3 was reported poultry in Jalisco, Mexico. Since that time the virus has spread to the surrounding States of Guanajuato and Aguascalientes and new outbreaks continue to be reported. To date more than 25 million birds have di...

  6. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    USDA-ARS?s Scientific Manuscript database

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  7. Potency, efficacy, and antigenic mapping of H7 avian influenza virus vaccines against the 2012 H7N3 highly pathogenic avian influenza virus from Mexico

    USDA-ARS?s Scientific Manuscript database

    In the spring of 2012 an outbreak of H7N3 highly pathogenic (HP) avian influenza virus (AIV) occurred in poultry in Mexico. Vaccination was implemented as a control measure along with increased biosecurity and surveillance. At that time there was no commercially available H7 AIV vaccine in North Ame...

  8. Vaccine protection of turkeys against H5N1 highly pathogenic avian influenza virus with a recombinant HVT expressing the hemagglutinin gene of avian influenza

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies...

  9. Highly pathogenic influenza H5N1 virus of clade 2.3.2.1c in Western Siberia.

    PubMed

    Marchenko, V Y; Susloparov, I M; Kolosova, N P; Goncharova, N I; Shipovalov, A V; Ilyicheva, T N; Durymanov, A G; Chernyshova, O A; Kozlovskiy, L I; Chernyshova, T V; Pryadkina, E N; Karimova, T V; Mikheev, V N; Ryzhikov, A B

    2016-06-01

    In the spring of 2015, avian influenza virus surveillance in Western Siberia resulted in isolation of several influenza H5N1 virus strains. The strains were isolated from several wild bird species. Investigation of biological features of those strains demonstrated their high pathogenicity for mammals. Phylogenetic analysis of the HA gene showed that the strains belong to clade 2.3.2.1c.

  10. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    PubMed Central

    2010-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268

  11. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China.

    PubMed

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Yang, Zifeng; Shu, Yuelong; Peiris, Joseph Sriyal Malik

    2017-07-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.

  12. Systems biology and systems genetics - novel innovative approaches to study host-pathogen interactions during influenza infection.

    PubMed

    Kollmus, Heike; Wilk, Esther; Schughart, Klaus

    2014-06-01

    Influenza represents a serious threat to public health with thousands of deaths each year. A deeper understanding of the host-pathogen interactions is urgently needed to evaluate individual and population risks for severe influenza disease and to identify new therapeutic targets. Here, we review recent progress in large scale omics technologies, systems genetics as well as new mathematical and computational developments that are now in place to apply a systems biology approach for a comprehensive description of the multidimensional host response to influenza infection. In addition, we describe how results from experimental animal models can be translated to humans, and we discuss some of the future challenges ahead.

  13. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses.

  14. Using Extreme Value Theory Approaches to Forecast the Probability of Outbreak of Highly Pathogenic Influenza in Zhejiang, China

    PubMed Central

    Chen, Jiangpeng; Lei, Xun; Zhang, Li; Peng, Bin

    2015-01-01

    Background Influenza is a contagious disease with high transmissibility to spread around the world with considerable morbidity and mortality and presents an enormous burden on worldwide public health. Few mathematical models can be used because influenza incidence data are generally not normally distributed. We developed a mathematical model using Extreme Value Theory (EVT) to forecast the probability of outbreak of highly pathogenic influenza. Methods The incidence data of highly pathogenic influenza in Zhejiang province from April 2009 to November 2013 were retrieved from the website of Health and Family Planning Commission of Zhejiang Province. MATLAB “VIEM” toolbox was used to analyze data and modelling. In the present work, we used the Peak Over Threshold (POT) model, assuming the frequency as a Poisson process and the intensity to be Pareto distributed, to characterize the temporal variability of the long-term extreme incidence of highly pathogenic influenza in Zhejiang, China. Results The skewness and kurtosis of the incidence of highly pathogenic influenza in Zhejiang between April 2009 and November 2013 were 4.49 and 21.12, which indicated a “fat tail” distribution. A QQ plot and a mean excess plot were used to further validate the features of the distribution. After determining the threshold, we modeled the extremes and estimated the shape parameter and scale parameter by the maximum likelihood method. The results showed that months in which the incidence of highly pathogenic influenza is about 4462/2286/1311/487 are predicted to occur once every five/three/two/one year, respectively. Conclusions Despite the simplicity, the present study successfully offers the sound modeling strategy and a methodological avenue to implement forecasting of an epidemic in the midst of its course. PMID:25710503

  15. Genesis and Dissemination of Highly Pathogenic H5N6 Avian Influenza Viruses.

    PubMed

    Yang, Lei; Zhu, Wenfei; Li, Xiaodan; Bo, Hong; Zhang, Ye; Zou, Shumei; Gao, Rongbao; Dong, Jie; Zhao, Xiang; Chen, Wenbing; Dong, Libo; Zou, Xiaohui; Xing, Yongcai; Wang, Dayan; Shu, Yuelong

    2017-03-01

    Clade 2.3.4.4 highly pathogenic avian influenza viruses (H5Nx) have spread from Asia to other parts of the world. Since 2014, human infections with clade 2.3.4.4 highly pathogenic avian influenza H5N6 viruses have been continuously reported in China. To investigate the genesis of the virus, we analyzed 123 H5 or N6 environmental viruses sampled from live-poultry markets or farms from 2012 to 2015 in Mainland China. Our results indicated that clade 2.3.4.4 H5N2/N6/N8 viruses shared the same hemagglutinin gene as originated in early 2009. From 2012 to 2015, the genesis of highly pathogenic avian influenza H5N6 viruses occurred via two independent pathways. Three major reassortant H5N6 viruses (reassortants A, B, and C) were generated. Internal genes of reassortant A and B viruses and reassortant C viruses derived from clade 2.3.2.1c H5N1 and H9N2 viruses, respectively. Many mammalian adaption mutations and antigenic variations were detected among the three reassortant viruses. Considering their wide circulation and dynamic reassortment in poultry, we highly recommend close monitoring of the viruses in poultry and humans. IMPORTANCE Since 2014, clade 2.3.4.4 highly pathogenic avian influenza (H5Nx) viruses have caused many outbreaks in both wild and domestic birds globally. Severe human cases with novel H5N6 viruses in this group were also reported in China in 2014 and 2015. To investigate the genesis of the genetic diversity of these H5N6 viruses, we sequenced 123 H5 or N6 environmental viruses sampled from 2012 to 2015 in China. Sequence analysis indicated that three major reassortants of these H5N6 viruses had been generated by two independent evolutionary pathways. The H5N6 reassortant viruses had been detected in most provinces of southern China and neighboring countries. Considering the mammalian adaption mutations and antigenic variation detected, the spread of these viruses should be monitored carefully due to their pandemic potential.

  16. Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh.

    PubMed

    Gerloff, Nancy A; Khan, Salah Uddin; Balish, Amanda; Shanta, Ireen S; Simpson, Natosha; Berman, Lashondra; Haider, Najmul; Poh, Mee Kian; Islam, Ausraful; Gurley, Emily; Hasnat, Md Abdul; Dey, T; Shu, Bo; Emery, Shannon; Lindstrom, Stephen; Haque, Ainul; Klimov, Alexander; Villanueva, Julie; Rahman, Mahmudur; Azziz-Baumgartner, Eduardo; Ziaur Rahman, Md; Luby, Stephen P; Zeidner, Nord; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2014-02-01

    In Bangladesh, little is known about the genomic composition and antigenicity of highly pathogenic avian influenza A(H5N1) viruses, their geographic distribution, temporal patterns, or gene flow within the avian host population. Forty highly pathogenic avian influenza A(H5N1) viruses isolated from humans and poultry in Bangladesh between 2008 and 2012 were analyzed by full genome sequencing and antigenic characterization. The analysis included viruses collected from avian hosts and environmental sampling in live bird markets, backyard poultry flocks, outbreak investigations in wild birds or poultry and from three human cases. Phylogenetic analysis indicated that the ancestors of these viruses reassorted (1) with other gene lineages of the same clade, (2) between different clades and (3) with low pathogenicity avian influenza A virus subtypes. Bayesian estimates of the time of most recent common ancestry, combined with geographic information, provided evidence of probable routes and timelines of virus spread into and out of Bangladesh.

  17. Greater virulence of highly pathogenic H5N1 influenza virus in cats than in dogs.

    PubMed

    Kim, Heui Man; Park, Eun Hye; Yum, Jung; Kim, Hyun Soo; Seo, Sang Heui

    2015-01-01

    Highly pathogenic H5N1 influenza virus continues to infect animals and humans. We compared the infectivity and pathogenesis of H5N1 virus in domestic cats and dogs to find out which animal is more susceptible to H5N1 influenza virus. When cats and dogs were infected with the H5N1 virus, cats suffered from severe outcomes including death, whereas dogs did not show any mortality. Viruses were shed in the nose and rectum of cats and in the nose of dogs. Viruses were detected in brain, lung, kidney, intestine, liver, and serum in the infected cats, but only in the lung in the infected dogs. Genes encoding inflammatory cytokines and chemokines, Toll-like receptors, and apoptotic factors were more highly expressed in the lungs of cats than in those of dogs. Our results suggest that the intensive monitoring of dogs is necessary to prevent human infection by H5N1 influenza virus, since infected dogs may not show clear clinical signs, in contrast to infected cats.

  18. Financial effects of the highly pathogenic avian influenza outbreaks on the Turkish broiler producers.

    PubMed

    Aral, Y; Yalcin, C; Cevger, Y; Sipahi, C; Sariozkan, S

    2010-05-01

    This research aimed at assessing the financial effects of the 2005 to 2006 highly pathogenic avian influenza outbreaks on Turkish broiler enterprises. The data were obtained from an interview survey carried out in 499 enterprises randomly selected from 14 provinces that accounted for 79% of the national broiler production. The research revealed that the contracted broiler producers lost on average 1.38 cycles of production and their management fee reduced by 14.7% in 8 mo after the outbreaks. As a result, the broiler production and the enterprise income declined by 34.8 and 44.3%, respectively. The bank loan of the producers rose by 161%. A total of 93% of the producers did not do any other supplementary work during the idle production period in spite of the fact that broiler production was the only business of 36% of them. Furthermore, more than half of the producers (56%) stated that they were considering expanding their business, but suspended this idea due to the outbreak. Approximately 87% of the producers increased the biosecurity measures after the outbreaks. The nationwide effects of the avian influenza outbreaks on the contracted broilers farms were estimated to be US$100.8 million (US$7,967/broiler house). The futures of the contracted broiler producers are fully dependent upon those of the integrated firms. Any negative effects on the latter appeared to be transferred directly to the former. However, the government neglected the integrated firms in the avian influenza compensation programs.

  19. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    USDA-ARS?s Scientific Manuscript database

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  20. Transcriptional analysis of the innate immune response of ducks to different species-of-origin low pathogenic H7 avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Background: Ducks represent an important reservoir for avian influenza (AI) viruses and are partly responsible for the worldwide dissemination of AI. Due to the ability of some low pathogenicity avian influenza viruses (LPAIV) of the hemagglutinin H7 subtype to mutate into a highly pathogenic form o...

  1. [Haemophilus influenzae b: a review on the determinants of pathogenicity and immune response to the infection].

    PubMed

    Gómez de León, P; Cabrera-Contreras, R; Cravioto, A

    1991-01-01

    Haemophilus influenzae is still one of the main causes of diverse invasive diseases in children in México. Epidemiologic data indicate that these processes affect primarily the central nervous system and the respiratory tract. Several factors are involved in the expression of infectious disease by this organism, among them the pathogenic determinants of the parasite and those related with resistance in the host. Occurrence of disease is usually the result of the interaction between these determinants. Knowledge of these pathogenic determinants of the parasite and of factors involved in the immune response of the host have allowed an understanding of the infectious process and have directed research in a least three areas: 1) identification of bacterial membrane fractions related with diagnosis of the disease, 2) screening for immunogenic components in the bacterias as vaccine candidates to be used in the prevention of the disease and, 3) the planning of appropriate alternatives for specific antimicrobial therapy.

  2. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  3. Highly Pathogenic Avian Influenza H5N8 in Germany: Outbreak Investigations.

    PubMed

    Conraths, F J; Sauter-Louis, C; Globig, A; Dietze, K; Pannwitz, G; Albrecht, K; Höreth-Böntgen, D; Beer, M; Staubach, C; Homeier-Bachmann, T

    2016-02-01

    Epidemiological outbreak investigations were conducted in highly pathogenic avian influenza virus of the subtype H5N8 (HPAIV H5N8)-affected poultry holdings and a zoo to identify potential routes of entry of the pathogen via water, feedstuffs, animals, people, bedding material, other fomites (equipment, vehicles etc.) and the presence of wild birds near affected holdings. Indirect introduction of HPAIV H5N8 via material contaminated by infected wild bird seems the most reasonable explanation for the observed outbreak series in three commercial holdings in Mecklenburg-Western Pomerania and Lower Saxony, while direct contact to infected wild birds may have led to outbreaks in a zoo in Rostock and in two small free-range holdings in Anklam, Mecklenburg-Western Pomerania. © 2015 Blackwell Verlag GmbH.

  4. Assessing the probability of the presence of low pathogenicity avian influenza virus in exported chicken meat.

    PubMed

    Zepeda, C; Salman, M D

    2007-03-01

    Avian influenza (AI) is a disease of concern for the poultry industry. In its highly pathogenic form, AI viruses (AIVs) can cause a high morbidity and case fatality rate as well as severe economic consequences. Low pathogenic AIVs (LPAIVs), in contrast, only cause localized infections in the respiratory and gastrointestinal tracts of affected birds. Although there is apparently sufficient scientific evidence documenting the absence of LPAIV in poultry meat, several countries still place restrictions for international trade of poultry meat on LPAIV-infected countries. These restrictions are extremely trade disruptive and entail significant losses to the poultry industry. This article presents a quantitative approach to assess the probability of LPAIV presence in chicken meat and provides a model that can be tailored to reflect the epidemiology of LPAIV and surveillance systems in different countries. Results show that the probability of introducing LPAIV through chicken meat imports is insignificant.

  5. Impact of avian influenza on U.S. poultry trade relations-2002: H5 or H7 low pathogenic avian influenza.

    PubMed

    Hall, Cheryl

    2004-10-01

    Avian influenza (AI) viruses are Type A influenza viruses of the Orthomyxoviridae family. There are 15 subtypes of the virus widespread in migratory waterfowl throughout the world. It has become increasingly evident that some low pathogenic avian influenza (LPAI) H5 or H7 viruses have the capacity to mutate into the more virulent strains that cause extensive economic losses and high mortality. Recent AI disease outbreaks in several countries have increased attention and concern over low pathogenic H5 and H7 AI viruses. This heightened international concern increases the risk of unnecessary trade bans. For the US poultry industry, avian influenza continues to be a challenge to the flow of trade. On one hand, there is the increased focus of world attention on the H5 and H7 low pathogenic AI virus and the possibility of mutation. On the other hand, there are the factors contributing to our finding of infected flocks. Among these, perhaps the most important is the ever-present reservoir of virus in the migratory waterfowl population. With the discovery of exposed flocks comes the threat of trade bans.

  6. Unexpected Interfarm Transmission Dynamics during a Highly Pathogenic Avian Influenza Epidemic

    PubMed Central

    Tassoni, Luca; Milani, Adelaide; Hughes, Joseph; Salviato, Annalisa; Massi, Paola; Zamperin, Gianpiero; Bonfanti, Lebana; Marangon, Stefano; Cattoli, Giovanni; Monne, Isabella

    2016-01-01

    ABSTRACT Next-generation sequencing technology is now being increasingly applied to study the within- and between-host population dynamics of viruses. However, information on avian influenza virus evolution and transmission during a naturally occurring epidemic is still limited. Here, we use deep-sequencing data obtained from clinical samples collected from five industrial holdings and a backyard farm infected during the 2013 highly pathogenic avian influenza (HPAI) H7N7 epidemic in Italy to unravel (i) the epidemic virus population diversity, (ii) the evolution of virus pathogenicity, and (iii) the pathways of viral transmission between different holdings and sheds. We show a high level of genetic diversity of the HPAI H7N7 viruses within a single farm as a consequence of separate bottlenecks and founder effects. In particular, we identified the cocirculation in the index case of two viral strains showing a different insertion at the hemagglutinin cleavage site, as well as nine nucleotide differences at the consensus level and 92 minority variants. To assess interfarm transmission, we combined epidemiological and genetic data and identified the index case as the major source of the virus, suggesting the spread of different viral haplotypes from the index farm to the other industrial holdings, probably at different time points. Our results revealed interfarm transmission dynamics that the epidemiological data alone could not unravel and demonstrated that delay in the disease detection and stamping out was the major cause of the emergence and the spread of the HPAI strain. IMPORTANCE The within- and between-host evolutionary dynamics of a highly pathogenic avian influenza (HPAI) strain during a naturally occurring epidemic is currently poorly understood. Here, we perform for the first time an in-depth sequence analysis of all the samples collected during a HPAI epidemic and demonstrate the importance to complement outbreak investigations with genetic data to

  7. Differences in pathogenicity and response to vaccination between Pekin and Muscovy ducks infected with H5N1 highly pathogenic influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Vaccination of domestic ducks against H5N1 HPAI is being conducted as a method of control but with mixed results. One of the observations from the field is that Muscovy ducks (Cair...

  8. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. To improve the control of this disease it’s necessary to better understand the pathog...

  9. Comparison of molecular classification and experimental pathogenicity for classification of low and high pathogenicity H5 and H7 avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) viruses, which have been restricted to H5 and H7 subtypes, have caused continuous outbreaks in the poultry industry with devastating economic losses and is a severe threat to public health. Genetic features and severity of the disease in poultry determine wh...

  10. Differences in pathogenicity of A/Duck/Vietnam/201/05 H5N1 highly pathogenic avian influenza virus reassortants in ducks

    USDA-ARS?s Scientific Manuscript database

    In order to understand which viral genes contribute to the high virulence of A/Dk/Vietnam/201/05 H5N1 highly pathogenic avian influenza (HPAI) virus in ducks, we used reverse genetics to generate single-gene reassortant viruses with genes from A/Ck/Indonesia/7/03, a virus that produces mild disease ...

  11. Extended Viral Shedding of a Low Pathogenic Avian Influenza Virus by Striped Skunks (Mephitis mephitis)

    PubMed Central

    Root, J. Jeffrey; Shriner, Susan A.; Bentler, Kevin T.; Gidlewski, Thomas; Mooers, Nicole L.; Ellis, Jeremy W.; Spraker, Terry R.; VanDalen, Kaci K.; Sullivan, Heather J.; Franklin, Alan B.

    2014-01-01

    Background Striped skunks (Mephitis mephitis) are susceptible to infection with some influenza A viruses. However, the viral shedding capability of this peri-domestic mammal and its potential role in influenza A virus ecology are largely undetermined. Methodology/Principal Findings Striped skunks were experimentally infected with a low pathogenic (LP) H4N6 avian influenza virus (AIV) and monitored for 20 days post infection (DPI). All of the skunks exposed to H4N6 AIV shed large quantities of viral RNA, as detected by real-time RT-PCR and confirmed for live virus with virus isolation, from nasal washes and oral swabs (maximum ≤106.02 PCR EID50 equivalent/mL and ≤105.19 PCR EID50 equivalent/mL, respectively). Some evidence of potential fecal shedding was also noted. Following necropsy on 20 DPI, viral RNA was detected in the nasal turbinates of one individual. All treatment animals yielded evidence of a serological response by 20 DPI. Conclusions/Significance These results indicate that striped skunks have the potential to shed large quantities of viral RNA through the oral and nasal routes following exposure to a LP AIV. Considering the peri-domestic nature of these animals, along with the duration of shedding observed in this species, their presence on poultry and waterfowl operations could influence influenza A virus epidemiology. For example, this species could introduce a virus to a naive poultry flock or act as a trafficking mechanism of AIV to and from an infected poultry flock to naive flocks or wild bird populations. PMID:24489638

  12. A High Diversity of Eurasian Lineage Low Pathogenicity Avian Influenza A Viruses Circulate among Wild Birds Sampled in Egypt

    PubMed Central

    Gerloff, Nancy A.; Jones, Joyce; Simpson, Natosha; Balish, Amanda; ElBadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C.; de Mattos, Carlos A.; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C. Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O.

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring. PMID:23874653

  13. A high diversity of Eurasian lineage low pathogenicity avian influenza A viruses circulate among wild birds sampled in Egypt.

    PubMed

    Gerloff, Nancy A; Jones, Joyce; Simpson, Natosha; Balish, Amanda; Elbadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C; de Mattos, Carlos A; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring.

  14. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms.

    PubMed

    Ssematimba, Amos; Hagenaars, Thomas J; de Jong, Mart C M

    2012-01-01

    A quantitative understanding of the spread of contaminated farm dust between locations is a prerequisite for obtaining much-needed insight into one of the possible mechanisms of disease spread between farms. Here, we develop a model to calculate the quantity of contaminated farm-dust particles deposited at various locations downwind of a source farm and apply the model to assess the possible contribution of the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus (HPAI) during the 2003 epidemic in the Netherlands. The model is obtained from a Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, and a model for the infection process on exposed farms. Using poultry- and avian influenza-specific parameter values we calculate the distance-dependent probability of between-farm transmission by this route. A comparison between the transmission risk pattern predicted by the model and the pattern observed during the 2003 epidemic reveals that the wind-borne route alone is insufficient to explain the observations although it could contribute substantially to the spread over short distance ranges, for example, explaining 24% of the transmission over distances up to 25 km.

  15. Assessing alternative low pathogenic avian influenza virus surveillance strategies in a live bird market.

    PubMed

    Carpenter, Tim E; Cardona, Carol

    2012-12-01

    Surveillance, comprised of sampling and testing, of low pathogenic avian influenza virus (LPAIV) in a live bird market (LBM) may enable the detection of the virus, reducing its spread within the market to humans and birds and to other markets within the LBM system. In addition, detection of infected birds would also reduce the probability of reassortment and possible change from a LPAIV to a highly pathogenic avian influenza virus, which would have a devastating impact on the economy, trade, and society. In this paper we present results from a computer simulation model based on previously collected survey and experimental transmission data. Once we validated the model with experimental transmission data, we applied it to address some of the questions that need to be answered in order to create an efficient surveillance system in an LBM. We have identified effective sampling times, patterns, and sizes that would enhance the probability of an early detection of LPAIV if present and minimize the associated labor and cost. The model may be modified to evaluate different sized and structured LBMs. It also provides the basis to evaluate an entire LBM system for the United States or other countries.

  16. Incorporating risk communication into highly pathogenic avian influenza preparedness and response efforts.

    PubMed

    Voss, Shauna J; Malladi, Sasidhar; Sampedro, Fernando; Snider, Tim; Goldsmith, Timothy; Hueston, William D; Lauer, Dale C; Halvorson, David A

    2012-12-01

    A highly pathogenic avian influenza (HPAI) outbreak in the United States will initiate a federal emergency response effort that will consist of disease control and eradication efforts, including quarantine and movement control measures. These movement control measures will not only apply to live animals but also to animal products. However, with current egg industry "just-in-time" production practices, limited storage is available to hold eggs. As a result, stop movement orders can have significant unintended negative consequences, including severe disruptions to the food supply chain. Because stakeholders' perceptions of risk vary, waiting to initiate communication efforts until an HPAI event occurs can hinder disease control efforts, including the willingness of producers to comply with the response, and also can affect consumers' demand for the product. A public-private-academic partnership was formed to assess actual risks involved in the movement of egg industry products during an HPAI event through product specific, proactive risk assessments. The risk analysis process engaged a broad representation of stakeholders and promoted effective risk management and communication strategies before an HPAI outbreak event. This multidisciplinary team used the risk assessments in the development of the United States Department of Agriculture, Highly Pathogenic Avian Influenza Secure Egg Supply Plan, a comprehensive response plan that strives to maintain continuity of business. The collaborative approach that was used demonstrates how a proactive risk communication strategy that involves many different stakeholders can be valuable in the development of a foreign animal disease response plan and build working relationships, trust, and understanding.

  17. Prevention and control of highly pathogenic avian influenza with particular reference to H5N1.

    PubMed

    Capua, Ilaria; Cattoli, Giovanni

    2013-12-05

    Highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Far East Asia in 1996 and spread in three continents in a period of 10 or less years. Before this event, avian influenza infections caused by highly pathogenic viruses had occurred in many different countries, causing minor or major outbreaks, and had always been eradicated. The unique features of these H5N1 viruses combined to the geographic characteristics of the area of emergence, including animal husbandry practices, has caused this subtype to become endemic in several Asian countries, as well as in Egypt. Our aim is to review the direct and indirect control strategies with the rationale for use, advantages and shortcomings - particularly resulting from practicalities linked to field application and economic constraints. Certainly, in low income countries which have applied vaccination, this has resulted in a failure to eradicate the infection. Although the number of infected countries has dropped from over 40 (2006) to under 10 (2012), the extensive circulation of H5N1 in areas with high poultry density still represents a risk for public and animal health.

  18. Cytomegalovirus Infections

    MedlinePlus

    Cytomegalovirus (CMV) is a virus found around the world. It is related to the viruses that cause chickenpox and infectious mononucleosis (mono). Between 50 percent ... in the United States have had a CMV infection by age 40. Once CMV is in a ...

  19. Pathogenicity of the Novel A/H7N9 Influenza Virus in Mice

    PubMed Central

    Mok, Chris Ka Pun; Lee, Horace Hok Yeung; Chan, Michael Chi Wai; Sia, Sin Fun; Lestra, Maxime; Nicholls, John Malcolm; Zhu, Huachen; Guan, Yi; Peiris, Joseph Malik Sriyal

    2013-01-01

    ABSTRACT A novel avian-origin influenza A/H7N9 virus infecting humans was first identified in March 2013 and, as of 30 May 2013, has caused 132 human infections leading to 33 deaths. Phylogenetic studies suggest that this virus is a reassortant, with the surface hemagglutinin (HA) and neuraminidase (NA) genes being derived from duck and wild-bird viruses, respectively, while the six “internal gene segments” were derived from poultry H9N2 viruses. Here we determine the pathogenicity of a human A/Shanghai/2/2013 (Sh2/H7N9) virus in healthy adult mice in comparison with that of A/chicken/Hong Kong/HH8/2010 (ck/H9N2) virus, highly pathogenic avian influenza (HPAI) A/Hong Kong/483/1997 (483/H5N1) virus, and a duck influenza A H7N9 virus of different genetic derivation, A/duck/Jiangxi/3286/2009 (dk/H7N9). Intranasal infection of mice with Sh2/H7N9 virus doses of 103, 104, and 105 PFU led to significant weight loss without fatality. This virus was more pathogenic than dk/H7N9 and ck/H9N2 virus, which has six internal gene segments that are genetically similar to Sh2/H7N9. Sh2/H7N9 replicated well in the nasal cavity and lung, but there was no evidence of virus dissemination beyond the respiratory tract. Mice infected with Sh2/H7N9 produced higher levels of proinflammatory cytokines in the lung and serum than did ck/H9N2 and dk/H7N9 but lower levels than 483/H5N1. Cytokine induction was positively correlated with virus load in the lung at early stages of infection. Our results suggest that Sh2/H7N9 virus is able to replicate and cause disease in mice without prior adaptation but is less pathogenic than 483/H5N1 virus. PMID:23820393

  20. Protection and Virus Shedding of Falcons Vaccinated against Highly Pathogenic Avian Influenza A Virus (H5N1)

    PubMed Central

    Hafez, Hafez M.; Klopfleisch, Robert; Lüschow, Dörte; Prusas, Christine; Teifke, Jens P.; Rudolf, Miriam; Grund, Christian; Kalthoff, Donata; Mettenleiter, Thomas; Beer, Martin; Harder, Timm

    2007-01-01

    Because fatal infections with highly pathogenic avian influenza A (HPAI) virus subtype H5N1 have been reported in birds of prey, we sought to determine detailed information about the birds’ susceptibility and protection after vaccination. Ten falcons vaccinated with an inactivated influenza virus (H5N2) vaccine seroconverted. We then challenged 5 vaccinated and 5 nonvaccinated falcons with HPAI (H5N1). All vaccinated birds survived; all unvaccinated birds died within 5 days. For the nonvaccinated birds, histopathologic examination showed tissue degeneration and necrosis, immunohistochemical techniques showed influenza virus antigen in affected tissues, and these birds shed high levels of infectious virus from the oropharynx and cloaca. Vaccinated birds showed no influenza virus antigen in tissues and shed virus at lower titers from the oropharynx only. Vaccination could protect these valuable birds and, through reduced virus shedding, reduce risk for transmission to other avian species and humans. PMID:18217549

  1. Protection and virus shedding of falcons vaccinated against highly pathogenic avian influenza A virus (H5N1).

    PubMed

    Lierz, Michael; Hafez, Hafez M; Klopfleisch, Robert; Lüschow, Dörte; Prusas, Christine; Teifke, Jens P; Rudolf, Miriam; Grund, Christian; Kalthoff, Donata; Mettenleiter, Thomas; Beer, Martin; Hardert, Timm

    2007-11-01

    Because fatal infections with highly pathogenic avian influenza A (HPAI) virus subtype H5N1 have been reported in birds of prey, we sought to determine detailed information about the birds' susceptibility and protection after vaccination. Ten falcons vaccinated with an inactivated influenza virus (H5N2) vaccine seroconverted. We then challenged 5 vaccinated and 5 nonvaccinated falcons with HPAI (H5N1). All vaccinated birds survived; all unvaccinated birds died within 5 days. For the nonvaccinated birds, histopathologic examination showed tissue degeneration and necrosis, immunohistochemical techniques showed influenza virus antigen in affected tissues, and these birds shed high levels of infectious virus from the oropharynx and cloaca. Vaccinated birds showed no influenza virus antigen in tissues and shed virus at lower titers from the oropharynx only. Vaccination could protect these valuable birds and, through reduced virus shedding, reduce risk for transmission to other avian species and humans.

  2. Erythrocyte binding preference of 16 subtypes of low pathogenic avian influenza and 2009 pandemic influenza A (H1N1) viruses.

    PubMed

    Wiriyarat, Witthawat; Lerdsamran, Hatairat; Pooruk, Phisanu; Webster, Robert G; Louisirirotchanakul, Suda; Ratanakorn, Parntep; Chaichoune, Kridsada; Nateerom, Kannika; Puthavathana, Pilaipan

    2010-12-15

    All 16 subtypes of avian influenza viruses of low pathogenicity (LPAIV) as well as their hemagglutinin (H) antigens, and four 2009 pandemic influenza A (H1N1) virus isolates were assayed for hemagglutinating activity against 5 erythrocyte species: goose, guinea pig, human group O, chicken and horse. Of all viruses and antigens assayed, the highest hemagglutination (HA) titers were obtained with goose and guinea pig erythrocytes. Hemagglutinating activity of replicating LPAIV and LPAIV antigens decreased, in order, with chicken and human group O; meanwhile, horse erythrocytes yielded lowest or no HA titer. Moreover, the 2009 pandemic viruses did not agglutinate both horse and chicken erythrocytes. Our study concluded that goose and guinea pig erythrocytes are the best in HA assay for all subtypes of influenza viruses.

  3. Alterations in Hemagglutinin Receptor-Binding Specificity Accompany the Emergence of Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Mochalova, Larisa; Harder, Timm; Tuzikov, Alexander; Bovin, Nicolai; Wolff, Thorsten; Matrosovich, Mikhail; Schweiger, Brunhilde

    2015-01-01

    ABSTRACT Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3′SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLec) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3′SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLex), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. IMPORTANCE Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical “poultry-like” receptor, 3′SLN, is provided by

  4. Cytomegalovirus (CMV) infection

    MedlinePlus

    CMV mononucleosis; Cytomegalovirus; CMV; Human cytomegalovirus; HCMV ... infection is spread by: Blood transfusions Organ transplants ... viruses remain in your body for the rest of your life. If your ...

  5. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    USGS Publications Warehouse

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel A.; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  6. Biologic characterization of chicken-derived H6N2 low pathogenic avian influenza viruses in chickens and ducks

    USDA-ARS?s Scientific Manuscript database

    In this study we biologically characterized H6N2 low pathogenicity avian influenza (LPAI) viruses by infecting chickens and ducks in order to compare adaptation of these viruses in these species. We examined the clinical signs, virus shedding, and immune response to infection in 4-week old white le...

  7. Highly Pathogenic Avian Influenza A(H5N8) Virus in Wild Migratory Birds, Qinghai Lake, China

    PubMed Central

    Li, Mingxin; Liu, Haizhou; Bi, Yuhai; Sun, Jianqing; Wong, Gary; Liu, Di; Li, Laixing; Liu, Juxiang; Chen, Quanjiao; Wang, Hanzhong; He, Yubang; Shi, Weifeng; Gao, George F.

    2017-01-01

    In May 2016, a highly pathogenic avian influenza A(H5N8) virus strain caused deaths among 3 species of wild migratory birds in Qinghai Lake, China. Genetic analysis showed that the novel reassortant virus belongs to group B H5N8 viruses and that the reassortment events likely occurred in early 2016. PMID:28169827

  8. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    PubMed Central

    Bevins, S. N.; Dusek, R. J.; White, C. L.; Gidlewski, T.; Bodenstein, B.; Mansfield, K. G.; DeBruyn, P.; Kraege, D.; Rowan, E.; Gillin, C.; Thomas, B.; Chandler, S.; Baroch, J.; Schmit, B.; Grady, M. J.; Miller, R. S.; Drew, M. L.; Stopak, S.; Zscheile, B.; Bennett, J.; Sengl, J.; Brady, Caroline; Ip, H. S.; Spackman, E.; Killian, M. L.; Torchetti, M. K.; Sleeman, J. M.; Deliberto, T. J.

    2016-01-01

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented. PMID:27381241

  9. Characterization of 10 adjuvants for inactivated avian influenza virus (AIV) vaccines against challenge with highly pathogenic AIV in chickens

    USDA-ARS?s Scientific Manuscript database

    Inactivated vaccines comprise 95% of all vaccine used for avian influenza virus (AIV) by dose. Optimizing the adjuvant is one way to improve vaccine efficacy. Inactivated vaccines were produced with beta-propiolactone inactivated A/chicken/BC/314514-1/2004 H7N3 low pathogenicity AIV and standardiz...

