Iron metabolism and the role of the iron-regulating hormone hepcidin in health and disease.
Daher, Raed; Manceau, Hana; Karim, Zoubida
2017-12-01
Although iron is vital, its free form is likely to be involved in oxidation-reduction reactions, leading to the formation of free radicals and oxidative stress. Living organisms have developed protein systems to transport free iron through the cell membranes and biological fluids and store it in a non-toxic and readily mobilizable form to avoid iron toxicity. Hepcidin plays a crucial role in maintaining iron homeostasis. Hepcidin expression is directly regulated by variations in iron intake and its repression leads to an increase in bioavailable serum iron level. However, in pathological situations, prolonged repression often leads to pathological iron overload. In this review, we describe the different molecular mechanisms responsible for the maintenance of iron metabolism and the consequences of iron overload. Indeed, genetic hemochromatosis and post-transfusional siderosis are the two main conditions responsible for iron overload. Long-term iron overload is deleterious, and treatment relies on venesection therapy for genetic hemochromatosis and chelation therapy for iron overload resulting from multiple transfusions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease.
Zhabyeyev, Pavel; Das, Subhash K; Basu, Ratnadeep; Shen, Mengcheng; Patel, Vaibhav B; Kassiri, Zamaneh; Oudit, Gavin Y
2018-05-01
Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3 -/- ) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3 -/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3 -/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3 -/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3 -/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key protective role against iron-mediated pathology.
A composite mouse model of aplastic anemia complicated with iron overload
Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong
2018-01-01
Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits. PMID:29434729
A composite mouse model of aplastic anemia complicated with iron overload.
Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong
2018-02-01
Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits.
Das, Subhash K; Wang, Wang; Zhabyeyev, Pavel; Basu, Ratnadeep; McLean, Brent; Fan, Dong; Parajuli, Nirmal; DesAulniers, Jessica; Patel, Vaibhav B; Hajjar, Roger J; Dyck, Jason R B; Kassiri, Zamaneh; Oudit, Gavin Y
2015-12-07
Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca(2+) homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca(2+) homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload.
Das, Subhash K.; Wang, Wang; Zhabyeyev, Pavel; Basu, Ratnadeep; McLean, Brent; Fan, Dong; Parajuli, Nirmal; DesAulniers, Jessica; Patel, Vaibhav B.; Hajjar, Roger J.; Dyck, Jason R. B.; Kassiri, Zamaneh; Oudit, Gavin Y.
2015-01-01
Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca2+ homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca2+ homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload. PMID:26638758
Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss
Jeney, Viktória
2017-01-01
Diseases/conditions with diverse etiology, such as hemoglobinopathies, hereditary hemochromatosis and menopause, could lead to chronic iron accumulation. This condition is frequently associated with a bone phenotype; characterized by low bone mass, osteoporosis/osteopenia, altered microarchitecture and biomechanics, and increased incidence of fractures. Osteoporotic bone phenotype constitutes a major complication in patients with iron overload. The purpose of this review is to summarize what we have learnt about iron overload-associated bone loss from clinical studies and animal models. Bone is a metabolically active tissue that undergoes continuous remodeling with the involvement of osteoclasts that resorb mineralized bone, and osteoblasts that form new bone. Growing evidence suggests that both increased bone resorption and decreased bone formation are involved in the pathological bone-loss in iron overload conditions. We will discuss the cellular and molecular mechanisms that are involved in this detrimental process. Fuller understanding of this complex mechanism may lead to the development of improved therapeutics meant to interrupt the pathologic effects of excess iron on bone. PMID:28270766
Sebastiani, Giada; Pantopoulos, Kostas
2011-10-01
In healthy subjects, the rate of dietary iron absorption, as well as the amount and distribution of body iron are tightly controlled by hepcidin, the iron regulatory hormone. Disruption of systemic iron homeostasis leads to pathological conditions, ranging from anemias caused by iron deficiency or defective iron traffic, to iron overload (hemochromatosis). Other iron-related disorders are caused by misregulation of cellular iron metabolism, which results in local accumulation of the metal in mitochondria. Brain iron overload is observed in neurodegenerative disorders. Secondary hemochromatosis develops as a complication of another disease. For example, repeated blood transfusions, a standard treatment of various anemias characterized by ineffective erythropoiesis, promote transfusional siderosis, while chronic liver diseases are often associated with mild to moderate secondary iron overload. In this critical review, we discuss pathophysiological and clinical aspects of all types of iron metabolism disorders (265 references). This journal is © The Royal Society of Chemistry 2011
Badria, Farid A.; Ibrahim, Ahmed S.; Badria, Adel F.; Elmarakby, Ahmed A.
2015-01-01
Objectives Iron overload is now recognized as a health problem in industrialized countries, as excessive iron is highly toxic for liver and spleen. The potential use of curcumin as an iron chelator has not been clearly identified experimentally in iron overload condition. Here, we evaluate the efficacy of curcumin to alleviate iron overload-induced hepatic and splenic abnormalities and to gain insight into the underlying mechanisms. Design and Methods Three groups of male adult rats were treated as follows: control rats, rats treated with iron in a drinking water for 2 months followed by either vehicle or curcumin treatment for 2 more months. Thereafter, we studied the effects of curcumin on iron overload-induced lipid peroxidation and anti-oxidant depletion. Results Treatment of iron-overloaded rats with curcumin resulted in marked decreases in iron accumulation within liver and spleen. Iron-overloaded rats had significant increases in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver and spleen when compared to control group. The effects of iron overload on lipid peroxidation and NO levels were significantly reduced by the intervention treatment with curcumin (P<0.05). Furthermore, the endogenous anti-oxidant activities/levels in liver and spleen were also significantly decreased in chronic iron overload and administration of curcumin restored the decrease in the hepatic and splenic antioxidant activities/levels. Conclusion Our study suggests that curcumin may represent a new horizon in managing iron overload-induced toxicity as well as in pathological diseases characterized by hepatic iron accumulation such as thalassemia, sickle cell anemia, and myelodysplastic syndromes possibly via iron chelation, reduced oxidative stress derived lipid peroxidation and improving the body endogenous antioxidant defense mechanism. PMID:26230491
Background: Surface-available iron (Fe) is proposed to contribute to asbestos-induced toxicity through the production of reactive oxygen species.Objective: Our goal was to evaluate the hypothesis that rat models of cardiovascular disease with coexistent Fe overload would be incre...
Yang, Fan; Yang, Lei; Li, Yuan; Yan, Gege; Feng, Chao; Liu, Tianyi; Gong, Rui; Yuan, Ye; Wang, Ning; Idiiatullina, Elina; Bikkuzin, Timur; Pavlov, Valentin; Li, Yang; Dong, Chaorun; Wang, Dawei; Cao, Yang; Han, Zhenbo; Zhang, Lai; Huang, Qi; Ding, Fengzhi; Bi, Zhengang; Cai, Benzhi
2017-10-01
Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
van Velden, DP; van Rensburg, SJ; Erasmus, R
2009-01-01
Iron uptake, utilisation, release and storage occur at the gene level. Individuals with variant forms of genes involved in iron metabolism may have different requirements for iron and are likely to respond differently to the same amount of iron in the diet, a concept termed nutrigenetics. Iron deficiency, iron overload and the anemia of inflammation are the commonest iron-related disorders. While at least four types of hereditary iron overload have been identified to date, our knowledge of the genetic basis and consequences of inherited iron deficiency remain limited. The importance of genetic risk factors in relation to iron overload was highlighted with the identification of the HFE gene in 1996. Deleterious mutations in this gene account for 80-90% of inherited iron overload and are associated with loss of iron homeostasis, alterations in inflammatory responses, oxidative stress and in its most severe form, the disorder hereditary haemochromatosis (HH). Elucidation of the genetic basis of HH has led to rapid clinical benefit through drastic reduction in liver biopsies performed as part of the diagnostic work-up of affected patients. Today, detection of a genetic predisposition in the presence of high serum ferritin and transferrin saturation levels is usually sufficient to diagnose HH, thereby addressing the potential danger of inherited iron overload which starts with the same symptoms as iron deficiency, namely chronic fatigue. This review provides the scientific back-up for application of pathology supported genetic testing, a new test concept that is well placed for optimizing clinical benefit to patients with regard to iron status. PMID:27683335
Molecular basis of HFE-hemochromatosis
Vujić, Maja
2014-01-01
Iron-overload disorders owing to genetic misregulation of iron acquisition are referred to as hereditary hemochromatosis (HH). The most prevalent genetic iron overload disorder in Caucasians is caused by mutations in the HFE gene, an atypical MHC class I molecule. Recent studies classified HFE/Hfe-HH as a liver disease with the primarily failure in the production of the liver iron hormone hepcidin in hepatocytes. Inadequate hepcidin expression signals for excessive iron absorption from the diet and iron deposition in tissues causing multiple organ damage and failure. This review focuses on the molecular actions of the HFE/Hfe and hepcidin in maintaining systemic iron homeostasis and approaches undertaken so far to combat iron overload in HFE/Hfe-HH. In the light of the recent investigations, novel roles of extra-hepatocytic Hfe are discussed raising a question to the relevance of the multipurpose functions of Hfe for the understanding of HH-associated pathologies. PMID:24653703
Molecular basis of HFE-hemochromatosis.
Vujić, Maja
2014-01-01
Iron-overload disorders owing to genetic misregulation of iron acquisition are referred to as hereditary hemochromatosis (HH). The most prevalent genetic iron overload disorder in Caucasians is caused by mutations in the HFE gene, an atypical MHC class I molecule. Recent studies classified HFE/Hfe-HH as a liver disease with the primarily failure in the production of the liver iron hormone hepcidin in hepatocytes. Inadequate hepcidin expression signals for excessive iron absorption from the diet and iron deposition in tissues causing multiple organ damage and failure. This review focuses on the molecular actions of the HFE/Hfe and hepcidin in maintaining systemic iron homeostasis and approaches undertaken so far to combat iron overload in HFE/Hfe-HH. In the light of the recent investigations, novel roles of extra-hepatocytic Hfe are discussed raising a question to the relevance of the multipurpose functions of Hfe for the understanding of HH-associated pathologies.
Effects of digoxin on cardiac iron content in rat model of iron overload.
Nasri, Hamid Reza; Shahouzehi, Beydolah; Masoumi-Ardakani, Yaser; Iranpour, Maryam
2016-07-01
Plasma iron excess can lead to iron accumulation in heart, kidney and liver. Heart failure is a clinical widespread syndrome. In thalassemia, iron overload cardiomyopathy is caused by iron accumulation in the heart that leads to cardiac damage and heart failure. Digoxin increases the intracellular sodium concentration by inhibition of Na+/K+-ATPase that affects Na+/Ca2+ exchanger (NCX), which raises intracellular calcium and thus attenuates heart failure. The mechanism of iron uptake into cardiomyocytes is not exactly understood. We assessed the effect of different concentrations of digoxin on cardiac iron content in rat model of iron overload. Digoxin had been administrated intraperitoneally (IP) for one week before main study began to assure increased digoxin levels. Group 1 received four IP injections of iron-dextran (12.5mg/100g body weight) every 5 days evenly distributed over 20 days. Groups 2-4 received 0.5, 1 and 5 mg/kg/day IP digoxin, respectively. Last three groups 5-7 received iron-dextran as group 1 and digoxin concentrations 0.5, 1 and 5 mg/kg/day, respectively. Cardiac iron contents were significantly higher in iron overload groups that received different concentrations (0.5, 1 and 5 mg/kg/day) of digoxin than their counterparts in control groups and this pattern was also observed in pathology assessment. It seems that digoxin plays an important role in iron transport into heart in iron overload state but exact mechanism of this phenomenon is not clear. L-type Ca2+ channels are good candidates that probably could be involved in iron accumulation in cardiomyocytes. Thus it would be better to reconsider digoxin administration in thalassemia and iron overload conditions.
Sousa, Leilismara; Garcia, Israel J. P.; Costa, Tamara G. F.; Silva, Lilian N. D.; Renó, Cristiane O.; Oliveira, Eneida S.; Tilelli, Cristiane Q.; Santos, Luciana L.; Cortes, Vanessa F.; Santos, Herica L.; Barbosa, Leandro A.
2015-01-01
Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1), iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5%) than in women and was associated with an increase (446%) in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS) and an increase (327%) in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132%) in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels. PMID:26197432
Iron-Induced Damage in Cardiomyopathy: Oxidative-Dependent and Independent Mechanisms
Gammella, Elena; Recalcati, Stefania; Rybinska, Ilona; Buratti, Paolo; Cairo, Gaetano
2015-01-01
The high incidence of cardiomyopathy in patients with hemosiderosis, particularly in transfusional iron overload, strongly indicates that iron accumulation in the heart plays a major role in the process leading to heart failure. In this context, iron-mediated generation of noxious reactive oxygen species is believed to be the most important pathogenetic mechanism determining cardiomyocyte damage, the initiating event of a pathologic progression involving apoptosis, fibrosis, and ultimately cardiac dysfunction. However, recent findings suggest that additional mechanisms involving subcellular organelles and inflammatory mediators are important factors in the development of this disease. Moreover, excess iron can amplify the cardiotoxic effect of other agents or events. Finally, subcellular misdistribution of iron within cardiomyocytes may represent an additional pathway leading to cardiac injury. Recent advances in imaging techniques and chelators development remarkably improved cardiac iron overload detection and treatment, respectively. However, increased understanding of the pathogenic mechanisms of iron overload cardiomyopathy is needed to pave the way for the development of improved therapeutic strategies. PMID:25878762
Non-transferrin bound iron: a key role in iron overload and iron toxicity.
Brissot, Pierre; Ropert, Martine; Le Lan, Caroline; Loréal, Olivier
2012-03-01
Besides transferrin iron, which represents the normal form of circulating iron, non-transferrin bound iron (NTBI) has been identified in the plasma of patients with various pathological conditions in which transferrin saturation is significantly elevated. To show that: i) NTBI is present not only during chronic iron overload disorders (hemochromatosis, transfusional iron overload) but also in miscellaneous diseases which are not primarily iron overloaded conditions; ii) this iron species represents a potentially toxic iron form due to its high propensity to induce reactive oxygen species and is responsible for cellular damage not only at the plasma membrane level but also towards different intracellular organelles; iii) the NTBI concept may be expanded to include intracytosolic iron forms which are not linked to ferritin, the major storage protein which exerts, at the cellular level, the same type of protective effect towards the intracellular environment as transferrin in the plasma. Plasma NTBI and especially labile plasma iron determinations represent a new important biological tool since elimination of this toxic iron species is a major therapeutic goal. The NTBI approach represents an important mechanistic concept for explaining cellular iron excess and toxicity and provides new important biochemical diagnostic tools. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. Copyright © 2011 Elsevier B.V. All rights reserved.
Iron Overload and Heart Fibrosis in Mice Deficient for Both β2-Microglobulin and Rag1
Santos, Manuela M.; de Sousa, Maria; Rademakers, Luke H. P. M.; Clevers, Hans; Marx, J. J. M.; Schilham, Marco W.
2000-01-01
Genetic causes of hereditary hemochromatosis (HH) include mutations in the HFE gene, a β2-microglobulin (β2m)-associated major histocompatibility complex class I-like protein. Accordingly, mutant β2m−/− mice have increased intestinal iron absorption and develop parenchymal iron overload in the liver. In humans, other genetic and environmental factors have been suggested to influence the pathology and severity of HH. Previously, an association has been reported between low numbers of lymphocytes and the severity of clinical expression of the iron overload in HH. In the present study, the effect of a total absence of lymphocytes on iron overload was investigated by crossing β2m−/− mice (which develop iron overload resembling human disease) with mice deficient in recombinase activator gene 1 (Rag1), which is required for normal B and T lymphocyte development. Iron overload was more severe in β2mRag1 double-deficient mice than in each of the single deficient mice, with iron accumulation in parenchymal cells of the liver, in acinar cells of the pancreas, and in heart myocytes. With increasing age β2mRag1−/− mice develop extensive heart fibrosis, which could be prevented by reconstitution with normal hematopoietic cells. Thus, the development of iron-mediated cellular damage is substantially enhanced when a Rag1 mutation, which causes a lack of mature lymphocytes, is introduced into β2m−/− mice. Mice deficient in β2m and Rag1 thus offer a new experimental model of iron-related cardiomyopathy. PMID:11106561
Dong, Xian-hui; Bai, Jiang-tao; Kong, Wei-na; He, Xiao-ping; Yan, Peng; Shao, Tie-mei; Yu, Wen-guo; Chai, Xi-qing; Wu, Yan-hua; Liu, Cong
2015-01-01
Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer’s disease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer’s disease patients. An APPswe/PS1ΔE9 double transgenic mouse model of Alzheimer’s disease was used. The intragastric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer’s disease. These compounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer’s disease. PMID:26109953
2010-01-01
Background There are many pathological conditions with hepatic iron overload. Classical definite diagnostic methods of these disorders are invasive and based on a direct tissue biopsy material. For the last years the role of MR imaging in liver diagnostics has been increasing. MRI shows changes of liver intensity in patients with hepatic iron overload. Changes in MR signal are an indirect consequence of change of relaxation times T2 and T2*, that can be directly measured. The purpose of the study was to evaluate usefulness of MR imaging in the detection of hepatic iron overload in patients with cirrhosis of different origins. Methods MR imaging at 1.5T was prospectively performed in 44 patients with liver cirrhosis who had undergone liver biopsy with histopathological assessment of hepatic iron deposits. In all patients the following sequences were used: SE, Express, GRE in T2 and T1-weighted images. Signal intensity (SI) was measured on images obtained with each T2 weighted sequence by means of regions of interest, placed in the liver and paraspinal muscles. The correlation between iron overload, histopathological score, serum ferritin and SI ratio was analyzed. Results In 20 patients with iron overload confirmed by the biopsy, the liver parenchyma demonstrated lower signal intensity than that of paraspinal muscles. This effect was visible only in 8 patients with hepatic iron overload in Express T2-weighted images. Higher signal intensity of liver than that of skeletal muscles on GRE - T2 weighted images was noted in 24 patients with cirrhosis and without elevated hepatic iron concentration. We observed a correlation between low and high iron concentration and liver to muscle SI ratio. Conclusion MR imaging is a useful and fast noninvasive diagnostic tool for the detection of liver iron overload in patients with cirrhosis of different origins. Liver to muscle SI ratio in GRE-T2-weighted sequence facilitates to differentiate patients with low and high degree of hepatic iron overload, which correlates with the origin of liver cirrhosis. PMID:20105330
Szurowska, Edyta; Sikorska, Katarzyna; Izycka-Swieszewska, E; Nowicki, Tomasz; Romanowski, Tomasz; Bielawski, Krzysztof P; Studniarek, Michał
2010-01-27
There are many pathological conditions with hepatic iron overload. Classical definite diagnostic methods of these disorders are invasive and based on a direct tissue biopsy material. For the last years the role of MR imaging in liver diagnostics has been increasing. MRI shows changes of liver intensity in patients with hepatic iron overload. Changes in MR signal are an indirect consequence of change of relaxation times T2 and T2*, that can be directly measured. The purpose of the study was to evaluate usefulness of MR imaging in the detection of hepatic iron overload in patients with cirrhosis of different origins. MR imaging at 1.5T was prospectively performed in 44 patients with liver cirrhosis who had undergone liver biopsy with histopathological assessment of hepatic iron deposits. In all patients the following sequences were used: SE, Express, GRE in T2 and T1-weighted images. Signal intensity (SI) was measured on images obtained with each T2 weighted sequence by means of regions of interest, placed in the liver and paraspinal muscles. The correlation between iron overload, histopathological score, serum ferritin and SI ratio was analyzed. In 20 patients with iron overload confirmed by the biopsy, the liver parenchyma demonstrated lower signal intensity than that of paraspinal muscles. This effect was visible only in 8 patients with hepatic iron overload in Express T2-weighted images. Higher signal intensity of liver than that of skeletal muscles on GRE - T2 weighted images was noted in 24 patients with cirrhosis and without elevated hepatic iron concentration. We observed a correlation between low and high iron concentration and liver to muscle SI ratio. MR imaging is a useful and fast noninvasive diagnostic tool for the detection of liver iron overload in patients with cirrhosis of different origins.Liver to muscle SI ratio in GRE-T2-weighted sequence facilitates to differentiate patients with low and high degree of hepatic iron overload, which correlates with the origin of liver cirrhosis.
Sarkar, Rhitajit; Hazra, Bibhabasu; Mandal, Nripendranath
2013-02-01
In view of the contribution of iron deposition in the oxidative pathologic process of liver disease, the potential of 70% methanolic extract of C. cajan leaf (CLME) towards antioxidative protection against iron-overload-induced liver damage in mice has been investigated. DPPH radical scavenging and protection of Fenton reaction induced DNA damage was conducted in vitro. Post oral administration of CLME to iron overloaded mice, the levels of antioxidant and serum enzymes, hepatic iron, serum ferritin, lipid peroxidation, and protein carbonyl and hydroxyproline contents were measured, in comparison to deferasirox treated mice. Oral treatment of the plant extract effectively lowered the elevated levels of liver iron, lipid peroxidation, protein carbonyl and hydroxyproline. There was notable increment in the dropped levels of hepatic antioxidants. The dosage of the plant extract not only made the levels of serum enzymes approach normal value, but also counteracted the overwhelmed serum ferritin level. The in vitro studies indicated potential antioxidant activity of CLME. The histopathological observations also substantiated the ameliorative function of the plant extract. Accordingly, it is suggested that Cajanus cajan leaf can be a useful herbal remedy to suppress oxidative damage caused by iron overload.
Leitch, Heather A; Fibach, Eitan; Rachmilewitz, Eliezer
2017-05-01
Iron is an essential element for key cellular metabolic processes. However, transfusional iron overload (IOL) may result in significant cellular toxicity. IOL occurs in transfusion dependent hematologic malignancies (HM), may lead to pathological clinical outcomes, and IOL reduction may improve outcomes. In hematopoietic stem cell transplantation (SCT) for HM, IOL may have clinical importance; endpoints examined regarding an impact of IOL and IOL reduction include transplant-related mortality, organ function, infection, relapse risk, and survival. Here we review the clinical consequences of IOL and effects of IOL reduction before, during and following SCT for HM. IOL pathophysiology is discussed as well as available tests for IOL quantification including transfusion history, serum ferritin level, transferrin saturation, hepcidin, labile plasma iron and other parameters of iron-catalyzed oxygen free radicals, and organ IOL by imaging. Data-based recommendations for IOL measurement, monitoring and reduction before, during and following SCT for HM are made. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular pathogenesis and clinical consequences of iron overload in liver cirrhosis.
Sikorska, Katarzyna; Bernat, Agnieszka; Wroblewska, Anna
2016-10-01
The liver, as the main iron storage compartment and the place of hepcidin synthesis, is the central organ involved in maintaining iron homeostasis in the body. Excessive accumulation of iron is an important risk factor in liver disease progression to cirrhosis and hepatocellular carcinoma. Here, we review the literature on the molecular pathogenesis of iron overload and its clinical consequences in chronic liver diseases. PubMed was searched for English-language articles on molecular genesis of primary and secondary iron overload, as well as on their association with liver disease progression. We have also included literature on adjuvant therapeutic interventions aiming to alleviate detrimental effects of excessive body iron load in liver cirrhosis. Excess of free, unbound iron induces oxidative stress, increases cell sensitivity to other detrimental factors, and can directly affect cellular signaling pathways, resulting in accelerated liver disease progression. Diagnosis of liver cirrhosis is, in turn, often associated with the identification of a pathological accumulation of iron, even in the absence of genetic background of hereditary hemochromatosis. Iron depletion and adjuvant therapy with antioxidants are shown to cause significant improvement of liver functions in patients with iron overload. Phlebotomy can have beneficial effects on liver histology in patients with excessive iron accumulation combined with compensated liver cirrhosis of different etiology. Excessive accumulation of body iron in liver cirrhosis is an important predictor of liver failure and available data suggest that it can be considered as target for adjuvant therapy in this condition.
Sivgin, Serdar; Baldane, Suleyman; Deniz, Kemal; Zararsiz, Gokmen; Kaynar, Leylagul; Cetin, Mustafa; Unal, Ali; Eser, Bulent
2016-08-01
Iron overload results in increased infection, venous-oclusive disease and hepatic dysfunction in allogeneic hematopoietic stem cell transplant (alloHSCT) recipients. Liver is one of the most common sites of iron overload. A total of 50 alloHSCT recipients that underwent liver biopsy in Erciyes Stem Cell Transplantation Hospital, Erciyes University, between 2004 and 2011 were enrolled in the study. The liver biopsy specimens have been obtained from the archives of Erciyes University, Department of Pathology and stainned for iron content. The mean age was found 34 ± 11 years. For median overall survival (OS); 53 months (min-max: 41-65) in patients with grade 0, 55 months (min-max: 47-64) in patients with grade 1, in patients with grade 2 patients 25.4 months (11.5-39.4 ), grade 3 patients 29.3 months (min-max: 12.3-46.3) and grade 4 patients 2.6 months (min-max: 2.0-3.3). Overall survival was correlated with the degree of liver iron content and it was statistically significant in Kaplan-Meier analysis (P < .001). Disease-free survival was found (DFS); grade 0 patients 47.1 months (min-max: 32.0-62.0), grade 1 patients 36.9 months (min-max: 21.0-65.0), grade 2 patients 23.5 months (min-max: 12.0-59.0), grade 3 patients 27.4 months (min-max: 5.3-59.3) and grade 4 patients 2.6 months (min-max: 2.0-3.0). For DFS; it was negatively correlated with the degree of liver iron content nevertheless; it was not was statistically significant in Kaplan-Meier analysis (P = .093).Hepatic iron overload might be associated with poor survival in patients with transfusional iron overload that underwent alloHSCT. Hepatic iron content might be associated with poorer prognosis in patients with iron overload that underwent alloHSCT. Copyright © 2016 Elsevier Inc. All rights reserved.
Kontoghiorghe, Christina N; Kolnagou, Annita; Kontoghiorghes, George J
2015-11-23
Iron chelating drugs are primarily and widely used in the treatment of transfusional iron overload in thalassaemia and similar conditions. Recent in vivo and clinical studies have also shown that chelators, and in particular deferiprone, can be used effectively in many conditions involving free radical damage and pathology including neurodegenerative, renal, hepatic, cardiac conditions and cancer. Many classes of phytochelators (Greek: phyto (φυτό)-plant, chele (χηλή)-claw of the crab) with differing chelating properties, including plant polyphenols resembling chelating drugs, can be developed for clinical use. The phytochelators mimosine and tropolone have been identified to be orally active and effective in animal models for the treatment of iron overload and maltol for the treatment of iron deficiency anaemia. Many critical parameters are required for the development of phytochelators for clinical use including the characterization of the therapeutic targets, ADMET, identification of the therapeutic index and risk/benefit assessment by comparison to existing therapies. Phytochelators can be developed and used as main, alternative or adjuvant therapies including combination therapies with synthetic chelators for synergistic and or complimentary therapeutic effects. The development of phytochelators is a challenging area for the introduction of new pharmaceuticals which can be used in many diseases and also in ageing. The commercial and other considerations for such development have great advantages in comparison to synthetic drugs and could also benefit millions of patients in developing countries.
Zhang, Yu; Kong, Wei-Na; Chai, Xi-Qing
2018-04-01
Increasing evidence indicates that disruption of normal iron homeostasis may contribute to pathological development of Alzheimer's disease. Icariin, astragalus, and puerarin have been shown to suppress iron overload in the cerebral cortex and improve spatial learning and memory disorders in Alzheimer's disease mice, although the underlying mechanism remains unclear. In the present study, APPswe/PS1ΔE9 transgenic mice were administered icariin, astragalus, and puerarin (120, 80, and 80 mg/kg, respectively, once a day, for 3 months). Iron levels were detected by flame atomic absorption spectroscopy. Interleukin-1β, interleukin-6, and tumor necrosis factor-α levels were measured in the cerebral cortex by enzyme linked immunosorbent assay. Glutathione peroxidase and superoxide dismutase activity and malondialdehyde content were determined by colorimetry. Our results demonstrate that after treatment, iron levels and malondialdehyde content are decreased, while glutathione peroxidase and superoxide dismutase activities are increased. Further, interleukin-1β, interleukin-6, and tumor necrosis factor-α levels were reduced. These results confirm that compounds of icariin, astragalus, and puerarin may alleviate iron overload by reducing oxidative stress and the inflammatory response.
Casale, Maddalena; Meloni, Antonella; Filosa, Aldo; Cuccia, Liana; Caruso, Vincenzo; Palazzi, Giovanni; Gamberini, Maria Rita; Pitrolo, Lorella; Putti, Maria Caterina; D'Ascola, Domenico Giuseppe; Casini, Tommaso; Quarta, Antonella; Maggio, Aurelio; Neri, Maria Giovanna; Positano, Vincenzo; Salvatori, Cristina; Toia, Patrizia; Valeri, Gianluca; Midiri, Massimo; Pepe, Alessia
2015-08-01
Cardiovascular magnetic resonance (CMR) plays a key role in the management of thalassemia major patients, but few data are available in pediatric population. This study aims at a retrospective multiparametric CMR assessment of myocardial iron overload, function, and fibrosis in a cohort of pediatric thalassemia major patients. We studied 107 pediatric thalassemia major patients (61 boys, median age 14.4 years). Myocardial and liver iron overload were measured by T2* multiecho technique. Atrial dimensions and biventricular function were quantified by cine images. Late gadolinium enhancement images were acquired to detect myocardial fibrosis. All scans were performed without sedation. The 21.4% of the patients showed a significant myocardial iron overload correlated with lower compliance to chelation therapy (P<0.013). Serum ferritin ≥2000 ng/mL and liver iron concentration ≥14 mg/g/dw were detected as the best threshold for predicting cardiac iron overload (P=0.001 and P<0.0001, respectively). A homogeneous pattern of myocardial iron overload was associated with a negative cardiac remodeling and significant higher liver iron concentration (P<0.0001). Myocardial fibrosis by late gadolinium enhancement was detected in 15.8% of the patients (youngest children 13 years old). It was correlated with significant lower heart T2* values (P=0.022) and negative cardiac remodeling indexes. A pathological magnetic resonance imaging liver iron concentration was found in the 77.6% of the patients. Cardiac damage detectable by a multiparametric CMR approach can occur early in thalassemia major patients. So, the first T2* CMR assessment should be performed as early as feasible without sedation to tailor the chelation treatment. Conversely, late gadolinium enhancement CMR should be postponed in the teenager age. © 2015 American Heart Association, Inc.
Effects of iron overload in a rat nutritional model of non-alcoholic fatty liver disease.
Kirsch, Richard; Sijtsema, Helene P; Tlali, Mpho; Marais, Adrian D; Hall, Pauline de la M
2006-12-01
This study sought to determine whether excess hepatic iron potentiates liver injury in the methionine choline-deficient (MCD) model of non-alcoholic fatty liver disease (NAFLD). Iron-loaded rats were fed either MCD or control diets [MCD diet plus choline bitartrate (2 g/kg) and DL-methionine (3 g/kg)] for 4 and 12 weeks, after which liver pathology, hepatic iron, triglyceride, lipid peroxidation products and hydroxyproline (HYP) levels and serum alanine aminotransferase (ALT) levels were evaluated. Iron supplementation in MCD animals resulted in histologic evidence of hepatic iron overload at 4 and 12 weeks and a 14-fold increase in hepatic iron concentration at 12 weeks (P < 0.001). Iron supplementation in these animals was associated with increased lobular necroinflammation at 4 weeks (P < 0.02) and decreased hepatic steatosis (P < 0.01), hepatic triglyceride levels (P < 0.01), hepatic-conjugated dienes (CD; P < 0.02) and serum ALT levels (P < 0.002) at 12 weeks. Reduced hepatic steatosis (P < 0.005) and CD (P < 0.01) were apparent by 4 weeks. Iron supplementation was associated with a trend towards increased perivenular fibrosis not hepatic HYP content. Hepatic iron overload in the MCD model of NAFLD is associated with decreased hepatic lipid, decreased early lipid peroxidation products, increased necroinflammation and a trend towards increased perivenular fibrosis.
Regulation of DMT1 on autophagy and apoptosis in osteoblast
Liu, Fei; Zhang, Wei-Lin; Meng, Hong-Zheng; Cai, Zheng-Yu; Yang, Mao-Wei
2017-01-01
Iron overload has recently been associated with the changes in the bone microstructure that occur in osteoporosis. However, the effect of iron overload on osteoblasts is unclear. The purpose of this study was to explore the function of divalent metal transporter 1 (DMT1) in the pathological processes of osteoporosis. Osteoblast hFOB1.19 cells were cultured in medium supplemented with different concentrations (0, 50, 100, 200, 300, 400, 500 μmol/L) of ferric ammonium citrate (FAC) as a donor of ferric ions. We used western blotting and immunofluorescence to determine the levels of DMT1 after treatment with FAC. Apoptosis was evaluated by detecting the levels of cleaved caspase 3, BCL2, and BAX with western blotting. Autophagy was evaluated by detecting the levels of LC3 with western blotting and immunofluorescence. Beclin-1 expression was also assessed with western blotting. The autophagy inhibitor 3-methyladenine was used to determine whether autophagy affects the apoptosis induced by FAC. Our results show that FAC increased the levels of DMT1, upregulated the expression of BCL2, and downregulated the apoptosis-related proteins cleaved caspase 3 and BAX. Both LC3I/LC3II levels and beclin-1 were also increased, indicating that FAC increases the accumulation of autophagosomes in hFOB1.19 cells. FAC-induced autophagy was increased by the apoptosis inhibitor 3-MA but was reduced in DMT1 shRNA hFOB1.19 cells. These results suggest that the increased expression of DMT1 induces iron overload and iron overload induces osteoblast autophagy and apoptosis, thus affecting the pathological processes of osteoporosis. Clarifying the mechanisms underlying the effects of DMT1 will allow the identification of novel targets for the prevention and treatment of osteoporosis. PMID:28367088
Neves, Joana; Leitz, Dominik; Kraut, Simone; Brandenberger, Christina; Agrawal, Raman; Weissmann, Norbert; Mühlfeld, Christian; Mall, Marcus A; Altamura, Sandro; Muckenthaler, Martina U
2017-06-01
Emerging evidence suggests that pulmonary iron accumulation is implicated in a spectrum of chronic lung diseases. However, the mechanism(s) involved in pulmonary iron deposition and its role in the in vivo pathogenesis of lung diseases remains unknown. Here we show that a point mutation in the murine ferroportin gene, which causes hereditary hemochromatosis type 4 (Slc40a1 C326S ), increases iron levels in alveolar macrophages, epithelial cells lining the conducting airways and lung parenchyma, and in vascular smooth muscle cells. Pulmonary iron overload is associated with oxidative stress, restrictive lung disease with decreased total lung capacity and reduced blood oxygen saturation in homozygous Slc40a1 C326S/C326S mice compared to wild-type controls. These findings implicate iron in lung pathology, which is so far not considered a classical iron-related disorder. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
HFE gene: Structure, function, mutations, and associated iron abnormalities.
Barton, James C; Edwards, Corwin Q; Acton, Ronald T
2015-12-15
The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. Copyright © 2015 Elsevier B.V. All rights reserved.
New developments and controversies in iron metabolism and iron chelation therapy
Kontoghiorghe, Christina N; Kontoghiorghes, George J
2016-01-01
Iron is essential for all organisms including microbial, cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients’ therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic haemochromatosis, thalassaemia intermedia and ex-thalassaemia transplanted patients who are safely treated with venesection. Iron chelating drugs can override normal regulatory pathways, correct iron imbalance and minimise iron toxicity. The use of iron chelating drugs as main, alternative or adjuvant therapy is in progress in many conditions, especially those with non established or effective therapies. PMID:27019793
Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y
2017-01-23
Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Diffuse diseases of the myocardium: MRI-pathologic review of cardiomyopathies with dilatation.
Giesbrandt, Kirk J; Bolan, Candice W; Shapiro, Brian P; Edwards, William D; Mergo, Patricia J
2013-03-01
In this radiologic-pathologic review of the cardiomyopathies, we present the pertinent imaging findings of diffuse myocardial diseases that are associated with ventricular dilatation, including ischemic cardiomyopathy, nonischemic dilated cardiomyopathy, cardiac sarcoidosis, and iron overload cardiomyopathy. Correlation of the key radiologic findings with gross and microscopic pathologic features is presented, to provide the reader with a focused and in-depth review of the pathophysiology underlying each entity and the basis for the corresponding imaging characteristics.
Iron overload patients with unknown etiology from national survey in Japan.
Ikuta, Katsuya; Hatayama, Mayumi; Addo, Lynda; Toki, Yasumichi; Sasaki, Katsunori; Tatsumi, Yasuaki; Hattori, Ai; Kato, Ayako; Kato, Koichi; Hayashi, Hisao; Suzuki, Takahiro; Kobune, Masayoshi; Tsutsui, Miyuki; Gotoh, Akihiko; Aota, Yasuo; Matsuura, Motoo; Hamada, Yuzuru; Tokuda, Takahiro; Komatsu, Norio; Kohgo, Yutaka
2017-03-01
Transfusion is believed to be the main cause of iron overload in Japan. A nationwide survey on post-transfusional iron overload subsequently led to the establishment of guidelines for iron chelation therapy in this country. To date, however, detailed clinical information on the entire iron overload population in Japan has not been fully investigated. In the present study, we obtained and studied detailed clinical information on the iron overload patient population in Japan. Of 1109 iron overload cases, 93.1% were considered to have occurred post-transfusion. There were, however, 76 cases of iron overload of unknown origin, which suggest that many clinicians in Japan may encounter some difficulty in correctly diagnosing and treating iron overload. Further clinical data were obtained for 32 cases of iron overload of unknown origin; median of serum ferritin was 1860.5 ng/mL. As occurs in post-transfusional iron overload, liver dysfunction was found to be as high as 95.7% when serum ferritin levels exceeded 1000 ng/mL in these patients. Gene mutation analysis of the iron metabolism-related genes in 27 cases of iron overload with unknown etiology revealed mutations in the gene coding hemojuvelin, transferrin receptor 2, and ferroportin; this indicates that although rare, hereditary hemochromatosis does occur in Japan.
Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver
Aigner, Elmar; Weiss, Günter; Datz, Christian
2015-01-01
Elevated iron stores as indicated by hyperferritinemia with normal or mildly elevated transferrin saturation and mostly mild hepatic iron deposition are a characteristic finding in subjects with non-alcoholic fatty liver disease (NAFLD). Excess iron is observed in approximately one third of NAFLD patients and is commonly referred to as the “dysmetabolic iron overload syndrome”. Clinical evidence suggests that elevated body iron stores aggravate the clinical course of NAFLD with regard to liver-related and extrahepatic disease complications which relates to the fact that excess iron catalyses the formation of toxic hydroxyl-radicals subsequently resulting in cellular damage. Iron removal improves insulin sensitivity, delays the onset of type 2 diabetes mellitus, improves pathologic liver function tests and likewise ameliorates NAFLD histology. Several mechanisms contribute to pathologic iron accumulation in NAFLD. These include impaired iron export from hepatocytes and mesenchymal Kupffer cells as a consequence of imbalances in the concentrations of iron regulatory factors, such as hepcidin, cytokines, copper or other dietary factors. This review summarizes the knowledge about iron homeostasis in NAFLD and the rationale for its therapeutic implications. PMID:25729473
Knovich, Mary Ann; Storey, Jonathan A.; Coffman, Lan G.; Torti, Suzy V.
2009-01-01
Ferritin, a major iron storage protein, is essential to iron homeostasis and is involved in a wide range of physiologic and pathologic processes. In clinical medicine, ferritin is predominantly utilized as a serum marker of total body iron stores. In cases of iron deficiency and overload, serum ferritin serves a critical role in both diagnosis and management. Elevated serum and tissue ferritin are linked to coronary artery disease, malignancy, and poor outcomes following stem cell transplantation. Ferritin is directly implicated in less common but potentially devastating human diseases including sideroblastic anemias, neurodegenerative disorders, and hemophagocytic syndrome. Additionally, recent research describes novel functions of ferritin independent of iron storage. PMID:18835072
Shammo, Jamile M; Komrokji, Rami S
2018-06-14
Patients with myelodysplastic syndromes (MDS) are at increased risk of iron overload due to ineffective erythropoiesis and chronic transfusion therapy. The clinical consequences of iron overload include cardiac and/or hepatic failure, endocrinopathies, and infection risk. Areas covered: Iron chelation therapy (ICT) can help remove excess iron and ultimately reduce the clinical consequences of iron overload. The authors reviewed recent (last five years) English-language articles from PubMed on the topic of iron overload-related complications and the use of ICT (primarily deferasirox) to improve outcomes in patients with MDS. Expert Commentary: While a benefit of ICT has been more firmly established in other transfusion-dependent conditions such as thalassemia, its role in reducing iron overload in MDS remains controversial due to the lack of prospective controlled data demonstrating a survival benefit. Orally administered chelation agents (e.g., deferasirox), are now available, and observational and/or retrospective data support a survival benefit of using ICT in MDS. The placebo-controlled TELESTO trial (NCT00940602) is currently examining the use of deferasirox in MDS patients with iron overload, and is evaluating specifically whether use of ICT to alleviate iron overload can also reduce iron overload-related complications in MDS and improve survival.
Kontoghiorghe, Christina N; Kontoghiorghes, George J
2016-01-01
The prevalence rate of thalassemia, which is endemic in Southeast Asia, the Middle East, and the Mediterranean, exceeds 100,000 live births per year. There are many genetic variants in thalassemia with different pathological severity, ranging from a mild and asymptomatic anemia to life-threatening clinical effects, requiring lifelong treatment, such as regular transfusions in thalassemia major (TM). Some of the thalassemias are non-transfusion-dependent, including many thalassemia intermedia (TI) variants, where iron overload is caused by chronic increase in iron absorption due to ineffective erythropoiesis. Many TI patients receive occasional transfusions. The rate of iron overloading in TI is much slower in comparison to TM patients. Iron toxicity in TI is usually manifested by the age of 30–40 years, and in TM by the age of 10 years. Subcutaneous deferoxamine (DFO), oral deferiprone (L1), and DFO–L1 combinations have been effectively used for more than 20 years for the treatment of iron overload in TM and TI patients, causing a significant reduction in morbidity and mortality. Selected protocols using DFO, L1, and their combination can be designed for personalized chelation therapy in TI, which can effectively and safely remove all the excess toxic iron and prevent cardiac, liver, and other organ damage. Both L1 and DF could also prevent iron absorption. The new oral chelator deferasirox (DFX) increases iron excretion and decreases liver iron in TM and TI. There are drawbacks in the use of DFX in TI, such as limitations related to dose, toxicity, and cost, iron load of the patients, and ineffective removal of excess iron from the heart. Furthermore, DFX appears to increase iron and other toxic metal absorption. Future treatments of TI and related iron-loading conditions could involve the use of the iron-chelating drugs and other drug combinations not only for increasing iron excretion but also for preventing iron absorption. PMID:26893541
Kontoghiorghe, Christina N; Kontoghiorghes, George J
2016-01-01
The prevalence rate of thalassemia, which is endemic in Southeast Asia, the Middle East, and the Mediterranean, exceeds 100,000 live births per year. There are many genetic variants in thalassemia with different pathological severity, ranging from a mild and asymptomatic anemia to life-threatening clinical effects, requiring lifelong treatment, such as regular transfusions in thalassemia major (TM). Some of the thalassemias are non-transfusion-dependent, including many thalassemia intermedia (TI) variants, where iron overload is caused by chronic increase in iron absorption due to ineffective erythropoiesis. Many TI patients receive occasional transfusions. The rate of iron overloading in TI is much slower in comparison to TM patients. Iron toxicity in TI is usually manifested by the age of 30-40 years, and in TM by the age of 10 years. Subcutaneous deferoxamine (DFO), oral deferiprone (L1), and DFO-L1 combinations have been effectively used for more than 20 years for the treatment of iron overload in TM and TI patients, causing a significant reduction in morbidity and mortality. Selected protocols using DFO, L1, and their combination can be designed for personalized chelation therapy in TI, which can effectively and safely remove all the excess toxic iron and prevent cardiac, liver, and other organ damage. Both L1 and DF could also prevent iron absorption. The new oral chelator deferasirox (DFX) increases iron excretion and decreases liver iron in TM and TI. There are drawbacks in the use of DFX in TI, such as limitations related to dose, toxicity, and cost, iron load of the patients, and ineffective removal of excess iron from the heart. Furthermore, DFX appears to increase iron and other toxic metal absorption. Future treatments of TI and related iron-loading conditions could involve the use of the iron-chelating drugs and other drug combinations not only for increasing iron excretion but also for preventing iron absorption.
Protective effects of deferasirox and N-acetyl-L-cysteine on iron overload-injured bone marrow.
Shen, J C; Zhang, Y C; Zhao, M F
2017-10-19
Using an iron overload mouse model, we explored the protective effect of deferasirox (DFX) and N-acetyl-L-cysteine (NAC) on injured bone marrow hematopoietic stem/progenitor cells (HSPC) induced by iron overload. Mice were intraperitoneally injected with 25 mg iron dextran every 3 days for 4 weeks to establish an iron overload (Fe) model. DFX or NAC were co-administered with iron dextran in two groups of mice (Fe+DFX and Fe+NAC), and the function of HSPCs was then examined. Iron overload markedly decreased the number of murine HSPCs in bone marrow. Subsequent colony-forming cell assays showed that iron overload also decreased the colony forming capacity of HSPCs, the effect of which could be reversed by DFX and NAC. The bone marrow hematopoiesis damage caused by iron overload could be alleviated by DFX and NAC.
Zheng, Qing-Qing; Zhao, You-Shan; Guo, Juan; Zhao, Si-da; Song, Lu-Xi; Fei, Cheng-Ming; Zhang, Zheng; Li, Xiao; Chang, Chun-Kang
2017-07-01
Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload. Copyright © 2017 Elsevier Ltd. All rights reserved.
Riva, Alessia; Trombini, Paola; Mariani, Raffaella; Salvioni, Alessandra; Coletti, Sabina; Bonfadini, Silvia; Paolini, Valentina; Pozzi, Matteo; Facchetti, Rita; Bovo, Giorgio; Piperno, Alberto
2008-01-01
AIM: To re-evaluate the diagnostic criteria of insulin resistance hepatic iron overload based on clinical, biochemical and histopathological findings. METHODS: We studied 81 patients with hepatic iron overload not explained by known genetic and acquired causes. The metabolic syndrome (MS) was defined according to ATPIII criteria. Iron overload was assessed by liver biopsy. Liver histology was evaluated by Ishak’s score and iron accumulation by Deugnier’s score; steatosis was diagnosed when present in ≥ 5% of hepatocytes. RESULTS: According to transferrin saturation levels, we observed significant differences in the amount of hepatic iron overload and iron distribution, as well as the number of metabolic abnormalities. Using Receiving Operating Curve analysis, we found that the presence of two components of the MS differentiated two groups with a statistically significant different hepatic iron overload (P < 0.0001). Patients with ≥ 2 metabolic alterations and steatosis had lower amount of hepatic iron, lower transferrin saturation and higher sinusoidal iron than patients with < 2 MS components and absence of steatosis. CONCLUSION: In our patients, the presence of ≥ 2 alterations of the MS and hepatic steatosis was associated with a moderate form of iron overload with a prevalent sinusoidal distribution and a normal transferrin saturation, suggesting the existence of a peculiar pathogenetic mechanism of iron accumulation. These patients may have the typical dysmetabolic iron overload syndrome. By contrast, patients with transferrin saturation ≥ 60% had more severe iron overload, few or no metabolic abnormalities and a hemochromatosis-like pattern of iron overload. PMID:18720534
Magnetic and quadrupolar studies of the iron storage overload in livers
NASA Astrophysics Data System (ADS)
Rimbert, J. N.; Dumas, F.; Richardot, G.; Kellershohn, C.
1986-02-01
Absorption57Fe Mössbauer spectra, performed directly on tissues of liver with iron overload due to an excessive intestinal iron absorption or induced by hypertransfusional therapeutics, have pointed out a new high spin ferric storage iron besides the ferritin and hemosiderin. Mössbauer studies, carried out on ferritin and hemosiderin fractions isolated from normal and overloaded livers, show that this compound, only present in the secondary iron overload (transfusional pathway), seems characteristic of the physiological process which induces the iron overload.
Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia
Anderson, Erik R.; Taylor, Matthew; Xue, Xiang; Ramakrishnan, Sadeesh K.; Martin, Angelical; Xie, Liwei; Bredell, Bryce X.; Gardenghi, Sara; Rivella, Stefano; Shah, Yatrik M.
2013-01-01
Several distinct congenital disorders can lead to tissue-iron overload with anemia. Repeated blood transfusions are one of the major causes of iron overload in several of these disorders, including β-thalassemia major, which is characterized by a defective β-globin gene. In this state, hyperabsorption of iron is also observed and can significantly contribute to iron overload. In β-thalassemia intermedia, which does not require blood transfusion for survival, hyperabsorption of iron is the leading cause of iron overload. The mechanism of increased iron absorption in β-thalassemia is unclear. We definitively demonstrate, using genetic mouse models, that intestinal hypoxia-inducible factor-2α (HIF2α) and divalent metal transporter-1 (DMT1) are activated early in the pathogenesis of β-thalassemia and are essential for excess iron accumulation in mouse models of β-thalassemia. Moreover, thalassemic mice with established iron overload had significant improvement in tissue-iron levels and anemia following disruption of intestinal HIF2α. In addition to repeated blood transfusions and increased iron absorption, chronic hemolysis is the major cause of tissue-iron accumulation in anemic iron-overload disorders caused by hemolytic anemia. Mechanistic studies in a hemolytic anemia mouse model demonstrated that loss of intestinal HIF2α/DMT1 signaling led to decreased tissue-iron accumulation in the liver without worsening the anemia. These data demonstrate that dysregulation of intestinal hypoxia and HIF2α signaling is critical for progressive iron overload in β-thalassemia and may be a novel therapeutic target in several anemic iron-overload disorders. PMID:24282296
Ashraf, Azhaar; Clark, Maryam; So, Po-Wah
2018-01-01
Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases. PMID:29593525
[Current understanding of iron overload hazard in patients with myelodysplastic syndrome].
Song, Lu-Xi; Su, Ji-Ying; Zhang, Zhen; Chang, Chun-Kang
2013-04-01
Patients with myelodysplastic syndromes (MDS) become dependent on blood transfusions and develop into transfusional iron overload, which is exacerbated by increased absorption of dietary iron in response to ineffective erythropoiesis. However, it is uncertain whether there is an association among iron accumulation, clinical complications, and decreased likelihood of survival in MDS patients. Thereby our current understanding of the effects of transfusion dependency and iron overload in MDS are discussed. Particular emphasis should be placed on further characterizing the role of redox-active forms of labile iron and oxidative stress in iron overload, decreased life expectancy and increased risk of leukemic transformation in MDS patients with iron overload.
Deugnier, Yves; Turlin, Bruno; Ropert, Martine; Cappellini, M Domenica; Porter, John B; Giannone, Vanessa; Zhang, Yiyun; Griffel, Louis; Brissot, Pierre
2011-10-01
Most data on the effects of iron chelation therapy for patients with liver fibrosis come from small studies. We studied the effects of the oral iron chelator deferasirox on liver fibrosis and necroinflammation in a large population of patients with iron overload β-thalassemia. We studied data from 219 patients with β-thalassemia, collected from histologic analyses of biopsy samples taken at baseline and after at least 3 years of treatment with deferasirox. Treatment response was assessed from liver iron concentrations at baseline and the end of the study. Liver fibrosis, necroinflammation, and markers of iron overload and liver enzymes were recorded. Patients were also assessed, by serologic analysis at baseline, for hepatitis C virus infection. By the end of the study, stability of Ishak fibrosis staging scores (change of -1, 0, or +1) or improvements (change of ≤-2) were observed in 82.6% of patients; Ishak necroinflammatory scores improved by a mean value of -1.3 (P<.001). Improvements in fibrosis stage and necroinflammation were independent of hepatitis C virus exposure or reduction in liver iron concentration defined by the response criteria. Absolute changes in concentrations of liver iron by the end of the study did not correlate with improved Ishak fibrosis or necroinflammatory scores. Deferasirox treatment for 3 or more years reversed or stabilized liver fibrosis in 83% of patients with iron-overloaded β-thalassemia. This therapeutic effect was independent of reduced concentration of liver iron (defined by the response criteria) or previous exposure to hepatitis C virus. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Chai, Xiao; Li, Deguan; Cao, Xiaoli; Zhang, Yuchen; Mu, Juan; Lu, Wenyi; Xiao, Xia; Li, Chengcheng; Meng, Juanxia; Chen, Jie; Li, Qing; Wang, Jishi; Meng, Aimin; Zhao, Mingfeng
2015-01-01
Iron overload, caused by hereditary hemochromatosis or repeated blood transfusions in some diseases, such as beta thalassemia, bone marrow failure and myelodysplastic syndrome, can significantly induce injured bone marrow (BM) function as well as parenchyma organ dysfunctions. However, the effect of iron overload and its mechanism remain elusive. In this study, we investigated the effects of iron overload on the hematopoietic stem and progenitor cells (HSPCs) from a mouse model. Our results showed that iron overload markedly decreased the ratio and clonogenic function of murine HSPCs by the elevation of reactive oxygen species (ROS). This finding is supported by the results of NAC or DFX treatment, which reduced ROS level by inhibiting NOX4 and p38MAPK and improved the long-term and multi-lineage engrafment of iron overload HSCs after transplantation. Therefore, all of these data demonstrate that iron overload injures the hematopoiesis of BM by enhancing ROS through NOX4 and p38MAPK. This will be helpful for the treatment of iron overload in patients with hematopoietic dysfunction. PMID:25970748
Diagnosis and treatment of cardiac iron overload in transfusion-dependent thalassemia patients.
Siri-Angkul, Natthaphat; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2018-05-18
Thalassemia is among the most common genetic diseases. Patients with severe forms of the disease are transfusion-dependent, leading to iron overload. A condition which can eventually develop in the iron-loaded heart is iron overload cardiomyopathy, a debilitating disease that accounts for the majority of deaths in thalassemia patients. Areas covered: This review article provides a comprehensive summary of the diagnosis and treatment of cardiac iron overload in transfusion-dependent thalassemia patients, with discussion covering current weak points and potential improvements of the relevant diagnostic and therapeutic strategies. Expert commentary: Current limitations of various diagnostic techniques for iron overload cardiomyopathy include suboptimal accuracy, untimely detection, or inadequate accessibility, and novel modalities are required to overcome these shortcomings. Treatment should address key pathophysiologic mechanisms of iron overload cardiomyopathy, which include cardiac iron mishandling and iron-induced oxidative injury. Apart from the promotion of iron removal by chelators, prevention of cardiac iron deposition and attenuation of oxidative damage should also be rigorously investigated on a cell-to-bedside basis.
Current Review of Iron Overload and Related Complications in Hematopoietic Stem Cell Transplantation
Atilla, Erden; Toprak, Selami K.; Demirer, Taner
2017-01-01
Iron overload is an adverse prognostic factor for patients undergoing hematopoietic stem cell transplantation (HSCT). In the HSCT setting, pretransplant and early posttransplant ferritin and transferrin saturation were found to be highly elevated due to high transfusion requirements. In addition to that, post-HSCT iron overload was shown to be related to infections, hepatic sinusoidal obstruction syndrome, mucositis, liver dysfunction, and acute graft-versus-host disease. Hyperferritinemia causes decreased survival rates in both pre- and posttransplant settings. Serum ferritin levels, magnetic resonance imaging, and liver biopsy are diagnostic tools for iron overload. Organ dysfunction due to iron overload may cause high mortality rates and therefore sufficient iron chelation therapy is recommended in this setting. In this review the management of iron overload in adult HSCT is discussed. PMID:27956374
Pathophysiological consequences and benefits of HFE mutations: 20 years of research
Hollerer, Ina; Bachmann, André; Muckenthaler, Martina U.
2017-01-01
Mutations in the HFE (hemochromatosis) gene cause hereditary hemochromatosis, an iron overload disorder that is hallmarked by excessive accumulation of iron in parenchymal organs. The HFE mutation p.Cys282Tyr is pathologically most relevant and occurs in the Caucasian population with a carrier frequency of up to 1 in 8 in specific European regions. Despite this high prevalence, the mutation causes a clinically relevant phenotype only in a minority of cases. In this review, we summarize historical facts and recent research findings about hereditary hemochromatosis, and outline the pathological consequences of the associated gene defects. In addition, we discuss potential advantages of HFE mutations in asymptomatic carriers. PMID:28280078
Relationship between Hepatitis C Virus Infection and Iron Overload.
Zou, Dong-Mei; Sun, Wan-Ling
2017-04-05
The aim of this study was to summarize the interactions between hepatitis C virus (HCV) infection and iron overload, and to understand the mechanisms of iron overload in chronic hepatitis C (CHC) and the role iron plays in HCV life cycle. This review was based on data in articles published in the PubMed databases up to January 28, 2017, with the keywords "hepatitis C virus", "iron overload", "iron metabolism", "hepcidin", "translation", and "replication". Articles related to iron metabolism, iron overload in patients with CHC, or the effects of iron on HCV life cycle were selected for the review. Iron overload is common in patients with CHC. The mechanisms involve decreased hepcidin levels caused by HCV through signal transducer and activator of transcription 3, mitogen-activated protein kinase, or bone morphogenetic protein/SMAD signaling pathways, and the altered expression of other iron-metabolism-related genes. Some studies found that iron increases HCV replication, while other studies found the opposite result. Most of the studies suggest the positive role of iron on HCV translation, the mechanisms of which involve increased expression levels of factors associated with HCV internal ribosome entry site-dependent translation, such as eukaryotic initiation factor 3 and La protein. The growing literature demonstrates that CHC leads to iron overload, and iron affects the HCV life cycle in turn. Further research should be conducted to clarify the mechanism involved in the complicated interaction between iron and HCV.
Iron homeostasis and its disruption in mouse lung in iron deficiency and overload.
Giorgi, Gisela; D'Anna, María Cecilia; Roque, Marta Elena
2015-10-01
What is the central question of this study? The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. What is the main finding and its importance? We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co-ordinated action of iron proteins, such as divalent metal transporter 1, ZRT-IRE-like-protein 14, transferrin receptor, ferritin, haemochromatosis-associated protein and ferroportin. Iron dyshomeostasis is associated with several forms of chronic lung disease, but its mechanisms of action remain to be elucidated. The aim of the present study was to determine the role of the lung in whole-animal models with iron deficiency and iron overload, studying the divalent metal transporter 1 (DMT1), ZRT-IRE-like protein 14 (ZIP14), transferrin receptor (TfR), haemochromatosis-associated protein (HFE), hepcidin, ferritin and ferroportin (FPN) expression. In each model, adult CF1 mice were divided into the following groups (six mice per group): (i) iron-overload model, iron saccharate i.p. and control group (iron adequate), 0.9% NaCl i.p.; and (ii) iron-deficiency model, induced by repeated bleeding, and control group (sham operated). Proteins were assessed by immunohistochemistry and Western blot. In control mice, DMT1 was localized in the cytoplasm of airway cells, and in iron deficiency and overload it was in the apical membrane. Divalent metal transporter 1 and TfR increased in iron deficiency, without changes in iron overload. ZRT-IRE-like protein 14 decreased in airway cells in iron deficiency and increased in iron overload. In iron deficiency, HFE and FPN were immunolocalized close to the apical membrane. Ferroportin increased in iron overload. Prohepcidin was present in control groups, with no changes in iron deficiency and iron overload. In iron overload, ferritin showed intracytoplasmic localization close to the apical membrane of airway cells and intense immunostaining in macrophage-like cells. The results show that pulmonary hepcidin does not appear to modify cellular iron mobilization in the lung. We propose the following two novel pathways in the lung: (i) for supplying iron in iron deficiency, mediated principally by DMT1 and TfR and regulated by the action of FPN and HFE; and (ii) for iron detoxification in order to protect the lung against iron overload, facilitated by the action of DMT1, ZIP14, FPN and ferritin. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Deferasirox : a review of its use in the management of transfusional chronic iron overload.
Yang, Lily P H; Keam, Susan J; Keating, Gillian M
2007-01-01
Deferasirox (Exjade) is an oral, once-daily iron chelator widely approved for the treatment of transfusional chronic iron overload. In the EU, deferasirox is indicated in patients with beta-thalassaemia major aged > or =6 years and, in the US, in all transfusional chronic iron overload patients aged > or =2 years. Deferasirox is highly selective for iron as Fe3+. In approximately 1-year clinical trials of patients with transfusional chronic iron overload associated with beta-thalassaemia, sickle cell disease, myelodysplastic syndrome or other rare chronic anaemias, deferasirox 20 or 30 mg/kg/day had a beneficial effect on liver iron concentrations (LIC) and serum ferritin levels; tolerability issues were clinically manageable with regular patient monitoring. Although longer-term efficacy and tolerability data are required, in particular examining the prevention of iron overload-related complications and the effect of deferasirox on renal function, deferasirox is an easily administered iron chelator and is a valuable option in the management of transfusional chronic iron overload.
HFE gene mutation is a risk factor for tissue iron accumulation in hemodialysis patients.
Turkmen, Ercan; Yildirim, Tolga; Yilmaz, Rahmi; Hazirolan, Tuncay; Eldem, Gonca; Yilmaz, Engin; Aybal Kutlugun, Aysun; Altindal, Mahmut; Altun, Bulent
2017-07-01
HFE gene mutations are responsible from iron overload in general population. Studies in hemodialysis patients investigated the effect of presence of HFE gene mutations on serum ferritin and transferrin saturation (TSAT) with conflicting results. However effect of HFE mutations on iron overload in hemodialysis patients was not previously extensively studied. 36 hemodialysis patients (age 51.3 ± 15.6, (18/18) male/female) and 44 healthy control subjects included in this cross sectional study. Hemoglobin, ferritin, TSAT in the preceding 2 years were recorded. Iron and erythropoietin (EPO) administered during this period were calculated. Iron accumulation in heart and liver was detected by MRI. Relationship between HFE gene mutation, hemoglobin, iron parameters and EPO doses, and tissue iron accumulation were determined. Iron overload was detected in nine (25%) patients. Hemoglobin, iron parameters, weekly EPO doses, and monthly iron doses of patients with and without iron overload were similar. There was no difference between control group and hemodialysis patients with respect to the prevalence of HFE gene mutations. Iron overload was detected in five of eight patients who had HFE gene mutations, but iron overload was present in 4 of 28 patients who had no mutations (P = 0.01). Hemoglobin, iron parameters, erythropoietin, and iron doses were similar in patients with and without gene mutations. HFE gene mutations remained the main determinant of iron overload after multivariate logistic regression analysis (P = 0.02; OR, 11.6). Serum iron parameters were not adequate to detect iron overload and HFE gene mutation was found to be an important risk factor for iron accumulation. © 2017 International Society for Hemodialysis.
Myelodysplastic syndromes and the role of iron overload.
Harvey, R Donald
2010-04-01
The epidemiology of myelodysplastic syndromes (MDS) and iron overload, recent clinical findings that highlight the importance of actively managing iron overload, and recommendations for initiating and maintaining iron chelation therapy (ICT) are summarized. MDS are a variety of hematological disorders with differing time courses. Disease morbidities are primarily due to cytopenias and evolution to acute myeloid leukemia. Iron overload is a serious complication in patients with MDS due to the long-term use of red blood cell transfusions in patients with symptomatic anemia. Clinical consequences of iron overload include end-organ damage and dysfunction, an increased frequency of transplant-related complications, and reduced survival rates. To prevent these complications, recommendations for initiating and maintaining ICT should be followed by clinicians caring for patients with MDS and iron overload. As current therapeutic options for patients with MDS do not always reduce the transfusion burden, many patients will still need long-term transfusion therapy. Strategies for the management of iron overload in MDS should be considered early in the disease course and in appropriate patients in order to prevent negative clinical outcomes associated with excessive iron accumulation.
Barbosa, Maritza Cavalcante; dos Santos, Talyta Ellen Jesus; de Souza, Geane Félix; de Assis, Lívia Coêlho; Freitas, Max Victor Carioca; Gonçalves, Romélia Pinheiro
2013-01-01
Objective The aim of this study was to evaluate the impact of iron overload on the profile of interleukin-10 levels, biochemical parameters and oxidative stress in sickle cell anemia patients. Methods A cross-sectional study was performed of 30 patients with molecular diagnosis of sickle cell anemia. Patients were stratified into two groups, according to the presence of iron overload: Iron overload (n = 15) and Non-iron overload (n = 15). Biochemical analyses were performed utilizing the Wiener CM 200 automatic analyzer. The interleukin-10 level was measured by capture ELISA using the BD OptEIAT commercial kit. Oxidative stress parameters were determined by spectrophotometry. Statistical analysis was performed using GraphPad Prism software (version 5.0) and statistical significance was established for p-values < 0.05 in all analyses. Results Biochemical analysis revealed significant elevations in the levels of uric acid, triglycerides, very low-density lipoprotein (VLDL), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), urea and creatinine in the Iron overload Group compared to the Non-iron overload Group and significant decreases in the high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Ferritin levels correlated positively with uric acid concentrations (p-value < 0.05). The Iron overload Group showed lower interleukin-10 levels and catalase activity and higher nitrite and malondialdehyde levels compared with the Non-iron overload Group. Conclusion The results of this study are important to develop further consistent studies that evaluate the effect of iron overload on the inflammatory profile and oxidative stress of patients with sickle cell anemia. PMID:23580881
Cardiac complications in beta-thalassemia: From mice to men.
Kumfu, Sirinart; Fucharoen, Suthat; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2017-06-01
Beta-thalassemia is an inherited hemoglobin disorder caused by reduced or absent synthesis of the beta globin chains of hemoglobin. This results in variable outcomes ranging from clinically asymptomatic to severe anemia, which then typically requires regular blood transfusion. These regular blood transfusions can result in an iron overload condition. The iron overload condition can lead to iron accumulation in various organs, especially in the heart, leading to iron overload cardiomyopathy, which is the major cause of mortality in patients with thalassemia. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects that iron overload has on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed. The in-depth understanding of biomolecular alterations in the heart of these iron overload thalassemic mice will help give guidance for more effective therapeutic approaches in the near future. Impact statement Iron overload cardiomyopathy is a major cause of morbidity and mortality in patients with thalassemia. Since investigation of iron overload cardiomyopathy in thalassemia patients has many limitations, a search for an animal model for this condition has been ongoing for decades. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects of iron overload on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed.
Cardiac complications in beta-thalassemia: From mice to men
Kumfu, Sirinart; Fucharoen, Suthat; Chattipakorn, Siriporn C.
2017-01-01
Beta-thalassemia is an inherited hemoglobin disorder caused by reduced or absent synthesis of the beta globin chains of hemoglobin. This results in variable outcomes ranging from clinically asymptomatic to severe anemia, which then typically requires regular blood transfusion. These regular blood transfusions can result in an iron overload condition. The iron overload condition can lead to iron accumulation in various organs, especially in the heart, leading to iron overload cardiomyopathy, which is the major cause of mortality in patients with thalassemia. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects that iron overload has on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed. The in-depth understanding of biomolecular alterations in the heart of these iron overload thalassemic mice will help give guidance for more effective therapeutic approaches in the near future. Impact statement Iron overload cardiomyopathy is a major cause of morbidity and mortality in patients with thalassemia. Since investigation of iron overload cardiomyopathy in thalassemia patients has many limitations, a search for an animal model for this condition has been ongoing for decades. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects of iron overload on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed. PMID:28485683
Gianesin, B; Zefiro, D; Musso, M; Rosa, A; Bruzzone, C; Balocco, M; Carrara, P; Bacigalupo, L; Banderali, S; Rollandi, G A; Gambaro, M; Marinelli, M; Forni, G L
2012-06-01
An accurate assessment of body iron accumulation is essential for the diagnosis and therapy of iron overload in diseases such as thalassemia or hemochromatosis. Magnetic iron detector susceptometry and MRI are noninvasive techniques capable of detecting iron overload in the liver. Although the transverse relaxation rate measured by MRI can be correlated with the presence of iron, a calibration step is needed to obtain the liver iron concentration. Magnetic iron detector provides an evaluation of the iron overload in the whole liver. In this article, we describe a retrospective observational study comparing magnetic iron detector and MRI examinations performed on the same group of 97 patients with transfusional or congenital iron overload. A biopsy-free linear calibration to convert the average transverse relaxation rate in iron overload (R(2) = 0.72), or in liver iron concentration evaluated in wet tissue (R(2) = 0.68), is presented. This article also compares liver iron concentrations calculated in dry tissue using MRI and the existing biopsy calibration with liver iron concentrations evaluated in wet tissue by magnetic iron detector to obtain an estimate of the wet-to-dry conversion factor of 6.7 ± 0.8 (95% confidence level). Copyright © 2011 Wiley-Liss, Inc.
Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis
Cutone, Antimo; Lepanto, Maria Stefania; Paesano, Rosalba; Valenti, Piera
2017-01-01
Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 μg instead of 1–2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes. PMID:28914813
Fang, Shenglin; Yu, Xiaonan; Ding, Haoxuan; Han, Jianan; Feng, Jie
2018-06-11
Iron overload causes many diseases, while the underlying etiologies of these diseases are unclear. Cell death processes including apoptosis, necroptosis, cyclophilin D-(CypD)-dependent necrosis and a recently described additional form of regulated cell death called ferroptosis, are dependent on iron or iron-dependent reactive oxygen species (ROS). However, whether the accumulation of intracellular iron itself induces ferroptosis or other forms of cell death is largely elusive. In present study, we study the role of intracellular iron overload itself-induced cell death mechanisms by using ferric ammonium citrate (FAC) and a membrane-permeable Ferric 8-hydroxyquinoline complex (Fe-8HQ) respectively. We show that FAC-induced intracellular iron overload causes ferroptosis. We also identify 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor GSK2334470 as a potent ferroptosis inhibitor. Whereas, Fe-8HQ-induced intracellular iron overload causes unregulated necrosis, but partially activates PARP-1 dependent parthanatos. Interestingly, we identify many phenolic compounds as potent inhibitors of Fe-8HQ-induced cell death. In conclusion, intracellular iron overload-induced cell death form might be dependent on the intracellular iron accumulation rate, newly identified cell death inhibitors in our study that target ferroptosis and unregulated oxidative cell death represent potential therapeutic strategies against iron overload related diseases. Copyright © 2018 Elsevier Inc. All rights reserved.
Chalmers, Anna W; Shammo, Jamile M
2016-01-01
Transfusion-dependent anemia is a common feature in a wide array of hematological disorders, including thalassemia, sickle cell disease, aplastic anemia, myelofibrosis, and myelo-dysplastic syndromes. In the absence of a physiological mechanism to excrete excess iron, chronic transfusions ultimately cause iron overload. Without correction, iron overload can lead to end-organ damage, resulting in cardiac, hepatic, and endocrine dysfunction/failure. Iron chelating agents are utilized to reduce iron overload, as they form a complex with iron, leading to its clearance. Iron chelation has been proven to decrease organ dysfunction and improve survival in certain transfusion-dependent anemias, such as β-thalassemia. Several chelating agents have been approved by the United States Food and Drug Administration for the treatment of iron overload, including deferoxamine, deferiprone, and deferasirox. A variety of factors have to be considered when choosing an iron chelator, including dosing schedule, route of administration, tolerability, and side effect profile. Deferasirox is an orally administered iron chelator with proven efficacy and safety in multiple hematological disorders. There are two formulations of deferasirox, a tablet for suspension, and a new tablet form. This paper is intended to provide an overview of iron overload, with a focus on deferasirox, and its recently approved formulation Jadenu® for the reduction of transfusional iron overload in hematological disorders. PMID:26929633
Chalmers, Anna W; Shammo, Jamile M
2016-01-01
Transfusion-dependent anemia is a common feature in a wide array of hematological disorders, including thalassemia, sickle cell disease, aplastic anemia, myelofibrosis, and myelo-dysplastic syndromes. In the absence of a physiological mechanism to excrete excess iron, chronic transfusions ultimately cause iron overload. Without correction, iron overload can lead to end-organ damage, resulting in cardiac, hepatic, and endocrine dysfunction/failure. Iron chelating agents are utilized to reduce iron overload, as they form a complex with iron, leading to its clearance. Iron chelation has been proven to decrease organ dysfunction and improve survival in certain transfusion-dependent anemias, such as β-thalassemia. Several chelating agents have been approved by the United States Food and Drug Administration for the treatment of iron overload, including deferoxamine, deferiprone, and deferasirox. A variety of factors have to be considered when choosing an iron chelator, including dosing schedule, route of administration, tolerability, and side effect profile. Deferasirox is an orally administered iron chelator with proven efficacy and safety in multiple hematological disorders. There are two formulations of deferasirox, a tablet for suspension, and a new tablet form. This paper is intended to provide an overview of iron overload, with a focus on deferasirox, and its recently approved formulation Jadenu(®) for the reduction of transfusional iron overload in hematological disorders.
Trottier, Bryan J.; Burns, Linda J.; DeFor, Todd E.; Cooley, Sarah
2013-01-01
Using liver magnetic resonance imaging (R2-MRI) to quantify liver iron content (LIC), we conducted a prospective cohort study to determine the association between iron overload and adult allogeneic hematopoietic cell transplantation (HCT) outcomes. Patients received pretransplant ferritin measurements; patients with ferritin >500 ng/mL underwent R2-MRI. Patients were defined as no iron overload (N = 28) and iron overload (LIC >1.8 mg/g; N = 60). Median LIC in the iron-overload group was 4.3 mg/g (range, 1.9-25.4). There was no difference in the 1-year probability of overall survival, nonrelapse mortality, relapse, acute or chronic graft-versus-host disease, organ failure, infections, or hepatic veno-occlusive disease between groups. We also found no difference in the cumulative incidence of a composite end point of nonrelapse mortality, any infection, organ failure, or hepatic veno-occlusive disease (1-year cumulative incidence, 71% vs 80%; P = .44). In multivariate analyses, iron-overload status did not impact risks of overall mortality (relative risk = 2.3; 95% confidence interval, 0.9-5.9; P = .08). In conclusion, we found no association between pretransplant iron overload and allogeneic HCT outcomes. Future studies in this population should use LIC to define iron overload instead of ferritin. PMID:23777771
Consequences and management of iron overload in sickle cell disease.
Porter, John; Garbowski, Maciej
2013-01-01
The aims of this review are to highlight the mechanisms and consequences of iron distribution that are most relevant to transfused sickle cell disease (SCD) patients and to address the particular challenges in the monitoring and treatment of iron overload. In contrast to many inherited anemias, in SCD, iron overload does not occur without blood transfusion. The rate of iron loading in SCD depends on the blood transfusion regime: with simple hypertransfusion regimes, rates approximate to thalassemia major, but iron loading can be minimal with automated erythrocyte apheresis. The consequences of transfusional iron overload largely reflect the distribution of storage iron. In SCD, a lower proportion of transfused iron distributes extrahepatically and occurs later than in thalassemia major, so complications of iron overload to the heart and endocrine system are less common. We discuss the mechanisms by which these differences may be mediated. Treatment with iron chelation and monitoring of transfusional iron overload in SCD aim principally at controlling liver iron, thereby reducing the risk of cirrhosis and hepatocellular carcinoma. Monitoring of liver iron concentration pretreatment and in response to chelation can be estimated using serum ferritin, but noninvasive measurement of liver iron concentration using validated and widely available MRI techniques reduces the risk of under- or overtreatment. The optimal use of chelation regimes to achieve these goals is described.