  10. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak

    USDA-ARS?s Scientific Manuscript database

    In November 2014, a Eurasian strain H5N8 highly pathogenic avian influenza virus was detected in poultry in Canada. Introduced viruses were soon detected in the United States and within six months had spread to 21 states with more than 48 million poultry affected. In an effort to study potential mec...

  11. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    USGS Publications Warehouse

    Bevins, S.N.; Dusek, Robert J.; White, C. LeAnn; Gidlewski, Thomas; Bodenstein, B.; Mansfield, Kristin G.; DeBruyn, Paul; Kraege, Donald K.; Rowan, E.L.; Gillin, Colin; Thomas, B.; Chandler, S.; Baroch, J.; Schmit, B.; Grady, M. J.; Miller, R. S.; Drew, M.L.; Stopak, S.; Zscheile, B.; Bennett, J.; Sengl, J.; Brady, Caroline; Ip, Hon S.; Spackman, Erica; Killian, M. L.; Kim Torchetti, Mia; Sleeman, Jonathan M.; DeLiberto, T.J.

    2016-01-01

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  12. The pathobiology of highly pathogenic H5N2 avian influenza virus in Ruddy ducks and Lesser Scaup

    USDA-ARS?s Scientific Manuscript database

    The susceptibility and pathogenesis of avian influenza virus (AIV) has not been characterized in numerous duck species, especially diving ducks, some of which migrate across the continental U.S. The pathobiology of highly pathogenic (HP) H5N2 AIV was characterized in two diving duck species, Ruddy ...

  13. H5N1 subtype highly pathogenic avian influenza virus isolated from healthy mallard captured in South Korea.

    PubMed

    Kim, Hye-Ryoung; Kim, Bang-Sil; Bae, You-Chan; Moon, Oun-Kyoung; Oem, Jae-Ku; Kang, Hyun-Mi; Choi, Jun-Gu; Lee, O-Soo; Lee, Youn-Jeong

    2011-08-05

    On December 7, 2010, H5N1 highly pathogenic avian influenza virus was isolated from a healthy mallard captured at the Mankyung River in South Korea. Phylogenetic analysis showed that this virus was classified into clade 2.3.2 and closely related to H5N1 viruses isolated from wild birds in Mongolia, Russia and China in 2009 and 2010.

  14. Highly Pathogenic Avian Influenza A(H5N8) Virus in Wild Migratory Birds, Qinghai Lake, China.

    PubMed

    Li, Mingxin; Liu, Haizhou; Bi, Yuhai; Sun, Jianqing; Wong, Gary; Liu, Di; Li, Laixing; Liu, Juxiang; Chen, Quanjiao; Wang, Hanzhong; He, Yubang; Shi, Weifeng; Gao, George F; Chen, Jianjun

    2017-04-01

    In May 2016, a highly pathogenic avian influenza A(H5N8) virus strain caused deaths among 3 species of wild migratory birds in Qinghai Lake, China. Genetic analysis showed that the novel reassortant virus belongs to group B H5N8 viruses and that the reassortment events likely occurred in early 2016.

  15. Surveillance for Highly Pathogenic Avian Influenza Virus in Wild Birds during Outbreaks in Domestic Poultry, Minnesota, 2015.

    PubMed

    Jennelle, Christopher S; Carstensen, Michelle; Hildebrand, Erik C; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A; Ip, Hon S; Vandalen, Kaci K; Minicucci, Larissa A

    2016-07-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9-June 4, 2015. HPAIV was isolated from a Cooper's hawk but not from waterfowl fecal samples.

  16. Immunity to current H5 highly pathogenic avian influenza viruses: From vaccines to adaptive immunity in wild birds

    USDA-ARS?s Scientific Manuscript database

    Following the 2014-2015 outbreaks of H5N2 and H5N8 highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to assess the immunity required for protection against future outbreaks should they occur. We assessed the ability of vaccines to induce protection of chickens and turkeys...

  17. Vaccine protection of poultry against H5 clade 2.3.4.4 highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Following the 2014-2015 outbreaks of H5N2 and H5N8 (clade 2.3.4.4) highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to identify vaccines with potential to be used as a control mechanism in the event of future outbreaks. We tested both inactivated and recombinant vaccine...

  18. Influence of maternal immunity on vaccine efficacy and susceptibility of commercial broilers against highly pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Maternal antibodies provide early protection from disease, but may interfere with the vaccination efficacy in short-lived broilers. This study seeks to assess how maternal immunity can interfere with vaccine efficacy against clade 2.3.4.4 H5N2 highly pathogenic avian influenza virus (HPAIV) and how ...

  19. Emergence of H5N1 high pathogenicity avian influenza strains in Indonesia that are resistant to vaccines

    USDA-ARS?s Scientific Manuscript database

    Vaccines have been used to protect poultry in Asia against H5N1 high pathogenicity avian influenza (HPAI) since 2002. Reports of vaccine “failures” began to emerge in 2006 in Indonesia, with identification of clinical disease consistent with HPAI or isolation of H5N1 HPAIV in vaccinated flocks or in...

  20. Highly Pathogenic Avian Influenza H5N1 Clade 2.3.2.1c Virus in Lebanon, 2016.

    PubMed

    El Romeh, Ali; Zecchin, Bianca; Fusaro, Alice; Ibrahim, Elias; El Bazzal, Bassel; El Hage, Jeanne; Milani, Adelaide; Zamperin, Gianpiero; Monne, Isabella

    2017-06-01

    We report the phylogenetic analysis of the first outbreak of H5N1 highly pathogenic avian influenza virus detected in Lebanon from poultry in April 2016. Our whole-genome sequencing analysis revealed that the Lebanese H5N1 virus belongs to genetic clade 2.3.2.1c and clusters with viruses from Europe and West Africa.

  1. Safe application of regionalization for trade in poultry and poultry products during highly pathogenic Avian Influenza outbreaks in USA

    USDA-ARS?s Scientific Manuscript database

    The 2014-15 H5Nx high pathogenicity avian influenza (HPAI) outbreak affected 211 commercial premises, 21 backyard flocks, 75 individual wild birds and four captive-reared raptors in 21 Western and upper Midwestern states, resulting in death or culling of over 49.7 million poultry in the stamping-out...

  2. NS1 gene truncations partially attenuate H5N1 highly pathogenic avian influenza viruses in chickens

    USDA-ARS?s Scientific Manuscript database

    The polybasic amino acid sequence in the hemagglutinin (HA) protein of H5 and H7 avian influenza (AI) viruses determines the high pathogenicity (HP) phenotype in chickens. The NS1 protein plays an important role in blocking the induction of antiviral defenses and other regulatory functions and thus...

  3. Outbreaks of highly pathogenic Eurasian H5N8 avian influenza in two commercial poultry flocks in California

    USDA-ARS?s Scientific Manuscript database

    In January 2015, a highly pathogenic Eurasian lineage H5N8 avian influenza (AI) virus was detected in a commercial meat turkey flock in Stanislaus County, California. Approximately 3 weeks later, a similar case was diagnosed in commercial chickens from a different company located in Kings County, C...

  4. Updated recommendations for heat inactivation of high pathogenicity avian influenza virus in dried egg white for import/export purposes

    USDA-ARS?s Scientific Manuscript database

    High pathogenicity avian influenza viruses (HPAIV) cause severe systemic disease with high mortality in chickens. Isolation of HPAIV from the internal contents of chicken eggs has been reported, and this is cause for concern because HPAIV can be spread by movement of poultry products during marketi...

  5. Early responses of chicken lungs and spleens to infection with highly pathogenic avian influenza virus using microarray analysis

    USDA-ARS?s Scientific Manuscript database

    Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) have originated in Asia and spread through several Middle Eastern, African and European countries, resulting in one of the most serious animal disease incident in recent history. These outbreaks were characterized by t...

  6. Genetic Characterization of Highly Pathogenic Avian Influenza (H5N8) Virus from Domestic Ducks, England, November 2014

    PubMed Central

    Banks, Jill; Marston, Denise A.; Ellis, Richard J.; Brookes, Sharon M.; Brown, Ian H.

    2015-01-01

    Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homology to those detected in mainland Europe and Asia during 2014. Genetic characterization suggests this virus is an avian-adapted virus without specific affinity for zoonoses. Spatio-temporal detections of H5N8 imply a role for wild birds in virus spread. PMID:25898126

  7. High pathogenicity avian influenza outbreaks since 2008 except multi-continental panzootic of H5 Goose/Guangdong-lineage viruses

    USDA-ARS?s Scientific Manuscript database

    Since 2008, seven countries from five continents have experienced highly pathogenic avian influenza (HPAI) outbreaks in poultry due to viruses unrelated to H5 Goose/Guangdong lineage viruses. These have covered a range of virus subtypes and affected different production species from chickens to ost...

  8. Efficacy of commercial vaccines in chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  9. Immunostimulatory motifs enhance antiviral siRNAs targeting highly pathogenic avian influenza H5N1.

    PubMed

    Stewart, Cameron R; Karpala, Adam J; Lowther, Sue; Lowenthal, John W; Bean, Andrew G

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus is endemic in many regions around the world and remains a significant pandemic threat. To date H5N1 has claimed almost 300 human lives worldwide, with a mortality rate of 60% and has caused the death or culling of hundreds of millions of poultry since its initial outbreak in 1997. We have designed multi-functional RNA interference (RNAi)-based therapeutics targeting H5N1 that degrade viral mRNA via the RNAi pathway while at the same time augmenting the host antiviral response by inducing host type I interferon (IFN) production. Moreover, we have identified two factors critical for maximising the immunostimulatory properties of short interfering (si)RNAs in chicken cells (i) mode of synthesis and (ii) nucleoside sequence to augment the response to virus. The 5-bp nucleoside sequence 5'-UGUGU-3' is a key determinant in inducing high levels of expression of IFN-α, -β, -λ and interleukin 1-β in chicken cells. Positioning of this 5'-UGUGU-3' motif at the 5'-end of the sense strand of siRNAs, but not the 3'-end, resulted in a rapid and enhanced induction of type I IFN. An anti-H5N1 avian influenza siRNA directed against the PB1 gene (PB1-2257) tagged with 5'-UGUGU-3' induced type I IFN earlier and to a greater extent compared to a non-tagged PB1-2257. Tested against H5N1 in vitro, the tagged PB1-2257 was more effective than non-tagged PB1-2257. These data demonstrate the ability of an immunostimulatory motif to improve the performance of an RNAi-based antiviral, a finding that may influence the design of future RNAi-based anti-influenza therapeutics.

  10. Influenza A virus acquires enhanced pathogenicity and transmissibility after serial passages in swine.

    PubMed

    Wei, Kai; Sun, Honglei; Sun, Zhenhong; Sun, Yipeng; Kong, Weili; Pu, Juan; Ma, Guangpeng; Yin, Yanbo; Yang, Hanchun; Guo, Xin; Chang, Kin-Chow; Liu, Jinhua

    2014-10-01

    Genetic and phylogenetic analyses suggest that the pandemic H1N1/2009 virus was derived from well-established swine influenza lineages; however, there is no convincing evidence that the pandemic virus was generated from a direct precursor in pigs. Furthermore, the evolutionary dynamics of influenza virus in pigs have not been well documented. Here, we subjected a recombinant virus (rH1N1) with the same constellation makeup as the pandemic H1N1/2009 virus to nine serial passages in pigs. The severity of infection sequentially increased with each passage. Deep sequencing of viral quasispecies from the ninth passage found five consensus amino acid mutations: PB1 A469T, PA 1129T, NA N329D, NS1 N205K, and NEP T48N. Mutations in the hemagglutinin (HA) protein, however, differed greatly between the upper and lower respiratory tracts. Three representative viral clones with the five consensus mutations were selected for functional evaluation. Relative to the parental virus, the three viral clones showed enhanced replication and polymerase activity in vitro and enhanced replication, pathogenicity, and transmissibility in pigs, guinea pigs, and ferrets in vivo. Specifically, two mutants of rH1N1 (PB1 A469T and a combination of NS1 N205K and NEP T48N) were identified as determinants of transmissibility in guinea pigs. Crucially, one mutant viral clone with the five consensus mutations, which also carried D187E, K211E, and S289N mutations in its HA, additionally was able to infect ferrets by airborne transmission as effectively as the pandemic virus. Our findings demonstrate that influenza virus can acquire viral characteristics that are similar to those of the pandemic virus after limited serial passages in pigs. Importance: We demonstrate here that an engineered reassortant swine influenza virus, with the same gene constellation pattern as the pandemic H1N1/2009 virus and subjected to only nine serial passages in pigs, acquired greatly enhanced virulence and transmissibility

  11. The East Jakarta Project: surveillance for highly pathogenic avian influenza A(H5N1) and seasonal influenza viruses in patients seeking care for respiratory disease, Jakarta, Indonesia, October 2011-September 2012.

    PubMed

    Storms, A D; Kusriastuti, R; Misriyah, S; Praptiningsih, C Y; Amalya, M; Lafond, K E; Samaan, G; Triada, R; Iuliano, A D; Ester, M; Sidjabat, R; Chittenden, K; Vogel, R; Widdowson, M A; Mahoney, F; Uyeki, T M

    2015-12-01

    Indonesia has reported the most human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus worldwide. We implemented enhanced surveillance in four outpatient clinics and six hospitals for HPAI H5N1 and seasonal influenza viruses in East Jakarta district to assess the public health impact of influenza in Indonesia. Epidemiological and clinical data were collected from outpatients with influenza-like illness (ILI) and hospitalized patients with severe acute respiratory infection (SARI); respiratory specimens were obtained for influenza testing by real-time reverse transcription-polymerase chain reaction. During October 2011-September 2012, 1131/3278 specimens from ILI cases (34·5%) and 276/1787 specimens from SARI cases (15·4%) tested positive for seasonal influenza viruses. The prevalence of influenza virus infections was highest during December-May and the proportion testing positive was 76% for ILI and 36% for SARI during their respective weeks of peak activity. No HPAI H5N1 virus infections were identified, including hundreds of ILI and SARI patients with recent poultry exposures, whereas seasonal influenza was an important contributor to acute respiratory disease in East Jakarta. Overall, 668 (47%) of influenza viruses were influenza B, 384 (27%) were A(H1N1)pdm09, and 359 (25%) were H3. While additional data over multiple years are needed, our findings suggest that seasonal influenza prevention efforts, including influenza vaccination, should target the months preceding the rainy season.

  12. Phylogeny, Pathogenicity, and Transmission of H5N1 Avian Influenza Viruses in Chickens

    PubMed Central

    Cui, Jin; Qu, Nannan; Guo, Yang; Cao, Lan; Wu, Siyu; Mei, Kun; Sun, Hailiang; Lu, Yiliang; Qin, Zhifeng; Jiao, Peirong; Liao, Ming

    2017-01-01

    We analyzed five H5N1 avian influenza viruses (AIVs) isolated from different birds in 2012 in China. Based on whole-genome sequences, we divided the viruses into four genotypes. The DKE26, GSE43, and DKE53 viruses belonged to Genotypes 1–3, respectively. The CKE93 and CKE96 viruses were classified into Genotype 4. Genotypes 1–3 correspond to the viruses containing the HA gene of clade 2.3.2, and Genotype 4 is the virus that bears the HA gene of clade 7.2. To better understand the pathogenicity and transmission of the viruses, we infected chickens with 103 EID50/0.1 ml GSE43 (clade 2.3.2) or CKE93 (clade 7.2) virus. Our results revealed that 6 of 7 specific-pathogen-free (SPF) chickens inoculated with GSE43 virus were dead before 7-day post-infection, but all the SPF chickens inoculated with CKE93 virus survived the infection. Both the GSE43 and CKE93 viruses replicated systemically in chickens. The virus titers of GSE43 virus in tested organs were obviously higher than those of CKE93 virus. Our results revealed that the pathogenicity and replication of GSE43 in chickens was much higher than those of CKE93. The GSE43 virus could transmit between chickens, but the CKE93 could not transmit between chickens by naïve contact. Therefore, different clades of H5N1 AIVs possessed variable pathogenicities and transmission abilities among chickens. Our study contributes to knowledge of pathogenic variations of prevalent H5N1 viruses. PMID:28770175

  13. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Somanathan Pillai, Smitha; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  14. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, D. E.; Suarez, D. L.; Senne, D. A.; Pedersen, J. C.; Killian, M. L.; Pasick, J.; Handel, K.; Pillai, S. P. S.; Lee, C. -W.; Stallknecht, D.; Slemons, R.; Ip, H. S.; Deliberto, T.

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10 5.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  15. Phylogeny, Pathogenicity, and Transmission of H5N1 Avian Influenza Viruses in Chickens.

    PubMed

    Cui, Jin; Qu, Nannan; Guo, Yang; Cao, Lan; Wu, Siyu; Mei, Kun; Sun, Hailiang; Lu, Yiliang; Qin, Zhifeng; Jiao, Peirong; Liao, Ming

    2017-01-01

    We analyzed five H5N1 avian influenza viruses (AIVs) isolated from different birds in 2012 in China. Based on whole-genome sequences, we divided the viruses into four genotypes. The DKE26, GSE43, and DKE53 viruses belonged to Genotypes 1-3, respectively. The CKE93 and CKE96 viruses were classified into Genotype 4. Genotypes 1-3 correspond to the viruses containing the HA gene of clade 2.3.2, and Genotype 4 is the virus that bears the HA gene of clade 7.2. To better understand the pathogenicity and transmission of the viruses, we infected chickens with 10(3) EID50/0.1 ml GSE43 (clade 2.3.2) or CKE93 (clade 7.2) virus. Our results revealed that 6 of 7 specific-pathogen-free (SPF) chickens inoculated with GSE43 virus were dead before 7-day post-infection, but all the SPF chickens inoculated with CKE93 virus survived the infection. Both the GSE43 and CKE93 viruses replicated systemically in chickens. The virus titers of GSE43 virus in tested organs were obviously higher than those of CKE93 virus. Our results revealed that the pathogenicity and replication of GSE43 in chickens was much higher than those of CKE93. The GSE43 virus could transmit between chickens, but the CKE93 could not transmit between chickens by naïve contact. Therefore, different clades of H5N1 AIVs possessed variable pathogenicities and transmission abilities among chickens. Our study contributes to knowledge of pathogenic variations of prevalent H5N1 viruses.

  16. Characterization of Low-Pathogenicity H5N1 Avian Influenza Viruses from North America▿

    PubMed Central

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Pillai, Smitha P. Somanathan; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage. PMID:17728231

  17. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America.

    PubMed

    Spackman, Erica; Swayne, David E; Suarez, David L; Senne, Dennis A; Pedersen, Janice C; Killian, Mary Lea; Pasick, John; Handel, Katherine; Pillai, Smitha P Somanathan; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S; Deliberto, Tom

    2007-11-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10(5.3) and 10(7.5) 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  18. Application of reverse genetics for producing attenuated vaccine strains against highly pathogenic avian influenza viruses.

    PubMed

    Uchida, Yuko; Takemae, Nobuhiro; Saito, Takehiko

    2014-08-01

    In this study, reverse genetics was applied to produce vaccine candidate strains against highly pathogenic avian influenza viruses (HPAIVs) of the H5N1 subtype. The H5 subtype vaccine strains were generated by a reverse genetics method in a biosafety level 2 facility. The strain contained the HA gene from the H5N1 subtype HPAIV attenuated by genetic modification at the cleavage site, the NA gene derived from the H5N1 subtype HPAI or the H5N3 subtype of avian influenza virus and internal genes from A/Puerto Rico/8/34. Vaccination with an inactivated recombinant virus with oil-emulsion completely protected chickens from a homologous viral challenge with a 640 HAU or 3,200 HAU/vaccination dose. Vaccination with a higher dose of antigen, 3,200 HAU, was effective at increasing survival and efficiently reduced viral shedding even when challenged by a virus of a different HA clade. The feasibility of differentiation of infected from vaccinated animals (DIVA) was demonstrated against a challenge with H5N1 HPAIVs when the recombinant H5N3 subtype viruses were used as the antigens of the vaccine. Our study demonstrated that the use of reverse genetics would be an option to promptly produce an inactivated vaccine with better matching of antigenicity to a circulating strain.

  19. Adaptive Heterosubtypic Immunity to Low Pathogenic Avian Influenza Viruses in Experimentally Infected Mallards

    PubMed Central

    Segovia, Karen M.; Stallknecht, David E.; Kapczynski, Darrell R.; Stabler, Lisa; Berghaus, Roy D.; Fotjik, Alinde; Latorre-Margalef, Neus; França, Monique S.

    2017-01-01

    Mallards are widely recognized as reservoirs for Influenza A viruses (IAV); however, host factors that might prompt seasonality and trends in subtype diversity of IAV such as adaptive heterosubtypic immunity (HSI) are not well understood. To investigate this, we inoculated mallards with a prevailing H3N8 low pathogenic avian influenza virus (LPAIV) subtype in waterfowl to determine if prior infection with this virus would be protective against heterosubtypic infections with the H4N6, H10N7 and H14N5 LPAIV subtypes after one, two and three months, respectively. Also, we investigated the effect of cumulative immunity after sequential inoculation of mallards with these viruses in one-month intervals. Humoral immunity was assessed by microneutralization assays using a subset of representative LPAIV subtypes as antigens. Our results indicate that prior inoculation with the H3N8 virus confers partial protective immunity against subsequent heterosubtypic infections with the robustness of HSI related to the phylogenetic similarity of the HA protein of the strains used. Furthermore, induced HSI was boosted and followed by repeated exposure to more than one LPAIV subtype. Our findings provide further information on the contributions of HSI and its role in the dynamics of IAV subtype diversity in mallards. PMID:28107403

  20. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    USGS Publications Warehouse

    Reeves, Andrew B.; Pearce, John M.; Ramey, Andy M.; Meixell, Brandt; Runstadler, Jonathan A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4 years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas Americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99 percent identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10 km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9 days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America.

  1. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    USGS Publications Warehouse

    Reeves, A.B.; Pearce, J.M.; Ramey, A.M.; Meixell, B.W.; Runstadler, J.A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4. years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99% identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10. km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9. days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America. ?? 2011.

  2. Updated values for molecular diagnosis for highly pathogenic avian influenza virus.

    PubMed

    Sakurai, Akira; Shibasaki, Futoshi

    2012-08-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 strain pose a pandemic threat. H5N1 strain virus is extremely lethal and contagious for poultry. Even though mortality is 59% in infected humans, these viruses do not spread efficiently between humans. In 1997, an outbreak of H5N1 strain with human cases occurred in Hong Kong. This event highlighted the need for rapid identification and subtyping of influenza A viruses (IAV), not only to facilitate surveillance of the pandemic potential of avian IAV, but also to improve the control and treatment of infected patients. Molecular diagnosis has played a key role in the detection and typing of IAV in recent years, spurred by rapid advances in technologies for detection and characterization of viral RNAs and proteins. Such technologies, which include immunochromatography, quantitative real-time PCR, super high-speed real-time PCR, and isothermal DNA amplification, are expected to contribute to faster and easier diagnosis and typing of IAV.

  3. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1

    PubMed Central

    Zhang, L.; Guo, Z. W.; Bridge, E. S.; Li, Y. M.; Xiao, X. M.

    2016-01-01

    SUMMARY Within China’s Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region’s unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region. PMID:23398949

  4. Updated Values for Molecular Diagnosis for Highly Pathogenic Avian Influenza Virus

    PubMed Central

    Sakurai, Akira; Shibasaki, Futoshi

    2012-01-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 strain pose a pandemic threat. H5N1 strain virus is extremely lethal and contagious for poultry. Even though mortality is 59% in infected humans, these viruses do not spread efficiently between humans. In 1997, an outbreak of H5N1 strain with human cases occurred in Hong Kong. This event highlighted the need for rapid identification and subtyping of influenza A viruses (IAV), not only to facilitate surveillance of the pandemic potential of avian IAV, but also to improve the control and treatment of infected patients. Molecular diagnosis has played a key role in the detection and typing of IAV in recent years, spurred by rapid advances in technologies for detection and characterization of viral RNAs and proteins. Such technologies, which include immunochromatography, quantitative real-time PCR, super high-speed real-time PCR, and isothermal DNA amplification, are expected to contribute to faster and easier diagnosis and typing of IAV. PMID:23012622

  5. The role of nuclear NS1 protein in highly pathogenic H5N1 influenza viruses.

    PubMed

    Mok, Bobo Wing-Yee; Liu, Honglian; Chen, Pin; Liu, Siwen; Lau, Siu-Ying; Huang, Xiaofeng; Liu, Yen-Chin; Wang, Pui; Yuen, Kwok-Yung; Chen, Honglin

    2017-09-10

    The non-structural protein (NS1) of influenza A viruses (IAV) performs multiple functions during viral infection. NS1 contains two nuclear localization signals (NLS): NLS1 and NLS2. The NS1 protein is located predominantly in the nucleus during the early stages of infection and subsequently exported to the cytoplasm. A nonsense mutation that results in a large deletion in the carboxy-terminal region of the NS1 protein that contains the NLS2 domain was found in some IAV subtypes, including highly pathogenic avian influenza (HPAI) H7N9 and H5N1 viruses. We introduced different mutations into the NLS domains of NS1 proteins in various strains of IAV, and demonstrated that mutation of the NLS2 region in the NS1 protein of HPAI H5N1 viruses severely affects its nuclear localization pattern. H5N1 viruses expressing NS1 protein that is unable to localize to the nucleus are less potent in antagonizing cellular antiviral responses than viruses expressing wild-type NS1. However, no significant difference was observed with respect to viral replication and pathogenesis. In contrast, the replication and antiviral defenses of H1N1 viruses are greatly attenuated when nuclear localization of the NS1 protein is blocked. Our data reveals a novel functional plasticity for NS1 proteins among different IAV subtypes. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. The transmissibility of highly pathogenic avian influenza in commercial poultry in industrialised countries.

    PubMed

    Garske, Tini; Clarke, Paul; Ghani, Azra C

    2007-04-04

    With the increased occurrence of outbreaks of H5N1 worldwide there is concern that the virus could enter commercial poultry farms with severe economic consequences. We analyse data from four recent outbreaks of highly pathogenic avian influenza (HPAI) in commercial poultry to estimate the farm-to-farm reproductive number for HPAI. The reproductive number is a key measure of the transmissibility of HPAI at the farm level because it can be used to evaluate the effectiveness of the control measures. In these outbreaks the mean farm-to-farm reproductive number prior to controls ranged from 1.1 to 2.4, with the maximum farm-based reproductive number in the range 2.2 to 3.2. Enhanced bio-security, movement restrictions and prompt isolation of the infected farms in all four outbreaks substantially reduced the reproductive number, but it remained close to the threshold value 1 necessary to ensure the disease will be eradicated. Our results show that depending on the particular situation in which an outbreak of avian influenza occurs, current controls might not be enough to eradicate the disease, and therefore a close monitoring of the outbreak is required. The method we used for estimating the reproductive number is straightforward to implement and can be used in real-time. It therefore can be a useful tool to inform policy decisions.

  7. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1.

    PubMed

    Zhang, L; Guo, Z W; Bridge, E S; Li, Y M; Xiao, X M

    2013-11-01

    Within China's Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region's unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region.

  8. Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin

    PubMed Central

    Nao, Naganori; Yamagishi, Junya; Miyamoto, Hiroko; Igarashi, Manabu; Manzoor, Rashid; Ohnuma, Aiko; Tsuda, Yoshimi; Furuyama, Wakako; Shigeno, Asako; Kajihara, Masahiro; Kishida, Noriko; Yoshida, Reiko

    2017-01-01

    ABSTRACT Highly pathogenic avian influenza viruses with H5 and H7 hemagglutinin (HA) subtypes evolve from low-pathogenic precursors through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been observed to occur naturally only in these HA subtypes, little is known about the genetic basis for the acquisition of the polybasic HA cleavage site. Here we show that consecutive adenine residues and a stem-loop structure, which are frequently found in the viral RNA region encoding amino acids around the cleavage site of low-pathogenic H5 and H7 viruses isolated from waterfowl reservoirs, are important for nucleotide insertions into this RNA region. A reporter assay to detect nontemplated nucleotide insertions and deep-sequencing analysis of viral RNAs revealed that an increased number of adenine residues and enlarged stem-loop structure in the RNA region accelerated the multiple adenine and/or guanine insertions required to create codons for basic amino acids. Interestingly, nucleotide insertions associated with the HA cleavage site motif were not observed principally in the viral RNA of other subtypes tested (H1, H2, H3, and H4). Our findings suggest that the RNA editing-like activity is the key mechanism for nucleotide insertions, providing a clue as to why the acquisition of the polybasic HA cleavage site is restricted to the particular HA subtypes. PMID:28196963

  9. Highly pathogenic avian influenza virus subtype H5N1 in Mute swans in the Czech Republic.

    PubMed

    Nagy, Alexander; Machova, Jirina; Hornickova, Jitka; Tomci, Miroslav; Nagl, Ivan; Horyna, Bedrich; Holko, Ivan

    2007-02-25

    In order to determine the actual prevalence of avian influenza viruses (AIV) in wild birds in the Czech Republic extensive surveillance was carried out between January and April 2006. A total of 2101 samples representing 61 bird species were examined for the presence of influenza A by using PCR, sequencing and cultivation on chicken embryos. AIV subtype H5N1 was detected in 12 Mute swans (Cygnus olor). The viruses were determined as HPAI (highly pathogenic avian influenza) and the hemagglutinin sequence was closely similar to A/mallard/Italy/835/06 and A/turkey/Turkey/1194/05. Following the first H5N1 case, about 300 wild birds representing 33 species were collected from the outbreak region and tested for the presence of AIV without any positive result. This is the first report of highly pathogenic avian influenza subtype H5N1 in the Czech Republic. The potential role of swan as an effective vector of avian influenza virus is also discussed.

  10. Host immune responses of ducks infected with H5N1 highly pathogenic avian influenza viruses of different pathogenicities.

    PubMed

    Wei, Liangmeng; Jiao, Peirong; Song, Yafen; Cao, Lan; Yuan, Runyu; Gong, Lang; Cui, Jin; Zhang, Shuo; Qi, Wenbao; Yang, Su; Liao, Ming

    2013-10-25

    Our previous studies have illustrated three strains of duck-origin H5N1 highly pathogenic avian influenza viruses (HPAIVs) had varying levels of pathogenicity in ducks (Sun et al., 2011). However, the host immune response of ducks infected with those of H5N1 HPAIVs was unclear. Here, we compared viral distribution and mRNA expression of immune-related genes in ducks following infection with the two HPAIV (A/Duck/Guangdong/212/2004, DK212 and A/Duck/Guangdong/383/2008, DK383). DK383 could replicate in the tested tissue of ducks (brain, spleen, lungs, cloacal bursa, kidney, and pancreas) more rapid and efficiently than DK212 at 1 and 2 days post-inoculation. Quantitative real-time PCR analysis showed that the expression levels of TLR3, IL-6, IL-8, and MHC class II in brains were higher than those of respective genes in lungs during the early stage of post infection. Furthermore, the expression levels of IL-6 and IL-8 in the brain of ducks following infection with DK383 were remarkably higher than those of ducks infected with DK212, respectively. Our results suggest that the shift in the H5N1 HPAIVs to increased virulence in ducks may be associated with efficient and rapid replication of the virus, accompanied by early destruction of host immune responses. These data are helpful to understand the underlying mechanism of the different outcome of H5N1 HPAIVs infection in ducks. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. High-pathogenicity avian influenza virus in the reproductive tract of chickens.

    PubMed

    Sá e Silva, M; Rissi, D R; Pantin-Jackwood, M; Swayne, D E

    2013-11-01

    Infection with high-pathogenicity avian influenza virus (HPAIV) has been associated with a wide range of clinical manifestations in poultry, including severe depression in egg production and isolation of HPAIV from eggs laid by infected hens. To evaluate the pathobiology in the reproductive tract of chickens, adult hens were inoculated intranasally with 3 HPAIV strains. All 3 strains induced lesions in the reproductive tract 36 to 72 hours after inoculation. Positive immunostaining was observed in all segments of the reproductive tract, occurring predominantly in stromal cells and superficial germinal epithelium of the ovary, in mucosal epithelial cells and less often glandular epithelium throughout the oviduct, and in vascular endothelium. This study generates important data and explains previously reported virus isolation from yolk, due to ovarian virus replication, and virus recovery from albumin, due to virus replication in epithelial cells in several segments of the oviduct.

  12. Modeling highly pathogenic avian influenza transmission in wild birds and poultry in West Bengal, India.

    PubMed

    Pandit, Pranav S; Bunn, David A; Pande, Satish A; Aly, Sharif S

    2013-01-01

    Wild birds are suspected to have played a role in highly pathogenic avian influenza (HPAI) H5N1 outbreaks in West Bengal. Cluster analysis showed that H5N1 was introduced in West Bengal at least 3 times between 2008 and 2010. We simulated the introduction of H5N1 by wild birds and their contact with poultry through a stochastic continuous-time mathematical model. Results showed that reducing contact between wild birds and domestic poultry, and increasing the culling rate of infected domestic poultry communities will reduce the probability of outbreaks. Poultry communities that shared habitat with wild birds or those indistricts with previous outbreaks were more likely to suffer an outbreak. These results indicate that wild birds can introduce HPAI to domestic poultry and that limiting their contact at shared habitats together with swift culling of infected domestic poultry can greatly reduce the likelihood of HPAI outbreaks.

  13. Modeling highly pathogenic avian influenza transmission in wild birds and poultry in West Bengal, India

    PubMed Central

    Pandit, Pranav S.; Bunn, David A.; Pande, Satish A.; Aly, Sharif S.

    2013-01-01

    Wild birds are suspected to have played a role in highly pathogenic avian influenza (HPAI) H5N1 outbreaks in West Bengal. Cluster analysis showed that H5N1 was introduced in West Bengal at least 3 times between 2008 and 2010. We simulated the introduction of H5N1 by wild birds and their contact with poultry through a stochastic continuous-time mathematical model. Results showed that reducing contact between wild birds and domestic poultry, and increasing the culling rate of infected domestic poultry communities will reduce the probability of outbreaks. Poultry communities that shared habitat with wild birds or those indistricts with previous outbreaks were more likely to suffer an outbreak. These results indicate that wild birds can introduce HPAI to domestic poultry and that limiting their contact at shared habitats together with swift culling of infected domestic poultry can greatly reduce the likelihood of HPAI outbreaks. PMID:23846233

  14. Psychosocial effects associated with highly pathogenic avian influenza (H5N1) in Nigeria.

    PubMed

    Fasina, Oludayo F; Jonah, Godman E; Pam, Victoria; Milaneschi, Yuri; Gostoli, Sara; Rafanelli, Chiara

    2010-01-01

    Highly pathogenic avian influenza H5N1 (HPAI H5N1) infected poultry in Nigeria in 2006. The outbreaks caused significant economic losses and had serious zoonotic repercussions. The outbreaks have also had psychosocial effects on Nigerian farmers. To date, empirical data on the effect of outbreaks on humans are scarce. In this study, field data on HPAI H5N1 in Nigeria were analysed. Although only one human case leading to death was reported in Nigeria, the fact that HPAI H5N1 caused a human death created a disruption in social order and in the well-being of farmers (stress, altered livelihood and trauma) and affected the rural economy. The implication of the above on health communication, the importance of successful control measures in poultry and policy implementation are stressed. Further studies are encouraged.