Non-HFE iron overload as a surrogate marker of disease severity in patients of liver cirrhosis.
Noor, Mohd Talha; Tiwari, Manish; Kumar, Ravindra
2016-01-01
Decompensated liver cirrhosis is an important cause of mortality worldwide. Various modifiable and non-modifiable factors are involved in the pathogenesis of cirrhosis and its complications. This study was aimed to evaluate the association of iron overload and disease severity in patients of liver cirrhosis and its association with HFE gene mutation. Forty-nine patients with decompensated liver cirrhosis were recruited. Clinical and laboratory parameters were compared in patients with and without iron overload. C282Y and H63D gene mutation analysis was performed in all patients with iron overload. Iron overload was found in 20 (40.82%) patients. A significant positive correlation of transferrin saturation with Child-Turcotte-Pugh (CTP) score (r = 0.705, p < 0.001) and model for end-stage liver disease (MELD) score (r = 0.668, p < 0.001) was found. Transferrin saturation was also independently associated with high CTP and MELD score on multivariate analysis. Mortality over 3 months was significantly more common in iron-overloaded patients (p = 0.028). C282Y homozygosity or C282Y/H63D compound heterozygosity was not found in any of the patients with iron overload. Iron overload was significantly associated with disease severity and reduced survival in patients of decompensated liver cirrhosis.
Das, Abhishek; Panja, Sourav; Mandal, Nripendranath
2015-01-01
Free iron typically leads to the formation of excess free radicals, and additional iron deposition in the liver contributes to the oxidative pathologic processes of liver disease. Many pharmacological properties of the insectivorous plant Drosera burmannii Vahl. have been reported in previous studies; however, there is no evidence of its antioxidant or hepatoprotective potential against iron overload. The antioxidant activity of 70% methanolic extract of D. burmannii (DBME) was evaluated. DBME showed excellent DPPH, hydroxyl, hypochlorous, superoxide, singlet oxygen, nitric oxide, peroxynitrite radical and hydrogen peroxide scavenging activity. A substantial iron chelation (IC50 = 40.90 ± 0.31 μg/ml) and supercoiled DNA protection ([P]50 = 50.41 ± 0.55 μg) were observed. DBME also displayed excellent in vivo hepatoprotective activity in iron-overloaded Swiss albino mice compared to the standard desirox treatment. Administration of DBME significantly normalized serum enzyme levels and restored liver antioxidant enzymes levels. DBME lowered the raised levels of liver damage parameters, also reflected from the morphological analysis of the liver sections. DBME also reduced liver iron content by 115.90% which is also seen by Perls’ staining. A phytochemical analysis of DBME confirms the presence of various phytoconstituents, including phenols, flavonoids, carbohydrates, tannins, alkaloids and ascorbic acid. Alkaloids, phenols and flavonoids were abundantly found in DBME. An HPLC analysis of DBME revealed the presence of purpurin, catechin, tannic acid, reserpine, methyl gallate and rutin. Purpurin, tannic acid, methyl gallate and rutin displayed excellent iron chelation but exhibited cytotoxicity toward normal (WI-38) cells; while DBME found to be non-toxic to the normal cells. These findings suggest that the constituents present in DBME contributed to its iron chelation activity. Additional studies are needed to determine if DBME can be used as a treatment for iron overload diseases. PMID:26010614
New insights into transfusion-related iron toxicity: Implications for the oncologist.
Porter, John B; de Witte, Theo; Cappellini, M Domenica; Gattermann, Norbert
2016-03-01
Iron overload is a potentially life-threatening consequence of multiple red-blood-cell transfusions. Here, we review factors affecting excess iron distribution and its damage to specific tissues, as well as mechanisms of oncogenesis by iron. Although consequences of transfusional iron overload are best described in thalassemia major and related inherited anemias, they are increasingly recognized in acquired conditions, such as myelodysplastic syndromes (MDS). Iron overload in MDS not only impacts on certain tissues, but may affect the clonal evolution of MDS through generation of reactive oxygen species. Iron overload may also influence hematopoietic-stem-cell-transplantation outcomes. Novel MRI methods for assessing body iron have impacted significantly on outcome in inherited anemias by allowing monitoring of iron burden and iron chelation therapy. This approach is increasingly being used in MDS and stem-cell-transplant procedures. Knowledge gained from managing transfusional iron overload in inherited anemias may be translated to general oncology, with potential for improved patient outcomes. Copyright © 2016. Published by Elsevier Ireland Ltd.
Koppe, Tiago; Patchen, Bonnie; Cheng, Aaron; Bhasin, Manoj; Vulpe, Chris; Schwartz, Robert E.; Moreno‐Navarrete, Jose Maria; Fernandez‐Real, Jose Manuel
2017-01-01
Iron overload causes the generation of reactive oxygen species that can lead to lasting damage to the liver and other organs. The goal of this study was to identify genes that modify the toxicity of iron overload. We studied the effect of iron overload on the hepatic transcriptional and metabolomic profile in mouse models using a dietary model of iron overload and a genetic model, the hemojuvelin knockout mouse. We then evaluated the correlation of nicotinamide N‐methyltransferase (NNMT) expression with body iron stores in human patients and the effect of NNMT knockdown on gene expression and viability in primary mouse hepatocytes. We found that iron overload induced significant changes in the expression of genes and metabolites involved in glucose and nicotinamide metabolism and that NNMT, an enzyme that methylates nicotinamide and regulates hepatic glucose and cholesterol metabolism, is one of the most strongly down‐regulated genes in the liver in both genetic and dietary iron overload. We found that hepatic NNMT expression is inversely correlated with serum ferritin levels and serum transferrin saturation in patients who are obese, suggesting that body iron stores regulate human liver NNMT expression. Furthermore, we demonstrated that adenoviral knockdown of NNMT in primary mouse hepatocytes exacerbates iron‐induced hepatocyte toxicity and increases expression of transcriptional markers of oxidative and endoplasmic reticulum stress, while overexpression of NNMT partially reversed these effects. Conclusion: Iron overload alters glucose and nicotinamide transcriptional and metabolic pathways in mouse hepatocytes and decreases NNMT expression, while NNMT deficiency worsens the toxic effect of iron overload. For these reasons, NNMT may be a drug target for the prevention of iron‐induced hepatotoxicity. (Hepatology Communications 2017;1:803–815) PMID:29404495
Shenoy, Niraj; Vallumsetla, Nishanth; Rachmilewitz, Eliezer; Verma, Amit; Ginzburg, Yelena
2014-08-07
Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal bone marrow disorders characterized by ineffective hematopoiesis, peripheral blood cytopenias, and potential for malignant transformation. Lower/intermediate-risk MDSs are associated with longer survival and high red blood cell (RBC) transfusion requirements resulting in secondary iron overload. Recent data suggest that markers of iron overload portend a relatively poor prognosis, and retrospective analysis demonstrates that iron chelation therapy is associated with prolonged survival in transfusion-dependent MDS patients. New data provide concrete evidence of iron's adverse effects on erythroid precursors in vitro and in vivo. Renewed interest in the iron field was heralded by the discovery of hepcidin, the main serum peptide hormone negative regulator of body iron. Evidence from β-thalassemia suggests that regulation of hepcidin by erythropoiesis dominates regulation by iron. Because iron overload develops in some MDS patients who do not require RBC transfusions, the suppressive effect of ineffective erythropoiesis on hepcidin may also play a role in iron overload. We anticipate that additional novel tools for measuring iron overload and a molecular-mechanism-driven description of MDS subtypes will provide a deeper understanding of how iron metabolism and erythropoiesis intersect in MDSs and improve clinical management of this patient population. © 2014 by The American Society of Hematology.
Incidentally Detected Transfusion-associated Iron Overload in 3 Children After Cancer Chemotherapy.
Kuo, Dennis John; Bhagia, Pooja
2018-04-01
Iron overload is a potential long-term complication among cancer survivors who received transfusions during treatment. Although there are screening guidelines for iron overload in pediatric survivors of hematopoietic stem cell transplant, these do not call for screening of other pediatric oncology patients. In our practice we incidentally discovered 3 patients in a population of 168 cancer survivors over the span of 17 years who were treated for cancer without hematopoietic stem cell transplant who had iron overload. The 3 patients had elevated liver iron on magnetic resonance imaging T2* and 2 received therapeutic phlebotomy. These cases, and others like them, suggest that collaborative groups should consider revisiting the literature to establish screening and treatment guidelines for iron overload after cancer therapy.
New targeted therapies and diagnostic methods for iron overload diseases.
Kolnagou, Annita; Kontoghiorghe, Christina N; Kontoghiorghes, George John
2018-01-01
Millions of people worldwide suffer from iron overload toxicity diseases such as transfusional iron overload in thalassaemia and hereditary haemochromatosis. The accumulation and presence of toxic focal iron deposits causing tissue damage can also be identified in Friedreich's ataxia, Alzheimer's, Parkinson's, renal and other diseases. Different diagnostic criteria of toxicity and therapeutic interventions apply to each disease of excess or misplaced iron. Magnetic resonance imaging relaxation times T2 and T2* for monitoring iron deposits in organs and iron biomarkers such as serum ferritin and transferrin iron saturation have contributed in the elucidation of iron toxicity mechanisms and pathways, and also the evaluation of the efficacy and mode of action of chelating drugs in the treatment of diseases related to iron overload, toxicity and metabolism. Similarly, histopathological and electron microscopy diagnostic methods have revealed mechanisms of iron overload toxicity at cellular and sub-cellular levels. These new diagnostic criteria and chelator dose adjustments could apply in different or special patient categories e.g. thalassaemia patients with normal iron stores, where iron deficiency and over-chelation toxicity should be avoided.
Shenoy, Niraj; Vallumsetla, Nishanth; Rachmilewitz, Eliezer; Verma, Amit
2014-01-01
Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal bone marrow disorders characterized by ineffective hematopoiesis, peripheral blood cytopenias, and potential for malignant transformation. Lower/intermediate-risk MDSs are associated with longer survival and high red blood cell (RBC) transfusion requirements resulting in secondary iron overload. Recent data suggest that markers of iron overload portend a relatively poor prognosis, and retrospective analysis demonstrates that iron chelation therapy is associated with prolonged survival in transfusion-dependent MDS patients. New data provide concrete evidence of iron’s adverse effects on erythroid precursors in vitro and in vivo. Renewed interest in the iron field was heralded by the discovery of hepcidin, the main serum peptide hormone negative regulator of body iron. Evidence from β-thalassemia suggests that regulation of hepcidin by erythropoiesis dominates regulation by iron. Because iron overload develops in some MDS patients who do not require RBC transfusions, the suppressive effect of ineffective erythropoiesis on hepcidin may also play a role in iron overload. We anticipate that additional novel tools for measuring iron overload and a molecular-mechanism–driven description of MDS subtypes will provide a deeper understanding of how iron metabolism and erythropoiesis intersect in MDSs and improve clinical management of this patient population. PMID:24923296
Gao, Chong; Li, Li; Chen, Baoan; Song, Huihui; Cheng, Jian; Zhang, Xiaoping; Sun, Yunyu
2014-01-01
The purpose of this study was to evaluate the clinical outcomes of transfusion-associated iron overload in patients with chronic refractory anemia. Clinical manifestations, main organ function, results of computed tomography (CT), endocrine evaluation, and serum ferritin levels were analyzed retrospectively in 13 patients who were transfusion-dependent for more than 1 year (receiving >50 units of red blood cells) to determine the degree of iron overload and efficacy of iron-chelating therapy. Serum ferritin levels increased to 1,830-5,740 ng/mL in all patients. Ten patients had abnormal liver function. The CT Hounsfield units in the liver increased significantly in eleven patients, and were proportional to their serum ferritin levels. Skin pigmentation, liver dysfunction, and endocrine dysfunction were observed in nine patients with serum ferritin >3,500 ng/mL, eight of whom have since died. Interestingly, serum ferritin levels did not decrease significantly in nine transfusion-dependent patients who had received 15-60 days of iron-chelating therapy. Transfusion-dependent patients may progress to secondary iron overload with organ impairment, which may be fatal in those who are heavily iron-overloaded. The CT Hounsfield unit is a sensitive indicator of iron overload in the liver. Iron chelation therapy should be initiated when serum ferritin is >1,000 ng/mL and continued until it is <1,000 ng/mL in transfusional iron-overloaded patients.
Sripetchwandee, Jirapas; Wongjaikam, Suwakon; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C
2016-09-22
Iron-overload can cause cognitive impairment due to blood-brain barrier (BBB) breakdown and brain mitochondrial dysfunction. Although deferiprone (DFP) has been shown to exert neuroprotection, the head-to-head comparison among iron chelators used clinically on brain iron-overload has not been investigated. Moreover, since antioxidant has been shown to be beneficial in iron-overload condition, its combined effect with iron chelator has not been tested. Therefore, the hypothesis is that all chelators provide neuroprotection under iron-overload condition, and that a combination of an iron chelator with an antioxidant has greater efficacy than monotherapy. Male Wistar rats (n=42) were assigned to receive a normal diet (ND) or a high-iron diet (HFe) for 4months. At the 2nd month, HFe-fed rats were treated with a vehicle, deferoxamine (DFO), DFP, deferasirox (DFX), n-acetyl cysteine (NAC) or a combination of DFP with NAC, while ND-fed rats received vehicle. At the end of the experiment, rats were decapitated and brains were removed to determine brain iron level and deposition, brain mitochondrial function, BBB protein expression, brain mitochondrial dynamic, brain apoptosis, tau-hyperphosphorylation, amyloid-β (Aβ) accumulation and dendritic spine density. The results showed that iron-overload induced BBB breakdown, brain iron accumulation, brain mitochondrial dysfunction, impaired brain mitochondrial dynamics, tau-hyperphosphorylation, Aβ accumulation and dendritic spine reduction. All treatments, except DFX, attenuated these impairments. Moreover, combined therapy provided a greater efficacy than monotherapy. These findings suggested that iron-overload induced brain iron toxicity and a combination of an iron chelator with an antioxidant provided a greatest efficacy for neuroprotection than monotherapy. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update.
Gordan, Richard; Wongjaikam, Suwakon; Gwathmey, Judith K; Chattipakorn, Nipon; Chattipakorn, Siriporn C; Xie, Lai-Hua
2018-04-19
Iron overload cardiomyopathy (IOC) is a major cause of death in patients with diseases associated with chronic anemia such as thalassemia or sickle cell disease after chronic blood transfusions. Associated with iron overload conditions, there is excess free iron that enters cardiomyocytes through both L- and T-type calcium channels thereby resulting in increased reactive oxygen species being generated via Haber-Weiss and Fenton reactions. It is thought that an increase in reactive oxygen species contributes to high morbidity and mortality rates. Recent studies have, however, suggested that it is iron overload in mitochondria that contributes to cellular oxidative stress, mitochondrial damage, cardiac arrhythmias, as well as the development of cardiomyopathy. Iron chelators, antioxidants, and/or calcium channel blockers have been demonstrated to prevent and ameliorate cardiac dysfunction in animal models as well as in patients suffering from cardiac iron overload. Hence, either a mono-therapy or combination therapies with any of the aforementioned agents may serve as a novel treatment in iron-overload patients in the near future. In the present article, we review the mechanisms of cytosolic and/or mitochondrial iron load in the heart which may contribute synergistically or independently to the development of iron-associated cardiomyopathy. We also review available as well as potential future novel treatments.
Wahidiyat, Pustika Amalia; Liauw, Felix; Sekarsari, Damayanti; Putriasih, Siti Ayu; Berdoukas, Vasili; Pennell, Dudley J
2017-09-01
Recent advancements have promoted the use of T2* magnetic resonance imaging (MRI) in the non-invasive detection of iron overload in various organs for thalassemia major patients. This study aims to determine the iron load in the heart and liver of patients with thalassemia major using T2* MRI and to evaluate its correlation with serum ferritin level and iron chelation therapy. This cross-sectional study included 162 subjects diagnosed with thalassemia major, who were classified into acceptable, mild, moderate, or severe cardiac and hepatic iron overload following their T2* MRI results, respectively, and these were correlated to their serum ferritin levels and iron chelation therapy. The study found that 85.2% of the subjects had normal cardiac iron stores. In contrast, 70.4% of the subjects had severe liver iron overload. A significant but weak correlation (r = -0.28) was found between cardiac T2* MRI and serum ferritin, and a slightly more significant correlation (r = 0.37) was found between liver iron concentration (LIC) and serum ferritin. The findings of this study are consistent with several other studies, which show that patients generally manifest with liver iron overload prior to cardiac iron overload. Moreover, iron accumulation demonstrated by T2* MRI results also show a significant correlation to serum ferritin levels. This is the first study of its kind conducted in Indonesia, which supports the fact that T2* MRI is undoubtedly valuable in the early detection of cardiac and hepatic iron overload in thalassemia major patients.
Puukila, Stephanie; Bryan, Sean; Laakso, Anna; Abdel-Malak, Jessica; Gurney, Carli; Agostino, Adrian; Belló-Klein, Adriane; Prasad, Kailash; Khaper, Neelam
2015-01-01
Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload. PMID:25822525
Puukila, Stephanie; Bryan, Sean; Laakso, Anna; Abdel-Malak, Jessica; Gurney, Carli; Agostino, Adrian; Belló-Klein, Adriane; Prasad, Kailash; Khaper, Neelam
2015-01-01
Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.
Mavrogeni, Sophie; Kolovou, Genovefa; Bigalke, Boris; Rigopoulos, Angelos; Noutsias, Michel; Adamopoulos, Stamatis
2018-03-01
In iron overload diseases (thalassemia, sickle cell, and myelodysplastic syndrome), iron is deposited in all internal organs, leading to functional abnormalities. Hematopoietic stem cell transplantation (HSCT) is the only treatment offering a potential cure in these diseases. Our aim was to describe the experience in the field and the role of magnetic resonance imaging in the evaluation of iron overload before and after HSCT. Magnetic resonance imaging (MRI), using T2*, is the most commonly used tool to diagnose myocardial-liver iron overload and guide tailored treatment. Currently, HSCT offers complete cure in thalassemia major, after overcoming the immunologic barrier, and should be considered for all patients who have a suitable donor. The overall thalassemia-free survival of low-risk, HLA-matched sibling stem cell transplantation patients is 85-90%, with a 95% overall survival. The problems of rejection and engraftment are improving with the use of adequate immunosuppression. However, a detailed iron assessment of both heart and liver is necessary for pre- and post-transplant evaluation. In iron overload diseases, heart and liver iron evaluation is indispensable not only for the patients' survival, but also for evaluation before and after HSCT.
Iron overload and chelation therapy in myelodysplastic syndromes.
Temraz, Sally; Santini, Valeria; Musallam, Khaled; Taher, Ali
2014-07-01
Iron overload remains a concern in MDS patients especially those requiring recurrent blood transfusions. The consequence of iron overload may be more relevant in patients with low and intermediate-1 risk MDS who may survive long enough to experience such manifestations. It is a matter of debate whether this overload has time to yield organ damage, but it is quite evident that cellular damage and DNA genotoxic effect are induced. Iron overload may play a critical role in exacerbating pre-existing morbidity or even unmask silent ones. Under these circumstances, iron chelation therapy could play an integral role in the management of these patients. This review entails an in depth analysis of iron overload in MDS patients; its pathophysiology, effect on survival, associated risks and diagnostic options. It also discusses management options in relation to chelation therapy used in MDS patients and the impact it has on survival, hematologic response and organ function. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
HFE gene in primary and secondary hepatic iron overload
Sebastiani, Giada; Walker, Ann P
2007-01-01
Distinct from hereditary haemochromatosis, hepatic iron overload is a common finding in several chronic liver diseases. Many studies have investigated the prevalence, distribution and possible contributory role of excess hepatic iron in non-haemochromatotic chronic liver diseases. Indeed, some authors have proposed iron removal in liver diseases other than hereditary haemochromatosis. However, the pathogenesis of secondary iron overload remains unclear. The High Fe (HFE) gene has been implicated, but the reported data are controversial. In this article, we summarise current concepts regarding the cellular role of the HFE protein in iron homeostasis. We review the current status of the literature regarding the prevalence, hepatic distribution and possible therapeutic implications of iron overload in chronic hepatitis C, hepatitis B, alcoholic and non-alcoholic fatty liver diseases and porphyria cutanea tarda. We discuss the evidence regarding the role of HFE gene mutations in these liver diseases. Finally, we summarize the common and specific features of iron overload in liver diseases other than haemochromatosis. PMID:17729389
Prooxidant Mechanisms in Iron Overload Cardiomyopathy
Cheng, Ching-Feng; Lian, Wei-Shiung
2013-01-01
Iron overload cardiomyopathy (IOC), defined as the presence of systolic or diastolic cardiac dysfunction secondary to increased deposition of iron, is emerging as an important cause of heart failure due to the increased incidence of this disorder seen in thalassemic patients and in patients of primary hemochromatosis. At present, although palliative treatment by regular iron chelation was recommended; whereas IOC is still the major cause for mortality in patient with chronic heart failure induced by iron-overloading. Because iron is a prooxidant and the associated mechanism seen in iron-overload heart is still unclear; therefore, we intend to delineate the multiple signaling pathways involved in IOC. These pathways may include organelles such as calcium channels, mitochondria; paracrine effects from both macrophages and fibroblast, and novel mediators such as thromboxane A2 and adiponectin; with increased oxidative stress and inflammation found commonly in these signaling pathways. With further understanding on these complex and inter-related molecular mechanisms, we can propose potential therapeutic strategies to ameliorate the cardiac toxicity induced by iron-overloading. PMID:24350287
Angelucci, Emanuele; Cianciulli, Paolo; Finelli, Carlo; Mecucci, Cristina; Voso, Maria Teresa; Tura, Sante
2017-11-01
Myelodysplastic syndromes (MDS) are a group of clonally-acquired blood disorders characterized by ineffective hematopoiesis leading to cytopenias. Red blood cell transfusions are an important component of supportive care in patients with MDS. Prolonged exposure to transfusions can lead to iron overload, which results in iron-induced toxicity caused by the production of reactive oxygen species (ROS). ROS accumulation has detrimental effects also on hematopoietic stem cells and may contribute to MDS progression. The observation that iron chelation improves hematologic parameters and reduces transfusion dependence further indicates that iron overload impairs hematopoiesis. Over the past decade, the mechanisms regulating iron homeostasis and the complex interplay between iron overload and toxicity, ineffective hematopoiesis, and transformation to leukemia have become clearer. In this narrative review, we provide an overview of recent findings pertaining to iron overload in patients with MDS and its effects on hematopoiesis. We also briefly discuss the position of chelation therapy in the context of the new developments. Copyright © 2017. Published by Elsevier Ltd.
Iron metabolism and the polycystic ovary syndrome.
Escobar-Morreale, Héctor F
2012-10-01
The polycystic ovary syndrome (PCOS) is associated with insulin resistance and abnormal glucose tolerance. Iron overload may lead also to insulin resistance and diabetes. Serum ferritin levels are increased in PCOS, especially when glucose tolerance is abnormal, suggesting mild iron overload. Factors contributing to potential iron overload in PCOS include the iron sparing effect of chronic menstrual dysfunction, insulin resistance, and a decrease in hepcidin leading to increased iron absorption. Enhancement of erythropoiesis by androgen excess is unlikely, because soluble transferrin receptor levels are not increased in PCOS. Future venues of research should address the long-term effects of PCOS treatment on iron overload and, conversely, the possible effects of iron lowering strategies on the glucose tolerance of patients with PCOS. Copyright © 2012 Elsevier Ltd. All rights reserved.
Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis
Ramos, Emilio; Ruchala, Piotr; Goodnough, Julia B.; Kautz, Léon; Preza, Gloria C.; Nemeth, Elizabeta
2012-01-01
The deficiency of hepcidin, the hormone that controls iron absorption and its tissue distribution, is the cause of iron overload in nearly all forms of hereditary hemochromatosis and in untransfused iron-loading anemias. In a recent study, we reported the development of minihepcidins, small drug-like hepcidin agonists. Here we explore the feasibility of using minihepcidins for the prevention and treatment of iron overload in hepcidin-deficient mice. An optimized minihepcidin (PR65) was developed that had superior potency and duration of action compared with natural hepcidin or other minihepcidins, and favorable cost of synthesis. PR65 was administered by subcutaneous injection daily for 2 weeks to iron-depleted or iron-loaded hepcidin knockout mice. PR65 administration to iron-depleted mice prevented liver iron loading, decreased heart iron levels, and caused the expected iron retention in the spleen and duodenum. At high doses, PR65 treatment also caused anemia because of profound iron restriction. PR65 administration to hepcidin knockout mice with pre-existing iron overload had a more moderate effect and caused partial redistribution of iron from the liver to the spleen. Our study demonstrates that minihepcidins could be beneficial in iron overload disorders either used alone for prevention or possibly as adjunctive therapy with phlebotomy or chelation. PMID:22990014
Hepatic iron overload is associated with hepatocyte apoptosis during Clonorchis sinensis infection.
Han, Su; Tang, Qiaoran; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli
2017-08-01
Hepatic iron overload has been implicated in many liver diseases; however, whether it is involved in clonorchiasis remains unknown. The purpose of this study is to investigate whether Clonorchis sinensis (C. sinensis) infection causes hepatic iron overload, analyze the relationship between the iron overload and associated cell apoptosis, so as to determine the role of excess iron plays in C. sinensis-induced liver injury. The Perls' Prussian staining and atomic absorption spectrometry methods were used to investigate the iron overload in hepatic sections of wistar rats and patients infected with C. sinensis. The hepatic apoptosis was detected by transferase uridyl nick end labeling (TUNEL) methods. Spearman analysis was used for determining the correlation of the histological hepatic iron index and the apoptotic index. Blue iron particles were deposited mainly in the hepatocytes, Kupffer cells and endothelial cells, around the liver portal and central vein area of both patients and rats. The total iron score was found to be higher in the infected groups than the respective control from 8 weeks. The hepatic iron concentration was also significantly higher in treatment groups than in control rats from 8 weeks. The hepatocyte apoptosis was found to be significantly higher in the portal area of the liver tissue and around the central vein. However, spearman's rank correlation coefficient revealed that there was a mildly negative correlation between the iron index and hepatocyte apoptosis. This present study confirmed that hepatic iron overload was found during C. sinensis infection. This suggests that iron overload may be associated with hepatocyte apoptosis and involved in liver injury during C. sinensis infection. Further studies are needed to investigate the molecular mechanism involved here.
Becerril-Ortega, Javier; Bordji, Karim; Fréret, Thomas; Rush, Travis; Buisson, Alain
2014-10-01
Iron dyshomeostasis is proving increasingly likely to be involved in the pathology of Alzheimer's disease (AD); yet, its mechanism is not well understood. Here, we investigated the AD-related mechanism(s) of iron-sulfate exposure in vitro and in vivo, using cultured primary cortical neurons and APP/PS1 AD-model mice, respectively. In both systems, we observed iron-induced disruptions of amyloid precursor protein (APP) processing, neuronal signaling, and cognitive behavior. Iron overload increased production of amyloidogenic KPI-APP and amyloid beta. Further, this APP misprocessing was blocked by MK-801 in vitro, suggesting the effect was N-methyl-D-aspartate receptor (NMDAR) dependent. Calcium imaging confirmed that 24 hours iron exposure led to disrupted synaptic signaling by augmenting GluN2B-containing NMDAR expression-GluN2B messenger RNA and protein levels were increased and promoting excessing extrasynaptic NMDAR signaling. The disrupted GluN2B expression was concurrent with diminished expression of the splicing factors, sc35 and hnRNPA1. In APP/PS1 mice, chronic iron treatment led to hastened progression of cognitive impairment with the novel object recognition discrimination index, revealing a deficit at the age of 4 months, concomitant with augmented GluN2B expression. Together, these data suggest iron-induced APP misprocessing and hastened cognitive decline occur through inordinate extrasynaptic NMDAR activation. Copyright © 2014 Elsevier Inc. All rights reserved.
Cancer Cells with Irons in the Fire
Bystrom, Laura M.; Rivella, Stefano
2014-01-01
Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer. PMID:24835768
El Sayed, Salah Mohamed; Baghdadi, Hussam; Abou-Taleb, Ashraf; Mahmoud, Hany Salah; Maria, Reham A; Ahmed, Nagwa S; Helmy Nabo, Manal Mohamed
2014-01-01
Iron overload causes iron deposition and accumulation in the liver, heart, skin, and other tissues resulting in serious tissue damages. Significant blood clearance from iron and ferritin using wet cupping therapy (WCT) has been reported. WCT is an excretory form of treatment that needs more research efforts. WCT is an available, safe, simple, economic, and time-saving outpatient modality of treatment that has no serious side effects. There are no serious limitations or precautions to discontinue WCT. Interestingly, WCT has solid scientific and medical bases (Taibah mechanism) that explain its effectiveness in treating many disease conditions differing in etiology and pathogenesis. WCT utilizes an excretory physiological principle (pressure-dependent excretion) that resembles excretion through renal glomerular filtration and abscess evacuation. WCT exhibits a percutaneous excretory function that clears blood (through fenestrated skin capillaries) and interstitial fluids from pathological substances without adding a metabolic or detoxification burden on the liver and the kidneys. Interestingly, WCT was reported to decrease serum ferritin (circulating iron stores) significantly by about 22.25% in healthy subjects (in one session) and to decrease serum iron significantly to the level of causing iron deficiency (in multiple sessions). WCT was reported to clear blood significantly of triglycerides, low-density lipoprotein (LDL) cholesterol, total cholesterol, uric acid, inflammatory mediators, and immunoglobulin antibodies (rheumatoid factor). Moreover, WCT was reported to enhance the natural immunity, potentiate pharmacological treatments, and to treat many different disease conditions. There are two distinct methods of WCT: traditional WCT and Al-hijamah (WCT of prophetic medicine). Both start and end with skin sterilization. In traditional WCT, there are two steps, skin scarification followed by suction using plastic cups (double S technique); Al-hijamah is a three-step procedure that includes skin suction using cups, scarification (shartat mihjam in Arabic), and second skin suction (triple S technique). Al-hijamah is a more comprehensive technique and does better than traditional WCT, as Al-hijamah includes two pressure-dependent filtration steps versus one step in traditional WCT. Whenever blood plasma is to be cleared of an excess pathological substance, Al-hijamah is indicated. We will discuss here some reported hematological and therapeutic benefits of Al-hijamah, its medical bases, methodologies, precautions, side effects, contraindications, quantitative evaluation, malpractice, combination with oral honey treatment, and to what extent it may be helpful when treating thalassemia and other conditions of iron overload and hyperferremia. PMID:25382989
Autoimmune Hepatitis: Diagnostic Dilemma When It Is Disguised as Iron Overload Syndrome.
Acharya, Gyanendra K; Liao, Hung-I; Frunza-Stefan, Simona; Patel, Ronakkumar; Khaing, Moe
2017-09-01
Elevated serum ferritin level is a common finding in iron overload syndrome, autoimmune and viral hepatitis, alcoholic and nonalcoholic fatty liver diseases. High transferrin saturation is not a common finding in above diseases except for iron overload syndrome. We encountered a challenging case of 73-year-old female who presented with yellowish discoloration of skin, dark color urine and dull abdominal pain. Initial laboratory tests reported mild anemia; elevated bilirubin, liver enzymes, and transferrin saturation. We came to the final diagnosis of autoimmune hepatitis after extensive workups. Autoimmune hepatitis is a rare disease, and the diagnosis can be further complicated by a similar presentation of iron overload syndrome. Markedly elevated transferrin saturation can simulate iron overload syndrome, but a liver biopsy can guide physicians to navigate the diagnosis.
Iatrogenic Iron Overload in Dialysis Patients at the Beginning of the 21st Century.
Rostoker, Guy; Vaziri, Nosratola D; Fishbane, Steven
2016-05-01
Iron overload used to be considered rare in hemodialysis patients but its clinical frequency is now increasingly realized. The liver is the main site of iron storage and the liver iron concentration (LIC) is closely correlated with total iron stores in patients with secondary hemosideroses and genetic hemochromatosis. Magnetic resonance imaging is now the gold standard method for LIC estimation and monitoring in non-renal patients. Studies of LIC in hemodialysis patients by quantitative magnetic resonance imaging and magnetic susceptometry have demonstrated a strong relation between the risk of iron overload and the use of intravenous (IV) iron products prescribed at doses determined by the iron biomarker cutoffs contained in current anemia management guidelines. These findings have challenged the validity of both iron biomarker cutoffs and current clinical guidelines, especially with respect to recommended IV iron doses. Three long-term observational studies have recently suggested that excessive IV iron doses may be associated with an increased risk of cardiovascular events and death in hemodialysis patients. We postulate that iatrogenic iron overload in the era of erythropoiesis-stimulating agents may silently increase complications in dialysis patients without creating frank clinical signs and symptoms. High hepcidin-25 levels were recently linked to fatal and nonfatal cardiovascular events in dialysis patients. It is therefore tempting to postulate that the main pathophysiological pathway leading to these events may involve the pleiotropic master hormone hepcidin (synergized by fibroblast growth factor 23), which regulates iron metabolism. Oxidative stress as a result of IV iron infusions and iron overload, by releasing labile non-transferrin-bound iron, might represent a 'second hit' on the vascular bed. Finally, iron deposition in the myocardium of patients with severe iron overload might also play a role in the pathogenesis of sudden death in some patients.
Shaw, Jyoti; Chakraborty, Ayan; Nag, Arijit; Chattopadyay, Arnab; Dasgupta, Anjan K; Bhattacharyya, Maitreyee
2017-11-01
To investigate the cause and effects of intracellular iron overload in lymphocytes of thalassemia major patients. Sixty-six thalassemia major patients having iron overload and 10 age-matched controls were chosen for the study. Blood sample was collected, and serum ferritin, oxidative stress; lymphocyte DNA damage were examined, and infective episodes were also counted. Case-control analysis revealed significant oxidative stress, iron overload, DNA damage, and rate of infections in thalassemia cases as compared to controls. For cases, oxidative stress (ROS) and iron overload (serum ferritin) showed good correlation with R 2 = 0.934 and correlation between DNA damage and ROS gave R 2 = 0.961. We also demonstrated that intracellular iron overload in thalassemia caused oxidative damage of lymphocyte DNA as exhibited by DNA damage assay. The inference is further confirmed by partial inhibition of such damage by chelation of iron and the concurrent lowering of the ROS level in the presence of chelator deferasirox. Therefore, intracellular iron overload caused DNA fragmentation, which may ultimately hamper lymphocyte function, and this may contribute to immune dysfunction and increased susceptibility to infections in thalassemia patients as indicated by the good correlation (R 2 = 0.91) between lymphocyte DNA damage and rate of infection found in this study. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Accelerated proliferation of hepatocytes in rats with iron overload after partial hepatectomy.
An, Shucai; Soe, Kyaw; Akamatsu, Maki; Hishikawa, Yoshitaka; Koji, Takehiko
2012-11-01
Although iron overload is implicated in hepatocarcinogenesis, the precise mechanism was not known yet. In the present study, we investigated the effect of iron overload upon the induction of hepatocyte proliferation after 70% partial hepatectomy (PH) in rats fed with rat chow with 3% carbonyl iron for 3 months. In normal-diet rats, the increase in Ki-67 labeling index (LI) commenced at 24 h post-PH and the LIs of proliferating cell nuclear antigen (PCNA) incorporated 5-bromo-2'-deoxyuridine (BrdU) and phospho-histone H3 reached maximum values at 36 and 48 h after PH, respectively. In iron-overload rats, the above parameters occurred 12 h earlier compared to that of normal-diet rats, shortening the G0-G1 transition. Interestingly, nuclear staining for metallothionein (MT), which is essential for hepatocyte proliferation, was noted even at 0 h in iron-overload rats, while MT expression occurred at 6 h in the normal rats. Moreover, nuclear factor kappa B (NF-κB) expression, which is an essential early event leading to liver regeneration, was detected in Kupffer cells at 0 h in iron-overload rats. These results may indicate that overloaded iron, maybe through the induction of MT and NF-κB, may keep liver as a state ready to regenerate in response to PH, by bypassing signal transduction cascades involved in the initiation of liver regeneration.
Pharmacokinetics study of Zr-89-labeled melanin nanoparticle in iron-overload mice.
Zhang, Pengjun; Yue, Yuanyuan; Pan, Donghui; Yang, Runlin; Xu, Yuping; Wang, Lizhen; Yan, Junjie; Li, Xiaotian; Yang, Min
2016-09-01
Melanin, a natural biological pigment present in many organisms, has been found to exhibit multiple functions. An important property of melanin is its ability to chelate metal ions strongly, which might be developed as an iron chelator for iron overload therapy. Herein, we prepared the ultrasmall water-soluble melanin nanoparticle (MP) and firstly evaluate the pharmacokinetics of MP in iron-overload mice to provide scientific basis for treating iron-overload. To study the circulation time and biodistribution, MP was labeled with (89)Zr, a long half-life (78.4h) positron-emitting metal which is suited for the labeling of nanoparticles and large bioactive molecule. MP was chelated with (89)Zr directly at pH5, resulting in non-decay-corrected yield of 89.6% and a radiochemical purity of more than 98%. The specific activity was at least190 MBq/μmol. The (89)Zr-MP was stable in human plasma and PBS for at least 48h. The half-life of (89)Zr-MP was about 15.70±1.74h in iron-overload mice. Biodistribution studies and MicroPET imaging showed that (89)Zr-MP mainly accumulated in liver and spleen, which are the target organ of iron-overload. The results indicate that the melanin nanoparticle is promising for further iron overload therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying
Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined bymore » molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport and inhibiting HSC growth.« less
Effect of hereditary haemochromatosis genotypes and iron overload on other trace elements.
Beckett, Jeffrey M; Ball, Madeleine J
2013-02-01
Hereditary haemochromatosis is a common genetic disorder involving dysregulation of iron absorption. There is some evidence to suggest that abnormal iron absorption and metabolism may influence the status of other important trace elements. In this study, the effect of abnormal HFE genotypes and associated iron overload on the status of other trace elements was examined. Dietary data and blood samples were collected from 199 subjects (mean age = 55.4 years; range = 21-81 years). Dietary intakes, serum selenium, copper and zinc concentrations and related antioxidant enzymes (glutathione peroxidase and superoxide dismutase) in subjects with normal HFE genotype (n = 118) were compared to those with abnormal HFE genotype, with both normal iron status (n = 42) and iron overload (n = 39). For most dietary and biochemical variables measured, there were no significant differences between study groups. Red cell GPx was significantly higher in male subjects with normal genotypes and normal iron status compared to those with abnormal genotypes and normal iron status (P = 0.03) or iron overload (P = 0.001). Red cell GPx was also highest in normal women and significantly lower in the abnormal genotype and normal iron group (P = 0.016), but not in the iron overload group (P = 0.078). Although it may not be possible to exclude a small effect between the genotype groups on RBC GPx, overall, haemochromatosis genotypes or iron overload did not appear to have a significant effect on selenium, copper or zinc status.
Mancone, Carmine; Grimaldi, Alessio; Refolo, Giulia; Abbate, Isabella; Rozera, Gabriella; Benelli, Dario; Fimia, Gian Maria; Barnaba, Vincenzo; Tripodi, Marco; Piacentini, Mauro; Ciccosanti, Fabiola
2017-01-01
Changes in iron metabolism frequently accompany HIV-1 infection. However, while many clinical and in vitro studies report iron overload exacerbates the development of infection, many others have found no correlation. Therefore, the multi-faceted role of iron in HIV-1 infection remains enigmatic. RT-qPCR targeting the LTR region, gag , Tat and Rev were performed to measure the levels of viral RNAs in response to iron overload. Spike-in SILAC proteomics comparing i) iron-treated, ii) HIV-1-infected and iii) HIV-1-infected/iron treated T lymphocytes was performed to define modifications in the host cell proteome. Data from quantitative proteomics were integrated with the HIV-1 Human Interaction Database for assessing any viral cofactors modulated by iron overload in infected T lymphocytes. Here, we demonstrate that the iron overload down-regulates HIV-1 gene expression by decreasing the levels of viral RNAs. In addition, we found that iron overload modulates the expression of many viral cofactors. Among them, the downregulation of the REV cofactor eIF5A may correlate with the iron-induced inhibition of HIV-1 gene expression. Therefore, we demonstrated that eiF5A downregulation by shRNA resulted in a significant decrease of Nef levels, thus hampering HIV-1 replication. Our study indicates that HIV-1 cofactors influenced by iron metabolism represent potential targets for antiretroviral therapy and suggests eIF5A as a selective target for drug development.
MicroRNAs and liver cancer associated with iron overload: Therapeutic targets unravelled
Greene, Catherine M; Varley, Robert B; Lawless, Matthew W
2013-01-01
Primary liver cancer is a global disease that is on the increase. Hepatocellular carcinoma (HCC) accounts for most primary liver cancers and has a notably low survival rate, largely attributable to late diagnosis, resistance to treatment, tumour recurrence and metastasis. MicroRNAs (miRNAs/miRs) are regulatory RNAs that modulate protein synthesis. miRNAs are involved in several biological and pathological processes including the development and progression of HCC. Given the poor outcomes with current HCC treatments, miRNAs represent an important new target for therapeutic intervention. Several studies have demonstrated their role in HCC development and progression. While many risk factors underlie the development of HCC, one process commonly altered is iron homeostasis. Iron overload occurs in several liver diseases associated with the development of HCC including Hepatitis C infection and the importance of miRNAs in iron homeostasis and hepatic iron overload is well characterised. Aberrant miRNA expression in hepatic fibrosis and injury response have been reported, as have dysregulated miRNA expression patterns affecting cell cycle progression, evasion of apoptosis, invasion and metastasis. In 2009, miR-26a delivery was shown to prevent HCC progression, highlighting its therapeutic potential. Several studies have since investigated the clinical potential of other miRNAs with one drug, Miravirsen, currently in phase II clinical trials. miRNAs also have potential as biomarkers for the diagnosis of HCC and to evaluate treatment efficacy. Ongoing studies and clinical trials suggest miRNA-based treatments and diagnostic methods will have novel clinical applications for HCC in the coming years, yielding improved HCC survival rates and patient outcomes. PMID:23983424
Uncoupling and oxidative stress in liver mitochondria isolated from rats with acute iron overload.
Pardo Andreu, G L; Inada, N M; Vercesi, A E; Curti, C
2009-01-01
One hypothesis for the etiology of cell damage arising from iron overload is that its excess selectively affects mitochondria. Here we tested the effects of acute iron overload on liver mitochondria isolated from rats subjected to a single dose of i.p. 500 mg/kg iron-dextran. The treatment increased the levels of iron in mitochondria (from 21 +/- 4 to 130 +/- 7 nmol/mg protein) and caused both lipid peroxidation and glutathione oxidation. The mitochondria of iron-treated rats showed lower respiratory control ratio in association with higher resting respiration. The mitochondrial uncoupling elicited by iron-treatment did not affect the phosphorylation efficiency or the ATP levels, suggesting that uncoupling is a mitochondrial protective mechanism against acute iron overload. Therefore, the reactive oxygen species (ROS)/H+ leak couple, functioning as a mitochondrial redox homeostatic mechanism could play a protective role in the acutely iron-loaded mitochondria.
Cancado, Rodolfo; Watman, Nora P; Lobo, Clarisse; Chona, Zulay; Manzur, Fernando; Traina, Fabiola; Park, Miriam; Drelichman, Guillermo; Zarate, Juan Pablo; Marfil, Luis
2018-04-17
A multicenter, noninterventional, observational study was conducted in the Latin American countries including Argentina, Brazil, Colombia, Mexico, and Venezuela to assess the prevalence of liver and cardiac iron overload using magnetic resonance imaging (MRI) in patients with chronic anemias except thalassemia. Patients aged >10 years with transfusion-dependent anemias, except thalassemia, either with <20 units of red blood cell (RBC) transfusions with serum ferritin (SF) levels >2000 ng/mL or with ≥20 units of RBC transfusions regardless of SF level in their lifetime, were enrolled. Iron overload was assessed using MRI. Among 175 patients included, the majority had sickle cell disease (SCD; 52%), followed by aplastic anemia (AA; 17.7%), myelodysplastic syndrome (MDS; 8.6%), Diamond-Blackfan anemia (DBA; 4%), pure red cell aplasia (1.1%), and others (16.6%). Liver iron overload was observed in 76.4% of patients, while cardiac iron overload was seen in 19.2% when assessed by MRI. The prevalence of iron overload was 80.2% in patients with SCD, 73.3% in MDS, 77.4% in AA, 100% in pure red cell aplasia, 71.4% in DBA, and 68.9% in other transfusion-related disorders. A moderate correlation between liver iron concentration (LIC) and SF was observed in patients with SCD and MDS (r = 0.47 and r = 0.61, respectively). All adverse events reported were consistent with the published data for deferasirox or underlying disease. A high prevalence of iron overload in this patient population in Latin American countries indicates that a better diagnosis and management of iron overload is required in these countries.
Iron overload in myelodysplastic syndromes (MDS).
Gattermann, Norbert
2018-01-01
Iron overload (IOL) starts to develop in MDS patients before they become transfusion-dependent because ineffective erythropoiesis suppresses hepcidin production in the liver and thus leads to unrestrained intestinal iron uptake. However, the most important cause of iron overload in MDS is chronic transfusion therapy. While transfusion dependency by itself is a negative prognostic factor reflecting poor bone marrow function, the ensuing transfusional iron overload has an additional dose-dependent negative impact on the survival of patients with lower risk MDS. Cardiac dysfunction appears to be important in this context, as a consequence of chronic anemia, age-related cardiac comorbidity, and iron overload. Another potential problem is iron-related endothelial dysfunction. There is some evidence that with increasing age, high circulating iron levels worsen the atherosclerotic phenotype. Transfusional IOL also appears to aggravate bone marrow failure in MDS, through unfavorable effects on mesenchymal stromal cells as well a hematopoietic cells, particularly erythroid precursors. Patient series and clinical trials have shown that the iron chelators deferoxamine and deferasirox can improve hematopoiesis in a minority of transfusion-dependent patients. Analyses of registry data suggest that iron chelation provides a survival benefit for patients with MDS, but data from a prospective randomized clinical trial are still lacking.
Ferroportin (Q248H) mutations in African families with dietary iron overload.
McNamara, Lynne; Gordeuk, Victor R; MacPhail, A Patrick
2005-12-01
Dietary iron overload found in sub-Saharan Africa might be caused by an interaction between dietary iron and an iron-loading gene. Caucasian people with ferroportin gene mutations have iron overload histologically similar to that found in African patients with iron overload. Ferroportin is also implicated in the hypoferremic response to inflammation. The prevalence of the ferroportin Q248H mutation, unique to African people, and its association with dietary iron overload, mean cell volume (MCV) and C-reactive protein (CRP) were examined in 19 southern African families. Polymerase chain reaction (PCR) and restriction enzyme digestion were used to identify the Q248H mutation. Statistical analysis was carried out to correlate the presence of the mutation with markers of iron overload and inflammation. We identified three (1.4%) Q248H homozygotes and 53 (24.1%) heterozygotes in the families examined in the present study. There was no increased prevalence of the mutation in index subjects or their families. Logistic regression showed significantly higher serum ferritin concentrations with the mutation. The mean cell volume (MCV) was significantly lower, and the serum CRP significantly higher in subjects who carried the mutation. The present study of 19 families with African iron overload failed to show evidence that the ferroportin (Q248H) mutation is responsible for the condition. Logistic regression, correcting for factors influencing iron status, did show increased ferritin levels in individuals with the mutation. The strong association with low MCV suggests the possibility that the ferroportin (Q248H) mutation might interfere with iron supply, whereas the elevated serum CRP might indicate that the ferroportin mutation influences the inflammatory response in African populations. Copyright 2005 Blackwell Publishing Asia Pty Ltd.
Petrou, Emmanouil; Mavrogeni, Sophie; Karali, Vasiliki; Kolovou, Genovefa; Kyrtsonis, Marie-Christine; Sfikakis, Petros P.; Panayiotidis, Panayiotis
2015-01-01
Myelodysplastic syndromes represent a group of heterogeneous hematopoietic neoplasms derived from an abnormal multipotent progenitor cell, characterized by a hyperproliferative bone marrow, dysplasia of the cellular hemopoietic elements and ineffective erythropoiesis. Anemia is a common finding in myelodysplastic syndrome patients, and blood transfusions are the only therapeutic option in approximately 40% of cases. The most serious side effect of regular blood transfusion is iron overload. Currently, cardiovascular magnetic resonance using T2 is routinely used to identify patients with myocardial iron overload and to guide chelation therapy, tailored to prevent iron toxicity in the heart. This is a major validated non-invasive measure of myocardial iron overloading and is superior to surrogates such as serum ferritin, liver iron, ventricular ejection fraction and tissue Doppler parameters. The indication for iron chelation therapy in myelodysplastic syndrome patients is currently controversial. However, cardiovascular magnetic resonance may offer an excellent non-invasive, diagnostic tool for iron overload assessment in myelodysplastic syndromes. Further studies are needed to establish the precise indications of chelation therapy and the clinical implications of this treatment on survival in myelodysplastic syndromes. PMID:26190429
Gattermann, Norbert
2008-07-01
Between 2002 and 2008, a number of consensus statements and guidelines were developed by various groups around the world to educate healthcare professionals on the treatment of myelodysplastic syndromes (MDS), including the management of transfusional iron overload with iron chelation therapy. Guidelines have been developed by The Italian Society of Hematology, The UK MDS Guidelines Group, The Nagasaki Group, The National Comprehensive Cancer Network, and The MDS Foundation. These guidelines show that the approaches to managing iron overload in patients with MDS are region specific, differing in their recommendations for when iron chelation therapy should be initiated and strategies for the ongoing management of iron overload. The guidelines all agree that red blood cell transfusions are clinically beneficial to treat the symptomatic anemia in MDS, and that patients with low-risk MDS receiving transfusions are the most likely to benefit from iron chelation therapy.
HOW WE MANAGE IRON OVERLOAD IN SICKLE CELL PATIENTS
Coates, Thomas D.; Wood, John C.
2017-01-01
Summary Blood transfusion plays a prominent role in the management of patients with sickle cell disease (SCD), but causes significant iron overload. As transfusions are used to treat the severe complications of SCD, it remains difficult to distinguish whether organ damage is a consequence of iron overload or is due to the complications treated by transfusion. Better management has resulted in increased survival, but prolonged exposure to iron puts SCD patients at greater risk for iron-related complications that should be treated. The success of chelation therapy is dominated by patient adherence to prescribed treatment; thus, adjustment of drug regimens to increase adherence to treatment is critical. This review will discuss the current biology of iron homeostasis in patients with SCD and how this informs our clinical approach to treatment. We will present the clinical approach to treatment of iron overload at our centre using serial assessment of organ iron by magnetic resonance imaging. PMID:28295188
Gattermann, Norbert
2007-12-01
Experts believe that iron overload is an important problem which could be avoided with suitable treatment. Guidelines on treating myelodysplastic syndromes (MDS) include sections on using iron chelation therapy to prevent or ameliorate transfusional iron overload. The proportion of MDS patients who may benefit from iron chelation therapy is 35-55%, depending on the length of survival necessary for iron to accumulate to a detrimental level. Candidates for iron chelation are mainly patients with dyserythropoietic and cytopenic subtypes of disease, which fall into the International Prognostic Scoring System (IPSS) Low-risk or Intermediate-1-risk categories, with median survival of 3-6 years.
Rienhoff, Hugh Young; Viprakasit, Vip; Tay, Lay; Harmatz, Paul; Vichinsky, Elliott; Chirnomas, Deborah; Kwiatkowski, Janet L; Tapper, Amy; Kramer, William; Porter, John B; Neufeld, Ellis J
2011-04-01
There is still a clinical need for a well-tolerated and safe iron chelator for the treatment of transfusional iron overload. We describe the pharmacokinetic properties and safety data after 7 days of dosing of FBS0701, a novel oral, once-daily iron chelator. This phase 1b dose-escalation study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of FBS0701, a novel oral iron chelator for the treatment of transfusional iron overload, was conducted in 16 adult patients with iron overloaded consequent to transfusions. FBS0701 was given daily for 7 days at doses up to 32 mg/kg and was well tolerated at all dose levels. Pharmacokinetics showed dose-proportionality. The maxium plasma concentration (C(max)) was reached within 60-90 minutes of dosing and the drug was rapidly distributed at the predicted therapeutic doses. The plasma elimination half-life (t(1/2)) was approximately 19 hours. There were no serious adverse events associated with the drug. Conclusions On the basis of these safety and pharmacokinetic data, FBS0701 warrants further clinical evaluation in patients with transfusional iron overload. (Clinicaltrials.gov identifier: NCT01186419).
Basu, Tapasree; Panja, Sourav; Shendge, Anil Khushalrao; Das, Abhishek; Mandal, Nripendranath
2018-05-01
Tannic acid (TA), a water soluble natural polyphenol with 8 gallic acids groups, is abundantly present in various medicinal plants. Previously TA has been investigated for its antimicrobial and antifungal properties. Being a large polyphenol, TA chelates more than 1 metal. Hence TA has been explored for potent antioxidant activities against reactive oxygen species (ROS), reactive nitrogen species (RNS) and as iron chelator in vitro thereby mitigating iron-overload induced hepatotoxicity in vivo. Iron dextran was injected intraperitoneally in Swiss albino mice to induce iron-overload triggered hepatotoxicity, followed by oral administration of TA for remediation. After treatment, liver, spleen, and blood samples were processed from sacrificed animals. The liver iron, serum ferritin, serum markers, ROS, liver antioxidant status, and liver damage parameters were assessed, followed by histopathology and protein expression studies. Our results show that TA is a prominent ROS and RNS scavenger as well as iron chelator in vitro. It also reversed the ROS levels in vivo and restricted the liver damage parameters as compared to the standard drug, desirox. Moreover, this natural polyphenol exclusively ameliorates the histopathological and fibrotic changes in liver sections reducing the iron-overload, along with chelation of liver iron and normalization of serum ferritin. The protective role of TA against iron-overload induced apoptosis in liver was further supported by changed levels of caspase 3, PARP as well as Bax/BCl-2 ratio. Thus, TA can be envisaged as a better orally administrable iron chelator to reduce iron-overload induced hepatotoxicity through ROS regulation. © 2018 Wiley Periodicals, Inc.
Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer
2016-01-01
Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448
Diagnosis and quantification of the iron overload through Magnetic resonance.
Alústiza Echeverría, J M; Barrera Portillo, M C; Guisasola Iñiguiz, A; Ugarte Muño, A
There are different magnetic resonance techniques and models to quantify liver iron concentration. T2 relaxometry methods evaluate the iron concentration in the myocardium, and they are able to discriminate all the levels of iron overload in the liver. Signal intensity ratio methods saturate with high levels of liver overload and can not assess iron concentration in the myocardium but they are more accessible and are very standardized. This article reviews, in different clinical scenarios, when Magnetic Resonance must be used to assess iron overload in the liver and myocardium and analyzes the current challenges to optimize the aplication of the technique and to be it included in the clinical guidelines. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging.
Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson
2013-12-01
To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.
Iron overload: what is the role of public health?
Hulihan, Mary M; Sayers, Cindy A; Grosse, Scott D; Garrison, Cheryl; Grant, Althea M
2011-12-01
Hereditary hemochromatosis type 1, also known as hereditary hemochromatosis classical (HHC), is an iron overload disorder associated, in most cases, with mutations of the hemochromatosis (HFE) gene. Although suggested algorithms for diagnosing iron overload are available, there are still questions about options for genetic and biochemical screening for hemochromatosis and duration of treatment. This article provides a summary of an expert workgroup meeting convened on September 24-25, 2009, entitled "Iron Overload: What is the Role of Public Health?" The purpose of the meeting was to enable subject matter experts to share their most recent clinical and scientific iron overload information and to facilitate the discussion of future endeavors, with special emphasis on the role of public health in this field. The two main topics were the research priorities of the field, including clinical, genetic, and public health issues, and the concerns about the validity of current screening recommendations for the condition. Published by Elsevier Inc.
β-Thalassemia: HiJAKing Ineffective Erythropoiesis and Iron Overload
Melchiori, Luca; Gardenghi, Sara; Rivella, Stefano
2010-01-01
β-thalassemia encompasses a group of monogenic diseases that have in common defective synthesis of β-globin. The defects involved are extremely heterogeneous and give rise to a large phenotypic spectrum, with patients that are almost asymptomatic to cases in which regular blood transfusions are required to sustain life. As a result of the inefficient synthesis of β-globin, the patients suffer from chronic anemia due to a process called ineffective erythropoiesis (IE). The sequelae of IE lead to extramedullary hematopoiesis (EMH) with massive splenomegaly and dramatic iron overload, which in turn is responsible for many of the secondary pathologies observed in thalassemic patients. The processes are intimately linked such that an ideal therapeutic approach should address all of the complications. Although β-thalassemia is one of the first monogenic diseases to be described and represents a global health problem, only recently has the scientific community started to focus on the real molecular mechanisms that underlie this disease, opening new and exciting therapeutic perspectives for thalassemic patients worldwide. PMID:20508726
Cappellini, Maria Domenica
2007-01-01
Although blood transfusions are important for patients with anemia, chronic transfusions inevitably lead to iron overload as humans cannot actively remove excess iron. The cumulative effects of iron overload lead to significant morbidity and mortality, if untreated. Although the current reference standard iron chelator deferoxamine has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Deferasirox (Exjade®, ICL670, Novartis Pharma AG, Basel, Switzerland) is a once-daily, oral iron chelator approved for the treatment of transfusional iron overload in adult and pediatric patients. The efficacy and safety of deferasirox have been established in a comprehensive clinical development program involving patients with various transfusion-dependent anemias. Deferasirox has a dose-dependent effect on iron burden, and is as efficacious as deferoxamine at comparable therapeutic doses. Deferasirox therapy can be tailored to a patient’s needs, as response is related to both dose and iron intake. Since deferasirox has a long half-life and is present in the plasma for 24 hours with once-daily dosing, it is unique in providing constant chelation coverage with a single dose. The availability of this convenient, effective, and well tolerated therapy represents a significant advance in the management of transfusional iron overload. PMID:18360637
Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload.
Preziosi, Morgan E; Singh, Sucha; Valore, Erika V; Jung, Grace; Popovic, Branimir; Poddar, Minakshi; Nagarajan, Shanmugam; Ganz, Tomas; Monga, Satdarshan P
2017-08-01
Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked human disease. Administration of an antioxidant prevented hepatic injury in this model. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Pituitary iron and volume predict hypogonadism in transfusional iron overload.
Noetzli, Leila J; Panigrahy, Ashok; Mittelman, Steven D; Hyderi, Aleya; Dongelyan, Ani; Coates, Thomas D; Wood, John C
2012-02-01
Hypogonadism is the most common morbidity in patients with transfusion-dependent anemias such as thalassemia major. We used magnetic resonance imaging (MRI) to measure pituitary R2 (iron) and volume to determine at what age these patients develop pituitary iron overload and volume loss. We recruited 56 patients (47 with thalassemia major, five with chronically transfused thalassemia intermedia and four with Blackfan-Diamond syndrome) to have pituitary MRIs to measure pituitary R2 and volume. Hypogonadism was defined clinically based on the timing of secondary sexual characteristics or the need for sex hormone replacement therapy. Patients with transfusional iron overload begin to develop pituitary iron overload in the first decade of life; however, clinically significant volume loss was not observed until the second decade of life. Severe pituitary iron deposition (Z > 5) and volume loss (Z < -2.5) were independently predictive of hypogonadism. Pituitary R2 correlated significantly with serum ferritin as well as liver, pancreatic, and cardiac iron deposition by MRI. Log pancreas R2* was the best single predictor for pituitary iron, with an area under the receiving operator characteristic curve of 0.88, but log cardiac R2* and ferritin were retained on multivariate regression with a combined r(2) of 0.71. Pituitary iron overload and volume loss were independently predictive of hypogonadism. Many patients with moderate-to-severe pituitary iron overload retained normal gland volume and function, representing a potential therapeutic window. The subset of hypogonadal patients having preserved gland volumes may also explain improvements in pituitary function observed following intensive chelation therapy. Copyright © 2011 Wiley Periodicals, Inc.
Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Tymoszuk, Piotr; Demetz, Egon; Moser, Patrizia; Haas, Hubertus; Fang, Ferric C.; Theurl, Igor; Weiss, Günter
2017-01-01
Genetic and dietary forms of iron overload have distinctive clinical and pathophysiological features. HFE-associated hereditary hemochromatosis is characterized by overwhelming intestinal iron absorption, parenchymal iron deposition, and macrophage iron depletion. In contrast, excessive dietary iron intake results in iron deposition in macrophages. However, the functional consequences of genetic and dietary iron overload for the control of microbes are incompletely understood. Using Hfe+/+ and Hfe−/− mice in combination with oral iron overload in a model of Salmonella enterica serovar Typhimurium infection, we found animals of either genotype to induce hepcidin antimicrobial peptide expression and hypoferremia following systemic infection in an Hfe-independent manner. As predicted, Hfe−/− mice, a model of hereditary hemochromatosis, displayed reduced spleen iron content, which translated into improved control of Salmonella replication. Salmonella adapted to the iron-poor microenvironment in the spleens of Hfe−/− mice by inducing the expression of its siderophore iron-uptake machinery. Dietary iron loading resulted in higher bacterial numbers in both WT and Hfe−/− mice, although Hfe deficiency still resulted in better pathogen control and improved survival. This suggests that Hfe deficiency may exert protective effects in addition to the control of iron availability for intracellular bacteria. Our data show that a dynamic adaptation of iron metabolism in both immune cells and microbes shapes the host-pathogen interaction in the setting of systemic Salmonella infection. Moreover, Hfe-associated iron overload and dietary iron excess result in different outcomes in infection, indicating that tissue and cellular iron distribution determines the susceptibility to infection with specific pathogens. PMID:28443246
Miura, Yasuo; Matsui, Yusuke; Kaneko, Hitomi; Watanabe, Mitsumasa; Tsudo, Mitsuru
2010-01-01
Iron chelation therapy (ICT) has been applied for the patients with iron overload-associated liver dysfunction since it is one of the causes of death in patients with intractable hematological diseases requiring multiple red blood cell transfusions. Recently, deferasirox (DSX), a novel, once-daily oral iron chelator, was demonstrated to have similar efficacy to the conventional continuous infusion of deferoxamine on a decrease in serum ferritin (SF) level in heavily transfused patients. We show three cases of transfusion-mediated iron-overloaded patients with an elevated serum alanine aminotransaminase (ALT). All three patients who received the ICT with DSX showed a decrease in ALT level in association with a decrease in SF level. It is suggested that DSX therapy could be considered to expect the improvement of liver damage for iron-overloaded patients with an abnormal ALT level. PMID:20592762
Khamseekaew, Juthamas; Kumfu, Sirinart; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2016-08-01
Iron overload cardiomyopathy occurs in a rare primary form (ie, hemochromatosis) and a very common secondary form in a host of hemoglobinopathies (eg, thalassemia, sickle cell anemia) of substantial and growing global prevalence, which have transformed iron overload cardiomyopathy into a worldwide epidemic. Intracellular calcium ([Ca(2+)]i) is known to be a critical regulator of myocardial function, in which it plays a key role in maintaining cardiac excitation-contraction coupling. It has been proposed that a disturbance in cardiac calcium regulation is a major contributor to left ventricular dysfunction in iron overload cardiomyopathy. This review comprehensively summarizes reports concerned with the effects of iron overload on cardiac calcium regulation, including alteration in the intracellular calcium level, voltage-gated calcium channel function, and calcium cycling protein activity. Consistent reports, as well as inconsistent findings, from both in vitro and in vivo studies, are presented and discussed. The understanding of these mechanisms has provided important new pathophysiological insights and has led to the development of novel therapeutic and preventive strategies for patients with iron overload cardiomyopathy that are currently in clinical trials. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
OKABE, Hiroshi; SUZUKI, Takahiro; OMORI, Tsukasa; MORI, Masaki; UEHARA, Eisuke; HATANO, Kaoru; UEDA, Masuzu; MATSUYAMA, Tomohiro; TOSHIMA, Masaki; QZAKI, Katsutoshi; NAGAI, Tadashi; MUROI, Kazuo; OZAWA, Keiya
2009-11-01
Deferasirox (DFX) is a newly developed oral iron chelator that enables effective chelation with once daily administration. We describe here a case of transfusional-iron overloaded patient who experienced hematopoietic recovery after DFX administration. A 75-year-old woman with iron overload, who had been diagnosed with MDS (RCMD) and had received a transfusion of red blood cells and platelets regularly for 3 years, enrolled in the phase I clinical trial of ICL670 (DFX) in Japan. DFX administration steadily decreased her serum ferritin levels and chelated overloaded iron effectively. Interestingly, a year after initiation of the trial, she needed fewer blood transfusions, and no more transfusions after the 17th month of the trial. Even after suspending transfusions, her hemoglobin level and platelet count increased continuously, and she now has stable disease without blood transfusions. She has not received any specific treatment for MDS during this period. Examination of the bone marrow aspirates in the 35th month revealed dysplastic cells, indicating no remarkable change in the state of MDS. This case suggests that excess iron hampers hematopoiesis and that adequate iron chelation may improve hematological data in some iron-overloaded patients.
Shirley, Matt; Plosker, Greg L
2014-06-01
Deferasirox (Exjade(®)) is a once-daily orally administered iron chelator which has been approved for use in the treatment of transfusional-dependent chronic iron overload since 2005. Based primarily on the findings of the THALASSA (Assessment of Exjade(®) in Non-Transfusion-Dependent THALASSemiA) trial, the approval for deferasirox has recently been expanded to include the management of chronic iron overload in patients with non-transfusion-dependent thalassaemia (NTDT) syndromes. Despite the lack of regular blood transfusions, NTDT patients can still develop clinically relevant iron overload, primarily due to increased gastrointestinal absorption secondary to ineffective erythropoiesis, and may require chelation therapy. The THALASSA trial, the first placebo-controlled clinical trial of an iron chelator in NTDT patients, demonstrated that deferasirox was effective in reducing liver iron and serum ferritin levels in this population. Deferasirox has an acceptable tolerability profile, with the most common adverse events reported in the THALASSA trial being related to mild to moderate gastrointestinal disorders. Although further long-term studies will be required to clearly demonstrate the clinical benefit of chelation therapy in NTDT patients, deferasirox presents a useful tool in the management of iron overload in this population.
Physiology and Pathophysiology of Iron in Hemoglobin-Associated Diseases
Coates, Thomas D
2016-01-01
Iron overload and iron toxicity, whether because of increased absorption or iron loading from repeated transfusions, can be major causes of morbidity and mortality in a number of chronic anemias. Significant advances have been made in our understanding of iron homeostasis over the past decade. At the same time, advances in magnetic resonance imaging have allowed clinicians to monitor and quantify iron concentrations non-invasively in specific organs. Furthermore, effective iron chelators are now available, including preparations that can be taken orally. This has resulted in substantial improvement in mortality and morbidity for patients with severe chronic iron overload. This paper reviews the key points of iron homeostasis and attempts to place clinical observations in patients with transfusional iron overload in context with the current understanding of iron homeostasis in humans. PMID:24726864
Nam, Hyeyoung; Wang, Chia-Yu; Zhang, Lin; Zhang, Wei; Hojyo, Shintaro; Fukada, Toshiyuki; Knutson, Mitchell D.
2013-01-01
The liver, pancreas, and heart are particularly susceptible to iron-related disorders. These tissues take up plasma iron from transferrin or non-transferrin-bound iron, which appears during iron overload. Here, we assessed the effect of iron status on the levels of the transmembrane transporters, ZRT/IRT-like protein 14 and divalent metal-ion transporter-1, which have both been implicated in transferrin- and non-transferrin-bound iron uptake. Weanling male rats (n=6/group) were fed an iron-deficient, iron-adequate, or iron-overloaded diet for 3 weeks. ZRT/IRT-like protein 14, divalent metal-ion transporter-1 protein and mRNA levels in liver, pancreas, and heart were determined by using immunoblotting and quantitative reverse transcriptase polymerase chain reaction analysis. Confocal immunofluorescence microscopy was used to localize ZRT/IRT-like protein 14 in the liver and pancreas. ZRT/IRT-like protein 14 and divalent metal-ion transporter-1 protein levels were also determined in hypotransferrinemic mice with genetic iron overload. Hepatic ZRT/IRT-like protein 14 levels were found to be 100% higher in iron-loaded rats than in iron-adequate controls. By contrast, hepatic divalent metal-ion transporter-1 protein levels were 70% lower in iron-overloaded animals and nearly 3-fold higher in iron-deficient ones. In the pancreas, ZRT/IRT-like protein 14 levels were 50% higher in iron-overloaded rats, and in the heart, divalent metal-ion transporter-1 protein levels were 4-fold higher in iron-deficient animals. At the mRNA level, ZRT/IRT-like protein 14 expression did not vary with iron status, whereas divalent metal-ion transporter-1 expression was found to be elevated in iron-deficient livers. Immunofluorescence staining localized ZRT/IRT-like protein 14 to the basolateral membrane of hepatocytes and to acinar cells of the pancreas. Hepatic ZRT/IRT-like protein 14, but not divalent metal-ion transporter-1, protein levels were elevated in iron-loaded hypotransferrinemic mice. In conclusion, ZRT/IRT-like protein 14 protein levels are up-regulated in iron-loaded rat liver and pancreas and in hypotransferrinemic mouse liver. Divalent metal-ion transporter-1 protein levels are down-regulated in iron-loaded rat liver, and up-regulated in iron-deficient liver and heart. Our results provide insight into the potential contributions of these transporters to tissue iron uptake during iron deficiency and overload. PMID:23349308
Serum ferritin: Past, present and future.
Wang, Wei; Knovich, Mary Ann; Coffman, Lan G; Torti, Frank M; Torti, Suzy V
2010-08-01
Serum ferritin was discovered in the 1930s, and was developed as a clinical test in the 1970s. Many diseases are associated with iron overload or iron deficiency. Serum ferritin is widely used in diagnosing and monitoring these diseases. In this chapter, we discuss the role of serum ferritin in physiological and pathological processes and its use as a clinical tool. Although many aspects of the fundamental biology of serum ferritin remain surprisingly unclear, a growing number of roles have been attributed to extracellular ferritin, including newly described roles in iron delivery, angiogenesis, inflammation, immunity, signaling and cancer. Serum ferritin remains a clinically useful tool. Further studies on the biology of this protein may provide new biological insights. Copyright 2010 Elsevier B.V. All rights reserved.
Role of liver magnetic resonance imaging in hyperferritinaemia and the diagnosis of iron overload.
Ruefer, Axel; Bapst, Christine; Benz, Rudolf; Bremerich, Jens; Cantoni, Nathan; Infanti, Laura; Samii, Kaveh; Schmid, Mathias; Vallée, Jean-Paul
2017-11-09
Hyperferritinaemia is a frequent clinical problem. Elevated serum ferritin levels can be detected in different genetic and acquired diseases and can occur with or without anaemia. It is therefore important to determine whether hyperferritinaemia is due to iron overload or due to a secondary cause. The main causes of iron overload are intestinal iron hyperabsorption disorders and transfusion-dependent disorders. Iron homeostasis and iron overload are quantified by different diagnostic approaches. The evaluation of serum ferritin and transferrin saturation is the first diagnostic step to identify the cause of hyperferritinaemia. The assessment of liver iron concentration by liver biopsy or magnetic resonance imaging (MRI) may guide the further diagnostic and therapeutic workup. Liver biopsy is invasive and poorly accepted by patients and should only be carried out in selected patients with hereditary haemochromatosis. As a non-invasive approach, MRI is considered the standard method to diagnose and to monitor both hepatic iron overload and the effectiveness of iron chelation therapy in many clinical conditions such as thalassaemia and myelodysplastic syndromes. Accurate evaluation and monitoring of iron overload has major implications regarding adherence, quality of life and prognosis. There are different technical MRI approaches to measuring the liver iron content. Of these, T2 and T2* relaxometry are considered the standard of care. MRI with cardiac T2* mapping is also suitable for the assessment of cardiac iron. Currently there is no consensus which technique should be preferred. The choice depends on local availability and patient population. However, it is important to use the same MRI technique in subsequent visits in the same patient to get comparable results. Signal intensity ratio may be a good adjunct to R2 and R2* methods as it allows easy visual estimation of the liver iron concentration. In this review a group of Swiss haematologists and radiologists give an overview of different conditions leading to primary or secondary iron overload and on diagnostic methods to assess hyperferritinaemia with a focus on the role of liver MRI. They summarise the standard practice in Switzerland on the use of liver iron concentration MRI as well as disease-specific guideline recommendations.
Basu, Tapasree; Kumar, Bipul; Shendge, Anil Khushalrao; Panja, Sourav; Chugh, Heerak; Gautam, Hemant K; Mandal, Nripendranath
2018-04-18
Farsetia hamiltonii Royle, also known as Hiran Chabba grows in desert regions. It is widely used as folk medicine to treat joint pains, diarrhea and diabetes. However, its antioxidant and iron chelation abilities both in vitro and in vivo have not yet been investigated. The 70% methanolic extract of F.hamiltonii (FHME) was investigated for its free radical scavenging and iron chelation potential, in vitro. An iron-overload situation was established by intraperitoneal injection of iron-dextran in Swiss albino mice, followed by oral administration of FHME. Liver damage and serum parameters due to iron-overload were measured biochemically and histopathologically to test iron-overload remediation and hepatoprotective potential of FHME. Phytochemical analyses were performed to determine its probable bioactive components. FHME showed promising antioxidant activity, scavenged various reactive oxygen and nitrogen species and chelated iron in vitro. FHME reduced liver iron, serum ferritin, normalized serum parameters, reduced oxidative stress in liver, serum and improved liver antioxidant status in iron-overloaded mice. It also alleviated liver damage and fibrosis as evident from biochemical parameters and morphological analysis of liver sections. The phytochemical analyses of FHME reflected the presence of alkaloids, phenols, flavonoids and tannins. HPLC analysis indicated presence of tannic acid, quercetin, methyl gallate, catechin, reserpine, ascorbic acid and gallic acid. Based on the experimental outcome, FHME, an ethnologically important plant can be envisaged as excellent antioxidant and iron chelator drug capable of remediating iron-overload induced hepatotoxicity and the bioactive compounds present in FHME might be responsible for its efficacy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Optimizing therapy for iron overload in the myelodysplastic syndromes: recent developments.