  15. Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages co-circulating in Egypt.

    PubMed

    Watanabe, Yohei; Ibrahim, Madiha S; Ellakany, Hany F; Kawashita, Norihito; Daidoji, Tomo; Takagi, Tatsuya; Yasunaga, Teruo; Nakaya, Takaaki; Ikuta, Kazuyoshi

    2012-10-01

    Highly pathogenic avian influenza virus H5N1 has spread across Eurasia and Africa, and outbreaks are now endemic in several countries, including Indonesia, Vietnam and Egypt. Continuous circulation of H5N1 virus in Egypt, from a single infected source, has led to significant genetic diversification with phylogenetically separable sublineages, providing an opportunity to study the impact of genetic evolution on viral phenotypic variation. In this study, we analysed the phylogeny of H5 haemagglutinin (HA) genes in influenza viruses isolated in Egypt from 2006 to 2011 and investigated the effect of conserved amino acid mutations in the HA genes in each of the sublineages on their antigenicity. The analysis showed that viruses in at least four sublineages still persisted in poultry in Egypt as of 2011. Using reverse genetics to generate HA-reassortment viruses with specific HA mutations, we found antigenic drift in the HA in two influenza virus sublineages, compared with the other currently co-circulating influenza virus sublineages in Egypt. Moreover, the two sublineages with significant antigenic drift were antigenically distinguishable. Our findings suggested that phylogenetically divergent H5N1 viruses, which were not antigenically cross-reactive, were co-circulating in Egypt, indicating that there was a problem in using a single influenza virus strain as seed virus to produce influenza virus vaccine in Egypt and providing data for designing more efficacious control strategies in H5N1-endemic areas.

  16. Differential immune response of mallard duck peripheral blood mononuclear cells to two highly pathogenic avian influenza H5N1 viruses with distinct pathogenicity in mallard ducks.

    PubMed

    Cui, Zhu; Hu, Jiao; He, Liang; Li, Qunhui; Gu, Min; Wang, Xiaoquan; Hu, Shunlin; Liu, Huimou; Liu, Wenbo; Liu, Xiaowen; Liu, Xiufan

    2014-02-01

    CK10 and GS10 are two H5N1 highly pathogenic influenza viruses of similar genetic background but differ in their pathogenicity in mallard ducks. CK10 is highly pathogenic whereas GS10 is low pathogenic. In this study, strong inflammatory response in terms of the expression level of several cytokines was observed in mallard duck peripheral blood mononuclear cells (PBMC) infected with CK10 while mild response was triggered in those by GS10 infection. Two remarkable and intense peaks of immune response were induced by CK10 infection within 24 hours (at 8 and 24 hours post infection, respectively) without reducing the virus replication. Our observations indicated that sustained and intense innate immune responses may be central to the high pathogenicity caused by CK10 in ducks.

  17. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012–2016

    PubMed Central

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/Pavo Cristatus/Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~104.3 TCID50. A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the “gene pool” circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic. PMID:28293218

  18. Novel Reassortant H5N6 Influenza A Virus from the Lao People's Democratic Republic Is Highly Pathogenic in Chickens.

    PubMed

    Butler, Jeffrey; Stewart, Cameron R; Layton, Daniel S; Phommachanh, Phouvong; Harper, Jennifer; Payne, Jean; Evans, Ryan M; Valdeter, Stacey; Walker, Som; Harvey, Gemma; Shan, Songhua; Bruce, Matthew P; Rootes, Christina L; Gough, Tamara J; Rohringer, Andreas; Peck, Grantley R; Fardy, Sarah J; Karpala, Adam J; Johnson, Dayna; Wang, Jianning; Douangngeun, Bounlom; Morrissy, Christopher; Wong, Frank Y K; Bean, Andrew G D; Bingham, John; Williams, David T

    2016-01-01

    Avian influenza viruses of H5 subtype can cause highly pathogenic disease in poultry. In March 2014, a new reassortant H5N6 subtype highly pathogenic avian influenza virus emerged in Lao People's Democratic Republic. We have assessed the pathogenicity, pathobiology and immunological responses associated with this virus in chickens. Infection caused moderate to advanced disease in 6 of 6 chickens within 48 h of mucosal inoculation. High virus titers were observed in blood and tissues (kidney, spleen, liver, duodenum, heart, brain and lung) taken at euthanasia. Viral antigen was detected in endothelium, neurons, myocardium, lymphoid tissues and other cell types. Pro-inflammatory cytokines were elevated compared to non-infected birds. Our study confirmed that this new H5N6 reassortant is highly pathogenic, causing disease in chickens similar to that of Asian H5N1 viruses, and demonstrated the ability of such clade 2.3.4-origin H5 viruses to reassort with non-N1 subtype viruses while maintaining a fit and infectious phenotype. Recent detection of influenza H5N6 poultry infections in Lao PDR, China and Viet Nam, as well as six fatal human infections in China, demonstrate that these emergent highly pathogenic H5N6 viruses may be widely established in several countries and represent an emerging threat to poultry and human populations.

  19. H7N9 and other pathogenic avian influenza viruses elicit a three-pronged transcriptomic signature that is reminiscent of 1918 influenza virus and is associated with lethal outcome in mice

    USDA-ARS?s Scientific Manuscript database

    Modulating the host response is a promising approach to treating influenza, a virus whose pathogenesis is determined in part by the host response it elicits. Though the pathogenicity of emerging H7N9 influenza virus has been reported in several animal models, these studies have not included a detai...

  20. Influenza, a One Health paradigm--novel therapeutic strategies to fight a zoonotic pathogen with pandemic potential.

    PubMed

    Ludwig, Stephan; Zell, Roland; Schwemmle, Martin; Herold, Susanne

    2014-10-01

    Influenza virus is a paradigm for a pathogen that frequently crosses the species barrier from animals to humans, causing severe disease in the human population. This ranges from frequent epidemics to occasional pandemic outbreaks with millions of death. All previous pandemics in humans were caused by animal viruses or virus reassortants carrying animal virus genes, underlining that the fight against influenza requires a One Health approach integrating human and veterinary medicine. Furthermore, the fundamental question of what enables a flu pathogen to jump from animals to humans can only be tackled in a transdisciplinary approach between virologists, immunologists and cell biologists. To address this need the German FluResearchNet was established as a first nationwide influenza research network that virtually integrates all national expertise in the field of influenza to unravel viral and host determinants of pathogenicity and species transmission and to explore novel avenues of antiviral intervention. Here we focus on the various novel anti-flu approaches that were developed as part of the FluResearchNet activities.

  1. Newly Emergent Highly Pathogenic H5N9 Subtype Avian Influenza A Virus

    PubMed Central

    Yu, Yang; Wang, Xingbo; Jin, Tao; Wang, Hailong; Si, Weiying; Yang, Hui; Wu, Jiusheng; Yan, Yan; Liu, Guang; Sang, Xiaoyu; Wu, Xiaopeng; Gao, Yuwei; Xia, Xianzhu; Yu, Xinfen; Pan, Jingcao; Gao, George F.

    2015-01-01

    ABSTRACT The novel H7N9 avian influenza virus (AIV) was demonstrated to cause severe human respiratory infections in China. Here, we examined poultry specimens from live bird markets linked to human H7N9 infection in Hangzhou, China. Metagenomic sequencing revealed mixed subtypes (H5, H7, H9, N1, N2, and N9). Subsequently, AIV subtypes H5N9, H7N9, and H9N2 were isolated. Evolutionary analysis showed that the hemagglutinin gene of the novel H5N9 virus originated from A/Muscovy duck/Vietnam/LBM227/2012 (H5N1), which belongs to clade 2.3.2.1. The neuraminidase gene of the novel H5N9 virus originated from human-infective A/Hangzhou/1/2013 (H7N9). The six internal genes were similar to those of other H5N1, H7N9, and H9N2 virus strains. The virus harbored the PQRERRRKR/GL motif characteristic of highly pathogenic AIVs at the HA cleavage site. Receptor-binding experiments demonstrated that the virus binds α-2,3 sialic acid but not α-2,6 sialic acid. Identically, pathogenicity experiments also showed that the virus caused low mortality rates in mice. This newly isolated H5N9 virus is a highly pathogenic reassortant virus originating from H5N1, H7N9, and H9N2 subtypes. Live bird markets represent a potential transmission risk to public health and the poultry industry. IMPORTANCE This investigation confirms that the novel H5N9 subtype avian influenza A virus is a reassortant strain originating from H5N1, H7N9, and H9N2 subtypes and is totally different from the H5N9 viruses reported before. The novel H5N9 virus acquired a highly pathogenic H5 gene and an N9 gene from human-infecting subtype H7N9 but caused low mortality rates in mice. Whether this novel H5N9 virus will cause human infections from its avian host and become a pandemic subtype is not known yet. It is therefore imperative to assess the risk of emergence of this novel reassortant virus with potential transmissibility to public health. PMID:26085150

  2. Lessons from emergence of A/goose/Guangdong/1996-like H5N1 highly pathogenic avian influenza viruses and recent influenza surveillance efforts in southern China.

    PubMed

    Wan, X F

    2012-09-01

    Southern China is proposed as an influenza epicentre. At least two of the three pandemics in the last century, including 1957 and 1968 influenza pandemics, originated from this area. In 1996, A/goose/Guangdong/1/1996 (H5N1), the precursor of currently circulating highly pathogenic H5N1 avian influenza viruses (HPAIVs) was identified in farmed geese in southern China. These H5N1 HPAIVs have been spread across Asia, Europe and Africa and poses a continuous threat to both animal and human health. However, how and where this H5N1 HPAIV emerged are not fully understood. In the past decade, many influenza surveillance efforts have been carried out in southern China, and our understanding of the genetic diversity of non-human influenza A viruses in this area has been much better than ever. Here, the historical and first-hand experimental data on A/goose/Guangdong/1/1996(H5N1)-like HPAIVs are reviewed within the context of the findings from recent surveillance efforts on H5N1 HPAIVs and other non-human influenza A viruses. Such a retrospective recapitulation suggests that long-term and systematic surveillance programmes should continue to be implemented in southern China that the wet markets on the animal-human interface shall be the priority area and that the surveillance on the animal species bridging the interface between wildlife and domestic animal populations and the interface between the aquatics and territories shall be the strengthened.

  3. Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation.

    PubMed

    Pantin-Jackwood, Mary J; Smith, Diane M; Wasilenko, Jamie L; Spackman, Erica

    2012-06-01

    In order to develop better control measures against avian influenza, it is necessary to understand how the virus transmits in poultry. In a previous study in which the infectivity and transmissibility of the pandemic H1N1 influenza virus was examined in different poultry species, we found that no or minimal infection occurred in chicken and turkeys intranasally (IN) inoculated with the virus. However, we demonstrated that the virus can infect laying turkey hens by the intracloacal (IC) and intraoviduct (IO) routes, possibly explaining the drops in egg production observed in turkey breeder farms affected by the virus. Such novel routes of exposure have not been previously examined in chickens and could also explain outbreaks of low pathogenicity avian influenza (LPAI) that cause a decrease in egg production in chicken layers and breeders. In the present study, 46-wk-old specific-pathogen-free chicken layers were infected by the IN, IC, or IO routes with one of two LPAI viruses: a poultry origin virus, A/chicken/CA/1255/02 (H6N2), and a live bird market isolate, A/chicken/NJ/12220/97 (H9N2). Only hens IN inoculated with the H6N2 virus presented mild clinical signs consisting of depression and anorexia. However, a decrease in number of eggs laid was observed in all virus-inoculated groups when compared to control hens. Evidence of infection was found in all chickens inoculated with the H6N2 virus by any of the three routes and the virus transmitted to contact hens. On the other hand, only one or two hens from each of the groups inoculated with the H9N2 virus shed detectable levels of virus, or seroconverted and did not transmit the virus to contacts, regardless of the route of inoculation. In conclusion, LPAI viruses can also infect chickens through other routes besides the IN route, which is considered the natural route of exposure. However, as seen with the H9N2 virus, the infectivity of the virus did not increase when given by these alternate routes.

  4. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    PubMed

    Hagag, Ibrahim Thabet; Mansour, Shimaa M G; Zhang, Zerui; Ali, Ahmed A H; Ismaiel, El-Bakry M; Salama, Ali A; Cardona, Carol J; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  5. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt

    PubMed Central

    Hagag, Ibrahim Thabet; Mansour, Shimaa M. G.; Zhang, Zerui; Ali, Ahmed A. H.; Ismaiel, El-Bakry M.; Salama, Ali A.; Cardona, Carol J.; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  6. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

    PubMed

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-10-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.

  7. Pathogenicity and transmissibility of North American triple reassortant swine influenza A viruses in ferrets.

    PubMed

    Barman, Subrata; Krylov, Petr S; Fabrizio, Thomas P; Franks, John; Turner, Jasmine C; Seiler, Patrick; Wang, David; Rehg, Jerold E; Erickson, Gene A; Gramer, Marie; Webster, Robert G; Webby, Richard J

    2012-01-01

    North American triple reassortant swine (TRS) influenza A viruses have caused sporadic human infections since 2005, but human-to-human transmission has not been documented. These viruses have six gene segments (PB2, PB1, PA, HA, NP, and NS) closely related to those of the 2009 H1N1 pandemic viruses. Therefore, understanding of these viruses' pathogenicity and transmissibility may help to identify determinants of virulence of the 2009 H1N1 pandemic viruses and to elucidate potential human health threats posed by the TRS viruses. Here we evaluated in a ferret model the pathogenicity and transmissibility of three groups of North American TRS viruses containing swine-like and/or human-like HA and NA gene segments. The study was designed only to detect informative and significant patterns in the transmissibility and pathogenicity of these three groups of viruses. We observed that irrespective of their HA and NA lineages, the TRS viruses were moderately pathogenic in ferrets and grew efficiently in both the upper and lower respiratory tracts. All North American TRS viruses studied were transmitted between ferrets via direct contact. However, their transmissibility by respiratory droplets was related to their HA and NA lineages: TRS viruses with human-like HA and NA were transmitted most efficiently, those with swine-like HA and NA were transmitted minimally or not transmitted, and those with swine-like HA and human-like NA (N2) showed intermediate transmissibility. We conclude that the lineages of HA and NA may play a crucial role in the respiratory droplet transmissibility of these viruses. These findings have important implications for pandemic planning and warrant confirmation.

  8. In situ detection of frequent and active infection of human cytomegalovirus in inflammatory abdominal aortic aneurysms: possible pathogenic role in sustained chronic inflammatory reaction.

    PubMed

    Yonemitsu, Y; Nakagawa, K; Tanaka, S; Mori, R; Sugimachi, K; Sueishi, K

    1996-04-01

    Inflammatory abdominal aortic aneurysm (IAAA) is histopathologically characterized by extensive adventitial fibrosis, mononuclear cell infiltration with lymph follicle formation, and severe atheromatous changes in the aneurysmal wall. We previously reported a frequent prevalence and immediate early gene expression of human cytomegalovirus (CMV) in IAAA by solution-phase PCR and reverse transcription PCR, respectively, and suggested that this virus might play a role in chronic inflammatory reaction in IAAA. To evaluate the pathogenic role of CMV infection, the frequency and distribution of CMV infected cells in IAAA were examined by in situ PCR, and compared with those in atherosclerotic aneurysms (AA) and control cases with minimal atherosclerotic changes. Human leukocyte antigen (HLA)-DR was simultaneously evaluated as a marker for immune response related to CMV infection. Immediate early gene expression was also detected by reverse transcription PCR and in situ hybridization, to certify whether the CMV infection in IAAA is active or latent. In the fibrously thickened adventitia of IAAA, CMV infected cells and HLA-DR-positive cells were more frequently encountered than in that of AA and control cases (p < 0.01). CMV infected cells were largely identified as macrophages, fibroblasts, endothelial cells, and lymphocytes. The expression of CMV immediate early mRNA, which suggests an active infection inducing active inflammatory reaction, was detected in most of the macrophages, endothelial cells, and fibroblasts. Our results strongly suggest that frequent and active infection of CMV in IAAA plays a significant role in the induction and acceleration of chronic inflammatory reaction in aortas of IAAA.

  9. Transcription factor regulation and cytokine expression following in vitro infection of primary chicken cell culture with low pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) induced proinflammatory cytokine expression is believed to contribute to the disease pathogenesis following infection. However, there is limited information on the avian immune response to infection with low pathogenic avian influenza virus (LPAIV). To gain a better under...

  10. Differences in innate immune responses to H5N1 highly pathogenic avian influenza virus infection between Pekin, Muscovy and Mallard ducks

    USDA-ARS?s Scientific Manuscript database

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. However, differences in pathogenicity and response to vaccination have been observed between different duck species. In this study we examined the pathogenicity of H5N1 HPAI viru...

  11. Pathogenicity and transmission of H5 highly pathogenic avian influenza clade 2.3.4.4 viruses (H5N8 and H5N2) in domestic waterfowl (Pekin ducks and Chinese geese)

    USDA-ARS?s Scientific Manuscript database

    Domestic ducks and geese are common backyard poultry in many countries, frequently in contact with wild waterfowl, which are natural reservoirs of avian influenza viruses and have played a key role in the spread of Asian-lineage H5N1 highly pathogenic avian influenza (HPAI). In late 2014, a reassor...

  12. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam

    USDA-ARS?s Scientific Manuscript database

    Wild ducks are reservoirs of avian influenza viruses in nature, and usually don’t show signs of disease. However, some Asian lineage H5N1 highly pathogenic avian influenza (HPAI) viruses can cause disease and death in both wild and domestic ducks. The objective of this study was to compare the cli...

  13. Extended transmission of two H5/H7 low pathogenic avian influenza viruses in chickens.

    PubMed

    Claes, G; Lambrecht, B; Dewulf, J; van den Berg, T; Marché, S

    2015-03-01

    Transmission experiments are useful for investigating the mechanisms of low pathogenic notifiable avian influenza virus (LPNAI) transmission. In this study, the hypothesis that inoculation-infected chickens are more infectious than contact-infected chickens was tested. To this end, extended transmission experiments with one H5N2 and one H7N1 LPAIV which had previously been characterized in a series of standard transmission experiments were conducted in specific pathogen-free (SPF) chickens. For the H5N2 LPAIV, the infectivity of contact-infected chickens was similar to the infectivity of inoculated chickens. Despite results from a previous study suggesting the H7N1 LPAIV strain to be similarly infectious to SPF chickens as the H5N2 LPAIV strain, the acquisition of contact-infected chickens proved more difficult for H7N1 LPAIV. It was assumed that this might have been a consequence of the length and timing of the exposure period. In conclusion, for LPNAIVs that first seemed equally infectious, short-term transmissibility may vary considerably.

  14. Epidemiology and ecology of highly pathogenic avian influenza with particular emphasis on South East Asia.

    PubMed

    Martin, V; Sims, L; Lubroth, J; Pfeiffer, D; Slingenbergh, J; Domenech, J

    2006-01-01

    Highly pathogenic avian influenza (HPAI) has been recognised as a serious viral disease of poultry since 1878. The number of recorded outbreaks of HPAI has increased globally in the past 10 years culminating in 2004 with the unprecedented outbreaks of H5N1 HPAI involving at least nine countries in East and South-East Asia. Apart from the geographical extent of these outbreaks and apparent rapid spread, this epidemic has a number of unique features, among which is the role that asymptomatic domestic waterfowl and more particularly free-ranging ducks play in the transmission of highly pathogenic H5N1. Field epidemiological studies have been conducted by the Food and Agriculture Organization and several collaborative centres to explore the factors that could have led to a change from infection to the emergence of widespread disease in 2003-2004 and 2005. Domestic waterfowl, specific farming practices and agro-ecological environments have been identified to play a key role in the occurrence, maintenance and spread of HPAI. Although there are some questions that remain unanswered regarding the origins of the 2004 outbreaks, the current understanding of the ecology and epidemiology of the disease should now lead to the development of adapted targeted surveillance studies and control strategies.

  15. H7N7 Highly Pathogenic Avian Influenza in Poultry Farms in Italy in 2016.

    PubMed

    Mulatti, P; Zecchin, B; Monne, I; Vieira, J T; Dorotea, T; Terregino, C; Lorenzetto, M; Piccolomini, L Loli; Santi, A; Massi, P; Bonfanti, L; Marangon, S

    2017-06-01

    After the H7N7 highly pathogenic (HP) avian influenza (AI) outbreak in 2013, and a single case of H5N8 HPAI in 2014, in April 2016, a H7N7 HPAI virus was detected in northeastern Italy. The case occurred in an organic free-range laying hen farm located in proximity with one of the highest densely populated poultry areas (DPPAs) in Italy. Control measures provided by the Council of the European Union in directive 2005/94/CE were promptly applied, and enhanced surveillance activities were implemented in the DPPAs. On May 16, 2016, a second case was confirmed in a fattening turkey farm within the protection zone of the previous outbreak. Following an epidemiologic inquiry, another turkey farm was considered at risk of transmission and was subjected to preemptive culling. Epidemiologic data and phylogenetic analyses indicated that the virus was likely introduced from wild birds as a low pathogenicity AI strain, through direct contact. The rapid containment of the outbreak proves the level of preparedness of the veterinary public health sector in Italy. Nevertheless, the recurrent introductions from wild birds indicate the need of improving both the biosecurity levels in the DPPA and the surveillance activities in wild birds to quickly detect the presence of AI in the territory.

  16. Influenza virus polymerase: Functions on host range, inhibition of cellular response to infection and pathogenicity.

    PubMed

    Rodriguez-Frandsen, Ariel; Alfonso, Roberto; Nieto, Amelia

    2015-11-02

    The viral polymerase is an essential complex for the influenza virus life cycle as it performs the viral RNA transcription and replication processes. To that end, the polymerase carries out a wide array of functions and associates to a large number of cellular proteins. Due to its importance, recent studies have found numerous mutations in all three polymerase protein subunits contributing to virus host range and pathogenicity. In this review, we will point out viral polymerase polymorphisms that have been associated with virus adaptation to mammalian hosts, increased viral polymerase activity and virulence. Furthermore, we will summarize the current knowledge regarding the new set of proteins expressed from the viral polymerase genes and their contribution to infection. In addition, the mechanisms used by the virus to counteract the cellular immune response in which the viral polymerase complex or its subunits are involved will be highlighted. Finally, the degradative process induced by the viral polymerase on the cellular transcription machinery and its repercussions on virus pathogenicity will be of particular interest. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl

    USGS Publications Warehouse

    Gaidet, N.; Cattoli, G.; Hammoumi, S.; Newman, S.H.; Hagemeijer, W.; Takekawa, John Y.; Cappelle, J.; Dodman, T.; Joannis, T.; Gil, P.; Monne, I.; Fusaro, A.; Capua, I.; Manu, S.; Micheloni, P.; Ottosson, U.; Mshelbwala, J.H.; Lubroth, J.; Domenech, J.; Monicat, F.

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  18. Evidence of Infection by H5N2 Highly Pathogenic Avian Influenza Viruses in Healthy Wild Waterfowl

    PubMed Central

    Hammoumi, Saliha; Newman, Scott H.; Hagemeijer, Ward; Takekawa, John Y.; Cappelle, Julien; Dodman, Tim; Joannis, Tony; Gil, Patricia; Monne, Isabella; Fusaro, Alice; Capua, Ilaria; Manu, Shiiwuua; Micheloni, Pierfrancesco; Ottosson, Ulf; Mshelbwala, John H.; Lubroth, Juan; Domenech, Joseph; Monicat, François

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl. PMID:18704172

  19. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice

    PubMed Central

    Liu, Qingtao; Liu, Yuzhuo; Yang, Jing; Huang, Xinmei; Han, Kaikai; Zhao, Dongmin; Bi, Keran; Li, Yin

    2016-01-01

    H9N2 Avian influenza virus has repeatedly infected humans and other mammals, which highlights the need to determine the pathogenicity and the corresponding mechanism of this virus for mammals. In this study, we found two H9N2 viruses with similar genetic background but with different pathogenicity in mice. The A/duck/Nanjing/06/2003 (NJ06) virus was highly pathogenic for mice, with a 50% mouse lethal dose (MLD50) of 102.83 50% egg infectious dose (EID50), whereas the A/duck/Nanjing/01/1999 (NJ01) virus was low pathogenic for mice, with a MLD50 of >106.81 EID50. Further studies showed that the NJ06 virus grew faster and reached significantly higher titers than NJ01 in vivo and in vitro. Moreover, the NJ06 virus induced more severe lung lesions, and higher levels of inflammatory cellular infiltration and cytokine response in lungs than NJ01 did. However, only 12 different amino acid residues (HA-K157E, NA-A9T, NA-R435K, PB2-T149P, PB2-K627E, PB1-R187K, PA-L548M, PA-M550L, NP-G127E, NP-P277H, NP-D340N, NS1-D171N) were found between the two viruses, and all these residues except for NA-R435K were located in the known functional regions involved in interaction of viral proteins or between the virus and host factors. Summary, our results suggest that multiple amino acid differences may be responsible for the higher pathogenicity of the NJ06 virus for mice, resulting in lethal infection, enhanced viral replication, severe lung lesions, and excessive inflammatory cellular infiltration and cytokine response in lungs. These observations will be helpful for better understanding the pathogenic potential and the corresponding molecular basis of H9N2 viruses that might pose threats to human health in the future. PMID:27867373

  20. CLEC5A-Mediated Enhancement of the Inflammatory Response in Myeloid Cells Contributes to Influenza Virus Pathogenicity In Vivo.

    PubMed

    Teng, Ooiean; Chen, Szu-Ting; Hsu, Tsui-Ling; Sia, Sin Fun; Cole, Suzanne; Valkenburg, Sophie A; Hsu, Tzu-Yun; Zheng, Jian Teddy; Tu, Wenwei; Bruzzone, Roberto; Peiris, Joseph Sriyal Malik; Hsieh, Shie-Liang; Yen, Hui-Ling

    2017-01-01

    Human infections with influenza viruses exhibit mild to severe clinical outcomes as a result of complex virus-host interactions. Induction of inflammatory mediators via pattern recognition receptors may dictate subsequent host responses for pathogen clearance and tissue damage. We identified that human C-type lectin domain family 5 member A (CLEC5A) interacts with the hemagglutinin protein of influenza viruses expressed on lentiviral pseudoparticles through lectin screening. Silencing CLEC5A gene expression, blocking influenza-CLEC5A interactions with anti-CLEC5A antibodies, or dampening CLEC5A-mediated signaling using a spleen tyrosine kinase inhibitor consistently reduced the levels of proinflammatory cytokines produced by human macrophages without affecting the replication of influenza A viruses of different subtypes. Infection of bone marrow-derived macrophages from CLEC5A-deficient mice showed reduced levels of tumor necrosis factor alpha (TNF-α) and IP-10 but elevated alpha interferon (IFN-α) compared to those of wild-type mice. The heightened type I IFN response in the macrophages of CLEC5A-deficient mice was associated with upregulated TLR3 mRNA after treatment with double-stranded RNA. Upon lethal challenges with a recombinant H5N1 virus, CLEC5A-deficient mice showed reduced levels of proinflammatory cytokines, decreased immune cell infiltration in the lungs, and improved survival compared to the wild-type mice, despite comparable viral loads noted throughout the course of infection. The survival difference was more prominent at a lower dose of inoculum. Our results suggest that CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza pathogenicity in vivo and may be considered a therapeutic target in combination with effective antivirals. Well-orchestrated host responses together with effective viral clearance are critical for optimal clinical outcome after influenza infections.

  1. Transforming Growth Factor-β: Activation by Neuraminidase and Role in Highly Pathogenic H5N1 Influenza Pathogenesis

    PubMed Central

    Moser, Lindsey A.; O'Brien, Kevin B.; Cline, Troy D.; Jones, Jeremy C.; Tumpey, Terrence M.; Katz, Jacqueline M.; Kelley, Laura A.; Gauldie, Jack; Schultz-Cherry, Stacey

    2010-01-01

    Transforming growth factor-beta (TGF-β), a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β). We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA) protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3) except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus–infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis. PMID:20949074

  2. Marked endotheliotropism of highly pathogenic avian influenza virus H5N1 following intestinal inoculation in cats.

    PubMed

    Reperant, Leslie A; van de Bildt, Marco W G; van Amerongen, Geert; Leijten, Lonneke M E; Watson, Simon; Palser, Anne; Kellam, Paul; Eissens, Anko C; Frijlink, Hendrik W; Osterhaus, Albert D M E; Kuiken, Thijs

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 can infect mammals via the intestine; this is unusual since influenza viruses typically infect mammals via the respiratory tract. The dissemination of HPAIV H5N1 following intestinal entry and associated pathogenesis are largely unknown. To assess the route of spread of HPAIV H5N1 to other organs and to determine its associated pathogenesis, we inoculated infected chicken liver homogenate directly into the intestine of cats by use of enteric-coated capsules. Intestinal inoculation of HPAIV H5N1 resulted in fatal systemic disease. The spread of HPAIV H5N1 from the lumen of the intestine to other organs took place via the blood and lymphatic vascular systems but not via neuronal transmission. Remarkably, the systemic spread of the virus via the vascular system was associated with massive infection of endothelial and lymphendothelial cells, resulting in widespread hemorrhages. This is unique for influenza in mammals and resembles the pathogenesis of HPAIV infection in terrestrial poultry. It contrasts with the pathogenesis of systemic disease from the same virus following entry via the respiratory tract, where lesions are characterized mainly by necrosis and inflammation and are associated with the presence of influenza virus antigen in parenchymal, not endothelial cells. The marked endotheliotropism of the virus following intestinal inoculation indicates that the pathogenesis of systemic influenza virus infection in mammals may differ according to the portal of entry.

  3. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses.

    PubMed

    Baatartsogt, Tugsbaatar; Bui, Vuong N; Trinh, Dai Q; Yamaguchi, Emi; Gronsang, Dulyatad; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2016-10-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin-Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

  4. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses

    PubMed Central

    BAATARTSOGT, Tugsbaatar; BUI, Vuong N.; TRINH, Dai Q.; YAMAGUCHI, Emi; GRONSANG, Dulyatad; THAMPAISARN, Rapeewan; OGAWA, Haruko; IMAI, Kunitoshi

    2016-01-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin–Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV. PMID:27193820

  5. Molecular surveillance of low pathogenic avian influenza viruses in wild birds across the United States: inferences from the hemagglutinin gene.

    PubMed

    Piaggio, Antoinette J; Shriner, Susan A; VanDalen, Kaci K; Franklin, Alan B; Anderson, Theodore D; Kolokotronis, Sergios-Orestis

    2012-01-01

    A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV) in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV). We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA) diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event), as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.

  6. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail.

    PubMed

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail.

  7. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail

    PubMed Central

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail. PMID:26900963

  8. Evolutionary Analysis of Inter-Farm Transmission Dynamics in a Highly Pathogenic Avian Influenza Epidemic

    PubMed Central

    Bataille, Arnaud; van der Meer, Frank; Stegeman, Arjan; Koch, Guus

    2011-01-01

    Phylogenetic studies have largely contributed to better understand the emergence, spread and evolution of highly pathogenic avian influenza during epidemics, but sampling of genetic data has never been detailed enough to allow mapping of the spatiotemporal spread of avian influenza viruses during a single epidemic. Here, we present genetic data of H7N7 viruses produced from 72% of the poultry farms infected during the 2003 epidemic in the Netherlands. We use phylogenetic analyses to unravel the pathways of virus transmission between farms and between infected areas. In addition, we investigated the evolutionary processes shaping viral genetic diversity, and assess how they could have affected our phylogenetic analyses. Our results show that the H7N7 virus was characterized by a high level of genetic diversity driven mainly by a high neutral substitution rate, purifying selection and limited positive selection. We also identified potential reassortment in the three genes that we have tested, but they had only a limited effect on the resolution of the inter-farm transmission network. Clonal sequencing analyses performed on six farm samples showed that at least one farm sample presented very complex virus diversity and was probably at the origin of chronological anomalies in the transmission network. However, most virus sequences could be grouped within clearly defined and chronologically sound clusters of infection and some likely transmission events between farms located 0.8–13 Km apart were identified. In addition, three farms were found as most likely source of virus introduction in distantly located new areas. These long distance transmission events were likely facilitated by human-mediated transport, underlining the need for strict enforcement of biosafety measures during outbreaks. This study shows that in-depth genetic analysis of virus outbreaks at multiple scales can provide critical information on virus transmission dynamics and can be used to increase

  9. Highly Pathogenic Influenza A(H5N1) Virus Survival in Complex Artificial Aquatic Biotopes

    PubMed Central

    Horm, Viseth Srey; Gutiérrez, Ramona A.; Nicholls, John M.; Buchy, Philippe

    2012-01-01

    Background Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI) H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. Methodology/Principal Findings The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna) relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates) was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. Conclusions/Significance Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs. PMID:22514622

  10. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds.

    PubMed

    Hénaux, Viviane; Samuel, Michael D; Bunck, Christine M

    2010-06-23

    There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1-2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50-60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  11. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds

    USGS Publications Warehouse

    Hénaux, Viviane; Samuel, Michael D.; Bunck, Christine M.

    2010-01-01

    There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  12. Pathogenicity of the Egyptian A/H5N1 avian influenza viruses in chickens.

    PubMed

    Azab, A A; Arafa, A; Selim, A; Hassan, M K; Bazid, A I; Sultan, A H; Hussein, H A; Abdelwhab, E M

    2017-09-01

    Long-term circulation of highly pathogenic avian influenza H5N1 viruses of clade 2.2.1 in Egyptian poultry since February 2006 resulted in the evolution of two distinct clades: 2.2.1.1 represents antigenic-drift variants isolated from vaccinated poultry and 2.2.1.2 that caused the newest upsurge in birds and humans in 2014/2015. In the present study, nine isolates were collected from chickens, ducks and turkeys representing the commercial and backyard sectors during the period 2009-2015. The subtyping was confirmed by hemagglutination inhibition (HI) test, RT-qPCR and sequence analysis. The Mean Death Time (MDT) and Intravenous Pathogenicity Index (IVPI) for all isolates were determined. Sequence analysis of the HA gene sequences of these viruses revealed that two viruses belonged to clade 2.2.1.1 and the rest were clade 2.2.1.2. Antigenic characterisation of the viruses supported the results of the phylogenetic analysis. The MDT of the isolates ranged from 18 to 72 h and the IVPI values ranged from 2.3 to 2.9; viruses of the 2.2.1.1 clade were less virulent than those of the 2.2.1.2 clade. In addition, clade-specific polymorphism in the HA cleavage site was observed. These findings indicate the high and variable pathogenicity of H5N1 viruses of different clades and host-origin in Egypt. The upsurge of outbreaks in poultry in 2014/2015 was probably not due to a shift in virulence from earlier viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Highly Pathogenic Avian Influenza Virus Nucleoprotein Interacts with TREX Complex Adaptor Protein Aly/REF

    PubMed Central

    Balasubramaniam, Vinod R. M. T.; Hong Wai, Tham; Ario Tejo, Bimo; Omar, Abdul Rahman; Syed Hassan, Sharifah

    2013-01-01

    We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport. PMID:24073193

  14. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh

    PubMed Central

    Gerloff, Nancy A.; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S.; Luby, Stephen P.; Wentworth, David E.; Donis, Ruben O.; Sturm-Ramirez, Katharine; Davis, C. Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  15. Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF.

    PubMed

    Balasubramaniam, Vinod R M T; Hong Wai, Tham; Ario Tejo, Bimo; Omar, Abdul Rahman; Syed Hassan, Sharifah

    2013-01-01

    We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.

  16. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh

    SciTech Connect

    Gerloff, Nancy A.; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S.; Luby, Stephen P.; Wentworth, David E.; Donis, Ruben O.; Sturm-Ramirez, Katharine; Davis, C. Todd; Waldenstrom, Jonas

    2016-03-24

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. Here these findings, combined with the seven year

  17. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh

    DOE PAGES

    Gerloff, Nancy A.; Khan, Salah Uddin; Zanders, Natosha; ...

    2016-03-24

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared tomore » publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. Here these findings, combined with the seven

  18. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh.

    PubMed

    Gerloff, Nancy A; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S; Luby, Stephen P; Wentworth, David E; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  19. Low pathogenic influenza A virus activity at avian interfaces in Ohio zoos, 2006-2009.

    PubMed

    Nolting, Jacqueline M; Dennis, Patricia; Long, Lindsey; Holtvoigt, Lauren; Brown, Deniele; King, Mary Jo; Shellbarger, Wynonna; Hanley, Chris; Killian, Mary Lea; Slemons, Richard D

    2013-09-01

    This investigation to examine influenza A virus activity in avian species at four Ohio zoos was initiated to better understand the ecology of avian-origin influenza A (AIV) virus in wild aquatic birds and the possibility of spill-over of such viruses into captive zoo birds, both native and foreign species. Virus isolation efforts resulted in the recovery of three low pathogenic (LP) AIV isolates (one H7N3 and two H3N6) from oral-pharyngeal or cloacal swabs collected from over 1000 zoo birds representing 94 species. In addition, 21 LPAIV isolates possessing H3N6, H4N6, or H7N3 subtype combinations were recovered from 627 (3.3%) environmental fecal samples collected from outdoor habitats accessible to zoo and wild birds. Analysis of oral-pharyngeal and cloacal swabs collected from free-ranging mallards (Anas platyrhynchos) live-trapped at one zoo in 2007 resulted in the recovery of 164 LPAIV isolates (48% of samples) representing five HA and six NA subtypes and at least nine HA-NA combinations. The high frequency of isolate recovery is undoubtedly due to the capture and holding of wild ducks in a common pen before relocation. Serologic analyses using an agar gel immune diffusion assay detected antibodies to the influenza A virus type-specific antigen in 147 of 1237 (11.9%) zoo bird sera and in 14 of 154 (9%) wild mallard sera. Additional analyses of a limited number of zoo bird sera demonstrated HA- and NA-inhibition activity to 15 HA and nine NA subtypes. The spectrum of HA antibodies indicate antibody diversity of AIV infecting zoo birds; however, the contribution of heterologous cross-reactions and steric interference was not ruled out. This proactive investigation documented that antigenically diverse LPAIVs were active in all three components of the avian zoologic-wild bird interfaces at Ohio zoos (zoo birds, the environment, and wild birds). The resulting baseline data provides insight and justification for preventive medicine strategies for zoo birds.

  20. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1).

    PubMed

    Keawcharoen, Juthatip; van Riel, Debby; van Amerongen, Geert; Bestebroer, Theo; Beyer, Walter E; van Lavieren, Rob; Osterhaus, Albert D M E; Fouchier, Ron A M; Kuiken, Thijs

    2008-04-01

    Wild birds have been implicated in the expansion of highly pathogenic avian influenza virus (H5N1) outbreaks across Asia, the Middle East, Europe, and Africa (in addition to traditional transmission by infected poultry, contaminated equipment, and people). Such a role would require wild birds to excrete virus in the absence of debilitating disease. By experimentally infecting wild ducks, we found that tufted ducks, Eurasian pochards, and mallards excreted significantly more virus than common teals, Eurasian wigeons, and gadwalls; yet only tufted ducks and, to a lesser degree, pochards became ill or died. These findings suggest that some wild duck species, particularly mallards, can potentially be long-distance vectors of highly pathogenic avian influenza virus (H5N1) and that others, particularly tufted ducks, are more likely to act as sentinels.

  1. Wild Ducks as Long-Distance Vectors of Highly Pathogenic Avian Influenza Virus (H5N1)

    PubMed Central

    Keawcharoen, Juthatip; van Riel, Debby; van Amerongen, Geert; Bestebroer, Theo; Beyer, Walter E.; van Lavieren, Rob; Osterhaus, Albert D.M.E.; Fouchier, Ron A.M.

    2008-01-01

    Wild birds have been implicated in the expansion of highly pathogenic avian influenza virus (H5N1) outbreaks across Asia, the Middle East, Europe, and Africa (in addition to traditional transmission by infected poultry, contaminated equipment, and people). Such a role would require wild birds to excrete virus in the absence of debilitating disease. By experimentally infecting wild ducks, we found that tufted ducks, Eurasian pochards, and mallards excreted significantly more virus than common teals, Eurasian wigeons, and gadwalls; yet only tufted ducks and, to a lesser degree, pochards became ill or died. These findings suggest that some wild duck species, particularly mallards, can potentially be long-distance vectors of highly pathogenic avian influenza virus (H5N1) and that others, particularly tufted ducks, are more likely to act as sentinels. PMID:18394278

  2. Genetically Different Highly Pathogenic Avian Influenza A(H5N1) Viruses in West Africa, 2015

    PubMed Central

    Tassoni, Luca; Fusaro, Alice; Milani, Adelaide; Lemey, Philippe; Awuni, Joseph Adongo; Sedor, Victoria Bernice; Dogbey, Otilia; Commey, Abraham Nii Okai; Meseko, Clement; Joannis, Tony; Minoungou, Germaine L.; Ouattara, Lassina; Haido, Abdoul Malick; Cisse-Aman, Diarra; Couacy-Hymann, Emmanuel; Dauphin, Gwenaelle; Cattoli, Giovanni

    2016-01-01

    To trace the evolution of highly pathogenic influenza A(H5N1) virus in West Africa, we sequenced genomes of 43 viruses collected during 2015 from poultry and wild birds in 5 countries. We found 2 co-circulating genetic groups within clade 2.3.2.1c. Mutations that may increase adaptation to mammals raise concern over possible risk for humans. PMID:27389972

  3. Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant.

    PubMed

    de Vries, Erik; Guo, Hongbo; Dai, Meiling; Rottier, Peter J M; van Kuppeveld, Frank J M; de Haan, Cornelis A M

    2015-05-01

    In 2014, novel highly pathogenic avian influenza A H5N2, H5N5, H5N6, and H5N8 viruses caused outbreaks in Asia, Europe, and North America. The H5 genes of these viruses form a monophyletic group that evolved from a clade 2.3.4 H5N1 variant. This rapid emergence of new H5Nx combinations is unprecedented in the H5N1 evolutionary history.

  4. Surveillance for Highly Pathogenic Avian Influenza Virus in Wild Birds during Outbreaks in Domestic Poultry, Minnesota, 2015

    PubMed Central

    Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A.; Ip, Hon S.; Vandalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl fecal samples. PMID:27064759

  5. Weak support for disappearance and restricted emergence/persistence of highly pathogenic influenza A in North American waterfowl

    USGS Publications Warehouse

    Ramey, Andy M.; Spackman, Erica; Kim Torchetti, Mia; DeLiberto, Thomas J.

    2016-01-01

    Krauss et al. (1) use lack of detection of highly pathogenic (HP) H5 clade 2.3.4.4 (henceforth "H5") influenza A viruses (IAVs) from >22,000 wild bird samples collected in North America in 2014–2015 to argue that HP H5 IAVs disappeared from waterfowl and that unresolved mechanisms restrict emergence and perpetuation of HP IAVs in natural reservoir species. Here we offer an alternative interpretation.

  6. Highly Pathogenic Avian Influenza Virus (H5N1) in Domestic Poultry and Relationship with Migratory Birds, South Korea

    PubMed Central

    Lee, Youn-Jeong; Choi, Young-Ki; Song, Min-Suk; Jeong, Ok-Mi; Lee, Eun-Kyoung; Jeon, Woo-Jin; Jeong, Wooseog; Joh, Seong-Joon; Choi, Kang-seuk; Her, Moon; ho Lee, Eun; Oh, Tak-Gue; Moon, Ho-Jin; Yoo, Dae-Won; Sung, Moon-Hee; Poo, Haryoung; Kwon, Jun-Hun

    2008-01-01

    During the 2006–2007 winter season in South Korea, several outbreaks of highly pathogenic avian influenza virus (H5N1) were confirmed among domestic poultry and in migratory bird habitats. Phylogenetic analysis showed that all isolates were closely related and that all belong to the A/bar-headed goose/Qinghai/5/2005–like lineage rather than the A/chicken/Korea/ES/2003–like lineage. PMID:18325269

  7. Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017.

    PubMed

    Zhu, Wenfei; Zhou, Jianfang; Li, Zi; Yang, Lei; Li, Xiyan; Huang, Weijuan; Zou, Sumei; Chen, Wenbing; Wei, Hejiang; Tang, Jing; Liu, Liqi; Dong, Jie; Wang, Dayan; Shu, Yuelong

    2017-05-11

    With no or low virulence in poultry, avian influenza A(H7N9) virus has caused severe infections in humans. In the current fifth epidemic wave, a highly pathogenic avian influenza (HPAI) H7N9 virus emerged. The insertion of four amino acids (KRTA) at the haemagglutinin (HA) cleavage site enabled trypsin-independent infectivity of this virus. Although maintaining dual receptor-binding preference, its HA antigenicity was distinct from low-pathogenic avian influenza A(H7N9). The neuraminidase substitution R292K conferred a multidrug resistance phenotype. This article is copyright of The Authors, 2017.

  8. Pathogenicity and tissue tropism of currently circulating highly pathogenic avian influenza A virus (H5N1; clade 2.3.2) in tufted ducks (Aythya fuligula).

    PubMed

    Bröjer, Caroline; van Amerongen, Geert; van de Bildt, Marco; van Run, Peter; Osterhaus, Albert; Gavier-Widén, Dolores; Kuiken, Thijs

    2015-11-18

    Reports describing the isolation of highly pathogenic avian influenza (HPAI) virus (H5N1) clade 2.3.2 in feces from apparently healthy wild birds and the seemingly lower pathogenicity of this clade compared to clade 2.2 in several experimentally infected species, caused concern that the new clade might be maintained in the wild bird population. To investigate whether the pathogenicity of a clade 2.3.2 virus was lower than that of clades previously occurring in free-living wild birds in Europe, four tufted ducks were inoculated with influenza A/duck/HongKong/1091/2011 (H5N1) clade 2.3.2 virus. The ducks were monitored and sampled for virus excretion daily during 4 days, followed by pathologic, immunohistochemical, and virological investigations. The virus produced severe disease as evidenced by clinical signs, presence of marked lesions and abundant viral antigen in several tissues, especially the central nervous system. The study shows that HPAI-H5N1 virus clade 2.3.2 is highly pathogenic for tufted ducks and thus, they are unlikely to maintain this clade in the free-living population or serve as long-distance vectors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Pathogenic potential of North American H7N2 avian influenza virus: a mutagenesis study using reverse genetics.

    PubMed

    Lee, Chang-Won; Lee, Youn-Jeong; Senne, Dennis A; Suarez, David L

    2006-09-30

    An H7N2 subtype avian influenza virus (AIV) first appeared in the live bird marketing system (LBMS) in the Northeastern United States in 1994. Since then this lineage of virus has become the predominant subtype of AIV isolated from the LBMS and has been linked to several costly commercial poultry outbreaks. Concern for this low pathogenicity isolate mutating to the highly pathogenic form has remained high because of the increasing number of basic amino acids at the hemagglutinin (HA) cleavage site, which is known to be associated with increased pathogenicity of AIV. To address the risk of low pathogenic LBMS-lineage H7N2 virus mutating to the highly pathogenic form of the virus, we generated a series of mutant viruses that have changes in the sequence at the HA cleavage site by using plasmid-based reverse genetics. We confirmed that a conserved proline at -5 position from the HA cleavage site could be changed to a basic amino acid, producing a virus with five basic amino acids in a row at the cleavage site, but with no increase in virulence. Increased virulence was only observed when additional basic amino acids were inserted. We also observed that the virus preferred the arginine instead of lysine at the -4 position from the cleavage site to manifest increased virulence both in vitro and in vivo. Using helper virus-based reverse genetics, where only one transcription plasmid expressing a mutated HA vRNA is used, we identified specific HA cleavage site sequences that were preferentially incorporated into the low pathogenic wild-type virus. The resultant reassortant viruses were highly pathogenic in chickens. This study provides additional evidence that H7 avian influenza viruses require an insertional event to become highly pathogenic, as compared to H5 viruses that can become highly pathogenic strictly by mutation or by insertions.

  10. Phylogenetic analysis and pathogenicity of H3 subtype avian influenza viruses isolated from live poultry markets in China

    PubMed Central

    Cui, Hongrui; Shi, Ying; Ruan, Tao; Li, Xuesong; Teng, Qiaoyang; Chen, Hongjun; Yang, Jianmei; Liu, Qinfang; Li, Zejun

    2016-01-01

    H3 subtype influenza A virus is one of the main subtypes that threats both public and animal health. However, the evolution and pathogenicity of H3 avian influenza virus (AIV) circulating in domestic birds in China remain largely unclear. In this study, seven H3 AIVs (four H3N2 and three H3N8) were isolated from poultry in live poultry market (LPM) in China. Phylogenetic analyses of full genomes showed that all viruses were clustered into Eurasian lineage, except N8 genes of two H3N8 isolates fell into North American lineage. Intriguingly, the N8 gene of one H3N8 and PB2, PB1, NP and NS of two H3N2 isolates have close relationship with those of the highly pathogenic H5N8 viruses circulating in Korea and United States, suggesting that the H3-like AIV may contribute internal genes to the highly pathogenic H5N8 viruses. Phylogenetic tree of HA gene and antigenic cross-reactivity results indicated that two antigenically different H3 viruses are circulating in LPM in China. Most of the H3 viruses replicated in mice lung and nasal turbinate without prior adaptation, and the representative H3 viruses infected chickens without causing clinical signs. The reassortment of H3 subtype influenza viruses warrants continuous surveillance in LPM in China. PMID:27270298

  11. Replication of a low-pathogenic avian influenza virus is enhanced by chicken ubiquitin-specific protease 18.

    PubMed

    Tanikawa, Taichiro; Uchida, Yuko; Saito, Takehiko

    2017-09-01

    Previous research revealed the induction of chicken USP18 (chUSP18) in the lungs of chickens infected with highly pathogenic avian influenza viruses (HPAIVs). This activity was correlated with the degree of pathogenicity of the viruses to chickens. As mammalian ubiquitin-specific protease (USP18) is known to remove type I interferon (IFN I)-inducible ubiquitin-like molecules from conjugated proteins and block IFN I signalling, we explored the function of the chicken homologue of USP18 during avian influenza virus infection. With this aim, we cloned chUSP18 from cultured chicken cells and revealed that the putative chUSP18 ORF comprises 1137 bp. Comparative analysis of the predicted aa sequence of chUSP18 with those of human and mouse USP18 revealed relatively high sequence similarity among the sequences, including domains specific for the ubiquitin-specific processing protease family. Furthermore, we found that chUSP18 expression was induced by chicken IFN I, as observed for mammalian USP18. Experiments based on chUSP18 over-expression and depletion demonstrated that chUSP18 significantly enhanced the replication of a low-pathogenic avian influenza virus (LPAIV), but not an HPAIV. Our findings suggest that chUSP18, being similar to mammalian USP18, acts as a pro-viral factor during LPAIV replication in vitro.

  12. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

    PubMed

    Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia

    2017-07-15

    The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors.IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent

  13. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes.

    PubMed

    Bragstad, K; Jørgensen, P H; Handberg, K J; Fomsgaard, A

    2006-11-10

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase genes were closely related to a low pathogenic H5 strain (A/Duck/Denmark/65047/04 H5N2). The neuraminidase and the non-structural genes were closely related to the highly pathogenic H7N7 strains from The Netherlands 2003. The basic polymerase genes 1 and 2 were shared between the Danish H5N7 and H5N2 and the H7N7 from The Netherlands. The nucleoprotein and the matrix genes were closely related to H6 strains. Thus, the new H5N7 subtype share genes with H5, H7 and H6 subtypes and possesses internal genes originating from highly pathogenic strains. The findings emphasize the need for surveillance presumed low pathogenic avian influenza A viruses.

  14. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    PubMed Central

    Haider, N.; Sturm-Ramirez, K.; Khan, S. U.; Rahman, M. Z.; Sarkar, S.; Poh, M. K.; Shivaprasad, H. L.; Kalam, M. A.; Paul, S. K.; Karmakar, P. C.; Balish, A.; Chakraborty, A.; Mamun, A. A.; Mikolon, A. B.; Davis, C. T.; Rahman, M.; Donis, R. O.; Heffelfinger, J. D.; Luby, S. P.; Zeidner, N.

    2015-01-01

    Summary Mortality in ducks and geese caused by highly pathogenic avian influenza A (H5N1) infection had not been previously identified in Bangladesh. In June–July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide

  15. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh.

    PubMed

    Haider, N; Sturm-Ramirez, K; Khan, S U; Rahman, M Z; Sarkar, S; Poh, M K; Shivaprasad, H L; Kalam, M A; Paul, S K; Karmakar, P C; Balish, A; Chakraborty, A; Mamun, A A; Mikolon, A B; Davis, C T; Rahman, M; Donis, R O; Heffelfinger, J D; Luby, S P; Zeidner, N

    2017-02-01

    Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate

  16. Surveillance for highly pathogenic avian influenza in migratory shorebirds at the terminus of the East Asian-Australasian Flyway.

    PubMed

    Langstaff, I G; McKenzie, J S; Stanislawek, W L; Reed, C E M; Poland, R; Cork, S C

    2009-06-01

    To determine if migratory birds arriving in New Zealand in the Southern Hemisphere spring of 2004 were infected with the highly pathogenic avian influenza (AI) virus, H5N1. Cloacal and faecal samples were collected from migratory red knots following their arrival in New Zealand in October 2004. Two species of resident sympatric birds, wrybill and mallard duck, were sampled prior to, and following, the arrival of migratory birds. No AI viruses were isolated from migratory or resident shorebirds. Non-pathogenic AI viruses were isolated from six resident mallard ducks, comprising the endemic subtypes H4 (n=2), H7 (non-pathogenic), H10, and H11 (n=2). Highly pathogenic AI H5N1 virus was not detected in migratory shorebirds or sympatric water birds in the Firth of Thames, New Zealand, in 2004-2005, despite the possible proximity of migratory birds to outbreaks of the disease in East Asia in 2004.

  17. Avian Influenza in Birds

    MedlinePlus

    ... during outbreaks of highly pathogenic avian influenza the economic impact and trade restrictions from a highly pathogenic avian influenza outbreak the possibility that avian influenza A viruses could be transmitted to humans When H5 or H7 avian influenza outbreaks occur ...

  18. Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian influenza virus.

    PubMed

    Zhang, Xiaojian; Chen, Sujuan; Jiang, Yi; Huang, Kai; Huang, Jun; Yang, Da; Zhu, Jingjing; Zhu, Yinbiao; Shi, Shaohua; Peng, Daxin; Liu, Xiufan

    2015-02-25

    The location and number of glycosylation in HA proteins exhibit large variations among H5 subtype avian influenza viruses (AIVs). To investigate the effect of glycosylation in the globular head of HA on the pathogenicity and antigenicity of H5N1 AIVs, seven rescued AIVs differing in their glycosylation patterns (144N, 158N and 169N) within the HA globular head of A/Mallard/Huadong/S/2005 were generated using site directed mutagenesis. Results showed that loss of glycosylation 158N was the prerequisite for H5 AIV binding to the α2,6-linked receptor. Only in conjunction with the removal of the 158N glycosylation, the H5 AIVs harboring both 144N and 169N glycosylations obtained an optimal binding preference to the α2,6-linked receptor. Compared with the wild-type virus, growth of viruses lacking glycosylation at either 158N or 169N was significantly reduced both in MDCK and A549 cells, while replication of viruses with additional glycosylation 144N was significantly promoted. Mutant viruses with loss of 158N or 169N glycosylation sites showed increased pathogenicity, systemic spread and pulmonary inflammation in mice compared to the wild-type H5N1 virus. In addition, chicken studies demonstrated that inactivated de-glycosylation 169N mutant induced cross-reaction HI and neutralization antibody against various clades of H5N1 AIVs. Moreover, this type of glycan pattern vaccine virus provided better cross-protection in chickens compared to wild-type vaccine virus. Thus, the glycosylation alteration of HA should be considered in the global surveillance and vaccine design of H5 subtype AIVs.

  19. Evaluating Surveillance Strategies for the Early Detection of Low Pathogenicity Avian Influenza Infections

    PubMed Central

    Comin, Arianna; Stegeman, Arjan; Marangon, Stefano; Klinkenberg, Don

    2012-01-01

    In recent years, the early detection of low pathogenicity avian influenza (LPAI) viruses in poultry has become increasingly important, given their potential to mutate into highly pathogenic viruses. However, evaluations of LPAI surveillance have mainly focused on prevalence and not on the ability to act as an early warning system. We used a simulation model based on data from Italian LPAI epidemics in turkeys to evaluate different surveillance strategies in terms of their performance as early warning systems. The strategies differed in terms of sample size, sampling frequency, diagnostic tests, and whether or not active surveillance (i.e., routine laboratory testing of farms) was performed, and were also tested under different epidemiological scenarios. We compared surveillance strategies by simulating within-farm outbreaks. The output measures were the proportion of infected farms that are detected and the farm reproduction number (Rh). The first one provides an indication of the sensitivity of the surveillance system to detect within-farm infections, whereas Rh reflects the effectiveness of outbreak detection (i.e., if detection occurs soon enough to bring an epidemic under control). Increasing the sampling frequency was the most effective means of improving the timeliness of detection (i.e., it occurs earlier), whereas increasing the sample size increased the likelihood of detection. Surveillance was only effective in preventing an epidemic if actions were taken within two days of sampling. The strategies were not affected by the quality of the diagnostic test, although performing both serological and virological assays increased the sensitivity of active surveillance. Early detection of LPAI outbreaks in turkeys can be achieved by increasing the sampling frequency for active surveillance, though very frequent sampling may not be sustainable in the long term. We suggest that, when no LPAI virus is circulating yet and there is a low risk of virus introduction, a

  20. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    PubMed

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4) genome copies/m(3). Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3) that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2) varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.

  1. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents.

    PubMed

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-09-01

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  2. Scavenging Ducks and Transmission of Highly Pathogenic Avian Influenza, Java, Indonesia

    PubMed Central

    Wibawa, Hendra; Morton, John; Usman, Tri Bhakti; Junaidi, Akhmad; Meers, Joanne

    2010-01-01

    In Java, Indonesia, during March 2007–March 2008, 96 farms with scavenging ducks that were not vaccinated against highly pathogenic avian influenza (HPAI) were monitored bimonthly. Bird-level (prevalence among individual birds) H5 seroprevalence was 2.6% for ducks and 0.5% for chickens in contact with ducks. At least 1 seropositive bird was detected during 19.5% and 2.0% of duck- and chicken-flock visits, respectively. Duck flocks were 12.4× more likely than chicken flocks to have seropositive birds. During 21.4% of farm visits, ≥1 sampled duck was H5 seropositive when all sampled in-contact chickens were seronegative. Subtype H5 virus was detected during 2.5% of duck-flock visits and 1.5% of chicken-flock visits. When deaths from HPAI infection occurred, H5 virus shedding occurred in apparently healthy birds on 68.8% of farms. Of 180 poultry deaths investigated, 43.9% were attributed to H5 virus. These longitudinal study results indicate that ducks are a source of infection for chickens and, potentially, for humans. PMID:20678318

  3. A simulation model for low-pathogenicity avian influenza viruses in dabbling ducks in Europe.

    PubMed

    Guberti, V; Scremin, M; Busani, L; Bonfanti, L; Terregino, C

    2007-03-01

    Anseriformes are the reservoir of low-pathogenicity avian influenza viruses (LPAIV). Studies have shown a high LPAIV prevalence associated with low antibody detection in a wild duck population in northern European countries, whereas in winter areas (Mediterranean basin), low viral detection and high seroprevalence were observed. In order to gain insight into the role played by both population recruitment and migration on AIV persistence, an epidemiological model was developed. A susceptible, infectious and removed (immune or dead)-individuals model coupling population and infection dynamics was developed to simulate LPAIV circulation in dabbling ducks throughout the entire year. The transmission coefficient (beta) was calculated using the original dataset of published works, whereas dabbling duck demographic parameters were obtained from the literature. The estimated host density threshold for virus persistence is 380 susceptible individuals per day whereas the critical community size needed for maintaining the virus throughout the winter has been estimated to be about 1200 individuals. The model showed peaks of viral prevalence after nesting and during the moult period because of population recruitment and high host density, respectively. During the winter and spring periods, the viruses reach the minimal endemic level and local extinction is highly probable because of stochastic phenomena, respectively 80% and 90% of probabilities. The most sensitive parameters of the model are the recruitment rate of young susceptible animals and the duration of virus shedding.

  4. Extent of Antigenic Cross-Reactivity among Highly Pathogenic H5N1 Influenza Viruses▿

    PubMed Central

    Ducatez, Mariette F.; Cai, Zhipeng; Peiris, Malik; Guan, Yi; Ye, Zhiping; Wan, Xiu-Feng; Webby, Richard J.

    2011-01-01

    Highly pathogenic H5N1 avian influenza viruses emerged in 1996 and have since evolved so extensively that a single strain can no longer be used as a prepandemic vaccine or diagnostic reagent. We therefore sought to identify the H5N1 strains that may best serve as cross-reactive diagnostic reagents. We compared the cross-reactivity of 27 viruses of clades 0, 1, 2.1, 2.2, 2.3, and 4 and of four computationally designed ancestral H5N1 strains by hemagglutination inhibition (HI) and microneutralization (MN) assays. Antigenic cartography was used to analyze the large quantity of resulting data. Cartographs of HI titers with chicken red blood cells were similar to those of MN titers, but HI with horse red blood cells decreased antigenic distances among the H5N1 strains studied. Thus, HI with horse red blood cells seems to be the assay of choice for H5N1 diagnostics. Whereas clade 2.2 antigens were able to detect antibodies raised to most of the tested H5N1 viruses (and clade 2.2-specific antisera detected most of the H5N1 antigens), ancestral strain A exhibited the widest reactivity pattern and hence was the best candidate diagnostic reagent for broad detection of H5N1 strains. PMID:21832017

  5. Highly Pathogenic Avian Influenza Virus (H5N1) in Frozen Duck Carcasses, Germany, 2007

    PubMed Central

    Harder, Timm C.; Teuffert, Jürgen; Starick, Elke; Gethmann, Jörn; Grund, Christian; Fereidouni, Sasan; Durban, Markus; Bogner, Karl-Heinz; Neubauer-Juric, Antonie; Repper, Reinhard; Hlinak, Andreas; Engelhardt, Andreas; Nöckler, Axel; Smietanka, Krzysztof; Minta, Zenon; Kramer, Matthias; Globig, Anja; Mettenleiter, Thomas C.; Conraths, Franz J.

    2009-01-01

    We conducted phylogenetic and epidemiologic analyses to determine sources of outbreaks of highly pathogenic avian influenza virus (HPAIV), subtype H5N1, in poultry holdings in 2007 in Germany, and a suspected incursion of HPAIV into the food chain through contaminated deep-frozen duck carcasses. In summer 2007, HPAIV (H5N1) outbreaks in 3 poultry holdings in Germany were temporally, spatially, and phylogenetically linked to outbreaks in wild aquatic birds. Detection of HPAIV (H5N1) in frozen duck carcass samples of retained slaughter batches of 1 farm indicated that silent infection had occurred for some time before the incidental detection. Phylogenetic analysis established a direct epidemiologic link between HPAIV isolated from duck meat and strains isolated from 3 further outbreaks in December 2007 in backyard chickens that had access to uncooked offal from commercial deep-frozen duck carcasses. Measures that will prevent such undetected introduction of HPAIV (H5N1) into the food chain are urgently required. PMID:19193272

  6. The avian and mammalian host range of highly pathogenic avian H5N1 influenza.

    PubMed

    Kaplan, Bryan S; Webby, Richard J

    2013-12-05

    Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range.

  7. H9N2 low pathogenic avian influenza in Pakistan (2012–2015)

    PubMed Central

    Lee, Dong-Hun; Swayne, David E.; Sharma, Poonam; Rehmani, Shafqat Fatima; Wajid, Abdul; Suarez, David L.; Afonso, Claudio L.

    2016-01-01

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have been reported since 2010. Because novel genotypes of Pakistani H9N2 contain mammalian host-specific markers, recent surveillance is essential to better understand any continuing public health risk. Here the authors report on four new H9N2 LPAIVs, three from 2015 and one from 2012. All of the viruses tested in this study belonged to Middle East B genetic group of G1 lineage and had PAKSSR/G motif at the haemagglutinin cleavage site. The mammalian host-specific markers at position 226 in the haemagglutinin receptor-binding site and internal genes suggest that Pakistan H9N2 viruses are still potentially infectious for mammals. Continued active surveillance in poultry and mammals is needed to monitor the spread and understand the potential for zoonotic infection by these H9N2 LPAIVs. PMID:27403327

  8. Animal health policy principles for highly pathogenic avian influenza: shared experience from China and Canada.

    PubMed

    Stephen, C; Ninghui, L; Yeh, F; Zhang, L

    2011-08-01

    Animal health policy for highly pathogenic avian influenza (HPAI) must, for the time being, be based on expert opinion and shared international experience. We used the intellectual capital and knowledge of experienced Chinese and Canadian practitioners and policy makers to inform policy options for China and find shared policy elements applicable to both countries. No peer-reviewed comprehensive evaluations or systematic regulatory impact assessments of animal health policies were found. Sixteen guiding policy principles emerged from our thematic analysis of Chinese and Canadian policies. We provide a list of shared policy goals, targets and elements for HPAI preparedness, response and recovery. Policy elements clustered in a manner consistent with core public health competencies. Complex situations like HPAI require complex and adaptive policies, yet policies that cross jurisdictions and are fully integrated across agencies are rare. We encourage countries to develop or deploy capacity to undertake and publish regulatory impact assessments and policy evaluation to identify policy needs and provide a basis for evidence-based policy development.

  9. Risk for Low Pathogenicity Avian Influenza Virus on Poultry Farms, the Netherlands, 2007–2013

    PubMed Central

    Bouwstra, Ruth; Gonzales, Jose L.; de Wit, Sjaak; Stahl, Julia; Fouchier, Ron A.M.

    2017-01-01

    Using annual serologic surveillance data from all poultry farms in the Netherlands during 2007–2013, we quantified the risk for the introduction of low pathogenicity avian influenza virus (LPAIV) in different types of poultry production farms and putative spatial-environmental risk factors: distance from poultry farms to clay soil, waterways, and wild waterfowl areas. Outdoor-layer, turkey (meat and breeder), and duck (meat and breeder) farms had a significantly higher risk for LPAIV introduction than did indoor-layer farms. Except for outdoor-layer, all poultry types (i.e., broilers, chicken breeders, ducks, and turkeys) are kept indoors. For all production types, LPAIV risk decreased significantly with increasing distance to medium-sized waterways and with increasing distance to areas with defined wild waterfowl, but only for outdoor-layer and turkey farms. Future research should focus not only on production types but also on distance to waterways and wild bird areas. In addition, settlement of new poultry farms in high-risk areas should be discouraged. PMID:28820139

  10. Identifying risk factors of highly pathogenic avian influenza (H5N1 subtype) in Indonesia

    PubMed Central

    Leo, Loth; Marius, Gilbert; Jianmei, Wu; Christina, Czarnecki; Muhammad, Hidayat; Xiangming, Xiao

    2016-01-01

    Highly pathogenic avian influenza (HPAI), subtype H5N1, was first officially reported in Indonesia in 2004. Since then the disease has spread and is now endemic in large parts of the country. This study investigated the statistical relationship between a set of risk factors and the presence or absence of HPAI in Indonesia during 2006 and 2007. HPAI was evaluated through participatory disease surveillance (PDS) in backyard village chickens (the study population), and risk factors included descriptors of people and poultry distribution (separating chickens, ducks and production sectors), poultry movement patterns and agro-ecological conditions. The study showed that the risk factors “elevation”, “human population density” and “rice cropping” were significant in accounting for the spatial variation of the PDS-defined HPAI cases. These findings were consistent with earlier studies in Thailand and Vietnam. In addition “commercial poultry population”, and two indicators of market locations and transport; “human settlements” and “road length”, were identified as significant risk factors in the models. In contrast to several previous studies carried out in Southeast Asia, domestic backyard ducks were not found to be a significant risk factor in Indonesia. The study used surrogate estimates of market locations and marketing chains and further work should focus on the actual location of the live bird markets, and on the flow of live poultry and poultry products between them, so that patterns of possible transmission, and regions of particular risk could be better inferred. PMID:21813198

  11. Risk for Low Pathogenicity Avian Influenza Virus on Poultry Farms, the Netherlands, 2007-2013.

    PubMed

    Bouwstra, Ruth; Gonzales, Jose L; de Wit, Sjaak; Stahl, Julia; Fouchier, Ron A M; Elbers, Armin R W

    2017-09-01

    Using annual serologic surveillance data from all poultry farms in the Netherlands during 2007-2013, we quantified the risk for the introduction of low pathogenicity avian influenza virus (LPAIV) in different types of poultry production farms and putative spatial-environmental risk factors: distance from poultry farms to clay soil, waterways, and wild waterfowl areas. Outdoor-layer, turkey (meat and breeder), and duck (meat and breeder) farms had a significantly higher risk for LPAIV introduction than did indoor-layer farms. Except for outdoor-layer, all poultry types (i.e., broilers, chicken breeders, ducks, and turkeys) are kept indoors. For all production types, LPAIV risk decreased significantly with increasing distance to medium-sized waterways and with increasing distance to areas with defined wild waterfowl, but only for outdoor-layer and turkey farms. Future research should focus not only on production types but also on distance to waterways and wild bird areas. In addition, settlement of new poultry farms in high-risk areas should be discouraged.