Leitch, Heather A
2011-01-22
The myelodysplastic syndromes (MDS) are characterized by cytopenias and risk of progression to acute myeloid leukaemia (AML). Most MDS patients eventually require transfusion of red blood cells for anaemia, placing them at risk of transfusional iron overload. In β-thalassaemia major, transfusional iron overload leads to organ dysfunction and death; however, with iron chelation therapy, organ function is improved, and survival improved to near normal and correlated with the degree of compliance with chelation. In lower-risk MDS, several nonrandomized studies suggest an adverse effect of iron overload on survival and that lowering iron with chelation may minimize this impact. Emerging data indicate that chelation may improve organ function, particularly hepatic function, and a minority of patients may have improvement in cell counts and decreased transfusion requirements. While guidelines for MDS generally recommend chelation in selected lower-risk patients, data from nonrandomized trials suggest iron overload may impact adversely on the outcome of higher-risk MDS and stem cell transplantation (SCT). This effect may be due to increased transplant-related mortality, infection and AML progression, and preliminary data suggest that lowering iron may be beneficial in this patient group. Other areas of active and future investigation include optimizing the monitoring of iron overload using imaging such as T2* MRI and measures of labile iron and oxidative stress; correlating new methods of measuring iron to clinical outcomes; clarifying the contribution of different cellular and extracellular iron pools to iron toxicity; optimizing chelation by using agents that access the appropriate iron pools to minimize the relevant clinical consequences in individual patients; and incorporating measures of quality of life and co-morbidities into clinical trials of chelation in MDS. It should be noted that chelation is costly and potentially toxic, and in MDS should be initiated after weighing potential risks and benefits for each patient until more definitive data are available. In this review, data on the impact of iron overload in MDS and SCT are discussed; for example, several noncontrolled studies show inferior survival in patients with iron overload in these clinical settings, including an increase in transplant-related mortality and infection risk. Possible mechanisms of iron toxicity include oxidative stress, which can damage cellular components, and the documented impact of lowering iron on organ function with measures such as iron chelation therapy includes an improvement in elevated liver transaminases. Lowering iron also appears to improve survival in both lower-risk MDS and SCT in nonrandomized studies. Selected aspects of iron metabolism, transport, storage and distribution that may be amenable to future intervention and improved removal of iron from important cellular sites are discussed, as are attempts to quantify quality of life and the importance of co-morbidities in measures to treat MDS, including chelation therapy.
How we manage iron overload in sickle cell patients.
Coates, Thomas D; Wood, John C
2017-06-01
Blood transfusion plays a prominent role in the management of patients with sickle cell disease (SCD), but causes significant iron overload. As transfusions are used to treat the severe complications of SCD, it remains difficult to distinguish whether organ damage is a consequence of iron overload or is due to the complications treated by transfusion. Better management has resulted in increased survival, but prolonged exposure to iron puts SCD patients at greater risk for iron-related complications that should be treated. The success of chelation therapy is dominated by patient adherence to prescribed treatment; thus, adjustment of drug regimens to increase adherence to treatment is critical. This review will discuss the current biology of iron homeostasis in patients with SCD and how this informs our clinical approach to treatment. We will present the clinical approach to treatment of iron overload at our centre using serial assessment of organ iron by magnetic resonance imaging. © 2017 John Wiley & Sons Ltd.
Evaluation and treatment of transfusional iron overload in children.
Ware, Hannah M; Kwiatkowski, Janet L
2013-12-01
Red blood cell transfusions are increasingly used in the management of various anemias, including thalassemia and sickle cell disease. Because the body lacks physiologic mechanisms for removing excess iron, transfusional iron overload is a common complication in children receiving regular transfusions. Iron chelation is necessary to remove the excess iron that causes injury to the heart, liver, and endocrine organs. Three chelators, deferoxamine, deferasirox, and deferiprone, are currently available in the United States. When choosing a chelator regimen, patients, parents, and providers may consider a variety of factors, including the severity of iron overload, administration schedule, and adverse effect profile. Copyright © 2013 Elsevier Inc. All rights reserved.
Reassessment of Iron Biomarkers for Prediction of Dialysis Iron Overload: An MRI Study
Rostoker, Guy; Griuncelli, Mireille; Loridon, Christelle; Magna, Théophile; Machado, Gabrielle; Drahi, Gilles; Dahan, Hervé; Janklewicz, Philippe; Cohen, Yves
2015-01-01
Background and Objectives Iron overload among hemodialysis patients was previously considered rare but is now an increasingly recognized clinical situation. We analyzed correlations between iron biomarkers and the liver iron concentration (LIC) measured by magnetic resonance imaging (MRI), and examined their diagnostic accuracy for iron overload. Design, Setting, Participants and Measurements We performed a prospective cross-sectional study from 31 January 2005 to 31 August 2013 in the dialysis centre of a French community-based private hospital. A cohort of 212 hemodialysis patients free of overt inflammation or malnutrition, were treated for anemia with parenteral iron-sucrose and an erythropoesis-stimulating agent, in keeping with current clinical guidelines. Blinded measurements of hepatic iron stores were performed by T1 and T2* contrast MRI, and relationships were analysed using Spearman’s coefficient, logistic regression and receiver-operator characteristic (ROC) curves. Results Among the biological markers, only serum ferritin showed a strong correlation with LIC (rho= 0.52, 95% CI: 0.41-0.61, p< 0.0001, Spearman test). In logistic analysis, only serum ferritin correctly classified the overall cohort into patients with normal liver iron stores (LIC ≤ 50 μmol/g) and those with elevated liver iron stores (LIC > 50 μmol/g) (odds ratio 1.007; 95% CI: 1.004-1.010). Serum ferritin was the iron biomarker with the best discriminatory capacity in ROC curves analysis (area under the curve (AUC) = 0.767; 95% CI: 0.698-0.835). The optimal serum ferritin cutoffs were 160 μg/L for LIC > 50 μmol/g (mild iron overload) and 290 μg/L for LIC > 200 μmol/g (severe iron overload). Conclusions For clinical purposes, serum ferritin correctly reflects liver iron stores, as assessed by MRI, in hemodialysis patients without overt inflammation or malnutrition. These results strongly suggest that current ferritin target values should be lowered to avoid iron overload. Trial Registration ISRCTN Registry 80100088 PMID:26182077
Vale-Costa, Sílvia; Gomes-Pereira, Sandra; Teixeira, Carlos Miguel; Rosa, Gustavo; Rodrigues, Pedro Nuno; Tomás, Ana; Appelberg, Rui; Gomes, Maria Salomé
2013-01-01
Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host's iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host's oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs.
Vale-Costa, Sílvia; Gomes-Pereira, Sandra; Teixeira, Carlos Miguel; Rosa, Gustavo; Rodrigues, Pedro Nuno; Tomás, Ana; Appelberg, Rui; Gomes, Maria Salomé
2013-01-01
Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host's iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host's oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs. PMID:23459556
Myelodysplastic Syndromes and Iron Chelation Therapy
Angelucci, Emanuele; Urru, Silvana Anna Maria; Pilo, Federica; Piperno, Alberto
2017-01-01
Over recent decades we have been fortunate to witness the advent of new technologies and of an expanded knowledge and application of chelation therapies to the benefit of patients with iron overload. However, extrapolation of learnings from thalassemia to the myelodysplastic syndromes (MDS) has resulted in a fragmented and uncoordinated clinical evidence base. We’re therefore forced to change our understanding of MDS, looking with other eyes to observational studies that inform us about the relationship between iron and tissue damage in these subjects. The available evidence suggests that iron accumulation is prognostically significant in MDS, but levels of accumulation historically associated with organ damage (based on data generated in the thalassemias) are infrequent. Emerging experimental data have provided some insight into this paradox, as our understanding of iron-induced tissue damage has evolved from a process of progressive bulking of organs through high-volumes iron deposition, to one of ‘toxic’ damage inflicted through multiple cellular pathways. Damage from iron may, therefore, occur prior to reaching reference thresholds, and similarly, chelation may be of benefit before overt iron overload is seen. In this review, we revisit the scientific and clinical evidence for iron overload in MDS to better characterize the iron overload phenotype in these patients, which differs from the classical transfusional and non-transfusional iron overload syndrome. We hope this will provide a conceptual framework to better understand the complex associations between anemia, iron and clinical outcomes, to accelerate progress in this area. PMID:28293409
Two novel mutations in the SLC40A1 and HFE genes implicated in iron overload in a Spanish man.
Del-Castillo-Rueda, Alejandro; Moreno-Carralero, María-Isabel; Alvarez-Sala-Walther, Luis-Antonio; Cuadrado-Grande, Nuria; Enríquez-de-Salamanca, Rafael; Méndez, Manuel; Morán-Jiménez, María-Josefa
2011-03-01
The most common form of hemochromatosis is caused by mutations in the HFE gene. Rare forms of the disease are caused by mutations in other genes. We present a patient with hyperferritinemia and iron overload, and facial flushing. Magnetic resonance imaging was performed to measure hepatic iron overload, and a molecular study of the genes involved in iron metabolism was undertaken. The iron overload was similar to that observed in HFE hemochromatosis, and the patient was double heterozygous for two novel mutations, c.-20G>A and c.718A>G (p.K240E), in the HFE and ferroportin (FPN1 or SLC40A1) genes, respectively. Hyperferritinemia and facial flushing improved after phlebotomy. Two of the patient's children were also studied, and the daughter was heterozygous for the mutation in the SLC40A1 gene, although she did not have hyperferritinemia. The patient presented a mild iron overload phenotype probably because of the two novel mutations in the HFE and SLC40A1 genes. © 2011 John Wiley & Sons A/S.
Magnetic Resonance Characterization of Hepatic Storage Iron in Transfusional Iron Overload
Tang, Haiying; Jensen, Jens H.; Sammet, Christina L.; Sheth, Sujit; Swaminathan, Srirama V.; Hultman, Kristi; Kim, Daniel; Wu, Ed X.; Brown, Truman R.; Brittenham, Gary M.
2013-01-01
Purpose To quantify the two principal forms of hepatic storage iron, diffuse, soluble iron (primarily ferritin), and aggregated, insoluble iron (primarily hemosiderin) using a new MRI method in patients with transfusional iron overload. Materials and Methods Six healthy volunteers and twenty patients with transfusion-dependent thalassemia syndromes and iron overload were examined. Ferritin- and hemosiderin-like iron were determined based on the measurement of two distinct relaxation parameters: the “reduced” transverse relaxation rate, RR2 and the “aggregation index,” A, using three sets of Carr-Purcell-Meiboom-Gill (CPMG) datasets with different interecho spacings. Agarose phantoms, simulating the relaxation and susceptibility properties of tissue with different concentrations of dispersed (ferritin-like) and aggregated (hemosiderin-like) iron, were employed for validation. Results Both phantom and in vivo human data confirmed that transverse relaxation components associated with the dispersed and aggregated iron could be separated using the two-parameter (RR2, A) method. The MRI-determined total hepatic storage iron was highly correlated (r = 0.95) with measurements derived from biopsy or biosusceptometry. As total hepatic storage iron increased, the proportion stored as aggregated iron became greater. Conclusion This method provides a new means for non-invasive MRI determination of the partition of hepatic storage iron between ferritin and hemosiderin in iron overload disorders. PMID:23720394
MR characterization of hepatic storage iron in transfusional iron overload.
Tang, Haiying; Jensen, Jens H; Sammet, Christina L; Sheth, Sujit; Swaminathan, Srirama V; Hultman, Kristi; Kim, Daniel; Wu, Ed X; Brown, Truman R; Brittenham, Gary M
2014-02-01
To quantify the two principal forms of hepatic storage iron, diffuse, soluble iron (primarily ferritin), and aggregated, insoluble iron (primarily hemosiderin) using a new MRI method in patients with transfusional iron overload. Six healthy volunteers and 20 patients with transfusion-dependent thalassemia syndromes and iron overload were examined. Ferritin- and hemosiderin-like iron were determined based on the measurement of two distinct relaxation parameters: the "reduced" transverse relaxation rate, RR2 , and the "aggregation index," A, using three sets of Carr-Purcell-Meiboom-Gill (CPMG) datasets with different interecho spacings. Agarose phantoms, simulating the relaxation and susceptibility properties of tissue with different concentrations of dispersed (ferritin-like) and aggregated (hemosiderin-like) iron, were used for validation. Both phantom and in vivo human data confirmed that transverse relaxation components associated with the dispersed and aggregated iron could be separated using the two-parameter (RR2 , A) method. The MRI-determined total hepatic storage iron was highly correlated (r = 0.95) with measurements derived from biopsy or biosusceptometry. As total hepatic storage iron increased, the proportion stored as aggregated iron became greater. This method provides a new means for noninvasive MRI determination of the partition of hepatic storage iron between ferritin and hemosiderin in iron overload disorders. Copyright © 2013 Wiley Periodicals, Inc.
Araújo, Aderson; Drelichman, Guillermo; Cançado, Rodolfo D; Watman, Nora; Magalhães, Silvia M M; Duhalde, Mauricio; Marfil, Javier; Feliú, Aurora; Clementina, Landolfi; Linares Ballesteros, Adriana; Di Stefano, Marco
2009-02-01
The results of a meeting of physicians convening in Latin America to develop expert opinions on the diagnosis, monitoring and treatment of iron overload are as follows. An accurate diagnosis can be obtained by neonatal screening for haemoglobinopathies, especially sickle cell disease and the thalassaemias. Disease-specific registries are needed to demonstrate the extent of the problem to health authorities. Disparities in the quantity and quality of blood products must be addressed, and uniform transfusion guidelines are necessary. Serum ferritin level is a feasible marker for iron overload in the region, while magnetic resonance imaging assessment can improve the diagnosis and monitoring of cardiac and liver iron content. Medical specialists, including radiologists, pathologists and others, and health authorities, can help to implement these methods and provide adequate resources. The recently available oral deferasirox can be used to conveniently administer iron chelation to transfusional iron-overloaded patients.
Dai, Zhipeng; Yang, Jingjing; Zheng, Jin
2016-01-01
Background Iron overload is recognized as a new pathogenfor osteoporosis. Various studies demonstrated that iron overload could induce apoptosis in osteoblasts and osteoporosis in vivo. However, the exact molecular mechanisms involved in the iron overload-mediated induction of apoptosis in osteoblasts has not been explored. Purpose In this study, we attempted to determine whether the mitochondrial apoptotic pathway is involved in iron-induced osteoblastic cell death and to investigate the beneficial effect of N-acetyl-cysteine (NAC) in iron-induced cytotoxicity. Methods The MC3T3-E1 osteoblastic cell line was treated with various concentrations of ferric ion in the absence or presence of NAC, and intracellular iron, cell viability, reactive oxygen species, functionand morphology changes of mitochondria and mitochondrial apoptosis related key indicators were detected by commercial kits. In addition, to further explain potential mechanisms underlying iron overload-related osteoporosis, we also assessed cell viability, apoptosis, and osteogenic differentiation potential in bone marrow-derived mesenchymal stemcells(MSCs) by commercial kits. Results Ferric ion demonstrated concentration-dependent cytotoxic effects on osteoblasts. After incubation with iron, an elevation of intracelluar labile iron levels and a concomitant over-generation of reactive oxygen species (ROS) were detected by flow cytometry in osteoblasts. Nox4 (NADPH oxidase 4), an important ROS producer, was also evaluated by western blot. Apoptosis, which was evaluated by Annexin V/propidium iodide staining, Hoechst 33258 staining, and the activation of caspase-3, was detected after exposure to iron. Iron contributed to the permeabilizatio of mitochondria, leading to the release of cytochrome C (cyto C), which, in turn, induced mitochondrial apoptosis in osteoblasts via activation of Caspase-3, up-regulation of Bax, and down-regulation of Bcl-2. NAC could reverse iron-mediated mitochondrial dysfunction and blocked the apoptotic events through inhibit the generation of ROS. In addition, iron could significantly promote apoptosis and suppress osteogenic differentiation and mineralization in bone marrow-derived MSCs. Conclusions These findings firstly demonstrate that the mitochondrial apoptotic pathway involved in iron-induced osteoblast apoptosis. NAC could relieved the oxidative stress and shielded osteoblasts from apoptosis casused by iron-overload. We also reveal that iron overload in bone marrow-derived MSCs results in increased apoptosis and the impairment of osteogenesis and mineralization. PMID:27843711
Lu, Wenyi; Zhao, Mingfeng; Rajbhandary, Sajin; Xie, Fang; Chai, Xiao; Mu, Juan; Meng, Juanxia; Liu, Yongjun; Jiang, Yan; Xu, Xinnv; Meng, Aimin
2013-09-01
Transfusional iron overload is of major concern in hematological disease. Iron-overload-related dyserythropoiesis and reactive oxygen species (ROS)-related damage to hematopoietic stem cell (HSC) function are major setbacks in treatment for such disorders. We therefore aim to investigate the effect of iron overload on hematopoiesis in the patients and explore the role of ROS in iron-induced oxidative damage in hematopoietic cells and microenvironment in vitro. The hematopoietic colony-forming capacity and ROS level of bone marrow cells were tested before and after iron chelation therapy. In vitro, we first established an iron overload model of bone marrow mononuclear cells (BMMNC) and umbilical cord-derived mesenchymal stem cells (UC-MSC). ROS level, cell cycle, and apoptosis were measured by FACS. Function of cells was individually studied by Colony-forming cell (CFC) assay and co-culture system. Finally, ROS-related signaling pathway was also detected by Western blot. After administering deferoxamine (DFO), reduced blood transfusion, increased neutrophil, increased platelet, and improved pancytopenia were observed in 76.9%, 46.2%, 26.9%, and 15.4% of the patients, respectively. Furthermore, the colony-forming capacity of BMMNC from iron overload patient was deficient, and ROS level was higher, which were partially recovered following iron chelation therapy. In vitro, exposure of BMMNC to ferric ammonium citrate (FAC) for 24 h decreased the ratio of CD34(+) cell from 0.91 ± 0.12% to 0.39 ± 0.07%. Excessive iron could also induce apoptosis, arrest cell cycle, and decrease function of BMMNC and UC-MSC, which was accompanied by increased ROS level and stimulated p38MAPK, p53 signaling pathway. More importantly, N-acetyl-L-cysteine (NAC) or DFO could partially attenuate cell injury and inhibit the signaling pathway induced by excessive iron. Our study shows that iron overload injures the hematopoiesis by damaging hematopoietic cell and hematopoietic microenvironment, which is mediated by ROS-related signaling proteins. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chelation protocols for the elimination and prevention of iron overload in thalassaemia.
Kolnagou, Annita; Kontoghiorghes, George John
2018-01-01
Iron overload toxicity is the main cause of mortality and morbidity in thalassaemia patients. The complete elimination and prevention of iron overload is the main aim of chelation therapy, which can be achieved by chelation protocols that can effectively remove excess iron load and maintain body iron at normal levels. Deferiprone and selected combinations with deferoxamine can be designed, adjusted and used effectively for removing all excess stored iron and for maintaining normal iron stores (NIS) in different categories of thalassaemia patients. High doses of deferiprone (75-100 mg/kg/day) and deferoxamine (50-60 mg/kg, 1-7 days/week) combinations can be used for achieving and maintaining NIS in heavily iron loaded transfused patients. In contrast, deferiprone (75-100 mg/kg/day) can be used effectively and sometimes intermittently for maintaining NIS in non heavily transfused patients. Deferasirox can in particular be used in patients not tolerating deferoxamine and deferiprone. The design of tailored made personalised protocols using deferiprone and selected combinations with deferoxamine should be considered as optimum chelation therapies for the complete treatment and the prevention of iron overload in thalassaemia.
Petrou, Emmanouil; Mavrogeni, Sophie; Karali, Vasiliki; Kolovou, Genovefa; Kyrtsonis, Marie-Christine; Sfikakis, Petros P; Panayiotidis, Panayiotis
2015-01-01
Myelodysplastic syndromes represent a group of heterogeneous hematopoietic neoplasms derived from an abnormal multipotent progenitor cell, characterized by a hyperproliferative bone marrow, dysplasia of the cellular hemopoietic elements and ineffective erythropoiesis. Anemia is a common finding in myelodysplastic syndrome patients, and blood transfusions are the only therapeutic option in approximately 40% of cases. The most serious side effect of regular blood transfusion is iron overload. Currently, cardiovascular magnetic resonance using T2 is routinely used to identify patients with myocardial iron overload and to guide chelation therapy, tailored to prevent iron toxicity in the heart. This is a major validated non-invasive measure of myocardial iron overloading and is superior to surrogates such as serum ferritin, liver iron, ventricular ejection fraction and tissue Doppler parameters. The indication for iron chelation therapy in myelodysplastic syndrome patients is currently controversial. However, cardiovascular magnetic resonance may offer an excellent non-invasive, diagnostic tool for iron overload assessment in myelodysplastic syndromes. Further studies are needed to establish the precise indications of chelation therapy and the clinical implications of this treatment on survival in myelodysplastic syndromes. Copyright © 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.
Iron does not cause arrhythmias in the guinea pig model of transfusional iron overload.
Kaiser, Lana; Davis, John; Patterson, Jon; Boyd, Ryan F; Olivier, N Bari; Bohart, George; Schwartz, Kenneth A
2007-08-01
Cardiac events, including heart failure and arrhythmias, are the leading cause of death in patients with beta thalassemia. Although cardiac arrhythmias in humans are believed to result from iron overload, excluding confounding factors in the human population is difficult. The goal of the current study was to determine whether cardiac arrhythmias occurred in the guinea pig model of secondary iron overload. Electrocardiograms were recorded by using surgically implanted telemetry devices in guinea pigs loaded intraperitoneally with iron dextran (test animals) or dextran alone (controls). Loading occurred over approximately 6 wk. Electrocardiograms were recorded for 1 wk prior to loading, throughout loading, and for approximately 4 wk after loading was complete. Cardiac and liver iron concentrations were significantly increased in the iron-loaded animals compared with controls and were in the range of those reported for humans with thalassemia. Arrhythmias were rare in both iron-loaded and control guinea pigs. No life-threatening arrhythmias were detected in either group. These data suggest that iron alone may be insufficient to cause cardiac arrhythmias in the iron-loaded guinea pig model and that arrhythmias detected in human patients with iron overload may be the result of a complex interplay of factors.
Roles of lipocalin 2 and adiponectin in iron overload cardiomyopathy.
Siri-Angkul, Natthaphat; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2018-07-01
Thalassemia is among the most common genetic diseases worldwide. Ineffective erythropoiesis, chronic hemolysis, and regular blood transfusion in thalassemia patients lead to increased iron burden. Iron overload cardiomyopathy is the most severe co-morbidity and most common cause of mortality in thalassemia patients. Although its associated mechanisms are still not completely understood, cellular iron mishandling, chronic inflammation, and oxidative stress appear to be the key processes involved. In order to acquire a more comprehensive insight of the impact of cardiac iron overload, these alterations need to be intensively investigated. This comprehensive mini-review focuses on two emergent molecules which have been shown to potentially play significant roles in iron overload cardiomyopathy. These two molecules are an iron-transporting protein, lipocalin 2, and an anti-inflammatory adipokine, adiponectin. Reports from in vitro and in vivo studies are comprehensively summarized. Clinical studies examining the roles of these molecules in thalassemia patients are also presented and discussed. © 2017 Wiley Periodicals, Inc.
Managing iron overload in patients with myelodysplastic syndromes with oral deferasirox therapy.
Jabbour, Elias; Garcia-Manero, Guillermo; Taher, Ali; Kantarjian, Hagop M
2009-05-01
Patients with myelodysplastic syndromes (MDS) often require chronic RBC transfusions, which can lead to iron overload. Without adequate management, this may cause progressive damage to hepatic, endocrine, and cardiac organs, significantly affecting overall survival. Recent retrospective analyses have suggested that iron chelation provides a survival advantage in iron-overloaded patients with MDS who are given chelation therapy compared with those who are not. Nonetheless, it is evident that iron overload in many patients with MDS is not adequately managed. Clinical evaluation of the once-daily, oral iron chelator deferasirox in MDS populations has indicated that it provides dose-dependent reductions in body iron burden and is generally well tolerated, with a manageable safety profile in adult and pediatric patients. The most common treatment-related adverse events (AEs) included transient, mild-to-moderate gastrointestinal disturbances and skin rash, which rarely required drug discontinuation and resolved spontaneously in most cases. Adequate management of AEs and practical approaches such as patient education and counseling are necessary to ensure that patients remain compliant with therapy. Regular monitoring of serum ferritin levels is key to identifying patients who require iron chelation therapy, and to ensure maintenance of iron levels below the critical level of 1,000 microg/l. The flexible dosing regimen of deferasirox allows dose adjustments to be made in response to trends in serum ferritin, to changes in a patient's transfusional iron intake, and to the objectives of treatment, allowing the full benefit of transfusion therapy without the risks associated with iron overload.
Porter, John B; Cappellini, Maria Domenica; Kattamis, Antonis; Viprakasit, Vip; Musallam, Khaled M; Zhu, Zewen; Taher, Ali T
2017-01-01
Non-transfusion-dependent thalassaemias (NTDT) encompass a spectrum of anaemias rarely requiring blood transfusions. Increased iron absorption, driven by hepcidin suppression secondary to erythron expansion, initially causes intrahepatic iron overload. We examined iron metabolism biomarkers in 166 NTDT patients with β thalassaemia intermedia (n = 95), haemoglobin (Hb) E/β thalassaemia (n = 49) and Hb H syndromes (n = 22). Liver iron concentration (LIC), serum ferritin (SF), transferrin saturation (TfSat) and non-transferrin-bound iron (NTBI) were elevated and correlated across diagnostic subgroups. NTBI correlated with soluble transferrin receptor (sTfR), labile plasma iron (LPI) and nucleated red blood cells (NRBCs), with elevations generally confined to previously transfused patients. Splenectomised patients had higher NTBI, TfSat, NRBCs and SF relative to LIC, than non-splenectomised patients. LPI elevations were confined to patients with saturated transferrin. Erythron expansion biomarkers (sTfR, growth differentiation factor-15, NRBCs) correlated with each other and with iron overload biomarkers, particularly in Hb H patients. Plasma hepcidin was similar across subgroups, increased with >20 prior transfusions, and correlated inversely with TfSat, NTBI, LPI and NRBCs. Hepcidin/SF ratios were low, consistent with hepcidin suppression relative to iron overload. Increased NTBI and, by implication, risk of extra-hepatic iron distribution are more likely in previously transfused, splenectomised and iron-overloaded NTDT patients with TfSat >70%. © 2016 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.
Ladis, Vassilis; Berdousi, Helen; Gotsis, Efstathios; Kattamis, Antonis
2010-12-01
Abnormal iron regulation in patients with thalassaemia intermedia may lead to iron overload even in the absence of transfusions. There are limited data on iron chelator use in patients with thalassaemia intermedia and no guidelines exist for the management of iron overload. We present data from 11 patients with thalassaemia intermedia treated with deferasirox (Exjade(®) , 10-20 mg/kg/d) for 24 months. Liver iron concentration and serum ferritin levels significantly decreased over the first 12 months (P = 0·005) and continued to decrease over the remainder of the study (P = 0·005). This small-scale study indicated that deferasirox may be suitable for controlling iron levels in patients with thalassaemia intermedia. © 2010 Blackwell Publishing Ltd.
TLc-A, the leading nanochelating-based nanochelator, reduces iron overload in vitro and in vivo.
Kalanaky, Somayeh; Hafizi, Maryam; Safari, Sepideh; Mousavizadeh, Kazem; Kabiri, Mahboubeh; Farsinejad, Alireza; Fakharzadeh, Saideh; Nazaran, Mohammad Hassan
2016-03-01
Iron chelation therapy is an effective approach to the treatment of iron overload conditions, in which iron builds up to toxic levels in the body and may cause organ damage. Treatments using deferoxamine, deferasirox and deferiprone have been introduced and despite their disadvantages, they remain the first-line therapeutics in iron chelation therapy. Our study aimed to compare the effectiveness of the iron chelation agent TLc-A, a nano chelator synthetized based on the novel nanochelating technology, with deferoxamine. We found that TLc-A reduced iron overload in Caco2 cell line more efficiently than deferoxamine. In rats with iron overload, very low concentrations of TLc-A lowered serum iron level after only three injections of the nanochelator, while deferoxamine was unable to reduce iron level after the same number of injections. Compared with deferoxamine, TLc-A significantly increased urinary iron excretion and reduced hepatic iron content. The toxicity study showed that the intraperitoneal median lethal dose for TLc-A was at least two times higher than that for deferoxamine. In conclusion, our in vitro and in vivo studies indicate that the novel nano chelator compound, TLc-A, offers superior performance in iron reduction than the commercially available and widely used deferoxamine.
[Old and new iron parameters in iron metabolism and diagnostics].
Graf, Lukas; Herklotz, Roberto; Huber, Andreas R; Korte, Wolfgang
2008-09-01
Iron is an element which is essential to life but also potentially toxic. Therefore, clever mechanisms exist in the human body for uptake, transport and storage of iron. Hepcidin, which seems to be the master protein for regulation of intestinal iron absorption, is known for a short time. The expression of hepcidin is not only influenced by iron levels but also by mediators of inflammation and growth factors of erythropoiesis. Hence hepcidin plays also a crucial role in the development of anemia of chronic disease and iron overload due to ineffective erythropoiesis. Serum ferritin is a reliable parameter to estimate the storage iron. It is an acute phase protein which is elevated during infections and inflammations, though. In these situations, measurement of soluble transferrin receptors is a useful tool to differentiate between iron deficiency and anemia of chronic disease. Newer parameters as erythrocyte zink protoporphyrin or percentage of hypochromic erythrocytes (%HYPO) are suited to detect a functional iron deficiency. Early diagnosis of iron overload is essential to prevent organ damage. Serum ferritin and transferrin are useful parameters to screen for iron overload. If no clear reason for a secondary iron overload can be found, the search for a hereditary haemochromatosis is recommended. Most of these hereditary haemochromatoses are a result of mutations in the HFE gene (homozygous state for Cys282Tyr or compound heterozygosity for Cys282Tyr/ His63Asp) which can be detected by PCR technique. Liver biopsy is still the gold standard for quantification of storage iron. However, a method of increasing importance for quantification of iron overload is magnetic resonance imaging with new approaches as for example T2*.
Mumby, S; Koh, T W; Pepper, J R; Gutteridge, J M
2001-11-29
Conventional cardiopulmonary bypass surgery (CCPB) increases the iron loading of plasma transferrin often to a state of plasma iron overload, with the presence of low molecular mass iron. Such iron is a potential risk factor for oxidative stress and microbial virulence. Here we assess 'off-pump' coronary artery surgery on the beating heart for changes in plasma iron chemistry. Seventeen patients undergoing cardiac surgery using the 'Octopus' myocardial wall stabilisation device were monitored at five time points for changes in plasma iron chemistry. This group was further divided into those (n=9) who had one- or two- (n=8) vessel grafts, and compared with eight patients undergoing conventional coronary artery surgery. Patients undergoing beating heart surgery had significantly lower levels of total plasma non-haem iron, and a decreased percentage saturation of their transferrin at all time points compared to conventional bypass patients. Plasma iron overload occurred in only one patient undergoing CCPB. Beating heart surgery appears to decrease red blood cell haemolysis, and tissue damage during the operative procedures and thereby significantly decreases the risk of plasma iron overload associated with conventional bypass.
Inclusion bodies of aggregated hemosiderins in liver macrophages.
Hayashi, Hisao; Tatsumi, Yasuaki; Wakusawa, Shinya; Shigemasa, Ryota; Koide, Ryoji; Tsuchida, Ken-Ichi; Morotomi, Natsuko; Yamashita, Tetsuji; Kumagai, Kotaro; Ono, Yukiya; Hayashi, Kazuhiko; Ishigami, Masatoshi; Goto, Hidemi; Kato, Ayako; Kato, Koichi
2017-12-01
Hemosiderin formation is a structural indication of iron overload. We investigated further adaptations of the liver to excess iron. Five patients with livers showing iron-rich inclusions larger than 2 µm were selected from our database. The clinical features of patients and structures of the inclusions were compared with those of 2 controls with mild iron overload. All patients had severe iron overload with more than 5000 ng/mL of serum ferritin. Etiologies were variable, from hemochromatosis to iatrogenic iron overload. Their histological stages were either portal fibrosis or cirrhosis. Inclusion bodies were ultra-structurally visualized as aggregated hemosiderins in the periportal macrophages. X-ray analysis always identified, in addition to a large amount of iron complexes including oxygen and phosphorus, a small amount of copper and sulfur in the mosaic matrixes of inclusions. There were no inclusions in the control livers. Inclusion bodies, when the liver is loaded with excess iron, may appear in the macrophages as isolated organella of aggregated hemosiderins. Trace amounts of copper-sulfur complexes were always identified in the mosaic matrices of the inclusions, suggesting cuproprotein induction against excess iron. In conclusion, inclusion formation in macrophages may be an adaptation of the liver loaded with excess iron.
Quantification of Liver Iron with MRI: State of the Art and Remaining Challenges
Hernando, Diego; Levin, Yakir S; Sirlin, Claude B; Reeder, Scott B
2015-01-01
Liver iron overload is the histological hallmark of hereditary hemochromatosis and transfusional hemosiderosis, and can also occur in chronic hepatopathies. Iron overload can result in liver damage, with the eventual development of cirrhosis, liver failure and hepatocellular carcinoma. Assessment of liver iron levels is necessary for detection and quantitative staging of iron overload, and monitoring of iron-reducing treatments. This article discusses the need for non-invasive assessment of liver iron, and reviews qualitative and quantitative methods with a particular emphasis on MRI. Specific MRI methods for liver iron quantification include signal intensity ratio as well as R2 and R2* relaxometry techniques. Methods that are in clinical use, as well as their limitations, are described. Remaining challenges, unsolved problems, and emerging techniques to provide improved characterization of liver iron deposition are discussed. PMID:24585403
Transfusional iron overload and iron chelation therapy in thalassemia major and sickle cell disease.
Marsella, Maria; Borgna-Pignatti, Caterina
2014-08-01
Iron overload is an inevitable consequence of blood transfusions and is often accompanied by increased iron absorption from the gut. Chelation therapy is necessary to prevent the consequences of hemosiderosis. Three chelators, deferoxamine, deferiprone, and deferasirox, are presently available and a fourth is undergoing clinical trials. The efficacy of all 3 available chelators has been demonstrated. Also, many studies have shown the efficacy of the combination of deferoxamine plus deferiprone as an intensive treatment of severe iron overload. Alternating chelators can reduce adverse effects and improve compliance. Adherence to therapy is crucial for good results. Copyright © 2014 Elsevier Inc. All rights reserved.
Duarte, Tiago L; Caldas, Carolina; Santos, Ana G; Silva-Gomes, Sandro; Santos-Gonçalves, Andreia; Martins, Maria João; Porto, Graça; Lopes, José Manuel
2017-04-01
In hereditary hemochromatosis, iron deposition in the liver parenchyma may lead to fibrosis, cirrhosis and hepatocellular carcinoma. Most cases are ascribed to a common mutation in the HFE gene, but the extent of clinical expression is greatly influenced by the combined action of yet unidentified genetic and/or environmental modifying factors. In mice, transcription factor NRF2 is a critical determinant of hepatocyte viability during exposure to acute dietary iron overload. We evaluated if the genetic disruption of Nrf2 would prompt the development of liver damage in Hfe -/- mice (an established model of human HFE-hemochromatosis). Wild-type, Nrf2 -/- , Hfe -/- and double knockout (Hfe/Nrf2 -/- ) female mice on C57BL/6 genetic background were sacrificed at the age of 6 (young), 12-18 (middle-aged) or 24 months (old) for evaluation of liver pathology. Despite the parenchymal iron accumulation, Hfe -/- mice presented no liver injury. The combination of iron overload (Hfe -/- ) and defective antioxidant defences (Nrf2 -/- ) increased the number of iron-related necroinflammatory lesions (sideronecrosis), possibly due to the accumulation of toxic oxidation products such as 4-hydroxy-2-nonenal-protein adducts. The engulfment of dead hepatocytes led to a gradual accumulation of iron within macrophages, featuring large aggregates. Myofibroblasts recruited towards the injury areas produced substantial amounts of collagen fibers involving the liver parenchyma of double-knockout animals with increased hepatic fibrosis in an age-dependent manner. The genetic disruption of Nrf2 promotes the transition from iron accumulation (siderosis) to liver injury in Hfe -/- mice, representing the first demonstration of spontaneous hepatic fibrosis in the long term in a mouse model of hereditary hemochromatosis displaying mildly elevated liver iron. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Serum Ferritin: Past, Present and Future
Wang, Wei; Knovich, Mary Ann; Coffman, Lan G.; Torti, Frank M.; Torti, Suzy V.
2010-01-01
Background Serum ferritin was discovered in the 1930’s, and was developed as a clinical test in the 1970’s. Many diseases are associated with iron overload or iron deficiency. Serum ferritin is widely used in diagnosing and monitoring these diseases. Scope of Review In this chapter, we discuss the role of serum ferritin in physiological and pathological processes and its use as a clinical tool. Major Conclusions Although many aspects of the fundamental biology of serum ferritin remain surprisingly unclear, a growing number of roles have been attributed to extracellular ferritin, including newly described roles in iron delivery, angiogenesis, inflammation, immunity, signaling and cancer. General Significance Serum ferritin remains a clinically useful tool. Further studies on the biology of this protein may provide new biological insights. PMID:20304033
Iron overload induces hypogonadism in male mice via extrahypothalamic mechanisms.
Macchi, Chiara; Steffani, Liliana; Oleari, Roberto; Lettieri, Antonella; Valenti, Luca; Dongiovanni, Paola; Romero-Ruiz, Antonio; Tena-Sempere, Manuel; Cariboni, Anna; Magni, Paolo; Ruscica, Massimiliano
2017-10-15
Iron overload leads to multiple organ damage including endocrine organ dysfunctions. Hypogonadism is the most common non-diabetic endocrinopathy in primary and secondary iron overload syndromes. To explore the molecular determinants of iron overload-induced hypogonadism with specific focus on hypothalamic derangements. A dysmetabolic male murine model fed iron-enriched diet (IED) and cell-based models of gonadotropin-releasing hormone (GnRH) neurons were used. Mice fed IED showed severe hypogonadism with a significant reduction of serum levels of testosterone (-83%) and of luteinizing hormone (-86%), as well as reduced body weight gain, body fat and plasma leptin. IED mice had a significant increment in iron concentration in testes and in the pituitary. Even if iron challenge of in vitro neuronal models (GN-11 and GT1-7 GnRH cells) resulted in 10- and 5-fold iron content increments, respectively, no iron content changes were found in vivo in hypothalamus of IED mice. Conversely, mice placed on IED showed a significant increment in hypothalamic GnRH gene expression (+34%) and in the intensity of GnRH-neuron innervation of the median eminence (+1.5-fold); similar changes were found in the murine model HFE -/- , resembling human hemochromatosis. IED-fed adult male mice show severe impairment of hypothalamus-pituitary-gonadal axis without a relevant contribution of the hypothalamic compartment, which thus appears sufficiently protected from systemic iron overload. Copyright © 2017 Elsevier B.V. All rights reserved.
McLaren, Christine E; Barton, James C; Adams, Paul C; Harris, Emily L; Acton, Ronald T; Press, Nancy; Reboussin, David M; McLaren, Gordon D; Sholinsky, Phyliss; Walker, Ann P; Gordeuk, Victor R; Leiendecker-Foster, Catherine; Dawkins, Fitzroy W; Eckfeldt, John H; Mellen, Beverly G; Speechley, Mark; Thomson, Elizabeth
2003-02-01
The HEIRS Study will evaluate the prevalence, genetic and environmental determinants, and potential clinical, personal, and societal impact of hemochromatosis and iron overload in a multiethnic, primary care-based sample of 100,000 adults over a 5-year period. Participants are recruited from 5 Field Centers. Laboratory testing and data management and analysis are performed in a Central Laboratory and Coordinating Center, respectively. Participants undergo testing for serum iron measures and common mutations of the hemochromatosis gene ( ) on chromosome 6p and answer questions on demographics, health, and genetic testing attitudes. Participants with elevated values of transferrin saturation and serum ferritin and/or C282Y homozygosity are invited to undergo a comprehensive clinical examination (CCE), as are frequency-matched control subjects. These examinations provide data on personal and family medical history, lifestyle characteristics, physical examination, genetic counseling, and assessment of ethical, legal, and social implications. Primary and secondary causes of iron overload will be distinguished by clinical criteria. Iron overload will be confirmed by quantification of iron stores. Recruiting family members of cases will permit DNA analysis for additional genetic factors that affect iron overload. Of the first 50,520 screened, 51% are white, 24% are African American, 11% are Asian, 11% are Hispanic, and 3% are of other, mixed, or unidentified race; 63% are female and 37% are male. Information from the HEIRS Study will inform policy regarding the feasibility, optimal approach, and potential individual and public health benefits and risks of primary care-based screening for iron overload and hemochromatosis.
Ferritin iron minerals are chelator targets, antioxidants, and coated, dietary iron.
Theil, Elizabeth C
2010-08-01
Cellular ferritin is central for iron balance during transfusions therapies; serum ferritin is a small fraction of body ferritin, albeit a convenient reporter. Iron overload induces extra ferritin protein synthesis but the protein is overfilled with the extra iron that damages ferritin, with conversion to toxic hemosiderin. Three new approaches that manipulate ferritin to address excess iron, hemosiderin, and associated oxidative damage in Cooley's Anemia and other iron overload conditions are faster removal of ferritin iron with chelators guided to ferritin gated pores by peptides; more ferritin protein synthesis using ferritin mRNA activators, by metal complexes that target mRNA 3D structures; and determining if endocytotic absorption of iron from legumes, which is mostly ferritin, is regulated during iron overload to prevent excess iron entry while providing protein. More of a focus on ferritin features, including protein cage structure, iron mineral, regulatable mRNA, and specific gut absorption properties, will achieve the three novel experimental goals for managing iron homeostasis with transfusion therapies.
... in the body. It is also called iron overload. Causes Hemochromatosis may be a genetic disorder passed ... blood transfusions over time may lead to iron overload. Long-term alcohol use and other health conditions. ...
Niu, Qiang; He, Ping; Xu, Shangzhi; Ma, Ruling; Ding, Yusong; Mu, Lati; Li, Shugang
2018-01-01
Emerging evidence has demonstrated that iron overload plays an important role in oxidative stress in the liver. This study aimed to explore whether fluoride-induced hepatic oxidative stress is associated with iron overload and whether grape seed proanthocyanidin extract (GSPE) alleviates oxidative stress by reducing iron overload. Forty Kunming male mice were randomly divided into 4 groups and treated for 5 weeks with distilled water (control), sodium fluoride (NaF) (100 mg/L), GSPE (400 mg/kg bw), or NaF (100 mg/L) + GSPE (400 mg/kg bw). Mice exposed to NaF showed typical poisoning changes of morphology, increased aspartate aminotransferase and alanine aminotransferase activities in the liver. NaF treatment also increased MDA accumulation, decreased GSH-Px, SOD and T-AOC levels in liver, indicative of oxidative stress. Intriguingly, all these detrimental effects were alleviated by GSPE. Further study revealed that NaF induced disorders of iron metabolism, as manifested by elevated iron level with increased hepcidin but decreased ferroportin expression, which contributed to hepatic oxidative stress. Importantly, the iron dysregulation induced by NaF could be normalized by GSPE. Collectively, these data provide a novel insight into mechanisms underlying fluorosis and highlight the potential of GSPE as a naturally occurring prophylactic treatment for fluoride-induced hepatotoxicity associated with iron overload.
Hua, Yanni; Wang, Chaomeng; Jiang, Huijuan; Wang, Yihao; Liu, Chunyan; Li, Lijuan; Liu, Hui; Shao, Zonghong; Fu, Rong
2017-08-01
The objective of the study was to examine levels of intracellular iron, reactive oxygen species (ROS) and the expression of JNK and p38MAPK in NK cells and hematopoietic stem/progenitor cells (HSPCs) in MDS patients, and explore potential mechanisms by which iron overload (IOL) promotes MDS progression. Thirty-four cases of MDS and six cases of AML transformed from MDS (MDS/AML) were included. HSPCs and NK cells were isolated by magnetic absorption cell sorting. We used flow cytometry to detect the levels of ROS and intracellular JNK and P38 in NK cells and HSPCs. Total RNA and protein were extracted from NK cells and CD34 + cells to examine the expression of JNK and p38MAPK using RT-PCR and Western blotting. Intracellular iron concentration was detected. Data were analyzed by SPSS 21 statistical software. Intracellular iron concentration and ROS were increased in both NK cells and HSPCs in MDS patients with iron overload (P < 0.05). MDS patients with iron overload had higher JNK expression and lower p38 expression in NK cells, and higher p38 expression in HSPCs compared with non-iron overload group. IOL may cause alterations in NK cells and HSPCs through the JNK and p38 pathways, and play a role in the transformation to AML from MDS.
Cao, Shenglong; Hua, Ya; Keep, Richard F; Chaudhary, Neeraj; Xi, Guohua
2018-04-01
Brain iron overload is a key factor causing brain injury after intracerebral hemorrhage (ICH). This study quantified brain iron levels after ICH with magnetic resonance imaging R2* mapping. The effect of minocycline on iron overload and ICH-induced brain injury in aged rats was also determined. Aged (18 months old) male Fischer 344 rats had an intracerebral injection of autologous blood or saline, and brain iron levels were measured by magnetic resonance imaging R2* mapping. Some ICH rats were treated with minocycline or vehicle. The rats were euthanized at days 7 and 28 after ICH, and brains were used for immunohistochemistry and Western blot analyses. Magnetic resonance imaging (T2-weighted, T2* gradient-echo, and R2* mapping) sequences were performed at different time points. ICH-induced brain iron overload in the perihematomal area could be quantified by R2* mapping. Minocycline treatment reduced brain iron accumulation, T2* lesion volume, iron-handling protein upregulation, neuronal cell death, and neurological deficits ( P <0.05). Magnetic resonance imaging R2* mapping is a reliable and noninvasive method, which can quantitatively measure brain iron levels after ICH. Minocycline reduced ICH-related perihematomal iron accumulation and brain injury in aged rats. © 2018 American Heart Association, Inc.
Chaudhuri, Dipankar; Ghate, Nikhil Baban; Panja, Sourav; Mandal, Nripendranath
2016-07-26
Crude Spondias pinnata bark extract was previously assessed for its antioxidant, anticancer and iron chelating potentials. The isolated compounds gallic acid (GA) and methyl gallate (MG) were evaluated for their curative potential against iron overload-induced liver fibrosis and hepatocellular damage. In vitro iron chelation property and in vivo ameliorating potential from iron overload induced liver toxicity of GA and MG was assessed by different biochemical assays and histopathological studies. MG and GA demonstrated excellent reducing power activities but iron chelation potential of MG is better than GA. Oral MG treatment in mice displayed excellent efficacy (better than GA) to significantly restore the levels of liver antioxidants, serum markers and cellular reactive oxygen species in a dose-dependent fashion. Apart from these, MG exceptionally prevented lipid peroxidation and protein oxidation whereas GA demonstrated better activity to reduce collagen content, thereby strengthening its position as an efficient drug against hepatic damage/fibrosis, which was further supported by histopathological studies. Alongside, MG efficiently eliminated the cause of liver damage, i.e., excess iron, by chelating free iron and reducing the ferritin-bound iron. The present study confirmed the curative effect of GA and MG against iron overload hepatic damage via their potent antioxidant and iron-chelating potential.
Magnetic Resonance Imaging Quantification of Liver Iron
Sirlin, Claude B.; Reeder, Scott B.
2011-01-01
Iron overload is the histological hallmark of genetic hemochromatosis and transfusional hemosiderosis but also may occur in chronic hepatopathies. This article provides an overview of iron deposition and diseases where liver iron overload is clinically relevant. Next, this article reviews why quantitative non-invasive biomarkers of liver iron would be beneficial. Finally, we describe current state of the art methods for quantifying iron with MRI and review remaining challenges and unsolved problems, PMID:21094445
Deferiprone for the treatment of transfusional iron overload in thalassemia.
Belmont, Ami; Kwiatkowski, Janet L
2017-06-01
Transfusional iron overload can lead to hepatic fibrosis, arrhythmias and congestive heart failure and a number of endocrinopathies. Deferiprone is an oral iron chelator approved for use in the United States as a second line agent for the treatment of transfusional iron overload in patients with thalassemia. Areas covered: This article will review the data regarding the efficacy of deferiprone for iron chelation and prevention and reversal of iron related complications, the drug's adverse effect profile, and the use of this drug in combination regimens. Expert commentary: Extensive data support that deferiprone is particularly efficacious at cardiac iron removal and therefore, a chelator regimen that contains deferiprone is generally recommended when there is significant cardiac iron loading and/or in the setting of iron-related cardiac disease. The most concerning side effects of deferiprone are agranulocytosis and milder forms of neutropenia, which require appropriate monitoring and patient/provider education.
Transitioning Patients With Iron Overload From Exjade to Jadenu.
Tinsley, Sara M; Hoehner-Cooper, Christine M
Iron overload is a concern for patients who require chronic transfusions as a result of inherited or acquired anemias, including sickle cell disease, thalassemia, and myelodysplastic syndromes. Iron chelation therapy (ICT) is the primary treatment for iron overload in these patients. The ICT deferasirox, which has been available as an oral dispersible tablet for liquid suspension, is now also available as a once-daily, film-coated tablet (FCT). Deferasirox FCT allows greater convenience and may be associated with fewer gastrointestinal side effects versus the original formulation. Dose adjustment increments, determined by titration monitoring, are lower for the FCT because of greater bioavailability.
Boll, Daniel T; Marin, Daniele; Redmon, Grace M; Zink, Stephen I; Merkle, Elmar M
2010-04-01
The purpose of our study was to evaluate whether two-point Dixon MRI using a 2D decomposition technique facilitates metabolite differentiation between lipids and iron in standardized in vitro liver phantoms with in vivo patient validation and allows semiquantitative in vitro assessment of metabolites associated with steatosis, iron overload, and combined disease. The acrylamide-based phantoms were made to reproduce the T1- and T2-weighted MRI appearances of physiologic hepatic parenchyma and hepatic steatosis-iron overload by the admixture of triglycerides and ferumoxides. Combined disease was simulated using joint admixtures of triglycerides and ferumoxides at various concentrations. For phantom validation, 30 patients were included, of whom 10 had steatosis, 10 had iron overload, and 10 had no liver disease. For MRI an in-phase/opposed-phase T1-weighted sequence with TR/TE(opposed-phase)/TE(in-phase) of 4.19/1.25/2.46 was used. Fat/water series were obtained by Dixon-based algorithms. In-phase and opposed-phase and fat/water ratios were calculated. Statistical cluster analysis assessed ratio pairs of physiologic liver, steatosis, iron overload, and combined disease in 2D metabolite discrimination plots. Statistical assessment proved that metabolite decomposition in phantoms simulating steatosis (1.77|0.22; in-phase/opposed-phase|fat/water ratios), iron overload (0.75|0.21), and healthy control subjects (1.09|0.05) formed three clusters with distinct ratio pairs. Patient validation for hepatic steatosis (3.29|0.51), iron overload (0.56|0.41), and normal control subjects (0.99|0.05) confirmed this clustering (p < 0.001). One-dimensional analysis assessing in vitro combined disease only with in-phase/opposed-phase ratios would have failed to characterize metabolites. The 2D analysis plotting in-phase/opposed-phase and fat/water ratios (2.16|0.59) provided accurate semiquantitative metabolite decomposition (p < 0.001). MR Dixon imaging facilitates metabolite decomposition of intrahepatic lipids and iron using in vitro phantoms with in vivo patient validation. The proposed decomposition technique identified distinct in-phase/opposed-phase and fat/water ratios for in vitro steatosis, iron overload, and combined disease.
Xie, Yi; Pivnick, Eniko K; Cohen, Harris L; Adams-Graves, Patricia E; Pourcyrous, Massroor; Aygun, Banu; Hankins, Jane S
2013-08-01
Neonatal chondrodysplasia punctata (CDP) is characterized by epiphyseal stippling and midfacial hypoplasia. CDP is usually inherited, but can be acquired because of maternal vitamin K deficiency. We describe an infant with CDP born to a teenager with sickle cell anemia and transfusional iron overload. The mother had severe liver fibrosis, elevated liver iron concentration (34 mg Fe/g), and coagulopathy, but no gestational use of warfarin. Fetal abnormalities were attributed to vitamin K deficiency secondary to liver dysfunction from iron toxicity. Treatment of iron overload among women with sickle cell anemia of childbearing potential is important to avoid possible CDP in newborns.
Tao, Ling-Xue; Huang, Xiao-Tian; Chen, Yu-Ting; Tang, Xi-Can; Zhang, Hai-Yan
2016-11-01
Iron dyshomeostasis is one of the primary causes of neuronal death in Alzheimer's disease (AD). Huperzine A (HupA), a natural inhibitor of acetylcholinesterase (AChE), is a licensed anti-AD drug in China and a nutraceutical in the United Sates. Here, we investigated the protective effects of HupA against iron overload-induced injury in neurons. Rat cortical neurons were treated with ferric ammonium citrate (FAC), and cell viability was assessed with MTT assays. Reactive oxygen species (ROS) assays and adenosine triphosphate (ATP) assays were performed to assess mitochondrial function. The labile iron pool (LIP) level, cytosolic-aconitase (c-aconitase) activity and iron uptake protein expression were measured to determine iron metabolism changes. The modified Ellman's method was used to evaluate AChE activity. HupA significantly attenuated the iron overload-induced decrease in neuronal cell viability. This neuroprotective effect of HupA occurred concurrently with a decrease in ROS and an increase in ATP. Moreover, HupA treatment significantly blocked the upregulation of the LIP level and other aberrant iron metabolism changes induced by iron overload. Additionally, another specific AChE inhibitor, donepezil (Don), at a concentration that caused AChE inhibition equivalent to that of HupA negatively, influenced the aberrant changes in ROS, ATP or LIP that were induced by excessive iron. We provide the first demonstration of the protective effects of HupA against iron overload-induced neuronal damage. This beneficial role of HupA may be attributed to its attenuation of oxidative stress and mitochondrial dysfunction and elevation of LIP, and these effects are not associated with its AChE-inhibiting effect.
Tao, Ling-xue; Huang, Xiao-tian; Chen, Yu-ting; Tang, Xi-can; Zhang, Hai-yan
2016-01-01
Aim: Iron dyshomeostasis is one of the primary causes of neuronal death in Alzheimer's disease (AD). Huperzine A (HupA), a natural inhibitor of acetylcholinesterase (AChE), is a licensed anti-AD drug in China and a nutraceutical in the United Sates. Here, we investigated the protective effects of HupA against iron overload-induced injury in neurons. Methods: Rat cortical neurons were treated with ferric ammonium citrate (FAC), and cell viability was assessed with MTT assays. Reactive oxygen species (ROS) assays and adenosine triphosphate (ATP) assays were performed to assess mitochondrial function. The labile iron pool (LIP) level, cytosolic-aconitase (c-aconitase) activity and iron uptake protein expression were measured to determine iron metabolism changes. The modified Ellman's method was used to evaluate AChE activity. Results: HupA significantly attenuated the iron overload-induced decrease in neuronal cell viability. This neuroprotective effect of HupA occurred concurrently with a decrease in ROS and an increase in ATP. Moreover, HupA treatment significantly blocked the upregulation of the LIP level and other aberrant iron metabolism changes induced by iron overload. Additionally, another specific AChE inhibitor, donepezil (Don), at a concentration that caused AChE inhibition equivalent to that of HupA negatively, influenced the aberrant changes in ROS, ATP or LIP that were induced by excessive iron. Conclusion: We provide the first demonstration of the protective effects of HupA against iron overload-induced neuronal damage. This beneficial role of HupA may be attributed to its attenuation of oxidative stress and mitochondrial dysfunction and elevation of LIP, and these effects are not associated with its AChE-inhibiting effect. PMID:27498774
Hereditary Hemochromatosis (For Parents)
... buildup can be prevented. Doctors usually diagnose iron overload with these blood tests: serum ferritin : measures the ... has the disease. Treatment Doctors treat the iron overload from hereditary hemochromatosis by regularly drawing blood to ...
A Novel Rat Model of Hereditary Hemochromatosis Due to a Mutation in Transferrin Receptor 2
Bartnikas, Thomas B; Wildt, Sheryl J; Wineinger, Amy E; Schmitz-Abe, Klaus; Markianos, Kyriacos; Cooper, Dale M; Fleming, Mark D
2013-01-01
Sporadic iron overload in rats has been reported, but whether it is due to genetic or environmental causes is unknown. In the current study, phenotypic analysis of Hsd:HHCL Wistar rats revealed a low incidence of histologically detected liver iron overload. Here we characterized the pathophysiology of the iron overload and showed that the phenotype is heritable and due to a mutation in a single gene. We identified a single male rat among the 132 screened animals that exhibited predominantly periportal, hepatocellular iron accumulation. This rat expressed low RNA levels of the iron regulatory hormone hepcidin and low protein levels of transferrin receptor 2 (Tfr2), a membrane protein essential for hepcidin expression in humans and mice and mutated in forms of hereditary hemochromatosis. Sequencing of Tfr2 in the iron-overloaded rat revealed a novel Ala679Gly polymorphism in a highly conserved residue. Quantitative trait locus mapping indicated that this polymorphism correlated strongly with serum iron and transferrin saturations in male rats. Expression of the Gly679 variant in tissue culture cell lines revealed decreased steady-state levels of Tfr2. Characterization of iron metabolism in the progeny of polymorphic rats suggested that homozygosity for the Ala679Gly allele leads to a hemochromatosis phenotype. However, we currently cannot exclude the possibility that a polymorphism or mutation in the noncoding region of Tfr2 contributes to the iron-overload phenotype. Hsd:HHCL rats are the first genetic rat model of hereditary hemochromatosis and may prove useful for understanding the molecular mechanisms underlying the regulation of iron metabolism. PMID:23582421
The impact of iron overload and its treatment on quality of life: results from a literature review.
Abetz, Linda; Baladi, Jean-Francois; Jones, Paula; Rofail, Diana
2006-09-28
To assess the literature for the impact of iron overload and infusion Iron Chelation Therapy (ICT) on patients' quality of life (QoL), and the availability of QoL instruments for patients undergoing infusion ICT. Also, to obtain patients' experiences of having iron overload and receiving infusion ICT, and experts' clinical opinions about the impact of treatment on patients' lives. A search of studies published between 1966 and 2004 was conducted using Medline and the Health Economic Evaluation Database (HEED). Qualitative results from patient and expert interviews were analysed. Hand searching of relevant conference abstracts completed the search. Few studies measuring the impact of ICT with deferoxamine (DFO) on patients QoL were located (n = 15). QoL domains affected included: depression; fatigue; dyspnoea; physical functioning; psychological distress; decrease in QoL during hospitalization. One theme in all articles was that oral ICT should improve QoL. No iron overload or ICT-specific QoL instruments were located in the articles. Interviews revealed that the impact of ICT on patients with thalassemia, sickle cell disease, and myelodysplastic syndromes is high. A limited number of studies assessed the impact of ICT or iron overload on QoL. All literature suggested a need for easily administered, efficacious and well tolerated oral iron overload treatments, given the impact of current ICT on adherence. Poor adherence to ICT was documented to negatively impact survival. Further research is warranted to continue the qualitative and quantitative study of QoL using validated instruments in patients receiving ICT to further understanding the issues and improve patients QoL.
Ouederni, Monia; Ben Khaled, Monia; Mellouli, Fethi; Ben Fraj, Elhem; Dhouib, Nawel; Yakoub, Ismehen Ben; Abbes, Selem; Mnif, Nejla; Bejaoui, Mohamed
2017-01-01
Thalassemia is a common genetic disorder in Tunisia. Early iron concentration assessment is a crucial and challenging issue. Most of annual deaths due to iron overload occurred in underdeveloped regions of the world. Limited access to liver and heart MRI monitoring might partially explain these poor prognostic results. Standard software programs are not available in Tunisia. This study is the first to evaluate iron overload in heart and liver using the MRI T2* with excel spreadsheet for post processing. Association of this MRI tool results to serum ferritin level, and echocardiography was also investigated. One hundred Tunisian-transfused thalassemia patients older than 10 years (16.1 ± 5.2) were enrolled in the study. The mean myocardial iron concentration (MIC) was 1.26 ± 1.65 mg/g dw (0.06-8.32). Cardiac T2* (CT2*) was under 20 ms in 30 % of patients and under 10 ms in 21 % of patients. Left ventricular ejection function was significantly lower in patients with CT2* <10 ms. Abnormal liver iron concentration (LIC >3 mg/g dw) was found in 95 % of patients. LIC was over 15 mg/g dw in 25 % of patients. MIC was more correlated than CT2* to LIC and serum ferritin. Among patients with SF <1000 μg/l, 13 % had CT2* <20 ms. Our data showed that 30 % of the Tunisian thalassemia major patients enrolled in this cohort had myocardial iron overload despite being treated by iron chelators. SF could not reliably predict iron overload in all thalassemia patients. MRI T2* using excel spreadsheet for routine follow-up of iron overload might improve the prognosis of thalassemia major patients in developing countries, such as Tunisia, where standard MRI tools are not available or expensive.
Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment.
Torlasco, Camilla; Cassinerio, Elena; Roghi, Alberto; Faini, Andrea; Capecchi, Marco; Abdel-Gadir, Amna; Giannattasio, Cristina; Parati, Gianfranco; Moon, James C; Cappellini, Maria D; Pedrotti, Patrizia
2018-01-01
Iron overload-related heart failure is the principal cause of death in transfusion dependent patients, including those with Thalassemia Major. Linking cardiac siderosis measured by T2* to therapy improves outcomes. T1 mapping can also measure iron; preliminary data suggests it may have higher sensitivity for iron, particularly for early overload (the conventional cut-point for no iron by T2* is 20ms, but this is believed insensitive). We compared T1 mapping to T2* in cardiac iron overload. In a prospectively large single centre study of 138 Thalassemia Major patients and 32 healthy controls, we compared T1 mapping to dark blood and bright blood T2* acquired at 1.5T. Linear regression analysis was used to assess the association of T2* and T1. A "moving window" approach was taken to understand the strength of the association at different levels of iron overload. The relationship between T2* (here dark blood) and T1 is described by a log-log linear regression, which can be split in three different slopes: 1) T2* low, <20ms, r2 = 0.92; 2) T2* = 20-30ms, r2 = 0.48; 3) T2*>30ms, weak relationship. All subjects with T2*<20ms had low T1; among those with T2*>20ms, 38% had low T1 with most of the subjects in the T2* range 20-30ms having a low T1. In established cardiac iron overload, T1 and T2* are concordant. However, in the 20-30ms T2* range, T1 mapping appears to detect iron. These data support previous suggestions that T1 detects missed iron in 1 out of 3 subjects with normal T2*, and that T1 mapping is complementary to T2*. The clinical significance of a low T1 with normal T2* should be further investigated.
Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn
2014-01-01
Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127
Aron, Allegra T; Heffern, Marie C; Lonergan, Zachery R; Vander Wal, Mark N; Blank, Brian R; Spangler, Benjamin; Zhang, Yaofang; Park, Hyo Min; Stahl, Andreas; Renslo, Adam R; Skaar, Eric P; Chang, Christopher J
2017-11-28
Iron is an essential metal for all organisms, yet disruption of its homeostasis, particularly in labile forms that can contribute to oxidative stress, is connected to diseases ranging from infection to cancer to neurodegeneration. Iron deficiency is also among the most common nutritional deficiencies worldwide. To advance studies of iron in healthy and disease states, we now report the synthesis and characterization of iron-caged luciferin-1 (ICL-1), a bioluminescent probe that enables longitudinal monitoring of labile iron pools (LIPs) in living animals. ICL-1 utilizes a bioinspired endoperoxide trigger to release d-aminoluciferin for selective reactivity-based detection of Fe 2+ with metal and oxidation state specificity. The probe can detect physiological changes in labile Fe 2+ levels in live cells and mice experiencing iron deficiency or overload. Application of ICL-1 in a model of systemic bacterial infection reveals increased iron accumulation in infected tissues that accompany transcriptional changes consistent with elevations in both iron acquisition and retention. The ability to assess iron status in living animals provides a powerful technology for studying the contributions of iron metabolism to physiology and pathology.
Pituitary iron and volume imaging in healthy controls.
Noetzli, L J; Panigrahy, A; Hyderi, A; Dongelyan, A; Coates, T D; Wood, J C
2012-02-01
Patients with transfusional iron overload develop iron deposits in the pituitary gland, which are associated with volume loss and HH. The purpose of this study was to characterize R2 and volumetric data in a healthy population for diagnostic use in patients with transfusional iron overload. One hundred healthy controls without iron overload between the ages of 2 and 48 were recruited to have MR imaging of the brain to assess their pituitary R2 and volume. Pituitary R2 was assessed with a 8-echo spin-echo sequence, and pituitary volumes, by a 3D spoiled gradient-echo sequence with 1-mm(3) resolution. A 2-component continuous piecewise linear approximation was used for creating volumetric and R2 nomograms. Equations were generated from regression relationships for convenient z-score calculation. Pituitary R2 rose weakly with age (r(2) = 0.19, P < .0001). Anterior and total pituitary volumes increased steadily up to 18 years of age, after which volume slightly decreased. Females had larger pituitary glands, most likely representing their larger lactotroph population. From these data, a clinician can calculate the z scores for R2 and pituitary volume in patients with iron overload. Normal ranges are well-differentiated from values previously associated with endocrine disease in transfusional siderosis; this finding suggests that preclinical iron overload can be recognized and appropriately treated.
Gao, Wanxia; Zhao, Jie; Gao, Zhonghong
2017-01-01
It is well known that iron overload promotes alcoholic liver injury, but the doses of iron or alcohol used in studies are usually able to induce liver injury independently. Little attention has been paid to the coexistence of low alcohol consumption and mild iron overload when either of them is insufficient to cause obvious liver damage, although this situation is very common among some people. We studied the interactive effects and the underlining mechanism of mild doses of iron and alcohol on liver injury in a mouse model. Forty eight male Kunming mice were randomly divided into four groups: control, iron (300 mg/kg iron dextran, i.p.), alcohol (2 g/kg/day ethanol for four weeks i.g.), and iron plus alcohol group. After 4 weeks of treatment, mice were sacrificed and blood and livers were collected for biochemical analysis. Protein nitration level in liver tissue was determined by immunoprecipitation and Western blot analysis. Although neither iron overload nor alcohol consumption at our tested doses can cause severe liver injury, it was found that co-administration of the same doses of alcohol and iron resulted in liver injury and hepatic dysfunction, accompanied with elevated ratio of NADH/NAD+, reduced antioxidant ability, increased oxidative stress, and subsequent elevated protein nitration level. Further study revealed that triosephosphate isomerase, an important glycolytic enzyme, was one of the targets to be oxidized and nitrated, which was responsible for its inactivation. These data indicate that even under low alcohol intake, a certain amount of iron overload can cause significant liver oxidative damage, and the modification of triosephosphate isomerasemight be the important underlining mechanism of hepatic dysfunction. PMID:28103293
Lu, Nai-Hao; Chen, Chao; He, Ying-Jie; Tian, Rong; Xiao, Qiang; Peng, Yi-Yuan
2013-01-01
Flavonoids have been widely reported to protect liver injury in iron-overload diseases, where the mechanism of this therapeutic action is dependent on their antioxidant effects, including free radical scavenging and metal-chelating. In this study, in contrast to the significant decrease in iron content, quercetin (Qu) from lower diet (0.3%, w/w) showed pro-oxidant ability on protein carbonyl formation and exhibited unobvious effect on iron-overload rat liver injury. Furthermore, the anti- and pro-oxidant activities of Qu on hemoglobin (Hb)-dependent redox reactions (i.e. the oxidative stability of Hb and its cytotoxic ferryl intermediate, Hb-induced protein oxidation) were investigated to illustrate the elevated protein oxidation in lower Qu-treated iron-overload rat. It was found that superoxide (O₂·⁻) and hydrogen peroxide (H₂O₂) were generated during the reaction between Qu and Hb. Qu, however, effectively reduced ferryl intermediate back to ferric Hb in a biphasic kinetic reaction. Moreover, Qu could significantly aggravate Hb-H₂O₂-induced protein oxidation at low concentrations and exhibit protective effects at high concentrations. Different from the classic antioxidant mechanisms of Qu, the dual effects on Hb redox reactions in vitro, therefore, may provide new insights into the physiological and pharmacological implications of Qu with iron-overload disease.
El Sayed, Salah Mohamed; Abou-Taleb, Ashraf; Mahmoud, Hany Salah; Baghdadi, Hussam; Maria, Reham A; Ahmed, Nagwa Sayed; Nabo, Manal Mohamed Helmy
2014-08-01
Iron overload is a big challenge when treating thalassemia (TM), hemochromatosis and sideroblastic anemia. It persists even after cure of TM with bone marrow transplantation. Iron overload results from increased iron absorption and repeated blood transfusions causing increased iron in plasma and interstitial fluids. Iron deposition in tissues e.g. heart, liver, endocrine glands and others leads to tissue damage and organ dysfunction. Iron chelation therapy and phlebotomy for iron overload have treatment difficulties, side effects and contraindications. As mean iron level in skin of TM patients increases by more than 200%, percutaneous iron excretion may be beneficial. Wet cupping therapy (WCT) is a simple, safe and economic treatment. WCT is a familiar treatment modality in some European countries and in Chinese hospitals in treating different diseases. WCT was reported to clear both blood plasma and interstitial spaces from causative pathological substances (CPS). Standard WCT method is Al-hijamah (cupping, puncturing and cupping, CPC) method of WCT that was reported to clear blood and interstitial fluids better than the traditional WCT (puncturing and cupping method, PC method of WCT). In other word, traditional WCT may be described as scarification and suction method (double S technique), while Al-hijamah may be described as suction, scarification and suction method (triple S technique). Al-hijamah is a more comprehensive treatment modality that includes all steps and therapeutic benefits of traditional dry cupping therapy and WCT altogether according to the evidence-based Taibah mechanism (Taibah theory). During the first cupping step of Al-hijamah, a fluid mixture is collected inside skin uplifting due to the effect of negative pressure inside sucking cups. This fluid mixture contains collected interstitial fluids with CPS (iron, ferritin and hemolyzed RBCs in thalassemia), filtered fluids (from blood capillaries) with iron and hemolyzed blood cells (hemolyzed RBCs, WBCs and platelets). That fluid mixture does not contain intact blood cells (having diameters in microns) that are too big to pass through pores of skin capillaries (6-12nm in diameter) and cannot be filtered. Puncturing skin upliftings and applying second cupping step excrete collected fluids. Skin scarifications (shartat mihjam in Arabic) should be small, superficial (0.1mm in depth), short (1-2mm in length), multiple, evenly distributed and confined to skin upliftings. Sucking pressure inside cups (-150 to -420mmHg) applied to skin is transmitted to around skin capillaries to be added to capillary hydrostatic pressure (-33mmHg at arterial end of capillaries and -13mmHg at venous end of capillaries) against capillary osmotic pressure (+20mmHg). This creates a pressure gradient and a traction force across skin and capillaries and increases filtration at arterial end of capillaries at net pressure of -163 to -433mmHg and at venous end of capillaries at net pressure of -143 to -413mmHg resulting in clearance of blood from CPS (iron, ferritin and hemolyzed blood cells). Net filtration pressure at renal glomeruli is 10mmHg i.e. Al-hijamah exerts a more pressure-dependent filtration than renal glomeruli. Al-hijamah may benefit patients through inducing negative iron balance. Interestingly, Al-hijamah was reported to decrease serum ferritin significantly (by about 22%) in healthy subjects while excessive traditional WCT was reported to cause iron deficiency anemia. Al-hijamah is a highly recommended treatment in prophetic medicine. In conclusion, Al-hijamah may be a promising adjuvant treatment for iron overload in TM, hemochromatosis and sideroblastic anemia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schranz, Melanie; Talasz, Heribert; Graziadei, Ivo; Winder, Thomas; Sergi, Consolato; Bogner, Klaus; Vogel, Wolfgang; Zoller, Heinz
2009-03-01
Recent identification of genetic variants in iron storage disease has changed the classification system and diagnostic algorithms for hemochromatosis. Clinical diagnosis of the disease requires phenotypic evidence of iron overload because the commonly disease-associated HFE genotypes have an incomplete penetrance. Furthermore, approximately 20% of patients with a clinical diagnosis of hemochromatosis have no disease-associated genotype, which underlines the importance of clear phenotypic criteria of hemochromatosis. A diagnosis of hemochromatosis cannot be made even in patients with liver cirrhosis simply on the basis of genetic testing that indicates that iron overload is the cause of the disease and not its consequence. Proper diagnosis requires integration of clinical presentation, family history, and the results of biochemical and histopathologic tests. Here we propose a rational diagnostic algorithm for hepatic iron overload syndromes and illustrate potential pitfalls by presenting a family study in a pedigree with rare HFE variants (H63D and E168Q), in cis on the same chromosome. Although the clinical suspicion of hemochromatosis was confirmed by histology, chemical analysis of liver tissue revealed a normal hepatic iron concentration, which is compatible with the genetic finding of 1 normal and 1 doubly mutated allele. In conclusion, clinical suspicion of hemochromatosis and elevated serum iron parameters should prompt HFE genotyping for C282Y and H63D. Should they be uninformative, further genetic tests should be recommended only if iron overload in liver tissue has been confirmed chemically.
Pimková, Kristýna; Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Kotlín, Roman; Čermák, Jaroslav; Dyr, Jan Evangelista
2014-01-01
The role of oxidative stress in the initiation and progression of myelodysplastic syndromes (MDS) as a consequence of iron overload remains unclear. In this study we have simultaneously quantified plasma low-molecular-weight aminothiols, malondialdehyde, nitrite, and nitrate and have studied their correlation with serum iron/ferritin levels, patient treatment (chelation therapy), and clinical outcomes. We found significantly elevated plasma levels of total, oxidized, and reduced forms of cysteine (P < 0.001) , homocysteine (P < 0.001), and cysteinylglycine (P < 0.006) and significantly depressed levels of total and oxidized forms of glutathione (P < 0.03) and nitrite (P < 0.001) in MDS patients compared to healthy donors. Moreover, total (P < 0.032) and oxidized cysteinylglycine (P = 0.029) and nitrite (P = 0.021) differed significantly between the analyzed MDS subgroups with different clinical classifications. Malondialdehyde levels in plasma correlated moderately with both serum ferritin levels (r = 0.78, P = 0.001) and serum free iron levels (r = 0.60, P = 0.001) and were significantly higher in patients with iron overload. The other analyzed compounds lacked correlation with iron overload (represented by serum iron/ferritin levels). For the first time our results have revealed significant differences in the concentrations of plasma aminothiols in MDS patients, when compared to healthy donors. We found no correlation of these parameters with iron overload and suggest the role of oxidative stress in the development of MDS disease. PMID:24669287
Pimková, Kristýna; Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Kotlín, Roman; Čermák, Jaroslav; Dyr, Jan Evangelista
2014-01-01
The role of oxidative stress in the initiation and progression of myelodysplastic syndromes (MDS) as a consequence of iron overload remains unclear. In this study we have simultaneously quantified plasma low-molecular-weight aminothiols, malondialdehyde, nitrite, and nitrate and have studied their correlation with serum iron/ferritin levels, patient treatment (chelation therapy), and clinical outcomes. We found significantly elevated plasma levels of total, oxidized, and reduced forms of cysteine (P < 0.001), homocysteine (P < 0.001), and cysteinylglycine (P < 0.006) and significantly depressed levels of total and oxidized forms of glutathione (P < 0.03) and nitrite (P < 0.001) in MDS patients compared to healthy donors. Moreover, total (P < 0.032) and oxidized cysteinylglycine (P = 0.029) and nitrite (P = 0.021) differed significantly between the analyzed MDS subgroups with different clinical classifications. Malondialdehyde levels in plasma correlated moderately with both serum ferritin levels (r = 0.78, P = 0.001) and serum free iron levels (r = 0.60, P = 0.001) and were significantly higher in patients with iron overload. The other analyzed compounds lacked correlation with iron overload (represented by serum iron/ferritin levels). For the first time our results have revealed significant differences in the concentrations of plasma aminothiols in MDS patients, when compared to healthy donors. We found no correlation of these parameters with iron overload and suggest the role of oxidative stress in the development of MDS disease.