  12. Scavenging ducks and transmission of highly pathogenic avian influenza, Java, Indonesia.

    PubMed

    Henning, Joerg; Wibawa, Hendra; Morton, John; Usman, Tri Bhakti; Junaidi, Akhmad; Meers, Joanne

    2010-08-01

    In Java, Indonesia, during March 2007-March 2008, 96 farms with scavenging ducks that were not vaccinated against highly pathogenic avian influenza (HPAI) were monitored bimonthly. Bird-level (prevalence among individual birds) H5 seroprevalence was 2.6% for ducks and 0.5% for chickens in contact with ducks. At least 1 seropositive bird was detected during 19.5% and 2.0% of duck- and chicken-flock visits, respectively. Duck flocks were 12.4x more likely than chicken flocks to have seropositive birds. During 21.4% of farm visits,

  13. The avian and mammalian host range of highly pathogenic avian H5N1 influenza

    PubMed Central

    Kaplan, Bryan S.; Webby, Richard J.

    2013-01-01

    Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range. PMID:24025480

  14. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea.

    PubMed

    Lee, Dong-Hun; Fusaro, Alice; Song, Chang-Seon; Suarez, David L; Swayne, David E

    2016-01-15

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis of viral population dynamics revealed an increase in genetic diversity between the years 2003 and 2007, corresponding to the spread and diversification of H9N2 viruses into multiple genetic groups (named A and B), followed by a sudden decrease in 2007, which was associated with implementation of vaccination using a Clade A virus. Implementation of the H9N2 vaccination program in Korea has dramatically reduced the diversity of H9N2 virus, and only one sub-lineage of clade B has survived, expanded, and currently circulates in Korea. In addition, the antigenic drift of this new genetic group away from the current vaccine strain suggests the need to update the vaccine seed strain. Published by Elsevier Inc.

  15. Conventional inactivated bivalent H5/H7 vaccine prevents viral localization in muscles of turkeys infected experimentally with low pathogenic avian influenza and highly pathogenic avian influenza H7N1 isolates

    PubMed Central

    Toffan, Anna; Beato, Maria Serena; De Nardi, Roberta; Bertoli, Elena; Salviato, Annalisa; Cattoli, Giovanni; Terregino, Calogero; Capua, Ilaria

    2008-01-01

    Highly pathogenic avian influenza (HPAI) viruses cause viraemia and systemic infections with virus replication in internal organs and muscles; in contrast, low pathogenicity avian influenza (LPAI) viruses produce mild infections with low mortality rates and local virus replication. There is little available information on the ability of LPAI viruses to cause viraemia or on the presence of avian influenza viruses in general in the muscles of infected turkeys. The aim of the present study was to determine the ability of LPAI and HPAI H7N1 viruses to reach muscle tissues following experimental infection and to determine the efficacy of vaccination in preventing viraemia and meat localization. The potential of infective muscle tissue to act as a source of infection for susceptible turkeys by mimicking the practice of swill-feeding was also investigated. The HPAI virus was isolated from blood and muscle tissues of all unvaccinated turkeys; LPAI could be isolated only from blood of one bird and could be detected only by reverse transcriptasepolymerase chain reaction in muscles. In contrast, no viable virus or viral RNA could be detected in muscles of vaccinated/challenged turkeys, indicating that viral localization in muscle tissue is prevented in vaccinated birds. PMID:18622857

  16. Towards a universal vaccine for avian influenza: protective efficacy of modified Vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus.

    PubMed

    Boyd, Amy C; Ruiz-Hernandez, Raul; Peroval, Marylene Y; Carson, Connor; Balkissoon, Devanand; Staines, Karen; Turner, Alison V; Hill, Adrian V S; Gilbert, Sarah C; Butter, Colin

    2013-01-11

    Current vaccines targeting surface proteins can drive antigenic variation resulting either in the emergence of more highly pathogenic viruses or of antigenically distinct viruses that escape control by vaccination and thereby persist in the host population. Influenza vaccines typically target the highly mutable surface proteins and do not provide protection against heterologous challenge. Vaccines which induce immune responses against conserved influenza epitopes may confer protection against heterologous challenge. We report here the results of vaccination with recombinant modified Vaccinia virus Ankara (MVA) and Adenovirus (Ad) expressing a fusion construct of nucleoprotein and matrix protein (NP+M1). Prime and boost vaccination regimes were trialled in different ages of chicken and were found to be safe and immunogenic. Interferon-γ (IFN-γ) ELISpot was used to assess the cellular immune response post secondary vaccination. In ovo Ad prime followed by a 4 week post hatch MVA boost was identified as the most immunogenic regime in one outbred and two inbred lines of chicken. Following vaccination, one inbred line (C15I) was challenged with low pathogenic avian influenza (LPAI) H7N7 (A/Turkey/England/1977). Birds receiving a primary vaccination with Ad-NP+M1 and a secondary vaccination with MVA-NP+M1 exhibited reduced cloacal shedding as measured by plaque assay at 7 days post infection compared with birds vaccinated with recombinant viruses containing irrelevant antigen. This preliminary indication of efficacy demonstrates proof of concept in birds; induction of T cell responses in chickens by viral vectors containing internal influenza antigens may be a productive strategy for the development of vaccines to induce heterologous protection against influenza in poultry.

  17. Effect of homosubtypic and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa)

    USDA-ARS?s Scientific Manuscript database

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus...

  18. Re-emergence of amantadine-resistant variants among highly pathogenic avian influenza H5N1 viruses in Egypt.

    PubMed

    El-Shesheny, Rabeh; Bagato, Ola; Kandeil, Ahmed; Mostafa, Ahmed; Mahmoud, Sara H; Hassanneen, Hamdi M; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-12-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to undergo substantial evolution. Emergence of antiviral resistance among H5N1 avian influenza viruses is a major challenge in the control of pandemic influenza. Numerous studies have focused on the genetic and evolutionary dynamics of the hemagglutinin and neuraminidase genes; however, studies on the susceptibility of HPAI H5N1 viruses to amantadine and genetic diversity of the matrix (M) gene are limited. Accordingly, we studied the amantadine susceptibility of the HPAI H5N1 viruses isolated in Egypt during 2006-2015 based on genotypic and phenotypic characteristics. We analyzed data on 253 virus sequences and constructed a phylogenetic tree to calculate selective pressures on sites in the M2 gene associated with amantadine-resistance among different clades. Selection pressure was identified in the transmembrane domain of M2 gene at positions 27 and 31. Amantadine-resistant variants emerged in 2007 but were not circulating between 2012 and 2014. By 2015, amantadine-resistant HPAI H5N1 viruses re-emerged. This may be associated with the uncontrolled prescription of amantadine for prophylaxis and control of avian influenza infections in the poultry farm sector in Egypt. More epidemiological research is required to verify this observation.

  19. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt.

    PubMed

    Kandeil, Ahmed; Kayed, Ahmed; Moatasim, Yassmin; Webby, Richard J; McKenzie, Pamela P; Kayali, Ghazi; Ali, Mohamed A

    2017-07-01

    A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued.

  20. Reemerging H5N1 Influenza Viruses in Hong Kong in 2002 Are Highly Pathogenic to Ducks

    PubMed Central

    Sturm-Ramirez, Katharine M.; Ellis, Trevor; Bousfield, Barry; Bissett, Lucy; Dyrting, Kitman; Rehg, Jerold E.; Poon, Leo; Guan, Yi; Peiris, Malik; Webster, Robert G.

    2004-01-01

    Waterfowl are the natural reservoir of all influenza A viruses, which are usually nonpathogenic in wild aquatic birds. However, in late 2002, outbreaks of highly pathogenic H5N1 influenza virus caused deaths among wild migratory birds and resident waterfowl, including ducks, in two Hong Kong parks. In February 2003, an avian H5N1 virus closely related to one of these viruses was isolated from two humans with acute respiratory distress, one of whom died. Antigenic analysis of the new avian isolates showed a reactivity pattern different from that of H5N1 viruses isolated in 1997 and 2001. This finding suggests that significant antigenic variation has recently occurred among H5N1 viruses. We inoculated mallards with antigenically different H5N1 influenza viruses isolated between 1997 and 2003. The new 2002 avian isolates caused systemic infection in the ducks, with high virus titers and pathology in multiple organs, particularly the brain. Ducks developed acute disease, including severe neurological dysfunction and death. Virus was also isolated at high titers from the birds' drinking water and from contact birds, demonstrating efficient transmission. In contrast, H5N1 isolates from 1997 and 2001 were not consistently transmitted efficiently among ducks and did not cause significant disease. Despite a high level of genomic homology, the human isolate showed striking biological differences from its avian homologue in a duck model. This is the first reported case of lethal influenza virus infection in wild aquatic birds since 1961. PMID:15078970

  1. Global distribution patterns of highly pathogenic H5N1 avian influenza: environmental vs. socioeconomic factors.

    PubMed

    Chen, Youhua; Chen, You-Fang

    2014-01-01

    In this report, we quantitatively analyzed the essential ecological factors that were strongly correlated with the global outbreak of highly pathogenic H5N1 avian influenza. The ecological niche modeling (ENM) was used to reveal the potential outbreak hotspots of H5N1. A two-step modeling procedure has been proposed: we first used BioClim model to obtain the coarse suitable areas of H5N1, and then those suitable areas with very high probabilities were retained as the inputs of multiple-variable autologistic regression analysis (MAR) for model refinement. MAR was implemented taking spatial autocorrelation into account. The final performance of ENM was evaluated using the areas under the curve (AUC) of receiver-operating characteristic. In addition, principal component analysis (PCA) was employed to reveal the most important variables and relevant ecological gradients of H5N1 outbreak. Niche visualization was used to identify potential spreading trend of H5N1 along important ecological gradients. For the first time, we combined socioeconomic and environmental variables as joint predictors in developing ecological niche modeling. Environmental variables represented the natural element related to H5N1 outbreak, whereas socioeconomic ones represented the anthropogenic element. Our results indicated that: (1) the high-risk hotspots are mainly located in temperate zones (indicated by ENM)-correspondingly, we argued that the "ecoregions hypothesis" was reasonable to some extent; (2) evaporation, humidity, human population density, livestock population density were the first four important factors (in descending order) that were associated with the H5N1 global outbreak (indicated by PCA); (3) influenza had a tendency to expand into areas with low evaporation (indicated by niche visualization). In conclusion, our study substantiates that both the environmental and socioeconomic variables jointly determined the global spreading trend of H5N1, but environmental variables

  2. Susceptibility of wood ducks to H5N1 highly pathogenic avian influenza virus.

    PubMed

    Brown, Justin D; Stallknecht, David E; Valeika, Steve; Swayne, David E

    2007-10-01

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose.

  3. Isolation and characterization of influenza A virus (subtype H5N1) that caused the first highly pathogenic avian influenza outbreak in chicken in Bhutan.

    PubMed

    Dubey, S C; Dahal, N; Nagarajan, S; Tosh, C; Murugkar, H V; Rinzin, K; Sharma, B; Jain, R; Katare, M; Patil, S; Khandia, R; Syed, Z; Tripathi, S; Behera, P; Kumar, M; Kulkarni, D D; Krishna, Lal

    2012-02-24

    We characterized Influenza A/H5N1 virus that caused the first outbreak of highly pathogenic avian influenza (HPAI) in chickens in Bhutan in 2010. The virus was highly virulent to chicken, killing them within two days of the experimental inoculation with an intravenous pathogenicity index (IVPI) of 2.88. For genetic and phylogenetic analyses, complete genome sequencing of 4 viral isolates was carried out. The isolates revealed multiple basic amino acids at their hemagglutinin (HA) cleavage site, similar to other "Qinghai-like" H5N1 isolates. The receptor-binding site of HA molecule contained avian-like amino acids ((222)Q and (224)G). The isolates also contained amino acid residue K at position 627 of the PB2 protein, and other markers in NS 1 and PB1 proteins, highlighting the risk to mammals. However, the isolates were sensitive to influenza drugs presently available in the market. The sequence analysis indicated that the Bhutan viruses shared 99.1-100% nucleotide homology in all the eight genes among themselves and 2010 chicken isolate from Bangladesh (A/chicken/Bangladesh/1151-11/2010) indicating common progenitor virus. The phylogenetic analysis indicated that the Bhutan isolates belonged to sub-clade 2.2.3 (EMA 3) and shared common progenitor virus with the 2010 Bangladesh virus. Based on the evidence of phylogeny and molecular markers, it could be concluded that the outbreaks in Bhutan and Bangladesh in 2010 were due to independent introductions of the virus probably through migratory birds. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Effect of age on pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks varies between different viruses and is affected by the age of the ducks, with younger ducks presenting more severe disease. In order to better understand the pathobiology of H5N1 HPAI in ducks, including t...

  5. The pathogenesis of H7N8 low and highly pathogenic avian influenza viruses from the United States 2016 outbreak in chickens, turkeys and mallards

    USDA-ARS?s Scientific Manuscript database

    In January 2016, a combined outbreak of highly pathogenic (HP) avian influenza virus (AIV) and low pathogenicity (LP) AIV occurred in commercial turkeys in the state of Indiana, United States. Genetically, the viruses were highly similar, belonged to the North American wild bird lineage, and had not...

  6. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens

    USDA-ARS?s Scientific Manuscript database

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on specific pathogen free (SPF) birds immunized with 0.2 ...

  7. Variation in protection by seven inactivated H5 vaccine strains against eight H5N1 high pathogenicity avian influenza viruses in chickens

    USDA-ARS?s Scientific Manuscript database

    H5N1 high pathogenicity avian influenza virus (HPAIV) is an important pathogen for poultry. Vaccines have assisted in control for poultry, and for human pandemic preparedness. However the genetic diversity and rapid antigenic drifting of the field viruses have led to inadequate protection. This s...

  8. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 from emus from the Ein Gedi oasis by the Dead Sea.

    PubMed

    Amnon, Inbar; Shkoda, Irina; Lapin, Ekaterina; Raibstein, Israel; Rosenbluth, Ezra; Nagar, Sagit; Perk, Shimon; Bellaiche, Michel; Davidson, Irit

    2011-09-01

    An avian influenza virus (AIV), A/Emu/Israel/552/2010/(H5N1), was isolated from a dead emu that was found in the Ein Gedi oasis near the Dead Sea. The virus molecular characterization was performed by reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time RT-PCR using AIV subtype-specific primers. The virus was of high pathogenicity, according to its intravenous pathogenicity index of 2.85 and the nucleotide sequencing at the cleavage site of the hemagglutinin gene, GERRRKKR, which is typical for highly pathogenic chicken influenza A viruses.

  9. [Infection by human cytomegalovirus].

    PubMed

    Sanbonmatsu Gámez, Sara; Ruiz, Mercedes Pérez; Navarro Marí, José María

    2014-02-01

    Prevalence of human cytomegalovirus infection is very high worldwide. Following primary infection, the virus remains latent, being able to cause recurrences either by reinfection with a new strain or by reactivation of the replication of the latent virus. The most severe disease is seen in congenital infection and in immunosuppressed patients, in whom the virus act as an opportunistic pathogen. Serological techniques are the methods of choice in primary infection and to determine the immune status against CMV in organ donor and receptor. Although well-standardized studies are lacking, the recent commercial availability of methods that measure cellular immune response are promising to predict the risk of CMV disease in immunosuppressed individuals. Molecular assays, that have gradually been substituting viral culture and/or antigen detection, are the most widely used methods for the diagnosis and control of CMV infection. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  10. Community preparedness for highly pathogenic Avian influenza on Bali and Lombok, Indonesia.

    PubMed

    Hunter, C; Birden, H H; Toribio, J-A; Booy, R; Abdurrahman, M; Ambarawati, A I G A A; Adiputra, N

    2014-01-01

    The Asia-Pacific region is the likeliest location for the next significant outbreak of highly pathogenic avian influenza (HPAI). Indonesia has experienced HPAI H5N1 outbreaks in poultry and humans each year since 2003 and has had the highest case fatality rate for human cases. The purposes of this study were to capture the knowledge of avian influenza and of poultry-raising practices in two regions of Indonesia and to evaluate the impact and extent of activities undertaken to 2010 through the National Strategic Plan for Avian Influenza Control at the village level. A combination of quantitative and qualitative methods was used to investigate the multiple influences on behaviours, decisions and actions taken by poultry-raising households, and by villages and communities, regarding the threat of HPAI. Between June 2010 and May 2011 a structured survey of 400 households was conducted on Lombok and of 402 on Bali, inviting Sector 3 (small-scale independent commercial poultry farms) and Sector 4 (village household) poultry raisers to participate. Focus groups and in-depth interviews were convened with key stakeholders, including livestock and animal health and public health officials, community leaders and villagers. From the focus group and in-depth interviews, it appears that the flow of information through the national HPAI control program has been efficient at the top levels (from national to provincial, then to districts and subdistricts). However, these findings show that effective transmission of information from subdistrict to rural village level and from village leaders to community members has been limited. The degree of community preparedness for HPAI on Bali and Lombok appears minimal. Knowledge of government activities was more extensive at Bali sites, while only limited government programs and activities occurred at the village level on Lombok. Activities conducted by government agencies from provincial to village level were limited in scope and need to be

  11. CLEC5A-Mediated Enhancement of the Inflammatory Response in Myeloid Cells Contributes to Influenza Virus Pathogenicity In Vivo

    PubMed Central

    Teng, Ooiean; Chen, Szu-Ting; Hsu, Tsui-Ling; Sia, Sin Fun; Cole, Suzanne; Valkenburg, Sophie A.; Hsu, Tzu-Yun; Zheng, Jian Teddy; Tu, Wenwei; Bruzzone, Roberto; Peiris, Joseph Sriyal Malik

    2016-01-01

    ABSTRACT Human infections with influenza viruses exhibit mild to severe clinical outcomes as a result of complex virus-host interactions. Induction of inflammatory mediators via pattern recognition receptors may dictate subsequent host responses for pathogen clearance and tissue damage. We identified that human C-type lectin domain family 5 member A (CLEC5A) interacts with the hemagglutinin protein of influenza viruses expressed on lentiviral pseudoparticles through lectin screening. Silencing CLEC5A gene expression, blocking influenza-CLEC5A interactions with anti-CLEC5A antibodies, or dampening CLEC5A-mediated signaling using a spleen tyrosine kinase inhibitor consistently reduced the levels of proinflammatory cytokines produced by human macrophages without affecting the replication of influenza A viruses of different subtypes. Infection of bone marrow-derived macrophages from CLEC5A-deficient mice showed reduced levels of tumor necrosis factor alpha (TNF-α) and IP-10 but elevated alpha interferon (IFN-α) compared to those of wild-type mice. The heightened type I IFN response in the macrophages of CLEC5A-deficient mice was associated with upregulated TLR3 mRNA after treatment with double-stranded RNA. Upon lethal challenges with a recombinant H5N1 virus, CLEC5A-deficient mice showed reduced levels of proinflammatory cytokines, decreased immune cell infiltration in the lungs, and improved survival compared to the wild-type mice, despite comparable viral loads noted throughout the course of infection. The survival difference was more prominent at a lower dose of inoculum. Our results suggest that CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza pathogenicity in vivo and may be considered a therapeutic target in combination with effective antivirals. Well-orchestrated host responses together with effective viral clearance are critical for optimal clinical outcome after influenza infections. IMPORTANCE Multiple

  12. Antiviral activity of crude extracts of Eugenia jambolana Lam. against highly pathogenic avian influenza (H5N1) virus.

    PubMed

    Sood, Richa; Swarup, D; Bhatia, S; Kulkarni, D D; Dey, S; Saini, M; Dubey, S C

    2012-03-01

    Crude extracts of leaves and bark of E. jambolana were tested for antiviral activity against highly pathogenic avian influenza virus (H5N1) by CPE reduction assay in three different layouts to elucidate virucidal, post-exposure and preexposure antiviral activity of the extracts. The cold and hot aqueous extracts of bark and hot aqueous extract of leaves of E. jambolana showed significant virucidal activity (100% inhibition) which was further confirmed in virus yield reduction assay (-98 to 99% reduction) and by egg based in ovo assay. The selective index (CC50/EC50) of hot aqueous extract (248) and cold aqueous extract (43.5) of bark of E. jambolana showed their antiviral potential against H5N1 virus. The significant virucidal activity of leaves and bark of E. jambolana merits further investigation as it may provide alternative antiviral agent for managing avian influenza infections in poultry farms and potential avian-human transmission.

  13. Complete genome analysis of a highly pathogenic H5N1 influenza A virus isolated from a tiger in China.

    PubMed

    Mushtaq, Muhammad Hassan; Juan, Huang; Jiang, Ping; Li, Yufeng; Li, TianXian; Du, Yijun; Mukhtar, Muhammad Mahmood

    2008-01-01

    An influenza A virus (A/Tig/SH/01/2005 (H5N1) was isolated from lung tissue samples of a dead zoo tiger with respiratory disease in China in July 2005. Complete genome analysis indicated that the isolate was highly identical to an H5N1 virus isolated from a migratory duck at Poyang lake in China in that year. The genotype of the isolate was K,G,D,5J,F,1J,F,1E, and phylogenetically it was a clade 2.2 virus. Molecular characterization of all of the gene segments revealed characteristics of highly pathogenic influenza A viruses. These results may help to identify molecular determinants of virulence and highlight the necessity for continuous surveillance.

  14. Low Pathogenic Avian Influenza Isolates from Wild Birds Replicate and Transmit via Contact in Ferrets without Prior Adaptation

    PubMed Central

    Humberd-Smith, Jennifer; Gordy, James T.; Bradley, Konrad C.; Steinhauer, David A.; Berghaus, Roy D.; Stallknecht, David E.; Howerth, Elizabeth W.; Tompkins, Stephen Mark

    2012-01-01

    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential. PMID:22675507

  15. Low pathogenic avian influenza isolates from wild birds replicate and transmit via contact in ferrets without prior adaptation.

    PubMed

    Driskell, Elizabeth A; Pickens, Jennifer A; Humberd-Smith, Jennifer; Gordy, James T; Bradley, Konrad C; Steinhauer, David A; Berghaus, Roy D; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, Stephen Mark

    2012-01-01

    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential.

  16. Control of highly pathogenic avian influenza in Quang Tri province, Vietnam: voices from the human-animal interface.

    PubMed

    Farrell, Penny C; Hunter, Cynthia; Truong, Bui; Bunning, Michel

    2015-01-01

    Highly pathogenic avian influenza (HPAI) is caused by the haemagglutinin 5, neuraminidase 1 (H5N1) influenza A virus. Around 80% of households in rural Vietnam raise poultry, which provides food security and nutrition to their households and beyond. Of these, around 15-20% are semi-commercial producers, producing at least 28% of the country's chicken. Through learning the experiences of these semi-commercial farmers, this study aimed to explore the local understandings and sociocultural aspects of HPAI's impact, particularly the aetiology, diagnosis, and the prevention and control methods in one Vietnamese rural province. This study was conducted in Quang Tri province, Vietnam. Quang Tri province has eight districts. Five of these districts were at high risk of HPAI during the study period, of which three were selected for the present study. Within these three districts, six communes were randomly selected for the study from the list of intervention communes in Quang Tri province. Six out of the 26 intervention communes in Quang Tri were therefore selected. Participants were randomly selected and recruited from lists of semi-commercial farmers, village animal health workers, village human health workers and local authorities so that the study population (representative population) included an amount of variability similar to that of the wider population. A key benefit of this village-level control program was the residential proximity of animal and human health professionals. Participants were well aware of the typical clinical signs for avian influenza and of the reporting process for suspect cases. However there was extensive room for improvement in Quang Tri province regarding access to the HPAI vaccine, essential medical equipment for animal use, and available financial support. This qualitative research study provided an important insight for in-country policy makers and international stakeholders. It is vital that there are continued efforts to prevent and

  17. Evaluation of a high-pathogenicity H5N1 avian influenza A virus isolated from duck meat.

    PubMed

    Tumpey, T M; Suarez, D L; Perkins, L E L; Senne, D A; Lee, J; Lee, Y J; Mo, I P; Sung, H W; Swayne, D E

    2003-01-01

    The introduction of an influenza A virus possessing a novel hemagglutinin (HA) into an immunologically naive human population has the potential to cause severe disease and death. Such was the case in 1997 in Hong Kong, where H5N1 influenza was transmitted to humans from infected poultry. Because H5N1 viruses are still isolated from domestic poultry in southern China, there needs to be continued surveillance of poultry and characterization of virus subtypes and variants. This study provides molecular characterization and evaluation of pathogenesis of a recent H5N1 virus isolated from duck meat that had been imported to South Korea from China. The HA gene of A/Duck/Anyang/AVL-1/01 (H5N1) isolate was found to be closely related to the Hong Kong/97 H5N1 viruses. This virus also contained multiple basic amino acids adjacent to the cleavage site between HA1 and HA2, characteristic of high-pathogenicity avian influenza viruses (HPAI). The pathogenesis of this virus was characterized in chickens, ducks, and mice. The DK/Anyang/AVL-1/01 isolate replicated well in all species and resulted in 100% and 22% lethality for chickens and mice, respectively. No clinical signs of disease were observed in DK/Anyang/AVL-1/01-inoculated ducks, but high titers of infectious virus could be detected in multiple tissues and oropharyngeal swabs. The presence of an H5N1 influenza virus in ducks bearing a HA gene that is highly similar to those of the pathogenic 1997 human/poultry H5N1 viruses raises the possibility of reintroduction of HPAI to chickens and humans.

  18. Surveillance and characterization of low pathogenic H5 avian influenza viruses isolated from wild migratory birds in Korea.

    PubMed

    Baek, Yun Hee; Pascua, Philippe Noriel Q; Song, Min-Suk; Park, Kuk Jin; Kwon, Hyeok-il; Lee, Jun Han; Kim, Seok-Yong; Moon, Ho-Jin; Kim, Chul-Joong; Choi, Young Ki

    2010-06-01

    Migratory waterfowls are the natural reservoir of influenza A viruses. However, interspecies transmission had occasionally caused outbreaks in various hosts including humans. To characterize the genetic origins of H5 avian influenza viruses isolated from migratory birds in South Korea, phylogenetic analysis were conducted. A total of 53 H5 viruses were isolated between October 2005 and November 2008. Full genetic characterization indicated that most of these viruses belong to the Eurasian-like avian lineage. However, some segments of the AB/Korea/W235/07 and the AB/Korea/W236/07 isolates were clustered with North American lineage viruses rather than those of the Eurasian lineage, suggesting the occurrence of reassortment between these two avian virus lineages. Phylogenetic analysis further demonstrated that the H5N2 and H5N3 virus isolates were of the low pathogenicity H5 phenotype. The H5 viruses appear to be antigenically similar to each other, but could be distinguished from a recent HPAI H5N1 (EM/Korea/W149/06) virus by hemagglutinin inhibition (HI) assays. Experimental inoculation of representative viruses indicated that certain isolates, particularly AB/Korea/W163/07 (H5N2), could be detected in trachea and lungs of chickens but none could be transmitted by direct contact. Furthermore, all of the viruses could be detected in mice lung without prior adaptation which is indicative of their pathogenic potential in a mammalian host. Overall, our results emphasize the important role that migratory birds play in the perpetuation, transport, and reassortment of avian influenza viruses stressing the need for continued surveillance of influenza virus activity in these avian populations.

  19. Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds.

    PubMed

    Swayne, David E

    2007-03-01

    Avian influenza (AI) viruses are a diverse group of viruses that can be divided into 144 subtypes, based on different combinations of the 16 hemagglutinin and nine neuraminidase subtypes, and two pathotypes (low and high pathogenicity [HP]), based on lethality for the major poultry species, the chicken. However, other criteria are important in understanding the complex biology of AI viruses, including host adaptation, transmissibility, infectivity, tissue tropism, and lesion, and disease production. Overall, such pathobiological features vary with host species and virus strain. Experimentally, HPAI viruses typically produce a similar severe, systemic disease with high mortality in chickens and other gallinaceous birds. However, these same viruses usually produce no clinical signs of infection or only mild disease in domestic ducks and wild birds. Over the past decade, the emergent HPAI viruses have shifted to increased virulence for chickens as evident by shorter mean death times and a greater propensity for massive disseminated replication in vascular endothelial cells. Importantly, the Asian H5N1 HPAI viruses have changed from producing inconsistent respiratory infections in 2-wk-old domestic ducks to some strains being highly lethal in ducks with virus in multiple internal organs and brain. However, the high lethality for ducks is inversely related to age, unlike these viruses in gallinaceous poultry, which are highly lethal irrespective of the host age. The most recent Asian H5N1 HPAI viruses have infected some wild birds, producing systemic infections and death. Across all bird species, the ability to produce severe disease and death is associated with high virus replication titers in the host, especially in specific tissues such as brain and heart.

  20. Quantitative transmission characteristics of different H5 low pathogenic avian influenza viruses in Muscovy ducks.

    PubMed

    Niqueux, Éric; Picault, Jean-Paul; Amelot, Michel; Allée, Chantal; Lamandé, Josiane; Guillemoto, Carole; Pierre, Isabelle; Massin, Pascale; Blot, Guillaume; Briand, François-Xavier; Rose, Nicolas; Jestin, Véronique

    2014-01-10

    EU annual serosurveillance programs show that domestic duck flocks have the highest seroprevalence of H5 antibodies, demonstrating the circulation of notifiable avian influenza virus (AIV) according to OIE, likely low pathogenic (LP). Therefore, transmission characteristics of LPAIV within these flocks can help to understand virus circulation and possible risk of propagation. This study aimed at estimating transmission parameters of four H5 LPAIV (three field strains from French poultry and decoy ducks, and one clonal reverse-genetics strain derived from one of the former), using a SIR model to analyze data from experimental infections in SPF Muscovy ducks. The design was set up to accommodate rearing on wood shavings with a low density of 1.6 ducks/m(2): 10 inoculated ducks were housed together with 15 contact-exposed ducks. Infection was monitored by RNA detection on oropharyngeal and cloacal swabs using real-time RT-PCR with a cutoff corresponding to 2-7 EID50. Depending on the strain, the basic reproduction number (R0) varied from 5.5 to 42.7, confirming LPAIV could easily be transmitted to susceptible Muscovy ducks. The lowest R0 estimate was obtained for a H5N3 field strain, due to lower values of transmission rate and duration of infectious period, whereas reverse-genetics derived H5N1 strain had the highest R0. Frequency and intensity of clinical signs were also variable between strains, but apparently not associated with longer infectious periods. Further comparisons of quantitative transmission parameters may help to identify relevant viral genetic markers for early detection of potentially more virulent strains during surveillance of LPAIV. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation.

    PubMed

    Arafa, A; Suarez, D; Kholosy, S G; Hassan, M K; Nasef, S; Selim, A; Dauphin, G; Kim, M; Yilma, J; Swayne, D; Aly, M M

    2012-10-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country, affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used as a part of the control strategy to help to control the disease. Epidemiological data with sequence analysis of H5N1 viruses is important to link the mechanism of virus evolution in Egypt. This study describes the evolutionary pattern of Egyptian H5N1 viruses based on molecular characterization for the isolates collected from commercial poultry farms and village poultry from 2006 to 2011. Genetic analysis of the hemagglutinin (HA) gene was done by sequencing of the full-length H5 gene. The epidemiological pattern of disease outbreaks in Egyptian poultry farms seems to be seasonal with no specific geographic distribution across the country. The molecular epidemiological data revealed that there are two major groups of viruses: the classic group of subclade 2.2.1 and a variant group of 2.2.1.1. The classic group is prevailing mainly in village poultry and had fewer mutations compared to the originally introduced virus in 2006. Since 2009, this group has started to be transmitted back to commercial sectors. The variant group emerged by late 2007, was prevalent mainly in vaccinated commercial poultry, mutated continuously at a higher rate until 2010, and started to decline in 2011. Genetic analysis of the neuraminidase (NA) gene and the other six internal genes indicates a grouping of the Egyptian viruses similar to that obtained using the HA gene, with no obvious reassortments. The results of this study indicate that HPAI-H5N1 viruses are progressively evolving and adapting in Egypt and continue to acquire new mutations every season.

  2. Continuing Reassortant of H5N6 Subtype Highly Pathogenic Avian Influenza Virus in Guangdong

    PubMed Central

    Yuan, Runyu; Wang, Zheng; Kang, Yinfeng; Wu, Jie; Zou, Lirong; Liang, Lijun; Song, Yingchao; Zhang, Xin; Ni, Hanzhong; Lin, Jinyan; Ke, Changwen

    2016-01-01

    First identified in May 2014 in China's Sichuan Province, initial cases of H5N6 avian influenza virus (AIV) infection in humans raised great concerns about the virus's prevalence, origin, and development. To evaluate both AIV contamination in live poultry markets (LPMs) and the risk of AIV infection in humans, we have conducted surveillance of LPMs in Guangdong Province since 2013 as part of environmental sampling programs. With environmental samples associated with these LPMs, we performed genetic and phylogenetic analyses of 10 H5N6 AIVs isolated from different cities of Guangdong Province from different years. Results revealed that the H5N6 viruses were reassortants with hemagglutinin (HA) genes derived from clade 2.3.4.4 of H5-subtype AIV, yet neuraminidase (NA) genes derived from H6N6 AIV. Unlike the other seven H5N6 viruses isolated in first 7 months of 2014, all of which shared remarkable sequence similarity with the H5N1 AIV in all internal genes, the PB2 genes of GZ693, GZ670, and ZS558 more closely related to H6N6 AIV and the PB1 gene of GZ693 to the H3-subtype AIV. Phylogenetic analyses revealed that the environmental H5N6 AIV related closely to human H5N6 AIVs isolated in Guangdong. These results thus suggest that continued reassortment has enabled the emergence of a novel H5N6 virus in Guangdong, as well as highlight the potential risk of highly pathogenic H5N6 AIVs in the province. PMID:27148209

  3. Continuing Reassortant of H5N6 Subtype Highly Pathogenic Avian Influenza Virus in Guangdong.

    PubMed

    Yuan, Runyu; Wang, Zheng; Kang, Yinfeng; Wu, Jie; Zou, Lirong; Liang, Lijun; Song, Yingchao; Zhang, Xin; Ni, Hanzhong; Lin, Jinyan; Ke, Changwen

    2016-01-01

    First identified in May 2014 in China's Sichuan Province, initial cases of H5N6 avian influenza virus (AIV) infection in humans raised great concerns about the virus's prevalence, origin, and development. To evaluate both AIV contamination in live poultry markets (LPMs) and the risk of AIV infection in humans, we have conducted surveillance of LPMs in Guangdong Province since 2013 as part of environmental sampling programs. With environmental samples associated with these LPMs, we performed genetic and phylogenetic analyses of 10 H5N6 AIVs isolated from different cities of Guangdong Province from different years. Results revealed that the H5N6 viruses were reassortants with hemagglutinin (HA) genes derived from clade 2.3.4.4 of H5-subtype AIV, yet neuraminidase (NA) genes derived from H6N6 AIV. Unlike the other seven H5N6 viruses isolated in first 7 months of 2014, all of which shared remarkable sequence similarity with the H5N1 AIV in all internal genes, the PB2 genes of GZ693, GZ670, and ZS558 more closely related to H6N6 AIV and the PB1 gene of GZ693 to the H3-subtype AIV. Phylogenetic analyses revealed that the environmental H5N6 AIV related closely to human H5N6 AIVs isolated in Guangdong. These results thus suggest that continued reassortment has enabled the emergence of a novel H5N6 virus in Guangdong, as well as highlight the potential risk of highly pathogenic H5N6 AIVs in the province.

  4. Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea.

    PubMed

    Lee, Chang-Won; Suarez, David L; Tumpey, Terrence M; Sung, Haan-Woo; Kwon, Yong-Kuk; Lee, Youn-Jeong; Choi, Jun-Gu; Joh, Seong-Joon; Kim, Min-Chul; Lee, Eun-Kyoung; Park, Jong-Myung; Lu, Xiuhua; Katz, Jacqueline M; Spackman, Erica; Swayne, David E; Kim, Jae-Hong

    2005-03-01

    An unprecedented outbreak of H5N1 highly pathogenic avian influenza (HPAI) has been reported for poultry in eight different Asian countries, including South Korea, since December 2003. A phylogenetic analysis of the eight viral genes showed that the H5N1 poultry isolates from South Korea were of avian origin and contained the hemagglutinin and neuraminidase genes of the A/goose/Guangdong/1/96 (Gs/Gd) lineage. The current H5N1 strains in Asia, including the Korean isolates, share a gene constellation similar to that of the Penfold Park, Hong Kong, isolates from late 2002 and contain some molecular markers that seem to have been fixed in the Gs/Gd lineage virus since 2001. However, despite genetic similarities among recent H5N1 isolates, the topology of the phylogenetic tree clearly differentiates the Korean isolates from the Vietnamese and Thai isolates which have been reported to infect humans. A representative Korean isolate was inoculated into mice, with no mortality and no virus being isolated from the brain, although high titers of virus were observed in the lungs. The same isolate, however, caused systemic infections in chickens and quail and killed all of the birds within 2 and 4 days of intranasal inoculation, respectively. This isolate also replicated in multiple organs and tissues of ducks and caused some mortality. However, lower virus titers were observed in all corresponding tissues of ducks than in chicken and quail tissues, and the histological lesions were restricted to the respiratory tract. This study characterizes the molecular and biological properties of the H5N1 HPAI viruses from South Korea and emphasizes the need for comparative analyses of the H5N1 isolates from different countries to help elucidate the risk of a human pandemic from the strains of H5N1 HPAI currently circulating in Asia.

  5. Highly Pathogenic Avian Influenza H5N1 in Mainland China.

    PubMed

    Li, Xin-Lou; Liu, Kun; Yao, Hong-Wu; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; de Vlas, Sake J; Fang, Li-Qun; Cao, Wu-Chun

    2015-05-08

    Highly pathogenic avian influenza (HPAI) H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of the disease, including universal vaccination campaigns in poultry and active serological and virological surveillance, have been undertaken in mainland China since the beginning of 2006. In this study, we aim to characterize the spatial and temporal patterns of HPAI H5N1, and identify influencing factors favoring the occurrence of HPAI H5N1 outbreaks in poultry in mainland China. Our study shows that HPAI H5N1 outbreaks took place sporadically after vaccination campaigns in poultry, and mostly occurred in the cold season. The positive tests in routine virological surveillance of HPAI H5N1 virus in chicken, duck, goose as well as environmental samples were mapped to display the potential risk distribution of the virus. Southern China had a higher positive rate than northern China, and positive samples were mostly detected from chickens in the north, while the majority were from duck in the south, and a negative correlation with monthly vaccination rates in domestic poultry was found (R = -0.19, p value = 0.005). Multivariate panel logistic regression identified vaccination rate, interaction between distance to the nearest city and national highway, interaction between distance to the nearest lake and wetland, and density of human population, as well as the autoregressive term in space and time as independent risk factors in the occurrence of HPAI H5N1 outbreaks, based on which a predicted risk map of the disease was derived. Our findings could provide new understanding of the distribution and transmission of HPAI H5N1 in mainland China and could be used to inform targeted surveillance and control efforts in both human and poultry populations to reduce the risk of future infections.

  6. Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia

    PubMed Central

    Gilbert, Marius; Xiao, Xiangming; Pfeiffer, Dirk U.; Epprecht, M.; Boles, Stephen; Czarnecki, Christina; Chaitaweesub, Prasit; Kalpravidh, Wantanee; Minh, Phan Q.; Otte, M. J.; Martin, Vincent; Slingenbergh, Jan

    2008-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus that emerged in southern China in the mid-1990s has in recent years evolved into the first HPAI panzootic. In many countries where the virus was detected, the virus was successfully controlled, whereas other countries face periodic reoccurrence despite significant control efforts. A central question is to understand the factors favoring the continuing reoccurrence of the virus. The abundance of domestic ducks, in particular free-grazing ducks feeding in intensive rice cropping areas, has been identified as one such risk factor based on separate studies carried out in Thailand and Vietnam. In addition, recent extensive progress was made in the spatial prediction of rice cropping intensity obtained through satellite imagery processing. This article analyses the statistical association between the recorded HPAI H5N1 virus presence and a set of five key environmental variables comprising elevation, human population, chicken numbers, duck numbers, and rice cropping intensity for three synchronous epidemic waves in Thailand and Vietnam. A consistent pattern emerges suggesting risk to be associated with duck abundance, human population, and rice cropping intensity in contrast to a relatively low association with chicken numbers. A statistical risk model based on the second epidemic wave data in Thailand is found to maintain its predictive power when extrapolated to Vietnam, which supports its application to other countries with similar agro-ecological conditions such as Laos or Cambodia. The model's potential application to mapping HPAI H5N1 disease risk in Indonesia is discussed. PMID:18362346

  7. Highly Pathogenic Avian Influenza H5N1 in Mainland China

    PubMed Central

    Li, Xin-Lou; Liu, Kun; Yao, Hong-Wu; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; de Vlas, Sake J.; Fang, Li-Qun; Cao, Wu-Chun

    2015-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of the disease, including universal vaccination campaigns in poultry and active serological and virological surveillance, have been undertaken in mainland China since the beginning of 2006. In this study, we aim to characterize the spatial and temporal patterns of HPAI H5N1, and identify influencing factors favoring the occurrence of HPAI H5N1 outbreaks in poultry in mainland China. Our study shows that HPAI H5N1 outbreaks took place sporadically after vaccination campaigns in poultry, and mostly occurred in the cold season. The positive tests in routine virological surveillance of HPAI H5N1 virus in chicken, duck, goose as well as environmental samples were mapped to display the potential risk distribution of the virus. Southern China had a higher positive rate than northern China, and positive samples were mostly detected from chickens in the north, while the majority were from duck in the south, and a negative correlation with monthly vaccination rates in domestic poultry was found (R = −0.19, p value = 0.005). Multivariate panel logistic regression identified vaccination rate, interaction between distance to the nearest city and national highway, interaction between distance to the nearest lake and wetland, and density of human population, as well as the autoregressive term in space and time as independent risk factors in the occurrence of HPAI H5N1 outbreaks, based on which a predicted risk map of the disease was derived. Our findings could provide new understanding of the distribution and transmission of HPAI H5N1 in mainland China and could be used to inform targeted surveillance and control efforts in both human and poultry populations to reduce the risk of future infections

  8. Temporal and spatial characteristics of highly pathogenic avian influenza outbreaks in China during 2004 to 2015.

    PubMed

    Liu, Mingyue; Lu, Qian; Zhang, Shuxia; Feng, Xiaolong; Hossain, Md Shakhawat

    2017-09-01

    Identifying the temporal and spatial characteristics of highly pathogenic avian influenza (HPAI) outbreaks is very important for developing effective and appropriate countermeasures against HPAI and promoting sustainable development in the poultry industry. This study aimed to analyze four aspects of the temporal and spatial characteristics of HPAI outbreaks in China, including the frequency of HPAI outbreaks, numbers of dead animals (died or culled), types of HPAI viruses, and species of infected animals. Temporal characteristics showed that the frequency of HPAI outbreaks decreased and then increased, with some years deviating from the main trend in 2004 to 2010 and 2011 to 2015, while the largest number of dead animals due to HPAI outbreaks was in 2005. During 2004 to 2015, HPAI H5N1 was the major type of HPAI virus, and chickens had the greatest risk of being infected with HPAI, followed by ducks and geese. The HPAI outbreaks had obvious seasonal effects clustered in January to February, June, and November. Spatial characteristics revealed that outbreaks were more frequent in Xinjiang, Hubei, and Guangdong but caused a larger number of dead animals in Liaoning and Shanxi. HPAI H5N1 appeared in 25 provinces, while HPAI H5N2 was mainly localized in Hebei and Jiangsu, and HPAI H5N6 occurred in Heilongjiang, Jiangsu, Hunan, and Guangdong. HPAI viruses were most frequently detected in chickens and wild birds in northern China, while the majority of HPAI infections were identified in chickens, ducks, and geese in southern China. Regionally, HPAI outbreaks were most frequent in the western region but resulted in larger number of animals dying or being culled in the eastern region. These findings could provide a new understanding of the distributional characteristics of HPAI outbreaks and offer prospects for better prevention and control strategies. © 2017 Poultry Science Association Inc.

  9. Evolution of highly pathogenic avian H5N1 influenza viruses

    SciTech Connect

    Macken, Catherine A; Green, Margaret A

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging avian H5N1 viruses.

  10. Genetic characterization and pathogenicity assessment of highly pathogenic H5N1 avian influenza viruses isolated from migratory wild birds in 2011, South Korea.

    PubMed

    Kwon, Hyeok-Il; Song, Min-Suk; Pascua, Philippe Noriel Q; Baek, Yun Hee; Lee, Jun Han; Hong, Seung-Pyo; Rho, Jong-Bok; Kim, Jeong-Ki; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2011-09-01

    The continued spread of a highly pathogenic avian influenza (HPAI) H5N1 virus among wild birds and poultry has posed a potential threat to human public health. In the present study, we report the isolation of HPAI H5N1 viruses (A/Md/Korea/W401/11 and A/Md/Korea/W404/11) from fecal samples of migratory birds. Genetic and phlyogenetic analyses demonstrated that these viruses are genetically identical possessing gene segments from avian virus origin and showing highest sequence similarities (as high as 99.8%) to A/Ws/Hokkaido/4/11 and 2009-2010 Mongolian-like clade 2.3.2 isolates rather than previous Korean H5N1 viruses. Both viruses possess the polybasic motif (QRERRRK/R) in HA but other genes did not bear additional virulence markers. Pathogenicity of A/Md/Korea/W401/11 was assessed and compared with a 2006 clade 2.2 HPAI H5N1 migratory bird isolate (A/EM/Korea/W149/06) in chickens, ducks, mice and ferrets. Experimental infection in these hosts showed that both viruses have high pathogenic potential in chickens (2.3-3.0 LD(50)s) and mice (3.3-3.9 LD(50)s), but A/Md/Korea/W401/11 was less pathogenic in duck and ferret models. Despite recovery of both infection viruses in the upper respiratory tract, efficient ferret-to-ferret transmission was not observed. These data suggest that the 2011 Korean HPAI wild bird H5N1 virus could replicate in mammalian hosts without pre-adaptation but could not sustain subsequent infection. This study highlights the role of migratory birds in the perpetuation and spread of HPAI H5N1 viruses in Far-East Asia. With the changing pathobiology caused by H5N1 viruses among wild and poultry birds, continued surveillance of influenza viruses among migratory bird species remains crucial for effective monitoring of high-pathogenicity or pandemic influenza viruses.

  11. Low Pathogenic Avian Influenza Viruses in Wild Migratory Waterfowl in a Region of High Poultry Production, Delmarva, Maryland.

    PubMed

    Prosser, Diann J; Densmore, Christine L; Hindman, Larry J; Iwanowicz, Deborah D; Ottinger, Chris A; Iwanowicz, Luke R; Driscoll, Cindy P; Nagel, Jessica L

    2017-03-01

    Migratory waterfowl are natural reservoirs for low pathogenic avian influenza viruses (AIVs) and may contribute to the long-distance dispersal of these pathogens as well as spillover into domestic bird populations. Surveillance for AIVs is critical to assessing risks for potential spread of these viruses among wild and domestic bird populations. The Delmarva Peninsula on the east coast of the United States is both a key convergence point for migratory Atlantic waterfowl populations and a region with high poultry production (>4,700 poultry meat facilities). Sampling of key migratory waterfowl species occurred at 20 locations throughout the Delmarva Peninsula in fall and winter of 2013-14. Samples were collected from 400 hunter-harvested or live-caught birds via cloacal and oropharyngeal swabs. Fourteen of the 400 (3.5%) birds sampled tested positive for the AIV matrix gene using real-time reverse transcriptase PCR, all from five dabbling duck species. Further characterization of the 14 viral isolates identified two hemagglutinin (H3 and H4) and four neuraminidase (N2, N6, N8, and N9) subtypes, which were consistent with isolates reported in the Influenza Research Database for this region. Three of 14 isolates contained multiple HA or NA subtypes. This study adds to the limited baseline information available for AIVs in migratory waterfowl populations on the Delmarva Peninsula, particularly prior to the highly pathogenic AIV A(H5N8) and A(H5N2) introductions to the United States in late 2014.

  12. Low pathogenic avian influenza viruses in wild migratory waterfowl in a region of high poultry production, Delmarva, Maryland

    USGS Publications Warehouse

    Prosser, Diann J.; Densmore, Christine L.; Hindman, Larry J.; Iwanowicz, Deborah; Ottinger, Christopher A.; Iwanowicz, Luke R.; Driscoll, Cindy P.; Nagel, Jessica L.

    2017-01-01

    Migratory waterfowl are natural reservoirs for low pathogenic avian influenza viruses (AIVs) and may contribute to the long-distance dispersal of these pathogens as well as spillover into domestic bird populations. Surveillance for AIVs is critical to assessing risks for potential spread of these viruses among wild and domestic bird populations. The Delmarva Peninsula on the east coast of the United States is both a key convergence point for migratory Atlantic waterfowl populations and a region with high poultry production (>4,700 poultry meat facilities). Sampling of key migratory waterfowl species occurred at 20 locations throughout the Delmarva Peninsula in fall and winter of 2013–14. Samples were collected from 400 hunter-harvested or live-caught birds via cloacal and oropharyngeal swabs. Fourteen of the 400 (3.5%) birds sampled tested positive for the AIV matrix gene using real-time reverse transcriptase PCR, all from five dabbling duck species. Further characterization of the 14 viral isolates identified two hemagglutinin (H3 and H4) and four neuraminidase (N2, N6, N8, and N9) subtypes, which were consistent with isolates reported in the Influenza Research Database for this region. Three of 14 isolates contained multiple HA or NA subtypes. This study adds to the limited baseline information available for AIVs in migratory waterfowl populations on the Delmarva Peninsula, particularly prior to the highly pathogenic AIV A(H5N8) and A(H5N2) introductions to the United States in late 2014.

  13. Excessive Cytokine Response to Rapid Proliferation of Highly Pathogenic Avian Influenza Viruses Leads to Fatal Systemic Capillary Leakage in Chickens

    PubMed Central

    Kuribayashi, Saya; Sakoda, Yoshihiro; Kawasaki, Takeshi; Tanaka, Tomohisa; Yamamoto, Naoki; Okamatsu, Masatoshi; Isoda, Norikazu; Tsuda, Yoshimi; Sunden, Yuji; Umemura, Takashi; Nakajima, Noriko; Hasegawa, Hideki; Kida, Hiroshi

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIVs) cause lethal infection in chickens. Severe cases of HPAIV infections have been also reported in mammals, including humans. In both mammals and birds, the relationship between host cytokine response to the infection with HPAIVs and lethal outcome has not been well understood. In the present study, the highly pathogenic avian influenza viruses A/turkey/Italy/4580/1999 (H7N1) (Ty/Italy) and A/chicken/Netherlands/2586/2003 (H7N7) (Ck/NL) and the low pathogenic avian influenza virus (LPAIV) A/chicken/Ibaraki/1/2005 (H5N2) (Ck/Ibaraki) were intranasally inoculated into chickens. Ty/Italy replicated more extensively than Ck/NL in systemic tissues of the chickens, especially in the brain, and induced excessive mRNA expression of inflammatory and antiviral cytokines (IFN-γ, IL-1β, IL-6, and IFN-α) in proportion to its proliferation. Using in situ hybridization, IL-6 mRNA was detected mainly in microglial nodules in the brain of the chickens infected with Ty/Italy. Capillary leakage assessed by Evans blue staining was observed in multiple organs, especially in the brains of the chickens infected with Ty/Italy, and was not observed in those infected with Ck/NL. In contrast, LPAIV caused only local infection in the chickens, with neither apparent cytokine expression nor capillary leakage in any tissue of the chickens. The present results indicate that an excessive cytokine response is induced by rapid and extensive proliferation of HPAIV and causes fatal multiple organ failure in chickens. PMID:23874602

  14. Low pathogenic avian influenza (H9N2) in chicken: Evaluation of an ancestral H9-MVA vaccine.

    PubMed

    Ducatez, Mariette F; Becker, Jens; Freudenstein, Astrid; Delverdier, Maxence; Delpont, Mattias; Sutter, Gerd; Guérin, Jean-Luc; Volz, Asisa

    2016-06-30

    Modified Vaccinia Ankara (MVA) has proven its efficacy as a recombinant vector vaccine for numerous pathogens including influenza virus. The present study aimed at evaluating a recombinant MVA candidate vaccine against low pathogenic avian influenza virus subtype H9N2 in the chicken model. As the high genetic and antigenic diversity of H9N2 viruses increases vaccine design complexity, one strategy to widen the range of vaccine coverage is to use an ancestor sequence. We therefore generated a recombinant MVA encoding for the gene sequence of an ancestral hemagglutinin H9 protein (a computationally derived amino acid sequence of the node of the H9N2 G1 lineage strains was obtained using the ANCESCON program). We analyzed the genetics and the growth properties of the MVA vector virus confirming suitability for use under biosafety level 1 and tested its efficacy when applied either as an intra-muscular (IM) or an oral vaccine in specific pathogen free chickens challenged with A/chicken/Tunisia/12/2010(H9N2). Two control groups were studied in parallel (unvaccinated and inoculated birds; unvaccinated and non-inoculated birds). IM vaccinated birds seroconverted as early as four days post vaccination and neutralizing antibodies were detected against A/chicken/Tunisia/12/2010(H9N2) in all the birds before challenge. The role of local mucosal immunity is unclear here as no antibodies were detected in eye drop or aerosol vaccinated birds. Clinical signs were not detected in any of the infected birds even in absence of vaccination. Virus replication was observed in both vaccinated and unvaccinated chickens, suggesting the MVA-ancestral H9 vaccine may not stop virus spread in the field. However vaccinated birds showed less histological damage, fewer influenza-positive cells and shorter virus shedding than their unvaccinated counterparts. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. An outbreak of low pathogenic avian influenza in a mixed-species aviculture unit in Dubai in 2005.

    PubMed

    Kent, Jo; Bailey, Tom; Silvanose, Christu-Das; McKeown, Sean; Wernery, Ulrich; Kinne, Joerg; Manvell, Ruth

    2006-09-01

    This case describes an outbreak of low pathogenic hemagglutinin 9 neuraminidase 2 avian influenza virus (AIV) in two white-bellied bustards (Eupodotis senegalensis), one stone curlew (Burhinus oedicnemius), and a blacksmith plover (Antibyx armatus) in a private zoologic collection in Dubai, United Arab Emirates. The four birds showed signs of respiratory disease, and all died as a result of disease or euthanasia. Attention has been paid to the diagnostic process and common differential diagnosis for upper respiratory tract disease in bustards, curlews, and plovers. To the knowledge of the authors, AIV has not been previously described in these species.

  16. Comparative Analysis of Avian Influenza Virus Diversity in Poultry and Humans during a Highly Pathogenic Avian Influenza A (H7N7) Virus Outbreak ▿ †

    PubMed Central

    Jonges, Marcel; Bataille, Arnaud; Enserink, Remko; Meijer, Adam; Fouchier, Ron A. M.; Stegeman, Arjan; Koch, Guus; Koopmans, Marion

    2011-01-01

    Although increasing data have become available that link human adaptation with specific molecular changes in nonhuman influenza viruses, the molecular changes of these viruses during a large highly pathogenic avian influenza virus (HPAI) outbreak in poultry along with avian-to-human transmission have never been documented. By comprehensive virologic analysis of combined veterinary and human samples obtained during a large HPAI A (H7N7) outbreak in the Netherlands in 2003, we mapped the acquisition of human adaptation markers to identify the public health risk associated with an HPAI outbreak in poultry. Full-length hemagglutinin (HA), neuraminidase (NA), and PB2 sequencing of A (H7N7) viruses obtained from 45 human cases showed amino acid variations at different codons in HA (n=20), NA (n=23), and PB2 (n=23). Identification of the avian sources of human virus infections based on 232 farm sequences demonstrated that for each gene about 50% of the variation was already present in poultry. Polygenic accumulation and farm-to-farm spread of known virulence and human adaptation markers in A (H7N7) virus-infected poultry occurred prior to farm-to-human transmission. These include the independent emergence of HA A143T mutants, accumulation of four NA mutations, and farm-to-farm spread of virus variants harboring mammalian host determinants D701N and S714I in PB2. This implies that HPAI viruses with pandemic potential can emerge directly from poultry. Since the public health risk of an avian influenza virus outbreak in poultry can rapidly change, we recommend virologic monitoring for human adaptation markers among poultry as well as among humans during the course of an outbreak in poultry. PMID:21849451

  17. Pathogenicity of H5N8 highly pathogenic avian influenza viruses isolated from a wild bird fecal specimen and a chicken in Japan in 2014.

    PubMed

    Tanikawa, Taichiro; Kanehira, Katsushi; Tsunekuni, Ryota; Uchida, Yuko; Takemae, Nobuhiro; Saito, Takehiko

    2016-04-01

    Poultry outbreaks caused by H5N8 highly pathogenic avian influenza viruses (HPAIVs) occurred in Japan between December 2014 and January 2015. During the same period; H5N8 HPAIVs were isolated from wild birds and the environment in Japan. The hemagglutinin (HA) genes of these isolates were found to belong to clade 2.3.4.4 and three sub-groups were distinguishable within this clade. All of the Japanese isolates from poultry outbreaks belonged to the same sub-group; whereas wild bird isolates belonged to the other sub-groups. To examine whether the difference in pathogenicity to chickens between isolates of different HA sub-groups of clade 2.3.4.4 could explain why the Japanese poultry outbreaks were only caused by a particular sub-group; pathogenicities of A/chicken/Miyazaki/7/2014 (Miyazaki2014; sub-group C) and A/duck/Chiba/26-372-48/2014 (Chiba2014; sub-group A) to chickens were compared and it was found that the lethality of Miyazaki2014 in chickens was lower than that of Chiba2014; according to the 50% chicken lethal dose. This indicated that differences in pathogenicity may not explain why the Japanese poultry outbreaks only involved group C isolates.

  18. H7N9 and Other Pathogenic Avian Influenza Viruses Elicit a Three-Pronged Transcriptomic Signature That Is Reminiscent of 1918 Influenza Virus and Is Associated with Lethal Outcome in Mice

    PubMed Central

    Morrison, Juliet; Josset, Laurence; Tchitchek, Nicolas; Chang, Jean; Belser, Jessica A.; Swayne, David E.; Pantin-Jackwood, Mary J.; Tumpey, Terrence M.

    2014-01-01

    ABSTRACT Modulating the host response is a promising approach to treating influenza, caused by a virus whose pathogenesis is determined in part by the reaction it elicits within the host. Though the pathogenicity of emerging H7N9 influenza virus in several animal models has been reported, these studies have not included a detailed characterization of the host response following infection. Therefore, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/01/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003), and pandemic 2009 H1N1 (A/Mexico/4482/2009) influenza viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and pdm09H1N1 early in infection but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7, and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased transcription of cytokine response genes and decreased transcription of lipid metabolism and coagulation signaling genes. This three-pronged transcriptomic signature was observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza virus strains. Finally, we used host transcriptomic profiling to computationally predict drugs that reverse the host response to H7N9 infection, and we identified six FDA-approved drugs that could potentially be repurposed to treat H7N9 and other pathogenic influenza viruses. IMPORTANCE Emerging avian influenza viruses are of global concern because the human population is immunologically naive to them. Current influenza drugs target viral molecules, but the high mutation rate of influenza viruses eventually leads to the development of antiviral resistance. As the host evolves far more slowly than the virus, and influenza pathogenesis is determined in part by the host response

  19. H7N9 and other pathogenic avian influenza viruses elicit a three-pronged transcriptomic signature that is reminiscent of 1918 influenza virus and is associated with lethal outcome in mice.

    PubMed

    Morrison, Juliet; Josset, Laurence; Tchitchek, Nicolas; Chang, Jean; Belser, Jessica A; Swayne, David E; Pantin-Jackwood, Mary J; Tumpey, Terrence M; Katze, Michael G

    2014-09-01

    Modulating the host response is a promising approach to treating influenza, caused by a virus whose pathogenesis is determined in part by the reaction it elicits within the host. Though the pathogenicity of emerging H7N9 influenza virus in several animal models has been reported, these studies have not included a detailed characterization of the host response following infection. Therefore, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/01/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003), and pandemic 2009 H1N1 (A/Mexico/4482/2009) influenza viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and pdm09H1N1 early in infection but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7, and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased transcription of cytokine response genes and decreased transcription of lipid metabolism and coagulation signaling genes. This three-pronged transcriptomic signature was observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza virus strains. Finally, we used host transcriptomic profiling to computationally predict drugs that reverse the host response to H7N9 infection, and we identified six FDA-approved drugs that could potentially be repurposed to treat H7N9 and other pathogenic influenza viruses. Emerging avian influenza viruses are of global concern because the human population is immunologically naive to them. Current influenza drugs target viral molecules, but the high mutation rate of influenza viruses eventually leads to the development of antiviral resistance. As the host evolves far more slowly than the virus, and influenza pathogenesis is determined in part by the host response, targeting the host

  20. [Study on seasonal characteristics and pathogenic distribution of influenza in Gansu province of China].

    PubMed

    Yang, X T; Liu, X F; He, J; Yu, D S; Liu, D P; Li, H Y; Li, B D; Bai, Y N

    2017-06-10

    Objective: To study the epidemiologic characteristics of influenza in Gansu province of China and to optimize the related vaccination program. Methods: Weekly influenza surveillance data from the first week of 2010 to the fortieth week of 2016 were collected, in Gansu province. χ(2) test was used to compare the differences of nucleic acid positive rate and the virus types in the four seasons. Time series seasonal decomposition (TSSD) was used to explore seasonal patterns and characteristics of influenza epidemics in Gansu. Results: 59 791 specimens were tested, with 8 501 positive for influenza virus and positive rates as 14.22%. Types A(H1N1)pdm09, A(H3N2) and type B were accounted for 98.76% of all the positive specimens. Proportions of the positive rate of influenza virus appeared in spring, summer, autumn and winter were 15.12%, 0.98%, 4.02% and 24.26% respectively. The predominant type of virus in autumn and winter was A(H3N2), with B mainly in spring. Influenza in Gansu province showed typical single-peak type distribution, with epidemic peak appeared from December to next January. The type A(H3N2) related peak appeared the earliest, followed by A(H1N1) pdm09, with type B the latest. Conclusions: Peaks and the duration of influenza seasonal epidemics were related to the types of dominant strains. Annual influenza vaccination campaigns should start in October, to provide effective protection during the epidemic period.

  1. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia.

    PubMed

    Sims, L D; Domenech, J; Benigno, C; Kahn, S; Kamata, A; Lubroth, J; Martin, V; Roeder, P

    2005-08-06

    Outbreaks of highly pathogenic avian influenza caused by H5N1 viruses were reported almost simultaneously in eight neighbouring Asian countries between December 2003 and January 2004, with a ninth reporting in August 2004, suggesting that the viruses had spread recently and rapidly. However, they had been detected widely in the region in domestic waterfowl and terrestrial poultry for several years before this, and the absence of widespread disease in the region before 2003, apart from localised outbreaks in the Hong Kong Special Autonomous Region (SAR), is perplexing. Possible explanations include limited virus excretion by domestic waterfowl infected with H5N1, the confusion of avian influenza with other serious endemic diseases, the unsanctioned use of vaccines, and the under-reporting of disease as a result of limited surveillance. There is some evidence that the excretion of the viruses by domestic ducks had increased by early 2004, and there is circumstantial evidence that they can be transmitted by wild birds. The migratory birds from which viruses have been isolated were usually sick or dead, suggesting that they would have had limited potential for carrying the viruses over long distances unless subclinical infections were prevalent. However, there is strong circumstantial evidence that wild birds can become infected from domestic poultry and potentially can exchange viruses when they share the same environment. Nevertheless, there is little reason to believe that wild birds have played a more significant role in spreading disease than trade through live bird markets and movement of domestic waterfowl. Asian H5N1 viruses were first detected in domestic geese in southern China in 1996. By 2000, their host range had extended to domestic ducks, which played a key role in the genesis of the 2003/04 outbreaks. The epidemic was not due to the introduction and spread of a single virus but was caused by multiple viruses which were genotypically linked to the Goose

  2. Potency of an inactivated avian influenza vaccine prepared from a non-pathogenic H5N1 reassortant virus generated between isolates from migratory ducks in Asia.

    PubMed

    Isoda, Norikazu; Sakoda, Yoshihiro; Kishida, Noriko; Soda, Kosuke; Sakabe, Saori; Sakamoto, Ryuichi; Imamura, Takashi; Sakaguchi, Masashi; Sasaki, Takashi; Kokumai, Norihide; Ohgitani, Toshiaki; Saijo, Kazue; Sawata, Akira; Hagiwara, Junko; Lin, Zhifeng; Kida, Hiroshi

    2008-01-01

    A reassortant influenza virus, A/duck/Hokkaido/Vac-1/2004 (H5N1) (Dk/Vac-1/04), was generated between non-pathogenic avian influenza viruses isolated from migratory ducks in Asia. Dk/Vac-1/04 (H5N1) virus particles propagated in embryonated chicken eggs were inactivated with formalin and adjuvanted with mineral oil to form a water-in-oil emulsion. The resulting vaccine was injected intramuscularly into chickens. The chickens were challenged with either of the highly pathogenic avian influenza virus strains A/chicken/Yamaguchi/7/2004 (H5N1) or A/swan/Mongolia/3/2005 (H5N1) at 21 days post-vaccination (p. v.), when the geometric mean serum HI titers of the birds was 64 with the challenge virus strains. The vaccinated chickens were protected from manifestation of disease signs upon challenge with either of the highly pathogenic avian influenza viruses. However, challenge virus was recovered at low titers from the birds at 2 and 4 days post-challenge (p.c.). All 3 chickens challenged at 6 days p.v. died, whereas 3 chickens challenged at 8 days p.v. survived. These results indicate that the present vaccine confers clinical protection and reduction of virus shedding against highly pathogenic avian influenza virus challenge and should be useful as an optional tool in emergency cases.

  3. Surveillance for Highly Pathogenic Avian Influenza in Wild Turkeys ( Meleagris gallopavo ) of Minnesota, USA during 2015 Outbreaks in Domestic Poultry.