Finkenstedt, Armin; Wolf, Elisabeth; Höfner, Elmar; Gasser, Bethina Isasi; Bösch, Sylvia; Bakry, Rania; Creus, Marc; Kremser, Christian; Schocke, Michael; Theurl, Milan; Moser, Patrizia; Schranz, Melanie; Bonn, Guenther; Poewe, Werner; Vogel, Wolfgang; Janecke, Andreas R.; Zoller, Heinz
2010-01-01
Background & Aims Aceruloplasminemia is a rare autosomal recessive neurodegenerative disease associated with brain and liver iron accumulation which typically presents with movement disorders, retinal degeneration, and diabetes mellitus. Ceruloplasmin is a multi-copper ferroxidase that is secreted into plasma and facilitates cellular iron export and iron binding to transferrin. Results A novel homozygous ceruloplasmin gene mutation, c.2554+1G>T, was identified as the cause of aceruloplasminemia in three affected siblings. Two siblings presented with movement disorders and diabetes. Complementary DNA sequencing showed that this mutation causes skipping of exon 14 and deletion of amino acids 809–852 while preserving the open reading frame. Western blotting of liver extracts and sera of affected patients showed retention of the abnormal protein in the liver. Aceruloplasminemia was associated with severe brain and liver iron overload, where hepatic mRNA expression of the iron hormone hepcidin was increased, corresponding to the degree of iron overload. Hepatic iron concentration normalized after 3 and 5 months of iron chelation therapy with deferasirox, which was also associated with reduced insulin demands. During short term treatment there was no clinical or imaging evidence for significant effects on brain iron overload. Conclusions Aceruloplasminemia can show an incomplete clinical penetrance but is invariably associated with iron accumulation in the liver and in the brain. Iron accumulation in aceruloplasminemia is a result of defective cellular iron export, where hepcidin regulation is appropriate for the degree of iron overload. Iron chelation with deferasirox was effective in mobilizing hepatic iron but has no effect on brain iron. PMID:20801540
Wang, Heyang; Li, Hongxia; Jiang, Xin; Shi, Wencai; Shen, Zhilei; Li, Min
2014-05-01
Iron overload is frequently observed in type 2 diabetes mellitus (DM2), but the underlying mechanisms remain unclear. We hypothesize that hepcidin may be directly regulated by insulin and play an important role in iron overload in DM2. We therefore examined the hepatic iron content, serum iron parameters, intestinal iron absorption, and liver hepcidin expression in rats treated with streptozotocin (STZ), which was given alone or after insulin resistance induced by a high-fat diet. The direct effect of insulin on hepcidin and its molecular mechanisms were furthermore determined in vitro in HepG2 cells. STZ administration caused a significant reduction in liver hepcidin level and a marked increase in intestinal iron absorption and serum and hepatic iron content. Insulin obviously upregulated hepcidin expression in HepG2 cells and enhanced signal transducer and activator of transcription 3 protein synthesis and DNA binding activity. The effect of insulin on hepcidin disappeared when the signal transducer and activator of transcription 3 pathway was blocked and could be partially inhibited by U0126. In conclusion, the current study suggests that hepcidin can be directly regulated by insulin, and the suppressed liver hepcidin synthesis may be an important reason for the iron overload in DM2.
Vasanawala, Shreyas S; Yu, Huanzhou; Shimakawa, Ann; Jeng, Michael; Brittain, Jean H
2012-01-01
MRI imaging of hepatic iron overload can be achieved by estimating T(2) values using multiple-echo sequences. The purpose of this work is to develop and clinically evaluate a weighted least squares algorithm based on T(2) Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation (IDEAL) technique for volumetric estimation of hepatic T(2) in the setting of iron overload. The weighted least squares T(2) IDEAL technique improves T(2) estimation by automatically decreasing the impact of later, noise-dominated echoes. The technique was evaluated in 37 patients with iron overload. Each patient underwent (i) a standard 2D multiple-echo gradient echo sequence for T(2) assessment with nonlinear exponential fitting, and (ii) a 3D T(2) IDEAL technique, with and without a weighted least squares fit. Regression and Bland-Altman analysis demonstrated strong correlation between conventional 2D and T(2) IDEAL estimation. In cases of severe iron overload, T(2) IDEAL without weighted least squares reconstruction resulted in a relative overestimation of T(2) compared with weighted least squares. Copyright © 2011 Wiley-Liss, Inc.
Schnitzler, C M; Schnaid, E; MacPhail, A P; Mesquita, J M; Robson, H J
2005-02-01
Osteoporosis and femoral neck fractures (FNF) are uncommon in black Africans although osteoporosis accompanying iron overload (from traditional beer brewed in iron containers) associated with ascorbic acid deficiency (oxidative catabolism by iron) has been described from sub-Saharan Africa. This study describes histomorphometric findings of iliac crest bone biopsies and serum biochemical markers of iron overload and of alcohol abuse and ascorbic acid levels in 50 black patients with FNFs (29 M, 21 F), age 62 years (40-95) years (median [min-max]), and in age- and gender-matched black controls. We found evidence of iron overload in 88% of patients and elevated markers of alcohol abuse in 72%. Significant correlations between markers of iron overload and of alcohol abuse reflect a close association between the two toxins. Patients had higher levels of iron markers, i.e., siderin deposits in bone marrow (P < 0.0001), chemical non-heme bone iron (P = 0.012), and serum ferritin (P = 0.017) than controls did. Leukocyte ascorbic acid levels were lower (P = 0.0008) than in controls. The alcohol marker mean red blood cell volume was elevated (P = 0.002) but not liver enzymes or uric acid. Bone volume, trabecular thickness, and trabecular number were lower, and trabecular separation was greater in patients than in controls, all at P < 0.0005; volume, surface, and thickness of osteoid were lower and eroded surface was greater, all at P < 0.0001. There was no osteomalacia. Ascorbic acid deficiency accounted significantly for decrease in bone volume and trabecular number, and increase in trabecular separation, osteoid surface, and eroded surface; iron overload accounted for a reduction in mineral apposition rate. Alcohol markers correlated negatively with osteoblast surface and positively with eroded surface. Relative to reported data in white FNF patients, the osteoporosis was more severe, showed lower osteoid variables and greater eroded surface; FNFs occurred 12 years earlier and were more common among men. We conclude that the osteoporosis underlying FNFs in black Africans is severe, with marked uncoupling of resorption and formation in favor of resorption. All three factors--ascorbic acid deficiency, iron overload, and alcohol abuse--contributed to the osteoporosis, in that order.
Genetics Home Reference: African iron overload
... Hemochromatosis and Iron Overload Screening (HEIRS) Study. Blood Cells Mol Dis. 2007 May-Jun;38(3):247-52. Epub 2007 Feb 5. ... are genome editing and CRISPR-Cas9? What is precision medicine? What is newborn ...
Iron overload and HFE gene mutations in Polish patients with liver cirrhosis.
Sikorska, Katarzyna; Romanowski, Tomasz; Stalke, Piotr; Iżycka-Świeszewska, Ewa; Bielawski, Krzysztof Piotr
2011-06-01
Increased liver iron stores may contribute to the progression of liver injury and fibrosis, and are associated with a higher risk of hepatocellular carcinoma development. Pre-transplant symptoms of iron overload in patients with liver cirrhosis are associated with higher risk of infectious and malignant complications in liver transplant recipients. HFE gene mutations may be involved in the pathogenesis of liver iron overload and influence the progression of chronic liver diseases of different origins. This study was designed to determine the prevalence of iron overload in relation to HFE gene mutations among Polish patients with liver cirrhosis. Sixty-one patients with liver cirrhosis included in the study were compared with a control group of 42 consecutive patients subjected to liver biopsy because of chronic liver diseases. Liver function tests and serum iron markers were assessed in both groups. All patients were screened for HFE mutations (C282Y, H63D, S65C). Thirty-six of 61 patients from the study group and all controls had liver biopsy performed with semiquantitative assessment of iron deposits in hepatocytes. The biochemical markers of iron overload and iron deposits in the liver were detected with a higher frequency (70% and 47% respectively) in patients with liver cirrhosis. There were no differences in the prevalence of all HFE mutations in both groups. In patients with a diagnosis of hepatocellular carcinoma, no significant associations with iron disorders and HFE gene mutations were found. Iron disorders were detected in patients with liver cirrhosis frequently but without significant association with HFE gene mutations. Only the homozygous C282Y mutation seems to occur more frequently in the selected population of patients with liver cirrhosis. As elevated biochemical iron indices accompanied liver iron deposits more frequently in liver cirrhosis compared to controls with chronic liver disease, there is a need for more extensive studies searching for the possible influence of non-HFE iron homeostasis regulators and their modulation on the course of chronic liver disease and liver cirrhosis.
Iron overload in patients with myelodysplastic syndromes: An updated overview.
Moukalled, Nour M; El Rassi, Fuad A; Temraz, Sally N; Taher, Ali T
2018-06-15
Myelodysplastic syndromes (MDS) encompass a heterogeneous group of clonal hematopoietic stem cell disorders characterized by a broad clinical spectrum related to ineffective hematopoiesis leading to unilineage or multilineage cytopenias, with a high propensity for transformation to acute myeloid leukemia. Iron overload has been recently identified as one of the important conditions complicating the management of these diverse disorders. The accumulation of iron is mainly related to chronic transfusions; however, evidence suggests a possible role for ineffective erythropoiesis and increased intestinal absorption of iron, related to altered hepcidin and growth differentiation factor-15 levels in the development of hemosiderosis in patients with MDS. In addition to its suggested role in the exacerbation of ineffective erythropoiesis, multiple reports have identified a prognostic implication for the development of iron overload in patients with MDS, with an improvement in overall survival after the initiation of iron chelation therapy. This review includes a detailed discussion of iron overload in patients with MDS whether they are undergoing supportive therapy or curative hematopoietic stem cell transplantation, with a focus on the mechanism, diagnosis, and effect on survival as well as the optimal management of this highly variable complication. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.
The impact of iron overload and its treatment on quality of life: results from a literature review
Abetz, Linda; Baladi, Jean-Francois; Jones, Paula; Rofail, Diana
2006-01-01
Background To assess the literature for the impact of iron overload and infusion Iron Chelation Therapy (ICT) on patients' quality of life (QoL), and the availability of QoL instruments for patients undergoing infusion ICT. Also, to obtain patients' experiences of having iron overload and receiving infusion ICT, and experts' clinical opinions about the impact of treatment on patients' lives. Methods A search of studies published between 1966 and 2004 was conducted using Medline and the Health Economic Evaluation Database (HEED). Qualitative results from patient and expert interviews were analysed. Hand searching of relevant conference abstracts completed the search. Results Few studies measuring the impact of ICT with deferoxamine (DFO) on patients QoL were located (n = 15). QoL domains affected included: depression; fatigue; dyspnoea; physical functioning; psychological distress; decrease in QoL during hospitalization. One theme in all articles was that oral ICT should improve QoL. No iron overload or ICT-specific QoL instruments were located in the articles. Interviews revealed that the impact of ICT on patients with thalassemia, sickle cell disease, and myelodysplastic syndromes is high. Conclusion A limited number of studies assessed the impact of ICT or iron overload on QoL. All literature suggested a need for easily administered, efficacious and well tolerated oral iron overload treatments, given the impact of current ICT on adherence. Poor adherence to ICT was documented to negatively impact survival. Further research is warranted to continue the qualitative and quantitative study of QoL using validated instruments in patients receiving ICT to further understanding the issues and improve patients QoL. PMID:17007645
Iron excess in recreational marathon runners.
Mettler, S; Zimmermann, M B
2010-05-01
Iron deficiency and anemia may impair athletic performance, and iron supplements are commonly consumed by athletes. However, iron overload should be avoided because of the possible long-term adverse health effects. We investigated the iron status of 170 male and female recreational runners participating in the Zürich marathon. Iron deficiency was defined either as a plasma ferritin (PF) concentration <15 microg/l (iron depletion) or as the ratio of the concentrations of transferrin receptor (sTfR) to PF (sTfR:log(PF) index) of > or =4.5 (functional iron deficiency). After excluding subjects with elevated C-reactive protein concentrations, iron overload was defined as PF >200 microg/l. Iron depletion was found in only 2 out of 127 men (1.6% of the male study population) and in 12 out of 43 (28.0%) women. Functional iron deficiency was found in 5 (3.9%) and 11 (25.5%) male and female athletes, respectively. Body iron stores, calculated from the sTfR/PF ratio, were significantly higher (P<0.001) among male compared with female marathon runners. Median PF among males was 104 microg/l, and the upper limit of the PF distribution in males was 628 microg/l. Iron overload was found in 19 out of 127 (15.0%) men but only 2 out of 43 in women (4.7%). Gender (male sex), but not age, was a predictor of higher PF (P<0.001). Iron depletion was present in 28% of female runners but in <2% of males, whereas one in six male runners had signs of iron overload. Although iron supplements are widely used by athletes in an effort to increase performance, our findings indicate excess body iron may be common in male recreational runners and suggest supplements should only be used if tests of iron status indicate deficiency.
Early Detection of Breast Cancer via Multiplane Correlation Breast Imaging
2007-04-01
thalassemia and sickle cell anemia) and Wilson’s disease (liver copper overload), are characterized by increased iron and copper concentration respectively...iron overload associated with thalassemia and sickle cell anemia) and Wilson’s disease (liver copper overload) are both characterized by increased...element concentration in the liver [4]. Patients suffering from thalassemia and sickle cell anemia often require weekly blood transfusions. With each
Anti-obesity and pro-diabetic effects of hemochromatosis.
Abbas, Mousa Al; Abraham, Deveraprabu; Kushner, James P; McClain, Donald A
2014-10-01
Levels of tissue iron contribute to determining diabetes risk, but little is known about the effects of higher iron levels on weight, and on the interaction of weight and iron overload on diabetes risk. Therefore, the effect of iron on body mass index and diabetes in individuals with iron overload from hereditary hemochromatosis (HH), compared to non-HH siblings and historical controls was examined. Chart reviews were performed on a cohort of adults (age ≥40, N = 101) with the common C282Y/C282Y HFE genotype, compared to wild type siblings (N = 32) and comparable NHANES cohorts, with respect to body mass index and diabetes status. Males with HH have lower body mass index (BMI) than control siblings. Females had a trend toward decreased BMI that was not significant, possibly related to decreased degrees of iron overload. In both males and females, increased rates of diabetes were seen, especially in the overweight or obese. High tissue iron levels may be both pro- and anti-diabetic. The prevalence of obesity and diabetes in HH is likely dependent upon the degree of iron overload, caloric intake, and other genetic and environmental factors, contributing to the observed heterogeneity in the frequency of disease-related morbidities in HH. Copyright © 2014 The Obesity Society.
Anti-Obesity and Pro-Diabetic Effects of Hemochromatosis
Abbas, Mousa Al; Abraham, Deveraprabu; Kushner, James P.; McClain, Donald A.
2014-01-01
Objective Levels of tissue iron contribute to determining diabetes risk, but little is known about the effects of higher iron levels on weight, nor on the interaction of weight and iron overload on diabetes risk. We therefore examined the effect of iron on body mass index and diabetes in individuals with iron overload from hereditary hemochromatosis (HH), compared to non-HH siblings and historical controls. Methods Chart reviews were performed on a cohort of adults (age ≥40, N=101) with the common C282Y/C282Y HFE genotype, compared to wild type siblings (N=32) and comparable NHANES cohorts, with respect to body mass index and diabetes status. Results Males with HH have lower body mass index (BMI) than control siblings. Females had a trend toward decreased BMI that was not significant, possibly related to decreased degrees of iron overload. In both males and females, increased rates of diabetes were seen, especially in the overweight or obese. Conclusions High tissue iron levels may be both pro- and anti-diabetic. The prevalence of obesity and diabetes in HH is likely dependent upon the degree of iron overload, caloric intake, and other genetic and environmental factors, contributing to the observed heterogeneity in the frequency of disease-related morbidities in HH. PMID:25044717
HFE gene mutations and Wilson's disease in Sardinia.
Sorbello, Orazio; Sini, Margherita; Civolani, Alberto; Demelia, Luigi
2010-03-01
Hypocaeruloplasminaemia can lead to tissue iron storage in Wilson's disease and the possibility of iron overload in long-term overtreated patients should be considered. The HFE gene encodes a protein that is intimately involved in intestinal iron absorption. The aim of this study was to determine the prevalence of the HFE gene mutation, its role in iron metabolism of Wilson's disease patients and the interplay of therapy in copper and iron homeostasis. The records of 32 patients with Wilson's disease were reviewed for iron and copper indices, HFE gene mutations and liver biopsy. Twenty-six patients were negative for HFE gene mutations and did not present significant alterations of iron metabolism. The HFE mutation was significantly associated with increased hepatic iron content (P<0.02) and transferrin saturation index (P<0.03). After treatment period, iron indices were significantly decreased only in HFE gene wild-type. The HFE gene mutations may be an addictional factor in iron overload in Wilson's disease. Our results showed that an adjustment of dosage of drugs could prevent further iron overload induced by overtreatment only in patients HFE wild-type. 2009. Published by Elsevier Ltd.
Wongjaikam, Suwakon; Kumfu, Sirinart; Khamseekaew, Juthamas; Chattipakorn, Siriporn C.; Chattipakorn, Nipon
2017-01-01
Intracellular calcium [Ca2+]i dysregulation plays an important role in the pathophysiology of iron overload cardiomyopathy. Although either iron chelators or antioxidants provide cardioprotection, a comparison of the efficacy of deferoxamine (DFO), deferiprone (DFP), deferasirox (DFX), N-acetyl cysteine (NAC) or a combination of DFP plus NAC on cardiac [Ca2+]i homeostasis in chronic iron overload has never been investigated. Male Wistar rats were fed with either a normal diet or a high iron (HFe) diet for 4 months. At 2 months, HFe rats were divided into 6 groups and treated with either a vehicle, DFO (25 mg/kg/day), DFP (75 mg/kg/day), DFX (20 mg/kg/day), NAC (100 mg/kg/day), or combined DFP plus NAC. At 4 months, the number of cardiac T-type calcium channels was increased, whereas cardiac sarcoplasmic-endoplasmic reticulum Ca2+ ATPase (SERCA) was decreased, leading to cardiac iron overload and impaired cardiac [Ca2+]i homeostasis. All pharmacological interventions restored SERCA levels. Although DFO, DFP, DFX or NAC alone shared similar efficacy in improving cardiac [Ca2+]i homeostasis, only DFP + NAC restored cardiac [Ca2+]i homeostasis, leading to restoring left ventricular function in the HFe-fed rats. Thus, the combined DFP + NAC was more effective than any monotherapy in restoring cardiac [Ca2+]i homeostasis, leading to restored myocardial contractility in iron-overloaded rats. PMID:28287621
Preza, Gloria C.; Ruchala, Piotr; Pinon, Rogelio; Ramos, Emilio; Qiao, Bo; Peralta, Michael A.; Sharma, Shantanu; Waring, Alan; Ganz, Tomas; Nemeth, Elizabeta
2011-01-01
Iron overload is the hallmark of hereditary hemochromatosis and a complication of iron-loading anemias such as β-thalassemia. Treatment can be burdensome and have significant side effects, and new therapeutic options are needed. Iron overload in hereditary hemochromatosis and β-thalassemia intermedia is caused by hepcidin deficiency. Although transgenic hepcidin replacement in mouse models of these diseases prevents iron overload or decreases its potential toxicity, natural hepcidin is prohibitively expensive for human application and has unfavorable pharmacologic properties. Here, we report the rational design of hepcidin agonists based on the mutagenesis of hepcidin and the hepcidin-binding region of ferroportin and computer modeling of their docking. We identified specific hydrophobic/aromatic residues required for hepcidin-ferroportin binding and obtained evidence in vitro that a thiol-disulfide interaction between ferroportin C326 and the hepcidin disulfide cage may stabilize binding. Guided by this model, we showed that 7–9 N-terminal amino acids of hepcidin, including a single thiol cysteine, comprised the minimal structure that retained hepcidin activity, as shown by the induction of ferroportin degradation in reporter cells. Further modifications to increase resistance to proteolysis and oral bioavailability yielded minihepcidins that, after parenteral or oral administration to mice, lowered serum iron levels comparably to those after parenteral native hepcidin. Moreover, liver iron concentrations were lower in mice chronically treated with minihepcidins than those in mice treated with solvent alone. Minihepcidins may be useful for the treatment of iron overload disorders. PMID:22045566
Preza, Gloria C; Ruchala, Piotr; Pinon, Rogelio; Ramos, Emilio; Qiao, Bo; Peralta, Michael A; Sharma, Shantanu; Waring, Alan; Ganz, Tomas; Nemeth, Elizabeta
2011-12-01
Iron overload is the hallmark of hereditary hemochromatosis and a complication of iron-loading anemias such as β-thalassemia. Treatment can be burdensome and have significant side effects, and new therapeutic options are needed. Iron overload in hereditary hemochromatosis and β-thalassemia intermedia is caused by hepcidin deficiency. Although transgenic hepcidin replacement in mouse models of these diseases prevents iron overload or decreases its potential toxicity, natural hepcidin is prohibitively expensive for human application and has unfavorable pharmacologic properties. Here, we report the rational design of hepcidin agonists based on the mutagenesis of hepcidin and the hepcidin-binding region of ferroportin and computer modeling of their docking. We identified specific hydrophobic/aromatic residues required for hepcidin-ferroportin binding and obtained evidence in vitro that a thiol-disulfide interaction between ferroportin C326 and the hepcidin disulfide cage may stabilize binding. Guided by this model, we showed that 7–9 N-terminal amino acids of hepcidin, including a single thiol cysteine, comprised the minimal structure that retained hepcidin activity, as shown by the induction of ferroportin degradation in reporter cells. Further modifications to increase resistance to proteolysis and oral bioavailability yielded minihepcidins that, after parenteral or oral administration to mice, lowered serum iron levels comparably to those after parenteral native hepcidin. Moreover, liver iron concentrations were lower in mice chronically treated with minihepcidins than those in mice treated with solvent alone. Minihepcidins may be useful for the treatment of iron overload disorders.
Iron chelation therapy for transfusional iron overload: a swift evolution.
Musallam, Khaled M; Taher, Ali T
2011-01-01
Chronic transfusional iron overload leads to significant morbidity and mortality. While deferoxamine (DFO) is an effective iron chelator with over four decades of experience, it requires tedious subcutaneous infusions that reflect negatively on patient compliance. The novel oral iron chelators deferiprone (L1) and deferasirox (DFRA) opened new horizons for the management of transfusional siderosis. A large body of evidence is now available regarding their efficacy and safety in various populations and settings. Nevertheless, experience with both drugs witnessed some drawbacks, and the search for an ideal and cost-effective iron chelator continues.
HDAC1 Governs Iron Homeostasis Independent of Histone Deacetylation in Iron-Overload Murine Models.
Yin, Xiangju; Wu, Qian; Monga, Jitender; Xie, Enjun; Wang, Hao; Wang, Shufen; Zhang, Huizhen; Wang, Zhan-You; Zhou, Tianhua; Shi, Yujun; Rogers, Jack; Lin, Hening; Min, Junxia; Wang, Fudi
2018-05-01
Iron-overload disorders are common and could lead to significant morbidity and mortality worldwide. Due to limited treatment options, there is a great need to develop novel strategies to remove the excess body iron. To discover potential epigenetic modulator in hepcidin upregulation and subsequently decreasing iron burden, we performed an epigenetic screen. The in vivo effects of the identified compounds were further tested in iron-overload mouse models, including Hfe -/- , Hjv -/- , and hepatocyte-specific Smad4 knockout (Smad4 fl/fl ;Alb-Cre + ) mice. Entinostat (MS-275), the clinical used histone deacetylase 1 (HDAC1) inhibitor, was identified the most potent hepcidin agonist. Consistently, Hdac1-deficient mice also presented higher hepcidin levels than wild-type controls. Notably, the long-term treatment with entinostat in Hfe -/- mice significantly alleviated iron overload through upregulating hepcidin transcription. In contrast, entinostat showed no effect on hepcidin expression and iron levels in Smad4 fl/fl ;Alb-Cre + mice. Further mechanistic studies revealed that HDAC1 suppressed expression of hepcidin through interacting with SMAD4 rather than deacetylation of SMAD4 or histone-H3 on the hepcidin promoter. The findings uncovered HDAC1 as a novel hepcidin suppressor through complexing with SMAD4 but not deacetylation of either histone 3 or SMAD4. In addition, our study suggested a novel implication of entinostat in treating iron-overload disorders. Based on our results, we conclude that entinostat strongly activated hepcidin in vivo and in vitro. HDAC1 could serve as a novel hepcidin suppressor by binding to SMAD4, effect of which is independent of BMP/SMAD1/5/8 signaling. Antioxid. Redox Signal. 28, 1224-1237.
Porter, John B
2009-01-01
The pathophysiological consequences of transfusional iron overload largely reflect the pattern of excess iron distribution and include cardiomyopathy, endocrinopathy, cirrhosis, and hepatocellular carcinoma. Since the introduction of desferrioxamine (DFO) in the late 1970s, these complications have fallen substantially but approximately half of the chelated adult patients with thalassemia major (TM) still show evidence of increased myocardial iron loading by MRI. An understanding of the factors that determine the propensity to extrahepatic iron distribution may be a key to minimizing the pathophysiological consequences of transfusional iron overload. Transfused patients with sickle cell disease (SCD) appear less likely to develop these extrahepatic complications, possibly because plasma nontransferrin-bound iron (NTBI) levels are typically lower than in TM patients at matched levels of iron loading. Other mechanisms that may reduce the extrahepatic iron distribution in SCD include raised plasma hepcidin due to chronic inflammation, lower growth differentiation factor 15 (GDF15) levels because of less ineffective erythropoiesis (IE), and induction of heme oxygenase (HO1) by intravascular hemolysis. Further understanding of these mechanisms may help in designing strategies to decrease extrahepatic iron distribution in TM.
Hydroxyurea could be a good clinically relevant iron chelator.
Italia, Khushnooma; Colah, Roshan; Ghosh, Kanjaksha
2013-01-01
Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.
Jacobs, Esther M G; Hendriks, Jan C M; van Deursen, Cees Th B M; Kreeftenberg, Herman G; de Vries, Richard A; Marx, Joannes J M; Stalenhoef, Anton F H; Verbeek, André L M; Swinkels, Dorine W
2009-01-01
In families of patients with clinically detected hereditary hemochromatosis (HH) early screening has been suggested to prevent morbidity and mortality. Here, we aim to identify determinants for iron overload in first-degree family members of C282Y homozygous probands with clinically detected HH. Data on HFE-genotype, iron parameters, demographics, lifestyle factors and health, were collected from 224 Dutch C282Y homozygous patients with clinically diagnosed HH and 735 of their first-degree family members (FDFM), all participating in the HEmochromatosis FAmily Study (HEFAS). The best predictive multivariable model forecasted 45% of variation of the serum ferritin levels. In this model severity of iron overload in the proband significantly predicted serum ferritin levels in FDFM. Other significant determinants in this model consisted of C282Y homozygosity, compound heterozygosity, age at testing for serum ferritin and supplemental iron intake, whereas a low body mass index showed a protective effect. This study provides a model to assess the risk of development of iron overload for relatives of probands with HH. These results might be instrumental in the development of an optimal strategy for future family screening programs.
Regulation of DMT1 on Bone Microstructure in Type 2 Diabetes
Zhang, Wei-Lin; Meng, Hong-Zheng; Yang, Mao-Wei
2015-01-01
Diabetic osteoporosis is gradually attracted people's attention. However, the process of bone microstructure changes in diabetic patients, and the exact mechanism of osteoblast iron overload are unclear. Therefore, the present study aimed to explore the function of DMT1 in the pathological process of diabetic osteoporosis. We build the type two diabetes osteoporosis models with SD rats and Belgrade rats, respectively. Difference expression of DMT1 was detected by using the method of immunohistochemistry and western blotting. Detection of bone microstructure and biomechanics and iron content for each group of samples. We found that DMT1 expression in type 2 diabetic rats was higher than that in normal rats. The bone biomechanical indices and bone microstructure in the rat model deficient in DMT1 was significantly better than that in the normal diabetic model. The loss of DMT1 can reduce the content of iron in bone. These findings indicate that DMT1 expression was enhanced in the bone tissue of type 2 diabetic rats, and plays an important role in the pathological process of diabetic osteoporosis. Moreover, DMT1 may be a potential therapeutic target for diabetic osteoporosis. PMID:26078704
Hankins, Jane S; Smeltzer, Matthew P; McCarville, M Beth; Aygun, Banu; Hillenbrand, Claudia M; Ware, Russell E; Onciu, Mihaela
2010-07-01
The rate and pattern of iron deposition and accumulation are important determinants of liver damage in chronically transfused patients. To investigate iron distribution patterns at various tissue iron concentrations, effects of chelation on hepatic iron compartmentalization, and differences between patients with sickle cell disease (SCD) and thalassemia major (TM), we prospectively investigated hepatic histologic and biochemical findings in 44 patients with iron overload (35 SCD and 9 TM). The median hepatic iron content (HIC) in patients with TM and SCD was similar at 12.9 and 10.3 mg Fe/g dry weight, respectively (P = 0.73), but patients with SCD had significantly less hepatic fibrosis and inflammation (P < 0.05), less hepatic injury, and significantly less blood exposure. Patients with SCD had predominantly sinusoidal iron deposition, but hepatocyte iron deposition was observed even at low HIC. Chelated patients had more hepatocyte and portal tract iron than non-chelated ones, but similar sinusoidal iron deposition. These data suggest that iron deposition in patients with SCD generally follows the traditional pattern of transfusional iron overload; however, parenchymal hepatocyte deposition also occurs early and chelation removes iron preferentially from the reticuloendothelium. Pathophysiological and genetic differences affecting iron deposition and accumulation in SCD and TM warrants further investigation.
Hfe and Hjv exhibit overlapping functions for iron signaling to hepcidin.
Kent, Patricia; Wilkinson, Nicole; Constante, Marco; Fillebeen, Carine; Gkouvatsos, Konstantinos; Wagner, John; Buffler, Marzell; Becker, Christiane; Schümann, Klaus; Santos, Manuela M; Pantopoulos, Kostas
2015-05-01
Functional inactivation of HFE or hemojuvelin (HJV) is causatively linked to adult or juvenile hereditary hemochromatosis, respectively. Systemic iron overload results from inadequate expression of hepcidin, the iron regulatory hormone. While HJV regulates hepcidin by amplifying bone morphogenetic protein (BMP) signaling, the role of HFE in the hepcidin pathway remains incompletely understood. We investigated the pathophysiological implications of combined Hfe and Hjv ablation in mice. Isogenic Hfe (-)/(-) and Hjv (-)/(-) mice were crossed to generate double Hfe (-)/(-) Hjv (-)/(-) progeny. Wild-type control and mutant mice of all genotypes were analyzed for serum, hepatic, and splenic iron content, expression of iron metabolism proteins, and expression of hepcidin and Smad signaling in the liver, in response to a standard or an iron-enriched diet. As expected, Hfe (-)/(-) and Hjv (-)/(-) mice developed relatively mild or severe iron overload, respectively, which corresponded to the degree of hepcidin inhibition. The double Hfe (-)/(-) Hjv (-)/(-) mice exhibited an indistinguishable phenotype to single Hjv (-)/(-) counterparts with regard to suppression of hepcidin, serum and hepatic iron overload, splenic iron deficiency, tissue iron metabolism, and Smad signaling, under both dietary regimens. We conclude that the hemochromatotic phenotype caused by disruption of Hjv is not further aggravated by combined Hfe/Hjv deficiency. Our results provide genetic evidence that Hfe and Hjv operate in the same pathway for the regulation of hepcidin expression and iron metabolism. Combined disruption of Hfe and Hjv phenocopies single Hjv deficiency. Single Hjv(-)/(-) and double Hfe(-)/(-)Hjv(-)/(-) mice exhibit comparable iron overload. Hfe and Hjv regulate hepcidin via the same pathway.
The pathophysiology of transfusional iron overload.
Porter, John B; Garbowski, Maciej
2014-08-01
The pathophysiologic consequences of transfusional iron overload (TIO) as well as the benefits of iron chelation therapy are best described in thalassemia major, although TIO is increasingly seen in other clinical settings. These consequences broadly reflect the levels and distribution of excess storage iron in the heart, endocrine tissues, and liver. TIO also increases the risk of infection, due to increased availability of labile iron to microorganisms. The authors suggest that extrahepatic iron distribution, and hence toxicity, is influenced by balance between generation of nontransferrin-bound iron from red cell catabolism and the utilization of transferrin iron by the erythron. Copyright © 2014 Elsevier Inc. All rights reserved.
Skidmore, F M; Drago, V; Foster, P; Schmalfuss, I M; Heilman, K M; Streiff, R R
2008-04-01
Hereditary aceruloplasminaemia is a disorder of iron metabolism that is characterised by iron accumulation in the brain and other visceral organs. In previously reported cases, individuals with the disorder were noted to have evidence of iron accumulation in the brain. Oral chelating agents have not been used in neurological diseases of iron metabolism. A 54-year-old woman who presented with ataxia, lower extremity spasticity and chorea was evaluated for evidence of the source of neurological dysfunction. Blood studies revealed no detectable ceruloplasmin. Marked iron overload was defined by a liver biopsy, which showed a variegated pattern consistent with a primary cause of iron overload. Review of MRI scans showed progressive brain atrophy without visible iron accumulation occurring over a 5-year period. The history suggested that neurodegeneration was coincident with aggressive oral iron replacement. Oral chelation improved many symptoms. Our findings in this patient suggest that disorders of iron transport such as aceruloplasminaemia can be a cause of neurological symptoms such as chorea and cognitive decline, as well as progressive neurodegeneration in the absence of visible iron on MRI scans. We found that oral iron chelation was effective at improving symptoms.
Zhang, Ying; Wang, Hao; Cui, Lijing; Zhang, Yuanyuan; Liu, Yang; Chu, Xi; Liu, Zhenyi; Zhang, Jianping; Chu, Li
2015-01-01
Iron overload cardiomyopathy results from iron accumulation in the myocardium that is closely linked to iron-mediated myocardial fibrosis. Salvia miltiorrhiza (SM, also known as Danshen), a traditional Chinese medicinal herb, has been widely used for hundreds of years to treat cardiovascular diseases. Here, we investigated the effect and potential mechanism of SM on myocardial fibrosis induced by chronic iron overload (CIO) in mice. Kunming male mice (8 weeks old) were randomized to six groups of 10 animals each: control (CONT), CIO, low-dose SM (L-SM), high-dose SM (H-SM), verapamil (VRP) and deferoxamine (DFO) groups. Normal saline was injected in the CONT group. Mice in the other five groups were treated with iron dextran at 50 mg/kg per day intraperitoneally for 7 weeks, and those in the latter four groups also received corresponding daily treatments, including 3 g/kg or 6 g/kg of SM, 100 mg/kg of VRP, or 100 mg/kg of DFO. The iron deposition was estimated histologically using Prussian blue staining. Myocardial fibrosis was determined by Masson’s trichrome staining and hydroxyproline (Hyp) quantitative assay. Superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and protein expression levels of type I collagen (COL I), type I collagen (COL III), transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase-9 (MMP-9) were analyzed to investigate the mechanisms underlying the effects of SM against iron-overloaded fibrosis. Treatment of chronic iron-overloaded mice with SM dose-dependently reduced iron deposition levels, fibrotic area percentage, Hyp content, expression levels of COL I and COL III, as well as upregulated the expression of TGF- β1 and MMP-9 proteins in the heart. Moreover, SM treatment decreased MDA content and increased SOD activity. In conclusion, SM exerted activities against cardiac fibrosis induced by CIO, which may be attributed to its inhibition of iron deposition, as well as collagen metabolism and oxidative stress. PMID:25850001
Chuansumrit, Ampaiwan; Laothamathat, Jiraporn; Sirachainan, Nongnuch; Sungkarat, Witaya; Wongwerawattanakoon, Pakawan; Kumkrua, Patrapop
2016-08-01
MRI imaging is an alternative to serum ferritin for assessing iron overload in patients with thalassaemia disease. To correlate liver iron concentration (LIC) determined by MRI and clinical and biochemical parameters. An MRI study using cardiovascular magnetic resonance (CMR) tools to determine cardiac and liver iron was undertaken in adolescents with thalassaemia disease. Eighty-nine patients (48 males) with thalassaemia disease were enrolled. Seventy patients had been transfusion-dependent since a mean (SD) age of 3.8 (3.0) years, and 19 patients were not transfusiondependent. Mean (SD) haematocrit was 27.3 (2.9)%. Twenty-eight patients were splenectomized. Mean (SD) serum ferritin was 1673 (1506) μg/L. All transfusion-dependent patients received iron chelation at the mean (SD) age of 8.4 (3.5) years with either monotherapy of desferrioxamine, deferiprone, deferasirox or combined therapy of desferrioxamine and deferiprone, while only 5 of 19 patients who were not transfusion-dependent received oral chelation. The 89 patients underwent an MRI scan at the mean (SD) age of 14.8 (3.2) years. No patients had myocardial iron overload, but nine had severe liver iron overload, 27 had moderate liver iron overload, and 36 had mild liver iron overload. A significant correlation between liver T2* and serum ferritin was expressed as the equation: T2* (ms) = 28.080-7.629 log ferritin (μg/L) (r(2) 0.424, P = 0.0001). Patients with serum ferritin of >1000 to >2500 μg/L risked moderate and severe liver iron loading with the odds ratio ranging from 6.8 to 13.3 (95% CI 2.5-50.8). In thalassaemia, MRI is an alternative means of assessing iron stores, but when it is not available serum ferritin can be used to estimate liver T2*.
Im, Doo Soon; Jeon, Jeong Wook; Lee, Jin Soo; Won, Seok Joon; Cho, Sung Ig; Lee, Yong Beom; Gwag, Byoung Joo
2012-05-21
Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO. Copyright © 2012 Elsevier B.V. All rights reserved.
Estimating Tissue Iron Burden: Current Status and Future Prospects
Wood, John C.
2015-01-01
SUMMARY Iron overload is becoming an increasing problem as haemoglobinopathy patients gain greater access to good medical care and as therapies for myelodysplastic syndromes improve. Therapeutic options for iron chelation therapy have increased and many patients now receive combination therapies. However, optimal utilization of iron chelation therapy requires knowledge not only of the total body iron burden but the relative iron distribution among the different organs. The physiological basis for extrahepatic iron deposition is presented in order to help identify patients at highest risk for cardiac and endocrine complications. This manuscript reviews the current state of the art for monitoring global iron overload status as well as its compartmentalization. Plasma markers, computerized tomography, liver biopsy, magnetic susceptibility devices and magnetic resonance imaging (MRI) techniques are all discussed but MRI has come to dominate clinical practice. The potential impact of recent pancreatic and pituitary MRI studies on clinical practice are discussed as well as other works-in-progress. Clinical protocols are derived from experience in haemoglobinopathies but may provide useful guiding principles for other iron overload disorders, such as myelodysplastic syndromes. PMID:25765344
Rose, Christian; Ernst, Olivier; Hecquet, Bernard; Maboudou, Patrice; Renom, Pascale; Noel, Marie Pierre; Yakoub-Agha, Ibrahim; Bauters, Francis; Jouet, Jean Pierre
2007-06-01
We quantified and studied the impact of post transfusional iron overload alone in post allogeneic HSCT. Median number of RBCs was 18. Ferritin was 532 mg/L. Liver iron content (LIC) was 117 mmoles/gdw. Correlation RBCs and ferritin was (r=0.81); RBCs and LIC was (r=0.84). The high ferritin group differed from normal ferritin group in terms of RBCs transfused (p<10(-3)), ALT (p<0.009). But occurrence of liver dysfunction was not significant. Magnitude of iron overload correlates closely to the number of RBCs and is quantified by MRI. Impact on liver dysfunction is moderate in absence of co-morbidity.
Huang, Xi; Dai, Jisen; Huang, Chuanshu; Zhang, Qi; Bhanot, Opinder; Pelle, Edward
2007-10-01
Deferoxamine (DFO) is a drug widely used for iron overload treatment to reduce body iron burden. In the present study, it was shown in mouse epidermal JB6 cells that all iron compounds transiently induced extracellular signal-regulated kinases (ERK) phosphorylation, whereas DFO further enhanced ERK phosphorylation over long periods. The ERK phosphorylation by DFO treatment appears to be due to the inhibition of MAPK phosphatases (MKP) by DFO. The combined effects of iron-initiated MAPK activation and DFO-mediated MKP inhibition resulted in a synergistic enhancement on AP-1 activities. The results indicate that the interplay between MAPK and MKP is important in regulating the extent of AP-1 activation. It is known that administration of DFO in iron overload patients often results in allergic responses at the injection sites. The results suggest that this synergistic AP-1 activation might play a role in DFO-induced skin immune responses of iron overload patients.
Mutations in the HFE, TFR2, and SLC40A1 genes in patients with hemochromatosis.
Del-Castillo-Rueda, Alejandro; Moreno-Carralero, María-Isabel; Cuadrado-Grande, Nuria; Alvarez-Sala-Walther, Luis-Antonio; Enríquez-de-Salamanca, Rafael; Méndez, Manuel; Morán-Jiménez, María-Josefa
2012-10-15
Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype. Copyright © 2012. Published by Elsevier B.V.
Iron overload impact on P-ATPases.
Sousa, Leilismara; Pessoa, Marco Tulio C; Costa, Tamara G F; Cortes, Vanessa F; Santos, Herica L; Barbosa, Leandro Augusto
2018-03-01
Iron is a chemical element that is active in the fundamental physiological processes for human life, but its burden can be toxic to the body, mainly because of the stimulation of membrane lipid peroxidation. For this reason, the action of iron on many ATPases has been studied, especially on P-ATPases, such as the Na + ,K + -ATPase and the Ca 2+ -ATPase. On the Fe 2+ -ATPase activity, the free iron acts as an activator, decreasing the intracellular Fe 2+ and playing a protection role for the cell. On the Ca 2+ -ATPase activity, the iron overload decreases the enzyme activity, raising the cytoplasmic Ca 2+ and decreasing the sarco/endoplasmic reticulum and the Golgi apparatus Ca 2+ concentrations, which could promote an enzyme oxidation, nitration, and fragmentation. However, the iron overload effect on the Na + ,K + -ATPase may change according to the tissue expressions. On the renal cells, as well as on the brain and the heart, iron promotes an enzyme inactivation, whereas its effect on the erythrocytes seems to be the opposite, directly stimulating the ATPase activity, or stimulating it by signaling pathways involving ROS and PKC. Modulations in the ATPase activity may impair the ionic transportation, which is essential for cell viability maintenance, inducing irreversible damage to the cell homeostasis. Here, we will discuss about the iron overload effect on the P-ATPases, such as the Na + ,K + -ATPase, the Ca 2+ -ATPase, and the Fe 2+ -ATPase.
NASA Astrophysics Data System (ADS)
St. Pierre, T. G.; Chua-Anusorn, W.; Webb, J.; Macey, D. J.
2000-07-01
57Fe Mössbauer spectra of iron overloaded human spleen, rat spleen and rat liver tissue samples at 78 K were found to consist of a quadrupole doublet (major component) with magnetic sextet (minor component with fractional spectral area F s). The distributions of F s for spleen tissue from two different clinically identifiable groups (n = 7 and n = 12) of thalassemic patients were found to be significantly different. The value of F s for dietary-iron loaded rat liver was found to rise significantly with age/duration (up to 24 months) of iron loading.
Camacho, A; Simão, M; Ea, H-K; Cohen-Solal, M; Richette, P; Branco, J; Cancela, M L
2016-03-01
Hereditary hemochromatosis (HH) is a disease caused by mutations in the Hfe gene characterised by systemic iron overload and associated with an increased prevalence of osteoarthritis (OA) but the role of iron overload in the development of OA is still undefined. To further understand the molecular mechanisms involved we have used a murine model of HH and studied the progression of experimental OA under mechanical stress. OA was surgically induced in the knee joints of 10-week-old C57BL6 (wild-type) mice and Hfe-KO mice. OA progression was assessed using histology, micro CT, gene expression and immunohistochemistry at 8 weeks after surgery. Hfe-KO mice showed a systemic iron overload and an increased iron accumulation in the knee synovial membrane following surgery. The histological OA score was significantly higher in the Hfe-KO mice at 8 weeks after surgery. Micro CT study of the proximal tibia revealed increased subchondral bone volume and increased trabecular thickness. Gene expression and immunohistochemical analysis showed a significant increase in the expression of matrix metallopeptidase 3 (MMP-3) in the joints of Hfe-KO mice compared with control mice at 8 weeks after surgery. HH was associated with an accelerated development of OA in mice. Our findings suggest that synovial iron overload has a definite role in the progression of HH-related OA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Daher, Raed; Kannengiesser, Caroline; Houamel, Dounia; Lefebvre, Thibaud; Bardou-Jacquet, Edouard; Ducrot, Nicolas; de Kerguenec, Caroline; Jouanolle, Anne-Marie; Robreau, Anne-Marie; Oudin, Claire; Le Gac, Gerald; Moulouel, Boualem; Loustaud-Ratti, Veronique; Bedossa, Pierre; Valla, Dominique; Gouya, Laurent; Beaumont, Carole; Brissot, Pierre; Puy, Hervé; Karim, Zoubida; Tchernitchko, Dimitri
2016-03-01
Hereditary hemochromatosis is a heterogeneous group of genetic disorders characterized by parenchymal iron overload. It is caused by defective expression of liver hepcidin, the main regulator of iron homeostasis. Iron stimulates the gene encoding hepcidin (HAMP) via the bone morphogenetic protein (BMP)6 signaling to SMAD. Although several genetic factors have been found to cause late-onset hemochromatosis, many patients have unexplained signs of iron overload. We investigated BMP6 function in these individuals. We sequenced the BMP6 gene in 70 consecutive patients with a moderate increase in serum ferritin and liver iron levels who did not carry genetic variants associated with hemochromatosis. We searched for BMP6 mutations in relatives of 5 probands and in 200 healthy individuals (controls), as well as in 2 other independent cohorts of hyperferritinemia patients. We measured serum levels of hepcidin by liquid chromatography-tandem mass spectrometry and analyzed BMP6 in liver biopsy specimens from patients by immunohistochemistry. The functions of mutant and normal BMP6 were assessed in transfected cells using immunofluorescence, real-time quantitative polymerase chain reaction, and immunoblot analyses. We identified 3 heterozygous missense mutations in BMP6 (p.Pro95Ser, p.Leu96Pro, and p.Gln113Glu) in 6 unrelated patients with unexplained iron overload (9% of our cohort). These mutations were detected in less than 1% of controls. p.Leu96Pro also was found in 2 patients from the additional cohorts. Family studies indicated dominant transmission. Serum levels of hepcidin were inappropriately low in patients. A low level of BMP6, compared with controls, was found in a biopsy specimen from 1 patient. In cell lines, the mutated residues in the BMP6 propeptide resulted in defective secretion of BMP6; reduced signaling via SMAD1, SMAD5, and SMAD8; and loss of hepcidin production. We identified 3 heterozygous missense mutations in BMP6 in patients with unexplained iron overload. These mutations lead to loss of signaling to SMAD proteins and reduced hepcidin production. These mutations might increase susceptibility to mild-to-moderate late-onset iron overload. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Jastaniah, Wasil; Harmatz, Paul; Pakbaz, Zahra; Fischer, Roland; Vichinsky, Elliott; Walters, Mark C
2008-02-01
While it is appropriate to treat transfusional iron overload to limit end-organ injury after bone marrow transplantation (BMT) for beta-thalassemia major (TM), this approach after BMT for sickle cell disease (SCD) and hematological malignancies has not been studied. Fifteen children with SCD (n = 4), TM (n = 6), or acute myelogenous leukemia (AML, n = 5) underwent HLA-identical sibling BMT between 2000 and 2003. Prospective evaluations of iron biomarkers were performed and the three groups were compared. The pre-BMT duration and volume of RBC transfusions varied among the three groups, but baseline ferritin and liver iron concentration (LIC) were similar. In contrast, liver histology differed. Liver inflammation was present in four TM patients and portal fibrosis was observed in five TM and one SCD patient. Hepatic veno-occlusive disease (VOD) developed in 5 of 15 patients. VOD was not associated with age, ferritin, ALT, or transfusions, but an association with liver inflammation and elevated LIC was suggested. Phlebotomy was performed in five patients after BMT. Changes in LIC were minimal in non-phlebotomized patients (P = 0.02). Iron biomarkers demonstrated significant iron overload before BMT in patients with malignant and non-malignant disorders. However, iron overload was associated with liver inflammation and VOD primarily in TM patients. The clinical significance of iron overload in patients after BMT remains uncertain, but this is the first study to suggest that VOD may be associated with transfusional iron burden. (c) 2007 Wiley-Liss, Inc.
Prognostic impact of posttransplantation iron overload after allogeneic stem cell transplantation.
Meyer, Sara C; O'Meara, Alix; Buser, Andreas S; Tichelli, André; Passweg, Jakob R; Stern, Martin
2013-03-01
In patients referred for allogeneic hematopoietic stem cell transplantation (HSCT), iron overload is frequent and associated with increased morbidity and mortality. Both the evolution of iron overload after transplantation and its correlation with late posttransplantation events are unknown. We studied 290 patients undergoing myeloablative allogeneic HSCT between 2000 and 2009. Serum ferritin, transferrin saturation, transferrin, iron, and soluble transferrin receptor were determined regularly between 1 and 60 months after HSCT, and values were correlated with transplantation outcome. Ferritin levels peaked in the first 3 months posttransplantation and then decreased to normal values at 5 years. Transferrin saturation and iron behaved analogously, whereas transferrin and soluble transferrin receptor increased after an early nadir. Landmark survival analysis showed that hyperferritinemia had a detrimental effect on survival in all periods analyzed (0 to 6 months P < .001; 6 to 12 months P < .001; 1 to 2 years P = .02; 2 to 5 years P = .002). This effect was independent of red blood cell transfusion dependency and graft-versus-host disease. Similar trends were seen for other iron parameters. These data show the natural dynamics of iron parameters in the setting of allogeneic HSCT and provide evidence for a prognostic role of iron overload extending beyond the immediate posttransplantation period. Interventions to reduce excessive body iron might therefore be beneficial both before and after HSCT. Copyright © 2013 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Synthetic and natural iron chelators: therapeutic potential and clinical use
Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V
2013-01-01
Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984
Rossi, Francesca; Perrotta, Silverio; Bellini, Giulia; Luongo, Livio; Tortora, Chiara; Siniscalco, Dario; Francese, Matteo; Torella, Marco; Nobili, Bruno; Di Marzo, Vincenzo; Maione, Sabatino
2014-01-01
The pathogenesis of bone resorption in β-thalassemia major is multifactorial and our understanding of the underlying molecular and cellular mechanisms remains incomplete. Considering the emerging importance of the endocannabinoid/endovanilloid system in bone metabolism, it may be instructive to examine a potential role for this system in the development of osteoporosis in patients with β-thalassemia major and its relationship with iron overload and iron chelation therapy. This study demonstrates that, in thalassemic-derived osteoclasts, tartrate-resistant acid phosphatase expression inversely correlates with femoral and lumbar bone mineral density, and directly correlates with ferritin levels and liver iron concentration. The vanilloid agonist resiniferatoxin dramatically reduces cathepsin K levels and osteoclast numbers in vitro, without affecting tartrate-resistant acid phosphatase expression. The iron chelators deferoxamine, deferiprone and deferasirox decrease both tartrate-resistant acid phosphatase and cathepsin K expression, as well as osteoclast activity. Taken together, these data show that transient receptor potential vanilloid type 1 activation/desensitization influences tartrate-resistant acid phosphatase expression and activity, and this effect is dependent on iron, suggesting a pivotal role for iron overload in the dysregulation of bone metabolism in patients with thalassemia major. Our applied pharmacology provides evidence for the potential of iron chelators to abrogate these effects by reducing osteoclast activity. Whether iron chelation therapy is capable of restoring bone health in humans requires further study, but the potential to provide dual benefits for patients with β-thalassemia major –preventing iron-overload and alleviating associated osteoporotic changes – is exciting. PMID:25216685
Iron Overload and Apoptosis of HL-1 Cardiomyocytes: Effects of Calcium Channel Blockade
Chen, Mei-pian; Cabantchik, Z. Ioav; Chan, Shing; Chan, Godfrey Chi-fung; Cheung, Yiu-fai
2014-01-01
Background Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured cardiomyocytes and ensuing apoptosis. Methods Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC. Results Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis. Conclusion Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other routes of iron ingress present in heart cells. PMID:25390893
Barton, James C; Barton, J Clayborn; Acton, Ronald T; So, Jeffrey; Chan, Susanne; Adams, Paul C
2012-04-01
We investigated the risk of death from iron overload among treated hemochromatosis probands who were homozygous for HFE C282Y and had serum levels of ferritin greater than 1000 μg/L at diagnosis. We compared serum levels of ferritin at diagnosis and other conditions with the rate of iron overload-associated death using data from 2 cohorts of probands with hemochromatosis who were homozygous for HFE C282Y (an Alabama cohort, n = 294, 63.9% men and an Ontario cohort, n = 128, 68.8% men). We defined iron overload-associated causes of death as cirrhosis (including hepatic failure and primary liver cancer) caused by iron deposition and cardiomyopathy caused by myocardial siderosis. All probands received phlebotomy and other appropriate therapy. The mean survival times after diagnosis were 13.2 ± 7.3 y and 12.5 ± 8.3 y in Alabama and Ontario probands, respectively. Serum levels of ferritin greater than 1000 μg/L at diagnosis were observed in 30.1% and 47.7% of Alabama and Ontario probands, respectively. In logistic regressions of serum ferritin greater than 1000 μg/L, there were significant positive associations with male sex and cirrhosis in Alabama probands and with age, male sex, increased levels of alanine and aspartate aminotransferases, and cirrhosis in Ontario probands. Of probands with serum levels of ferritin greater than 1000 μg/L at diagnosis, 17.9% of those from Alabama and 14.8% of those from Ontario died of iron overload. Among probands with serum levels of ferritin greater than 1000 μg/L, the relative risk of iron overload-associated death was 5.4 for the Alabama group (95% confidence interval [CI], 2.2-13.1; P = .0002) and 4.9 for the Ontario group (95% CI, 1.1-22.0; P = .0359). In hemochromatosis probands homozygous for HFE C282Y, serum levels of ferritin greater than 1000 μg/L at diagnosis were positively associated with male sex and cirrhosis. Even with treatment, the relative risk of death from iron overload was 5-fold greater in probands with serum levels of ferritin greater than 1000 μg/L. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Rausa, Marco; Pagani, Alessia; Nai, Antonella; Campanella, Alessandro; Gilberti, Maria Enrica; Apostoli, Pietro; Camaschella, Clara; Silvestri, Laura
2015-01-01
Bmp6 is the main activator of hepcidin, the liver hormone that negatively regulates plasma iron influx by degrading the sole iron exporter ferroportin in enterocytes and macrophages. Bmp6 expression is modulated by iron but the molecular mechanisms are unknown. Although hepcidin is expressed almost exclusively by hepatocytes (HCs), Bmp6 is produced also by non-parenchymal cells (NPCs), mainly sinusoidal endothelial cells (LSECs). To investigate the regulation of Bmp6 in HCs and NPCs, liver cells were isolated from adult wild type mice whose diet was modified in iron content in acute or chronic manner and in disease models of iron deficiency (Tmprss6 KO mouse) and overload (Hjv KO mouse). With manipulation of dietary iron in wild-type mice, Bmp6 and Tfr1 expression in both HCs and NPCs was inversely related, as expected. When hepcidin expression is abnormal in murine models of iron overload (Hjv KO mice) and deficiency (Tmprss6 KO mice), Bmp6 expression in NPCs was not related to Tfr1. Despite the low Bmp6 in NPCs from Tmprss6 KO mice, Tfr1 mRNA was also low. Conversely, despite body iron overload and high expression of Bmp6 in NPCs from Hjv KO mice, Tfr1 mRNA and protein were increased. However, in the same cells ferritin L was only slightly increased, but the iron content was not, suggesting that Bmp6 in these cells reflects the high intracellular iron import and export. We propose that NPCs, sensing the iron flux, not only increase hepcidin through Bmp6 with a paracrine mechanism to control systemic iron homeostasis but, controlling hepcidin, they regulate their own ferroportin, inducing iron retention or release and further modulating Bmp6 production in an autocrine manner. This mechanism, that contributes to protect HC from iron loading or deficiency, is lost in disease models of hepcidin production. PMID:25860887
Barton, James C; Barton, J Clayborn; Adams, Paul C
2017-01-01
373 black participants had elevated screening and post-screening serum ferritin (SF) (> 300 μg/L men; > 200 μg/L women). We retrospectively studied SF and post-screening age; sex; body mass index; transferrin saturation (TS); ALT; AST; GGT; elevated C-reactive protein; ß-thalassemia; neutrophils; lymphocytes; monocytes; platelets; metacarpophalangeal joint hypertrophy; hepatomegaly; splenomegaly; diabetes; HFE H63D positivity; iron/alcohol intakes; and blood/erythrocyte transfusion units. Liver disease was defined as elevated ALT or AST. We computed correlations of SF and TS with: age; body mass index; ALT; AST; GGT; C-reactive protein; blood cell counts; and iron/alcohol. We compared participants with SF > 1,000 and ≤ 1,000 μg/L and performed regressions on SF. There were 237 men (63.5%). Mean age was 55 ± 13 (SD) y. 143 participants had liver disease (62 hepatitis B or C). There were significant correlations of SF: TS, ALT, AST, GGT, and monocytes (positive); and SF and TS with platelets (negative). 22 participants with SF > 1,000 μg/L had significantly higher median TS, ALT, and AST, and prevalences of anemia and transfusion > 10 units; and lower median platelets. Regression on SF revealed significant associations: TS; male sex; age; GGT; transfusion units (positive); and splenomegaly (negative) (p < 0.0001, 0.0016, 0.0281, 0.0025, 0.0001, and 0.0096, respectively). Five men with SF > 1,000 μg/L and elevated TS had presumed primary iron overload (hemochromatosis). Four participants had transfusion iron overload. Persistent hyperferritinemia in 373 black adults was associated with male sex, age, TS, GGT, and transfusion. 2.4% had primary iron overload (hemochromatosis) or transfusion iron overload.
Diagnosis and management of transfusion iron overload: The role of imaging
Wood, John C.
2010-01-01
The characterization of iron stores is important to prevent and treat iron overload. Serum markers such as ferritin, serum iron, iron binding capacity, transferrin saturation, and nontransferrin-bound iron can be used to follow trends in iron status; however, variability in these markers limits predictive power for any given individual. Liver iron represents the best single marker of total iron balance. Measures of liver iron include biopsy, superconducting quantum interference device, computer tomography, and magnetic resonance imaging (MRI). MRI is the most accurate and widely available noninvasive tool to assess liver iron. The main advantages of MRI include a low-rate of variability between measurements and the ability to assess iron loading in endocrine tissues, the heart and the liver. This manuscript describes the principles, validation, and clinical utility of MRI for tissue iron estimation. PMID:17963249
St Pierre, Tim G.
2015-01-01
Magnetic resonance imaging (MRI) has played a key role in studies of iron overload in transfusion‐dependent patients, providing insights into the relations among liver and cardiac iron loading, iron chelator dose, and morbidity. Currently, there is rapid uptake of these methods into routine clinical practice as part of the management strategy for iron overload in regularly transfused patients. Given the manifold methods of data acquisition and analysis, there are several potential pitfalls that may result in inappropriate decision making. Herein, we review the challenges of establishing suitable MRI techniques for tissue iron measurement in regularly transfused patients. PMID:26713769
Use of Magnetic Resonance Imaging to Monitor Iron Overload
Wood, John C.
2014-01-01
SYNOPSIS Treatment of iron overload requires robust estimates of total body iron burden and its response to iron chelation therapy. Compliance with chelation therapy varies considerably among patients and individual reporting is notoriously unreliable. Even with perfect compliance, intersubject variability in chelator effectiveness is extremely high, necessitating reliable iron estimates to guide dose titration. In addition, each chelator has a unique profile with respect to clearing iron stores from different organs. This chapter will present the tools available to clinicians monitoring their patients, focusing on non-invasive magnetic resonance imaging methods because they have become the de-facto standard of care. PMID:25064711
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomori, J.M.; Horev, G.; Tamary, H.
Iron deposits demonstrate characteristically shortened T2 relaxation times. Several previously published studies reported poor correlation between the in vivo hepatic 1/T2 measurements made by means of midfield magnetic resonance (MR) units and the hepatic iron content of iron-overloaded patients. In this study, the authors assessed the use of in vivo 1/T2 measurements obtained by means of MR imaging at 0.5 T using short echo times (13.4 and 30 msec) and single-echo-sequences as well as computed tomographic (CT) attenuation as a measure of liver iron concentration in 10 severely iron-overloaded patients with beta-thalassemia major. The iron concentrations in surgical wedge biopsymore » samples of the liver, which varied between 3 and 9 mg/g of wet weight (normal, less than or equal to 0.5 mg/g), correlated well (r = .93, P less than or equal to .0001) with the preoperative in vivo hepatic 1/T2 measurements. The CT attenuation did not correlate with liver iron concentration. Quantitative MR imaging is a readily available noninvasive method for the assessment of hepatic iron concentration in iron-overloaded patients, reducing the need for needle biopsies of the liver.« less
Hasebe, Takumu; Tanaka, Hiroki; Sawada, Koji; Nakajima, Shunsuke; Ohtake, Takaaki; Fujiya, Mikihiro; Kohgo, Yutaka
2017-03-01
Non-alcoholic fatty liver disease (NAFLD) is frequently accompanied by iron overload. However, because of the complex hepcidin-regulating molecules, the molecular mechanism underlying iron overload remains unknown. To identify the key molecule involved in NAFLD-associated iron dysregulation, we performed whole-RNA sequencing on the livers of obese mice. Male C57BL/6 mice were fed a regular or high-fat diet for 16 or 48 weeks. Internal iron was evaluated by plasma iron, ferritin or hepatic iron content. Whole-RNA sequencing was performed by transcriptome analysis using semiconductor high-throughput sequencer. Mouse liver tissues or isolated hepatocytes and sinusoidal endothelial cells were used to assess the expression of iron-regulating molecules. Mice fed a high-fat diet for 16 weeks showed excess iron accumulation. Longer exposure to a high-fat diet increased hepatic fibrosis and intrahepatic iron accumulation. A pathway analysis of the sequencing data showed that several inflammatory pathways, including bone morphogenetic protein (BMP)-SMAD signaling, were significantly affected. Sequencing analysis showed 2314 altered genes, including decreased mRNA expression of the hepcidin-coding gene Hamp. Hepcidin protein expression and SMAD phosphorylation, which induces Hamp, were found to be reduced. The expression of BMP-binding endothelial regulator (BMPER), which inhibits BMP-SMAD signaling by binding BMP extracellularly, was up-regulated in fatty livers. In addition, immunohistochemical and cell isolation analyses showed that BMPER was primarily expressed in the liver sinusoidal endothelial cells (LSECs) rather than hepatocytes. BMPER secretion by LSECs inhibits BMP-SMAD signaling in hepatocytes and further reduces hepcidin protein expression. These intrahepatic molecular interactions suggest a novel molecular basis of iron overload in NAFLD.
Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua
2018-06-05
Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.
Elalfy, Mohsen S; Saber, Maha M; Adly, Amira Abdel Moneam; Ismail, Eman A; Tarif, Mohamed; Ibrahim, Fatma; Elalfy, Omar M
2016-03-01
Vitamin C, as antioxidant, increases the efficacy of deferoxamine (DFO). To investigate the effects of vitamin C as an adjuvant therapy to the three used iron chelators in moderately iron-overloaded young vitamin C-deficient patients with β-thalassemia major (β-TM) in relation to tissue iron overload. This randomized prospective trial that included 180 β-TM vitamin C-deficient patients were equally divided into three groups (n = 60) and received DFO, deferiprone (DFP), and deferasirox (DFX). Patients in each group were further randomized either to receive vitamin C supplementation (100 mg daily) or not (n = 30). All patients received vitamin C (group A) or no vitamin C (group B) were followed up for 1 yr with assessment of transfusion index, hemoglobin, iron profile, liver iron concentration (LIC) and cardiac magnetic resonance imaging (MRI) T2*. Baseline vitamin C was negatively correlated with transfusion index, serum ferritin (SF), and LIC. After vitamin C therapy, transfusion index, serum iron, SF, transferrin saturation (Tsat), and LIC were significantly decreased in group A patients, while hemoglobin and cardiac MRI T2* were elevated compared with baseline levels or those in group B without vitamin C. The same improvement was found among DFO-treated patients post-vitamin C compared with baseline data. DFO-treated patients had the highest hemoglobin with the lowest iron, SF, and Tsat compared with DFP or DFX subgroups. Vitamin C as an adjuvant therapy possibly potentiates the efficacy of DFO more than DFP and DFX in reducing iron burden in the moderately iron-overloaded vitamin C-deficient patients with β-TM, with no adverse events. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Antioxidant-Mediated Effects in a Gerbil Model of Iron Overload
Otto-Duessel, Maya; Aguilar, Michelle; Moats, Rex; Wood, John C.
2010-01-01
Introduction Iron cardiomyopathy is a lethal complication of transfusion therapy in thalassemia major. Nutritional supplements decreasing cardiac iron uptake or toxicity would have clinical significance. Murine studies suggest taurine may prevent oxidative damage and inhibit Ca2+-channel-mediated iron transport. We hypothesized that taurine supplementation would decrease cardiac iron-overloaded toxicity by decreasing cardiac iron. Vitamin E and selenium served as antioxidant control. Methods Animals were divided into control, iron, taurine, and vitamin E/selenium groups. Following sacrifice, iron and selenium measurements, histology, and biochemical analyses were performed. Results No significant differences were found in heart and liver iron content between treatment groups, except for higher hepatic dry-weight iron concentrations in taurine-treated animals (p < 0.03). Serum iron increased with iron loading (751 ± 66 vs. 251 ± 54 μg/dl, p < 0.001) and with taurine (903 ± 136 μg/dl, p = 0.03). Conclusion Consistent with oxidative stress, iron overload increased cardiac malondialdehyde levels, decreased heart glutathione peroxidase (GPx) activity, and increased serum aspartate aminotransferase. Taurine ameliorated these changes, but only significantly for liver GPx activity. Selenium and vitamin E supplementation did not improve oxidative markers and worsened cardiac GPx activity. These results suggest that taurine acts primarily as an antioxidant rather than inhibiting iron uptake. Future studies should illuminate the complexity of these results. PMID:17940334
Liu, Zhuoming; Ciocea, Alieta
2014-01-01
Eukaryotes produce a siderophore-like molecule via a remarkably conserved biosynthetic pathway. 3-OH butyrate dehydrogenase (BDH2), a member of the short-chain dehydrogenase (SDR) family of reductases, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA). Depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of intracellular iron and mitochondrial iron deficiency in cultured mammalian cells, as well as in yeast cells and zebrafish embryos We disrupted murine bdh2 by homologous recombination to analyze the effect of bdh2 deletion on erythropoiesis and iron metabolism. bdh2 null mice developed microcytic anemia and tissue iron overload, especially in the spleen. Exogenous supplementation with 2,5-DHBA alleviates splenic iron overload in bdh2 null mice. Additionally, bdh2 null mice exhibit reduced serum iron. Although BDH2 has been proposed to oxidize ketone bodies, we found that BDH2 deficiency did not alter ketone body metabolism in vivo. In sum, our findings demonstrate a key role for BDH2 in erythropoiesis. PMID:24777603
SAITO, HIROSHI; TOMITA, AKIHIRO; OHASHI, HARUHIKO; MAEDA, HIDEAKI; HAYASHI, HISAO; NAOE, TOMOKI
2012-01-01
ABSTRACT We attempted to clarify the storage iron metabolism from the change in the serum ferritin level. We assumed that the nonlinear decrease in serum ferritin was caused by serum ferritin increase in iron mobilization. Under this assumption, we determined both ferritin and hemosiderin iron levels by computer-assisted simulation of the row of decreasing assay-dots of serum ferritin in 11 patients with normal iron stores free of both iron deficiency and iron overload; chronic hepatitis C (CHC) and iron deficiency anemia after treatment, and 11 patients with iron overload; hereditary hemochromatosis (HH) and transfusion-dependent anemias (TD). We determined the iron removal rates of 20 and 17 mg/day by administering mean doses of deferasirox at 631 and 616 mg/day in 2 TD during the period of balance of iron addition and removal as indicated by the serum ferritin returned to the previous level. The ferritin-per-hemosiderin ratio was almost the same in both HH and CHC. This matched the localized hepatic hemosiderin deposition in CHC with normal iron stores. We detected the ferritin increased by utilizing the hemosiderin iron in iron removal and the ferritin reduced by transforming ferritin into hemosiderin in iron additions. The iron storing capacity of hemosiderin was limitless, while that of ferritin was suppressed when ferritin iron exceeded around 5 grams. We confirmed the pathway of iron from hemosiderin to ferritin in iron mobilization, and that from ferritin to hemosiderin in iron deposition. Thus, serum ferritin kinetics enabled us to be the first to clinically clarify storage iron metabolism. PMID:22515110
β-Thalassemia and Polycythemia vera: targeting chronic stress erythropoiesis.
Crielaard, Bart J; Rivella, Stefano
2014-06-01
β-Thalassemia and Polycythemia vera are genetic disorders which affect the synthesis of red blood cells, also referred to as erythropoiesis. Although essentially different in clinical presentation - patients with β-thalassemia have an impairment in β-globin synthesis leading to defective erythrocytes and anemia, while patients with Polycythemia vera present with high hemoglobin levels because of excessive red blood cell synthesis - both pathologies may characterized by lasting high erythropoietic activity, i.e. chronic stress erythropoiesis. In both diseases, therapeutic strategies targeting chronic stress erythropoiesis may improve the address phenotype and prevent secondary pathology, such as iron overload. The current review will address the basic concepts of these strategies to reduce chronic stress erythropoiesis, which may have significant clinical implications in the near future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats.
Aziza, Samy Ali Hussein; Azab, Mohammed El-Said; El-Shall, Soheir Kamal
2014-08-01
Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. Natural flavonoids, as rutin, are well-known antioxidants and could be efficient protective agents. Therefore, the present study was undertaken to evaluate the protective influence of rutin supplementation to improve rat antioxidant systems against IOL-induced hepatic oxidative stress. Sixty male albino rats were randomly divided to three equal groups. The first group, the control, the second group, iron overload group, the third group was used as iron overload+rutin group. Rats received six doses of ferric hydroxide polymaltose (100 mg kg(-1) b.wt.) as one dose every two days, by intraperitoneal injections (IP) and administrated rutin (50 mg kg(-1) b.wt.) as one daily oral dose until the sacrificed day. Blood samples for serum separation and liver tissue specimens were collected three times, after three, four and five weeks from the onset of the experiment. Serum iron profiles total iron, Total Iron Binding Capacity (TIBC), Unsaturated Iron Binding Capacity (UIBC), transferrin (Tf) and Transferrin Saturation% (TS%)}, ferritin, albumin, total Protein, total cholesterol, triacylglycerols levels and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were determined. Moreover, total iron in the liver, L-malondialdehyde (L-MDA), glutathione (GSH), Nitric Oxide (NO) and Total Nucleic Acid (TNA) levels and glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) activities were also determined. The obtained results revealed that, iron overload (IOL) resulted in significant increase in serum iron, TIBC, Tf, TS% and ferritin levels and AST and ALT activities and also increased liver iron, L-MDA and NO levels. Meanwhile, it decreased serum UIBC, total cholesterol, triacylglycerols, albumin, total protein and liver GSH, TNA levels and Gpx, CAT and SOD activities when compared with the control group. Rutin administration to iron-overloaded rats resulted in significant decrease in serum total iron, TIBC, Tf, TS%, ferritin levels and AST and ALT activities and liver total iron, L-MDA and NO levels with significant increases in serum UIBC, albumin, total protein and total cholesterol levels and in liver GSH, CAT and SOD activities compared with the IOL group. This study provides in vivo evidence that rutin administration can improve the antioxidant defense systems against IOL-induced hepatic oxidative stress in rats. This protective effect in liver of iron-loaded rats may be due to both antioxidant and metal chelation activities.
Sikorska, Katarzyna; Stalke, Piotr; Romanowski, Tomasz; Rzepko, Robert; Bielawski, Krzysztof Piotr
2013-08-01
Liver steatosis and iron overload, which are frequently observed in chronic hepatitis C (CHC), may contribute to the progression of liver injury. This study aimed to evaluate the correlation between liver steatosis and iron overload in Polish patients with CHC compared to non-alcoholic fatty liver disease (NAFLD) and HFE-hereditary hemochromatosis (HH) patients. A total of 191 CHC patients were compared with 67 NAFLD and 21 HH patients. Liver function tests, serum markers of iron metabolism, cholesterol and triglycerides were assayed. The inflammatory activity, fibrosis, iron deposits and steatosis stages were assessed in liver specimens. HFE gene polymorphisms were investigated by PCR-RFLP. Liver steatosis was associated with obesity and diabetes mellitus. This disease was confirmed in 76/174 (44%) CHC patients, most of whom were infected with genotype 1. The average grade of steatosis was higher in NAFLD patients. CHC patients had significantly higher iron concentrations and transferrin saturations than NAFLD patients. Compared with CHC patients, HH patients had higher values of serum iron parameters and more intensive hepatocyte iron deposits without differences in the prevalence and intensity of liver steatosis. In the CHC group, lipids accumulation in hepatocytes was significantly associated with the presence of serum markers of iron overload. No correlation between the HFE gene polymorphism and liver steatosis in CHC patients was found. Liver steatosis was diagnosed in nearly half of CHC patients, most of whom were infected with genotype 1. The intensity of steatosis was lower in CHC patients than that in NAFLD patients because of a less frequent diagnosis of metabolic syndrome. Only in CHC patients were biochemical markers of iron accumulation positively correlated with liver steatosis; these findings were independent of HFE gene mutations.
Post-transfusional iron overload in the haemoglobinopathies.
Thuret, Isabelle
2013-03-01
In this report, we review the recent advances in evaluation and treatment of transfusional iron overload (IO). Results of the French thalassaemia registry are described. According to the disease, thalassaemia major or sickle cell anaemia, mechanisms and toxicity of iron overload, knowledge about IO long-term outcome and chelation treatment results, respective value of IO markers, differ. The recent tools evaluating organ specific IO and the diversification of iron chelator agents make possible to individualize chelation therapy in clinical practice. The severity of IO and the level of transfusional iron intake, the preferential localization of IO (heart/liver) as well as the tolerance and adherence profiles of the patient can now be taken into account. Introduction of cardiac magnetic resonance imaging for the quantification of myocardial iron and use of oral chelators have already been reported as decreasing the cardiac mortality rate related to IO in thalassaemia major patients. Long-term observation of patients under oral chelators will show if morbidity is also improving via a more continuous control of toxic iron and/or a better accessibility to cellular iron pools. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Cheong, June-Won; Kim, Hyeoung-Joon; Lee, Kyoo-Hyung; Yoon, Sung-Soo; Lee, Jae Hoon; Park, Hee-Sook; Kim, Ho Young; Shim, Hyeok; Seong, Chu-Myung; Kim, Chul Soo; Chung, Jooseop; Hyun, Myung Soo; Jo, Deog-Yeon; Jung, Chul Won; Sohn, Sang Kyun; Yoon, Hwi-Joong; Kim, Byung Soo; Joo, Young-Don; Park, Chi-Young; Min, Yoo Hong
2014-06-01
Transfusional iron overload and its consequences are challenges in chronically transfused patients with myelodysplastic syndromes (MDSs) or aplastic anemia (AA). This was a prospective, multicenter, open-label study to investigate the efficacy of deferasirox (DFX) by serial measurement of serum ferritin (S-ferritin) level, liver iron concentration (LIC) level using relaxation rates magnetic resonance imaging, and other laboratory variables in patients with MDS or AA. A total of 96 patients showing S-ferritin level of at least 1000 ng/mL received daily DFX for up to 1 year. At the end of the study, S-ferritin level was significantly decreased in MDS (p=0.02366) and AA (p=0.0009). LIC level was also significantly reduced by more than 6.7 mg Fe/g dry weight from baseline. Hemoglobin level and platelet counts were significantly increased from baseline (p=0.002 and p=0.025, respectively) for patients showing significant anemia or thrombocytopenia. Elevated alanine aminotransferase was also significantly decreased from baseline. This study shows that DFX is effective in reducing S-ferritin and LIC level in transfusional iron overload patients with MDS or AA and is well tolerated. In addition, positive effects in hematologic and hepatic function can be expected with DFX. Iron chelation treatment should be considered in transfused patients with MDS and AA when transfusion-related iron overload is documented. © 2013 AABB.
MFehi adipose tissue macrophages compensate for tissue iron pertubations in mice.
Hubler, Merla J; Erikson, Keith M; Kennedy, Arion J; Hasty, Alyssa H
2018-05-16
Resident adipose tissue macrophages (ATMs) play multiple roles to maintain tissue homeostasis, such as removing excess FFAs and regulation of extracellular matrix. The phagocytic nature and oxidative resiliency of macrophages not only allows them to function as innate immune cells but also to respond to specific tissue needs, such as iron homeostasis. MFe hi ATMs are a subtype of resident ATMs that we recently identified to have twice the intracellular iron content as other ATMs and elevated expression of iron handling genes. While studies have demonstrated iron homeostasis is important for adipocyte health, little is known about how MFe hi ATMs may respond to and influence AT iron availability. Two methodologies were used to address this question - dietary iron supplementation and intraperitoneal iron injection. Upon exposure to high dietary iron, MFe hi ATMs accumulated excess iron, while the iron content of MFe lo ATMs and adipocytes remained unchanged. In this model of chronic iron excess, MFe hi ATMs exhibited increased expression of genes involved in iron storage. In the injection model, MFe hi ATMs incorporated high levels of iron and adipocytes were spared iron overload. This acute model of iron overload was associated with increased numbers of MFe hi ATMs; 17% could be attributed to monocyte recruitment and 83% to MFe lo ATM incorporation into the MFe hi pool. The MFe hi ATM population maintained its low inflammatory profile and iron cycling expression profile. These studies expand the field's understanding of ATMs and confirm that they can respond as a tissue iron sink in models of iron overload.
Novel treatment options for transfusional iron overload in patients with myelodysplastic syndromes.
Goldberg, Stuart L
2007-12-01
Red blood cell transfusion dependency is common in myelodysplastic syndromes and is associated with inferior survival. The use of parenteral deferoxamine therapy for transfusional iron overload has been sparse, in part due to cumbersome administration schedules. Deferasirox is an oral iron-chelating agent with favorable pharmacokinetics, including a long half-life allowing continuous 24-hour chelation with once-daily dosing. Deferasirox produces dose-dependent reductions in liver iron content and reduces cardiac iron levels. In-vitro studies with deferasirox suggest improved cardiomyocyte contractility potentially important in reducing excess cardiac mortality noted in transfusion-dependent MDS. Deferasirox has a manageable safety profile with favorable patient satisfaction reports.
MRI for Iron Overload in Thalassemia.
Fernandes, Juliano Lara
2018-04-01
MRI is a key tool in the current management of patients with thalassemia. Given its capability of assessing iron overload in different organs noninvasively and without contrast, it has significant advantages over other metrics, including serum ferritin. Liver iron concentration can be measured either with relaxometry methods T2*/T2 or signal intensity ratio techniques. Myocardial iron can be assessed in the same examination through T2* imaging. In this review, we focus on showing how MRI evaluates iron in both organs and the clinical applications as well as practical approaches to using this tool by clinicians taking care of patients with thalassemia. Copyright © 2017 Elsevier Inc. All rights reserved.
21 CFR 866.5340 - Ferritin immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... affecting iron metabolism, such as hemochromatosis (iron overload) and iron deficiency amemia. (b... that consists of the reagents used to measure by immunochemical techniques the ferritin (an iron...
21 CFR 866.5340 - Ferritin immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... affecting iron metabolism, such as hemochromatosis (iron overload) and iron deficiency amemia. (b... that consists of the reagents used to measure by immunochemical techniques the ferritin (an iron...
21 CFR 866.5340 - Ferritin immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... affecting iron metabolism, such as hemochromatosis (iron overload) and iron deficiency amemia. (b... that consists of the reagents used to measure by immunochemical techniques the ferritin (an iron...
21 CFR 866.5340 - Ferritin immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... affecting iron metabolism, such as hemochromatosis (iron overload) and iron deficiency amemia. (b... that consists of the reagents used to measure by immunochemical techniques the ferritin (an iron...
Role of iron overload-induced macrophage apoptosis in the pathogenesis of peritoneal endometriosis.
Pirdel, Leila; Pirdel, Manijeh
2014-06-01
This article presents an overview of the involvement of iron overload-induced nitric oxide (NO) overproduction in apoptosis of peritoneal macrophages of women with endometriosis. We have postulated that the peritoneal iron overload originated from retrograde menstruation or bleeding lesions in the ectopic endometrium, which may contribute to the development of endometriosis by a wide range of mechanisms, including oxidative damage and chronic inflammation. Excessive NO production may also be associated with impaired clearance of endometrial cells by macrophages, which promotes cell growth in the peritoneal cavity. Therefore, further research of the mechanisms and consequences of macrophage apoptosis in endometriosis helps discover novel therapeutic strategies that are designed to prevent progression of endometriosis. © 2014 Society for Reproduction and Fertility.
Sickle cell anemia: the impact of discovery, politics, and business.
Xie, Lai-Hua; Doye, Angelia A; Conley, Eric; Gwathmey, Judith K
2013-11-01
Sickle cell anemia affects 100,000 African Americans. Frequent blood transfusions to prevent stroke lead to fatal iron-overload. Iron chelation with deferoxamine (DFO) requires expensive infusions. In the present study, we explore the feasibility of using a new delivery system for DFO, i.e., targeted liposome entrapped DFO (LDFO). Our results reveal that our novel formulation lowered the dosage requirements by 50%-75%, allowed for less frequent and shorter treatment durations, eliminating the need for a pump and the standard multi-night administration of DFO. In an iron-overloaded rat model, LDFO reduced iron in the liver, and also improved cardiac function. The lower dosage and improved safety profile makes our novel LDFO delivery system a highly desirable new therapy. Meanwhile, this system will also provide an ideal model for studying the mechanism of Fe overload-induced arrhythmias. The political and economic factors related to health care disparities are also discussed.
Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan
2017-01-01
Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional ferroportin-independent homeostasis mechanisms.
Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U.; Legewie, Stefan
2017-01-01
Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional ferroportin-independent homeostasis mechanisms. PMID:28068331
Role of glutaredoxin 3 in iron homeostasis
USDA-ARS?s Scientific Manuscript database
Iron is an essential mineral nutrient that is tightly regulated through mechanisms involving iron regulatory genes, intracellular storage, and iron recycling. Dysregulation of these mechanisms often results in either excess tissue iron accumulation (overload) or iron deficiency (anemia). Many bioche...
Iron excretion in iron dextran-overloaded mice
Musumeci, Marco; Maccari, Sonia; Massimi, Alessia; Stati, Tonino; Sestili, Paola; Corritore, Elisa; Pastorelli, Augusto; Stacchini, Paolo; Marano, Giuseppe; Catalano, Liviana
2014-01-01
Background Iron homeostasis in humans is tightly regulated by mechanisms aimed to conserve iron for reutilisation, with a negligible role played by excretory mechanisms. In a previous study we found that mice have an astonishing ability to tolerate very high doses of parenterally administered iron dextran. Whether this ability is linked to the existence of an excretory pathway remains to be ascertained. Materials and methods Iron overload was generated by intraperitoneal injections of iron dextran (1 g/kg) administered once a week for 8 weeks in two different mouse strains (C57bl/6 and B6D2F1). Urinary and faecal iron excretion was assessed by inductively coupling plasma-mass spectrometry, whereas cardiac and liver architecture was evaluated by echocardiography and histological methods. For both strains, 24-hour faeces and urine samples were collected and iron concentration was determined on days 0, 1 and 2 after iron administration. Results In iron-overloaded C57bl/6 mice, the faecal iron concentration increased by 218% and 157% on days 1 and 2, respectively (p<0.01). The iron excreted represented a loss of 14% of total iron administered. Similar but smaller changes was also found in B6D2F1 mice. Conversely, we found no significant changes in the concentration of iron in the urine in either of the strains of mice. In both strains, histological examination showed accumulation of iron in the liver and heart which tended to decrease over time. Conclusions This study indicates that mice have a mechanism for removal of excess body iron and provides insights into the possible mechanisms of excretion. PMID:24960657
In vivo behavior of NTBI revealed by automated quantification system.
Ito, Satoshi; Ikuta, Katsuya; Kato, Daisuke; Lynda, Addo; Shibusa, Kotoe; Niizeki, Noriyasu; Toki, Yasumichi; Hatayama, Mayumi; Yamamoto, Masayo; Shindo, Motohiro; Iizuka, Naomi; Kohgo, Yutaka; Fujiya, Mikihiro
2016-08-01
Non-Tf-bound iron (NTBI), which appears in serum in iron overload, is thought to contribute to organ damage; the monitoring of serum NTBI levels may therefore be clinically useful in iron-overloaded patients. However, NTBI quantification methods remain complex, limiting their use in clinical practice. To overcome the technical difficulties often encountered, we recently developed a novel automated NTBI quantification system capable of measuring large numbers of samples. In the present study, we investigated the in vivo behavior of NTBI in human and animal serum using this newly established automated system. Average NTBI in healthy volunteers was 0.44 ± 0.076 μM (median 0.45 μM, range 0.28-0.66 μM), with no significant difference between sexes. Additionally, serum NTBI rapidly increased after iron loading, followed by a sudden disappearance. NTBI levels also decreased in inflammation. The results indicate that NTBI is a unique marker of iron metabolism, unlike other markers of iron metabolism, such as serum ferritin. Our new automated NTBI quantification method may help to reveal the clinical significance of NTBI and contribute to our understanding of iron overload.
Prion protein modulates glucose homeostasis by altering intracellular iron.
Ashok, Ajay; Singh, Neena
2018-04-26
The prion protein (PrP C ), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic β-cell line 1.1B4. We report expression of PrP C on mouse pancreatic β-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP -/- ) were significantly lower than wild type (PrP +/+ ) controls. Silencing of PrP C in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrP C -dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP +/+ but not PrP -/- mice, indicating PrP C -mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP +/+ relative to PrP -/- mice, suggesting that PrP C -mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.
Pardo-Andreu, Gilberto L; Barrios, Mariela Forrellat; Curti, Carlos; Hernández, Ivones; Merino, Nelson; Lemus, Yeny; Martínez, Ioanna; Riaño, Annia; Delgado, René
2008-01-01
In vivo preventive effects of a Mangifera indica L extract (Vimang) or its major component mangiferin on iron overload injury have been studied in rats given respectively, 50, 100, 250 mg kg(-1) body weight of Vimang, or 40 mg kg(-1) body weight of mangiferin, for 7 days prior to, and for 7 days following the administration of toxic amounts of iron-dextran. Both Vimang or mangiferin treatment prevented iron overload in serum as well as liver oxidative stress, decreased serum and liver lipid peroxidation, serum GPx activity, and increased serum and liver GSH, serum SOD and the animals overall antioxidant condition. Serum iron concentration was decreased although at higher doses, Vimang tended to increase it; percent tranferrin saturation, liver weight/body mass ratios, liver iron content was decreased. Treatment increased serum iron-binding capacity and decreased serum levels of aspartate-amine transferase (ASAT) and alanine-amine transferase (ALAT), as well as the number of abnormal Kupffer cells in iron-loaded livers. It is suggested that besides acting as antioxidants, Vimang extract or its mangiferin component decrease liver iron by increasing its excretion. Complementing earlier in vitro results from our group, it appears possible to support the hypothesis that Vimang and mangiferin present therapeutically useful effects in iron overload related diseases.
Saliba, Antoine N; Harb, Afif R; Taher, Ali T
2015-01-01
Transfusional iron overload is a major target in the care of patients with transfusion-dependent thalassemia (TDT) and other refractory anemias. Iron accumulates in the liver, heart, and endocrine organs leading to a wide array of complications. In this review, we summarize the characteristics of the approved iron chelators, deferoxamine, deferiprone, and deferasirox, and the evidence behind the use of each, as monotherapy or as part of combination therapy. We also review the different guidelines on iron chelation in TDT. This review also discusses future prospects and directions in the treatment of transfusional iron overload in TDT whether through innovation in chelation or other therapies, such as novel agents that improve transfusion dependence. PMID:26124688
Badawy, Sherif M; Liem, Robert I; Rigsby, Cynthia K; Labotka, Richard J; DeFreitas, R Andrew; Thompson, Alexis A
2016-11-01
Transfusional iron overload represents a substantial challenge in the management of patients with sickle cell disease (SCD) who receive chronic or episodic red blood cell transfusions. Iron-induced cardiomyopathy is a leading cause of death in other chronically transfused populations but rarely seen in SCD. Study objectives were to: (i) examine the extent of myocardial and hepatic siderosis using magnetic resonance imaging (MRI) in chronically transfused SCD patients, and (ii) evaluate the relationship between long-term (over the 5 years prior to enrolment) mean serum ferritin (MSF), spot-ferritin values and liver iron content (LIC) measured using MRI and liver biopsy. Thirty-two SCD patients (median age 15 years) with transfusional iron overload were recruited from two U.S. institutions. Long-term MSF and spot-ferritin values significantly correlated with LIC by MRI-R2* (r = 0·77, P < 0·001; r = 0·82, P < 0·001, respectively). LIC by MRI-R2* had strong positive correlation with LIC by liver biopsy (r = 0·98, P < 0·001) but modest inverse correlation with cardiac MRI-T2* (r = -0·41, P = 0·02). Moderate to severe transfusional iron overload in SCD was not associated with aberrations in other measures of cardiac function based on echocardiogram or serum biomarkers. Our results suggest that SCD patients receiving chronic transfusions may not demonstrate significant cardiac iron loading irrespective of ferritin trends, LIC and erythropoiesis suppression. © 2016 John Wiley & Sons Ltd.
Aygun, Banu; Mortier, Nicole A.; Kesler, Karen; Lockhart, Alexandre; Schultz, William H.; Cohen, Alan R.; Alvarez, Ofelia; Rogers, Zora R.; Kwiatkowski, Janet L.; Miller, Scott T.; Sylvestre, Pamela; Iyer, Rathi; Lane, Peter A.; Ware, Russell E.
2015-01-01
SUMMARY Serial phlebotomy was performed on sixty children with sickle cell anaemia, stroke and transfusional iron overload randomized to hydroxycarbamide in the Stroke With Transfusions Changing to Hydroxyurea trial. There were 927 phlebotomy procedures with only 33 adverse events, all of which were grade 2. Among 23 children completing 30 months of study treatment, the net iron balance was favourable (−8.7 mg Fe/kg) with significant decrease in ferritin, although liver iron concentration remained unchanged. Therapeutic phlebotomy was safe and well-tolerated, with net iron removal in most children who completed 30 months of protocol-directed treatment. PMID:25612463
Aygun, Banu; Mortier, Nicole A; Kesler, Karen; Lockhart, Alexandre; Schultz, William H; Cohen, Alan R; Alvarez, Ofelia; Rogers, Zora R; Kwiatkowski, Janet L; Miller, Scott T; Sylvestre, Pamela; Iyer, Rathi; Lane, Peter A; Ware, Russell E
2015-04-01
Serial phlebotomy was performed on sixty children with sickle cell anaemia, stroke and transfusional iron overload randomized to hydroxycarbamide in the Stroke With Transfusions Changing to Hydroxyurea trial. There were 927 phlebotomy procedures with only 33 adverse events, all of which were grade 2. Among 23 children completing 30 months of study treatment, the net iron balance was favourable (-8·7 mg Fe/kg) with significant decrease in ferritin, although liver iron concentration remained unchanged. Therapeutic phlebotomy was safe and well-tolerated, with net iron removal in most children who completed 30 months of protocol-directed treatment. © 2015 John Wiley & Sons Ltd.
Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress.
Imam, Mustapha Umar; Zhang, Shenshen; Ma, Jifei; Wang, Hao; Wang, Fudi
2017-06-28
Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions.
Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress
Zhang, Shenshen; Ma, Jifei; Wang, Hao; Wang, Fudi
2017-01-01
Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions. PMID:28657578
Branco, Claudia C; Gomes, Cidália T; De Fez, Laura; Bulhões, Sara; Brilhante, Maria José; Pereirinha, Tânia; Cabral, Rita; Rego, Ana Catarina; Fraga, Cristina; Miguel, António G; Brasil, Gracinda; Macedo, Paula; Mota-Vieira, Luisa
2015-01-01
Iron overload is associated with acquired and genetic conditions, the most common being hereditary hemochromatosis (HH) type-I, caused by HFE mutations. Here, we conducted a hospital-based case-control study of 41 patients from the São Miguel Island (Azores, Portugal), six belonging to a family with HH type-I pseudodominant inheritance, and 35 unrelated individuals fulfilling the biochemical criteria of iron overload compatible with HH type-I. For this purpose, we analyzed the most common HFE mutations- c.845G>A [p.Cys282Tyr], c.187C>G [p.His63Asp], and c.193A>T [p.Ser65Cys]. Results revealed that the family's HH pseudodominant pattern is due to consanguineous marriage of HFE-c.845G>A carriers, and to marriage with a genetically unrelated spouse that is a -c.187G carrier. Regarding unrelated patients, six were homozygous for c.845A, and three were c.845A/c.187G compound heterozygous. We then performed sequencing of HFE exons 2, 4, 5 and their intron-flanking regions. No other mutations were observed, but we identified the -c.340+4C [IVS2+4C] splice variant in 26 (74.3%) patients. Functionally, the c.340+4C may generate alternative splicing by HFE exon 2 skipping and consequently, a protein missing the α1-domain essential for HFE/ transferrin receptor-1 interactions. Finally, we investigated HFE mutations configuration with iron overload by determining haplotypes and genotypic profiles. Results evidenced that carriers of HFE-c.187G allele also carry -c.340+4C, suggesting in-cis configuration. This data is corroborated by the association analysis where carriers of the complex allele HFE-c.[187C>G;340+4T>C] have an increased iron overload risk (RR = 2.08, 95% CI = 1.40-2.94, p<0.001). Therefore, homozygous for this complex allele are at risk of having iron overload because they will produce two altered proteins--the p.63Asp [c.187G], and the protein lacking 88 amino acids encoded by exon 2. In summary, we provide evidence that the complex allele HFE-c.[187C>G;340+4T>C] has a role, as genetic predisposition factor, on iron overload in the São Miguel population. Independent replication studies in other populations are needed to confirm this association.
Bulhões, Sara; Brilhante, Maria José; Pereirinha, Tânia; Cabral, Rita; Rego, Ana Catarina; Fraga, Cristina; Miguel, António G.; Brasil, Gracinda; Macedo, Paula; Mota-Vieira, Luisa
2015-01-01
Iron overload is associated with acquired and genetic conditions, the most common being hereditary hemochromatosis (HH) type-I, caused by HFE mutations. Here, we conducted a hospital-based case-control study of 41 patients from the São Miguel Island (Azores, Portugal), six belonging to a family with HH type-I pseudodominant inheritance, and 35 unrelated individuals fulfilling the biochemical criteria of iron overload compatible with HH type-I. For this purpose, we analyzed the most common HFE mutations– c.845G>A [p.Cys282Tyr], c.187C>G [p.His63Asp], and c.193A>T [p.Ser65Cys]. Results revealed that the family’s HH pseudodominant pattern is due to consanguineous marriage of HFE-c.845G>A carriers, and to marriage with a genetically unrelated spouse that is a -c.187G carrier. Regarding unrelated patients, six were homozygous for c.845A, and three were c.845A/c.187G compound heterozygous. We then performed sequencing of HFE exons 2, 4, 5 and their intron-flanking regions. No other mutations were observed, but we identified the -c.340+4C [IVS2+4C] splice variant in 26 (74.3%) patients. Functionally, the c.340+4C may generate alternative splicing by HFE exon 2 skipping and consequently, a protein missing the α1-domain essential for HFE/ transferrin receptor-1 interactions. Finally, we investigated HFE mutations configuration with iron overload by determining haplotypes and genotypic profiles. Results evidenced that carriers of HFE-c.187G allele also carry -c.340+4C, suggesting in-cis configuration. This data is corroborated by the association analysis where carriers of the complex allele HFE-c.[187C>G;340+4T>C] have an increased iron overload risk (RR = 2.08, 95% CI = 1.40−2.94, p<0.001). Therefore, homozygous for this complex allele are at risk of having iron overload because they will produce two altered proteins—the p.63Asp [c.187G], and the protein lacking 88 amino acids encoded by exon 2. In summary, we provide evidence that the complex allele HFE-c.[187C>G;340+4T>C] has a role, as genetic predisposition factor, on iron overload in the São Miguel population. Independent replication studies in other populations are needed to confirm this association. PMID:26501199
Al-Kuraishy, Hayder M; Al-Gareeb, Ali I
2017-01-01
Beta-thalassemias are a cluster of inherited (autosomal recessive) hematological disorders prevalent in the Mediterranean area due to defects in synthesis of β chains of hemoglobin. The aim of present study was to compare the effects of deferasirox and deferoxamine on iron overload and immunological changes in patients with blood transfusion-dependent β-thalassemia major and intermedia. This study involved 64 patients with known cases of β-thalassemia major or intermedia that has been treated with blood transfusion and iron chelators. Serum ferritin, serum iron, serum total iron binding, unsaturated iron-binding capacity (UIBC), and immunological parameters were assessed in deferoxamine and deferasirox-treated patients. In deferoxamine-treated patients, serum ferritin levels were high (8160.33 ± 233.75 ng/dL) compared to deferasirox-treated patients (3000.62 ± 188.23 ng/dL; P < 0.0001), also there were significant differences in serum iron, total iron-binding capacity and UIBC ( P < 0.0001) in deferasirox-treated patients compared to deferoxamine-treated patients. Immunological changes between two treated groups showed insignificant differences in levels of complements (C3 and C4) and immunoglobulin levels (IgM, IgG, and IgA) P > 0.05. This study indicated that deferasirox is more effective than deferoxamine regarding the iron overload but not in the immunological profile in patients with blood transfusion-dependent β-thalassemia.
Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Hu, Huijin; Ye, Baodong; Zhou, Yuhong
2018-01-01
Iron overload is commonly observed during the course of aplastic anemia (AA), which is believed to aggravate hematopoiesis, cause multiple organ dysfunction, lead to disease progression, and impair quality of life. Deferasirox (DFX) and deferoxamine (DFO) are among the most common iron chelation agents available in the clinical setting. The aim of this study was to investigate if the combination therapy with DFX and DFO is superior in hematopoietic recovery and iron chelation. Briefly, we developed a composite mouse model with AA and iron overload that was consequently treated with DFX, DFO, or with a combination of both agents. The changes in peripheral hemogram, marrow apoptosis, and its related protein expressions were compared during the process of iron chelation, while the iron depositions in liver and bone marrow and its regulator were also detected. The obtained results showed that compared to DFX, DFO has a better effect in protecting the bone marrow from apoptosis-induced failure. The combination of DFO and DFX accelerated the chelation of iron, while their efficiency on further hemogram improvement appeared limited. To sum up, our data suggest that single treatment with DFO may be a better choice for improving the hematopoiesis during the gradual chelation treatment irrespective of the convenience of oral DFX, while the combination treatment should be considered for urgent reduction of the iron burden.
Millot, Sarah; Delaby, Constance; Moulouel, Boualem; Lefebvre, Thibaud; Pilard, Nathalie; Ducrot, Nicolas; Ged, Cécile; Lettéron, Philippe; de Franceschi, Lucia; Deybach, Jean Charles; Beaumont, Carole; Gouya, Laurent; De Verneuil, Hubert; Lyoumi, Saïd; Puy, Hervé; Karim, Zoubida
2017-01-01
Hemolysis occurring in hematologic diseases is often associated with an iron loading anemia. This iron overload is the result of a massive outflow of hemoglobin into the bloodstream, but the mechanism of hemoglobin handling has not been fully elucidated. Here, in a congenital erythropoietic porphyria mouse model, we evaluate the impact of hemolysis and regenerative anemia on hepcidin synthesis and iron metabolism. Hemolysis was confirmed by a complete drop in haptoglobin, hemopexin and increased plasma lactate dehydrogenase, an increased red blood cell distribution width and osmotic fragility, a reduced half-life of red blood cells, and increased expression of heme oxygenase 1. The erythropoiesis-induced Fam132b was increased, hepcidin mRNA repressed, and transepithelial iron transport in isolated duodenal loops increased. Iron was mostly accumulated in liver and spleen macrophages but transferrin saturation remained within the normal range. The expression levels of hemoglobin-haptoglobin receptor CD163 and hemopexin receptor CD91 were drastically reduced in both liver and spleen, resulting in heme- and hemoglobin-derived iron elimination in urine. In the kidney, the megalin/cubilin endocytic complex, heme oxygenase 1 and the iron exporter ferroportin were induced, which is reminiscent of significant renal handling of hemoglobin-derived iron. Our results highlight ironbound hemoglobin urinary clearance mechanism and strongly suggest that, in addition to the sequestration of iron in macrophages, kidney may play a major role in protecting hepatocytes from iron overload in chronic hemolysis. PMID:28143953
Millot, Sarah; Delaby, Constance; Moulouel, Boualem; Lefebvre, Thibaud; Pilard, Nathalie; Ducrot, Nicolas; Ged, Cécile; Lettéron, Philippe; de Franceschi, Lucia; Deybach, Jean Charles; Beaumont, Carole; Gouya, Laurent; De Verneuil, Hubert; Lyoumi, Saïd; Puy, Hervé; Karim, Zoubida
2017-02-01
Hemolysis occurring in hematologic diseases is often associated with an iron loading anemia. This iron overload is the result of a massive outflow of hemoglobin into the bloodstream, but the mechanism of hemoglobin handling has not been fully elucidated. Here, in a congenital erythropoietic porphyria mouse model, we evaluate the impact of hemolysis and regenerative anemia on hepcidin synthesis and iron metabolism. Hemolysis was confirmed by a complete drop in haptoglobin, hemopexin and increased plasma lactate dehydrogenase, an increased red blood cell distribution width and osmotic fragility, a reduced half-life of red blood cells, and increased expression of heme oxygenase 1. The erythropoiesis-induced Fam132b was increased, hepcidin mRNA repressed, and transepithelial iron transport in isolated duodenal loops increased. Iron was mostly accumulated in liver and spleen macrophages but transferrin saturation remained within the normal range. The expression levels of hemoglobin-haptoglobin receptor CD163 and hemopexin receptor CD91 were drastically reduced in both liver and spleen, resulting in heme- and hemoglobin-derived iron elimination in urine. In the kidney, the megalin/cubilin endocytic complex, heme oxygenase 1 and the iron exporter ferroportin were induced, which is reminiscent of significant renal handling of hemoglobin-derived iron. Our results highlight ironbound hemoglobin urinary clearance mechanism and strongly suggest that, in addition to the sequestration of iron in macrophages, kidney may play a major role in protecting hepatocytes from iron overload in chronic hemolysis. Copyright© Ferrata Storti Foundation.
Non-Invasive Methods for Iron Concentration Assessment
NASA Astrophysics Data System (ADS)
Carneiro, Antonio A. O.; Baffa, Oswaldo; Angulo, Ivan L.; Covas, Dimas T.
2002-08-01
Iron excess is commonly observed in patients with transfusional iron overload. The iron chelation therapy in these patients require accurate determination of the magnitude of iron excess. The most promising method for noninvasive assessment of iron stores is based on measurements of hepatic magnetic susceptibility.
Yang, Fan; Li, Yuan; Yan, Gege; Liu, Tianyi; Feng, Chao; Gong, Rui; Yuan, Ye; Ding, Fengzhi; Zhang, Lai; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Ma, Wenya; Huang, Qi; Yu, Ying; Bao, Zhengyi; Wang, Xiuxiu; Hua, Bingjie; Du, Zhimin; Cai, Benzhi; Yang, Lei
2017-05-09
Iron overload induces severe damage to several vital organs such as the liver, heart and bone, and thus contributes to the dysfunction of these organs. The aim of this study is to investigate whether iron overload causes the apoptosis and necrosis of bone marrow mesenchymal stem cells (BMSCs) and melatonin may prevent its toxicity. Perls' Prussion blue staining showed that exposure to increased concentrations of ferric ammonium citrate (FAC) induced a gradual increase of intracellular iron level in BMSCs. Trypan blue staining demonstrated that FAC decreased the viability of BMSCs in a concentration-dependent manner. Notably, melatonin protected BMSCs against apoptosis and necrosis induced by FAC and it was vertified by Live/Dead, TUNEL and PI/Hoechst stainings. Furthermore, melatonin pretreatment suppressed FAC-induced reactive oxygen species accumulation. Western blot showed that exposure to FAC resulted in the decrease of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bax and Cleaved Caspase-3, and necrosis-related proteins RIP1 and RIP3, which were significantly inhibited by melatonin treatment. At last, melatonin receptor blocker luzindole failed to block the protection of BMSCs apoptosis and necrosis by melatonin. Taken together, melatonin protected BMSCs from iron overload induced apoptosis and necrosis by regulating Bcl-2, Bax, Cleaved Caspase-3, RIP1 and RIP3 pathways.
Yan, Gege; Liu, Tianyi; Feng, Chao; Gong, Rui; Yuan, Ye; Ding, Fengzhi; Zhang, Lai; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Ma, Wenya; Huang, Qi; Yu, Ying; Bao, Zhengyi; Wang, Xiuxiu; Hua, Bingjie; Du, Zhimin; Cai, Benzhi; Yang, Lei
2017-01-01
Iron overload induces severe damage to several vital organs such as the liver, heart and bone, and thus contributes to the dysfunction of these organs. The aim of this study is to investigate whether iron overload causes the apoptosis and necrosis of bone marrow mesenchymal stem cells (BMSCs) and melatonin may prevent its toxicity. Perls’ Prussion blue staining showed that exposure to increased concentrations of ferric ammonium citrate (FAC) induced a gradual increase of intracellular iron level in BMSCs. Trypan blue staining demonstrated that FAC decreased the viability of BMSCs in a concentration-dependent manner. Notably, melatonin protected BMSCs against apoptosis and necrosis induced by FAC and it was vertified by Live/Dead, TUNEL and PI/Hoechst stainings. Furthermore, melatonin pretreatment suppressed FAC-induced reactive oxygen species accumulation. Western blot showed that exposure to FAC resulted in the decrease of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bax and Cleaved Caspase-3, and necrosis-related proteins RIP1 and RIP3, which were significantly inhibited by melatonin treatment. At last, melatonin receptor blocker luzindole failed to block the protection of BMSCs apoptosis and necrosis by melatonin. Taken together, melatonin protected BMSCs from iron overload induced apoptosis and necrosis by regulating Bcl-2, Bax, Cleaved Caspase-3, RIP1 and RIP3 pathways. PMID:28415572
White matter changes in Alzheimer's disease: a focus on myelin and oligodendrocytes.
Nasrabady, Sara E; Rizvi, Batool; Goldman, James E; Brickman, Adam M
2018-03-02
Alzheimer's disease (AD) is conceptualized as a progressive consequence of two hallmark pathological changes in grey matter: extracellular amyloid plaques and neurofibrillary tangles. However, over the past several years, neuroimaging studies have implicated micro- and macrostructural abnormalities in white matter in the risk and progression of AD, suggesting that in addition to the neuronal pathology characteristic of the disease, white matter degeneration and demyelination may be also important pathophysiological features. Here we review the evidence for white matter abnormalities in AD with a focus on myelin and oligodendrocytes, the only source of myelination in the central nervous system, and discuss the relationship between white matter changes and the hallmarks of Alzheimer's disease. We review several mechanisms such as ischemia, oxidative stress, excitotoxicity, iron overload, Aβ toxicity and tauopathy, which could affect oligodendrocytes. We conclude that white matter abnormalities, and in particular myelin and oligodendrocytes, could be mechanistically important in AD pathology and could be potential treatment targets.
Cancado, Rodolfo; Olivato, Maria Cristina A; Bruniera, Paula; Szarf, Gilberto; de Moraes Bastos, Roberto; Rezende Melo, Murilo; Chiattone, Carlos
2012-01-01
The efficacy and safety of a 2-year treatment with deferasirox was evaluated in 31 patients with sickle cell anemia and transfusional iron overload. At 24 months, there were significant decreases from baseline in mean serum ferritin (from 2,344.6 to 1,986.3 µg/l; p = 0.040) and in mean liver iron concentration (from 13.0 ± 5.4 to 9.3 ± 5.7 mg Fe/g dry weight; p < 0.001). Myocardial T2* values were normal (>20 ms) in all patients at baseline and did not change significantly over the course of the study. However, there was a significant improvement from baseline in left ventricular ejection fraction at 24 months (62.2-64.6%; p = 0.02). Deferasirox was generally well tolerated with no progressive increases in serum creatinine or renal failure observed. These data confirm that deferasirox is effective in reducing body iron burden in patients with sickle cell anemia and transfusional iron overload. Copyright © 2012 S. Karger AG, Basel.
Minerals in thalassaemia major patients: An overview.
Ozturk, Zeynep; Genc, Gizem Esra; Gumuslu, Saadet
2017-05-01
Thalassaemia major (TM) is a hereditary blood disease characterised by reduced or absent production of beta globin chains. Erythrocyte transfusions are given to raise the haemoglobin level in patients with thalassaemia major. However, transfusions have been related to increased risk of iron overload and tissue damage related to excess iron. Both elevated oxidative stress due to iron overload and increased hemolysis lead to over utilisation of minerals required for antioxidant enzymes activities. Iron chelators have been used to prevent iron overload in thalassaemia major patients, but these chelators have the possibility of removing minerals from the body. Thalassaemia patients are more at risk for mineral deficiency because of increased oxidative stress and iron chelation therapies. Growth and maturational delay, cardiomyopathy, endocrinopathies and osteoporosis are the complications of thalassaemia. Minerals may play a particular role to prevent these complications. In the current review, we provide an overview of minerals including zinc (Zn), copper (Cu), selenium (Se), magnesium (Mg) and calcium (Ca) in thalassaemia major patients. We, also, underline that some complications of thalassaemia can be caused by an increased need for minerals or lack of the minerals. Copyright © 2017 Elsevier GmbH. All rights reserved.
Cappellini, M D; Taher, A
2008-09-01
Chronic iron overload from frequent blood transfusions to treat patients with severe anaemias leads to significant morbidity and mortality. While deferoxamine, the current standard of care, is an effective iron chelator, it requires subcutaneous infusion for 8-12 h/day, 5-7 days/week. This regimen is problematic and impacts significantly on patients' daily life. To evaluate the efficacy and tolerability of deferasirox, a once-daily oral iron chelator. To review the available data reported in peer-reviewed journals (using PubMed) and at medical conferences. Deferasirox is effective in reducing or maintaining iron burden in patients with transfusion-dependent anaemias. As deferasirox is orally administered, the inconvenience of parenteral administration with deferasirox is avoided. Deferasirox improves patient satisfaction and is expected to improve compliance with iron chelation therapy.
Kwiatkowski, Janet L; Cohen, Alan R; Garro, Julian; Alvarez, Ofelia; Nagasubramanian, Ramamorrthy; Sarnaik, Sharada; Thompson, Alexis; Woods, Gerald M; Schultz, William; Mortier, Nicole; Lane, Peter; Mueller, Brigitta; Yovetich, Nancy; Ware, Russell E
2012-02-01
Chronic transfusion reduces the risk of recurrent stroke in children with sickle cell anemia (SCA) but leads to iron loading. Management of transfusional iron overload in SCA has been reported as suboptimal [1], but studies characterizing monitoring and treatment practices for iron overload in children with SCA, particularly in recent years with the expansion of chelator options, are lacking. We investigated the degree of iron loading and treatment practices of 161 children with SCA receiving transfusions for a history of stroke who participated in the Stroke with Transfusions Changing to Hydroxyurea (SWiTCH) trial. Data obtained during screening, including past and entry liver iron concentration (LIC) measurements, ferritin values, and chelation were analyzed. The mean age at enrollment was 12.9 ± 4 years and the mean duration of transfusion was 7 ± 3.8 years. Baseline LIC (median 12.94 mg/g dw) and serum ferritin (median 3,164 ng/mL) were elevated. Chelation therapy was initiated after a mean of 2.6 years of transfusions. At study entry, 137 were receiving chelation, most of whom (90%) were receiving deferasirox. This study underscores the need for better monitoring of iron burden with timely treatment adjustments in chronically transfused children with SCA.
Barton, J C; Acton, R T
2000-01-01
There is interest in general population screening for hemochromatosis and other primary iron overload disorders, although not all persons are at equal risk. We developed a model to estimate the numbers of persons in national, racial, or ethnic population subgroups in Jefferson County, Alabama, who would be detected using transferrin saturation (phenotype) or HFE mutation analysis (genotype) screening. Approximately 62% are Caucasians, 37% are African Americans, and the remainder are Hispanics, Asians, or Native Americans. The predicted phenotype frequencies are greatest in a Caucasian subgroup, ethnicity unspecified, which consists predominantly of persons of Scotch and Irish descent (0.0065 men, 0.0046 women), and in African Americans (0.0089 men, 0.0085 women). Frequencies of the HFE genotype C282Y/C282Y > or = 0.0001 are predicted to occur only among Caucasians; the greatest frequency (0.0080) was predicted to occur in the ethnicity-unspecified Caucasian population. C282Y/C282Y frequency estimates were lower in Italian, Greek, and Jewish subgroups. There is excellent agreement in the numbers of the ethnicity-unspecified Caucasians who would be detected using phenotype and genotype criteria. Our model also indicates that phenotyping would identify more persons with primary iron overload than would genotyping in our Italian Caucasian, Hispanic, and African American subgroups. This is consistent with previous observations that indicate that primary iron overload disorders in persons of southern Italian descent and African Americans are largely attributable to non-HFE alleles. Because the proportions of population subgroups and their genetic constitution may differ significantly in other geographic regions, we suggest that models similar to the present one be constructed to predict optimal screening strategies for primary iron overload disorders.
Sánchez Campos, Sofía; Rodríguez Diez, Guadalupe; Oresti, Gerardo Martín; Salvador, Gabriela Alejandra
2015-01-01
Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of membrane repair by studying lipid acylation and deacylation reactions and their role in oxidative injury in N27 dopaminergic neurons exposed to Fe-overload and Cu-supplementation. N27 dopaminergic neurons incubated with Fe (1mM) for 24 hs displayed increased levels of reactive oxygen species (ROS), lipid peroxidation and elevated plasma membrane permeability. Cu-supplemented neurons (10, 50 μM) showed no evidence of oxidative stress markers. A different lipid acylation profile was observed in N27 neurons pre-labeled with [3H] arachidonic acid (AA) or [3H] oleic acid (OA). In Fe-exposed neurons, AA uptake was increased in triacylglycerols (TAG) whereas its incorporation into the phospholipid (PL) fraction was diminished. TAG content was 40% higher in Fe-exposed neurons than in controls. This increase was accompanied by the appearance of Nile red positive lipid bodies. Contrariwise, OA incorporation increased in the PL fractions and showed no changes in TAG. Lipid acylation profile in Cu-supplemented neurons showed AA accumulation into phosphatidylserine and no changes in TAG. The inhibition of deacylation/acylation reactions prompted an increase in oxidative stress markers and mitochondrial dysfunction in Fe-overloaded neurons. These findings provide evidence about the participation of lipid acylation mechanisms against Fe-induced oxidative injury and postulate that dopaminergic neurons cleverly preserve AA in TAG in response to oxidative stress. PMID:26076361
... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...
... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...
Lockman, J A; Geldenhuys, W J; Jones-Higgins, M R; Patrick, J D; Allen, D D; Van der Schyf, C J
2012-12-13
Development and progression of neurodegenerative disorders have, amongst other potential causes, been attributed to a disruption of iron regulatory mechanisms and iron accumulation. Excess extracellular iron may enter cells via nontraditional routes such as voltage-gated calcium channels and N-methyl-d-aspartate (NMDA) receptors leading to intracellular oxidative damage and ultimately mitochondrial failure. Nimodipine, an L-type calcium channel blocker has been shown to reduce iron-induced toxicity in neuronal and brain endothelial cells. Our current study investigates NGP1-01, a multimodal drug acting as an antagonist at both the NMDA receptor and the L-type calcium channel. Our previous studies support NGP1-01 as a promising neuroprotective agent in diseases involving calcium-related excitotoxicity. We demonstrate here that NGP1-01 (1 and 10μM) pretreatment abrogates the effects of iron overload in brain endothelial cells protecting cellular viability. Both concentrations of NGP1-01 were found to attenuate iron-induced reduction in cellular viability to a similar extent, and were statistically significant. To further verify the mechanism, the L-type calcium channel agonist FPL 64176 was administered to promote iron uptake. Addition of NGP1-01 dose-dependently reduced FPL 64176 stimulated uptake of iron. These data support further evaluation of NGP1-01 as a neuroprotective agent, not only in diseases associated with excitotoxicity, but also in those of iron overload. Copyright © 2012 Elsevier B.V. All rights reserved.
Immune cell functions in iron overload.
de Sousa, M
1989-01-01
A number of studies done in the last 10 years demonstrate the importance of iron in regulating the expression of T lymphoid cell surface markers, in influencing the expansion of different T cell subsets and in affecting different immune cell functions in vitro. It has been argued that some of the results obtained could be explained by the formation of iron polymers in the experimental conditions used in vitro (Soyano Fernandez & Romano, 1985). In this review the results of studies of immunological function in clinical situations of iron overload are analysed. From this analysis, it is concluded that the majority of the observations made in vitro have a counterpart in vivo, thus providing additional compelling evidence for the importance of iron as an immunoregulator. PMID:2649280
Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload.
Henninger, B; Kremser, C; Rauch, S; Eder, R; Zoller, H; Finkenstedt, A; Michaely, H J; Schocke, M
2012-11-01
To evaluate MRI using T1 and T2* mapping sequences in patients with suspected hepatic iron overload (HIO). Twenty-five consecutive patients with clinically suspected HIO were retrospectively studied. All underwent MRI and liver biopsy. For the quantification of liver T2* values we used a fat-saturated multi-echo gradient echo sequence with 12 echoes (TR = 200 ms, TE = 0.99 ms + n × 1.41 ms, flip angle 20°). T1 values were obtained using a fast T1 mapping sequence based on an inversion recovery snapshot FLASH sequence. Parameter maps were analysed using regions of interest. ROC analysis calculated cut-off points at 10.07 ms and 15.47 ms for T2* in the determination of HIO with accuracy 88 %/88 %, sensitivity 84 %/89.5 % and specificity 100 %/83 %. MRI correctly classified 20 patients (80 %). All patients with HIO only had decreased T1 and T2* relaxation times. There was a significant difference in T1 between patients with HIO only and patients with HIO and steatohepatitis (P = 0.018). MRI-based T2* relaxation diagnoses HIO very accurately, even at low iron concentrations. Important additional information may be obtained by the combination of T1 and T2* mapping. It is a rapid, non-invasive, accurate and reproducible technique for validating the evidence of even low hepatic iron concentrations. • Hepatic iron overload causes fibrosis, cirrhosis and increases hepatocellular carcinoma risk. • MRI detects iron because of the field heterogeneity generated by haemosiderin. • T2* relaxation is very accurate in diagnosing hepatic iron overload. • Additional information may be obtained by T1 and T2* mapping.
Chittamsetty, Harika; Sekhar, M S Muni; Ahmed, Syed Afroz; Suri, Charu; Palla, Sridevi; Venkatesh, S Muni; Tanveer, Shahela
2013-06-01
Iron is vital for all the living organisms. However, excess iron is hazardous because it produces free radical formation. Therefore, the iron absorption is carefully regulated to maintain an equilibrium between the absorption and the body loss of iron. Considering the lack of specific excretory pathways for iron in humans, an iron overload in the tissues is frequently encountered. It can be precipitated by a variety of conditions such as increased iron absorption, as is seen in haemochromatosis or a frequent parenteral iron administration, as is seen in thalassaemia and sickle cell anaemia patients (a transfusional overload). To demonstrate the iron overload at an early stage by oral exfoliative cytology in the oral mucosal cells of thalassaemia and sickle cell anaemia patients and to compare the presence of iron in the exfoliated oral epithelial cells with that of the serum ferritin levels in those patients. The present study comprised of 40 β- thalassaemia major and 20 sickle cell anaemia patients who were undergoing repeated blood transfusions of a minimum of 15/more, along with 60 clinically healthy individuals. Scrapings were obtained from the buccal mucosa and they were smeared onto glass slides. Then the slides were stained with a Perl's Prussian staining kit and they were examined under a light microscope. 72.5% of the thalassaemia patients and 35% of the sickle cell anaemia patients revealed a positivity for the Perl's Prussian blue reaction and none of the controls showed this positivity. It was also observed that as the serum ferritin levels increased, the iron overload in the oral mucosal cells of the thalassaemia patients also increased, which was not statistically significant, whereas it was statistically significant in case of the sickle cell anemia patients. Since the exfoliative cytology is a simple, painless, non-invasive and a quick procedure to perform, a lot of research should be carried out on the correlation of the Perl's Prussian blue reaction to the serum ferritin levels.
Quantification of Liver Fat in the Presence of Iron Overload
Horng, Debra E.; Hernando, Diego; Reeder, Scott B.
2017-01-01
Purpose To evaluate the accuracy of R2* models (1/T2* = R2*) for chemical shift-encoded magnetic resonance imaging (CSE-MRI)-based proton density fat-fraction (PDFF) quantification in patients with fatty liver and iron overload, using MR spectroscopy (MRS) as the reference standard. Materials and Methods Two Monte Carlo simulations were implemented to compare the root-mean-squared-error (RMSE) performance of single-R2* and dual-R2* correction in a theoretical liver environment with high iron. Fatty liver was defined as hepatic PDFF >5.6% based on MRS; only subjects with fatty liver were considered for analyses involving fat. From a group of 40 patients with known/suspected iron overload, nine patients were identified at 1.5T, and 13 at 3.0T with fatty liver. MRS linewidth measurements were used to estimate R2* values for water and fat peaks. PDFF was measured from CSE-MRI data using single-R2* and dual-R2* correction with magnitude and complex fitting. Results Spectroscopy-based R2* analysis demonstrated that the R2* of water and fat remain close in value, both increasing as iron overload increases: linear regression between R2*W and R2*F resulted in slope = 0.95 [0.79–1.12] (95% limits of agreement) at 1.5T and slope = 0.76 [0.49–1.03] at 3.0T. MRI-PDFF using dual-R2* correction had severe artifacts. MRI-PDFF using single-R2* correction had good agreement with MRS-PDFF: Bland–Altman analysis resulted in −0.7% (bias) ± 2.9% (95% limits of agreement) for magnitude-fit and −1.3% ± 4.3% for complex-fit at 1.5T, and −1.5% ± 8.4% for magnitude-fit and −2.2% ± 9.6% for complex-fit at 3.0T. Conclusion Single-R2* modeling enables accurate PDFF quantification, even in patients with iron overload. PMID:27405703
Grosse, Scott D; Gurrin, Lyle C; Bertalli, Nadine A; Allen, Katrina J
2018-04-01
Iron overload (hemochromatosis) can cause serious, symptomatic disease that is preventable if detected early and managed appropriately. The leading cause of hemochromatosis in populations of predominantly European ancestry is homozygosity of the C282Y variant in the HFE gene. Screening of adults for iron overload or associated genotypes is controversial, largely because of a belief that severe phenotypes are uncommon, although cascade testing of first-degree relatives of patients is widely endorsed. We contend that severe liver disease (cirrhosis or hepatocellular cancer) is not at all uncommon among older males with hereditary hemochromatosis. Our review of the published data from a variety of empirical sources indicates that roughly 1 in 10 male HFE C282Y homozygotes is likely to develop severe liver disease during his lifetime unless iron overload is detected early and treated. New evidence from a randomized controlled trial of treatment allows for evidence-based management of presymptomatic patients. Although population screening for HFE C282Y homozygosity faces multiple barriers, a potentially effective strategy for increasing the early detection and prevention of clinical iron overload and severe disease is to include HFE C282Y homozygosity in lists of medically actionable gene variants when reporting the results of genome or exome sequencing.
Kühn, Jens-Peter; Meffert, Peter; Heske, Christian; Kromrey, Marie-Luise; Schmidt, Carsten O.; Mensel, Birger; Völzke, Henry; Lerch, Markus M.; Hernando, Diego; Mayerle, Julia; Reeder, Scott B.
2017-01-01
Purpose To quantify liver fat and liver iron content by measurement of confounder-corrected proton density fat fraction (PDFF) and R2* and to identify clinical associations for fatty liver disease and liver iron overload and their prevalence in a large-scale population-based study. Materials and Methods From 2008 to 2013, 2561 white participants (1336 women; median age, 52 years; 25th and 75th quartiles, 42 and 62 years) were prospectively recruited to the Study of Health in Pomerania (SHIP). Complex chemical shift–encoded magnetic resonance (MR) examination of the liver was performed, from which PDFF and R2* were assessed. On the basis of previous histopathologic calibration, participants were stratified according to their liver fat and iron content as follows: none (PDFF, ≤5.1%; R2*, ≤41.0 sec−1), mild (PDFF, >5.1%; R2*, >41 sec−1), moderate (PDFF, >14.1%; R2*, >62.5 sec−1), high (PDFF: >28.0%; R2*: >70.1 sec−1). Prevalence of fatty liver diseases and iron overload was calculated (weighted by probability of participation). Clinical associations were identified by using boosting for generalized linear models. Results Median PDFF was 3.9% (range, 0.6%–41.5%). Prevalence of fatty liver diseases was 42.2% (1082 of 2561 participants); mild, 28.5% (730 participants); moderate, 12.0% (307 participants); high content, 1.8% (45 participants). Median R2* was 34.4 sec−1 (range, 14.0–311.8 sec−1). Iron overload was observed in 17.4% (447 of 2561 participants; mild, 14.7% [376 participants]; moderate, 0.8% [20 participants]; high content, 2.0% [50 participants]). Liver fat content correlated with waist-to-height ratio, alanine transaminase, uric acid, serum triglycerides, and blood pressure. Liver iron content correlated with mean serum corpuscular hemoglobin, male sex, and age. Conclusion In a white German population, the prevalence of fatty liver diseases and liver iron overload is 42.2% (1082 of 2561) and 17.4% (447 of 2561). Whereas liver fat is associated with predictors related to the metabolic syndrome, liver iron content is mainly associated with mean serum corpuscular hemoglobin. PMID:28481195
Kühn, Jens-Peter; Meffert, Peter; Heske, Christian; Kromrey, Marie-Luise; Schmidt, Carsten O; Mensel, Birger; Völzke, Henry; Lerch, Markus M; Hernando, Diego; Mayerle, Julia; Reeder, Scott B
2017-09-01
Purpose To quantify liver fat and liver iron content by measurement of confounder-corrected proton density fat fraction (PDFF) and R2* and to identify clinical associations for fatty liver disease and liver iron overload and their prevalence in a large-scale population-based study. Materials and Methods From 2008 to 2013, 2561 white participants (1336 women; median age, 52 years; 25th and 75th quartiles, 42 and 62 years) were prospectively recruited to the Study of Health in Pomerania (SHIP). Complex chemical shift-encoded magnetic resonance (MR) examination of the liver was performed, from which PDFF and R2* were assessed. On the basis of previous histopathologic calibration, participants were stratified according to their liver fat and iron content as follows: none (PDFF, ≤5.1%; R2*, ≤41.0 sec -1 ), mild (PDFF, >5.1%; R2*, >41 sec -1 ), moderate (PDFF, >14.1%; R2*, >62.5 sec -1 ), high (PDFF: >28.0%; R2*: >70.1 sec -1 ). Prevalence of fatty liver diseases and iron overload was calculated (weighted by probability of participation). Clinical associations were identified by using boosting for generalized linear models. Results Median PDFF was 3.9% (range, 0.6%-41.5%). Prevalence of fatty liver diseases was 42.2% (1082 of 2561 participants); mild, 28.5% (730 participants); moderate, 12.0% (307 participants); high content, 1.8% (45 participants). Median R2* was 34.4 sec -1 (range, 14.0-311.8 sec -1 ). Iron overload was observed in 17.4% (447 of 2561 participants; mild, 14.7% [376 participants]; moderate, 0.8% [20 participants]; high content, 2.0% [50 participants]). Liver fat content correlated with waist-to-height ratio, alanine transaminase, uric acid, serum triglycerides, and blood pressure. Liver iron content correlated with mean serum corpuscular hemoglobin, male sex, and age. Conclusion In a white German population, the prevalence of fatty liver diseases and liver iron overload is 42.2% (1082 of 2561) and 17.4% (447 of 2561). Whereas liver fat is associated with predictors related to the metabolic syndrome, liver iron content is mainly associated with mean serum corpuscular hemoglobin. © RSNA, 2017 Online supplemental material is available for this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Kyle E.; Division of Gastroenterology-Hepatology, University of Iowa Roy J. and Lucille A. Carver College of Medicine; Program in Free Radical and Radiation Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
Introduction:: Oxidative stress can trigger a cellular stress response characterized by induction of antioxidants, acute phase reactants (APRs) and heat shock proteins (HSPs), which are presumed to play a role in limiting tissue damage. In rodents, hepatic iron overload causes oxidative stress that results in upregulation of antioxidant defenses with minimal progressive liver injury. The aim of this study was to determine whether iron overload modulates expression of other stress-responsive proteins such as APRs and HSPs that may confer protection against iron-induced damage in rodent liver. Methods:: Male rats received repeated injections of iron dextran or dextran alone over amore » 6-month period. Hepatic transcript levels for a panel of APRs and HSPs were quantitated by real-time PCR and protein expression was evaluated by Western blot and immunohistochemistry. Results:: Hepatic iron concentrations were increased > 50-fold in the iron-loaded rats compared to controls. Iron loading resulted in striking increases in mRNAs for Hsp32 (heme oxygenase-1; 12-fold increase vs. controls) and metallothionein-1 and -2 (both increased {approx} 6-fold). Transcripts for {alpha}1-acid glycoprotein, the major rat APR, were increased {approx} 3-fold, while expression of other classical APRs was unaltered. Surprisingly, although mRNA levels for the HSPs were not altered by iron, the abundance of Hsp25, Hsp70 and Hsp90 proteins was uniformly reduced in the iron-loaded livers, as were levels of NAD(P)H:quinone oxidoreductase 1, an Hsp70 client protein. Conclusions:: Chronic iron administration elicits a unique pattern of stress protein expression. These alterations may modulate hepatic responses to iron overload, as well as other injury processes.« less
Synergistic interaction between excess hepatic iron and alcohol ingestion in hepatic mutagenesis.
Asare, George A; Bronz, Michelle; Naidoo, Vivash; Kew, Michael C
2008-12-05
Hereditary hemochromatosis (HH) and dietary iron overload are the main iron-loading diseases. Fibrosis, cirrhosis and hepatocellular carcinoma (HCC) are complications to HH and dietary iron overload possibly influenced by co-factors. Alcohol may be one such factor. The aim therefore was to determine the extent of synergistic interaction between free hepatic iron and alcohol, complicating dietary iron overload in HCC pathogenesis. Four groups of 20 Wistar albino rats were used: group 1 (C) was fed the chow diet; group 2 (Fe) was supplemented with 0.75% ferrocene iron; group 3 (Fe+Al), 0.75% iron and 7% ethanol; and group 4, 7% ethanol (Al) for 12 months. Iron profile, superoxide/nitrite free radicals, lipid peroxidation (LPO)/8-isoprostane (8-IP), 8-hydroxydeoxyguanosine (8-OHdG), oxidative lipid/DNA damage immunohistochemistry, transaminases (AST/ALT) and Ames mutagenesis tests were performed. Significant differences were observed in the Fe+Al group for LPO, 8-IP, AST and ALT (p<0.001, 0.001, 0.001 and 0.001, respectively) compared to other groups. A three-fold synergistic interaction was observed for the same parameters. Furthermore, significant differences of p<0.05 and 0.001 were observed for 8-OHdG and mutagenesis, respectively, with an additive synergy in the Fe+Al group. ALT/8-OHdG and ALT/mutagenesis correlated positively (p<0.04 and 0.008, respectively). The immunohistochemistry revealed iron/alcohol multiplicative synergism with hydroxyl radical involvement. Mutagenic effects of iron and alcohol are synergistically multiplicative implicating hydroxyl free radicals in hepatocarcingenesis.
Meng, Fan Xing; Hou, Jing Ming; Sun, Tian Sheng
2017-02-08
Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.
Al-Kuraishy, Hayder M.; Al-Gareeb, Ali I.
2017-01-01
INTRODUCTION: Beta-thalassemias are a cluster of inherited (autosomal recessive) hematological disorders prevalent in the Mediterranean area due to defects in synthesis of β chains of hemoglobin. The aim of present study was to compare the effects of deferasirox and deferoxamine on iron overload and immunological changes in patients with blood transfusion-dependent β-thalassemia major and intermedia. PATIENTS AND METHODS: This study involved 64 patients with known cases of β-thalassemia major or intermedia that has been treated with blood transfusion and iron chelators. Serum ferritin, serum iron, serum total iron binding, unsaturated iron-binding capacity (UIBC), and immunological parameters were assessed in deferoxamine and deferasirox-treated patients. RESULTS: In deferoxamine-treated patients, serum ferritin levels were high (8160.33 ± 233.75 ng/dL) compared to deferasirox-treated patients (3000.62 ± 188.23 ng/dL; P < 0.0001), also there were significant differences in serum iron, total iron-binding capacity and UIBC (P < 0.0001) in deferasirox-treated patients compared to deferoxamine-treated patients. Immunological changes between two treated groups showed insignificant differences in levels of complements (C3 and C4) and immunoglobulin levels (IgM, IgG, and IgA) P > 0.05. CONCLUSION: This study indicated that deferasirox is more effective than deferoxamine regarding the iron overload but not in the immunological profile in patients with blood transfusion-dependent β-thalassemia. PMID:28316434
Plant phenolics and their potential role in mitigating iron overload disorder in wild animals.
Lavin, Shana R
2012-09-01
Phenolic compounds are bioactive chemicals found in all vascular plants but are difficult to characterize and quantify, and comparative analyses on these compounds are challenging due to chemical structure complexity and inconsistent laboratory methodologies employed historically. These chemicals can elicit beneficial or toxic effects in consumers, depending on the compound, dose and the species of the consumer. In particular, plant phenolic compounds such as tannins can reduce the utilization of iron in mammalian and avian consumers. Multiple zoo-managed wild animal species are sensitive to iron overload, and these species tend to be offered diets higher in iron than most of the plant browse consumed by these animals in the wild and in captivity. Furthermore, these animals likely consume diets higher in polyphenols in the wild as compared with in managed settings. Thus, in addition to reducing dietary iron concentrations in captivity, supplementing diets with phenolic compounds capable of safely chelating iron in the intestinal lumen may reduce the incidence of iron overload in these animal species. It is recommended to investigate various sources and types of phenolic compounds for use in diets intended for iron-sensitive species. Candidate compounds should be screened both in vitro and in vivo using model species to reduce the risk of toxicity in target species. In particular, it would be important to assess potential compounds in terms of 1) biological activity including iron-binding capacity, 2) accessibility, 3) palatability, and 4) physiological effects on the consumer, including changes in nutritional and antioxidant statuses.
Bruch, Harald-Robert; Dencausse, Yves; Heßling, Jörg; Michl, Gerlinde; Schlag, Rudolf; Skorupa, Alexandra; Schneider-Schranz, Cornelia; Wolf, Sebastian; Schulte, Clemens; Tesch, Hans
2016-01-01
The non-interventional study CONIFER was designed to assess the safety and clinical practicability of deferasirox for the treatment of transfusional iron overload in myelodysplastic syndrome (MDS) patients. Patients included in the study were diagnosed with MDS and received at least 1 treatment with deferasirox. The observation period covered the time from the initial visit until the last follow-up. The data of 99 patients with MDS scored mainly as International Prognostic Scoring System (IPSS) low and intermediate 1 were evaluated. The mean age of the participants was 75 years and 58% of the patients were male. Iron overload was assessed by serum ferritin level (mean baseline serum ferritin 2,080 ± 1,244 µg/l). Patients were treated for a mean duration of 16 months (mean daily dose at baseline 11.8 ± 7.0 mg/kg). Stratification of serum ferritin levels by deferasirox dose showed a reduction at the higher but no reduction at the lower dose (< 15 mg/kg vs. ≥ 15 mg/kg and < 20 mg/kg vs. ≥ 20 mg/kg). The majority of patients (81%) were affected by at least 1 adverse event, with decreased renal creatinine clearance being the most frequent. Higher doses (≥ 15 mg/kg) of deferasirox effectively and safely reduced serum ferritin levels in MDS patients with transfusional iron overload. © 2016 S. Karger GmbH, Freiburg.
Hagag, Adel A; Elgamsy, Mohamed A; El-Asy, Hassan M; Gamal, Rasha M; Elshahaby, Walid N; Abd Elbar, Enaam S
2016-01-01
'Beta thalassemia is inherited hemoglobin disorder resulting in chronic hemolytic anemia that requires lifelong transfusion therapy'. 'Repeated blood transfusions and RBCs hemolysis are the main causes of iron overload', which in addition to immune abnormalities, are common predisposing factors to infections in patients with thalassemia. The Aim of this Work: The aim of this work was to study immune status including T lymphocyte subsets and serum immunoglobulin levels 'in children with beta- thalassemia in correlation with iron overload'. The present 'study was conducted on 40 children with beta thalassemia major under follow up at Hematology Unit, Pediatric Department, Tanta University' 'including 24 males and 16 females with mean' age value of 9. 22 ± 3.9 years and 20 'healthy children of matched age and sex as a control group'. All children included in the study were subjected to; 'complete blood count, Hb electrophoresis, serum iron status', T cell subsets including CD3, CD4 and CD8 and serum immunoglobulin levels including IgM, IgA and IgG. 'Pallor and jaundice were the most common presenting' clinical manifestations. Infective episodes 'were significantly higher in patients' compared with controls. There were significantly lower Hb, MCV and MCH levels and significantly higher WBCs and platelets counts, reticulocytes and lymphocytes percentage in patients than controls and no significant differences in MCHC between patients and controls. Serum ferritin and iron were 'significantly higher but TIBC was significantly lower in' patients than controls. CD3, CD4 and IgM were significantly lower but CD8, IgG, and IgA 'were significantly higher in patients than controls' with negative correlation between CD3, CD4, IgM and ferritin and positive correlation between CD8, IgG, IgA and ferritin. Iron overload can affect humeral and cell mediated immunity in patients with beta thalassemia with reduction of IgM, CD3 and CD4 and elevation of CD8, IgG, and IgA. Regular follow up of patients with beta thalassemia for detection of iron overload as it affects humeral and cell mediated immunity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Deferasirox for the treatment of chronic iron overload in transfusional hemosiderosis.
Shashaty, George; Frankewich, Raymond; Chakraborti, Tamal; Choudary, Jasti; Al-Fayoumi, Suliman; Kacuba, Alice; Castillo, Sonia; Robie-Suh, Kathy; Rieves, Dwaine; Weiss, Karen; Pazdur, Richard
2006-12-01
This report describes the Food and Drug Administration's review of data and analyses leading to the approval of the oral iron chelator, deferasirox for the treatment of chronic iron overload due to transfusional hemosiderosis. The FDA reviewed findings of a controlled, open-label, randomized multicenter phase III study of deferasirox vs. deferoxamine in 586 patients with beta-thalessemia and transfusional hemosiderosis. The study results as well as the results of the FDA review of chemistry, preclinical pharmacology, and supportive studies are described. Following 48 weeks of treatment in the phase III study, patients' liver iron concentrations (a key endpoint variable) had decreased an average of 2.4 mg of iron (Fe)/g dry weight (dw) and 2.9 mg Fe/g dw in the deferasirox and deferoxamine groups, respectively, despite continued blood transfusions in both cohorts. Deferasirox was associated with serum creatinine increases in approximately a third of patients. Common adverse events included gastrointestinal symptoms and skin rash. Other data provided supportive evidence of deferasirox safety and efficacy. The FDA granted deferasirox accelerated approval on November 2, 2005, for use in treating chronic iron overload due to transfusional hemosiderosis in patients > or =2 years of age. The sponsor must obtain clinical data demonstrating the drug's long-term safety and effectiveness.
Cardiac iron overload in sickle-cell disease.
Meloni, Antonella; Puliyel, Mammen; Pepe, Alessia; Berdoukas, Vasili; Coates, Thomas D; Wood, John C
2014-07-01
Chronically transfused sickle cell disease (SCD) patients have lower risk of myocardial iron overload (MIO) than comparably transfused thalassemia major (TM) patients. However, cardioprotection is incomplete. We present the clinical characteristics of six patients who have prospectively developed MIO, to identify potential risk factors for cardiac iron accumulation. From 2002 to 2011, cardiac, hepatic, and pancreatic iron overload were assessed by R2 and R2 * magnetic resonance imaging techniques in 201 chronic transfused SCD patients as part of their clinical care. At the time, they developed MIO, five of six patients had been on chronic transfusion for more than 11 years; only one was on exchange transfusion. The time to MIO was correlated with reticulocyte and hemoglobin S percentages. All patients had qualitatively poor chelation compliance (<50%). All patients had serum ferritin levels >4600 ng/ml and liver iron concentration >22 mg/g. Pancreatic R2 * was >100 Hz in every patient studied (5/6). Cardiac iron rose proportionally to pancreas R2 *, with all patients having pancreas R2 *>100 Hz when cardiac iron was present. MIO had a threshold relationship with liver iron that was higher than observed in TM patients. In conclusion, MIO occurs in a small percentage of chronically transfused SCD patients and is only associated with exceptionally poor control of total body iron stores. Duration of chronic transfusion is clearly important but other factors, such as levels of effective erythropoiesis, appear to contribute to cardiac risk. Pancreas R2 * can serve as a valuable screening tool for cardiac iron in SCD patients. © 2014 Wiley Periodicals, Inc.
Saghaie, Lotfollah; Liu, Dy; Hider, Robert C
2015-01-01
Iron overload is a clinical problem which can be prevented by using iron chelating agents. An alternative method of relieving iron overload is to reduce iron absorption from the intestine by administering specific iron chelating agents, which can bind iron to form nonabsorbable complexes. Based on this strategy, a series of polymeric ligands containing the chelating moiety 3-hydroxypyridin-4-ones (HPOs) were synthesized. The synthetic route involves the benzylation of hydroxyl group of (2-methyl-3-hydroxypyran-4-one (maltol) and conversion of benzylated maltol to 3-benzyloxypyridin-4-one derivatives by using three suitable primary amines (2,6-diaminohexanoic acid (lysine) and 1,6-diaminohexane and 5-aminopentanol). The resulted compounds incorporated into polymer by copolymerization with acryloyl chloride using 2, 2’-azobisisobutyronitrile (AIBN) as the initiator. Finally, the benzyl groups of polymers were removed by catalytic hydrogenation (Pd/C). In this work, three final polymers of HPO derivatives namely poly-2-propylamido-6-(3- hydroxy -1,4-dihydro-2-methy-4-oxopyrid-1-yl) hexanoic acid, 6-(3-hydroxy-1, 4-dihydro-2-methyl-4-oxopyrid-1-yl) hexyl-1-polypropylamide and 5-(3-hydroxy-1-,4-dihydro-2-methyl-4-oxopyrid-1-yl)-1-polyacrylate pentane were synthesized. Identification and structural elucidation of compounds were achieved by proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR) and infrared (IR) spectroscopy. PMID:26600863
Chung, Jung Wha; Shin, Eun; Kim, Haeryoung; Han, Ho-Seong; Cho, Jai Young; Choi, Young Rok; Hong, Sukho; Jang, Eun Sun; Kim, Jin-Wook; Jeong, Sook-Hyang
2018-05-01
Hepatic iron overload is associated with liver injury and hepatocarcinogenesis; however, it has not been evaluated in patients with hepatocellular carcinoma (HCC) in Asia. The aim of this study was to clarify the degree and distribution of intrahepatic iron deposition, and their effects on the survival of HCC patients. Intrahepatic iron deposition was examined using non-tumorous liver tissues from 204 HCC patients after curative resection, and they were scored by 2 semi-quantitative methods: simplified Scheuer's and modified Deugnier's methods. For the Scheuer's method, iron deposition in hepatocytes and Kupffer cells was separately evaluated, while for the modified Deugnier's method, hepatocyte iron score (HIS), sinusoidal iron score (SIS) and portal iron score (PIS) were systematically evaluated, and the corrected total iron score (cTIS) was calculated by multiplying the sum (TIS) of the HIS, SIS, and PIS by the coefficient. The overall prevalence of hepatic iron was 40.7% with the simplified Scheuer's method and 45.1% with the modified Deugnier's method with a mean cTIS score of 2.46. During a median follow-up of 67 months, the cTIS was not associated with overall survival. However, a positive PIS was significantly associated with a lower 5-year overall survival rate (50.0%) compared with a negative PIS (73.7%, P = .006). In the multivariate analysis, a positive PIS was an independent factor for overall mortality (hazard ratio, 2.310; 95% confidence interval, 1.181-4.517). Intrahepatic iron deposition was common, and iron overload in the portal tract indicated poor survival in curatively resected HCC patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yassin, Mohamed A; Soliman, Ashraf; De Sanctis, Vincenzo; Hmissi, Saloua M; Abdulla, Mohammad Aj; Ekeibed, Yeslem; Ismail, Omer; Nashwan, Abdulqadir; Soliman, Dina; Almusharaf, Mohammed; Hussein, Redwa
2018-04-03
Patients with hematologic malignancies undergoing chemotherapy and requiring blood transfusion usually have an elevated serum ferritin. These findings have led to the suggestion that iron overload is common and may have deleterious effects in these patients. However, the relationship between serum ferritin and parenchymal iron overload in such patients is unknown. Therefore, we measured the liver iron content (LIC) by the FerriScan® method and investigated the liver function and some endocrine tests in 27 patients with acute leukemia (AL) or myelodysplastic syndromes (MDS). Using FerriScan® method, the normal mean LIC levels are: 4.3 ± 2.9 mg Fe/g dry weight (d.w.). In our patients, the mean serum ferritin level was 1965 ± 2428 ng/mL. In our patients, the mean total iron in the blood received by them was 7177 ± 5009 mg. In 6 out of 27 patients LIC was > 7 mg Fe/g d.w. and in 11/27 serum ferritin was > 1000 ng/ml. Measuring fasting blood glucose revealed 3/27 with diabetes mellitus and 4/27 with impaired fasting glucose (IFG). All patients had normal serum concentrations of calcium, parathormone (PTH), free thyroxine (FT4) and thyrotropin (TSH). Four patients had elevated serum alanine transferase (ALT). LIC was correlated significantly with ferritin level (r = 0.5666; P < 0.001) and the cumulative amount of iron in the transfused blood (r = 0.523; P <0.001). LIC was correlated significantly with ALT (r = 0.277; P = 0.04) and fasting blood glucose (FBG) was correlated significantly with the amount of iron transfused (r = 0.52, p < 0.01) and ALT level (r = 0.44; P< 0.01). The age of patients did not correlate with LIC, FBG or ALT. In conclusions, these results contribute to our understanding of the prevalence of dysglycemia and hepatic dysfunction in relation to parenchymal iron overload in patients with hematologic malignancies undergoing chemotherapy and requiring blood transfusions.
Rivella, Stefano
2011-01-01
β-thalassemia is a disease characterized by anemia and is associated with ineffective erythropoiesis and iron dysregulation resulting in iron overload. The peptide hormone hepcidin regulates iron metabolism, and insufficient hepcidin synthesis is responsible for iron overload in minimally transfused patients with this disease. Understanding the crosstalk between erythropoiesis and iron metabolism is an area of active investigation in which patients with and models of β-thalassemia have provided significant insight. The dependence of erythropoiesis on iron presupposes that iron demand for hemoglobin synthesis is involved in the regulation of iron metabolism. Major advances have been made in understanding iron availability for erythropoiesis and its dysregulation in β-thalassemia. In this review, we describe the clinical characteristics and current therapeutic standard in β-thalassemia, explore the definition of ineffective erythropoiesis, and discuss its role in hepcidin regulation. In preclinical experiments using interventions such as transferrin, hepcidin agonists, and JAK2 inhibitors, we provide evidence of potential new treatment alternatives that elucidate mechanisms by which expanded or ineffective erythropoiesis may regulate iron supply, distribution, and utilization in diseases such as β-thalassemia. PMID:21768301
Iron Overload and Chelation Therapy in Non-Transfusion Dependent Thalassemia.