    PubMed

    Jennelle, Christopher S; Carstensen, Michelle; Hildebrand, Erik C; Wolf, Paul C; Grear, Daniel A; Ip, Hon S; Cornicelli, Louis

    2017-07-01

    An outbreak of a novel reassortant of highly pathogenic avian influenza A (H5N2) virus (HPAIV) decimated domestic turkeys ( Meleagris gallopavo ) from March through mid-June, 2015 in the state of Minnesota, US. In response, as part of broader surveillance efforts in wild birds, we designed a pilot effort to sample and test hunter-harvested Wild Turkeys ( Meleagris gallopavo ) for HPAIV in Minnesota counties with known infected poultry facilities. We also collected opportunistic samples from dead Wild Turkeys or live Wild Turkeys showing neurologic signs (morbidity and mortality samples) reported by the public or state agency personnel. Cloacal and tracheal samples were collected from each bird and screened for avian influenza virus (AIV) RNA by real-time reverse transcription PCR. From 15 April to 28 May 2015, we sampled 84 hunter-harvested male Wild Turkeys in 11 Minnesota counties. From 7 April 2015 through 11 April 2016, we sampled an additional 23 Wild Turkeys in 17 Minnesota counties. We did not detect type A influenza or HPAIV from any samples, and concluded, at the 95% confidence level, that apparent shedding prevalence in male Wild Turkeys in central Minnesota was between 0% and 2.9% over the sampling period. The susceptibility of wild turkeys to HPAIV is unclear, but regular harvest seasons make this wild gallinaceous bird readily available for future AIV testing.

  4. Genetic characterization of highly pathogenic avian influenza H5N1 viruses isolated from naturally infected pigeons in Egypt.

    PubMed

    Elgendy, Emad Mohamed; Watanabe, Yohei; Daidoji, Tomo; Arai, Yasuha; Ikuta, Kazuyoshi; Ibrahim, Madiha Salah; Nakaya, Takaaki

    2016-12-01

    Avian influenza viruses impose serious public health burdens with significant mortality and morbidity not only in poultry but also in humans. While poultry susceptibility to avian influenza virus infection is well characterized, pigeons have been thought to have low susceptibility to these viruses. However, recent studies reported natural pigeon infections with highly pathogenic avian influenza H5N1 viruses. In Egypt, which is one of the H5N1 endemic areas for birds, pigeons are raised in towers built on farms in backyards and on house roofs, providing a potential risk for virus transmission from pigeons to humans. In this study, we performed genetic analysis of two H5N1 virus strains that were isolated from naturally infected pigeons in Egypt. Genetic and phylogenetic analyses showed that these viruses originated from Egyptian H5N1 viruses that were circulating in chickens or ducks. Several unique mutations, not reported before in any Egyptian isolates, were detected in the internal genes (i.e., polymerase residues PB1-V3D, PB1-K363R, PA-A369V, and PA-V602I; nucleoprotein residue NP-R38K; and nonstructural protein residues NS1-D120N and NS2-F55C). Our findings suggested that pigeons are naturally infected with H5N1 virus and can be a potential reservoir for transmission to humans, and showed the importance of genetic analysis of H5N1 internal genes.

  5. Pathogenesis and transmission of H7 and H5 highly pathogenic avian influenza viruses in mallards including the recent intercontinental H5 viruses (H5N8 and H5N2)

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of Asian lineage H5N1, and recently H5N8, HPAIVs, which can cause moderate to sev...

  6. Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype

    PubMed Central

    Veits, Jutta; Weber, Siegfried; Stech, Olga; Breithaupt, Angele; Gräber, Marcus; Gohrbandt, Sandra; Bogs, Jessica; Hundt, Jana; Teifke, Jens P.; Mettenleiter, Thomas C.; Stech, Jürgen

    2012-01-01

    High-pathogenic avian influenza viruses (HPAIVs) evolve from low-pathogenic precursors specifying the HA serotypes H5 or H7 by acquisition of a polybasic HA cleavage site. As the reason for this serotype restriction has remained unclear, we aimed to distinguish between compatibility of a polybasic cleavage site with H5/H7 HA only and unique predisposition of these two serotypes for insertion mutations. To this end, we introduced a polybasic cleavage site into the HA of several low-pathogenic avian strains with serotypes H1, H2, H3, H4, H6, H8, H10, H11, H14, or H15, and rescued HA reassortants after cotransfection with the genes from either a low-pathogenic H9N2 or high-pathogenic H5N1 strain. Oculonasal inoculation with those reassortants resulted in varying pathogenicity in chicken. Recombinants containing the engineered H2, H4, H8, or H14 in the HPAIV background were lethal and exhibited i.v. pathogenicity indices of 2.79, 2.37, 2.85, and 2.61, respectively, equivalent to naturally occurring H5 or H7 HPAIV. Moreover, the H2, H4, and H8 reassortants were transmitted to some contact chickens. The H2 reassortant gained two mutations in the M2 proton channel gate region, which is affected in some HPAIVs of various origins. Taken together, in the presence of a polybasic HA cleavage site, non-H5/H7 HA can support a highly pathogenic phenotype in the appropriate viral background, indicating requirement for further adaptation. Therefore, the restriction of natural HPAIV to serotypes H5 and H7 is likely a result of their unique predisposition for acquisition of a polybasic HA cleavage site. PMID:22308331

  7. Experimental infection of SPF and Korean native chickens with highly pathogenic avian influenza virus (H5N8).

    PubMed

    Lee, Eun-Kyoung; Song, Byung-Min; Kang, Hyun-Mi; Woo, Sang-Hee; Heo, Gyeong-Beom; Jung, Suk Chan; Park, Yong Ho; Lee, Youn-Jeong; Kim, Jae-Hong

    2016-05-01

    In 2014, an H5N8 outbreak of highly pathogenic avian influenza (HPAI) occurred in South Korea. The H5N8 strain produced mild to moderate clinical signs and mortality rates in commercial chicken farms, especially Korean native chicken farms. To understand the differences between their pathogenicity in SPF chicken and Korean native chicken., we evaluated the mean bird lethal doses (BLD50) of the Korean representative H5N8 virus (A/broiler duck/Korea/Buan2/2014) The BLD50values of the H5N8 virus were 10(5.3)EID50 and 10(6.7)EID50 in SPF and Korean native chickens, respectively. In addition, the mean death time was much longer, and the viral titers in tissues of H5N8-infected chickens were significantly lower, in the Korean group than in the SPF group. These features of the H5N8 virus likely account for its mild-to-moderate pathogenicity in commercial chicken farms, especially Korean native chicken flocks, despite the fact that it is a highly pathogenic virus according to the OIE criteria. To improve current understanding and management of HPAI, pathogenic characterization of novel emerging viruses should be performed by natural route in major poultry species in each country. © 2016 Poultry Science Association Inc.

  8. Cytomegalovirus appendicitis in an immunocompetent host.

    PubMed

    Canterino, Joseph E; McCormack, Michael; Gurung, Ananta; Passarelli, James; Landry, Marie L; Golden, Marjorie

    2016-05-01

    Cytomegalovirus (CMV) is a common viral pathogen. Asymptomatic infection or a mononucleosis syndrome are the most common manifestations in otherwise healthy individuals. End-organ disease is rare in immunocompetent individuals. Here, we describe a case of CMV appendicitis in a patient without an immune-compromising condition.

  9. Human Sentinel Surveillance of Influenza and Other Respiratory Viral Pathogens in Border Areas of Western Cambodia

    PubMed Central

    Chuang, Ilin; Samon, Nou; Uthaimongkol, Nichapat; Klungthong, Chonticha; Manasatienkij, Wudtichai; Thaisomboonsuk, Butsaya; Tyner, Stuart D.; Rith, Sareth; Horm, Viseth Srey; Jarman, Richard G.; Bethell, Delia; Chanarat, Nitima; Pavlin, Julie; Wongstitwilairoong, Tippa; Saingam, Piyaporn; El, But Sam; Fukuda, Mark M.; Touch, Sok; Sovann, Ly; Fernandez, Stefan; Buchy, Philippe; Chanthap, Lon; Saunders, David

    2016-01-01

    Little is known about circulation of influenza and other respiratory viruses in remote populations along the Thai-Cambodia border in western Cambodia. We screened 586 outpatients (median age 5, range 1–77) presenting with influenza-like-illness (ILI) at 4 sentinel sites in western Cambodia between May 2010 and December 2012. Real-time reverse transcriptase (rRT) PCR for influenza was performed on combined nasal and throat specimens followed by viral culture, antigenic analysis, antiviral susceptibility testing and full genome sequencing for phylogenetic analysis. ILI-specimens negative for influenza were cultured, followed by rRT-PCR for enterovirus and rhinovirus (EV/RV) and EV71. Influenza was found in 168 cases (29%) and occurred almost exclusively in the rainy season from June to November. Isolated influenza strains had close antigenic and phylogenetic relationships, matching vaccine and circulating strains found elsewhere in Cambodia. Influenza vaccination coverage was low (<20%). Western Cambodian H1N1(2009) isolate genomes were more closely related to 10 earlier Cambodia isolates (94.4% genome conservation) than to 13 Thai isolates (75.9% genome conservation), despite sharing the majority of the amino acid changes with the Thai references. Most genes showed signatures of purifying selection. Viral culture detected only adenovirus (5.7%) and parainfluenza virus (3.8%), while non-polio enteroviruses (10.3%) were detected among 164 culture-negative samples including coxsackievirus A4, A6, A8, A9, A12, B3, B4 and echovirus E6 and E9 using nested RT-PCR methods. A single specimen of EV71 was found. Despite proximity to Thailand, influenza epidemiology of these western Cambodian isolates followed patterns observed elsewhere in Cambodia, continuing to support current vaccine and treatment recommendations from the Cambodian National Influenza Center. Amino acid mutations at non-epitope sites, particularly hemagglutinin genes, require further investigation in light

  10. Isolation of Highly Pathogenic Avian Influenza H5N1 Virus from Saker Falcons (Falco cherrug) in the Middle East

    PubMed Central

    Marjuki, Henju; Wernery, Ulrich; Yen, Hui-Ling; Franks, John; Seiler, Patrick; Walker, David; Krauss, Scott; Webster, Robert G.

    2009-01-01

    There is accumulating evidence that birds of prey are susceptible to fatal infection with highly pathogenic avian influenza (HPAI) virus. We studied the antigenic, molecular, phylogenetic, and pathogenic properties of 2 HPAI H5N1 viruses isolated from dead falcons in Saudi Arabia and Kuwait in 2005 and 2007, respectively. Phylogenetic and antigenic analyses grouped both isolates in clade 2.2 (Qinghai-like viruses). However, the viruses appeared to have spread westward via different flyways. It remains unknown how these viruses spread so rapidly from Qinghai after the 2005 outbreak and how they were introduced into falcons in these two countries. The H5N1 outbreaks in the Middle East are believed by some to be mediated by wild migratory birds. However, sporting falcons may be at additional risk from the illegal import of live quail to feed them. PMID:20148178

  11. Isolation of highly pathogenic avian influenza H5N1 virus from Saker falcons (Falco cherrug) in the Middle East.

    PubMed

    Marjuki, Henju; Wernery, Ulrich; Yen, Hui-Ling; Franks, John; Seiler, Patrick; Walker, David; Krauss, Scott; Webster, Robert G

    2009-01-01

    There is accumulating evidence that birds of prey are susceptible to fatal infection with highly pathogenic avian influenza (HPAI) virus. We studied the antigenic, molecular, phylogenetic, and pathogenic properties of 2 HPAI H5N1 viruses isolated from dead falcons in Saudi Arabia and Kuwait in 2005 and 2007, respectively. Phylogenetic and antigenic analyses grouped both isolates in clade 2.2 (Qinghai-like viruses). However, the viruses appeared to have spread westward via different flyways. It remains unknown how these viruses spread so rapidly from Qinghai after the 2005 outbreak and how they were introduced into falcons in these two countries. The H5N1 outbreaks in the Middle East are believed by some to be mediated by wild migratory birds. However, sporting falcons may be at additional risk from the illegal import of live quail to feed them.

  12. Genetic properties and pathogenicity of a novel reassortant H10N5 influenza virus from wild birds.

    PubMed

    Jia, Yane; Yang, Jiayun; Wang, Zhengxiang; Du, Yingying; Cui, Jie; Wang, Liang; Guo, Fengfeng; Yang, Maijuan; Han, Shufang; Zhu, Qiyun

    2017-01-23

    In this study, we analyzed the genome of a H10N5 influenza virus from wild birds. This virus was identified as a novel reassortant virus with internal genes from multiple subtypes and of distinct origins. After sequential passage in mice, mouse-adapted viruses bearing mutations PB2-E627K and HA-G218E were generated. These viruses caused dramatic body weight loss and death, and also replicated in mouse brain, suggesting that the pathogenicity of low pathogenic H10N5 in chickens can be enhanced after passage in mammals. Our data imply that H10N5 viruses might be a potential risk to human health therefore it is important to undertake continued surveillance and biosecurity evaluation of these viruses.

  13. Heterosubtypic Protection against Pathogenic Human and Avian Influenza Viruses via In Vivo Electroporation of Synthetic Consensus DNA Antigens

    PubMed Central

    Laddy, Dominick J.; Yan, Jian; Kutzler, Michele; Kobasa, Darwyn; Kobinger, Gary P.; Khan, Amir S.; Greenhouse, Jack; Sardesai, Niranjan Y.; Draghia-Akli, Ruxandra; Weiner, David B.

    2008-01-01

    Background The persistent evolution of highly pathogenic avian influenza (HPAI) highlights the need for novel vaccination techniques that can quickly and effectively respond to emerging viral threats. We evaluated the use of optimized consensus influenza antigens to provide broad protection against divergent strains of H5N1 influenza in three animal models of mice, ferrets, and non-human primates. We also evaluated the use of in vivo electroporation to deliver these vaccines to overcome the immunogenicity barrier encountered in larger animal models of vaccination. Methods and Findings Mice, ferrets and non-human primates were immunized with consensus plasmids expressing H5 hemagglutinin (pH5HA), N1 neuraminidase (pN1NA), and nucleoprotein antigen (pNP). Dramatic IFN-γ-based cellular immune responses to both H5 and NP, largely dependent upon CD8+ T cells were seen in mice. Hemaggutination inhibition titers classically associated with protection (>1:40) were seen in all species. Responses in both ferrets and macaques demonstrate the ability of synthetic consensus antigens to induce antibodies capable of inhibiting divergent strains of the H5N1 subtype, and studies in the mouse and ferret demonstrate the ability of synthetic consensus vaccines to induce protection even in the absence of such neutralizing antibodies. After challenge, protection from morbidity and mortality was seen in mice and ferrets, with significant reductions in viral shedding and disease progression seen in vaccinated animals. Conclusions By combining several consensus influenza antigens with in vivo electroporation, we demonstrate that these antigens induce both protective cellular and humoral immune responses in mice, ferrets and non-human primates. We also demonstrate the ability of these antigens to protect from both morbidity and mortality in a ferret model of HPAI, in both the presence and absence of neutralizing antibody, which will be critical in responding to the antigenic drift that

  14. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and

  15. PB2-Q591K Mutation Determines the Pathogenicity of Avian H9N2 Influenza Viruses for Mammalian Species

    PubMed Central

    Wang, Congrong; Lee, Horace Hok Yeung; Yang, Zi Feng; Mok, Chris Ka Pun; Zhang, Zhi

    2016-01-01

    Background Influenza A subtype H9N2 is widespread and prevalent in poultry. It has repeatedly transmitted zoonotically to cause mild influenza-like illness in humans and is regarded as a potential pandemic candidate. In additon, the six internal genes of H7N9 and H10N8 viruses which caused infection in human in China as well as some of the highly pathogenic H5N1 strains are origined from H9N2. Previous studies have shown that the mammalian adaptation PB2-Q591K contributes to the pathogenicity of H5N1 and H7N9 viruses. However, the role of the PB2-Q591K mutation in H9N2 subtype is still not well understood. Methods To define and compare the individual role of PB2-Q591K substitution in the PB2 gene segment of H9N2 in relation to polymerase activity, replication competence and the pathogenicity using in vitro and in vivo models. Results The PB2-Q591K mutation in H9N2 virus enhanced the polymerase activity and virus replication in human NHBE cells when compared to the wild type strain. Mice infected with the PB2 mutant showed significant weight loss, higher virus replication and immune responses in the lungs. Conclusions Our evidences suggest that the PB2-Q591K, in addition to the -E627K mutation in H9N2 enhanced the pathogenicity in mammalian host. PMID:27684944

  16. Spatial Modeling of Wild Bird Risk Factors for Highly Pathogenic A(H5N1) Avian Influenza Virus Transmission.

    PubMed

    Prosser, Diann J; Hungerford, Laura L; Erwin, R Michael; Ottinger, Mary Ann; Takekawa, John Y; Newman, Scott H; Xiao, Xiangming; Ellis, Erle C

    2016-05-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 yr, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae) are reported as secondary transmitters of HPAIV and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using geographic information software and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values and then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 to 30 km resolution for multiscale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  17. A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses

    PubMed Central

    Mitchell, Hugh D.; Eisfeld, Amie J.; Sims, Amy C.; McDermott, Jason E.; Matzke, Melissa M.; Webb-Robertson, Bobbi-Jo M.; Tilton, Susan C.; Tchitchek, Nicolas; Josset, Laurence; Li, Chengjun; Ellis, Amy L.; Chang, Jean H.; Heegel, Robert A.; Luna, Maria L.; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Neumann, Gabriele; Benecke, Arndt G.; Smith, Richard D.; Baric, Ralph S.; Kawaoka, Yoshihiro; Katze, Michael G.; Waters, Katrina M.

    2013-01-01

    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models. PMID:23935999

  18. Practices associated with Highly Pathogenic Avian Influenza spread in traditional poultry marketing chains: Social and economic perspectives.

    PubMed

    Paul, Mathilde; Baritaux, Virginie; Wongnarkpet, Sirichai; Poolkhet, Chaithep; Thanapongtharm, Weerapong; Roger, François; Bonnet, Pascal; Ducrot, Christian

    2013-04-01

    In developing countries, smallholder poultry production contributes to food security and poverty alleviation in rural areas. However, traditional poultry marketing chains have been threatened by the epidemics caused by the Highly Pathogenic Avian Influenza (H5N1) virus. The article presents a value chain analysis conducted on the traditional poultry marketing chain in the rural province of Phitsanulok, Thailand. The analysis is based on quantitative data collected on 470 backyard chicken farms, and on qualitative data collected on 28 poultry collectors, slaughterhouses and market retailers, using semi-structured interviews. The article examines the organization of poultry marketing chains in time and space, and shows how this may contribute to the spread of Highly Pathogenic Avian Influenza H5N1 in the small-scale poultry sector. The article also discusses the practices and strategies developed by value chain actors facing poultry mortality, with their economic and social determinants. More broadly, this study also illustrates how value chain analysis can contribute to a better understanding of the complex mechanisms associated with the spread of epidemics in rural communities. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Genetic characterization of highly pathogenic H5N1 avian influenza virus from live migratory birds in Bangladesh.

    PubMed

    Parvin, Rokshana; Kamal, Abu H M; Haque, Md E; Chowdhury, Emdadul H; Giasuddin, Mohammed; Islam, Mohammad R; Vahlenkamp, Thomas W

    2014-12-01

    Since the first outbreak of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in Bangladesh in 2007, the virus has been circulating among domestic poultry causing severe economic losses. To investigate the presence of HPAIV H5N1 in migratory birds and their potential role in virus spread, 205 pools of fecal samples from live migratory birds were analyzed. Here, the first virus isolation and genome characterization of two HPAIV H5N1 isolates from migratory birds (A/migratory bird/Bangladesh/P18/2010 and A/migratory bird/Bangladesh/P29/2010)are described. Full-length amplification, sequencing, and a comprehensive phylogenetic analysis were performed for HA, NA, M, NS, NP, PA, PB1, and PB2 gene segments. The selected migratory bird isolates belong to clade 2.3.2.1 along with recent Bangladeshi isolates from chickens, ducks, and crows which grouped in the same cluster with contemporary South and South-East Asian isolates. The studied isolates were genetically similar to other H5N1 isolates from different species within the respective clade although some unique amino acid substitutions were observed among them. Migratory birds remain a real threat for spreading pathogenic avian influenza viruses across the continent and introduction of new strains into Bangladesh.

  20. A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses

    SciTech Connect

    Mitchell, Hugh D.; Eisfeld, Amie J.; Sims, Amy; McDermott, Jason E.; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Tilton, Susan C.; Tchitchek, Nicholas; Josset, Laurence; Li, Chengjun; Ellis, Amy L.; Chang, Jean H.; Heegel, Robert A.; Luna, Maria L.; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Neumann, Gabriele; Benecke, Arndt; Smith, Richard D.; Baric, Ralph; Kawaoka, Yoshihiro; Katze, Michael G.; Waters, Katrina M.

    2013-07-25

    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.

  1. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus

    PubMed Central

    Baskin, Carole R.; Bielefeldt-Ohmann, Helle; Tumpey, Terrence M.; Sabourin, Patrick J.; Long, James P.; García-Sastre, Adolfo; Tolnay, Airn-E.; Albrecht, Randy; Pyles, John A.; Olson, Pam H.; Aicher, Lauri D.; Rosenzweig, Elizabeth R.; Murali-Krishna, Kaja; Clark, Edward A.; Kotur, Mark S.; Fornek, Jamie L.; Proll, Sean; Palermo, Robert E.; Sabourin, Carol L.; Katze, Michael G.

    2009-01-01

    The mechanisms responsible for the virulence of the highly pathogenic avian influenza (HPAI) and of the 1918 pandemic influenza virus in humans remain poorly understood. To identify crucial components of the early host response during these infections by using both conventional and functional genomics tools, we studied 34 cynomolgus macaques (Macaca fascicularis) to compare a 2004 human H5N1 Vietnam isolate with 2 reassortant viruses possessing the 1918 hemagglutinin (HA) and neuraminidase (NA) surface proteins, known conveyors of virulence. One of the reassortants also contained the 1918 nonstructural (NS1) protein, an inhibitor of the host interferon response. Among these viruses, HPAI H5N1 was the most virulent. Within 24 h, the H5N1 virus produced severe bronchiolar and alveolar lesions. Notably, the H5N1 virus targeted type II pneumocytes throughout the 7-day infection, and induced the most dramatic and sustained expression of type I interferons and inflammatory and innate immune genes, as measured by genomic and protein assays. The H5N1 infection also resulted in prolonged margination of circulating T lymphocytes and notable apoptosis of activated dendritic cells in the lungs and draining lymph nodes early during infection. While both 1918 reassortant viruses also were highly pathogenic, the H5N1 virus was exceptional for the extent of tissue damage, cytokinemia, and interference with immune regulatory mechanisms, which may help explain the extreme virulence of HPAI viruses in humans. PMID:19218453

  2. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    PubMed

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08.

  3. A network integration approach to predict conserved regulators related to pathogenicity of influenza and SARS-CoV respiratory viruses.

    PubMed

    Mitchell, Hugh D; Eisfeld, Amie J; Sims, Amy C; McDermott, Jason E; Matzke, Melissa M; Webb-Robertson, Bobbi-Jo M; Tilton, Susan C; Tchitchek, Nicolas; Josset, Laurence; Li, Chengjun; Ellis, Amy L; Chang, Jean H; Heegel, Robert A; Luna, Maria L; Schepmoes, Athena A; Shukla, Anil K; Metz, Thomas O; Neumann, Gabriele; Benecke, Arndt G; Smith, Richard D; Baric, Ralph S; Kawaoka, Yoshihiro; Katze, Michael G; Waters, Katrina M

    2013-01-01

    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel "crowd-based" approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse 'omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.

  4. Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity

    PubMed Central

    Guo, Hongbo; de Vries, Erik; McBride, Ryan; Dekkers, Jojanneke; Peng, Wenjie; Bouwman, Kim M.; Nycholat, Corwin; Verheije, M. Helene; Paulson, James C.; van Kuppeveld, Frank J.M.

    2017-01-01

    Emergence and intercontinental spread of highly pathogenic avian influenza A(H5Nx) virus clade 2.3.4.4 is unprecedented. H5N8 and H5N2 viruses have caused major economic losses in the poultry industry in Europe and North America, and lethal human infections with H5N6 virus have occurred in Asia. Knowledge of the evolution of receptor-binding specificity of these viruses, which might affect host range, is urgently needed. We report that emergence of these viruses is accompanied by a change in receptor-binding specificity. In contrast to ancestral clade 2.3.4 H5 proteins, novel clade 2.3.4.4 H5 proteins bind to fucosylated sialosides because of substitutions K222Q and S227R, which are unique for highly pathogenic influenza virus H5 proteins. North American clade 2.3.4.4 virus isolates have retained only the K222Q substitution but still bind fucosylated sialosides. Altered receptor-binding specificity of virus clade 2.3.4.4 H5 proteins might have contributed to emergence and spread of H5Nx viruses. PMID:27869615

  5. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015

    PubMed Central

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F.; Shi, Weifeng; Lei, Fumin

    2015-01-01

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health. PMID:26259704

  6. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

    PubMed

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F; Shi, Weifeng; Lei, Fumin

    2015-08-11

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.

  7. Highly pathogenic avian influenza H5N1 virus could partly be evacuated by pregnant BALB/c mouse during abortion or preterm delivery.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Qin, Chuan

    2011-07-08

    The highly pathogenic avian influenza H5N1 virus is one of candidates for future pandemic. Since H5N1 viruses had previously been isolated only from avian species, the outbreak raised questions about the ability of these viruses to cause severe disease and death in humans. Pregnant women are at increased risk for influenza-associated illness and death. However, little is known about whether influenza viruses could transmit to the fetus through the placenta, and the effects of abortion and preterm delivery to maternal influenza infection are not well understood. We found that the H5N1 viruses could vertical transmit to the fetus through the placenta in the BALB/c mouse model, and the viruses could partly be evacuated by the pregnant mice during abortion or preterm delivery. This study may further our understanding about the transmission of this highly pathogenic avian influenza viruses, supply optimized clinical treatment method for pregnant women, and shed some light on better preventing and controlling for future potential outbreak of H5N1 influenza pandemic.

  8. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    PubMed

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment.

  9. Influenza viruses: an introduction.

    PubMed

    Kawaoka, Yoshihiro; Neumann, Gabriele

    2012-01-01

    We provide a brief introduction into the genome organization, life cycle, pathogenicity, and host range of influenza A viruses. We also briefly summarize influenza pandemics and currently available measures to control influenza virus outbreaks, including vaccines and antiviral compounds to influenza viruses.

  10. Deep sequencing of H7N8 avian influenza viruses from surveillance zone supports H7N8 high pathogenicity avian influenza was limited to a single outbreak farm in Indiana during 2016

    USDA-ARS?s Scientific Manuscript database

    In mid-January 2016, an outbreak of H7N8 high pathogenicity avian influenza (HPAI) virus in commercial turkeys occurred in Indiana. The outbreak was first detected by an increase in mortality followed by laboratory confirmation of H7N8 HPAI virus. Surveillance within the 10 km Control Zone detected...

  11. Protective efficacy of recombinant and inactivated H5 avian influenza vaccines against challenge from the 2014 intercontinental H5 highly pathogenic avian influenza viruses (H5N8 and H5N2)

    USDA-ARS?s Scientific Manuscript database

    Protective immunity against highly pathogenic avian influenza (HPAI) largely depends on the development of an antibody response against a specific subtype of challenge virus. Historically, the use of antigenically closely matched isolates has proven efficacious when used as inactivated vaccines. M...

  12. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds

    PubMed Central

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV. PMID:27078641

  13. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds.

    PubMed

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV.

  14. Die Another Day: Inhibition of Cell Death Pathways by Cytomegalovirus.

    PubMed

    Brune, Wolfram; Andoniou, Christopher E

    2017-09-02

    Multicellular organisms have evolved multiple genetically programmed cell death pathways that are essential for homeostasis. The finding that many viruses encode cell death inhibitors suggested that cellular suicide also functions as a first line of defence against invading pathogens. This theory was confirmed by studying viral mutants that lack certain cell death inhibitors. Cytomegaloviruses, a family of species-specific viruses, have proved particularly useful in this respect. Cytomegaloviruses are known to encode multiple death inhibitors that are required for efficient viral replication. Here, we outline the mechanisms used by the host cell to detect cytomegalovirus infection and discuss the methods employed by the cytomegalovirus family to prevent death of the host cell. In addition to enhancing our understanding of cytomegalovirus pathogenesis we detail how this research has provided significant insights into the cross-talk that exists between the various cell death pathways.

  15. Protective immunity against H7N3 highly pathogenic avian influenza induced following inoculation of chickens with H7 low pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    In the poultry industry, live virus vaccines are used to induce immunity against numerous respiratory pathogens. These are typically lower virulent forms of virus which are limited in replication and pathology, but induce mucosal, humoral, and cellular immunity. Because of the potential for revers...

  16. Phylogenetic and pathogenic analysis of a novel H6N2 avian influenza virus isolated from a green peafowl in a wildlife park.

    PubMed

    Fan, Zhaobin; Ci, Yanpeng; Ma, Yixin; Liu, Liling; Ma, Jianzhang; Li, D Yanbing; Chen, Hualan

    2014-12-01

    H6 subtype avian influenza virus, which has been circulating among different species, causes considerable concern for both veterinary medicine and public health. We isolated a strain of H6N2 avian influenza virus from healthy green peafowl (Pavo muticus) in Qinghuangdao Wildlife Park in Hebei Province, China, in 2012. A phylogenetic analysis indicated that the isolated H6N2 strain had the same gene constellation as southern China strains, which were predominantly isolated from waterfowl distributed in Shantou, Guangxi, and Hunan in 2001-2010. The isolate showed no and low pathogenicity in chickens and ducks, respectively. However, it replicated efficiently in the lungs and turbinate of infected mice, resulting in thickened alveolar septa and moderate interstitial pneumonia. This finding raises concerns that the H6N2 subtype maybe evolve into a novel endemic avian influenza virus. Therefore, periodical surveillance of avian influenza viruses must be undertaken to monitor the advent of novel viruses.

  17. Amantadine resistance among highly pathogenic avian influenza viruses (H5N1) isolated from India.

    PubMed

    Jacob, Aron; Sood, Richa; Chanu, Kh Victoria; Bhatia, Sandeep; Khandia, Rekha; Pateriya, A K; Nagarajan, S; Dimri, U; Kulkarni, D D

    2016-02-01

    Emergence of antiviral resistance among H5N1 avian influenza viruses is the major challenge in the control of pandemic influenza. Matrix 2 (M2) inhibitors (amantadine and rimantadine) and neuraminidase inhibitors (oseltamivir and zanamivir) are the two classes of antiviral agents that are specifically active against influenza viruses and are used for both treatment and prophylaxis of influenza infections. Amantadine targets the M2 ion channel of influenza A virus and interrupts virus life cycle through blockade of hydrogen ion influx. This prevents uncoating of the virus in infected host cells which impedes the release of ribonucleoprotein required for transcription and replication of virion in the nucleus. The present study was carried out to review the status of amantadine resistance in H5N1 viruses isolated from India and to study their replicative capability. Results of the study revealed resistance to amantadine in antiviral assay among four H5N1 viruses out of which two viruses had Serine 31 Asparagine (AGT-AAT i.e., S31N) mutation and two had Valine 27 Alanine (GTT-GCT i.e., V27A) mutation. The four resistant viruses not only exhibited significant difference in effective concentration 50% (EC50) values of amantadine hydrochloride from that of susceptible viruses (P < 0.0001) but also showed significant difference between two different types (S31N and V27A) of mutant viruses (P < 0.05). Resistance to amantadine could also be demonstrated in a simple HA test after replication of the viruses in MDCK cells in presence of amantadine. The study identifies the correlation between in vitro antiviral assay and presence of established molecular markers of resistance, the retention of replicative capacity in the presence of amantadine hydrochloride by the resistant viruses and the emergence of resistant mutations against amantadine among avian influenza viruses (H5N1) without selective drug pressure.

  18. Potency, efficacy, and antigenic mapping of H7 avian influenza virus vaccines against the 2012 H7N3 highly pathogenic avian influenza virus from Mexico.

    PubMed

    Spackman, Erica; Wan, Xiu-Feng; Kapczynski, Darrell; Xu, Yifei; Pantin-Jackwood, Mary; Suarez, David L; Swayne, David

    2014-09-01

    In the spring of 2012 an outbreak of H7N3 highly pathogenic (HP) avian influenza virus (AIV) occurred in poultry in Mexico. Vaccination was implemented as a control measure, along with increased biosecurity and surveillance. At that time there was no commercially available H7 AIV vaccine in North America; therefore, a recent H7N3 wild bird isolate of low pathogenicity from Mexico (A/cinnamon teal/Mexico/2817/2006 H7N3) was selected and utilized as the vaccine seed strain. In these studies, the potency and efficacy of this vaccine strain was evaluated in chickens against challenge with the 2012 Jalisco H7N3 HPAIV. Although vaccine doses of 256 and 102 hemagglutinating units (HAU) per bird decreased morbidity and mortality significantly compared to sham vaccinates, a dose of 512 HAU per bird was required to prevent mortality and morbidity completely. Additionally, the efficacy of 11 other H7 AIV vaccines and an antigenic map of hemagglutination inhibition assay data with all the vaccines and challenge viruses were evaluated, both to identify other potential vaccine strains and to characterize the relationship between genetic and antigenic distance with protection against this HPAIV. Several other isolates provided adequate protection against the 2012 Jalisco H7N3 lineage, but antigenic and genetic differences were not clear indicators of protection because the immunogenicity of the vaccine seed strain was also a critical factor.

  19. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif

    PubMed Central

    Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.

    2015-01-01

    Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906

  20. Prerequisites for the acquisition of mammalian pathogenicity by influenza A virus with a prototypic avian PB2 gene.

    PubMed

    Lee, Chung-Young; An, Se-Hee; Kim, Ilhwan; Go, Du-Min; Kim, Dae-Yong; Choi, Jun-Gu; Lee, Youn-Jeong; Kim, Jae-Hong; Kwon, Hyuk-Joon

    2017-08-31

    The polymerase of avian influenza A virus (AIV) is a heterotrimer composed of PB2, PB1, and PA. PB2 plays a role in overcoming the host barrier; however, the genetic prerequisites for avian PB2 to acquire mammalian pathogenic mutations have not been well elucidated. Previously, we identified a prototypic avian PB2 that conferred non-replicative and non-pathogenic traits to a PR8-derived recombinant virus when it was used to infect mice. Here, we demonstrated that key amino acid mutations (I66M, I109V, and I133V, collectively referred to as MVV) of this prototypic avian PB2 increase the replication efficiency of recombinant PR8 virus carrying the mutated PB2 in both avian and mammalian hosts. The MVV mutations caused no weight loss in mice, but they did allow replication in infected lungs, and the viruses acquired fatal mammalian pathogenic mutations such as Q591R/K, E627K, or D701N in the infected lungs. The MVV mutations are located at the interfaces of the trimer and are predicted to increase the strength of this structure. Thus, gaining MVV mutations might be the first step for AIV to acquire mammalian pathogenicity. These results provide new insights into the evolution of AIV in birds and mammals.