Bou-Fakhredin, Rayan; Bazarbachi, Abdul-Hamid; Chaya, Bachar; Sleiman, Joseph; Cappellini, Maria Domenica; Taher, Ali T
2017-12-20
Iron overload (IOL) due to increased intestinal iron absorption constitutes a major clinical problem in patients with non-transfusion-dependent thalassemia (NTDT), which is a cumulative process with advancing age. Current models for iron metabolism in patients with NTDT suggest that suppression of serum hepcidin leads to an increase in iron absorption and subsequent release of iron from the reticuloendothelial system, leading to depletion of macrophage iron, relatively low levels of serum ferritin, and liver iron loading. The consequences of IOL in patients with NTDT are multiple and multifactorial. Accurate and reliable methods of diagnosis and monitoring of body iron levels are essential, and the method of choice for measuring iron accumulation will depend on the patient's needs and on the available facilities. Iron chelation therapy (ICT) remains the backbone of NTDT management and is one of the most effective and practical ways of decreasing morbidity and mortality. The aim of this review is to describe the mechanism of IOL in NTDT, and the clinical complications that can develop as a result, in addition to the current and future therapeutic options available for the management of IOL in NTDT.
Daba, Alina; Wagner, John; Sebastiani, Giada; Pantopoulos, Kostas
2014-01-01
Hemojuvelin (Hjv) is a bone morphogenetic protein (BMP) co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv−/− mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv−/− mice developed systemic iron overload under all regimens. Transferrin (Tf) was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin. PMID:24409331
Mirlohi, Maryam Sadat; Yaghooti, Hamid; Shirali, Saeed; Aminasnafi, Ali; Olapour, Samaneh
2018-04-01
The impaired biosynthesis of the β-globin chain in β-thalassemia leads to the accumulation of unpaired alpha globin chains, failure in hemoglobin formation, and iron overload due to frequent blood transfusion. Iron excess causes oxidative stress and massive tissue injuries. Advanced glycation end products (AGEs) are harmful agents, and their production accelerates in oxidative conditions. This study was conducted on 45 patients with major β-thalassemia who received frequent blood transfusions and chelation therapy and were compared to 40 healthy subjects. Metabolic parameters including glycemic and iron indices, hepatic and renal functions tests, oxidative stress markers, and AGEs (carboxymethyl-lysine and pentosidine) levels were measured. All parameters were significantly increased in β-thalassemia compared to the control except for glutathione levels. Blood glucose, iron, serum ferritin, non-transferrin-bound iron (NTBI), MDA, soluble form of low-density lipoprotein receptor, glutathione peroxidase, total reactive oxygen species (ROS), and AGE levels were significantly higher in the β-thalassemia patients. Iron and ferritin showed a significant positive correlation with pentosidine (P < 0.01) but not with carboxymethyl-lysine. The NTBI was markedly increased in the β-thalassemia patients, and its levels correlated significantly with both carboxymethyl-lysine and pentosidine (P < 0.05). Our findings confirm the oxidative status generated by the iron overload in β-thalassemia major patients and highlight the enhanced formation of AGEs, which may play an important role in the pathogenesis of β-thalassemia major.
Ivanovski, Ivan; Ješić, Miloš; Ivanovski, Ana; Garavelli, Livia; Ivanovski, Petar
2017-11-28
The underlying pathophysiology of liver dysfunction in urea cycle disorders (UCDs) is still largely elusive. There is some evidence that the accumulation of urea cycle (UC) intermediates are toxic for hepatocyte mitochondria. It is possible that liver injury is directly caused by the toxicity of ammonia. The rarity of UCDs, the lack of checking of iron level in these patients, superficial knowledge of UC and an underestimation of the metabolic role of fumaric acid, are the main reasons that are responsible for the incomprehension of the mechanism of liver injury in patients suffering from UCDs. Owing to our routine clinical practice to screen for iron overload in severely ill neonates, with the focus on the newborns suffering from acute liver failure, we report a case of citrullinemia with neonatal liver failure and high blood parameters of iron overload. We hypothesize that the key is in the decreased-deficient fumaric acid production in the course of UC in UCDs that causes several sequentially intertwined metabolic disturbances with final result of liver iron overload. The presented hypothesis could be easily tested by examining the patients suffering from UCDs, for liver iron overload. This could be easily performed in countries with a high population and comprehensive national register for inborn errors of metabolism. Providing the hypothesis is correct, neonatal liver damage in patients having UCD can be prevented by the supplementation of pregnant women with fumaric or succinic acid, prepared in the form of iron supplementation pills. After birth, liver damage in patients having UCDs can be prevented by supplementation of these patients with zinc fumarate or zinc succinylate, as well.
Daar, S; Pathare, A V
2006-05-01
Iron overload is the main cause of morbidity and mortality especially from heart failure in patients with beta thalassemia major (TM). Successful iron chelation is therefore essential for the optimal management of TM. Although desferrioxamine (DFX) has been the major iron-chelating treatment of transfusional iron overload, compliance is a major hindrance in achieving optimal therapeutic results. The availability of oral iron chelation with deferiprone (L(1)) since 1987 is useful but showed poor efficacy when used alone as compared to DFX. We therefore decided to compare DFX alone with a prospective combined therapy with DFX and L(1) in beta thalassemia major patients with iron overload. We studied 91 patients with beta thalassemia major (mean age+/-SD, 15.02+/-5.8; range 2-30 years) attending the day care unit for regular transfusional support. They received packed red cells every 3-4 weeks to maintain pretransfusion hemoglobin concentration above 9 g/dl. They had been receiving DFX at a daily dose of 40 mg kg(-1) day(-1) by subcutaneous infusion for 8-10 h on 4-5 nights each week for the past several years. However, due to various reasons, they had developed considerable transfusional iron overload. These patients were allocated to prospectively receive additional therapy with oral iron chelator L(1) at 75 mg kg(-1) day(-1) body weight in three divided doses with food after informed consent and continued to receive treatment with DFX as per the above dosage. Of the 91 patients, six developed severe gastrointestinal (GI) upset, two agranulocytosis, two arthropathy, one persistently raised liver enzymes, two died owing to sepsis, and two received allogeneic bone marrow transplantation. Amongst the remaining 76 patients, 21 were found noncompliant (not taking DFX regularly, but taking L(1) regularly). Thus, in the 55 evaluable patients {6-48 months on combination therapy; mean [(+/-SD)22+/-12 months]}, the mean serum ferritin (+/-SD) fell dramatically from 3,088 (+/-1,299) ng/ml (DFX alone) to 2,051 (+/-935) ng/ml (DFX and L(1); p<0.001). It is interesting to note that there was also a significant improvement in the myocardial function as assessed by the ejection fraction (p<0.004) and fractional shortening (p<0.05) in those patients (n=42) who could be studied after being on combination therapy for a minimum of 1 year. The study emphasizes that beta thalassemia major patients with transfusional iron overload can be successfully treated with a combination of DFX and L(1). Our results also demonstrate a significant statistical improvement after as little as 6 months of combination therapy. Furthermore, these improvements lead to a progressive fall in the mean serum ferritin. Lastly, the study also demonstrates significant improvement in the echocardiographic parameters of myocardial performance in these patients receiving combination therapy.
Cabrita, Marisa; Pereira, Carlos F; Rodrigues, Pedro; Cardoso, Elsa M; Arosa, Fernando A
2005-01-01
Iron overload in the liver may occur in clinical conditions such as hemochromatosis and nonalcoholic steatohepatitis, and may lead to the deterioration of the normal liver architecture by mechanisms not well understood. Although a relationship between the expression of ICAM-1, and classical major histocompatibility complex (MHC) class I molecules, and iron overload has been reported, no relationship has been identified between iron overload and the expression of unconventional MHC class I molecules. Herein, we report that parameters of iron metabolism were regulated in a coordinated-fashion in a human hepatoma cell line (HepG2 cells) after iron loading, leading to increased cellular oxidative stress and growth retardation. Iron loading of HepG2 cells resulted in increased expression of Nor3.2-reactive CD1d molecules at the plasma membrane. Expression of classical MHC class I and II molecules, ICAM-1 and the epithelial CD8 ligand, gp180 was not significantly affected by iron. Considering that intracellular lipids regulate expression of CD1d at the cell surface, we examined parameters of lipid metabolism in iron-loaded HepG2 cells. Interestingly, increased expression of CD1d molecules by iron-loaded HepG2 cells was associated with increased phosphatidylserine expression in the outer leaflet of the plasma membrane and the presence of many intracellular lipid droplets. These data describe a new relationship between iron loading, lipid accumulation and altered expression of CD1d, an unconventional MHC class I molecule reported to monitor intracellular and plasma membrane lipid metabolism, in the human hepatoma cell line HepG2.
Di Tucci, Anna Angela; Murru, Roberta; Alberti, Daniele; Rabault, Bertrand; Deplano, Simona; Angelucci, Emanuele
2007-01-01
Transfusional iron overload in patients with chronic anemias can result in multiple organ failure. Experience in the management of iron overload in patients with myelodysplastic syndromes is limited, as many do not receive chelation therapy due to short-life expectancy and the difficulties associated with the administration of the current reference standard chelator, deferoxamine. There have, however, been some reports of reduced transfusion requirement associated with chelation therapy in patients with myelodysplastic syndromes and myelofibrosis. Here, we discuss a patient with primary myelofibrosis and related transfusion-dependent anemia who received chelation therapy with the once-daily oral iron chelator, deferasirox. In addition to the reduced iron levels, the patient demonstrated an unexpected reduction in blood transfusion requirement, ultimately resulting in long-lasting transfusion-free survival. PMID:17391307
Iron overload secondary to cirrhosis: a mimic of hereditary haemochromatosis?
Abu Rajab, Murad; Guerin, Leana; Lee, Pauline; Brown, Kyle E
2014-10-01
Hepatic iron deposition unrelated to hereditary haemochromatosis is common in cirrhosis. The aim of this study was to determine whether hepatic haemosiderosis secondary to cirrhosis is associated with iron deposition in extrahepatic organs. Records of consecutive adult patients with cirrhosis who underwent autopsy were reviewed. Storage iron was assessed by histochemical staining of sections of liver, heart, pancreas and spleen. HFE genotyping was performed on subjects with significant liver, cardiac and/or pancreatic iron. The 104 individuals were predominantly male (63%), with a mean age of 55 years. About half (46%) had stainable hepatocyte iron, 2+ or less in most cases. In six subjects, there was heavy iron deposition (4+) in hepatocytes and biliary epithelium. All six of these cases had pancreatic iron and five also had cardiac iron. None of these subjects had an explanatory HFE genotype. In this series, heavy hepatocyte iron deposition secondary to cirrhosis was commonly associated with pancreatic and cardiac iron. Although this phenomenon appears to be relatively uncommon, the resulting pattern of iron deposition is similar to haemochromatosis. Patients with marked hepatic haemosiderosis secondary to cirrhosis may be at risk of developing extrahepatic complications of iron overload. © 2014 John Wiley & Sons Ltd.
Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter.
Donovan, A; Brownlie, A; Zhou, Y; Shepard, J; Pratt, S J; Moynihan, J; Paw, B H; Drejer, A; Barut, B; Zapata, A; Law, T C; Brugnara, C; Lux, S E; Pinkus, G S; Pinkus, J L; Kingsley, P D; Palis, J; Fleming, M D; Andrews, N C; Zon, L I
2000-02-17
Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMTi. A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.
Maaroufi, Karima; Had-Aissouni, Laurence; Melon, Christophe; Sakly, Mohsen; Abdelmelek, Hafedh; Poucet, Bruno; Save, Etienne
2014-01-01
The increasing use of mobile phone technology over the last decade raises concerns about the impact of high frequency electromagnetic fields (EMF) on health. More recently, a link between EMF, iron overload in the brain and neurodegenerative disorders including Parkinson's and Alzheimer's diseases has been suggested. Co-exposure to EMF and brain iron overload may have a greater impact on brain tissues and cognitive processes than each treatment by itself. To examine this hypothesis, Long-Evans rats submitted to 900 MHz exposure or combined 900 MHz EMF and iron overload treatments were tested in various spatial learning tasks (navigation task in the Morris water maze, working memory task in the radial-arm maze, and object exploration task involving spatial and non spatial processing). Biogenic monoamines and metabolites (dopamine, serotonin) and oxidative stress were measured. Rats exposed to EMF were impaired in the object exploration task but not in the navigation and working memory tasks. They also showed alterations of monoamine content in several brain areas but mainly in the hippocampus. Rats that received combined treatment did not show greater behavioral and neurochemical deficits than EMF-exposed rats. None of the two treatments produced global oxidative stress. These results show that there is an impact of EMF on the brain and cognitive processes but this impact is revealed only in a task exploiting spontaneous exploratory activity. In contrast, there are no synergistic effects between EMF and a high content of iron in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Ineffective Erythropoiesis: Anemia and Iron Overload.
Gupta, Ritama; Musallam, Khaled M; Taher, Ali T; Rivella, Stefano
2018-04-01
Stress erythropoiesis (SE) is characterized by an imbalance in erythroid proliferation and differentiation under increased demands of erythrocyte generation and tissue oxygenation. β-thalassemia represents a chronic state of SE, called ineffective erythropoiesis (IE), exhibiting an expansion of erythroid-progenitor pool and deposition of alpha chains on erythrocyte membranes, causing cell death and anemia. Concurrently, there is a decrease in hepcidin expression and a subsequent state of iron overload. There are substantial investigative efforts to target increased iron absorption under IE. There are also avenues for targeting cell contact and signaling within erythroblastic islands under SE, for therapeutic benefits. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis. Although not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we de...
Oxidation-Induced Degradable Nanogels for Iron Chelation
NASA Astrophysics Data System (ADS)
Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.
2016-02-01
Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.
Oxidation-Induced Degradable Nanogels for Iron Chelation
Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.
2016-01-01
Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174
Quantification of liver fat in the presence of iron overload.
Horng, Debra E; Hernando, Diego; Reeder, Scott B
2017-02-01
To evaluate the accuracy of R2* models (1/T 2 * = R2*) for chemical shift-encoded magnetic resonance imaging (CSE-MRI)-based proton density fat-fraction (PDFF) quantification in patients with fatty liver and iron overload, using MR spectroscopy (MRS) as the reference standard. Two Monte Carlo simulations were implemented to compare the root-mean-squared-error (RMSE) performance of single-R2* and dual-R2* correction in a theoretical liver environment with high iron. Fatty liver was defined as hepatic PDFF >5.6% based on MRS; only subjects with fatty liver were considered for analyses involving fat. From a group of 40 patients with known/suspected iron overload, nine patients were identified at 1.5T, and 13 at 3.0T with fatty liver. MRS linewidth measurements were used to estimate R2* values for water and fat peaks. PDFF was measured from CSE-MRI data using single-R2* and dual-R2* correction with magnitude and complex fitting. Spectroscopy-based R2* analysis demonstrated that the R2* of water and fat remain close in value, both increasing as iron overload increases: linear regression between R2* W and R2* F resulted in slope = 0.95 [0.79-1.12] (95% limits of agreement) at 1.5T and slope = 0.76 [0.49-1.03] at 3.0T. MRI-PDFF using dual-R2* correction had severe artifacts. MRI-PDFF using single-R2* correction had good agreement with MRS-PDFF: Bland-Altman analysis resulted in -0.7% (bias) ± 2.9% (95% limits of agreement) for magnitude-fit and -1.3% ± 4.3% for complex-fit at 1.5T, and -1.5% ± 8.4% for magnitude-fit and -2.2% ± 9.6% for complex-fit at 3.0T. Single-R2* modeling enables accurate PDFF quantification, even in patients with iron overload. 1 J. Magn. Reson. Imaging 2017;45:428-439. © 2016 International Society for Magnetic Resonance in Medicine.
Speechley, Mark; Barton, James C; Passmore, Leah; Harrison, Helen; Reboussin, David M; Harris, Emily L; Rivers, Charles A; Fadojutimi-Akinsiku, Margaret; Wenzel, Lari; Diaz, Sharmin
2009-12-01
Little is known about the factors affecting participation in clinical assessments after HEmochromatosis and IRon Overload Screening. Initial screening of 101,168 primary care patients in the HEmochromatosis and IRon Overload Screening study was performed using serum iron measures and hemochromatosis gene (HFE) genotyping. Using iron phenotypes and HFE genotypes, we identified 2256 cases and 1232 controls eligible to participate in a clinical examination. To assess the potential for nonresponse bias, we compared the sociodemographic, health status, and attitudinal characteristics of participants and nonparticipants using adjusted odds ratios (ORs) and 95% confidence interval (CI). Overall participation was 74% in cases and 52% in controls; in both groups, participation was highest at a health maintenance organization and lowest among those under 45 years of age (cases: OR = 0.68; 95% CI 0.53, 0.87; controls: OR = 0.59; 95% CI 0.44, 0.78). In controls only, participation was also lower among those over 65 years of age than the reference group aged 46-64 (OR = 0.64; 95% CI 0.47, 0.88). Among cases, participation was higher in HFE C282Y homozygotes (OR = 3.98; 95% CI 2.60, 6.09), H63D homozygotes (OR = 2.79; 95% CI 1.23, 6.32), and C282Y/H63D compound heterozygotes (OR = 1.82; 95% CI 1.03, 3.22) than in other genotypes, and lower among non-Caucasians and those who preferred a non-English language than in Caucasians and those who preferred English (p < 0.0001). Subjects with greatest risk to have iron overload (C282Y homozygotes; cases > or =45 years; Caucasians) were more likely to participate in a postscreening clinical examination than other subjects. We detected no evidence of strong selection bias.
Chin, Hui-Lin; Lee, Le Ye; Koh, Pei Lin
2018-04-17
We report a rare case of severe congenital dyserythropoietic anemia type 1 with fetal onset. Our patient presented with fetal hydrops from 19 weeks of gestation, requiring multiple intrauterine transfusions. At birth, she had severe hemolytic anemia with severe jaundice, and was subsequently transfusion dependent. She eventually developed severe iron overload and fulminant liver failure before her demise at 5 months of age. Genetic testing revealed a novel mutation in CDAN1.
Porter, John; Bowden, Donald K.; Economou, Marina; Troncy, Jacques; Ganser, Arnold; Habr, Dany; Martin, Nicolas; Gater, Adam; Rofail, Diana; Abetz-Webb, Linda; Lau, Helen; Cappellini, Maria Domenica
2012-01-01
Treatment of iron overload using deferoxamine (DFO) is associated with significant deficits in patients' health-related quality of life (HRQOL) and low treatment satisfaction. The current article presents patient-reported HRQOL, satisfaction, adherence, and persistence data from β-thalassemia (n = 274) and myelodysplastic syndrome (MDS) patients (n = 168) patients participating in the Evaluation of Patients' Iron Chelation with Exjade (EPIC) study (NCT00171821); a large-scale 1-year, phase IIIb study investigating the efficacy and safety of the once-daily oral iron chelator, deferasirox. HRQOL and satisfaction, adherence, and persistence to iron chelation therapy (ICT) data were collected at baseline and end of study using the Medical Outcomes Short-Form 36-item Health Survey (SF-36v2) and the Satisfaction with ICT Questionnaire (SICT). Compared to age-matched norms, β-thalassemia and MDS patients reported lower SF-36 domain scores at baseline. Low levels of treatment satisfaction, adherence, and persistence were also observed. HRQOL improved following treatment with deferasirox, particularly among β-thalassemia patients. Furthermore, patients reported high levels of satisfaction with deferasirox at end of study and greater ICT adherence, and persistence. Findings suggest deferasirox improves HRQOL, treatment satisfaction, adherence, and persistence with ICT in β-thalassemia and MDS patients. Improving such outcomes is an important long-term goal for patients with iron overload. PMID:22924125
Adenine alleviates iron overload by cAMP/PKA mediated hepatic hepcidin in mice.
Zhang, Yingqi; Wang, Xudong; Wu, Qian; Wang, Hao; Zhao, Lu; Wang, Xinhui; Mu, Mingdao; Xie, Enjun; He, Xuyan; Shao, Dandan; Shang, Yanna; Lai, Yongrong; Ginzburg, Yelena; Min, Junxia; Wang, Fudi
2018-03-30
Hemochromatosis is prevalent and often associated with high rates of morbidity and mortality worldwide. The safe alternative iron-reducing approaches are urgently needed in order to better control iron overload. Our unbiased vitamin screen for modulators of hepcidin, a master iron regulatory hormone, identifies adenine (vitamin B4) as a potent hepcidin agonist. Adenine significantly induced hepcidin mRNA level and promoter activity activation in human cell lines, possibly through BMP/SMAD pathway. Further studies in mice validated the effect of adenine on hepcidin upregulation. Consistently, adenine dietary supplement in mice led to an increase of hepatic hepcidin expression compared with normal diet-fed mice via BMP/SMAD pathway. Notably, adenine-rich diet significantly ameliorated iron overload accompanied by the enhanced hepcidin expression in both high iron-fed mice and in Hfe -/- mice, a murine model of hereditary hemochromatosis. To further validate this finding, we selected pharmacological inhibitors against BMP (LDN193189). We found LDN193189 strongly blocked the hepcidin induction by adenine. Moreover, we uncovered an essential role of cAMP/PKA-dependent axis in triggering adenine-induced hepcidin expression in primary hepatocytes by using 8 br cAMP, a cAMP analog, and H89, a potent inhibitor for PKA signaling. These findings suggest a potential therapeutic role of adenine for hereditary hemochromatosis. © 2018 Wiley Periodicals, Inc.
Role of alcohol in the regulation of iron metabolism
Harrison-Findik, Duygu Dee
2007-01-01
Patients with alcoholic liver disease frequently exhibit increased body iron stores, as reflected by elevated serum iron indices (transferrin saturation, ferritin) and hepatic iron concentration. Even mild to moderate alcohol consumption has been shown to increase the prevalence of iron overload. Moreover, increased hepatic iron content is associated with greater mortality from alcoholic cirrhosis, suggesting a pathogenic role for iron in alcoholic liver disease. Alcohol increases the severity of disease in patients with genetic hemochromatosis, an iron overload disorder common in the Caucasian population. Both iron and alcohol individually cause oxidative stress and lipid peroxidation, which culminates in liver injury. Despite these observations, the underlying mechanisms of iron accumulation and the source of the excess iron observed in alcoholic liver disease remain unclear. Over the last decade, several novel iron-regulatory proteins have been identified and these have greatly enhanced our understanding of iron metabolism. For example, hepcidin, a circulatory antimicrobial peptide synthesized by the hepatocytes of the liver is now known to play a central role in the regulation of iron homeostasis. This review attempts to describe the interaction of alcohol and iron-regulatory molecules. Understanding these molecular mechanisms is of considerable clinical importance because both alcoholic liver disease and genetic hemochromatosis are common diseases, in which alcohol and iron appear to act synergistically to cause liver injury. PMID:17854133
Mladĕnka, Premysl; Kalinowski, Danuta S; Haskova, Pavlína; Bobrovová, Zuzana; Hrdina, Radomír; Simůnek, Tomás; Nachtigal, Petr; Semecký, Vladimĺr; Vávrová, Jaroslava; Holeckova, Magdaléna; Palicka, Vladimir; Mazurová, Yvona; Jansson, Patric J; Richardson, Des R
2009-01-01
Iron (Fe) chelators are used clinically for the treatment of Fe overload disease. Iron also plays a role in the pathology of many other conditions, and these potentially include the cardiotoxicity induced by catecholamines such as isoprenaline (ISO). The current study examined the potential of Fe chelators to prevent ISO cardiotoxicity. This was done as like other catecholamines, ISO contains the classical catechol moiety that binds Fe and may form redox-active and cytotoxic Fe complexes. Studies in vitro used the cardiomyocyte cell line, H9c2, which was treated with ISO in the presence or absence of the chelator, desferrioxamine (DFO), or the lipophilic ligand, 2-pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone (PCTH). Both of these chelators were not cardiotoxic and significantly reduced ISO cardiotoxicity in vitro. However, PCTH was far more effective than DFO, with the latter showing activity only at a high, clinically unachievable concentration. Further studies in vitro showed that interaction of ISO with Fe(II)/(III) did not increase cytotoxic radical generation, suggesting that this mechanism was not involved. Studies in vivo were initiated using rats pretreated intravenously with DFO or PCTH before subcutaneous administration of ISO (100 mg/kg). DFO at a clinically used dose (50 mg/kg) failed to reduce catecholamine cardiotoxicity, while PCTH at an equimolar dose totally prevented catecholamine-induced mortality and reduced cardiotoxicity. This study demonstrates that PCTH reduced ISO-induced cardiotoxicity in vitro and in vivo, demonstrating that Fe plays a role, in part, in the pathology observed.
Wu, Kuo-Chen; Liou, Horng-Huei; Kao, Yu-Han; Lee, Chih-Yu; Lin, Chun-Jung
2017-08-01
Oligomeric α-synuclein is a key mediator in the pathogenesis of Parkinson's disease (PD) and is mainly cleared by autophagy-lysosomal pathway, whose dysfunction results in the accumulation and cell-to-cell transmission of α-synuclein. In this study, concomitant with the accumulation of iron and oligomeric α-synuclein, higher expression of a lysosomal iron transporter, natural resistance-associated macrophage protein-1 (Nramp1), was observed in microglia in post-mortem striatum of sporadic PD patients. Using Nramp1-deficient macrophage (RAW264.7) and microglial (BV-2) cells as in-vitro models, iron exposure significantly reduced the degradation rate of the administered human α-synuclein oligomers, which can be restored by the expression of the wild-type, but not mutant (D543N), Nramp1. Likewise, under iron overload condition, mice with functional Nramp1 (DBA/2 and C57BL/6 congenic mice carrying functional Nramp1) had a better ability to degrade infused human α-synuclein oligomers than mice with nonfunctional Nramp1 (C57BL/6) in the brain and microglia. The interplay between iron and Nramp1 exhibited parallel effects on the clearance of α-synuclein and the activity of lysosomal cathepsin D in vitro and in vivo. Collectively, these findings suggest that the function of Nramp1 contributes to microglial degradation of oligomeric α-synuclein under iron overload condition and may be implicated in the pathogenesis of PD. Copyright © 2017 Elsevier Inc. All rights reserved.
Taher, Ali T; Cappellini, M Domenica; Aydinok, Yesim; Porter, John B; Karakas, Zeynep; Viprakasit, Vip; Siritanaratkul, Noppadol; Kattamis, Antonis; Wang, Candace; Zhu, Zewen; Joaquin, Victor; Uwamahoro, Marie José; Lai, Yong-Rong
2016-03-01
Efficacy and safety of iron chelation therapy with deferasirox in iron-overloaded non-transfusion-dependent thalassaemia (NTDT) patients were established in the THALASSA study. THETIS, an open-label, single-arm, multicentre, Phase IV study, added to this evidence by investigating earlier dose escalation by baseline liver iron concentration (LIC) (week 4: escalation according to baseline LIC; week 24: adjustment according to LIC response, maximum 30mg/kg/day). The primary efficacy endpoint was absolute change in LIC from baseline to week 52. 134 iron-overloaded non-transfusion-dependent anaemia patients were enrolled and received deferasirox starting at 10mg/kg/day. Mean actual dose±SD over 1year was 14.70±5.48mg/kg/day. At week 52, mean LIC±SD decreased significantly from 15.13±10.72mg Fe/g dw at baseline to 8.46±6.25mg Fe/g dw (absolute change from baseline, -6.68±7.02mg Fe/g dw [95% CI: -7.91, -5.45]; P<0.0001). Most common drug-related adverse events were gastrointestinal: abdominal discomfort, diarrhoea and nausea (n=6 each). There was one death (pneumonia, not considered drug related). With significant and clinically relevant reductions in iron burden alongside a safety profile similar to that in THALASSA, these data support earlier escalation with higher deferasirox doses in iron-overloaded non-transfusion-dependent anaemia patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Iron Overload and Chelation Therapy in Non-Transfusion Dependent Thalassemia
Bou-Fakhredin, Rayan; Bazarbachi, Abdul-Hamid; Chaya, Bachar; Sleiman, Joseph; Cappellini, Maria Domenica; Taher, Ali T.
2017-01-01
Iron overload (IOL) due to increased intestinal iron absorption constitutes a major clinical problem in patients with non-transfusion-dependent thalassemia (NTDT), which is a cumulative process with advancing age. Current models for iron metabolism in patients with NTDT suggest that suppression of serum hepcidin leads to an increase in iron absorption and subsequent release of iron from the reticuloendothelial system, leading to depletion of macrophage iron, relatively low levels of serum ferritin, and liver iron loading. The consequences of IOL in patients with NTDT are multiple and multifactorial. Accurate and reliable methods of diagnosis and monitoring of body iron levels are essential, and the method of choice for measuring iron accumulation will depend on the patient’s needs and on the available facilities. Iron chelation therapy (ICT) remains the backbone of NTDT management and is one of the most effective and practical ways of decreasing morbidity and mortality. The aim of this review is to describe the mechanism of IOL in NTDT, and the clinical complications that can develop as a result, in addition to the current and future therapeutic options available for the management of IOL in NTDT. PMID:29261151
Kim, Jinhyun; Kim, Younhee
2009-01-01
This study aims to conduct an economic evaluation of oral deferasirox (DSX) compared with infusional deferoxamine (DFO) in patients with transfusional iron overload. Depending on the methods for measuring time-cost and convenience associated with the mode of administration, either cost-utility analysis or cost-effectiveness analysis was undertaken. The difference in compliance rate between DSX and DFO was applied. Although the drug cost of DSX was US$124,070 higher than that of DFO (US$96,039 vs. US$220,199), all other costs were lower in patients with DSX than in patients with DFO. In the cost-utility analysis, DSX resulted in US$3197 savings with a gain of 2.63 quality-adjusted life-years per patient. The result of the cost-effectiveness analysis also showed that DSX dominated DFO. With a considerable improvement in convenience and injection time rather than efficacy, DSX is considered as a dominant therapy for patients with iron overload.
Mirault, Tristan; Lucidarme, Damien; Turlin, Bruno; Vandevenne, Philippe; Gosset, Pierre; Ernst, Olivier; Rose, Christian
2008-04-01
Liver fibrosis, assessed by biopsy, is the main complication of post transfusional liver iron overload. Transient elastography (TE) is a new, non invasive method able to measure liver stiffness (LS) caused by fibrosis. We prospectively evaluated the predictive value of LS measurement for liver fibrosis evaluation in 15 chronically transfused patients and compared these results with the METAVIR histological fibrosis stage from liver biopsies. Mean TE values significantly differed in patients with severe fibrosis (METAVIR F3, F4): 9.1 (+/-3.7 SD) kPa from those with mild or no fibrosis (METAVIR F0, F1, F2): 5.9 (+/-1.8 SD) kPa (P = 0.046). TE value above 6.25 kPa (Se = 80%; Sp = 70%; AUROC = 0.820) identified patients at risk for severe fibrosis (Negative Predictive Value 88%; Positive Predictive Value 57%). Transient elastography appears to be a reliable tool to evaluate liver fibrosis in post-transfusional iron overload.
Ricchi, Paolo; Marsella, Maria
2015-01-01
It has been clearly shown that iron overload adds progressively significant morbidity and mortality in patients with non-transfusion-dependent thalassemia (NTDT). The lack of physiological mechanisms to eliminate the excess of iron requires effective iron chelation therapy. The reduced compliance to deferoxamine and the risk of severe hematological adverse events during deferiprone treatment have limited the use of both these drugs to correct iron imbalance in NTDT. According to the principles of evidence-based medicine, following the demonstration of the effectiveness and the safety of deferasirox (Exjade(®)) in a prospective, randomized, controlled trial, deferasirox was approved by the US Food and Drug Administration in May 2013 for the treatment of iron overload associated with NTDT. This review, assessing the available scientific literature, will focus on the profile of DFX in the treatment of non-transfusional hemosiderosis in patients with NTDT.
SAITO, HIROSHI
2014-01-01
ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033
... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...
Use of Deferasirox (Exjade) for Iron Overload in Peritoneal Dialysis Patients.
Yii, Erwin; Doery, James Cg; Kaplan, Zane; Kerr, Peter G
2018-04-16
A 54 year old male with β-Thalassemia major developed ESRD and was managed with continuous ambulatory peritoneal dialysis. Although not able to be transfused due to high titre red cell antibodies he did require management of iron overload. Deferasirox (Exjade) was administered orally. There was concern that excretion of iron via the peritoneal dialysate may raise the risk of iron-dependent infections (Yersinia and Rhizopus). Whilst receiving Exjade 1000mg /day, a total collection of 12.7L of peritoneal dialysate was collected over a 24 hour period by the patient and brought into the lab for testing. The dialysate total iron levels were measured by ICP-MS at 0.46μmol/L which equates to 0.33mg of Fe in total. Over a 6 month period his serum ferritin fell from 3869ug/l to 1545ug/l. There were no episodes of peritonitis. According to the deferasirox product information, 1000mg/day in this man accounts for just under the 20mg/kg/day dosage, hence giving an expected 18-20mg excretion of Fe per day (predominantly via the GIT). Since only 7-8% of the deferasirox and iron complex is excreted through the urine, the amount of Fe seen in the patient's dialysate might be expected to be up to 1.5-1.6mg. Yet, the results of the Fe levels in the patient's PD fluid was a meagre 0.33mg, about five times lower than expected. Whilst only moderately effective at a dosage of 1000mg/day, deferasirox may be a safe agent for iron removal in iron overloaded peritoneal dialysis patients, as relatively low dialysate iron levels reduces the risk of Yersinia and Rhizopus infection. This article is protected by copyright. All rights reserved.
Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice
Li, Huihui; Choesang, Tenzin; Bao, Weili; Chen, Huiyong; Feola, Maria; Garcia-Santos, Daniel; Li, Jie; Sun, Shuming; Follenzi, Antonia; Pham, Petra; Liu, Jing; Zhang, Jinghua; Ponka, Prem; An, Xiuli; Mohandas, Narla; Fleming, Robert E.; Rivella, Stefano; Li, Guiyuan
2017-01-01
Iron availability for erythropoiesis and its dysregulation in β-thalassemia are incompletely understood. We previously demonstrated that exogenous apotransferrin leads to more effective erythropoiesis, decreasing erythroferrone (ERFE) and derepressing hepcidin in β-thalassemic mice. Transferrin-bound iron binding to transferrin receptor 1 (TfR1) is essential for cellular iron delivery during erythropoiesis. We hypothesize that apotransferrin’s effect is mediated via decreased TfR1 expression and evaluate TfR1 expression in β-thalassemic mice in vivo and in vitro with and without added apotransferrin. Our findings demonstrate that β-thalassemic erythroid precursors overexpress TfR1, an effect that can be reversed by the administration of exogenous apotransferrin. In vitro experiments demonstrate that apotransferrin inhibits TfR1 expression independent of erythropoietin- and iron-related signaling, decreases TfR1 partitioning to reticulocytes during enucleation, and enhances enucleation of defective β-thalassemic erythroid precursors. These findings strongly suggest that overexpressed TfR1 may play a regulatory role contributing to iron overload and anemia in β-thalassemic mice. To evaluate further, we crossed TfR1+/− mice, themselves exhibiting iron-restricted erythropoiesis with increased hepcidin, with β-thalassemic mice. Resultant double-heterozygote mice demonstrate long-term improvement in ineffective erythropoiesis, hepcidin derepression, and increased erythroid enucleation in relation to β-thalassemic mice. Our data demonstrate for the first time that TfR1+/− haploinsufficiency reverses iron overload specifically in β-thalassemic erythroid precursors. Taken together, decreasing TfR1 expression during β-thalassemic erythropoiesis, either directly via induced haploinsufficiency or via exogenous apotransferrin, decreases ineffective erythropoiesis and provides an endogenous mechanism to upregulate hepcidin, leading to sustained iron-restricted erythropoiesis and preventing systemic iron overload in β-thalassemic mice. PMID:28151426
Unal, Emre; Idilman, Ilkay Sedakat; Karçaaltıncaba, Muşturay
2017-02-01
New advances in liver magnetic resonance imaging (MRI) may enable diagnosis of unseen pathologies by conventional techniques. Normal T1 (550-620 ms for 1.5 T and 700-850 ms for 3 T), T2, T2* (>20 ms), T1rho (40-50 ms) mapping, proton density fat fraction (PDFF) (≤5%) and stiffness (2-3kPa) values can enable differentiation of a normal liver from chronic liver and diffuse diseases. Gd-EOB-DTPA can enable assessment of liver function by using postcontrast hepatobiliary phase or T1 reduction rate (normally above 60%). T1 mapping can be important for the assessment of fibrosis, amyloidosis and copper overload. T1rho mapping is promising for the assessment of liver collagen deposition. PDFF can allow objective treatment assessment in NAFLD and NASH patients. T2 and T2* are used for iron overload determination. MR fingerprinting may enable single slice acquisition and easy implementation of multiparametric MRI and follow-up of patients. Areas covered: T1, T2, T2*, PDFF and stiffness, diffusion weighted imaging, intravoxel incoherent motion imaging (ADC, D, D* and f values) and function analysis are reviewed. Expert commentary: Multiparametric MRI can enable biopsyless diagnosis and more objective staging of diffuse liver disease, cirrhosis and predisposing diseases. A comprehensive approach is needed to understand and overcome the effects of iron, fat, fibrosis, edema, inflammation and copper on MR relaxometry values in diffuse liver disease.
Taher, Ali; Al Jefri, Abdullah; Elalfy, Mohsen Saleh; Al Zir, Kusai; Daar, Shahina; Rofail, Diana; Baladi, Jean François; Habr, Dany; Kriemler-Krahn, Ulrike; El-Beshlawy, Amal
2010-01-01
Patient-reported outcomes of once-daily oral deferasirox (Exjade) in iron-overloaded patients with beta-thalassemia not achieving successful chelation with prior deferoxamine and/or deferiprone were investigated in a prospective, open-label, 1-year, multicenter study in the Middle East (ESCALATOR). The initial dose of deferasirox was 20 mg/kg/day, with subsequent dose adjustments. At baseline and the end of study (EOS), patients (n = 237) completed a 5-point rating scale for treatment satisfaction and convenience, and recorded time lost to treatment. At EOS, 90.7% of patients were 'satisfied'/'very satisfied' with their iron chelation therapy (ICT) versus 23.2% at baseline. 92.8% (EOS) versus 21.5% (baseline) of patients considered their therapy to be 'convenient'/'very convenient'. Time lost to therapy for daily activities was substantially reduced (3.2 +/- 8.6 [mean +/- SD; EOS] vs. 30.1 +/- 44.2 [baseline] h/month). Patients reported greater satisfaction and convenience, and lower impact on daily activities, with deferasirox than with previous ICT. This may help improve adherence to lifelong ICT in iron-overloaded beta-thalassemia patients. 2010 S. Karger AG, Basel.
Hepatic Iron Overload and Hepatocellular Carcinoma
Kew, Michael C.
2014-01-01
In recent years it has become increasingly evident that excess body iron may be complicated by the supervention of hepatocellular carcinoma (HCC). Hereditary hemochromatosis (HH) was the first condition in which hepatic iron overload was shown to predispose to the development of HCC. The inherited predisposition to excessive absorption of dietary iron in HH is almost always the result of homozygosity of the C282Y mutation of the HFE gene, which causes inappropriately low secretion of hepcidin. HCC develops in 8-10% of patients with HH and is responsible for approximately 45% of deaths in the HCC patients. Cirrhosis is almost always present when HCC is diagnosed. Dietary iron overload is a condition which occurs in rural-dwelling Black Africans in southern Africa as a result of the consumption, over time, of large volumes of alcohol home-brewed in iron containers and having, as a consequence, a high iron content. Iron loading of the liver results and may be complicated by malignant transformation of the liver (relative risk of approximately 10.0). Accompanying cirrhosis does occur but is less common than that in HH. The development of HCC as a consequence of increased dietary iron, and the fact that it may develop in the absence of cirrhosis, has been confirmed in an animal model. Drinking water with a high iron content might contribute to the high incidence of HCC in parts of Taiwan. The metabolic syndrome [obesity, insulin resistance type 2 (or diabetes mellitus type 2), non-alcoholic fatty liver or non-alcoholic steatohepatitis] has in recent years become a major public health problem in some resource-rich countries. A link between excess body iron and insulin resistance or the metabolic syndrome has become apparent. The metabolic syndrome may be complicated by the supervention of HCC, and recent evidence suggests that increased body iron may contribute to this complication. PMID:24804175
Seravalle, Gino; Piperno, Alberto; Mariani, Raffaella; Pelloni, Irene; Facchetti, Rita; Dell'Oro, Raffaella; Cuspidi, Cesare; Mancia, Giuseppe; Grassi, Guido
2016-03-21
Haemochromatosis (HH) displays a number of circulatory alterations concurring at increase cardiovascular risk. Whether these include sympathetic abnormalities in unknown. In 18 males with primary HH (age: 42.3 ± 10.4 years, mean ± SD), clinic and beat-to-beat blood pressure (BP, Finapres), heart rate (HR, EKG), and muscle sympathetic nerve activity (MSNA, microneurography) traffic were measured in the iron overload state and after iron depletion therapy. Haemochromatosis patients displayed elevated serum iron indices while other haemodynamic and metabolic variables were superimposable to ones seen in 12 healthy subjects (C). Muscle sympathetic nerve activity was significantly greater in HH than C (64.8 ± 13.3 vs. 37.8 ± 6.7 bs/100 hb, P < 0.01). Iron depletion caused a significant reduction in serum ferritin, transferrin saturation, and MSNA (from 64.8 ± 13.3 to 39.2 ± 9.2 bs/100 hb, P < 0.01) and a significant improvement in baroreflex-MSNA modulation. This was paralleled by a significant increase in the high-frequency HR variability and by a significant reduction in the low-frequency systolic BP variability components. Before after iron depletion therapy, MSNA was significantly and directly related to transferrin saturation, liver iron concentration, and iron removed, while the MSNA reductions observed after the procedure were significantly and inversely related to the baroreflex-MSNA increases detected after iron depletion. In C, all variables remained unchanged following 1 month observation. These data provide the first evidence that in HH iron overload is associated with an hyperadrenergic state and a baroreflex alteration, which are reversed by iron depletion. These findings underline the importance of iron overload in modulating sympathetic activation, possibly participating at the elevated cardiovascular risk reported in HH. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Ingrassia, Rosaria; Memo, Maurizio; Garavaglia, Barbara
2017-01-01
Mutations in WDR45 gene, coding for a beta-propeller protein, have been found in patients affected by Neurodegeneration with Brain Iron Accumulation, NBIA5 (also known as BPAN). BPAN is a movement disorder with Non Transferrin Bound Iron (NTBI) accumulation in the basal ganglia as common hallmark between NBIA classes (Hayflick et al., 2013). WDR45 has been predicted to have a role in autophagy, while the impairment of iron metabolism in the different NBIA subclasses has not currently been clarified. We found the up-regulation of the ferrous iron transporter (-)IRE/Divalent Metal Transporter1 and down-regulation of Transferrin receptor in the fibroblasts of two BPAN affected patients with splicing mutations 235+1G>A (BPAN1) and 517_519ΔVal 173 (BPAN2). The BPAN patients showed a concomitant increase of intracellular ferrous iron after starvation. An altered pattern of iron transporters with iron overload is highlighted in BPAN human fibroblasts, supporting for a role of DMT1 in NBIA. We here present a novel element, about iron accumulation, to the existing knowledge in field of NBIA. Attention is focused to a starvation-dependent iron overload, possibly accounting for iron accumulation in the basal ganglia. Further investigation could clarify iron regulation in BPAN.
Chen, Mei-Pian; Li, Shu-Na; Lam, Wendy W M; Ho, Yuen-Chi; Ha, Shau-Yin; Chan, Godfrey C F; Cheung, Yiu-Fai
2014-04-12
Iron may damage sarcomeric proteins through oxidative stress. We explored the left ventricular (LV) torsional mechanics in patients with beta-thalassaemia major and its relationship to myocardial iron load. Using HL-1 cell and B6D2F1 mouse models, we further determined the impact of iron load on proteolysis of the giant sarcomeric protein titin. In 44 thalassaemia patients aged 25 ± 7 years and 38 healthy subjects, LV torsion and twisting velocities were determined at rest using speckle tracking echocardiography. Changes in LV torsional parameters during submaximal exercise testing were further assessed in 32 patients and 17 controls. Compared with controls, patients had significantly reduced LV apical rotation, torsion, systolic twisting velocity, and diastolic untwisting velocity. T2* cardiac magnetic resonance findings correlated with resting diastolic untwisting velocity. The increments from baseline and resultant LV torsion and systolic and diastolic untwisting velocities during exercise were significantly lower in patients than controls. Significant correlations existed between LV systolic torsion and diastolic untwisting velocities in patients and controls, both at rest and during exercise. In HL-1 cells and ventricular myocardium of B6D2F1 mice overloaded with iron, the titin-stained pattern of sarcomeric structure became disrupted. Gel electrophoresis of iron-overloaded mouse myocardial tissue further showed significant decrease in the amount of titin isoforms and increase in titin degradation products. Resting and dynamic LV torsional mechanics is impaired in patients with beta-thalassaemia major. Cell and animal models suggest a potential role of titin degradation in iron overload-induced alteration of LV torsional mechanics.
Wallace, Daniel F; Subramaniam, V Nathan
2007-01-01
Non-HFE hereditary haemochromatosis (HH) refers to a genetically heterogeneous group of iron overload disorders that are unlinked to mutations in the HFE gene. The four main types of non-HFE HH are caused by mutations in the hemojuvelin, hepcidin, transferrin receptor 2 and ferroportin genes. Juvenile haemochromatosis is an autosomal recessive disorder and can be caused by mutations in either hemojuvelin or hepcidin. An adult onset form of HH similar to HFE-HH is caused by homozygosity for mutations in transferrin receptor 2. The autosomal dominant iron overload disorder ferroportin disease is caused by mutations in the iron exporter ferroportin. The clinical characteristics and molecular basis of the various types of non-HFE haemochromatosis are reviewed. The study of these disorders and the molecules involved has been invaluable in improving our understanding of the mechanisms involved in the regulation of iron metabolism. PMID:17729390
Ansari, Shahla; Azarkeivan, Azita; Miri-Aliabad, Ghasem; Yousefian, Saeed; Rostami, Tahereh
2017-01-01
Cardiac complications due to iron overload are the most common cause of death in patients with thalassemia major. The aim of this study was to compare iron chelation effects of deferoxamine, deferasirox, and combination of deferoxamine and deferiprone on cardiac and liver iron load measured by T2* MRI. In this study, 108 patients with thalassemia major aged over 10 years who had iron overload in cardiac T2* MRI were studied in terms of iron chelators efficacy on the reduction of myocardial siderosis. The first group received deferoxamine, the second group only deferasirox, and the third group, a combination of deferoxamine and deferiprone. Myocardial iron was measured at baseline and 12 months later through T2* MRI technique. The three groups were similar in terms of age, gender, ferritin level, and mean myocardial T2* at baseline. In the deferoxamine group, myocardial T2* was increased from 12.0±4.1 ms at baseline to 13.5±8.4 ms at 12 months (p=0.10). Significant improvement was observed in myocardial T2* of the deferasirox group (p<0.001). In the combined treatment group, myocardial T2* was significantly increased (p<0.001). These differences among the three groups were not significant at the 12 months. A significant improvement was observed in liver T2* at 12 months compared to baseline in the deferasirox and the combination group. In comparison to deferoxamine monotherapy, combination therapy and deferasirox monotherapy have a significant impact on reducing iron overload and improvement of myocardial and liver T2* MRI.
Isom, Harriet C.
2012-01-01
Hepatic iron overload has been associated classically with the genetic disorder hereditary hemochromatosis. More recently, it has become apparent that mild-to-moderate degrees of elevated hepatic iron stores observed in other liver diseases also have clinical relevance. The goal was to use a mouse model of dietary hepatic iron overload and isobaric tag for relative and absolute quantitation proteomics to identify, at a global level, differentially expressed proteins in livers from mice fed a control or 3,5,5-trimethyl-hexanoyl-ferrocene (TMHF) supplemented diet for 4 weeks. The expression of 74 proteins was altered by ≥ ±1.5-fold, showing that the effects of iron on the liver proteome were extensive. The top canonical pathway altered by TMHF treatment was the NF-E2–related factor 2 (NRF2–)–mediated oxidative stress response. Because of the long-standing association of elevated hepatic iron with oxidative stress, the remainder of the study was focused on NRF2. TMHF treatment upregulated 25 phase I/II and antioxidant proteins previously categorized as NRF2 target gene products. Immunoblot analyses showed that TMHF treatment increased the levels of glutathione S-transferase (GST) M1, GSTM4, glutamate-cysteine ligase (GCL) catalytic subunit, GCL modifier subunit, glutathione synthetase, glutathione reductase, heme oxygenase 1, epoxide hydrolase 1, and NAD(P)H dehydrogenase quinone 1. Immunofluorescence, carried out to determine the cellular localization of NRF2, showed that NRF2 was detected in the nucleus of hepatocytes from TMHF-treated mice and not from control mice. We conclude that elevated hepatic iron in a mouse model activates NRF2, a key regulator of the cellular response to oxidative stress. PMID:22649188
The role of iron in the skin and cutaneous wound healing
Wright, Josephine A.; Richards, Toby; Srai, Surjit K. S.
2014-01-01
In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS) generated in the skin by ultraviolet (UVA) 320–400 nm portion of the UVA spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anemia on wound healing using a variety of experimental methodology to establish anemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialization. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localized iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary hemochromatosis. Iron plays a key role in chronic ulceration and conditions such as rheumatoid arthritis (RA) and Lupus Erythematosus are associated with both anemia of chronic disease and dysregulation of local cutaneous iron hemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation. PMID:25071575
Morales, Noppawan Phumala; Yamaguchi, Yumiko; Murakami, Kimiyo; Kosem, Nuttavut; Utsumi, Hideo
2012-01-01
Reduction of a nitroxyl radical, carbamoyl-PROXYL in association of free radical production and hepatic glutathione (GSH) was investigated in iron overloaded mice using an in vivo L-band electron spin resonance (ESR) spectrometer. Significant increases in hepatic iron, lipid peroxidation and decrease in hepatic GSH were observed in mice intraperitoneally (i.p.) administrated with ferric nitrilotriacetate (Fe(III)-NTA, a total 45 µmol/mouse over a period of 3 weeks). Free radical production in iron overloaded mice was evidenced by significantly enhanced rate constant of ESR signal decay of carbamoyl-PROXYL, which was slightly reduced by treatment with iron chelator, deferoxamine. Moreover, the rate constant of ESR signal decay was negatively correlated with hepatic GSH level (r=-0.586, p<0.001). On the other hand, hepatic GSH-depletion (>80%) in mice through daily i.p. injection and drinking water supplementation of L-buthionine-[S,R]-sulfoximine (BSO) significantly retarded ESR signal decay, while there were no changes in serum aspartate aminotransferase and liver thiobarbituric acid-reactive substances levels. In conclusion, GSH plays two distinguish roles on ESR signal decay of carbamoyl-PROXYL, as an antioxidant and as a reducing agent, dependently on its concentration. Therefore, it should be taken into account in the interpretation of free radical production in each specific experimental setting.
Molecular Diagnostic and Pathogenesis of Hereditary Hemochromatosis
Santos, Paulo C. J. L.; Krieger, Jose E.; Pereira, Alexandre C.
2012-01-01
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by enhanced intestinal absorption of dietary iron. Without therapeutic intervention, iron overload leads to multiple organ damage such as liver cirrhosis, cardiomyopathy, diabetes, arthritis, hypogonadism and skin pigmentation. Most HH patients carry HFE mutant genotypes: homozygosity for p.Cys282Tyr or p.Cys282Tyr/p.His63Asp compound heterozygosity. In addition to HFE gene, mutations in the genes that encode hemojuvelin (HJV), hepcidin (HAMP), transferrin receptor 2 (TFR2) and ferroportin (SLC40A1) have been associated with regulation of iron homeostasis and development of HH. The aim of this review was to identify the main gene mutations involved in the pathogenesis of type 1, 2, 3 and 4 HH and their genetic testing indication. HFE testing for the two main mutations (p.Cys282Tyr and p.His63Asp) should be performed in all patients with primary iron overload and unexplained increased transferrin saturation and/or serum ferritin values. The evaluation of the HJV p.Gly320Val mutation must be the molecular test of choice in suspected patients with juvenile hemochromatosis with less than 30 years and cardiac or endocrine manifestations. In conclusion, HH is an example that genetic testing can, in addition to performing the differential diagnostic with secondary iron overload, lead to more adequate and faster treatment. PMID:22408404
Ramos, Pedro; Guy, Ella; Chen, Nan; Proenca, Catia C.; Gardenghi, Sara; Casu, Carla; Follenzi, Antonia; Van Rooijen, Nico; Grady, Robert W.; de Sousa, Maria
2011-01-01
In hereditary hemochromatosis, mutations in HFE lead to iron overload through abnormally low levels of hepcidin. In addition, HFE potentially modulates cellular iron uptake by interacting with transferrin receptor, a crucial protein during erythropoiesis. However, the role of HFE in this process was never explored. We hypothesize that HFE modulates erythropoiesis by affecting dietary iron absorption and erythroid iron intake. To investigate this, we used Hfe-KO mice in conditions of altered dietary iron and erythropoiesis. We show that Hfe-KO mice can overcome phlebotomy-induced anemia more rapidly than wild-type mice (even when iron loaded). Second, we evaluated mice combining the hemochromatosis and β-thalassemia phenotypes. Our results suggest that lack of Hfe is advantageous in conditions of increased erythropoietic activity because of augmented iron mobilization driven by deficient hepcidin response. Lastly, we demonstrate that Hfe is expressed in erythroid cells and impairs iron uptake, whereas its absence exclusively from the hematopoietic compartment is sufficient to accelerate recovery from phlebotomy. In summary, we demonstrate that Hfe influences erythropoiesis by 2 distinct mechanisms: limiting hepcidin expression under conditions of simultaneous iron overload and stress erythropoiesis, and impairing transferrin-bound iron uptake by erythroid cells. Moreover, our results provide novel suggestions to improve the treatment of hemochromatosis. PMID:21059897
2010-01-01
Aim We aimed to define reference ranges for right ventricular (RV) volumes, ejection fraction (EF) in thalassemia major patients (TM) without myocardial iron overload. Methods and results RV volumes, EF and mass were measured in 80 TM patients who had no myocardial iron overload (myocardial T2* > 20 ms by cardiovascular magnetic resonance). All patients were receiving deferoxamine chelation and none had evidence of pulmonary hypertension or other cardiovascular comorbidity. Forty age and sex matched healthy non-anemic volunteers acted as controls. The mean RV EF was higher in TM patients than controls (males 66.2 ± 4.1% vs 61.6 ± 6%, p = 0.0009; females 66.3 ± 5.1% vs 62.6 ± 6.4%, p = 0.017), which yielded a raised lower threshold of normality for RV EF in TM patients (males 58.0% vs 50.0% and females 56.4% vs 50.1%). RV end-diastolic volume index was higher in male TM patients (mean 98.1 ± 17.3 mL vs 88.4 ± 11.2 mL/m2, p = 0.027), with a higher upper limit (132 vs 110 mL/m2) but this difference was of borderline significance for females (mean 86.5 ± 13.6 mL vs 80.3 ± 12.8 mL/m2, p = 0.09, with upper limit of 113 vs 105 mL/m2). The cardiac index was raised in TM patients (males 4.8 ± 1.0 L/min vs 3.4 ± 0.7 L/min, p < 0.0001; females 4.5 ± 0.8 L/min vs 3.2 ± 0.8 L/min, p < 0.0001). No differences in RV mass index were identified. Conclusion The normal ranges for functional RV parameters in TM patients with no evidence of myocardial iron overload differ from healthy non-anemic controls. The new reference RV ranges are important for determining the functional effects of myocardial iron overload in TM patients. PMID:20416084
Belay, Abel A; Bellizzi, Andrew M; Stolpen, Alan H
2018-01-15
Extramedullary hematopoiesis is the proliferation of hematopoietic cells outside bone marrow secondary to marrow hematopoiesis failure. Extramedullary hematopoiesis rarely presents as a mass-forming hepatic lesion; in this case, imaging-based differentiation from primary and metastatic hepatic neoplasms is difficult, often leading to biopsy for definitive diagnosis. We report a case of tumefactive hepatic extramedullary hematopoiesis in the setting of myelodysplastic syndrome with concurrent hepatic iron overload, and the role of T2*-weighted gradient-echo magnetic resonance imaging in differentiating extramedullary hematopoiesis from primary and metastatic hepatic lesions. To the best of our knowledge, T2*-weighted gradient-echo evaluation of extramedullary hematopoiesis in the setting of diffuse hepatic hemochromatosis has not been previously described. A 52-year-old white man with myelodysplastic syndrome and marrow fibrosis was found to have a 4 cm hepatic lesion on ultrasound during workup for bone marrow transplantation. Magnetic resonance imaging revealed diffuse hepatic iron overload and non-visualization of the lesion on T2* gradient-echo sequence suggesting the presence of iron deposition within the lesion similar to that in background hepatic parenchyma. Subsequent ultrasound-guided biopsy of the lesion revealed extramedullary hematopoiesis. Six months later, while still being evaluated for bone marrow transplant, our patient was found to have poor pulmonary function tests. Follow-up computed tomography angiogram showed a mass within his right main pulmonary artery. Bronchoscopic biopsy of this mass once again revealed extramedullary hematopoiesis. He received radiation therapy to his chest. However, 2 weeks later, he developed mediastinal hematoma and died shortly afterward, secondary to respiratory arrest. Mass-forming extramedullary hematopoiesis is rare; however, our report emphasizes that it needs to be considered in the initial differential diagnosis of hepatic lesions arising in the setting of bone marrow disorders. We also show that in the setting of diffuse hepatic iron overload, tumefactive extramedullary hematopoiesis appeared isointense to background liver on T2* gradient-echo sequence, while adenoma, hepatoma, and hepatic metastasis appear hyperintense. Thus, T2*-weighted gradient-echo sequence may have a potential role in the imaging diagnosis of mass-forming hepatic extramedullary hematopoiesis arising in the setting of diffuse iron overload.
Presence of hemochromatosis-associated mutations in Hispanic patients with iron overload.
Nieves-Santiago, Paul; Cancel, Dilany; Canales, Dialma; Toro, Doris H
2011-09-01
To determine the characteristics of the Puerto Rico Veteran population with iron overload in terms of demographic features, clinical manifestations, and the presence of hereditary hemochromatosis (HH) mutations, and to compare such characteristics in patients with and without HH mutations. A retrospective study was conducted in patients with iron overload (transferrin saturation > or = 45%) who were tested for HH mutations from January 2003 to June 2007. Data collected included age, gender, body mass index, hemoglobin level, platelet count, ferritin level, transferrin saturation, ceruloplasmin, alfa-1 antitrypsin, anti-nuclear antibodies, aspartate aminotransferase, alanine aminotransferase, alfa-fetoprotein, viral hepatitis profile, imaging studies, and comorbid conditions. Patients were grouped according to the results of the commercially available HH DNA mutation analysis as homozygote, heterozygote, compound heterozygote, or negative. 94 patients were studied. Most patients were male (90/94); the mean age was 60 years. Of the study group, 36% (34/94) was found positive for HH mutations. The most common mutation was H63D, which was found in 85% (29/34) of patients; 4 homozygotes and 25 heterozygotes. C282Y mutation was identified in only 12% (4/34) of patients, of which one was homozygote. A compound heterozygote (C282Y/ H63D) was also identified. After analyzing the data for confounding factors, 6 of 29 heterozygotes had no other risk factors for liver disease other than the H63D mutation. The predominance of H63D mutations in our population deserves further investigation since it considerably differs from other studied populations with iron overload in which C282Y is the most common mutation.
Kountouras, Dimitrios; Tsagarakis, Nikolaos J; Fatourou, Evangelia; Dalagiorgos, Efthimios; Chrysanthos, Nikolaos; Berdoussi, Helen; Vgontza, Niki; Karagiorga, Markissia; Lagiandreou, Athanasios; Kaligeros, Konstantinos; Voskaridou, Ersi; Roussou, Paraskevi; Diamanti-Kandarakis, Evanthia; Koskinas, John
2013-03-01
Iron overload and hepatitis-C virus (HCV) infection, have been implicated in the evolution of liver disease, in patients with transfusion-dependent beta-thalassaemia major (BTM). However, the impact of these factors in late stages of liver disease in adults with BTM, has not been extensively studied. To investigate serum indices of iron overload, HCV infection and liver disease, in a cohort of 211 adult Greek patients with BTM, in relation with the findings from liver biopsies. In this cross-sectional study, 211 patients with BTM were enrolled and studied, in relation with HCV infection, ferritin, transaminases, chelation treatment and antiviral treatment. Based on 109 patients biopsied, we correlated liver fibrosis, haemosiderosis and inflammation, with serum indices and HCV status Among all patients, 74.4% were anti-HCV positive (HCV+). Ferritin was positively correlated with transaminases and negatively correlated with age, while it was not significantly different among HCV+ and HCV- patients. Among the HCV+ patients, 55.4% reported antiviral treatment, while genotype 1 predominated. In a subfraction of 109 patients, in which liver biopsy was performed, 89% were HCV+ and 11% HCV-. Fibrosis was significantly correlated with age (P = 0.046), AST (P = 0.004), ALT (P = 0.044) and inflammation (P < 0.001). Advanced fibrosis was present with even minimal haemosiderosis, independently of ferritin values or HCV history. These data suggest that in the late stages of liver disease in BTM patients, iron overload may be the critical determinant, since fibrosis is related to the minimal haemosiderosis, independently of HCV history. © 2012 John Wiley & Sons A/S.
Kolnagou, Annita; Kontoghiorghe, Christina N; Kontoghiorghes, George J
2017-07-01
Decrease in mortality and morbidity is observed in thalassaemia major patients with reduced iron load in comparison to heavy iron loaded patients. Effective and complete treatment of transfusional iron overload can be achieved by chelation protocols that can eliminate excess iron and maintain normal iron stores (NIS). The maintenance of NIS, i. e., serum ferritin (350 μg/L >), MRI T2* cardiac (>20 ms) and liver (>6.3 ms) relaxation time levels was monitored in 16 thalassaemia major patients (32-53 years, 12 splenectomized, 10 male, erythrocyte transfusions 120-323 ml/kg/year) for about 90 patient years. The patients were treated with individualised tailor-made deferiprone or deferiprone/deferoxamine combination protocols. In 8 patients deferiprone (50-100 mg/kg/day) was sufficient for maintaining NIS and withdrawal of deferiprone for 28 months in total was necessary in 4 patients for preventing iron deficiency. In 3 other patients intermittent deferoxamine (50-75 mg/kg/8-30 h, 1-4 days/week) in combination with deferiprone (75-100 mg/kg/day) was sufficient for maintaining NIS. In the remaining 5 patients deferiprone (75-100 mg/kg/day) and deferoxamine (50-60 mg/kg/8-15 h, 1-7 days/week) combination was used for maintaining NIS, as a result of increased transfusions which were caused mainly by splenomegaly and infections. No toxic side effects were detected during the study. Lower chelation doses were used for the maintenance of NIS in comparison to iron loaded categories of patients. The safe maintenance of NIS using deferiprone and deferiprone/deferoxamine combinations should be considered as an optimum therapy for the complete treatment of iron overload in the majority of thalassaemia patients. © Georg Thieme Verlag KG Stuttgart · New York.
Khalili, Masoumeh; Ebrahimzadeh, Mohammad Ali; Kosaryan, Mehrnoush
2015-01-01
Pleurotus porrigens is an culinary-medicinal mushroom. It is locally called sadafi and is found in the northern regions of Iran, especially in Mazandaran. This mushroom is used to prepare a variety of local and specialty foods. Because of the phenol and flavonoid contents and the strong iron-chelating activity of this mushroom, it was selected for an assay of in vivo iron-chelating activity. Methanolic extract was administered intraperitoneally to iron-overloaded mice at two dosages (200 and 400 mg/kg/24 hours) for a total of 20 days, with a frequency of 5 times a week for 4 successive weeks. The total iron content was determined by atomic absorption spectroscopy. Plasma Fe3+ content was determined using a kit. Liver sections were stained by hematoxylin and eosin and Perls stain. A significant decrease in the plasma concentration of iron was observed in mice treated with extracts (P < 0.001). The animals showed a dramatic decrease in plasma Fe3+ content when compared with the control group (P < 0.001). Also, Perls stain improved the smaller amount of deposited iron in the liver of iron-overloaded mice treated with the extract. Liver sections revealed a marked reduction in the extent of necrotic hepatocytes, fibrous tissues, and pseudo-lobules. A high-performance liquid chromatography method was developed to simultaneously separate 7 phenolic acids in extract. Rutin (1.784 ± 0.052 mg g(-1) of extract) and p-coumaric acid (1.026 ± 0.043 mg g(-1) of extract) were detected as the main flavonoid and phenolic acids in extract, respectively. The extract exhibited satisfactory potency to chelate excessive iron in mice, potentially offering new natural alternatives to treat patients with iron overload. More studies are needed to determine which compounds are responsible for these biological activities.
Behavioral characterization of mouse models of neuroferritinopathy.
Capoccia, Sara; Maccarinelli, Federica; Buffoli, Barbara; Rodella, Luigi F; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca
2015-01-01
Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing specific therapeutic targets.
Behavioral Characterization of Mouse Models of Neuroferritinopathy
Buffoli, Barbara; Rodella, Luigi F.; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca
2015-01-01
Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing specific therapeutic targets. PMID:25689865
Lobo, Clarisse; Angulo, Ivan L; Aparicio, Lidia R; Drelichman, Guillermo I; Zanichelli, Maria A; Cancado, Rodolfo
2011-09-01
The retrospective epidemiological study of Latin Americans with transfusional hemosiderosis is the first regional patient registry to gather data regarding the burden of transfusional hemosiderosis and patterns of care in these patients. Retrospective and cross-sectional data were collected on patients ≥2 years with selected chronic anemias and minimum 20 transfusions. In the 960 patients analyzed, sickle-cell disease (48·3%) and thalassemias (24·0%) were the most frequent underlying diagnoses. The registry enrolled 355 pediatric patients (187 with sickle-cell disease/94 with thalassemia). Serum ferritin was the most frequent method used to detect iron overload. Complications from transfusional hemosiderosis were reported in ~80% of patients; hepatic (65·3%), endocrine (27·5%), and cardiac (18·2%) being the most frequent. These data indicate that hemoglobinopathies and complications due to transfusional hemosiderosis are a significant clinical problem in the Latin American population with iron overload. Chelation therapy is used insufficiently and has a high rate of discontinuation.
Koehl, Bérengère; Missud, Florence; Holvoet, Laurent; Ithier, Ghislaine; Sakalian-Black, Oliver; Haouari, Zinedine; Lesprit, Emmanuelle; Baruchel, André; Benkerrou, Malika
2017-03-14
Children with sickle cell anemia (SCA) may be at risk of cerebral vasculopathy and strokes, which can be prevented by chronic transfusion programs. Repeated transfusions of packed red blood cells (PRBCs) is currently the simplest and most used technique for chronic transfusion programs. However, iron overload is one of the major side effects of this therapy. More developed methods exist, notably the apheresis of RBC (erythrapheresis), which is currently the safest and most efficient method. However, it is costly, complicated, and cannot be implemented everywhere, nor is it suitable for all patients. Manual exchange transfusions combine one or more manual phlebotomies with a PRBC transfusion. At the Reference Center of Sickle Cell Disease, we set up a continuous method of manual exchange transfusion that is feasible for all hospital settings, demands no specific equipment, and is widely applicable. In terms of HbS decrease, stroke prevention, and iron overload prevention, this method showed comparable efficiency to erythrapheresis. In cases where erythrapheresis is not available, this method can be a good alternative for patients and care centers.
Guidelines for quantifying iron overload.
Wood, John C
2014-12-05
Both primary and secondary iron overload are increasingly prevalent in the United States because of immigration from the Far East, increasing transfusion therapy in sickle cell disease, and improved survivorship of hematologic malignancies. This chapter describes the use of historical data, serological measures, and MRI to estimate somatic iron burden. Before chelation therapy, transfusional volume is an accurate method for estimating liver iron burden, whereas transferrin saturation reflects the risk of extrahepatic iron deposition. In chronically transfused patients, trends in serum ferritin are helpful, inexpensive guides to relative changes in somatic iron stores. However, intersubject variability is quite high and ferritin values may change disparately from trends in total body iron load over periods of several years. Liver biopsy was once used to anchor trends in serum ferritin, but it is invasive and plagued by sampling variability. As a result, we recommend annual liver iron concentration measurements by MRI for all patients on chronic transfusion therapy. Furthermore, it is important to measure cardiac T2* by MRI every 6-24 months depending on the clinical risk of cardiac iron deposition. Recent validation data for pancreas and pituitary iron assessments are also presented, but further confirmatory data are suggested before these techniques can be recommended for routine clinical use. © 2014 by The American Society of Hematology. All rights reserved.
Deficits of learning and memory in Hemojuvelin knockout mice.
Li, Jinglong; Zhang, Peng; Liu, Hongju; Ren, Wei; Song, Jinjing; Rao, Elizabeth; Takahashi, Eiki; Zhou, Ying; Li, Weidong; Chen, Xiaoping
2015-10-01
Iron is involved in various physiological processes of the human body to maintain normal functions. Abnormal iron accumulation in brain has been reported as a pathogenesis of several neurodegenerative disorders and cognitive impairments. Hemojuvelin (HVJ) is a membrane-bound and soluble protein in mammals that is responsible for the iron overload condition known as juvenile hemochromatosis. Although iron accumulation in brain has been related to neurodegenerative diseases, it remains unknown the effect of mutation of HVJ gene on cognitive performance. In our studies, HJV(-/-) mice showed deficits in novel object recognition and Morris water maze tests. Furthermore, the expression ration of apoptotic marker Bax and anti-apoptotic marker Bcl-2 in the hippocampus and prefrontal cortex showed higher levels in HJV(-/-) mice. Our results suggested that deletion of HJV gene could increase apoptosis in brain which might contribute to learning and memory deficits in mutant mice. These results indicated that HJV(-/-) mice would be a useful model to study cognitive impairment induced by iron overload in brain.
Kishimoto, Miyako; Endo, Hisako; Hagiwara, Shotaro; Miwa, Akiyoshi; Noda, Mitsuhiko
2010-08-01
Excessive iron storage sometimes causes diabetes in patients with hemochromatosis, a disease caused by iron overloading. We performed an immunohistochemical analysis to study an autopsy case of aplastic anemia and diabetic hemochromatosis caused by frequent blood transfusions, and extensive hemosiderin deposition was observed in the liver and pancreas. The pancreatic islets of the patient and a control subject were stained to detect glucagon, insulin, and proinsulin. Significantly lower levels of immunoreactivity with both insulin antibodies and proinsulin antibodies, but not with glucagon antibodies, was observed in the islet cells in the patient's tissue than in the islet cells of the control. Hemosiderin deposition in the islets is known to be exclusively distributed in the β-cells, thus, selective iron-induced damage to the β-cells may have affected insulin synthesis and secretion and led to glucose intolerance in the patient.
Deferiprone therapy for transfusional iron overload.
Victor Hoffbrand, A
2005-06-01
Iron chelation is needed to prevent damage to the heart, liver and endocrine glands from iron overload in patients with refractory anaemias who receive regular blood transfusions. Desferrioxamine is still the first-line drug, but because of its expense in many countries, and lack of compliance because of difficulty with administration, there is a major need for an orally active (and cheaper) chelating drug. Seventeen years after the first clinical trials deferiprone, which is orally active, has emerged as suitable for patients for whom desferrioxamine is, for one reason or another, inadequate. Many patients are successfully chelated at a dose of deferiprone 75 mg/kg/day. Some patients may need higher doses (up to 100 mg/kg), or combination therapy of deferiprone every day and desferrioxamine on several days each week. Recent data suggest that deferiprone may be superior to desferrioxamine at protecting the heart from iron overload. The side-effects of deferiprone--agranulocytosis, neutropenia, gastrointestinal symptoms, arthropathy, transient changes in liver enzymes, and zinc deficiency--are now well recognized; they result in discontinuation of the drug in only 5-10% of patients. Deferiprone is now licensed in 43 countries for thalassaemia major patients for whom desferrioxamine is inadequate. If results of current trials confirm its superiority at reducing cardiac damage, it may well become the first-line drug for many patients.
Delea, Thomas E; Edelsberg, John; Sofrygin, Oleg; Thomas, Simu K; Baladi, Jean-Francois; Phatak, Pradyumna D; Coates, Thomas D
2007-10-01
Patients with thalassemia major require iron chelation therapy (ICT) to prevent complications from transfusional iron overload. Deferoxamine is effective, but requires administration as a slow continuous subcutaneous or intravenous infusion five to seven times per week. Deferiprone is a three-times-daily oral iron chelator, but has limited availability in the United States. Deferasirox is a once-daily oral iron chelator that was approved in the United States in 2005 for patients older than 2 years of age with transfusional iron overload. Published evidence on rates of compliance with ICT and the association between compliance, and the incidence and costs of complications of iron overload, in patients with thalassemia major was reviewed. A total of 18 studies were identified reporting data on compliance with ICT, including 7 that examined deferoxamine only, 6 that examined deferiprone only, and 5 that compared deferoxamine and deferiprone; no studies reporting compliance with deferasirox were identified. In studies of deferoxamine only, estimated mean compliance ranged from 59 to 78 percent. Studies of deferiprone generally reported better compliance, ranging from 79 to 98 percent. Results of comparative studies of deferoxamine and deferiprone suggest that compliance may be better with oral therapy. Numerous studies demonstrate that that poor compliance with ICT results in increased risk of cardiac disease and endocrinopathies, as well as lower survival. Although data on the costs of noncompliance are limited, a recent model-based study estimated the lifetime costs of inadequate compliance with deferoxamine to be $33,142. Inadequate compliance with ICT in thalassemia major is common and results in substantial morbidity and mortality, as well as increased costs.
Gan, Wei; Guan, Yu; Wu, Qian; An, Peng; Zhu, Jingwen; Lu, Ling; Jing, Li; Yu, Yu; Ruan, Sheng; Xie, Dong; Makrides, Maria; Gibson, Robert A; Anderson, Gregory J; Li, Huaixing; Lin, Xu; Wang, Fudi
2012-03-01
Transmembrane protease serine 6 (TMPRSS6) regulates iron homeostasis by inhibiting the expression of hepcidin. Multiple common variants in TMPRSS6 were significantly associated with serum iron in recent genome-wide association studies, but their effects in the Chinese remain to be elucidated. The objective was to determine whether the TMPRSS6 single nucleotide polymorphisms (SNPs) rs855791(V736A) and rs4820268(D521D) were associated with blood hemoglobin and plasma ferritin concentrations and risk of type 2 diabetes in Chinese individuals. The SNPs rs855791(V736A) and rs4820268(D521D) in the TMPRSS6 gene were genotyped and tested for their associations with plasma iron and type 2 diabetes risk in 1574 unrelated Chinese Hans from Beijing. The 2 TMPRSS6 SNPs rs855791(V736A) and rs4820268(D521D) were both significantly associated with plasma ferritin (P ≤ 0.0058), hemoglobin (P ≤ 0.0013), iron overload risk (P ≤ 0.0068), and type 2 diabetes risk (P ≤ 0.0314). None of the associations with hemoglobin or plasma ferritin remained significant (P ≥ 0.1229) when the 2 variants were both included in one linear regression model. A haplotype carrying both iron-lowering alleles from the 2 TMPRSS SNPs showed significant associations with lower hemoglobin (P = 0.0014), lower plasma ferritin (P = 0.0027), and a reduced risk of iron overload (P = 0.0017) and of type 2 diabetes (P = 0.0277). These findings suggest that TMPRSS6 variants were significantly associated with plasma ferritin, hemoglobin, risk of iron overload, and type 2 diabetes in Chinese Hans. The type 2 diabetes risk conferred by the TMPRSS6 SNPs is possibly mediated by plasma ferritin.
Rescuing iron-overloaded macrophages by conservative relocation of the accumulated metal
Sohn, Yang-Sung; Mitterstiller, Anna-Maria; Breuer, William; Weiss, Guenter; Cabantchik, Z Ioav
2011-01-01
BACKGROUND AND PURPOSE Systemic iron deficiency concomitant with macrophage iron retention is characteristic of iron-refractory anaemias associated with chronic disease. The systemic misdistribution of iron, which is further exacerbated by parenteral iron supplementation, is mainly attributable to iron retention exerted on resident macrophages by hepcidin-mediated down-regulation of the iron exporter ferroportin. We aimed at developing an experimental macrophage-based cell model that recapitulates pathophysiological features of iron misdistribution found in chronic disorders and use it as a screening platform for identifying agents with the potential for relocating the accumulated metal and restoring affected functions. EXPERIMENTAL APPROACH A RAW macrophage subline was selected as cell model of iron retention based on their capacity to take up polymeric iron or aged erythrocytes excessively, resulting in a demonstrable increase of cell labile iron pools and oxidative damage that are aggravated by hepcidin. KEY RESULTS This model provided a three-stage high throughput screening platform for identifying agents with the combined ability to: (i) scavenge cell iron and thereby rescue macrophage cells damaged by iron-overload; (ii) bypass the ferroportin blockade by conveying the scavenged iron to other iron-starved cells in co-culture via transferrin but (iii) without promoting utilization of the scavenged iron by intracellular pathogens. As test agents we used chelators in clinical practice and found the oral chelator deferiprone fulfilled essentially all of the three criteria. CONCLUSIONS AND IMPLICATIONS We provide a proof of principle for conservative iron relocation as complementary therapeutic approach for correcting the misdistribution of iron associated with chronic disease and exacerbated by parenteral iron supplementation. PMID:21091647
Neufeld, Ellis J.
2006-01-01
For nearly 30 years, patients with transfusional iron overload have depended on nightly deferoxamine infusions for iron chelation. Despite dramatic gains in life expectancy in the deferoxamine era for patients with transfusion-dependent anemias, the leading cause of death for young adults with thalassemia major and related disorders has been cardiac disease from myocardial iron deposition. Strategies to reduce cardiac disease by improving chelation regimens have been of the highest priority. These strategies have included development of novel oral iron chelators to improve compliance, improved assessment of cardiac iron status, and careful epidemiologic assessment of European outcomes with deferiprone, an oral alternative chelator available for about a decade. Each of these strategies is now bearing fruit. The novel oral chelator deferasirox was recently approved by the Food and Drug Administration (FDA); a randomized clinical trial demonstrates that deferasirox at 20 to 30 mg/kg/d can maintain or improve hepatic iron in thalassemia as well as deferoxamine. A randomized trial based on cardiac T2* magnetic resonance imaging (MRI) suggests that deferiprone can unload myocardial iron faster than deferoxamine. Retrospective epidemiologic data suggest dramatic reductions in cardiac events and mortality in Italian subjects exposed to deferiprone compared with deferoxamine. These developments herald a new era for iron chelation, but many unanswered questions remain. PMID:16627763
Hormone Replacement Therapy, Iron, and Breast Cancer
2004-11-01
accumulates due to the mutation of the HFE gene (hemochromatosis EeJ, iron elevated in the mouse body mimics the post-menopausal condition. In the present...model. Since iron slowly accumulates due to the mutation of the HFE gene (hemochromatosis Fe), iron elevated in the mouse body mimics the post...menopausal condition. Development of iron overloaded transgenic mice: The murine HFE gene is structurally similar to the human gene . Four different HFE gene
El-Rashedi, Farida H; El-Hawy, Mahmoud A; El-Hefnawy, Sally M; Mohammed, Mona M
2017-08-01
Hereditary hemochromatosis gene (HFE) mutations have a role in iron overload in pediatric acute lymphoblastic leukemia (ALL) survivors. We aimed to evaluate the genotype frequency and allelic distribution of the two HFE gene mutations (C282Y and H63D) in a sample of Egyptian pediatric ALL survivors and to detect the impact of these two mutations on their iron profile. This study was performed on 35 ALL survivors during their follow-up visits to the Hematology and Oncology Unit, Pediatric Department, Menoufia University Hospitals. Thirty-five healthy children of matched age and sex were chosen as controls. After completing treatment course, ALL survivors were screened for the prevalence of these two mutations by polymerase chain reaction-restriction fragment length polymorphism. Serum ferritin levels were measured by an enzyme-linked immunosorbent assay technique (ELISA). C282Y mutation cannot be detected in any of the 35 survivors or the 35 controls. The H63D heterozygous state (CG) was detected in 28.6% of the survivors group and in 20% of controls, while the H63D homozygous (GG) state was detected in 17.1% of survivors. No compound heterozygosity (C282Y/H63D) was detected at both groups with high G allele frequency (31.4%) in survivors more than controls (10%). There were significant higher levels of iron parameters in homozygote survivors than heterozygotes and the controls. H63D mutation aggravates the iron overload status in pediatric ALL survivors.
Magnetic resonance imaging measurement of iron overload
Wood, John C.
2010-01-01
Purpose of review To highlight recent advances in magnetic resonance imaging estimation of somatic iron overload. This review will discuss the need and principles of magnetic resonance imaging-based iron measurements, the validation of liver and cardiac iron measurements, and the key institutional requirements for implementation. Recent findings Magnetic resonance imaging assessment of liver and cardiac iron has achieved critical levels of availability, utility, and validity to serve as the primary endpoint of clinical trials. Calibration curves for the magnetic resonance imaging parameters R2 and R2* (or their reciprocals, T2 and T2*) have been developed for the liver and the heart. Interscanner variability for these techniques has proven to be on the order of 5–7%. Summary Magnetic resonance imaging assessment of tissue iron is becoming increasingly important in the management of transfusional iron load because it is noninvasive, relatively widely available and offers a window into presymptomatic organ dysfunction. The techniques are highly reproducible within and across machines and have been chemically validated in the liver and the heart. These techniques will become the standard of care as industry begins to support the acquisition and postprocessing software. PMID:17414205
Tarifeño-Saldivia, Estefanía; Aguilar, Andrea; Contreras, David; Mercado, Luis; Morales-Lange, Byron; Márquez, Katherine; Henríquez, Adolfo; Riquelme-Vidal, Camila; Boltana, Sebastian
2018-01-01
Iron is a trace element, essential to support life due to its inherent ability to exchange electrons with a variety of molecules. The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. During evolution, the shared requirement of micro- and macro-organisms for this important nutrient has shaped the pathogen-host relationship. Infectious pancreatic necrosis virus (IPNv) affects salmonids constituting a sanitary problem for this industry as it has an important impact on post-smolt survival. While immune modulation induced by IPNv infection has been widely characterized on Salmo salar , viral impact on iron host metabolism has not yet been elucidated. In the present work, we evaluate short-term effect of IPNv on several infected tissues from Salmo salar . We observed that IPNv displayed high tropism to headkidney, which directly correlates with a rise in oxidative stress and antiviral responses. Transcriptional profiling on headkidney showed a massive modulation of gene expression, from which biological pathways involved with iron metabolism were remarkable. Our findings suggest that IPNv infection increase oxidative stress on headkidney as a consequence of iron overload induced by a massive upregulation of genes involved in iron metabolism.
Ghugre, Nilesh R.; Wood, John C.
2010-01-01
Iron overload is a serious condition for patients with β-thalassemia, transfusion-dependent sickle cell anemia and inherited disorders of iron metabolism. MRI is becoming increasingly important in non-invasive quantification of tissue iron, overcoming the drawbacks of traditional techniques (liver biopsy). R2*(1/T2*) rises linearly with iron while R2(1/T2) has a curvilinear relationship in human liver. Although recent work has demonstrated clinically-valid estimates of human liver iron, the calibration varies with MRI sequence, field strength, iron chelation therapy and organ imaged, forcing recalibration in patients. To understand and correct these limitations, a thorough understanding of the underlying biophysics is of critical importance. Toward this end, a Monte Carlo based approach, using human liver as a ‘model’ tissue system, was employed to determine the contribution of particle size and distribution on MRI signal relaxation. Relaxivities were determined for hepatic iron concentrations (HIC) ranging from 0.5–40 mg iron/ g dry tissue weight. Model predictions captured the linear and curvilinear relationship of R2* and R2 with HIC respectively and were within in vivo confidence bounds; contact or chemical exchange mechanisms were not necessary. A validated and optimized model will aid understanding and quantification of iron-mediated relaxivity in tissues where biopsy is not feasible (heart, spleen). PMID:21337413
Wu, K-C; Liou, H-H; Lee, C-Y; Lin, C-J
2018-04-21
The accumulation of α-synuclein is a hallmark in the pathogenesis of Parkinson's disease (PD). Natural resistance-associated macrophage protein-1 (Nramp1) was previously shown to contribute to the degradation of extracellular α-synuclein in microglia under conditions of iron overload. This study was aimed at investigating the role of Nramp1 in α-synuclein pathology in the neurone under 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP + ) treatment. The expression of Nramp1 and pathological features (including iron and α-synuclein accumulation) were examined in the dopaminergic neurones of humans (with and without PD) and of mice [with and without receiving chronic MPTP intoxication]. The effects of Nramp1 expression on low-dose MPP + -induced α-synuclein expression and neurotoxicity were determined in human dopaminergic neuroblastoma SH-SY5Y cells. Similar to the findings in the substantia nigra of human PD, lower expression of Nramp1 but higher levels of iron and α-synuclein were identified in the dopaminergic neurones of mice receiving chronic MPTP intoxication, compared to controls. In parallel to the loss of dopaminergic neurones, the numbers of glial fibrillary acidic protein- and ionized calcium-binding adapter molecule-1-positive cells were significantly increased in the substantia nigra of MPTP-treated mice. Likewise, in human neuroblastoma SH-SY5Y cells exposed to low-dose MPP + , Nramp1 expression and cathepsin D activity were decreased, along with an increase in α-synuclein protein expression and aggregation. Overexpression of functional Nramp1 restored cathepsin D activity and attenuated α-synuclein up-regulation and neuronal cell death caused by MPP + treatment. These data suggest that the neuronal expression of Nramp1 is important for protecting against the development of MPTP/MPP + -induced α-synuclein pathology and neurotoxicity. © 2018 British Neuropathological Society.
Escudero-Vilaplana, V; Garcia-Gonzalez, X; Osorio-Prendes, S; Romero-Jimenez, R M; Sanjurjo-Saez, M
2016-02-01
Regular blood transfusions in the management of myelodysplastic syndrome (MDS) often lead to iron overload. The main objective of this study was to evaluate the impact of medication adherence on the effectiveness of deferasirox for the treatment of transfusional iron overload in patients with MDS. Secondary objectives were to describe treatment effectiveness and safety in daily clinical practice. A longitudinal, retrospective, observational study was carried out in a university hospital. The inclusion criteria were age over 18 years, MDS diagnosis and treatment with deferasirox for transfusion-dependent iron overload during the period of study (from January 2011 to April 2015). Treatment effectiveness was estimated by serum ferritin (SF), and adherence was measured by medication possession ratio (MPR). Clinically relevant analytical alterations during the treatment and reasons for treatment discontinuation were also assessed. Thirty-five patients were included in the study. Median SF at baseline was 1636 μg/L, and it decreased to 1399 μg/L during follow-up. The median adherence rate was 92%, although only 54·8% of the patients maintained deferasirox adherence ≥90% during the whole duration of treatment. Adherence rate was inversely correlated to SF (r = -0·288, P = 0·004). The median (p25, p75) duration of treatment was 11 (3·0, 37·8) months. The most common reasons for treatment discontinuation were renal toxicity (35%) and patient's death (25%). Deferasirox's effectiveness, measured by the decrease in SF, was significantly better in adherent patients. The most frequent reason for treatment discontinuation was renal toxicity. Developing strategies to improve deferasirox treatment adherence and monitoring renal function in those patients should be key points in pharmaceutical care. © 2016 John Wiley & Sons Ltd.
Li, Shu-Juan; Hwang, Yu-Yan; Ha, Shau-Yin; Chan, Godfrey C F; Mok, Amanda S P; Wong, Sophia J; Cheung, Yiu-Fai
2016-09-01
The new three-dimensional speckle tracking echocardiography (3DSTE) may enable comprehensive quantification of global left ventricular (LV) myocardial mechanics. Twenty-four patients aged 29.3 ± 5.2 years and 22 controls were studied. 3DSTE was performed to assess LV 3D global strain, twist and torsion, ejection fraction, and systolic dyssynchrony index (SDI). The LV SDI was calculated as % of SD of times-to-peak strain of 16 segments/RR interval. The global performance index (GPI) was calculated as (global 3D strain·torsion)/SDI. Area under the receiver operating characteristic curve (AUC) was calculated to determine the capability of 3DSTE parameters to discriminate between patients with (cardiac magnetic resonance T2* <20 ms) and those without myocardial iron overload. Compared with controls, patients had significantly lower LV global 3D strain (P < 0.001), twist (P = 0.01), torsion (P = 0.04), and ejection fraction (P < 0.001) and greater SDI (P < 0.001). The GPI was lower in patients than controls (P < 0.001). T2* value correlated positively with global 3D strain (r = 0.74, P < 0.001) and GPI (r = 0.63, P = 0.001), and negatively with SDI (r = -0.44, P = 0.03). The AUCs of GPI, global 3D strain, ejection fraction, torsion, and 1/SDI were 0.94, 0.90, 0.87, 0.82, and 0.70, respectively. The GPI cutoff of 2.7°/cm had a sensitivity of 94.9% and a specificity of 88.9% of differentiating patients with from those without myocardial iron overload. The LV composite index of strain, torsion, and dyssynchrony derived from 3DSTE enables sensitive detection of myocardial iron overload in patients with thalassemia. © 2016, Wiley Periodicals, Inc.
Lee, Hyo Jung; Choi, Joo Sun; Lee, Hye Ja; Kim, Won-Ho; Park, Sang Ick; Song, Jihyun
2015-12-01
Excessive tissue iron levels are a risk factor for insulin resistance and type 2 diabetes, which are associated with alterations in iron metabolism. However, the mechanisms underlying this association are not well understood. This study used human liver SK-HEP-1 cells to examine how excess iron induces mitochondrial dysfunction and how hepcidin controls gluconeogenesis. Excess levels of reactive oxygen species (ROS) and accumulated iron due to iron overload induced mitochondrial dysfunction, leading to a decrease in cellular adenosine triphosphate content and cytochrome c oxidase III expression, with an associated increase in gluconeogenesis. Disturbances in mitochondrial function caused excess iron deposition and unbalanced expression of iron metabolism-related proteins such as hepcidin, ferritin H and ferroportin during the activation of p38 mitogen-activated protein kinase (MAPK) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are responsible for increased phosphoenolpyruvate carboxykinase expression. Desferoxamine and n-acetylcysteine ameliorated these deteriorations by inhibiting p38 MAPK and C/EBPα activity through iron chelation and ROS scavenging activity. Based on experiments using hepcidin shRNA and hepcidin overexpression, the activation of hepcidin affects ROS generation and iron deposition, which disturbs mitochondrial function and causes an imbalance in iron metabolism and increased gluconeogenesis. Repression of hepcidin activity can reverse these changes. Our results demonstrate that iron overload is associated with mitochondrial dysfunction and that together they can cause abnormal hepatic gluconeogenesis. Hepcidin expression may modulate this disorder by regulating ROS generation and iron deposition. Copyright © 2015 Elsevier Inc. All rights reserved.
Bentley, Anthony; Gillard, Samantha; Spino, Michael; Connelly, John; Tricta, Fernando
2013-09-01
Patients with β-thalassaemia major experience chronic iron overload due to regular blood transfusions. Chronic iron overload can be treated using iron-chelating therapies such as desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) monotherapy, or DFO-DFP combination therapy. This study evaluated the relative cost effectiveness of these regimens over a 5-year timeframe from a UK National Health Service (NHS) perspective, including personal and social services. A Markov model was constructed to evaluate the cost effectiveness of the treatment regimens over 5 years. Based on published randomized controlled trial evidence, it was assumed that all four treatment regimens had a comparable effect on serum ferritin concentration (SFC) and liver iron concentration (LIC), and that DFP was more effective for reducing cardiac morbidity and mortality. Published utility scores for route of administration were used, with subcutaneously administered DFO assumed to incur a greater quality of life (QoL) burden than the oral chelators DFP and DFX. Healthcare resource use, drug costs (2010/2011 costs), and utilities associated with adverse events were also considered, with the effect of varying all parameters assessed in sensitivity analysis. Incremental costs and quality-adjusted life-years (QALYs) were calculated for each treatment, with cost effectiveness expressed as incremental cost per QALY. Assumptions that DFP conferred no cardiac morbidity, mortality, or morbidity and mortality benefit were also explored in scenario analysis. DFP was the dominant strategy in all scenarios modelled, providing greater QALY gains at a lower cost. Sensitivity analysis showed that DFP dominated all other treatments unless the QoL burden associated with the route of administration was greater for DFP than for DFO, which is unlikely to be the case. DFP had >99 % likelihood of being cost effective against all comparators at a willingness-to-pay threshold of £20,000 per QALY. In this analysis, DFP appeared to be the most cost-effective treatment available for managing chronic iron overload in β-thalassaemia patients. Use of DFP in these patients could therefore result in substantial cost savings.
Daar, Shahina; Pathare, Anil; Nick, Hanspeter; Kriemler-Krahn, Ulrike; Hmissi, Abdel; Habr, Dany; Taher, Ali
2009-01-01
This subgroup analysis evaluated the effect of once-daily oral deferasirox on labile plasma iron (LPI) levels in patients from the prospective, 1-yr, multicentre ESCALATOR study. Mean baseline liver iron concentration and median serum ferritin levels were 28.6 ± 10.3 mg Fe/g dry weight and 6334 ng/mL respectively, indicating high iron burden despite prior chelation therapy. Baseline LPI levels (0.98 ± 0.82 μmol/L) decreased significantly to 0.12 ± 0.16 μmol/L, 2 h after first deferasirox dose (P=0.0006). Reductions from pre- to post-deferasirox administration were also observed at all other time points. Compared to baseline, there was a significant reduction in preadministration LPI that reached the normal range at week 4 and throughout the remainder of the study (P≤0.02). Pharmacokinetic analysis demonstrated an inverse relationship between preadministration LPI levels and trough deferasirox plasma concentrations. Once-daily dosing with deferasirox ≥20 mg/kg/d provided sustained reduction in LPI levels in these heavily iron-overloaded patients, suggesting 24-h protection from LPI. Deferasirox may therefore reduce unregulated tissue iron loading and prevent further end-organ damage. PMID:19191863
Chaudhary, Kapil; Promsote, Wanwisa; Ananth, Sudha; Veeranan-Karmegam, Rajalakshmi; Tawfik, Amany; Arjunan, Pachiappan; Martin, Pamela; Smith, Sylvia B; Thangaraju, Muthusamy; Kisselev, Oleg; Ganapathy, Vadivel; Gnana-Prakasam, Jaya P
2018-02-14
Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Increased iron accumulation is associated with several degenerative diseases. However, there are no reports on the status of retinal iron or its implications in the pathogenesis of DR. In the present study, we found that retinas of type-1 and type-2 mouse models of diabetes have increased iron accumulation compared to non-diabetic retinas. We found similar iron accumulation in postmortem retinal samples from human diabetic patients. Further, we induced diabetes in HFE knockout (KO) mice model of genetic iron overload to understand the role of iron in the pathogenesis of DR. We found increased neuronal cell death, vascular alterations and loss of retinal barrier integrity in diabetic HFE KO mice compared to diabetic wildtype mice. Diabetic HFE KO mouse retinas also exhibited increased expression of inflammation and oxidative stress markers. Severity in the pathogenesis of DR in HFE KO mice was accompanied by increase in retinal renin expression mediated by G-protein-coupled succinate receptor GPR91. In light of previous reports implicating retinal renin-angiotensin system in DR pathogenesis, our results reveal a novel relationship between diabetes, iron and renin-angiotensin system, thereby unraveling new therapeutic targets for the treatment of DR.
NASA Astrophysics Data System (ADS)
Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing
2016-06-01
Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.
CBS domain-containing proteins are Rhizopus oryzae ferrioxamine receptors
USDA-ARS?s Scientific Manuscript database
Background: Iron-overload patients treated with deferoxamine are uniquely susceptible to mucormycosis, because Rhizopus spp. can obtain iron from ferrioxamine (deferoxamine + Fe**3+). Previously we have identified two closely related, ferrioxamine-inducible R. oryzae genes (FOB1 and FOB2) in which ...
Taher, Ali T; Porter, John B; Viprakasit, Vip; Kattamis, Antonis; Chuncharunee, Suporn; Sutcharitchan, Pranee; Siritanaratkul, Noppadol; Origa, Raffaella; Karakas, Zeynep; Habr, Dany; Zhu, Zewen; Cappellini, Maria Domenica
2015-01-01
Liver iron concentration (LIC) assessment by magnetic resonance imaging (MRI) remains the gold standard to diagnose iron overload and guide iron chelation therapy in patients with non-transfusion-dependent thalassaemia (NTDT). However, limited access to MRI technology and expertise worldwide makes it practical to also use serum ferritin assessments. The THALASSA (assessment of Exjade(®) in non-transfusion-dependent THALASSemiA patients) study assessed the efficacy and safety of deferasirox in iron-overloaded NTDT patients and provided a large data set to allow exploration of the relationship between LIC and serum ferritin. Using data from screened patients and those treated with deferasirox for up to 2 years, we identified clinically relevant serum ferritin thresholds (for when MRI is unavailable) for the initiation of chelation therapy (>800 μg/l), as well as thresholds to guide chelator dose interruption (<300 μg/l) and dose escalation (>2000 μg/l). (clinicaltrials.gov identifier: NCT00873041). © 2014 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.
Pauluhn, Jürgen; Wiemann, Martin
2011-11-01
The two poorly soluble iron containing solid aerosols of siderite (FeCO₃) and magnetite (Fe₃O₄) were compared in a 4-week inhalation study on rats at similar particle mass concentrations of approximately 30 or 100 mg/m³. The particle size distributions were essentially identical (MMAD ≈1.4 μm). The iron-based concentrations were 12 or 38 and 22 or 66 mg Fe/m³ for FeCO₃ and Fe₃O₄, respectively. Modeled and empirically determined iron lung burdens were compared with endpoints suggestive of pulmonary inflammation by determinations in bronchoalveolar lavage (BAL) and oxidative stress in lung tissue during a postexposure period of 3 months. The objective of study was to identify the most germane exposure metrics, that are the concentration of elemental iron (mg Fe/m³), total particle mass (mg PM/m³) or particle volume (μl PM/m³) and their associations with the effects observed. From this analysis it was apparent that the intensity of pulmonary inflammation was clearly dependent on the concentration of particle-mass or -volume and not of iron. Despite its lower iron content, the exposure to FeCO₃ caused a more pronounced and sustained inflammation as compared to Fe₃O₄. Similarly, borderline evidence of increased oxidative stress and inflammation occurred especially following exposure to FeCO₃ at moderate lung overload levels. The in situ analysis of 8-oxoguanine in epithelial cells of alveolar and bronchiolar regions supports the conclusion that both FeCO₃ and Fe₃O₄ particles are effectively endocytosed by macrophages as opposed to epithelial cells. Evidence of intracellular or nuclear sources of redox-active iron did not exist. In summary, this mechanistic study supports previous conclusions, namely that the repeated inhalation exposure of rats to highly respirable pigment-type iron oxides cause nonspecific pulmonary inflammation which shows a clear dependence on the particle volume-dependent lung overload rather than any increased dissolution and/or bioavailability of redox-active iron.
Overcoming barriers to treating iron overload in patients with lower-risk myelodysplastic syndrome.
Zeidan, Amer M; Pullarkat, Vinod A; Komrokji, Rami S
2017-09-01
Myelodysplastic syndromes (MDS) constitute a group of heterogeneous hematopoietic neoplasms characterized by ineffective erythropoiesis, anemia, and/or cytopenias. Supportive care for patients with MDS involves frequent red blood cell transfusions, which places patients with ongoing transfusional dependence (TD) at risk for iron overload (IO). Development of IO and tissue iron deposition can increase the risk of cardiac, hepatic, and endocrine toxicities, infection, and progression to acute myeloid leukemia. Iron chelation therapy (ICT) is an option for lower-risk MDS patients to reduce their degree of IO and possibly improve survival; use of these agents in thalassemia patients with TD and IO has been associated with reduced IO-associated complications and better survival. At present, there are several barriers to the regular use of ICT, such as a lack of randomized trial evidence and consistent guidance on diagnosis of IO and when to implement ICT, as well as barriers in adherence to/tolerability of ICT. Copyright © 2017 Elsevier B.V. All rights reserved.
Ironing out the details of iron overload in myelofibrosis: Lessons from myelodysplastic syndromes.
Carreau, Nicole; Tremblay, Douglas; Savona, Michael; Kremyanskaya, Marina; Mascarenhas, John
2016-09-01
Myelofibrosis (MF) and myelodysplastic syndrome (MDS) are hematopoietic stem cell disorders associated with cytopenias and red blood cell (RBC) transfusion dependence. Iron overload (IO) as a consequence of RBC transfusion dependence and its effect on outcomes in MF has not been formally studied. However, IO is a demonstrated poor prognostic feature in patients with MDS and congenital or acquired chronic anemias. Evidence that iron chelation therapy (ICT) reduces the deleterious effects of IO in MDS has led to speculation of benefit in MF. However, data supporting the use of ICT in MF is lacking. Neither disease has clear consensus guidelines for the use of ICT. Moreover, JAK-STAT inhibition, the cornerstone of MF treatment, often contributes to anemia and transfusional requirements. This manuscript reviews known and potential implications of IO in MF and highlights the need for prospective clinical investigations of ICT with consideration in the setting of JAK2 inhibitor therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Porter, John B; Shah, Farrukh T
2010-12-01
Transfusional iron loading inevitably results in hepatic iron accumulation, with variable extrahepatic distribution that is typically less pronounced in sickle cell disease than in thalassemia disorders. Iron chelation therapy has the goal of preventing iron-mediated tissue damage through controlling tissue iron levels, without incurring chelator-mediated toxicity. Historically, target levels for tissue iron control have been limited by the increased frequency of deferoxamine-mediated toxicity and low levels of iron loading. With newer chelation regimes, these limitations are less evident. The reporting of responses to chelation therapies has typically focused on average changes in serum ferritin in patient populations. This approach has three limitations. First, changes in serum ferritin may not reflect trends in iron balance equally in all patients or for all chelation regimens. Second, this provides no information about the proportion of patients likely respond. Third, this gives insufficient information about iron trends in tissues such as the heart. Monitoring of iron overload has advanced with the increasing use of MRI techniques to estimate iron balance (changes in liver iron concentration) and extrahepatic iron distribution (myocardial T2*). The term nonresponder has been increasingly used to describe individuals who fail to show a downward trend in one or more of these variables. Lack of a response of an individual may result from inadequate dosing, high transfusion requirement, poor treatment adherence, or unfavorable pharmacology of the chelation regime. This article scrutinizes evidence for response rates to deferoxamine, deferiprone (and combinations), and deferasirox. Copyright © 2010 Elsevier Inc. All rights reserved.
Valenti, L; Conte, D; Piperno, A; Dongiovanni, P; Fracanzani, A L; Fraquelli, M; Vergani, A; Gianni, C; Carmagnola, L; Fargion, S
2004-12-01
The A16V mitochondrial targeting sequence polymorphism influences the antioxidant activity of MnSOD, an enzyme involved in neutralising iron induced oxidative stress. Patients with hereditary haemochromatosis develop parenchymal iron overload, which may lead to cirrhosis, diabetes, hypogonadism, and heart disease. The objective of this study was to determine in patients with haemochromatosis whether the presence of the Val MnSOD allele, associated with reduced enzymatic activity, affects tissue damage, and in particular heart disease, as MnSOD knockout mice develop lethal cardiomyopathy. We studied 217 consecutive unrelated probands with haemochromatosis, and 212 healthy controls. MnSOD polymorphism was evaluated by restriction analysis. The frequency distribution of the polymorphism did not differ between patients and controls. Patients carrying the Val allele had higher prevalence of cardiomyopathy (A/A 4%, A/V 11%, V/V 30%, p = 0.0006) but not of cirrhosis, diabetes, or hypogonadism, independently of age, sex, alcohol misuse, diabetes, and iron overload (odds ratio 10.1 for V/V, p = 0.006). The frequency of the Val allele was higher in patients with cardiomyopathy (0.67 v 0.45, p = 0.003). The association was significant in both C282Y+/+ (p = 0.02), and in non-C282Y+/+ patients (p = 0.003), and for both dilated (p = 0.01) and non-dilated stage (p = 0.04) cardiomyopathy, but not for ischaemic heart disease. In patients with hereditary haemochromatosis, the MnSOD genotype affects the risk of cardiomyopathy related to iron overload and possibly to other known and unknown risk factors and could represent an iron toxicity modifier gene.
Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells
Messner, Donald J.; Sivam, Gowsala; Kowdley, Kris V.
2008-01-01
Background/aims Iron overload can cause liver toxicity and increase the risk of liver failure or hepatocellular carcinoma in humans. Curcumin (diferuloylmethane), a component of the food spice turmeric, has antioxidant, iron binding, and hepatoprotective properties. The aim of this study was to quantify its effects on iron overload and resulting downstream toxic effects in cultured T51B rat liver epithelial cells. Methods T51B cells were loaded with ferric ammonium citrate (FAC) with or without the iron delivery agent 8-hydroxyquinoline. Cytotoxicity was measured by MTT assay. Iron uptake and iron bioavailability were documented by chemical assay, quench of calcein fluorescence, and ferritin induction. Reactive oxygen species (ROS) were measured by fluorescence assay using 2′,7′-dichlorodihydrofluorescein diacetate. Oxidative stress signaling to jnk, c-jun, and p38 was measured by western blot with phospho-specific antibodies. Results Curcumin bound iron, but did not block iron uptake or bioavailability in T51B cells given FAC. However, it reduced cytotoxicity, blocked generation of ROS, and eliminated signaling to cellular stress pathways caused by iron. Inhibition was observed over a wide range of FAC concentrations (50 – 500 μM), with an apparent IC50 in all cases between 5 and 10 μM curcumin. In contrast, desferoxamine blocked both iron uptake and toxic effects of iron at concentrations that depended on the FAC concentration. Effects of curcumin also differed from those of α-tocopherol, which did not bind iron and was less effective at blocking iron-stimulated ROS generation. Conclusions Curcumin reduced iron-dependent oxidative stress and iron toxicity in T51B cells without blocking iron uptake. PMID:18492020
Ha, Jung-Heun; Doguer, Caglar; Wang, Xiaoyu; Flores, Shireen R.; Collins, James F.
2016-01-01
Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype. PMID:27537180
mRNA Regulation of Cardiac Iron Transporters and Ferritin Subunits in a Mouse Model of Iron Overload
Brewer, Casey J.; Wood, Ruth I.; Wood, John C.
2014-01-01
Iron cardiomyopathy is the leading cause of death in iron overload. Men have twice the mortality rate of women, though the cause is unknown. In hemojuvelin-knockout mice, a model of the disease, males load more cardiac iron than females. We postulated that sex differences in cardiac iron import cause differences in cardiac iron concentration. RT-PCR was used to measure mRNA of cardiac iron transporters in hemojuvelin-knockout mice. No sex differences were discovered among putative importers of non-transferrin bound iron (L-type and T-type calcium channels, ZRT/IRT-like protein 14 zinc channels). Transferrin-bound iron transporters were also analyzed; these are controlled by the iron regulatory element/iron regulatory protein (IRE/IRP) system. There was a positive relationship between cardiac iron and ferroportin mRNA in both sexes, but it was significantly steeper in females (p<0.05). Transferrin receptor 1 and divalent metal transporter 1 were more highly expressed in females than males (p<0.01 and p<0.0001, respectively), consistent with their lower cardiac iron levels, as predicted by IRE/IRP regulatory pathways. Light-chain (L) ferritin showed a positive correlation with cardiac iron that was nearly identical in males and females (R2=0.41, p<0.01 and R2=0.56, p<0.05, respectively), while heavy-chain (H) ferritin was constitutively expressed in both sexes. This represents the first report of IRE/IRP regulatory pathways in the heart. Transcriptional regulation of ferroportin was suggested in both sexes, creating a potential mechanism for differential set points for iron export. Constitutive H-ferritin expression suggests a logical limit to cardiac iron buffering capacity at levels known to produce heart failure in humans. PMID:25220979
Considerations on the food fortification policy in Brazil.
Martins, José Murilo
2011-01-01
Government health authorities approved, in December 2002, the ANVISA (National Sanitary Vigilance Agency) resolution number 344, making the addition of iron and folic acid to all wheat and maize flours industrialized in Brazil obligatory. After a brief review of iron deficiency, iron overload and folic acid deficiency several questions and remarks need to be made about this universal food fortification program. Iron salts and folic acid are drugs widely used in medicine and they may present undesirable side effects. There are potential risks with offering iron to the normal population for a long period of time and to patients with iron overload. Other important remarks are: there is no medical follow up of this treatment in the Brazilian population; patients can decide the quantity of foods (and of these nutrients) that they want to ingest; fortified foods may correct iron deficiency anemia but not necessarily the causes, which include gastrointestinal neoplasms; and folic acid in the diet may interfere with several treatment protocols that use folic acid antagonists, such as methotrexate. Finally, with the exception of some social programs, the costs of treatment using fortified foods are passed on to the population. Considering that Brazil has 330,000 active medical doctors it is suggested that our Health Ministry should invite them to take care of these important medical conditions.
Considerations on the food fortification policy in Brazil
Martins, José Murilo
2011-01-01
Government health authorities approved, in December 2002, the ANVISA (National Sanitary Vigilance Agency) resolution number 344, making the addition of iron and folic acid to all wheat and maize flours industrialized in Brazil obligatory. After a brief review of iron deficiency, iron overload and folic acid deficiency several questions and remarks need to be made about this universal food fortification program. Iron salts and folic acid are drugs widely used in medicine and they may present undesirable side effects. There are potential risks with offering iron to the normal population for a long period of time and to patients with iron overload. Other important remarks are: there is no medical follow up of this treatment in the Brazilian population; patients can decide the quantity of foods (and of these nutrients) that they want to ingest; fortified foods may correct iron deficiency anemia but not necessarily the causes, which include gastrointestinal neoplasms; and folic acid in the diet may interfere with several treatment protocols that use folic acid antagonists, such as methotrexate. Finally, with the exception of some social programs, the costs of treatment using fortified foods are passed on to the population. Considering that Brazil has 330,000 active medical doctors it is suggested that our Health Ministry should invite them to take care of these important medical conditions. PMID:23284266
Sandhu, Kam; Flintoff, Kaledas; Chatfield, Mark D; Dixon, Jeannette L; Ramm, Louise E; Ramm, Grant A; Powell, Lawrie W; Subramaniam, V Nathan; Wallace, Daniel F
2018-05-09
The clinical progression of HFE-related hereditary hemochromatosis (HH) and its phenotypic variability has been well studied. Less is known about the natural history of non-HFE HH caused by mutations in the HJV , HAMP or TFR2 genes. The purpose of this study was to compare the phenotypic and clinical presentations of hepcidin-deficient forms of HH. A literature review of all published cases of genetically confirmed HJV, HAMP and TFR2 HH was performed. Phenotypic and clinical data from a total of 156 subjects with non-HFE HH was extracted from 53 publications and compared with data from 984 subjects with HFE -p.C282Y homozygous HH from the QIMR Berghofer Hemochromatosis Database. Analyses confirmed that non-HFE forms of HH have an earlier age of onset and a more severe clinical course than HFE HH. HJV and HAMP HH are phenotypically and clinically very similar and have the most severe presentation, with cardiomyopathy and hypogonadism being particularly prevalent findings. TFR2 HH is more intermediate in its age of onset and severity. All clinical outcomes analyzed were more prevalent in the juvenile forms of HH, with the exception of arthritis and arthropathy which were more commonly seen in HFE HH. This is the first comprehensive analysis comparing the different phenotypic and clinical aspects of the genetic forms of HH and the results will be valuable for the differential diagnosis and management of these conditions. Importantly, our analyses indicate that factors other than iron overload may be contributing to joint pathology in subjects with HFE HH. Copyright © 2018 American Society of Hematology.
Efficacy of Deferasirox as an Oral Iron Chelator in Paediatric Thalassaemia Patients
Hishikar, Rajesh; Khandwal, Onkar; Agarwal, Manju; Joshi, Usha; Halwai, Ajay; Maheshwari, Basant; Sheohare, Raka
2017-01-01
Introduction Thalassaemia Major patients require frequent blood transfusion leading to iron overload. Excessive iron gets deposited in vital organs and leads to dysfunction of the heart, liver, anterior pituitary, pancreas, and joints. Our body has limited mechanism to excrete iron, so patients with iron overload and its complications need safe and effective iron chelation therapy. Aim To assess the efficacy of Deferasirox (DFX) as an iron chelator, with specific reference to reduction in serum ferritin level. Materials and Methods This is a prospective; observational study done in 45 multitransfused Thalassaemia Major Children receiving DFX therapy at registered Thalassaemia society Raipur Chhattisgarh. DFX was given in an initial dose of 20 mg/kg/day and according to response increased to a maximum of 40 mg/kg/day. Serum ferritin level was estimated at time of registration and at every three monthly intervals (four times during study period). The primary end point of the study was change in serum ferritin level after 12 months of DFX therapy. Results The mean serum ferritin before DFX therapy of all cases was 3727.02 ng/mL. After 12 months of mean dose of 38 mg/kg/day of DFX, the mean decline in serum ferritin was 1207.11 ng/mL (drop by 32.38%, p-value <0.001). Conclusion DFX monotherapy has a good safety profile and effectively chelates total body iron in Thalassaemia major patients. PMID:28384880
Efficacy of Deferasirox as an Oral Iron Chelator in Paediatric Thalassaemia Patients.
Jaiswal, Shikha; Hishikar, Rajesh; Khandwal, Onkar; Agarwal, Manju; Joshi, Usha; Halwai, Ajay; Maheshwari, Basant; Sheohare, Raka
2017-02-01
Thalassaemia Major patients require frequent blood transfusion leading to iron overload. Excessive iron gets deposited in vital organs and leads to dysfunction of the heart, liver, anterior pituitary, pancreas, and joints. Our body has limited mechanism to excrete iron, so patients with iron overload and its complications need safe and effective iron chelation therapy. To assess the efficacy of Deferasirox (DFX) as an iron chelator, with specific reference to reduction in serum ferritin level. This is a prospective; observational study done in 45 multitransfused Thalassaemia Major Children receiving DFX therapy at registered Thalassaemia society Raipur Chhattisgarh. DFX was given in an initial dose of 20 mg/kg/day and according to response increased to a maximum of 40 mg/kg/day. Serum ferritin level was estimated at time of registration and at every three monthly intervals (four times during study period). The primary end point of the study was change in serum ferritin level after 12 months of DFX therapy. The mean serum ferritin before DFX therapy of all cases was 3727.02 ng/mL. After 12 months of mean dose of 38 mg/kg/day of DFX, the mean decline in serum ferritin was 1207.11 ng/mL (drop by 32.38%, p-value <0.001). DFX monotherapy has a good safety profile and effectively chelates total body iron in Thalassaemia major patients.
Vill, K; Müller-Felber, W; Teusch, V; Blaschek, A; Gerstl, L; Huetker, S; Albert, M H
2016-01-01
Deferasirox is a standard treatment for chronic transfusional iron overload. Adverse effects of deferasirox have been reported in large prospective studies. We report two cases of monozygotic twins manifesting with proximal muscular atrophy and weakness under deferasirox. Discontinuation of deferasirox resulted in symptom improvement and ultimately in complete remission five months after successful haematopoietic stem cell transplantation. Broad diagnostic work-up could not bring evidence of another aetiology of muscular weakness. Iron overload or beta thalassemia itself as a cause is considered unlikely in our patients because the chronological coincidence of muscular symptoms was contra-directional to serum ferritin levels and significant clinical improvement was observed promptly after cessation of deferasirox even before transplantation. These observations suggest that the development of muscular weakness in patients on deferasirox should be recognised as a possible adverse effect of the drug. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrocardiographic consequences of cardiac iron overload in thalassemia major
Detterich, Jon; Noetzli, Leila; Dorey, Fred; Bar-Cohen, Yaniv; Harmatz, Paul; Coates, Thomas; Wood, John
2011-01-01
Background Iron cardiomyopathy is a leading cause of death in transfusion dependent thalassemia major (TM) patients and MRI (T2*) can recognize preclinical cardiac iron overload, but, is unavailable to many centers. Design and Methods We evaluated the ability of 12-lead electrocardiography to predict cardiac iron loading in TM. 12-lead electrocardiogram and cardiac T2* measurements were performed prospectively, with a detectable cardiac iron cutoff of T2*less than 20 ms. Patients with and without cardiac iron were compared using two-sample statistics and against population norms using age and gender-matched Z-scores. Results 45/78 patients had detectable cardiac iron. Patients having cardiac iron were older and more likely female but had comparable liver iron burdens and serum ferritin. Increased heart rate (HR) and prolonged corrected QT interval (QTc) were present, regardless of cardiac iron status. Repolarization abnormalities were the strongest predictors of cardiac iron, including QT/QTc prolongation, left shift of T-wave axis, and interpretation of ST/T-wave morphology. Recursive partitioning of the data for females using T-axis and HR and for males using QT, HR and T-axis produced algorithms with AUROC’s of 88.3 and 87.1 respectively. Conclusions Bradycardia and repolarization abnormalities on 12-lead electrocardiography were the most specific markers for cardiac iron in thalassemia major. Changes in these variables may be helpful to stratify cardiac risk when cardiac MRI is unavailable. However, diagnostic algorithms need to be vetted on larger and more diverse patient populations and longitudinal studies are necessary to determine reversibility of the observed abnormalities. PMID:22052662
Stefanova, Deborah; Raychev, Antoan; Deville, Jaime; Humphries, Romney; Campeau, Shelley; Ruchala, Piotr; Nemeth, Elizabeta; Ganz, Tomas; Bulut, Yonca
2018-05-07
Iron is an essential micronutrient for most microbes and their hosts. Mammalian hosts respond to infection by inducing the iron-regulatory hormone hepcidin, which causes iron sequestration and a rapid decrease in plasma and extracellular iron concentration (hypoferremia). Previous studies showed that hepcidin regulation of iron is essential for protection from infection-associated mortality with the siderophilic pathogens Yersinia enterocolitica and Vibrio vulnificus However, the evolutionary conservation of the hypoferremic response to infection suggests that not only rare siderophilic bacteria but also common pathogens may be targeted by this mechanism. We tested 10 clinical isolates of E. coli from children with sepsis and found that both genetic (hepcidin knockout, HKO) and iatrogenic iron overload (IV iron) potentiated infection with 8 out of 10 studied isolates: after peritoneal injection of E. coli , iron-loaded mice developed sepsis with 60% to 100% mortality within 24h while control wild type mice suffered 0% mortality. Using one strain for more detailed study, we show that iron overload allowed rapid bacterial multiplication and dissemination. We further found that the presence of non-transferrin bound iron (NTBI) in circulation is more important than total plasma or tissue iron in rendering mice susceptible to infection and mortality. Post infection treatment of HKO mice with just two doses of the hepcidin agonist PR73 abolished NTBI and completely prevented sepsis-associated mortality. We demonstrate that siderophilic phenotype extends to clinically common pathogens. The use of hepcidin agonists promises to be an effective early intervention in patients with infections and dysregulated iron metabolism. Copyright © 2018 American Society for Microbiology.
Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...
Iron, zinc, and copper in retinal physiology and disease.
Ugarte, Marta; Osborne, Neville N; Brown, Laurence A; Bishop, Paul N
2013-01-01
The essential trace metals iron, zinc, and copper play important roles both in retinal physiology and disease. They are involved in various retinal functions such as phototransduction, the visual cycle, and the process of neurotransmission, being tightly bound to proteins and other molecules to regulate their structure and/or function or as unbound free metal ions. Elevated levels of "free" or loosely bound metal ions can exert toxic effects, and in order to maintain homeostatic levels to protect retinal cells from their toxicity, appropriate mechanisms exist such as metal transporters, chaperones, and the presence of certain storage molecules that tightly bind metals to form nontoxic products. The pathways to maintain homeostatic levels of metals are closely interlinked, with various metabolic pathways directly and/or indirectly affecting their concentrations, compartmentalization, and oxidation/reduction states. Retinal deficiency or excess of these metals can result from systemic depletion and/or overload or from mutations in genes involved in maintaining retinal metal homeostasis, and this is associated with retinal dysfunction and pathology. Iron accumulation in the retina, a characteristic of aging, may be involved in the pathogenesis of retinal diseases such as age-related macular degeneration (AMD). Zinc deficiency is associated with poor dark adaptation. Zinc levels in the human retina and RPE decrease with age in AMD. Copper deficiency is associated with optic neuropathy, but retinal function is maintained. The changes in iron and zinc homeostasis in AMD have led to the speculation that iron chelation and/or zinc supplements may help in its treatment. Copyright © 2013 Elsevier Inc. All rights reserved.
Rose, Christian; Lenoir, Caroline; Gyan, Emmanuel; Hacini, Maya; Amé, Shanti; Corront, Bernadette; Beyne-Rauzy, Odile; Adiko, Didier; Loppinet, Elena; Ali-Ammar, Nadia; Laribi, Kamel; Wattel, Eric; Dreyfus, François; Roué, Claire S; Cheze, Stephane
2018-05-02
To assess the reduction of transfusions rate in transfusion-dependent patients with low-risk myelodysplastic syndrome (MDS) with iron overload treated with deferasirox. Prospective observational study. Primary endpoint was reduction in transfusion requirements (RTR) at 3 months, (assessed on 8-week period). Secondary endpoints were hematologic improvement according to International Working Group (IWG) 2006 criteria at 3, 6, and 12 months. Fifty-seven patients were evaluable. After 3 months of chelation, no effect was seen on transfusion requirement (5.9 packed red blood cells (PRBC) vs 5.8 before chelation). According to the Kaplan-Meier analysis, the probability of RTR at 3, 6, and 12 months was assessed as 3.5%, 9.1%, and 18.7%, respectively. Median duration of RTR was 182 days. However, during the 12-month follow-up after deferasirox initiation, 17 patients (31.5%) achieved minor erythroid response [HI-E] according to IWG criteria, 10 of whom having achieved Hb improvement at month 12. After 3 months of treatment, deferasirox had no impact on transfusion requirement in regularly transfused patients with low-risk MDS. However, deferasirox could induce 31% of erythroid response during the 12-month follow-up period thus suggesting that iron chelation therapy with deferasirox may induce an effect on hematopoiesis in a subset of patients with MDS and iron overload. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ferroportin-mediated iron transport: expression and regulation
Ward, Diane; Kaplan, Jerry
2013-01-01
The distinguishing feature between iron homeostasis in single versus multicellular organisms is the need for multicellular organisms to transfer iron from sites of absorption to sites of utilization and storage. Ferroportin is the only known iron exporter and ferroportin plays an essential role in the export of iron from cells to blood. Ferroportin can be regulated at many different levels including transcriptionally, post-transcriptionally, through mRNA stability and post-translationally, through protein turnover. Additionally, ferroportin may be regulated in both cell-dependent and cell-autonomous fashions. Regulation of ferroportin is critical for iron homeostasis as alterations in ferroportin may result in either iron deficiency or iron overload. PMID:22440327
Advantages and disadvantages of an iron-rich diet.
Hallberg, L
2002-03-01
A review by invitation about advantages and disadvantages of an iron-rich diet by analyzing physiological iron requirements, dietary factors influencing iron absorption and the regulatory systems available to control iron absorption according to needs. The control to prevent iron deficiency is good but not perfect, as observed in previously described studies on relationships between individual iron requirements and the probability of iron deficiency developing in relation to diet. The control to prevent iron overload seems to be perfect except in the few subjects being homozygotes for hereditary hemochromatosis. A diet rich in easily available iron is important for covering basal iron losses, menstrual iron losses and the high iron requirements for growth from infancy to adolescence and for pregnancy.
ElAlfy, Moshen S; El Alfy, Moshen; Sari, Teny Tjitra; Lee, Chan Lee; Tricta, Fernando; El-Beshlawy, Amal
2010-11-01
Limited data are available on the use of deferiprone in children younger than 10 years of age. This study evaluated the safety and efficacy of a new liquid formulation of deferiprone for the treatment of transfusional iron overload in children 1-10 years old. One hundred children (91 thalassemia major, 8 Hb E-β thalassemia, and 1 sickle cell disease) were enrolled for a 6-month treatment with deferiprone (50 to 100 mg/kg/d). The safety profile was similar to or better than that reported in earlier studies with deferiprone tablets in older children and adults. No unexpected adverse reactions were observed. Gastrointestinal intolerance (GI) was observed in 11% and an increased serum ALT in 12% of the children. Both events were transient. Mild neutropenia, observed in 6% of patients, did not progress to agranulocytosis and resolved despite continuous deferiprone treatment. Two patients experienced agranulocytosis that resolved without complications upon discontinuation of therapy. Deferiprone use was associated with a significant decline in mean serum ferritin level from 2532±1463 μg/L at baseline to 2176±1144 μg/L (P<0.0005). The results of this study show a favorable benefit/risk ratio of deferiprone oral solution for the treatment of young children with transfusional iron overload.
Demystifying liver iron concentration measurements with MRI.
Henninger, B
2018-06-01
This Editorial comment refers to the article: Non-invasive measurement of liver iron concentration using 3-Tesla magnetic resonance imaging: validation against biopsy. D'Assignies G, et al. Eur Radiol Nov 2017. • MRI is a widely accepted reliable tool to determine liver iron concentration. • MRI cannot measure iron directly, it needs calibration. • Calibration curves for 3.0T are rare in the literature. • The study by d'Assignies et al. provides valuable information on this topic. • Evaluation of liver iron overload should no longer be restricted to experts.
Effect of Dietary Iron Loading on Recognition Memory in Growing Rats
Han, Murui; Kim, Jonghan
2015-01-01
While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet) or iron-adequate control diet (50 mg/kg) for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value) than control rats (12% increase; P=0.047). Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002). Furthermore, levels of glutamate receptors (both NMDA and AMPA) and nicotinic acetylcholine receptor (nAChR) were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR). Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the role of iron loading in improved memory. PMID:25746420
Hepatitis C virus in sickle cell disease.
Hassan, Mohamed; Hasan, Syed; Giday, Samuel; Alamgir, Laila; Banks, Alpha; Frederick, Winston; Smoot, Duane; Castro, Oswaldo
2003-01-01
PURPOSE: To determine the prevalence of hepatitis C virus antibodies (anti-HCV) in patients with sickle cell disease. PATIENTS AND METHODS: Between 1983 and 2001, 150 patients from the Howard University Hospital Center for Sickle Cell Disease were screened for HCV antibody (52% women, 48% men, mean age 34 years). Frozen serum samples from 56 adult sickle cell patients who had participated in previous surveys (1983-92) of HIV and HTLV-1 serology and who were tested in 1992 for anti-HCV antibody--when commercial ELISA test (Ortho) became available--were included in this paper. Of the 150 patients in the study, 132 had sickle cell anemia genotype (SS), 15 had sickle cell hemoglobin-C disease (SC) and three had sickle beta thalassemia. Clinical charts were reviewed for history of blood transfusion, IV drug abuse, homosexuality, tattooing, iron overload, and alcohol abuse. RESULTS: Antibodies to HCV were detected in 53 patients (35.3%). Of the 55 patients who had frozen serum samples tested in 1992, 32 (58%) were reactive for anti-HCV, while only 21 of the 95 patients (22%) tested after 1992 were positive for HCV antibodies (P<0.001). Thirty-nine of 77 patients (51%) who received more than 10 units of packed red blood cells were positive for HCV antibody, and only 14 of 61 patients (23%) who received less than 10 units of packed red blood cells transfusion were positive for HCV antibodies (P<0.001). None of the 12 patients who never received transfusion were positive for HCV antibody. In the 53 anti-HCV positive patients, the mean alanine amino-transferase (ALT) value was 98- and 81 U/L, respectively, for males and females. These values were normal for the HCV-antibody negative patients. The aspartate amino-transferase (AST) and the total bilirubin were also higher in the anti-HCV positive patients compared to patients in the anti-HCV negative group. Forty-four patients (57.1%) who were transfused more than 10 units developed iron overload defined by a serum ferritin level higher than 1,000 ng/ml. A total of 20 of the patients with iron overload underwent liver biopsies. Seven of these 20 patients (35%) were HCV positive. These patients often had more severe liver disease and higher degree of iron deposition. CONCLUSION: The prevalence of HCV antibody and iron overload is directly related to the number of blood transfusions in patients with sickle cell disease. The prevalence of HCV infection has decreased significantly, since blood donor screening for HCV became available. Chronic HCV infection and iron overload place sickle cell patients at risk for significant liver disease. PMID:14620705
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Y.E.; Cerny, E.A.; Lau, E.H.
1983-07-01
The effectiveness of N,N'-bis(2-hydroxybenzyl)-ethylene-diamine-N,N'-diacetic acid (HBED) in removing radioiron introduced into the parenchymal cells of mouse liver as /sup 59/Fe-ferritin has been investigated. The effectiveness of HBED, an iron chelator of low water solubility, has also been compared with that of desferrioxamine (DF), an iron chelator of high water solubility and currently in clinical use for treatment of transfusional iron overload. Using the /sup 59/Fe excretion as the measure of effectiveness of chelation therapy and a standardized single chelator dose of 25 mg/kg, they have found that: (1) a saline suspension of HBED, prepared by sonication and given intraperitoneally tomore » mice, promotes a small but significant increase in excretion of radioiron compared to the untreated controls, whereas DF, in its free form, is ineffective; (2) HBED encapsulated in lipid bilayers of liposomes and given intravenously is superior to nonencapsulated HBED; (3) DF encapsulated in small unilamellar liposomes is ineffective in removing iron given in the form of ferritin; (4) administration of phenobarbital in drinking water, at a concentration of 1 g/liter, induces a 30%-55% increase of iron excretion from untreated control mice and also from mice given HBED either in liposome-encapsulated or nonencapsulated form. HBED is superior to DF for removal of storage iron from liver parenchymal cells and liposomes are useful carriers for iron chelators of low water solubility.« less
Payne, Krista A; Rofail, Diana; Baladi, Jean-François; Viala, Muriel; Abetz, Linda; Desrosiers, Marie-Pierre; Lordan, Noreen; Ishak, Khajak; Proskorovsky, Irina
2008-08-01
This study of UK patients examines clinical, health-related quality of life (HRQOL) and economic outcomes associated with iron chelation therapy (ICT). Desferrioxamine (DFO) (Desferal; Novartis, Switzerland) and Deferiprone (Ferriprox; Apotex, Canada) are ICTs used to treat iron overload. DFO requires 8-to 12-hour infusions a minimum of five times per week. Deferiprone is administered in an oral daily regimen. Although pharmacologically efficacious, clinical effectiveness of ICT within the real-world setting is yet to be fully elucidated. A naturalistic cohort study of 60 patients (beta-thalassaemia, n=40; sickle cell disease, n=14; myelodysplastic syndromes, n=6; 63% female) receiving ICT in four UK treatment centres was conducted. Serum ferritin level data were abstracted from medical charts. Compliance, HRQOL, satisfaction and resource utilisation data were collected from interviews. Maximum ICT costs were estimated using the resource utilisation data associated with DFO. Mean serum ferritin levels, generally, remained elevated despite ICT. Compliance was suboptimal and HRQOL scores were lower than population norms. The total estimated mean weighted annual per-patient cost of DFO treatment was approximately pound19,000. DFO-related equipment, DFO drug, and home healthcare were estimated to account for 43%, 19% and 24% of costs, respectively. Other more minor components of total annual costs were for in-patient infusions, ICT home delivery services and monitoring costs. Generally, patients are not achieving target serum ferritin thresholds despite chronic treatment for iron overload. ICT appears to negatively impact HRQOL; compliance with ICT is poor; and, in the case of DFO, treatment costs well exceed the cost of DFO alone. These results suggest that current ICT in the real-world setting is suboptimal with respect to various clinical, HRQOL and economic outcomes.
Ragab, Seham M; Fathy, Waleed M; El-Aziz, Walaa FAbd; Helal, Rasha T
2015-01-01
Background Cardiac iron toxicity is the leading cause of death among β-halassaemia major (TM) patients. Once heart failure becomes overt, it is difficult to reverse. Objectives To investigate non-overt cardiac dysfunctions in TM patients using pulsed wave Tissue Doppler Imaging (TD I) and its relation to iron overload and brain natriuretic peptide (BNP). Methods Thorough clinical, conventional echo and pulsed wave TDI parameters were compared between asymptomatic 25 β-TM patients and 20 age and gender matched individuals. Serum ferritin and plasma BNP levels were assayed by ELISA. Results TM patients had significant higher mitral inflow early diastolic (E) wave and non significant other conventional echo parameters. In the patient group, pulsed wave TDI revealed systolic dysfunctions, in the form of significant higher isovolumetric contraction time (ICT), and lower ejection time (E T), with diastolic dysfunction in the form of higher isovolumetric relaxation time (IRT), and lower mitral annulus early diastolic velocity E′ (12.07 ±2.06 vs 15.04±2.65, P= 0.003) compared to the controls. Plasma BNP was higher in patients compared to the controls. Plasma BNP and serum ferritin had a significant correlation with each other and with pulsed wave conventional and TDI indices of systolic and diastolic functions. Patients with E/E′ ≥ 8 had significant higher serum ferritin and plasma BNP levels compared to those with ratio < 8 without a difference in Hb levels. Conclusion Pulsed wave TDI is an important diagnostic tool for latent cardiac dysfunction in iron-loaded TM patients and is related to iron overload and BNP. PMID:26401240
Barton, James C.; Acton, Ronald T.; Leiendecker-Foster, Catherine; Lovato, Laura; Adams, Paul C.; Eckfeldt, John H.; McLaren, Christine E.; Reiss, Jacob A.; McLaren, Gordon D.; Reboussin, David M.; Gordeuk, Victor R.; Speechley, Mark R.; Press, Richard D.; Dawkins, Fitzroy W.
2013-01-01
There are few descriptions of young adults with self-reported hemochromatosis or iron overload (H/IO). We analyzed initial screening data in 7,343 HEmochromatosis and IRon Overload Screening (HEIRS) Study participants ages 25–29 years, including race/ethnicity and health information; transferrin saturation (TS) and ferritin (SF) measurements; and HFE C282Y and H63D genotypes. We used denaturing high-pressure liquid chromatography and sequencing to detect mutations in HJV, TFR2, HAMP, SLC40A1, and FTL. Fifty-one participants reported previous H/IO; 23 (45%) reported medical conditions associated with H/IO. Prevalences of reports of arthritis, diabetes, liver disease or liver cancer, heart failure, fertility problems or impotence, and blood relatives with H/IO were significantly greater in participants with previous H/IO reports than in those without. Only 7.8% of the 51 participants with previous H/IO reports had elevated TS; 13.7% had elevated SF. Only one participant had C282Y homozygosity. Three participants aged 25–29 years were heterozygous for potentially deleterious mutations in HFE2, TFR2, and HAMP promoter, respectively. Prevalences of self-reported conditions, screening iron phenotypes, and C282Y homozygosity were similar in 1,165 participants aged 30 years or greater who reported previous H/IO. We conclude that persons who report previous H/IO diagnoses in screening programs are unlikely to have H/IO phenotypes or genotypes. Previous H/IO reports in some participants could be explained by treatment that induced iron depletion before initial screening, misdiagnosis, or participant misunderstanding of their physician or the initial screening questionnaire. PMID:17726683
Ragab, Seham M; Fathy, Waleed M; El-Aziz, Walaa FAbd; Helal, Rasha T
2015-01-01
Cardiac iron toxicity is the leading cause of death among β-halassaemia major (TM) patients. Once heart failure becomes overt, it is difficult to reverse. To investigate non-overt cardiac dysfunctions in TM patients using pulsed wave Tissue Doppler Imaging (TD I) and its relation to iron overload and brain natriuretic peptide (BNP). Thorough clinical, conventional echo and pulsed wave TDI parameters were compared between asymptomatic 25 β-TM patients and 20 age and gender matched individuals. Serum ferritin and plasma BNP levels were assayed by ELISA. TM patients had significant higher mitral inflow early diastolic (E) wave and non significant other conventional echo parameters. In the patient group, pulsed wave TDI revealed systolic dysfunctions, in the form of significant higher isovolumetric contraction time (ICT), and lower ejection time (E T), with diastolic dysfunction in the form of higher isovolumetric relaxation time (IRT), and lower mitral annulus early diastolic velocity E' (12.07 ±2.06 vs 15.04±2.65, P= 0.003) compared to the controls. Plasma BNP was higher in patients compared to the controls. Plasma BNP and serum ferritin had a significant correlation with each other and with pulsed wave conventional and TDI indices of systolic and diastolic functions. Patients with E/E' ≥ 8 had significant higher serum ferritin and plasma BNP levels compared to those with ratio < 8 without a difference in Hb levels. Pulsed wave TDI is an important diagnostic tool for latent cardiac dysfunction in iron-loaded TM patients and is related to iron overload and BNP.
Neely, Benjamin A.; Carlin, Kevin P.; Arthur, John M.; McFee, Wayne E.; Janech, Michael G.
2013-01-01
High molecular weight (HMW) adiponectin levels are reduced in humans with type 2 diabetes and insulin resistance. Similar to humans with insulin resistance, managed bottlenose dolphins (Tursiops truncatus) diagnosed with hemochromatosis (iron overload) have higher levels of 2 h post-prandial plasma insulin than healthy controls. A parallel reaction monitoring assay for dolphin serum adiponectin was developed based on tryptic peptides identified by mass spectrometry. Using identified post-translational modifications, a differential measurement was constructed. Total and unmodified adiponectin levels were measured in sera from dolphins with (n = 4) and without (n = 5) iron overload. This measurement yielded total adiponectin levels as well as site specific percent unmodified adiponectin that may inversely correlate with HMW adiponectin. Differences in insulin levels between iron overload cases and controls were observed 2 h post-prandial, but not during the fasting state. Thus, post-prandial as well as fasting serum adiponectin levels were measured to determine whether adiponectin and insulin would follow similar patterns. There was no difference in total adiponectin or percent unmodified adiponectin from case or control fasting animals. There was no difference in post-prandial total adiponectin levels between case and control dolphins (mean ± SD) at 763 ± 298 and 727 ± 291 pmol/ml, respectively (p = 0.91); however, percent unmodified adiponectin was significantly higher in post-prandial cases compared to controls (30.0 ± 6.3 versus 17.0 ± 6.6%, respectively; p = 0.016). Interestingly, both total and percent unmodified adiponectin were correlated with glucagon levels in controls (r = 0.999, p < 0.001), but not in cases, which is possibly a reflection of insulin resistance. Although total adiponectin levels were not significantly different, the elevated percent unmodified adiponectin follows a trend similar to HMW adiponectin reported for humans with metabolic disorders. PMID:24065958
Ferritin and iron studies in anaemia and chronic disease.
Peng, Ying Y; Uprichard, James
2017-01-01
Anaemia is a condition in which the number of red cells necessary to meet the body's physiological requirements is insufficient. Iron deficiency anaemia and the anaemia of chronic disease are the two most common causes of anaemia worldwide; 1 iron homeostasis plays a pivotal role in the pathogenesis of both diseases. An understanding of how iron studies can be used to distinguish between these diseases is therefore essential not only for diagnosis but also in guiding management. This review will primarily focus on iron deficiency anaemia and anaemia of chronic disease; however, iron overload in anaemia will also be briefly discussed.
Vichinsky, Elliott; Onyekwere, Onyinye; Porter, John; Swerdlow, Paul; Eckman, James; Lane, Peter; Files, Beatrice; Hassell, Kathryn; Kelly, Patrick; Wilson, Felicia; Bernaudin, Françoise; Forni, Gian Luca; Okpala, Iheanyi; Ressayre-Djaffer, Catherine; Alberti, Daniele; Holland, Jaymes; Marks, Peter; Fung, Ellen; Fischer, Roland; Mueller, Brigitta U; Coates, Thomas
2007-02-01
Deferasirox is a once-daily, oral iron chelator developed for treating transfusional iron overload. Preclinical studies indicated that the kidney was a potential target organ of toxicity. As patients with sickle cell disease often have abnormal baseline renal function, the primary objective of this randomised, open-label, phase II trial was to evaluate the safety and tolerability of deferasirox in comparison with deferoxamine in this population. Assessment of efficacy, as measured by change in liver iron concentration (LIC) using biosusceptometry, was a secondary objective. A total of 195 adult and paediatric patients received deferasirox (n = 132) or deferoxamine (n = 63). Adverse events most commonly associated with deferasirox were mild, including transient nausea, vomiting, diarrhoea, abdominal pain and skin rash. Abnormal laboratory studies with deferasirox were occasionally associated with mild non-progressive increases in serum creatinine and reversible elevations in liver function tests. Discontinuation rates from deferasirox (11.4%) and deferoxamine (11.1%) were similar. Over 1 year, similar dose-dependent LIC reductions were observed with deferasirox and deferoxamine. Once-daily oral deferasirox has acceptable tolerability and appears to have similar efficacy to deferoxamine in reducing iron burden in transfused patients with sickle cell disease.
Enein, Azza Aboul; El Dessouky, Nermine A; Mohamed, Khalda S; Botros, Shahira K A; Abd El Gawad, Mona F; Hamdy, Mona; Dyaa, Nehal
2016-06-15
This study aimed to detect the most common HFE gene mutations (C282Y, H63D, and S56C) in Egyptian beta thalassemia major patients and its relation to their iron status. The study included 50 beta thalassemia major patients and 30 age and sex matched healthy persons as a control group. Serum ferritin, serum iron and TIBC level were measured. Detection of the three HFE gene mutations (C282Y, H63D and S65C) was done by PCR-RFLP analysis. Confirmation of positive cases for the mutations was done by sequencing. Neither homozygote nor carrier status for the C282Y or S65C alleles was found. The H63D heterozygous state was detected in 5/50 (10%) thalassemic patients and in 1/30 (3.3%) controls with no statistically significant difference between patients and control groups (p = 0.22). Significantly higher levels of the serum ferritin and serum iron in patients with this mutation (p = 001). Our results suggest that there is an association between H63D mutation and the severity of iron overload in thalassemic patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wielopolski, L.; Ancona, R.C.; Mossey, R.T.
Hepatic iron stores were measured noninvasively in 31 patients (thalassemia, hemodialysis, hemosiderosis, refractory anemia) with suspected iron overload, employing a nuclear resonance scattering (NRS) technique. The thalassemia patients were undergoing desferrioxamine chelation therapy during the NRS measurements. The hemodialysis patients were measured before chelation therapy. Iron levels measured by NRS were in general agreement with those determined in liver biopsies by atomic absorption spectroscopy. In addition, NRS measurements from the thorax of some of these patients suggest that this method may also prove useful for clinical assessment of cardiac iron.
Imran, Farhan; Phatak, Pradyumna
2017-01-01
Patients with myelodysplastic syndromes (MDS) differ from those with other transfusion-dependent conditions (eg, thalassemia) as they are typically older, have comorbid conditions, and a generally shorter life expectancy. The underlying disease process in MDS and frequent use of red blood cell transfusions lead to iron accumulation and ultimately organ damage. Whether iron-reducing interventions such as chelation therapy can improve outcomes in this population is currently under investigation. Areas covered: We reviewed published English-language articles from PubMed on the topic of iron overload (IO) in MDS, and the use of iron chelation therapies (ICTs) to alleviate iron burden. Expert commentary: Data on IO-associated complications in MDS are derived largely from retrospective studies and there are limited data to guide clinicians on major treatment decisions. Although effective and well-tolerated oral ICTs are available, and general recommendations may be made regarding usage in MDS, guidance is not yet based on prospective data. The clinical endpoints and assessments for MDS may differ substantively from those used in patients with thalassemia, as an older population may have competing causes for morbidity. We expect that emergent data from clinical trials currently underway will define more appropriate endpoints/assessments for the MDS population in clinical trials.
Meunier, Mathieu; Ancelet, Sarah; Lefebvre, Christine; Arnaud, Josiane; Garrel, Catherine; Pezet, Mylène; Wang, Yan; Faure, Patrice; Szymanski, Gautier; Duployez, Nicolas; Preudhomme, Claude; Biard, Denis; Polack, Benoit; Cahn, Jean-Yves; Moulis, Jean Marc; Park, Sophie
2017-12-01
Anemia is a frequent cytopenia in myelodysplastic syndromes (MDS) and most patients require red blood cell transfusion resulting in iron overload (IO). Deferasirox (DFX) has become the standard treatment of IO in MDS and it displays positive effects on erythropoiesis. In low risk MDS samples, mechanisms improving erythropoiesis after DFX treatment remain unclear. Herein, we addressed this question by using liquid cultures with iron overload of erythroid precursors treated with low dose of DFX (3μM), which corresponds to DFX 5 mg/kg/day, an unusual dose used for iron chelation. We highlight a decreased apoptosis rate and an increased proportion of cycling cells, both leading to higher proliferation rates. The iron chelation properties of low dose DFX failed to activate the Iron Regulatory Proteins and to support iron depletion, but low dose DFX dampers intracellular reactive oxygen species. Furthermore low concentrations of DFX activate the NF-κB pathway in erythroid precursors triggering anti-apoptotic and anti-inflammatory signals. Establishing stable gene silencing of the Thioredoxin (TRX) 1 genes, a NF-κB modulator, showed that fine-tuning of reactive oxygen species (ROS) levels regulates NF-κB. These results justify a clinical trial proposing low dose DFX in MDS patients refractory to erythropoiesis stimulating agents.
Meunier, Mathieu; Ancelet, Sarah; Lefebvre, Christine; Arnaud, Josiane; Garrel, Catherine; Pezet, Mylène; Wang, Yan; Faure, Patrice; Szymanski, Gautier; Duployez, Nicolas; Preudhomme, Claude; Biard, Denis; Polack, Benoit; Cahn, Jean-Yves; Moulis, Jean Marc; Park, Sophie
2017-01-01
Anemia is a frequent cytopenia in myelodysplastic syndromes (MDS) and most patients require red blood cell transfusion resulting in iron overload (IO). Deferasirox (DFX) has become the standard treatment of IO in MDS and it displays positive effects on erythropoiesis. In low risk MDS samples, mechanisms improving erythropoiesis after DFX treatment remain unclear. Herein, we addressed this question by using liquid cultures with iron overload of erythroid precursors treated with low dose of DFX (3μM), which corresponds to DFX 5 mg/kg/day, an unusual dose used for iron chelation. We highlight a decreased apoptosis rate and an increased proportion of cycling cells, both leading to higher proliferation rates. The iron chelation properties of low dose DFX failed to activate the Iron Regulatory Proteins and to support iron depletion, but low dose DFX dampers intracellular reactive oxygen species. Furthermore low concentrations of DFX activate the NF-κB pathway in erythroid precursors triggering anti-apoptotic and anti-inflammatory signals. Establishing stable gene silencing of the Thioredoxin (TRX) 1 genes, a NF-κB modulator, showed that fine-tuning of reactive oxygen species (ROS) levels regulates NF-κB. These results justify a clinical trial proposing low dose DFX in MDS patients refractory to erythropoiesis stimulating agents. PMID:29285268
Miranda, Carlos J.; Makui, Hortence; Andrews, Nancy C.; Santos, Manuela M.
2010-01-01
Genetic causes of hereditary hemochromatosis (HH) include mutations in the HFE gene, coding for a β2-microglobulin (β2m)–associated major histocompatibility complex class I-like protein. However, iron accumulation in patients with HH can be highly variable. Previously, analysis of β2mRag1−/− double-deficient mice, lacking all β2m-dependent molecules and lymphocytes, demonstrated increased iron accumulation in the pancreas and heart compared with β2m single knock-out mice. To evaluate whether the observed phenotype in β2mRag1−/− mice was due solely to the absence of Hfe or to other β2m-dependent molecules, we generated HfeRag1−/− double-deficient mice. Our studies revealed that introduction of Rag1 deficiency in Hfe knock-out mice leads to heightened iron overload, mainly in the liver, whereas the heart and pancreas are relatively spared compared with β2mRag1−/− mice. These results suggest that other β2m-interacting protein(s) may be involved in iron regulation and that in the absence of functional Hfe molecules lymphocyte numbers may influence iron overload severity. PMID:14656877
Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W; Song, Wenchao; Dunaief, Joshua L
2015-05-08
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W.; Song, Wenchao; Dunaief, Joshua L.
2015-01-01
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. PMID:25802332
The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation.
Martins, Telma S; Pereira, Clara; Canadell, David; Vilaça, Rita; Teixeira, Vítor; Moradas-Ferreira, Pedro; de Nadal, Eulàlia; Posas, Francesc; Costa, Vítor
2018-01-01
Iron acquisition systems have to be tightly regulated to assure a continuous supply of iron, since it is essential for survival, but simultaneously to prevent iron overload that is toxic to the cells. In budding yeast, the low‑iron sensing transcription factor Aft1p is a master regulator of the iron regulon. Our previous work revealed that bioactive sphingolipids modulate iron homeostasis as yeast cells lacking the sphingomyelinase Isc1p exhibit an upregulation of the iron regulon. In this study, we show that Isc1p impacts on iron accumulation and localization. Notably, Aft1p is activated in isc1Δ cells due to a decrease in its phosphorylation and an increase in its nuclear levels. Consistently, the expression of a phosphomimetic version of Aft1p-S210/S224 that favours its nuclear export abolished iron accumulation in isc1Δ cells. Notably, the Hog1p kinase, homologue of mammalian p38, interacts with and directly phosphorylates Aft1p at residues S210 and S224. However, Hog1p-Aft1p interaction decreases in isc1Δ cells, which likely contributes to Aft1p dephosphorylation and consequently to Aft1p activation and iron overload in isc1Δ cells. These results suggest that alterations in sphingolipid composition in isc1Δ cells may impact on iron homeostasis by disturbing the regulation of Aft1p by Hog1p. To our knowledge, Hog1p is the first kinase reported to directly regulate Aft1p, impacting on iron homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Mingfu; Lin, Lin; Gebremariam, Teclegiorgis; Luo, Guanpingsheng; Skory, Christopher D.; French, Samuel W.; Chou, Tsui-Fen; Edwards, John E.; Ibrahim, Ashraf S.