  1. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.

    PubMed

    Venter, Marietjie; Treurnicht, Florette K; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A; Thomas, Juno; Blumberg, Lucille

    2017-09-15

    Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk.

  2. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    PubMed Central

    2011-01-01

    Background Black elderberries (Sambucus nigra L.) are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV) infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG) for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. Methods The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. Results For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Conclusion Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product. PMID:21352539

  3. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses.

    PubMed

    Krawitz, Christian; Mraheil, Mobarak Abu; Stein, Michael; Imirzalioglu, Can; Domann, Eugen; Pleschka, Stephan; Hain, Torsten

    2011-02-25

    Black elderberries (Sambucus nigra L.) are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV) infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG) for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product.

  4. Highly Pathogenic Avian Influenza Viruses Do Not Inhibit Interferon Synthesis in Infected Chickens but Can Override the Interferon-Induced Antiviral State ▿†

    PubMed Central

    Penski, Nicola; Härtle, Sonja; Rubbenstroth, Dennis; Krohmann, Carsten; Ruggli, Nicolas; Schusser, Benjamin; Pfann, Michael; Reuter, Antje; Gohrbandt, Sandra; Hundt, Jana; Veits, Jutta; Breithaupt, Angele; Kochs, Georg; Stech, Jürgen; Summerfield, Artur; Vahlenkamp, Thomas; Kaspers, Bernd; Staeheli, Peter

    2011-01-01

    From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses. PMID:21613402

  5. Pathogenesis, Transmissibility, and Tropism of a Highly Pathogenic Avian Influenza A(H7N7) Virus Associated With Human Conjunctivitis in Italy, 2013.

    PubMed

    Belser, Jessica A; Creager, Hannah M; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M

    2017-09-15

    H7 subtype influenza viruses represent a persistent public health threat because of their continued detection in poultry and ability to cause human infection. An outbreak of highly pathogenic avian influenza H7N7 virus in Italy during 2013 resulted in 3 cases of human conjunctivitis. We determined the pathogenicity and transmissibility of influenza A/Italy/3/2013 virus in mouse and ferret models and examined the replication kinetics of this virus in several human epithelial cell types. The moderate virulence observed in mammalian models and the capacity for transmission in a direct contact model underscore the need for continued study of H7 subtype viruses. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017.

    PubMed

    Kang, Min; Lau, Eric H Y; Guan, Wenda; Yang, Yuwei; Song, Tie; Cowling, Benjamin J; Wu, Jie; Peiris, Malik; He, Jianfeng; Mok, Chris Ka Pun

    2017-07-06

    We describe the epidemiology of highly pathogenic avian influenza (HPAI) A(H7N9) based on poultry market environmental surveillance and laboratory-confirmed human cases (n = 9) in Guangdong, China. We also compare the epidemiology between human cases of high- and low-pathogenic avian influenza A(H7N9) (n = 51) in Guangdong. Case fatality and severity were similar. Touching sick or dead poultry was the most important risk factor for HPAI A(H7N9) infections and should be highlighted for the control of future influenza A(H7N9) epidemics. This article is copyright of The Authors, 2017.

  7. Highly pathogenic avian influenza A virus (H5N1) can be transmitted in ferrets by transfusion.

    PubMed

    Wang, Xue; Tan, Jiying; Zhao, Jiangqin; Ye, Zhiping; Hewlett, Indira

    2014-04-08

    Highly pathogenic avian influenza A virus has been shown to infect organs other than the lung, and this is likely to be mediated by systemic spread resulting from viremia which has been detected in blood in severe cases of infection with avian H5N1 viruses. The infectivity of virus in blood and the potential for virus transmission by transfusion has not been investigated. Using a susceptible ferret animal model, we evaluated viremia and transmission by blood transfusion. Blood was collected on day 2, 4, 6, and 10 post-infection (or before death) from donor ferrets infected with either low dose (1.0 × 10(2.6) EID50/ml) or high dose (1.0 × 10(3.6) EID50/ml) of H5N1 virus, A/VN/1203/04 and transfused to recipient animals. Viremia was observed in 2/12 (16.67%) recipients that received blood from donor ferrets infected with low dose and 7/12 (58.33%) recipients who received blood from high dose infected donors. 1/12 (8.3%) low dose recipients and 6/12 (50%) high dose recipients died within 11 days after transfusion. Increased changes in body weight and temperatures were observed in high dose recipients, and high levels of viral RNA were detected in recipient ferrets after transfusion of blood from the early viremic phase, which also correlated with adverse impact on their survival. These data suggest that highly pathogenic avian influenza A virus, H5N1, is transmissible by blood transfusion in ferrets. Low levels of viremia were detected around the time of onset of symptoms and later in ferrets infected with highly pathogenic H5N1 virus. These findings may have implication for pathogenesis and transmissibility of H5N1.

  8. Comparative susceptibility of waterfowl and gulls to highly pathogenic avian influenza H5N1 virus

    USDA-ARS?s Scientific Manuscript database

    Wild avian species in the Orders Anseriformes (ducks, geese, swans) and Charadriiformes (gulls, terns, shorebirds) have traditionally been considered the natural reservoirs for avian influenza viruses (AIV) and morbidity or mortality is rarely associated with AIV infection in these hosts. However, ...

  9. Use of interferon treatment to protect chickens against highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) is a significant public health concern and serious economic threat to the commercial poultry industry worldwide. While properly matched vaccines can be effective at limiting morbidity and mortality, the use of therapeutics in veterinary animals to combat this disease are relati...

  10. Avian influenza viruses in Korean live poultry markets and their pathogenic potential.

    PubMed

    Choi, Young Ki; Seo, Sang Heui; Kim, Jin A; Webby, Richard J; Webster, Robert G

    2005-02-20

    We surveyed live-poultry markets in Korea in 2003 and isolated 9 H9N2, 6 H3N2, and 1 H6N1 influenza viruses. Antigenic and phylogenetic analyses showed that all 9 H9N2 isolates were of A/Chicken/Korea/25232-96006/96-like lineage (which caused disease in chickens in Korea in 1996) but were different from H9N2 viruses of southeastern China. They had at least 4 genotypes and replicated in chickens but not in mice. The H3N2 and H6N1 viruses were new to Korea and were probably reassortants of avian influenza viruses from southeastern China and recent Korean H9N2 viruses. All 8 segments of the H3N2 viruses formed a single phylogenetic cluster with 99.1 to 100% homology. The H3N2 viruses replicated in chickens and mice without preadaptation, but the H6N1 virus did not. Our results show an increasingly diverse pool of avian influenza viruses in Korea that are potential pandemic influenza agents.

  11. Characterization of low pathogenicity avian influenza viruses isolated from wild birds in Mongolia 2005 through 2007

    USDA-ARS?s Scientific Manuscript database

    During 2005, 2006 and 2007 2,139 specimens representing 4,077 individual birds of 45 species were tested for avian influenza virus (AIV) as part of a wild bird AIV monitoring program conducted in Mongolia. Samples collected in 2005 were tested by virus isolation directly, samples from 2006 and 2007...

  12. Protection of poultry from highly pathogenic avian influenza with multivalent virus-like particle vaccines

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) viruses, especially H5 subtypes, cause widespread morbidity and mortality in domestic and wild bird populations. Dissemination of AI results primarily from the movement of the virus through infected poultry and poultry products, but migratory birds have also served as secondary...

  13. Use of interferon treatment to protect chickens against highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) is a significant public health concern and serious economic threat to the commercial poultry industry worldwide. While properly matched vaccines can be effective at limiting morbidity and mortality, the use of therapeutics in veterinary animals to combat this disease are relativ...

  14. Cross reactive cellular immune responses in chickens previously exposed to low pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) infection in poultry can result in high morbidity and mortality, and negatively affect international trade. Because most AI vaccines used for poultry are inactivated, our knowledge of immunity against AI is based largely on humoral immune responses. In fact, little is known abo...

  15. The performance characteristics of lateral flow devices with 2 strains of highly pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test for avian influenza. Because of the low analytic sensitivity of LFD tests at low virus concentrations, targeted sampling of sick and dead birds has been proposed in order to increase detection pr...

  16. Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016-17.

    PubMed

    Fusaro, Alice; Monne, Isabella; Mulatti, Paolo; Zecchin, Bianca; Bonfanti, Lebana; Ormelli, Silvia; Milani, Adelaide; Cecchettin, Krizia; Lemey, Philippe; Moreno, Ana; Massi, Paola; Dorotea, Tiziano; Marangon, Stefano; Terregino, Calogero

    2017-09-01

    In winter 2016-17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events.

  17. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl

    USDA-ARS?s Scientific Manuscript database

    The biological outcome of H5N1 high pathogenicity avian influenza (HPAI) virus infection in wild waterfowl is poorly understood. This study examined infectivity and pathobiology of A/chicken/Korea/IS/06 (H5N1) HPAI virus infection in Mute swans (Cygnus olor), Greylag geese (Anser anser), Ruddy Sheld...

  18. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Infections with Avian influenza viruses (AIV) of low and high pathogenicity (LP and HP), and Newcastle disease virus (NDV) are commonly reported in domestic ducks in parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the ...

  19. Role of immune-related host gene responses in the pathobiology of H5N1 highly pathogenic avian influenza in ducks

    USDA-ARS?s Scientific Manuscript database

    The Asian highly pathogenic avian influenza (HPAI) H5N1 viruses have changed from producing mild respiratory infections in ducks to some strains causing severe disease and mortality. In this study we examined host response to infection with HPAI H5N1 viruses in ducks. With the use of a whole genom...

  20. Comparison of potency required for protection against H7N3 or H5N1 highly pathogenic avian influenza following vaccination and challenge with homologous virus

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of H5 and H7 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to food supplies and animal/human health. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for pro...

  1. Determination of efficacious vaccine seed strains for use against Egyptian H5N1 highly pathogenic avian influenza viruses through antigenic cartography and in vivo challenge studies

    USDA-ARS?s Scientific Manuscript database

    Since 2006, there have been reported outbreaks of H5N1 highly pathogenic avian influenza (HPAI) in vaccinated chickens in Africa and Asia. This study provides experimental data for selection of efficacious H5N1 vaccine seed strains against recently circulating strains of H5N1 HPAI viruses in Egypt....

  2. Negative data provide weak support for disappearance and restricted emergence/persistence of highly pathogenic influenza A viruses in North American waterfowl

    USDA-ARS?s Scientific Manuscript database

    In their recent paper, Krauss et al. use lack of detection of highly pathogenic (HP) H5 clade 2.3.4.4 (henceforth ‘H5’) influenza A viruses (IAVs) from >22,000 wild bird samples collected in North America (NA) in 2014–2015 to argue that HP H5 IAVs disappeared from waterfowl and that unresolved mecha...

  3. Highly Pathogenic Avian Influenza A(H5N8) Viruses Reintroduced into South Korea by Migratory Waterfowl, 2014-2015.

    PubMed

    Kwon, Jung-Hoon; Lee, Dong-Hun; Swayne, David E; Noh, Jin-Yong; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Song, Chang-Seon

    2016-03-01

    Highly pathogenic avian influenza A(H5N8) viruses were isolated from migratory waterfowl in South Korea during fall 2014-winter 2015, a recurrence after initial introduction in winter 2014. These reappeared viruses were phylogenetically distinct from isolates circulating in poultry farms in South Korea.

  4. Susceptibility And Adaptation Of A Mallard H5N2 Low Pathogenic Influenza Virus In Chickens Infected With Infectious Bursal Disease Virus

    USDA-ARS?s Scientific Manuscript database

    The influenza A/Mallard/Pennsylvania/12180/1984 (H5N2) virus is unable to replicate in 2 to 4-week old normal, immunocompetent specific-pathogen-free (SPF) chickens. In contrast, this mallard virus shows limited replication in chickens that had been previously infected with the immunosuppressive age...

  5. Susceptibility of five migratory aquatic birds to H5N1 highly pathogenic avian influenza virus (A/Chicken/Korea/IS/06)

    USDA-ARS?s Scientific Manuscript database

    It is not known which migratory aquatic species are important in spreading H5N1 highly pathogenic avian influenza (HPAI) viruses, and the pathobiology of infections by such viruses. The objective of this investigation was to assess the susceptibility of Mute swans (Cygnus olor), Greylag geese (Anse...

  6. H5N2 highly pathogenic avian influenza viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys

    USDA-ARS?s Scientific Manuscript database

    From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lin...

  7. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    USDA-ARS?s Scientific Manuscript database

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, transmission and pathogenesis of poultry H5N2 viruses was investigated in chickens and mal...

  8. Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016–17

    PubMed Central

    Monne, Isabella; Mulatti, Paolo; Zecchin, Bianca; Bonfanti, Lebana; Ormelli, Silvia; Milani, Adelaide; Cecchettin, Krizia; Lemey, Philippe; Moreno, Ana; Massi, Paola; Dorotea, Tiziano; Marangon, Stefano; Terregino, Calogero

    2017-01-01

    In winter 2016–17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events. PMID:28661831

  9. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A(H5N1) viruses in ferrets

    USDA-ARS?s Scientific Manuscript database

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A (H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, num...

  10. Impact of highly pathogenic avian influenza virus strain on generation and transmission of bioaerosols during simulated slaughter of infected chickens and ducks

    USDA-ARS?s Scientific Manuscript database

    Human infections with H5N1 highly pathogenic avian influenza (HPAI) virus occur following exposure to H5N1 virus-infected poultry, often during home slaughter or live-poultry market slaughter processes. Using bioaerosol samplers, we demonstrated that infectious H5N1 airborne particles were produced ...

  11. Infectious and lethal doses of H5N1 highly pathogenic avian influenza virus for house sparrows (Passer domesticus) and rock pigeons (Columbia livia)

    USDA-ARS?s Scientific Manuscript database

    Terrestrial wild birds commonly associated with poultry farms have the potential to contribute to the spread of H5N1 highly pathogenic avian influenza virus within or between poultry facilities or between domesticated and wild bird populations. This potential, however, varies between species and is...

  12. Age is not a determinant factor in susceptibility of broilers to H5N2 clade 2.3.4.4 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    In 2014–2015, the US experienced an unprecedented outbreak of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) virus. The H5N2 HPAI virus outbreak in the Midwest in 2015 affected commercial turkey and layer farms, but not broiler farms. To assess any potential genetic resistance of broilers...

  13. Reoccurrence of H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses in wild birds during 2016

    USDA-ARS?s Scientific Manuscript database

    The Asian-origin H5N1 A/goose/Guangdong/1/1996 (Gs/GD) lineage of high pathogenicity avian influenza viruses (HPAIV) has become widespread across four continents, affecting poultry, wild birds and humans. H5N1 HPAIV has evolved into multiple hemagglutinin (HA) genetic clades and reassorting with dif...

  14. Thermal inactivation of H5N2 high pathogenicity avian influenza virus in dried egg white with 7.5% moisture

    USDA-ARS?s Scientific Manuscript database

    High pathogenicity avian influenza viruses (HPAIV) cause severe systemic disease with high mortality in chickens. Isolation of HPAIV from the internal contents of chicken eggs has been reported, and this is cause for concern because HPAIV can be spread by movement of poultry products during marketi...

  15. Risk reduction modeling of high pathogenicity avian influenza virus titers in non-pasteurized liquid egg obtained from infected but undetected chicken flocks

    USDA-ARS?s Scientific Manuscript database

    Control of highly pathogenic avian influenza (HPAI) has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a containment area under permit. Non-pasteurized liquid egg (NPLE) is one such commodity for which movements ma...

  16. Comparison of pig and ferret models for evaluation of respiratory versus alimentary transmission of H5N1 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Background: H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused over 300 human infections and over 200 deaths since 2003. The majority of the cases have involved close direct or indirect contact with infected poultry but a few cases have incriminated consumption of uncooked poultry p...

  17. Effect of Infection with a Mesogenic Strain of Newcastle Disease Virus on Infection with Highly Pathogenic Avian Influenza Virus in Chickens

    USDA-ARS?s Scientific Manuscript database

    Little is known on the interactions between avian influenza virus (AIV) and Newcastle disease virus (NDV) when coinfecting the same poultry host. In a previous study we found that infection of chickens with a mesogenic strain of NDV (mNDV) can reduce highly pathogenic AIV (HPAIV) replication, clinic...

  18. Histopathological characterization and shedding dynamics of guineafowl (Numida meleagris) intravenously infected with a H6N2 low pathogenicity Avian Influenza virus

    USDA-ARS?s Scientific Manuscript database

    Guineafowl of different ages were inoculated intravenously with an H6N2 wild waterfowl-origin low-pathogenicity type A avian influenza virus (LPAI). No evidence of clinical disease was observed. The examined infected birds had atrophy of the spleen, thymus, and cloacal bursa when compared to the n...

  19. Highly pathogenic avian influenza A(H5N8) viruses reintroduced into South Korea by migratory waterfowl, 2014–2015

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza A(H5N8) viruses were isolated from migratory waterfowl in South Korea during all 2014–winter 2015, a recurrence after initial introduction in winter 2014. These reappeared viruses were phylogenetically distinct from isolates circulating in poultry farms in South Kor...

  20. Experimental infection with low and high pathogenicity H7N3 Chilean avian influenza viruses in Chiloe Wigeon (Anas sibilatrix) and Cinnamon Teal (Anas cyanoptera)

    USDA-ARS?s Scientific Manuscript database

    Since 2002, H5N1 high pathogenicity avian influenza (HPAI) viruses have been associated with natural, lethal infections in wild aquatic birds which have been reproduced experimentally. Some aquatic bird species have been suggested as potential transporters of H5N1 HPAI virus via migration. However, ...

  1. Detection of H5 and H7 highly pathogenic avian influenza virus with lateral flow devices: performance with healthy, sick and dead chickens

    USDA-ARS?s Scientific Manuscript database

    Rapid detection of highly pathogenic avian influenza virus (HPAIV) in the field is critical for effective disease control and to differentiate it from other diseases, such as Newcastle disease. Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test fo...

  2. A computationally optimized broadly reactive H5 hemagglutinin vaccine provides protection against homologous and heterologous H5N1 highly pathogenic avian influenza virus infection in chickens

    USDA-ARS?s Scientific Manuscript database

    Since its emergence in 1996 in China, H5N1 highly pathogenic avian influenza (HPAI) virus has continuously evolved into different genetic clades that have created challenges to maintaining antigenically relevant H5N1 vaccine seeds. Therefore, a universal (multi-hemagglutinin [HA] subtype) or more c...

  3. Efficacy of commercial vaccines in protecting chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  4. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza virus (HPAIV) infections in chickens produce a negative impact on egg production, and virus is deposited on surface and internal contents of eggs. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H...

  5. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and other regions of the world. Vaccination is used as part of H5N1 HPAI control programs in many countries; however, eradication of the disease has not been possible due to the emergence and spread of new viruses...

  6. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    USDA-ARS?s Scientific Manuscript database

    High pathogenicity avian influenza virus (HPAIV) infections in chickens decrease egg production and eggs that are laid contain HPAIV. Vaccination once or twice was examined as a way to protect chickens from Vietnamese H5N1 HPAIV. Eighty-three percent of hens without vaccination died within 3 days ...

  7. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese

    USDA-ARS?s Scientific Manuscript database

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory birds into North America mixing with low pathogenicity AI viruses to produce a H5N2 HPAI virus. The H5N8 and H5N2 HPAI viruses were detected initially in wild waterfowl and backyard birds, and lat...

  8. Cytomegalovirus (For Parents)

    MedlinePlus

    ... 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Cytomegalovirus (CMV) KidsHealth > For Parents > Cytomegalovirus (CMV) Print ...

  9. Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus

    PubMed Central

    2012-01-01

    Background Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens. Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses. Methods To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains. Results Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection. Conclusions Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain. PMID:22390870

  10. Characterization of the H5N1 Highly Pathogenic Avian Influenza Virus Derived from Wild Pikas in China▿

    PubMed Central

    Zhou, Jiyong; Sun, Wenbo; Wang, Junhua; Guo, Junqing; Yin, Wei; Wu, Nanping; Li, Lanjuan; Yan, Yan; Liao, Ming; Huang, Yu; Luo, Kaijian; Jiang, Xuetao; Chen, Hualan

    2009-01-01

    The highly pathogenic H5N1 avian influenza virus emerged from China in 1996 and has spread across Eurasia and Africa, with a continuous stream of new cases of human infection appearing since the first large-scale outbreak among migratory birds at Qinghai Lake. The role of wild birds, which are the natural reservoirs for the virus, in the epidemiology of the H5N1 virus has raised great public health concern, but their role in the spread of the virus within the natural ecosystem of free-ranging terrestrial wild mammals remains unclear. In this study, we investigated H5N1 virus infection in wild pikas in an attempt to trace the circulation of the virus. Seroepidemiological surveys confirmed a natural H5N1 virus infection of wild pikas in their native environment. The hemagglutination gene of the H5N1 virus isolated from pikas reveals two distinct evolutionary clades, a mixed/Vietnam H5N1 virus sublineage (MV-like pika virus) and a wild bird Qinghai (QH)-like H5N1 virus sublineage (QH-like pika virus). The amino acid residue (glutamic acid) at position 627 encoded by the PB2 gene of the MV-like pika virus was different from that of the QH-like pika virus; the residue of the MV-like pika virus was the same as that of the goose H5N1 virus (A/GS/Guangdong [GD]/1/96). Further, we discovered that in contrast to the MV-like pika virus, which is nonpathogenic to mice, the QH-like pika virus is highly pathogenic. To mimic the virus infection of pikas, we intranasally inoculated rabbits, a species closely related to pikas, with the H5N1 virus of pika origin. Our findings first demonstrate that wild pikas are mammalian hosts exposed to H5N1 subtype avian influenza viruses in the natural ecosystem and also imply a potential transmission of highly pathogenic avian influenza virus from wild mammals into domestic mammalian hosts and humans. PMID:19553321

  11. Characterization of the H5N1 highly pathogenic avian influenza virus derived from wild pikas in China.

    PubMed

    Zhou, Jiyong; Sun, Wenbo; Wang, Junhua; Guo, Junqing; Yin, Wei; Wu, Nanping; Li, Lanjuan; Yan, Yan; Liao, Ming; Huang, Yu; Luo, Kaijian; Jiang, Xuetao; Chen, Hualan

    2009-09-01

    The highly pathogenic H5N1 avian influenza virus emerged from China in 1996 and has spread across Eurasia and Africa, with a continuous stream of new cases of human infection appearing since the first large-scale outbreak among migratory birds at Qinghai Lake. The role of wild birds, which are the natural reservoirs for the virus, in the epidemiology of the H5N1 virus has raised great public health concern, but their role in the spread of the virus within the natural ecosystem of free-ranging terrestrial wild mammals remains unclear. In this study, we investigated H5N1 virus infection in wild pikas in an attempt to trace the circulation of the virus. Seroepidemiological surveys confirmed a natural H5N1 virus infection of wild pikas in their native environment. The hemagglutination gene of the H5N1 virus isolated from pikas reveals two distinct evolutionary clades, a mixed/Vietnam H5N1 virus sublineage (MV-like pika virus) and a wild bird Qinghai (QH)-like H5N1 virus sublineage (QH-like pika virus). The amino acid residue (glutamic acid) at position 627 encoded by the PB2 gene of the MV-like pika virus was different from that of the QH-like pika virus; the residue of the MV-like pika virus was the same as that of the goose H5N1 virus (A/GS/Guangdong [GD]/1/96). Further, we discovered that in contrast to the MV-like pika virus, which is nonpathogenic to mice, the QH-like pika virus is highly pathogenic. To mimic the virus infection of pikas, we intranasally inoculated rabbits, a species closely related to pikas, with the H5N1 virus of pika origin. Our findings first demonstrate that wild pikas are mammalian hosts exposed to H5N1 subtype avian influenza viruses in the natural ecosystem and also imply a potential transmission of highly pathogenic avian influenza virus from wild mammals into domestic mammalian hosts and humans.

  12. Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009-2011 in the West Bengal State, India.

    PubMed

    Pawar, Shailesh D; Kale, Sandeep D; Rawankar, Amol S; Koratkar, Santosh S; Raut, Chandrashekhar G; Pande, Satish A; Mullick, Jayati; Mishra, Akhilesh C

    2012-08-07

    More than 70 outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 have been reported in poultry in the western and north-eastern parts of India. Therefore, in view of the recent HPAI H5N1 outbreaks in poultry, active AI surveillance encompassing wild, resident, migratory birds and poultry was undertaken during 2009-2011 in the State of West Bengal. A total of 5722 samples were collected from West Bengal; 3522 samples (2906 fecal droppings + 616 other environmental samples) were from migratory birds and 2200 samples [1604 tracheal, cloacal swabs, environmental samples, tissue samples + 596 blood (serum)] were from domestic ducks and poultry. All tracheal, cloacal and environmental samples were processed for virus isolation. Virus isolates were detected using hemagglutination assay and identified using hemagglutination inhibition (HI) and reverse transcriptase polymerase chain reaction (RT-PCR) assays. Sequencing and phylogenetic analysis of partial region of the hemagglutinin and neuraminidase genes was done. Intravenous pathogenicity index assays were performed in chickens to assess pathogenicity of AI virus isolates. Serum samples were tested for detection of antibodies against AI viruses using HI assay. A total of 57 AI H9N2, 15 AI H4N6 and 15 Newcastle Disease (NDV) viruses were isolated from chickens, from both backyard and wet poultry markets; AI H4N6 viruses were isolated from backyard chickens and domestic ducks. Characterization of AI H9N2 and H4N6 viruses revealed that they were of low pathogenicity. Domestic ducks were positive for antibodies against H5 and H7 viruses while chickens were positive for presence of antibodies against AI H9N2 and NDV. In the current scenario of HPAI H5N1 outbreaks in West Bengal, this report shows presence of low pathogenic AI H9N2 and H4N6 viruses in chickens and domestic ducks during the period 2009-2011. This is the first report of isolation of H4N6 from India. Antibodies against AI H5 and H7 in ducks

  13. Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009-2011 in the West Bengal State, India

    PubMed Central

    2012-01-01

    Introduction More than 70 outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 have been reported in poultry in the western and north-eastern parts of India. Therefore, in view of the recent HPAI H5N1 outbreaks in poultry, active AI surveillance encompassing wild, resident, migratory birds and poultry was undertaken during 2009–2011 in the State of West Bengal. Methods A total of 5722 samples were collected from West Bengal; 3522 samples (2906 fecal droppings + 616 other environmental samples) were from migratory birds and 2200 samples [1604 tracheal, cloacal swabs, environmental samples, tissue samples + 596 blood (serum)] were from domestic ducks and poultry. All tracheal, cloacal and environmental samples were processed for virus isolation. Virus isolates were detected using hemagglutination assay and identified using hemagglutination inhibition (HI) and reverse transcriptase polymerase chain reaction (RT-PCR) assays. Sequencing and phylogenetic analysis of partial region of the hemagglutinin and neuraminidase genes was done. Intravenous pathogenicity index assays were performed in chickens to assess pathogenicity of AI virus isolates. Serum samples were tested for detection of antibodies against AI viruses using HI assay. Results A total of 57 AI H9N2, 15 AI H4N6 and 15 Newcastle Disease (NDV) viruses were isolated from chickens, from both backyard and wet poultry markets; AI H4N6 viruses were isolated from backyard chickens and domestic ducks. Characterization of AI H9N2 and H4N6 viruses revealed that they were of low pathogenicity. Domestic ducks were positive for antibodies against H5 and H7 viruses while chickens were positive for presence of antibodies against AI H9N2 and NDV. Conclusions In the current scenario of HPAI H5N1 outbreaks in West Bengal, this report shows presence of low pathogenic AI H9N2 and H4N6 viruses in chickens and domestic ducks during the period 2009–2011. This is the first report of isolation of H4N6 from India

  14. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    PubMed

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  15. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression

    PubMed Central

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S. Mark

    2015-01-01

    ABSTRACT Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza

  16. Identification of Rare PB2-D701N Mutation from a Patient with Severe Influenza: Contribution of the PB2-D701N Mutation to the Pathogenicity of Human Influenza.

    PubMed

    Nieto, Amelia; Pozo, Francisco; Vidal-García, Matxalen; Omeñaca, Manuel; Casas, Inmaculada; Falcón, Ana

    2017-01-01

    Several amino acid changes have been previously implicated in adaptation of avian influenza viruses to human hosts, among them the D701N change in the PB2 polymerase subunit that also is the main determinant of avian virus pathogenesis in animal models. However, previous studies using recombinant viruses did not provide conclusive information of the contribution of this PB2 residue to pathogenicity in human influenza virus strains. We identified this mutation in an A(H1N1)pdm09-like human influenza virus isolated from an infected patient with pneumonia and acute respiratory failure, admitted to the intensive care unit. An exhaustive search has revealed PB2-D701 as a highly conserved position in all available H1N1 human virus sequences in NCBI database, showing a very low prevalence of PB2-D701N change. Presence of PB2-701N amino acid correlates with severe or fatal outcome in those scarce cases with known disease outcome of the infection. In these patients, the residue PB2-701N may contribute to pathogenicity as it was previously reported in humans infected with avian viruses. This study helps to clarify a debate that has arisen regarding the role of PB2-D701N in human influenza virus pathogenicity.

  17. Identification of Rare PB2-D701N Mutation from a Patient with Severe Influenza: Contribution of the PB2-D701N Mutation to the Pathogenicity of Human Influenza

    PubMed Central

    Nieto, Amelia; Pozo, Francisco; Vidal-García, Matxalen; Omeñaca, Manuel; Casas, Inmaculada; Falcón, Ana

    2017-01-01

    Several amino acid changes have been previously implicated in adaptation of avian influenza viruses to human hosts, among them the D701N change in the PB2 polymerase subunit that also is the main determinant of avian virus pathogenesis in animal models. However, previous studies using recombinant viruses did not provide conclusive information of the contribution of this PB2 residue to pathogenicity in human influenza virus strains. We identified this mutation in an A(H1N1)pdm09-like human influenza virus isolated from an infected patient with pneumonia and acute respiratory failure, admitted to the intensive care unit. An exhaustive search has revealed PB2-D701 as a highly conserved position in all available H1N1 human virus sequences in NCBI database, showing a very low prevalence of PB2-D701N change. Presence of PB2-701N amino acid correlates with severe or fatal outcome in those scarce cases with known disease outcome of the infection. In these patients, the residue PB2-701N may contribute to pathogenicity as it was previously reported in humans infected with avian viruses. This study helps to clarify a debate that has arisen regarding the role of PB2-D701N in human influenza virus pathogenicity. PMID:28421062

  18. Persistence of Low Pathogenic Influenza A Virus in Water: A Systematic Review and Quantitative Meta-Analysis.

    PubMed

    Dalziel, Antonia E; Delean, Steven; Heinrich, Sarah; Cassey, Phillip

    2016-01-01

    Avian influenza viruses are able to persist in the environment, in-between the transmission of the virus among its natural hosts. Quantifying the environmental factors that affect the persistence of avian influenza virus is important for influencing our ability to predict future outbreaks and target surveillance and control methods. We conducted a systematic review and quantitative meta-analysis of the environmental factors that affect the decay of low pathogenic avian influenza virus (LPAIV) in water. Abiotic factors affecting the persistence of LPAIV have been investigated for nearly 40 years, yet published data was produced by only 26 quantitative studies. These studies have been conducted by a small number of principal authors (n = 17) and have investigated a narrow range of environmental conditions, all of which were based in laboratories with limited reflection of natural conditions. The use of quantitative meta-analytic techniques provided the opportunity to assess persistence across a greater range of conditions than each individual study can achieve, through the estimation of mean effect-sizes and relationships among multiple variables. Temperature was the most influential variable, for both the strength and magnitude of the effect-size. Moderator variables explained a large proportion of the heterogeneity among effect-sizes. Salinity and pH were important factors, although future work is required to broaden the range of abiotic factors examined, as well as including further diurnal variation and greater environmental realism generally. We were unable to extract a quantitative effect-size estimate for approximately half (50.4%) of the reported experimental outcomes and we strongly recommend a minimum set of quantitative reporting to be included in all studies, which will allow robust assimilation and analysis of future findings. In addition we suggest possible means of increasing the applicability of future studies to the natural environment, and

  19. Persistence of Low Pathogenic Influenza A Virus in Water: A Systematic Review and Quantitative Meta-Analysis

    PubMed Central

    Dalziel, Antonia E.; Delean, Steven; Heinrich, Sarah; Cassey, Phillip

    2016-01-01

    Avian influenza viruses are able to persist in the environment, in-between the transmission of the virus among its natural hosts. Quantifying the environmental factors that affect the persistence of avian influenza virus is important for influencing our ability to predict future outbreaks and target surveillance and control methods. We conducted a systematic review and quantitative meta-analysis of the environmental factors that affect the decay of low pathogenic avian influenza virus (LPAIV) in water. Abiotic factors affecting the persistence of LPAIV have been investigated for nearly 40 years, yet published data was produced by only 26 quantitative studies. These studies have been conducted by a small number of principal authors (n = 17) and have investigated a narrow range of environmental conditions, all of which were based in laboratories with limited reflection of natural conditions. The use of quantitative meta-analytic techniques provided the opportunity to assess persistence across a greater range of conditions than each individual study can achieve, through the estimation of mean effect-sizes and relationships among multiple variables. Temperature was the most influential variable, for both the strength and magnitude of the effect-size. Moderator variables explained a large proportion of the heterogeneity among effect-sizes. Salinity and pH were important factors, although future work is required to broaden the range of abiotic factors examined, as well as including further diurnal variation and greater environmental realism generally. We were unable to extract a quantitative effect-size estimate for approximately half (50.4%) of the reported experimental outcomes and we strongly recommend a minimum set of quantitative reporting to be included in all studies, which will allow robust assimilation and analysis of future findings. In addition we suggest possible means of increasing the applicability of future studies to the natural environment, and

  20. Differential Contribution of PB1-F2 to the Virulence of Highly Pathogenic H5N1 Influenza A Virus in Mammalian and Avian Species

    PubMed Central

    Schmolke, Mirco; Manicassamy, Balaji; Pena, Lindomar; Sutton, Troy; Hai, Rong; Varga, Zsuzsanna T.; Hale, Benjamin G.; Steel, John; Pérez, Daniel R.; García-Sastre, Adolfo

    2011-01-01

    Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20th century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism. PMID:21852950