2015-01-01
Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R. oryzae during iron uptake from ferrioxamine. Fob1 and Fob2 cell surface expression was induced in the presence of ferrioxamine and bound radiolabeled ferrioxamine. A R. oryzae strain with targeted reduced Fob1/Fob2 expression was impaired for iron uptake, germinating, and growing on medium with ferrioxamine as the sole source of iron. This strain also exhibited reduced virulence in a deferoxamine-treated, but not the diabetic ketoacidotic (DKA), mouse model of mucormycosis. The mechanism by which R. oryzae obtains iron from ferrioxamine involves the reductase/permease uptake system since the growth on ferrioxamine supplemented medium is associated with elevated reductase activity and the use of the ferrous chelator bathophenanthroline disulfonate abrogates iron uptake and growth on medium supplemented with ferrioxamine as a sole source of iron. Finally, R. oryzae mutants with reduced copies of the high affinity iron permease (FTR1) or with decreased FTR1 expression had an impaired iron uptake from ferrioxamine in vitro and reduced virulence in the deferoxamine-treated mouse model of mucormycosis. These two receptors appear to be conserved in Mucorales, and can be the subject of future novel therapy to maintain the use of deferoxamine for treating iron-overload. PMID:25974051
Characterization and accumulation of ferritin in hepatocyte nuclei of mice with iron overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.G.; Carthew, P.; Francis, J.E.
1990-12-01
After a single subcutaneous dose of iron-dextran (600 mg of iron/kg), iron overload developed in C57BL/10ScSn mice. At 4, 24 and 78 wk liver nonheme iron concentrations were 67-, 42- and 21-fold higher than controls, respectively. Much of the iron was in macrophages, but hepatocytes were also strongly positive for Perls' stainable iron. One feature was the development of iron-positive nuclear inclusions in hepatocytes. After a delay of at least 8 wk when no stainable iron was evident, a maximum of 37% of periportal hepatocytes contained inclusions by 24 wk. Although this proportion remained constant for the remainder of themore » study, the size of the inclusions (which were not membrane-limited) increased to greater than 3 microns in diameter, occupying greater than 25% of the nuclear volume. The presence of iron in the inclusions was confirmed by energy dispersive x-ray microanalysis. Immunocytochemical studies showed that the iron was present as aggregates of ferritin. Quantitation of nonaggregated ferritin molecules by image analyses after electron microscopy demonstrated that within 4 wk ferritin levels in cytoplasm and nucleoplasm had greatly increased but that there was a concentration gradient of approximately one order of magnitude across the nuclear envelope. These findings are consistent with the hypothesis that in iron-loaded mouse hepatocytes there is a slow passage of ferritin-molecules through the nuclear pores; the gradient is maintained by the continual aggregation of ferritin within the nucleus. Intranuclear ferritin may provide a source of iron for catalyzing hydroxyl radical formation in nuclei during some toxic, carcinogenic and aging processes.« less
Sakuta, Juri; Ito, Yoshikazu; Kimura, Yukihiko; Park, Jinho; Tokuuye, Koichi; Ohyashiki, Kazuma
2010-12-01
Cardiac dysfunction due to transfusional iron overload is one of the most critical complications for patients with transfusion-dependent hematological disorders. Clinical parameters such as total red blood cell (RBC) transfusion units and serum ferritin level are usually considered as indicators for initiation of iron chelation therapy. We used MRI-T2*, MRI-R2* values, and left ventricular ejection fraction in 19 adult patients with blood transfusion-dependent hematological disorders without consecutive oral iron chelation therapy, and propose possible formulae of cardiac function using known parameters, such as total RBC transfusion units and serum ferritin levels. We found a positive correlation in all patients between both R2* values (reciprocal values of T2*) and serum ferritin levels (r = 0.81) and also total RBC transfusion volume (r = 0.90), but not when we analyzed subgroups of patients whose T2* values were over 30 ms (0.52). From the formulae of the R2*, we concluded that approximately 50 Japanese units or 2,900 pmol/L ferritin might be the cutoff value indicating possible future cardiac dysfunction.
Deferasirox for managing iron overload in people with thalassaemia.
Meerpohl, Joerg J; Antes, Gerd; Rücker, Gerta; Fleeman, Nigel; Motschall, Edith; Niemeyer, Charlotte M; Bassler, Dirk
2012-02-15
Thalassemia is a hereditary anaemia due to ineffective erythropoiesis. In particular, people with thalassaemia major develop secondary iron overload resulting from regular red blood cell transfusion. Iron chelation therapy is needed to prevent long-term complications.Both deferoxamine and deferiprone have been found to be efficacious. However, a systematic review of the effectiveness and safety of the new oral chelator deferasirox in people with thalassaemia is needed. To assess the effectiveness and safety of oral deferasirox in people with thalassaemia and secondary iron overload. We searched the Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register. We also searched MEDLINE, EMBASE, EBMR, Biosis Previews, Web of Science, Derwent Drug File, XTOXLINE and three trial registries: www.controlled-trials.com; www.clinicaltrials.gov; www.who.int./ictrp/en/. Date of the most recent searches of these databases: 24 June 2010.Date of the most recent search of the Group's Haemoglobinopathies Trials Register: 03 November 2011. Randomised controlled trials comparing deferasirox with no therapy or placebo or with another iron chelating treatment. Two authors independently assessed risk of bias and extracted data. We contacted study authors for additional information. Four studies met the inclusion criteria.Two studies compared deferasirox to placebo or standard therapy of deferoxamine (n = 47). The placebo-controlled studies, a pharmacokinetic and a dose escalation study, showed that deferasirox leads to net iron excretion in transfusion-dependent thalassaemia patients. In these studies, safety was acceptable and further investigation in phase II and phase III trials was warranted.Two studies, one phase II study (n = 71) and one phase III study (n = 586) compared deferasirox to standard treatment with deferoxamine. Data suggest that a similar efficacy can be achieved depending on the ratio of doses of deferoxamine and deferasirox being compared; in the phase III trial, similar or superior efficacy for surrogate parameters of ferritin and liver iron concentration could only be achieved in the highly iron-overloaded subgroup at a mean ratio of 1 mg of deferasirox to 1.8 mg of deferoxamine corresponding to a mean dose of 28.2 mg/d and 51.6 mg/d respectively. Data on safety at the presumably required doses for effective chelation therapy are limited. Patient satisfaction was significantly better with deferasirox, while rate of discontinuations was similar for both drugs. Deferasirox offers an important alternative line of treatment for people with thalassaemia and secondary iron overload. Based on the available data, deferasirox does not seem to be superior to deferoxamine at the usually recommended ratio of 1 mg of deferasirox to 2 mg of deferoxamine. However, similar efficacy seems to be achievable depending on the dose and ratio of deferasirox compared to deferoxamine. Whether this will result in similar efficacy in the long run and will translate to similar benefits as has been shown for deferoxamine, needs to be confirmed. Data on safety, particularly on rare toxicities and long-term safety, are still limited.Therefore, we think that deferasirox should be offered as an alternative to all patients with thalassaemia who either show intolerance to deferoxamine or poor compliance with deferoxamine. In our opinion, data are still too limited to support the general recommendation of deferasirox as first-line treatment instead of deferoxamine. If a strong preference for deferasirox is expressed, it could be offered as first-line option to individual patients after a detailed discussion of the potential benefits and risks.
Puliyel, Mammen; Sposto, Richard; Berdoukas, Vasilios A; Hofstra, Thomas C; Nord, Anne; Carson, Susan; Wood, John; Coates, Thomas D
2014-04-01
Ferritin levels and trends are widely used to manage iron overload and assess the efficacy of prescribed iron chelation in patients with transfusional iron loading. A retrospective cohort study was conducted in 134 patients with transfusion-dependent anemia, over a period of up to 9 years. To determine whether the trends in ferritin adequately reflect the changes in total body iron, changes in ferritin between consecutive liver iron measurements by magnetic resonance imaging (MRI) were compared to changes in liver iron concentrations (LIC), a measure of total body iron. The time period between two consecutive LIC measurements was defined as a segment. Trends in ferritin were considered to predict the change in LIC within a segment if the change in one parameter was less than twofold that of the other, and was in the same direction. Using the exclusion criteria detailed in methods, the trends in ferritin were compared to changes in LIC in 358 segments. An agreement between ferritin trends and LIC changes was found in only 38% of the 358 segments examined. Furthermore, the change in ferritin was in opposite direction to that of LIC in 26% of the segments. Trends in ferritin were a worse predictor of changes in LIC in sickle cell disease than in thalassemia (P < 0.01). While ferritin is a convenient measure of iron status; ferritin trends were unable to predict changes in LIC in individual patients. Ferritin trends need to be interpreted with caution and confirmed by direct measurement of LIC. Copyright © 2013 Wiley Periodicals, Inc.
A Computational Model of Liver Iron Metabolism
Mitchell, Simon; Mendes, Pedro
2013-01-01
Iron is essential for all known life due to its redox properties; however, these same properties can also lead to its toxicity in overload through the production of reactive oxygen species. Robust systemic and cellular control are required to maintain safe levels of iron, and the liver seems to be where this regulation is mainly located. Iron misregulation is implicated in many diseases, and as our understanding of iron metabolism improves, the list of iron-related disorders grows. Recent developments have resulted in greater knowledge of the fate of iron in the body and have led to a detailed map of its metabolism; however, a quantitative understanding at the systems level of how its components interact to produce tight regulation remains elusive. A mechanistic computational model of human liver iron metabolism, which includes the core regulatory components, is presented here. It was constructed based on known mechanisms of regulation and on their kinetic properties, obtained from several publications. The model was then quantitatively validated by comparing its results with previously published physiological data, and it is able to reproduce multiple experimental findings. A time course simulation following an oral dose of iron was compared to a clinical time course study and the simulation was found to recreate the dynamics and time scale of the systems response to iron challenge. A disease state simulation of haemochromatosis was created by altering a single reaction parameter that mimics a human haemochromatosis gene (HFE) mutation. The simulation provides a quantitative understanding of the liver iron overload that arises in this disease. This model supports and supplements understanding of the role of the liver as an iron sensor and provides a framework for further modelling, including simulations to identify valuable drug targets and design of experiments to improve further our knowledge of this system. PMID:24244122
Brain and retinal ferroportin 1 dysregulation in polycythaemia mice.
Iacovelli, Jared; Mlodnicka, Agnieska E; Veldman, Peter; Ying, Gui-Shuang; Dunaief, Joshua L; Schumacher, Armin
2009-09-15
Disruption of iron homeostasis within the central nervous system (CNS) can lead to profound abnormalities during both development and aging in mammals. The radiation-induced polycythaemia (Pcm) mutation, a 58-bp microdeletion in the promoter region of ferroportin 1 (Fpn1), disrupts transcriptional and post-transcriptional regulation of this pivotal iron transporter. This regulatory mutation induces dynamic alterations in peripheral iron homeostasis such that newborn homozygous Pcm mice exhibit iron deficiency anemia with increased duodenal Fpn1 expression while adult homozygotes display decreased Fpn1 expression and anemia despite organismal iron overload. Herein we report the impact of the Pcm microdeletion on iron homeostasis in two compartments of the central nervous system: brain and retina. At birth, Pcm homozygotes show a marked decrease in brain iron content and reduced levels of Fpn1 expression. Upregulation of transferrin receptor 1 (TfR1) in brain microvasculature appears to mediate the compensatory iron uptake during postnatal development and iron content in Pcm brain is restored to wild-type levels by 7 weeks of age. Similarly, changes in expression are transient and expression of Fpn1 and TfR1 is indistinguishable between Pcm homozygotes and wild-type by 12 weeks of age. Strikingly, the adult Pcm brain is effectively protected from the peripheral iron overload and maintains normal iron content. In contrast to Fpn1 downregulation in perinatal brain, the retina of Pcm homozygotes reveals increased levels of Fpn1 expression. While retinal morphology appears normal at birth and during early postnatal development, adult Pcm mice demonstrate a marked, age-dependent loss of photoreceptors. This phenotype demonstrates the importance of iron homeostasis in retinal health.
Brain and retinal ferroportin 1 dysregulation in polycythaemia mice
Iacovelli, Jared; Mlodnicka, Agnieska E.; Veldman, Peter; Ying, Gui-Shuang; Dunaief, Joshua L.; Schumacher, Armin
2009-01-01
Disruption of iron homeostatsis within the central nervous system (CNS) can lead to profound abnormalities during both development and aging in mammals. The radiation-induced polycythaemia (Pcm) mutation, a 58-bp microdeletion in the promoter region of ferroportin 1 (Fpn1), disrupts transcriptional and post-transcriptional regulation of this pivotal iron transporter. This regulatory mutation induces dynamic alterations in peripheral iron homeostatis such that newborn homozygous Pcm mice exhibit iron deficiency anemia with increased duodenal Fpn1 expression while adult homozygotes display decreased Fpn1 expression and anemia despite organismal iron overload. Herein we report the impact of the Pcm microdeletion on iron homeostasis in two compartments of the the central nervous system: brain and retina. At birth, Pcm homozygotes show a marked decrease in brain iron content and reduced levels of Fpn1 expression. Upregulation of transferrin receptor 1 (TfR1) in brain microvasculature appears to mediate the compensatory iron uptake during postnatal development and iron content in Pcm brain is restored to wildtype levels by 7 weeks of age. Similarly, changes in expression are transient and expression of Fpn1 and TfR1 is indistinguishable between Pcm homozygotes and wildtype by 12 weeks of age. Strikingly, the adult Pcm brain is effectively protected from the peripheral iron overload and maintains normal iron content. In contrast to Fpn1 downregulation in perinatal brain, the retina of Pcm homozygotes reveals increased levels of Fpn1 expression. While retinal morphology appears normal at birth and during early postnatal development, adult Pcm mice demonstrate a marked, age-dependent loss of photoreceptors. This phenotype demonstrates the importance of iron homeostasis in retinal health. PMID:19596281
Hassan, Mohamed Abdel Malik; Tolba, Omar Atef
2016-01-01
Introduction Iron overload is the primary cause of mortality and morbidity in thalassemia major (TM) despite advances in chelation therapy. The aim of this study was to compare the effectiveness and safety of deferasirox (DFX) and deferoxamine (DFO) as iron-chelating agents in patients with transfusion-dependent β-thalassemia major. Methods This prospective randomized study included 60 patients with transfusion-dependent β-TM during the period from September 2014 to September 2015. Their ages were ≥ 6 years, and they had serum ferritin above 1500 μg/L and were on irregular DFO therapy. Patients had regular packed red cell transfusion in a dose of 10 mL/kg/session. They were randomized to receive DFX (single oral daily dose of 20–40 mg/kg/day) or DFO (20–50 mg/kg/day via subcutaneous infusion over 8–10 hours, 5 days a week). Iron overload was determined by serum ferritin level. The primary endpoint was decrease of serum ferritin level below 1500 μg/L. The secondary endpoint was drug safety. Results Both drugs significantly reduced serum ferritin (p < 0.001). At the end of follow-up, there were no significant differences between the two groups in serum ferritin levels (p = 0.673) and in percent reduction of ferritin (p = 0.315). There were no significant differences between the two groups in the total amount of blood transfusion (p = 0.166) and average iron intake (p = 0.227). There were no mortalities or any serious adverse effects, neutropenia, arthropathy, or pulmonary toxicity. Gastrointestinal upset and skin rash occurred more frequently with DFX than with DFO (p = 0.254 and 0.095, respectively). Conclusion With appropriate dosing and compliance with drugs, both DFX and DFO are generally well tolerated, safe, and effective in reducing serum ferritin levels in iron-overloaded, regularly-transfused thalassemia major patients. Therefore, oral DFX is recommended for more convenience and adherence to the treatment regimen. PMID:27382454
Hassan, Mohamed Abdel Malik; Tolba, Omar Atef
2016-05-01
Iron overload is the primary cause of mortality and morbidity in thalassemia major (TM) despite advances in chelation therapy. The aim of this study was to compare the effectiveness and safety of deferasirox (DFX) and deferoxamine (DFO) as iron-chelating agents in patients with transfusion-dependent β-thalassemia major. This prospective randomized study included 60 patients with transfusion-dependent β-TM during the period from September 2014 to September 2015. Their ages were ≥ 6 years, and they had serum ferritin above 1500 μg/L and were on irregular DFO therapy. Patients had regular packed red cell transfusion in a dose of 10 mL/kg/session. They were randomized to receive DFX (single oral daily dose of 20-40 mg/kg/day) or DFO (20-50 mg/kg/day via subcutaneous infusion over 8-10 hours, 5 days a week). Iron overload was determined by serum ferritin level. The primary endpoint was decrease of serum ferritin level below 1500 μg/L. The secondary endpoint was drug safety. Both drugs significantly reduced serum ferritin (p < 0.001). At the end of follow-up, there were no significant differences between the two groups in serum ferritin levels (p = 0.673) and in percent reduction of ferritin (p = 0.315). There were no significant differences between the two groups in the total amount of blood transfusion (p = 0.166) and average iron intake (p = 0.227). There were no mortalities or any serious adverse effects, neutropenia, arthropathy, or pulmonary toxicity. Gastrointestinal upset and skin rash occurred more frequently with DFX than with DFO (p = 0.254 and 0.095, respectively). With appropriate dosing and compliance with drugs, both DFX and DFO are generally well tolerated, safe, and effective in reducing serum ferritin levels in iron-overloaded, regularly-transfused thalassemia major patients. Therefore, oral DFX is recommended for more convenience and adherence to the treatment regimen.
Backs, Johannes; Backs, Thea; Neef, Stefan; Kreusser, Michael M.; Lehmann, Lorenz H.; Patrick, David M.; Grueter, Chad E.; Qi, Xiaoxia; Richardson, James A.; Hill, Joseph A.; Katus, Hugo A.; Bassel-Duby, Rhonda; Maier, Lars S.; Olson, Eric N.
2009-01-01
Acute and chronic injuries to the heart result in perturbation of intracellular calcium signaling, which leads to pathological cardiac hypertrophy and remodeling. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the transduction of calcium signals in the heart, but the specific isoforms of CaMKII that mediate pathological cardiac signaling have not been fully defined. To investigate the potential involvement in heart disease of CaMKIIδ, the major CaMKII isoform expressed in the heart, we generated CaMKIIδ-null mice. These mice are viable and display no overt abnormalities in cardiac structure or function in the absence of stress. However, pathological cardiac hypertrophy and remodeling are attenuated in response to pressure overload in these animals. Cardiac extracts from CaMKIIδ-null mice showed diminished kinase activity toward histone deacetylase 4 (HDAC4), a substrate of stress-responsive protein kinases and suppressor of stress-dependent cardiac remodeling. In contrast, phosphorylation of the closely related HDAC5 was unaffected in hearts of CaMKIIδ-null mice, underscoring the specificity of the CaMKIIδ signaling pathway for HDAC4 phosphorylation. We conclude that CaMKIIδ functions as an important transducer of stress stimuli involved in pathological cardiac remodeling in vivo, which is mediated, at least in part, by the phosphorylation of HDAC4. These findings point to CaMKIIδ as a potential therapeutic target for the maintenance of cardiac function in the setting of pressure overload. PMID:19179290
HFE gene variants affect iron in the brain.
Nandar, Wint; Connor, James R
2011-04-01
Iron accumulation in the brain and increased oxidative stress are consistent observations in many neurodegenerative diseases. Thus, we have begun examination into gene mutations or allelic variants that could be associated with loss of iron homeostasis. One of the mechanisms leading to iron overload is a mutation in the HFE gene, which is involved in iron metabolism. The 2 most common HFE gene variants are C282Y (1.9%) and H63D (8.9%). The C282Y HFE variant is more commonly associated with hereditary hemochromatosis, which is an autosomal recessive disorder, characterized by iron overload in a number of systemic organs. The H63D HFE variant appears less frequently associated with hemochromatosis, but its role in the neurodegenerative diseases has received more attention. At the cellular level, the HFE mutant protein resulting from the H63D HFE gene variant is associated with iron dyshomeostasis, increased oxidative stress, glutamate release, tau phosphorylation, and alteration in inflammatory response, each of which is under investigation as a contributing factor to neurodegenerative diseases. Therefore, the HFE gene variants are proposed to be genetic modifiers or a risk factor for neurodegenerative diseases by establishing an enabling milieu for pathogenic agents. This review will discuss the current knowledge of the association of the HFE gene variants with neurodegenerative diseases: amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and ischemic stroke. Importantly, the data herein also begin to dispel the long-held view that the brain is protected from iron accumulation associated with the HFE mutations.
Krafft, Axel J; Loeffler, Ralf B; Song, Ruitian; Tipirneni-Sajja, Aaryani; McCarville, M Beth; Robson, Matthew D; Hankins, Jane S; Hillenbrand, Claudia M
2017-11-01
Hepatic iron content (HIC) quantification via transverse relaxation rate (R2*)-MRI using multi-gradient echo (mGRE) imaging is compromised toward high HIC or at higher fields due to the rapid signal decay. Our study aims at presenting an optimized 2D ultrashort echo time (UTE) sequence for R2* quantification to overcome these limitations. Two-dimensional UTE imaging was realized via half-pulse excitation and radial center-out sampling. The sequence includes chemically selective saturation pulses to reduce streaking artifacts from subcutaneous fat, and spatial saturation (sSAT) bands to suppress out-of-slice signals. The sequence employs interleaved multi-echo readout trains to achieve dense temporal sampling of rapid signal decays. Evaluation was done at 1.5 Tesla (T) and 3T in phantoms, and clinical applicability was demonstrated in five patients with biopsy-confirmed massively high HIC levels (>25 mg Fe/g dry weight liver tissue). In phantoms, the sSAT pulses were found to remove out-of-slice contamination, and R2* results were in excellent agreement to reference mGRE R2* results (slope of linear regression: 1.02/1.00 for 1.5/3T). UTE-based R2* quantification in patients with massive iron overload proved successful at both field strengths and was consistent with biopsy HIC values. The UTE sequence provides a means to measure R2* in patients with massive iron overload, both at 1.5T and 3T. Magn Reson Med 78:1839-1851, 2017. © 2017 Wiley Periodicals, Inc. © 2017 International Society for Magnetic Resonance in Medicine.
Aydinok, Yesim; Evans, Patricia; Manz, Chantal Y.; Porter, John B.
2012-01-01
Background Plasma non-transferrin bound iron refers to heterogeneous plasma iron species, not bound to transferrin, which appear in conditions of iron overload and ineffective erythropoiesis. The clinical utility of non-transferrin bound iron in predicting complications from iron overload, or response to chelation therapy remains unproven. We undertook carefully timed measurements of non-transferrin bound iron to explore the origin of chelatable iron and to predict clinical response to deferiprone. Design and Methods Non-transferrin bound iron levels were determined at baseline and after 1 week of chelation in 32 patients with thalassemia major receiving deferiprone alone, desferrioxamine alone, or a combination of the two chelators. Samples were taken at baseline, following a 2-week washout without chelation, and after 1 week of chelation, this last sample being taken 10 hours after the previous evening dose of deferiprone and, in those receiving desferrioxamine, 24 hours after cessation of the overnight subcutaneous infusion. Absolute or relative non-transferrin bound iron levels were related to transfusional iron loading rates, liver iron concentration, 24-hour urine iron and response to chelation therapy over the subsequent year. Results Changes in non-transferrin bound iron at week 1 were correlated positively with baseline liver iron, and inversely with transfusional iron loading rates, with deferiprone-containing regimens but not with desferrioxamine monotherapy. Changes in week 1 non-transferrin bound iron were also directly proportional to the plasma concentration of deferiprone-iron complexes and correlated significantly with urine iron excretion and with changes in liver iron concentration over the next 12 months. Conclusions The widely used assay chosen for this study detects both endogenous non-transferrin bound iron and the iron complexes of deferiprone. The week 1 increments reflect chelatable iron derived both from liver stores and from red cell catabolism. These increments correlate with urinary iron excretion and the change in liver iron concentration over the subsequent year thus predicting response to deferiprone-containing chelation regimes. This clinical study was registered at clinical.trials.gov with the number NCT00350662. PMID:22180427
Iron biomineralization of brain tissue and neurodegenerative disorders
NASA Astrophysics Data System (ADS)
Mikhaylova (Mikhailova), Albina
The brain is an organ with a high concentration of iron in specific areas, particularly in the globus pallidus, the substantia nigra, and the red nucleus. In certain pathological states, such as iron overload disease and neurodegenerative disorders, a disturbed iron metabolism can lead to increased accumulation of iron not only in these areas, but also in the brain regions that are typically low in iron content. Recent studies of the physical and magnetic properties of metalloproteins, and in particular the discovery of biogenic magnetite in human brain tissue, have raised new questions about the role of biogenic iron formations in living organisms. Further investigations revealed the presence of magnetite-like crystalline structures in human ferritin, and indicated that released ferritin iron might act as promoter of oxidative damage to tissue, therefore contributing to pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. The purpose of this work was to examine the elemental composition and structure of iron deposits in normal brain tissue as well as tissue affected by neurodegenerative disorders. Employing the methods of X-ray microfocus fluorescence mapping, X-ray Absorption Near Edge Structure (XANES), X-ray Absorption Fine Structure spectroscopy (XAFS), and light and electron microscopic examinations allows one to obtain qualitative as well as quantitative data with respect to the cellular distribution and chemical state of iron at levels not detected previously. The described tissue preparation technique allows not only satisfactory XAS iron elemental imaging in situ but also multimodal examination with light and electron microscopes of the same samples. The developed protocol has assured consistent and reproducible results on relatively large sections of flat-embedded tissue. The resulting tissue samples were adequate for XAS examination as well as sufficiently well-preserved for future microscopy studies. The continued development of this technique should lead to major advances in mapping iron anomalies and the related chemical and structural information directly to cells and tissue structures in human brain tissue. At present this is done primarily by iron staining methods and any information on the relationship between iron distribution and cellular structures obtained this way is limited. Iron staining also offers no information on the specific compounds of iron that are present. This can be vitally important as the form of iron [including its oxidation state] in the human body can determine whether it plays a detrimental or beneficial role in neurophysiological processes.
USDA-ARS?s Scientific Manuscript database
Ceruloplasmin is a serum ferroxidase that carries more than 90% of the copper in plasma and has documented roles in iron homeostasis as well as antioxidative functions. In our previous studies, it has been shown that the ceruloplasmin gene is strongly up-regulated in catfish during challenge with Ed...
Delea, Thomas E; Hagiwara, May; Thomas, Simu K; Baladi, Jean-Francois; Phatak, Pradyumna D; Coates, Thomas D
2008-04-01
Deferoxamine mesylate (DFO) reduces morbidity and mortality associated with transfusional iron overload. Data on the utilization and costs of care among U.S. patients receiving DFO in typical clinical practice are limited however. This was a retrospective study using a large U.S. health insurance claims database spanning 1/97-12/04 and representing 40 million members in >70 health plans. Study subjects (n = 145 total, 106 sickle cell disease [SCD], 39 thalassemia) included members with a diagnosis of thalassemia or SCD, one or more transfusions (whole blood or red blood cells), and one or more claims for DFO. Mean transfusion episodes were 12 per year. Estimated mean DFO use was 307 g/year. Central venous access devices were required by 20% of patients. Cardiac disease was observed in 16% of patients. Mean total medical costs were $59,233 per year including $10,899 for DFO and $8,722 for administration of chelation therapy. In multivariate analyses, potential complications of iron overload were associated with significantly higher medical care costs. In typical clinical practice, use of DFO in patients with thalassemia and SCD receiving transfusions is low. Administration costs represent a large proportion of the cost of chelation therapy. Potential complications of iron overload are associated with increased costs. (c) 2007 Wiley-Liss, Inc.
Inati, Adlette; Kahale, Mario; Sbeiti, Nada; Cappellini, Maria Domenica; Taher, Ali T; Koussa, Suzanne; Nasr, Therese A; Musallam, Khaled M; Abbas, Hussein A; Porter, John B
2017-01-01
Iron overload is well documented in patients with β-thalassemia major, and patients who have undergone hematopoietic stem cell transplantation (HSCT) remain at risk as a result of pre- and immediate post-HSCT transfusions. This is a prospective, randomized, 1-year clinical trial that compares the efficacy and safety of the once-daily oral iron chelator deferasirox versus phlebotomy for the treatment of iron overload in children with β-thalassemia major following HSCT. Patients (aged 12.4 years) received deferasirox (n = 12, 10 mg/kg/day starting dose) or phlebotomy (n = 14, 6 ml/kg/2 weeks) for 1 year. In two and five patients, deferasirox dose was increased to 15 and 20 mg/kg/day, respectively. Magnetic resonance imaging (MRI)-assessed liver iron concentration (LIC) decreased with deferasirox (mean 12.5 ± 10.1 to 8.5 ± 9.3 mg Fe/g dry weight [dw]; P = 0.0005 vs. baseline) and phlebotomy (10.2 ± 6.8 to 8.3 ± 9.2 mg Fe/g dw; P = 0.05). LIC reductions were greater with deferasirox than with phlebotomy for patients with baseline serum ferritin 1,000 ng/ml or higher (-8.1 ± 1.5 vs. -3.5 ± 5.7 mg Fe/g dw; P = 0.048). Serum ferritin and non-transferrin-bound iron also decreased significantly. In two patients with severe cardiac siderosis, a clinically relevant improvement in myocardial T2* was seen, following phlebotomy and deferasirox therapy (n = 1 each). Adverse effects with deferasirox were skin rash, gastrointestinal upset, and increased liver function tests (all n = 1), while those for phlebotomy were difficulty with venous access (n = 4) and distress during procedure (n = 1). Parents of 13/14 children receiving phlebotomy wished to switch to deferasirox, with 1/14 being satisfied with phlebotomy. Deferasirox treatment or phlebotomy reduces iron burden in pediatric patients with β- thalassemia major post-HSCT, with a manageable safety profile. © 2016 Wiley Periodicals, Inc.
Dassanayaka, Sujith; Zheng, Yuting; Gibb, Andrew A; Cummins, Timothy D; McNally, Lindsey A; Brittian, Kenneth R; Jagatheesan, Ganapathy; Audam, Timothy N; Long, Bethany W; Brainard, Robert E; Jones, Steven P; Hill, Bradford G
2018-06-01
Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2). An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC) for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Copyright © 2018. Published by Elsevier B.V.
Iron-Chelating Therapy for Transfusional Iron Overload
Brittenham, Gary M.
2011-01-01
A 16-year-old boy with sickle cell anemia undergoes routine screening with transcranial Doppler ultrasonography to assess the risk of stroke. This examination shows an abnormally elevated blood-flow velocity in the middle cerebral artery. The hemoglobin level is 7.2 g per deciliter, the reticulocyte count is 12.5%, and the fetal hemoglobin level is 8.0%. Long-term treatment with red-cell transfusion is initiated to prevent stroke. A hematologist recommends prophylactic iron-chelating therapy. PMID:21226580
Lee, Seung-Min; Loguinov, Alexandre; Fleming, Robert E; Vulpe, Christopher D
2015-01-01
Hereditary hemochromatosis is an iron overload disorder most commonly caused by a defect in the HFE gene. While the genetic defect is highly prevalent, the majority of individuals do not develop clinically significant iron overload, suggesting the importance of genetic modifiers. Murine hfe knockout models have demonstrated that strain background has a strong effect on the severity of iron loading. We noted that hepatic iron loading in hfe-/- mice occurs primarily over the first postnatal weeks (loading phase) followed by a timeframe of relatively static iron concentrations (plateau phase). We thus evaluated the effects of background strain and of age on hepatic gene expression in Hfe knockout mice (hfe-/-). Hepatic gene expression profiles were examined using cDNA microarrays in 4- and 8-week-old hfe-/- and wild-type mice on two different genetic backgrounds, C57BL/6J (C57) and AKR/J (AKR). Genes differentially regulated in all hfe-/- mice groups, compared with wild-type mice, including those involved in cell survival, stress and damage responses and lipid metabolism. AKR strain-specific changes in lipid metabolism genes and C57 strain-specific changes in cell adhesion and extracellular matrix protein genes were detected in hfe-/- mice. Mouse strain and age are each significantly associated with hepatic gene expression profiles in hfe-/- mice. These affects may underlie or reflect differences in iron loading in these mice.
Gumus, Ersin; Abbasoglu, Osman; Tanyel, Cahit; Gumruk, Fatma; Ozen, Hasan; Yuce, Aysel
2017-05-01
The use of extended criteria donors who might have previously been deemed unsuitable is an option to increase the organ supply for transplantation. This report presents a pediatric case of a successful liver transplantation from a donor with β-thalassemia intermedia. A patient, 6-year-old female, with a diagnosis of cryptogenic liver cirrhosis underwent deceased donor liver transplantation from a thalassemic donor. Extreme hyperferritinemia was detected shortly after transplantation. The most probable cause of hyperferritinemia was iron overload secondary to transplantation of a hemosiderotic liver. Hepatocellular injury due to acute graft rejection might have contributed to elevated ferritin levels by causing release of stored iron from the hemosiderotic liver graft. Iron chelation and phlebotomy therapies were started simultaneously in the early postoperative period to avoid iron-related organ toxicity and transplant failure. Follow-up with monthly phlebotomies after discharge yielded a favorable outcome with normal transplant functions. Thalassemia intermedia patients can be candidates of liver donors to decrease pretransplant waitlist mortality. After transplantation of a hemosiderotic liver, it is important to monitor the recipient in terms of iron overload and toxicity. Early attempts to lower iron burden including chelation therapy and/or phlebotomy should be considered to avoid organ toxicity and transplant failure. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Vichinsky, Elliott; Onyekwere, Onyinye; Porter, John; Swerdlow, Paul; Eckman, James; Lane, Peter; Files, Beatrice; Hassell, Kathryn; Kelly, Patrick; Wilson, Felicia; Bernaudin, Françoise; Forni, Gian Luca; Okpala, Iheanyi; Ressayre-Djaffer, Catherine; Alberti, Daniele; Holland, Jaymes; Marks, Peter; Fung, Ellen; Fischer, Roland; Mueller, Brigitta U; Coates, Thomas
2007-01-01
Deferasirox is a once-daily, oral iron chelator developed for treating transfusional iron overload. Preclinical studies indicated that the kidney was a potential target organ of toxicity. As patients with sickle cell disease often have abnormal baseline renal function, the primary objective of this randomised, open-label, phase II trial was to evaluate the safety and tolerability of deferasirox in comparison with deferoxamine in this population. Assessment of efficacy, as measured by change in liver iron concentration (LIC) using biosusceptometry, was a secondary objective. A total of 195 adult and paediatric patients received deferasirox (n = 132) or deferoxamine (n = 63). Adverse events most commonly associated with deferasirox were mild, including transient nausea, vomiting, diarrhoea, abdominal pain and skin rash. Abnormal laboratory studies with deferasirox were occasionally associated with mild non-progressive increases in serum creatinine and reversible elevations in liver function tests. Discontinuation rates from deferasirox (11·4%) and deferoxamine (11·1%) were similar. Over 1 year, similar dose-dependent LIC reductions were observed with deferasirox and deferoxamine. Once-daily oral deferasirox has acceptable tolerability and appears to have similar efficacy to deferoxamine in reducing iron burden in transfused patients with sickle cell disease. PMID:17233848
Cario, H; Grosse, R; Janssen, G; Jarisch, A; Meerpohl, J; Strauss, G
2010-11-01
In Germany and Central Europe, congenital disorders leading to secondary hemochromatosis are rare. The majority of these patients are treated in peripheral medical institutions. As a consequence, the experience of each institution in the treatment of secondary hemochromatosis in patients with congenital anemia is limited. Recent developments concerning new chelating agents, their combination for intensified chelation and new possibilities to diagnose and monitor iron overload have important consequences for the management of patients with secondary hemochromatosis and increase its complexity enormously. Therefore, the development of a guideline for rational and efficient diagnostics and treatment was necessary. The new guideline was developed within a formal consensus process and finally approved by a consensus conference with participants from both the pediatric and adult German hematology societies (GPOH and DGHO). Apart from general information and recommendations, the guideline contains 9 consensus statements on diagnostics (iron status, siderotic complications, chelator side-effects), the start of chelation, indications for intensified chelation, iron elimination in specific disorders, and iron elimination after stem cell transplantation. Here, these consensus statements are presented and discussed in detail. For the complete text of the guideline, please visit the AWMF homepage at http://www.leitlinien.net . © Georg Thieme Verlag KG Stuttgart · New York.
Sequestration and Scavenging of Iron in Infection
Parrow, Nermi L.; Fleming, Robert E.
2013-01-01
The proliferative capability of many invasive pathogens is limited by the bioavailability of iron. Pathogens have thus developed strategies to obtain iron from their host organisms. In turn, host defense strategies have evolved to sequester iron from invasive pathogens. This review explores the mechanisms employed by bacterial pathogens to gain access to host iron sources, the role of iron in bacterial virulence, and iron-related genes required for the establishment or maintenance of infection. Host defenses to limit iron availability for bacterial growth during the acute-phase response and the consequences of iron overload conditions on susceptibility to bacterial infection are also examined. The evidence summarized herein demonstrates the importance of iron bioavailability in influencing the risk of infection and the ability of the host to clear the pathogen. PMID:23836822
Biological variability of transferrin saturation and unsaturated iron binding capacity
Adams, PC; Reboussin, DM; Press, RD; Barton, JC; Acton, RT; Moses, GC; Leiendecker-Foster, C; McLaren, GD; Dawkins, FW; Gordeuk, VR; Lovato, L; Eckfeldt, JH
2007-01-01
Background Transferrin saturation is widely considered the preferred screening test for hemochromatosis. Unsaturated iron binding capacity has similar performance at lower cost. However, the within-person biological variability of both these tests may limit their ability at commonly used cut points to detect HFE C282Y homozygous patients. Methods The Hemochromatosis and Iron Overload Screening (HEIRS) Study screened 101,168 primary care participants for iron overload using tansferrin saturation, unsaturated iron binding capacity, ferritin and HFE C282Y and H63D genotyping. Transferrin saturation and unsaturated iron binding capacity were performed at initial screening and again when selected participants and controls returned for a clinical examination several months later. A missed case was defined as a C282Y homozygote who had transferrin saturation below cut point (45 % women, 50 % men) or unsaturated iron binding capacity above cut point (150 μmol/L women, 125 μmol/L men) at either the initial screening or clinical examination, or both, regardless of serum ferritin. Results There were 209 C282Y previously undiagnosed homozygotes with transferrin saturation and unsaturated iron binding capacity testing done at initial screening and clinical examination. Sixty-eight C282Y homozygotes (33%) would have been missed at these transferrin saturation cut points (19 men, 49 women, median SF 170 μg/L, first and third quartiles 50 and 474 μg/L), and 58 homozygotes (28 %) would have been missed at the unsaturated iron binding capacity cut points (20 men, 38 women, median SF 168 μg/L, quartiles 38 and 454 μg/L). There was no advantage to using fasting samples. Conclusions The within-person biological variability of transferrin saturation and unsaturated iron binding capacity limit their usefulness as an initial screening test for expressing C282Y homozygotes. PMID:17976429
Maliken, Bryan D; Avrin, William F; Nelson, James E; Mooney, Jody; Kumar, Sankaran; Kowdley, Kris V
2012-01-01
There is an ongoing clinical need for novel methods to measure hepatic iron content (HIC) noninvasively. Both magnetic resonance imaging (MRI) and superconducting quantum interference device (SQUID) methods have previously shown promise for estimation of HIC, but these methods can be expensive and are not widely available. Room-temperature susceptometry (RTS) represents an inexpensive alternative and was previously found to be strongly correlated with HIC estimated by SQUID measurements among patients with transfusional iron overload related to thalassemia. The goal of the current study was to examine the relationship between RTS and biochemical HIC measured in liver biopsy specimens in a more varied patient cohort. Susceptometry was performed in a diverse group of patients with hyperferritinemia due to hereditary hemochromatosis (HHC) (n = 2), secondary iron overload (n = 3), nonalcoholic fatty liver disease (NAFLD) (n = 2), and chronic viral hepatitis (n = 3) within one month of liver biopsy in the absence of iron depletion therapy. The correlation coefficient between HIC estimated by susceptometry and by biochemical iron measurement in liver tissue was 0.71 (p = 0.022). Variance between liver iron measurement and susceptometry measurement was primarily related to reliance on the patient's body-mass index (BMI) to estimate the magnetic susceptibility of tissue overlying the liver. We believe RTS holds promise for noninvasive measurement of HIC. Improved measurement techniques, including more accurate overlayer correction, may further improve the accuracy of liver susceptometry in patients with liver disease.
Elevated serum ferritin - what should GPs know?
Goot, Katie; Hazeldine, Simon; Bentley, Peter; Olynyk, John; Crawford, Darrell
2012-12-01
Elevated serum ferritin is commonly encountered in general practice. Ninety percent of elevated serum ferritin is due to noniron overload conditions, where venesection therapy is not the treatment of choice. This article aims to outline the role of the Australian Red Cross Blood Service Therapeutic Venesection program, to clarify the interpretation of the HFE gene test and iron studies, and to describe the steps in evaluating a patient with elevated serum ferritin. After exclusion of hereditary haemochromatosis, investigation of elevated serum ferritin involves identifying alcohol consumption, metabolic syndrome, obesity, diabetes, liver disease, malignancy, infection or inflammation as causative factors. Referral to a gastroenterologist, haematologist or physician with an interest in iron overload is appropriate if serum ferritin is >1000 µg/L or if the cause of elevated serum ferritin is still unclear.
Treating iron overload in patients with non-transfusion-dependent thalassemia
Taher, Ali T; Viprakasit, Vip; Musallam, Khaled M; Cappellini, M Domenica
2013-01-01
Despite receiving no or only occasional blood transfusions, patients with non-transfusion-dependent thalassemia (NTDT) have increased intestinal iron absorption and can accumulate iron to levels comparable with transfusion-dependent patients. This iron accumulation occurs more slowly in NTDT patients compared to transfusion-dependent thalassemia patients, and complications do not arise until later in life. It remains crucial for these patients' health to monitor and appropriately treat their iron burden. Based on recent data, including a randomized clinical trial on iron chelation in NTDT, a simple iron chelation treatment algorithm is presented to assist physicians with monitoring iron burden and initiating chelation therapy in this group of patients. Am. J. Hematol. 88:409–415, 2013. © 2013 Wiley Periodicals, Inc. PMID:23475638
Iron homeostasis: a new job for macrophages in adipose tissue?
Hubler, Merla J.; Peterson, Kristin R.; Hasty, Alyssa H.
2015-01-01
Elevated serum ferritin and increased cellular iron concentrations are risk factors for diabetes; however, the etiology of this association is unclear. Metabolic tissues such as pancreas, liver, and adipose tissue (AT), as well as the immune cells resident in these tissues, may be involved. Recent studies demonstrate that the polarization status of macrophages has important relevance to their iron handling capabilities. Furthermore, a subset of macrophages in AT have elevated iron concentrations and a gene expression profile indicative of iron handling, a capacity diminished in obesity. Because iron overload in adipocytes increases systemic insulin resistance, iron handling by AT macrophages may have relevance not only to adipocyte iron stores but also to local and systemic insulin sensitivity. PMID:25600948
He, Xiao-Fei; Lan, Yue; Zhang, Qun; Liu, Dong-Xu; Wang, Qinmei; Liang, Feng-Ying; Zeng, Jin-Sheng; Xu, Guang-Qing; Pei, Zhong
2016-08-01
Cerebral microbleeds are strongly linked to cognitive dysfunction in the elderly. Iron accumulation plays an important role in the pathogenesis of intracranial hemorrhage. Deferoxamine (DFX), a metal chelator, removes iron overload and protects against brain damage in intracranial hemorrhage. In this study, the protective effects of DFX against microhemorrhage were examined in mice. C57BL6 and Thy-1 green fluorescent protein transgenic mice were subjected to perforating artery microhemorrhages on the right posterior parietal cortex using two-photon laser irradiation. DFX (100 mg/kg) was administered 6 h after microhemorrhage induction, followed by every 12 h for three consecutive days. The water maze task was conducted 7 days after induction of microhemorrhages, followed by measurement of blood-brain barrier permeability, iron deposition, microglial activation, and dendritic damage. Laser-induced multiple microbleeds in the right parietal cortex clearly led to spatial memory disruption, iron deposits, microglial activation, and dendritic damage, which were significantly attenuated by DFX, supporting the targeting of iron overload as a therapeutic option and the significant potential of DFX in microhemorrhage treatment. Irons accumulation after intracranial hemorrhage induced a serious secondary damage to the brain. We proposed that irons accumulation after parietal microhemorrhages impaired spatial cognition. After parietal multiple microhemorrhages, increased irons and ferritin contents induced blood-brain barrier disruption, microglial activation, and further induced dendrites loss, eventually impaired the water maze, deferoxamine treatment protected from these damages. © 2016 International Society for Neurochemistry.
Korenaga, Masaaki; Nishina, Sohji; Korenaga, Keiko; Tomiyama, Yasuyuki; Yoshioka, Naoko; Hara, Yuichi; Sasaki, Yusuke; Shimonaka, Yasushi; Hino, Keisuke
2015-01-01
Background & Aims Branched-chain amino acids (BCAA) reduce the incidence of hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the mechanisms that underlie these effects remain unknown. Previously, we reported that oxidative stress in male transgenic mice that expressed hepatitis C virus polyprotein (HCVTgM) caused hepatic iron accumulation by reducing hepcidin transcription, thereby leading to HCC development. This study investigated whether long-term treatment with BCAA reduced hepatic iron accumulation and oxidative stress in iron-overloaded HCVTgM and in patients with HCV-related advanced fibrosis. Methods Male HCVTgM were fed an excess-iron diet that comprised either casein or 3.0% BCAA, or a control diet, for 6 months. Results For HCVTgM, BCAA supplementation increased the serum hepcidin-25 levels and antioxidant status [ratio of biological antioxidant potential (BAP) relative to derivatives of reactive oxygen metabolites (dROM)], decreased the hepatic iron contents, attenuated reactive oxygen species generation, and restored mitochondrial superoxide dismutase expression and mitochondrial complex I activity in the liver compared with mice fed the control diet. After 48 weeks of BCAA supplementation in patients with HCV-related advanced fibrosis, BAP/dROM and serum hepcidin-25 increased and serum ferritin decreased compared with the pretreatment levels. Conclusions BCAA supplementation reduced oxidative stress by restoring mitochondrial function and improved iron metabolism by increasing hepcidin-25 in both iron-overloaded HCVTgM and patients with HCV-related advanced fibrosis. These activities of BCAA may partially account for their inhibitory effects on HCC development in cirrhosis patients. PMID:25156780
Cançado, Rodolfo; Melo, Murilo R; de Moraes Bastos, Roberto; Santos, Paulo C J L; Guerra-Shinohara, Elivira M; Chiattone, Carlos; Ballas, Samir K
2015-12-01
This open-label, prospective, phase 2 study evaluated the safety and efficacy of deferasirox (10 ± 5 mg/kg/d) in patients with hereditary hemochromatosis (HH) and iron overload refractory to or intolerant of phlebotomy. Ten patients were enrolled and all completed the 12-month treatment period. There were significant decreases from baseline to end of study (i.e., 12 months) in median serum ferritin (P < 0.001), mean transferrin saturation (P < 0.05), median liver iron concentration (P < 0.001), and mean alanine aminotransferase (P < 0.05). The median time to achieve serum ferritin reduction ≥50% compared to baseline was 7.53 months. The most common adverse events were mild, transient diarrhea (n = 5) and nausea (n = 2). No patient experienced an increase in serum creatinine that exceeded the upper limit of normal. These data confirm that deferasirox was well tolerated and effective in reducing iron burden in patients with hereditary hemochromatosis and could be a safe alternative to phlebotomy in selected patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Iron chelating ligand for iron overload diseases.
Ozbolat, G; Tuli, A
2018-01-01
Iron overloads are a serious clinical condition in the health of humans and are therefore a key target in drug development. In this study, iron(III) complex of 8-hydroxyquinoline-5 sulphonic acid was synthesized and structurally characterized in its solid state and solution state by FT-IR, UV-Vis, elemental analysis, magnetic susceptibility and 1H-NMR. The catalase activities of complex were investigated. It was showed that the complex has the catalase activity. It is suggested that this type of complex may constitute a new and interesting basis for the future search for new and more potential drugs. The electrochemical behaviour patterns of the ligand and complex were examined as supporting electrolyte and platinum electrode for cyclic voltammetry. The electrochemistry studies showed that the reductions in free ligand and complex take place differently.The cytotoxicity was evaluated by MTT assay. The complex exhibited a very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand.The observed cytotoxicity could be pursued to obtain a potential drug. These results indicate that using the 8-hydroxyquinoline-5 sulphonic acid for this aim in further studies is appropriate (Tab. 1, Fig. 4, Ref. 18). Text in PDF www.elis.sk.
Santos, Paulo C J L; Pereira, Alexandre C; Cançado, Rodolfo D; Schettert, Isolmar T; Sobreira, Tiago J P; Oliveira, Paulo S L; Hirata, Rosario D C; Hirata, Mario H; Figueiredo, Maria Stella; Chiattone, Carlos S; Krieger, Jose E; Guerra-Shinohara, Elvira M
2010-12-15
Rare HFE variants have been shown to be associated with hereditary hemochromatosis (HH), an iron overload disease. The low frequency of the HFE p.C282Y mutation in HH-affected Brazilian patients may suggest that other HFE-related mutations may also be implicated in the pathogenesis of HH in this population. The main aim was to screen for new HFE mutations in Brazilian individuals with primary iron overload and to investigate their relationship with HH. Fifty Brazilian patients with primary iron overload (transferrin saturation>50% in females and 60% in males) were selected. Subsequent bidirectional sequencing for each HFE exon was performed. The effect of HFE mutations on protein structure were analyzed by molecular dynamics simulation and free binding energy calculations. p.C282Y in homozygosis or in heterozygosis with p.H63D were the most frequent genotypic combinations associated with HH in our sample population (present in 17 individuals, 34%). Thirty-six (72.0%) out of the 50 individuals presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n=11, 22.0%). One novel mutation (p.V256I) was indentified in heterozygosis with the p.H63D mutation. In silico modeling analysis of protein behavior indicated that the p.V256I mutation does not reduce the binding affinity between HFE and β2-microglobulin (β2M) in the same way the p.C282Y mutation does compared with the native HFE protein. In conclusion, screening of HFE through direct sequencing, as compared to p.C282Y/p.H63D genotyping, was not able to increase the molecular diagnosis yield of HH. The novel p.V256I mutation could not be implicated in the molecular basis of the HH phenotype, although its role cannot be completely excluded in HH-phenotype development. Our molecular modeling analysis can help in the analysis of novel, previously undescribed, HFE mutations. Copyright © 2010 Elsevier Inc. All rights reserved.
Slart, Riemer H.J.A.; Hulleman, Enzo V.; Dierckx, Rudi A.J.O.; Velthuis, Birgitta K.; van der Harst, Pim; Sosnovik, David E.; Borra, Ronald J.H.; Prakken, Niek H.J.
2017-01-01
Background Although cardiac MR and T1 mapping are increasingly used to diagnose diffuse fibrosis based cardiac diseases, studies reporting T1 values in healthy and diseased myocardium, particular in nonischemic cardiomyopathies (NICM) and populations with increased cardiovascular risk, seem contradictory. Purpose To determine the range of native myocardial T1 value ranges in patients with NICM and populations with increased cardiovascular risk. Study Type Systemic review and meta‐analysis. Population Patients with NICM, including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), and patients with myocarditis (MC), iron overload, amyloidosis, Fabry disease, and populations with hypertension (HT), diabetes mellitus (DM), and obesity. Field Strength/Sequence (Shortened) modified Look–Locker inversion‐recovery MR sequence at 1.5 or 3T. Assessment PubMed and Embase were searched following the PRISMA guidelines. Statistical Tests The summary of standard mean difference (SMD) between the diseased and a healthy control populations was generated using a random‐effects model in combination with meta‐regression analysis. Results The SMD for HCM, DCM, and MC patients were significantly increased (1.41, 1.48, and 1.96, respectively, P < 0.01) compared with healthy controls. The SMD for HT patients with and without left‐ventricle hypertrophy (LVH) together was significantly increased (0.19, P = 0.04), while for HT patients without LVH the SMD was zero (0.03, P = 0.52). The number of studies on amyloidosis, iron overload, Fabry disease, and HT patients with LVH did not meet the requirement to perform a meta‐analysis. However, most studies reported a significantly increased T1 for amyloidosis and HT patients with LVH and a significant decreased T1 for iron overload and Fabry disease patients. Data Conclusions Native T1 mapping by using an (Sh)MOLLI sequence can potentially assess myocardial changes in HCM, DCM, MC, iron overload, amyloidosis, and Fabry disease compared to controls. In addition, it can help to diagnose left‐ventricular remodeling in HT patients. Level of Evidence: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:891–912. PMID:29131444
Krafft, Axel J.; Loeffler, Ralf B.; Song, Ruitian; Bian, Xiao; McCarville, M. Beth; Hankins, Jane S.; Hillenbrand, Claudia M.
2015-01-01
Purpose Fat suppression (FS) via chemically selective saturation (CHESS) eliminates fat-water oscillations in multi-echo gradient echo (mGRE) R2*-MRI. However, for increasing R2* values as seen with increasing liver iron content (LIC), the water signal spectrally overlaps with the CHESS band, which may alter R2*. Here, we investigate the effect of CHESS on R2* and describe a heuristic correction for the observed CHESS-induced R2* changes. Methods Eighty patients (49/31 female/male, mean age: 18.3±11.7 years) with iron overload were scanned with a non-FS and a CHESS-FS mGRE sequence at 1.5T and 3T. Mean liver R2* values were evaluated using 3 published fitting approaches. Measured and model-corrected R2* values were compared and statistically analyzed. Results At 1.5T, CHESS led to a systematic R2* reduction (P<0.001 for all fitting algorithms) especially toward higher R2*. Our model described the observed changes well and reduced the CHESS-induced R2* bias after correction (linear regression slopes: 1.032/0.927/0.981). No CHESS-induced R2* reductions were found at 3T. Conclusion The CHESS-induced R2* bias at 1.5T needs to be considered when applying R2*-LIC biopsy calibrations for clinical LIC assessment which were established without FS at 1.5T. The proposed model corrects the R2* bias and could therefore improve clinical iron overload assessment based on linear R2*-LIC calibrations. PMID:26308155
Krafft, Axel J; Loeffler, Ralf B; Song, Ruitian; Bian, Xiao; McCarville, M Beth; Hankins, Jane S; Hillenbrand, Claudia M
2016-08-01
Fat suppression (FS) via chemically selective saturation (CHESS) eliminates fat-water oscillations in multiecho gradient echo (mGRE) R2*-MRI. However, for increasing R2* values as seen with increasing liver iron content (LIC), the water signal spectrally overlaps with the CHESS band, which may alter R2*. We investigated the effect of CHESS on R2* and developed a heuristic correction for the observed CHESS-induced R2* changes. Eighty patients [female, n = 49; male, n = 31; mean age (± standard deviation), 18.3 ± 11.7 y] with iron overload were scanned with a non-FS and a CHESS-FS mGRE sequence at 1.5T and 3T. Mean liver R2* values were evaluated using three published fitting approaches. Measured and model-corrected R2* values were compared and statistically analyzed. At 1.5T, CHESS led to a systematic R2* reduction (P < 0.001 for all fitting algorithms) especially toward higher R2*. Our model described the observed changes well and reduced the CHESS-induced R2* bias after correction (linear regression slopes: 1.032/0.927/0.981). No CHESS-induced R2* reductions were found at 3T. The CHESS-induced R2* bias at 1.5T needs to be considered when applying R2*-LIC biopsy calibrations for clinical LIC assessment, which were established without FS at 1.5T. The proposed model corrects the R2* bias and could therefore improve clinical iron overload assessment based on linear R2*-LIC calibrations. Magn Reson Med 76:591-601, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
A free software for the calculation of T2* values for iron overload assessment.
Fernandes, Juliano Lara; Fioravante, Luciana Andrea Barozi; Verissimo, Monica P; Loggetto, Sandra R
2017-06-01
Background Iron overload assessment with magnetic resonance imaging (MRI) using T2* has become a key diagnostic method in the management of many diseases. Quantitative analysis of the MRI images with a cost-effective tool has been a limitation to increased use of the method. Purpose To provide a free software solution for this purpose comparing the results with a commercial solution. Material and Methods The free tool was developed as a standalone program to be directly downloaded and ran in a common personal computer platform without the need of a dedicated workstation. Liver and cardiac T2* values were calculated using both tools and the values obtained compared between them in a group of 56 patients with suspected iron overload using Bland-Altman plots and concordance correlation coefficients (CCC). Results In the heart, the mean T2* differences between the two methods was 0.46 ms (95% confidence interval [CI], -0.037 -0.965) and in the liver 0.49 ms (95% CI, 0.257-0.722). The CCC for both the heart and the liver were significantly high (0.98 [95% CI, 0.966-0.988] with a Pearson ρ of 0.9811 and 0.991 [95% CI, 0.986-0.994] with a Pearson ρ of 0.996, respectively. No significant differences were observed when analyzing only patients with abnormal concentrations of iron in both organs compared to the whole cohort. Conclusion The proposed free software tool is accurate for calculation of T2* values of the liver and heart and might be a solution for centers that cannot use paid commercial solutions.
Krayenbuehl, Pierre-Alexandre; Hersberger, Martin; Truninger, Kaspar; Müllhaupt, Beat; Maly, Friedrich E; Bargetzi, Mario; Schulthess, Georg
2010-07-01
Clinical penetrance of hereditary hemochromatosis is highly variable. We hypothesized that it might be modified by factors involved in the cellular immune response, such as toll-like receptors (TLRs) or nucleotide oligomerization domain proteins (NODs). Clinical expression of hemochromatosis was assessed as a function of TLR4, TLR9, and NOD2 polymorphisms in 99 homozygous carriers of the HFE C282Y mutation with mild-to-severe iron overload. Thirteen (13%) of the 99 hemochromatosis patients were heterozygous for a TLR4 Asp299Gly polymorphism and 86 (87%) were TLR4 wild-type-only carriers. Clinical expression of hemochromatosis was observed more frequently in carriers of the TLR4 polymorphism (100%) than in TLR4 wild-type carriers (56%, P = 0.002). This was based on higher prevalences of liver disease (92 vs. 45%, P = 0.002) and arthropathy of metacarpophalangeal joints (69 vs. 35%, P = 0.018) in TLR4 polymorphism carriers. The finding was strengthened by the strong association of TLR4 polymorphism with liver fibrosis in the subgroup of 52 patients who underwent a liver biopsy (P = 0.011). The TLR4 polymorphism did, however, not correlate with body iron overload. The study results remained significant in multiple regression analyses after excluding possible confounding effects, such as age, sex, alcohol, or meat intake, and in the subgroup of 84 patients presenting as the first members of their families. TLR4 Asp299Gly polymorphism modulates clinical expression in patients with hereditary hemochromatosis. The polymorphism does not correlate with iron overload suggesting that TLR4 plays a role in an inflammatory process arising from toxic effects of iron accumulation.
Oral deferiprone for iron chelation in people with thalassaemia.
Fisher, Sheila A; Brunskill, Susan J; Doree, Carolyn; Chowdhury, Onima; Gooding, Sarah; Roberts, David J
2013-08-21
Thalassaemia major is a genetic disease characterised by a reduced ability to produce haemoglobin. Management of the resulting anaemia is through red blood cell transfusions.Repeated transfusions result in an excessive accumulation of iron in the body (iron overload), removal of which is achieved through iron chelation therapy. A commonly used iron chelator, deferiprone, has been found to be pharmacologically efficacious. However, important questions exist about the efficacy and safety of deferiprone compared to another iron chelator, desferrioxamine. To summarise data from trials on the clinical efficacy and safety of deferiprone and to compare the clinical efficacy and safety of deferiprone with desferrioxamine for thalassaemia. We searched the Cochrane Cystic fibrosis and Genetic Disorders Group's Haemoglobinopathies trials Register and MEDLINE, EMBASE, CENTRAL (The Cochrane Library), LILACS and other international medical databases, plus registers of ongoing trials and the Transfusion Evidence Library (www.transfusionevidencelibrary.com). We also contacted the manufacturers of deferiprone and desferrioxamine.All searches were updated to 05 March 2013. Randomised controlled trials comparing deferiprone with another iron chelator; or comparing two schedules or doses of deferiprone, in people with transfusion-dependent thalassaemia. Two authors independently assessed trials for risk of bias and extracted data. Missing data were requested from the original investigators. A total of 17 trials involving 1061 participants (range 13 to 213 participants per trial) were included. Of these, 16 trials compared either deferiprone alone with desferrioxamine alone, or a combined therapy of deferiprone and desferrioxamine with either deferiprone alone or desferrioxamine alone; one compared different schedules of deferiprone. There was little consistency between outcomes and limited information to fully assess the risk of bias of most of the included trials.Four trials reported mortality; each reported the death of one individual receiving deferiprone with or without desferrioxamine. One trial reported five further deaths in patients who withdrew from randomised treatment (deferiprone with or without desferrioxamine) and switched to desferrioxamine alone. Seven trials reported cardiac function or liver fibrosis as measures of end organ damage.Earlier trials measuring the cardiac iron load indirectly by magnetic resonance imaging (MRI) T2* signal had suggested deferiprone may reduce cardiac iron more quickly than desferrioxamine. However, a meta-analysis of two trials suggested that left ventricular ejection fraction was significantly reduced in patients who received desferrioxamine alone compared with combination therapy. One trial, which planned five years of follow up, was stopped early due to the beneficial effects of combined treatment compared with deferiprone alone in terms of serum ferritin levels reduction.The results of this and three other trials suggest an advantage of combined therapy over monotherapy to reduce iron stores as measured by serum ferritin. There is, however, no conclusive or consistent evidence for the improved efficacy of combined deferiprone and desferrioxamine therapy over monotherapy from direct or indirect measures of liver iron. Both deferiprone and desferrioxamine produce a significant reduction in iron stores in transfusion-dependent, iron-overloaded people. There is no evidence from randomised controlled trials to suggest that either has a greater reduction of clinically significant end organ damage.Evidence of adverse events were observed in all treatment groups. Occurrence of any adverse event was significantly more likely with deferiprone than desferrioxamine in one trial, RR 2.24 (95% CI 1.19 to 4.23). Meta-analysis of a further two trials showed a significant increased risk of adverse events associated with combined deferiprone and desferrioxamine compared with desferrioxamine alone, RR 3.04 (95% CI 1.18 to 7.83). The most commonly reported adverse event was joint pain, which occurred significantly more frequently in patients receiving deferiprone than desferrioxamine, RR 2.64 (95% CI 1.21 to 5.77). Other common adverse events included gastrointestinal disturbances as well as neutropenia or leucopenia, or both. In the absence of data from randomised controlled trials, there is no evidence to suggest the need for a change in current treatment recommendations; namely that deferiprone is indicated for treating iron overload in people with thalassaemia major when desferrioxamine is contraindicated or inadequate. Intensified desferrioxamine treatment (by either subcutaneous or intravenous route) or use of other oral iron chelators, or both, remains the established treatment to reverse cardiac dysfunction due to iron overload. Indeed, the US Food and Drug Administration (FDA) recently only gave support for deferiprone to be used as a last resort for treating iron overload in thalassaemia, myelodysplasia and sickle cell disease. However, there is evidence that adverse events are increased in patients treated with deferiprone compared with desferrioxamine and in patients treated with combined deferiprone and desferrioxamine compared with desferrioxamine alone. There is an urgent need for adequately-powered, high-quality trials comparing the overall clinical efficacy and long-term outcome of deferiprone with desferrioxamine.
Influence of welding fume on systemic iron status.
Casjens, Swaantje; Henry, Jana; Rihs, Hans-Peter; Lehnert, Martin; Raulf-Heimsoth, Monika; Welge, Peter; Lotz, Anne; Gelder, Rainer Van; Hahn, Jens-Uwe; Stiegler, Hugo; Eisele, Lewin; Weiss, Tobias; Hartwig, Andrea; Brüning, Thomas; Pesch, Beate
2014-11-01
Iron is the major metal found in welding fumes, and although it is an essential trace element, its overload causes toxicity due to Fenton reactions. To avoid oxidative damage, excess iron is bound to ferritin, and as a result, serum ferritin (SF) is a recognized biomarker for iron stores, with high concentrations linked to inflammation and potentially also cancer. However, little is known about iron overload in welders. Within this study, we assessed the iron status and quantitative associations between airborne iron, body iron stores, and iron homeostasis in 192 welders not wearing dust masks. Welders were equipped with personal samplers in order to determine the levels of respirable iron in the breathing zone during a working shift. SF, prohepcidin and other markers of iron status were determined in blood samples collected after shift. The impact of iron exposure and other factors on SF and prohepcidin were estimated using multiple regression models. Our results indicate that respirable iron is a significant predictor of SF and prohepcidin. Concentrations of SF varied according to the welding technique and respiratory protection used, with a median of 103 μg l(-1) in tungsten inert gas welders, 125 μg l(-1) in those wearing air-purifying respirators, and 161 μg l(-1) in other welders. Compared to welders with low iron stores (SF < 25 μg l(-1)), those with excess body iron (SF ≥ 400 μg l(-1)) worked under a higher median concentration of airborne iron (60 μg m(-3) versus 148 μg m(-3)). Even though air concentrations of respirable iron and manganese were highly correlated, and low iron stores have been reported to increase manganese uptake in the gastrointestinal tract, no correlation was seen between SF and manganese in blood. In conclusion, monitoring SF may be a reasonable method for health surveillance of welders. Respiratory protection with air-purifying respirators can decrease iron exposure and avoid chronically higher SF in welders working with high-emission technologies. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron.
Lipinski, B; Pretorius, E
2012-07-01
Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.
The role of iron in the pathophysiology and treatment of chronic hepatitis C
Price, Leslie; Kowdley, Kris V
2009-01-01
Increased hepatic iron content may be observed in patients with chronic hepatitis C infection, and may contribute to disease severity. The presence of hemochromatosis gene mutations is associated with increased hepatic iron accumulation and may lead to accelerated disease progression. Hepatic iron depletion has been postulated to decrease the risk of hepatocellular carcinoma in patients with cirrhosis due to chronic hepatitis C. It is possible that iron depletion stabilizes or improves liver histology and slows disease progression in these individuals. The present article reviews the prevalence and risk factors for hepatic iron overload in chronic hepatitis C, with emphasis on the available data regarding the efficacy of iron depletion in the treatment of this common liver disease. PMID:20011735
Hereditary hemochromatosis, iron, hepcidin, and coronary heart disease.
Mascitelli, Luca; Goldstein, Mark R
2014-03-01
Mounting evidence suggests that a state of sustained iron depletion may exert a primary protective action against coronary heart disease. A persistent criticism of the iron hypothesis has been that atherosclerosis may not be a prominent feature of hereditary hemochromatosis. The essence of this criticism is that iron cannot be a significant factor in atherogenesis in those unaffected by inherited iron overload unless an increase in atherosclerosis is observed in hereditary hemochromatosis. However, the emerging details of the physiology of hepcidin, the key hormone in iron recycling, suggest a resolution of the apparent paradox of an important role for iron in atherogenesis in the possible absence of increased plaque burden in most types of hereditary hemochromatosis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kim, Il-Hwan; Moon, Joon-Ho; Lim, Sung-Nam; Sohn, Sang-Kyun; Kim, Hoon-Gu; Lee, Gyeong-Won; Kim, Yang-Soo; Lee, Ho-Sup; Kwon, Ki-Young; Kim, Sung-Hyun; Park, Kyung-Tae; Chung, Joo-Seop; Lee, Won-Sik; Lee, Sang-Min; Hyun, Myung-Soo; Kim, Hawk; Ryoo, Hun-Mo; Bae, Sung-Hwa; Joo, Young-Don
2015-07-01
Patients receiving red blood cell (RBC) transfusions are at risk of iron overload, which can cause significant organ damage and is an important cause of morbidity and mortality. This study was an open-label, single-arm, prospective clinical study to evaluate the efficacy and safety of deferasirox (DFX) in patients with aplastic anemia (AA), myelodysplastic syndrome (MDS), or acute myeloid leukemia (AML). Patients with serum ferritin levels of at least 1000 ng/mL and ongoing transfusion requirements were enrolled. DFX was administered for up to 1 year. A total of 100 patients were enrolled. Serum ferritin levels decreased significantly following treatment (from 2000 to 1650 ng/mL, p = 0.004). The median absolute reduction in serum ferritin levels was -65 ng/mL in AA (p = 0.037), -647 ng/mL in lower-risk MDS (MDS-LR; p = 0.007), and -552 ng/mL in higher-risk MDS (MDS-HR)/AML (p = 0.482). Mean labile plasma iron (LPI) levels decreased from 0.24 μmol/L at baseline to 0.03 μmol/L at 1 year in all patients (p = 0.036). The mean LPI reduction in each group was -0.17 μmol/L in AA, -0.21 μmol/L in MDS-LR, and -0.30 μmol/L in MDS-HR/AML. Gastrointestinal disorders were commonly observed among groups (16.0%). DFX was temporarily skipped for adverse events in seven patients (7.0%) and was permanently discontinued in 11 patients (11.0%). DFX reduced serum ferritin and LPI levels in patients with transfusional iron overload. Despite the relatively high percentage of gastrointestinal side effects, DFX was tolerable in all subgroups. © 2015 AABB.
Aydinok, Yesim; Kattamis, Antonis; Cappellini, M Domenica; El-Beshlawy, Amal; Origa, Raffaella; Elalfy, Mohsen; Kilinç, Yurdanur; Perrotta, Silverio; Karakas, Zeynep; Viprakasit, Vip; Habr, Dany; Constantinovici, Niculae; Shen, Junwu; Porter, John B
2015-06-18
Deferasirox (DFX) monotherapy is effective for reducing myocardial and liver iron concentrations (LIC), although some patients may require intensive chelation for a limited duration. HYPERION, an open-label single-arm prospective phase 2 study, evaluated combination DFX-deferoxamine (DFO) in patients with severe transfusional myocardial siderosis (myocardial [m] T2* 5-<10 ms; left ventricular ejection fraction [LVEF] ≥56%) followed by optional switch to DFX monotherapy when achieving mT2* >10 ms. Mean dose was 30.5 mg/kg per day DFX and 36.3 mg/kg per day DFO on a 5-day regimen. Geometric mean mT2* ratios (Gmeanmonth12/24/Gmeanbaseline) were 1.09 and 1.30, respectively, increasing from 7.2 ms at baseline (n = 60) to 7.7 ms at 12 (n = 52) and 9.5 ms at 24 months (n = 36). Patients (17 of 60; 28.3%) achieved mT2* ≥10 ms and ≥10% increase from baseline at month 24; 15 switched to monotherapy during the study based on favorable mT2*. LIC decreased substantially from a baseline of 33.4 to 12.8 mg Fe/g dry weight at month 24 (-52%). LVEF remained stable with no new arrhythmias/cardiac failure. Five patients discontinued with mT2* <5 ms and 1 died (suspected central nervous system infection). Safety was consistent with established monotherapies. Results show clinically meaningful improvements in mT2* in about one-third of patients remaining on treatment at month 24, alongside rapid decreases in LIC in this heavily iron-overloaded, difficult-to-treat population. Combination therapy may be useful when rapid LIC reduction is required, regardless of myocardial iron overload. This trial was registered at www.clinicaltrials.gov as #NCT01254227. © 2015 by The American Society of Hematology.
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Morgan, Jennifer L. L.; Quiriarte, Heather A.; Sams, Clarence F.; Smith, Scott M.; Zwart, Sara R.
2012-01-01
Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation. Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease. This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both. Specific immune measures consisted of: (1) peripheral leukocyte distribution, (2) plasma cytokine levels and (3) cytokine production profiles following whole blood mitogenic stimulation
Chen, Jiqiu; Petrov, Artiom; Yaniz-Galende, Elisa; Liang, Lifan; de Haas, Hans J; Narula, Jagat; Hajjar, Roger J
2013-03-01
This study investigates the impact of pressure overload on vascular changes after myocardial infarction (MI) in rats. To evaluate the effect of pressure overload, MI was induced in three groups: 1) left coronary artery ligation for 1 mo (MI-1m), 2) ischemia 30 min/reperfusion for 1 mo (I/R-1m), and 3) ischemia-reperfusion (I/R) was performed after pressure overload induced by aortic banding for 2 mo; 1 mo post-I/R, aortic constriction was released (Ab+I/R+DeAb). Heart function was assessed by echocardiography and in vivo hemodynamics. Resin casting and three-dimensional imaging with microcomputed tomography were used to characterize changes in coronary vasculature. TTC (triphenyltetrazohum chloride) staining and Masson's Trichrome were conducted in parallel experiments. In normal rats, MI induced by I/R and permanent occlusion was transmural or subendocardial. Occluded arterial branches vanished in MI-1m rats. A short residual tail was retained, distal to the occluded site in the ischemic area in I/R-1m hearts. Vascular pathological changes in transmural MI mostly occurred in ischemic areas and remote vasculature remained normal. In pressure overloaded rats, I/R injury induced a sub-MI in which ischemia was transmural, but myocardium in the involved area had survived. The ischemic arterial branches were preserved even though the capillaries were significantly diminished and the pathological changes were extended to remote areas, characterized by fibrosis, atrial thrombus, and pulmonary edema in the Ab+I/R+DeAb group. Pressure overload could increase vascular tolerance to I/R injury, but also trigger severe global ventricular fibrosis and results in atrial thrombus and pulmonary edema.
[Current management of thalassemia intermedia].
Thuret, I
2014-11-01
Thalassemia intermedia is a clinical entity where anemia is mild or moderate, requiring no or occasional transfusion. Non-transfusion-dependent thalassemia encompasses 3 main clinical forms: beta-thalassemia intermedia, hemoglobin E/beta-thalassemia and alpha-thalassemia intermedia (HbH disease). Clinical severity of thalassemia intermedia increases with age, with more severe anemia and more frequent complications such as extramedullary hematopoiesis and iron overload mainly related to increased intestinal absorption. Numerous adverse events including pulmonary hypertension and hypercoagulability have been associated with splenectomy, often performed in thalassemia intermedia patients. The potential preventive benefit of transfusion and chelation therapies on the occurrence of numerous complications supports the strategy of an earlier therapeutic intervention. Increasing knowledge about pathophysiological mechanisms involved in thalassemia erythropoiesis and related iron overload is currently translating in novel therapeutic approaches. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Shizukuda, Yukitaka; Bolan, Charles D; Tripodi, Dorothy J; Sachdev, Vandana; Nguyen, Tammy T; Botello, Gilberto; Yau, Yu-Ying; Sidenko, Stanislav; Inez, Ernst; Ali, Mir I; Waclawiw, Myron A; Leitman, Susan F; Rosing, Douglas R
2009-11-01
Little is known about the early mechanisms mediating left ventricular (LV) diastolic dysfunction in patients with hereditary hemochromatosis (HH). However, the increased oxidative stress related to iron overload may be involved in this process, and strain rate (SR), a sensitive echocardiography-derived measure of diastolic function, may detect such changes. we evaluated the relationship between left ventricular diastolic function measured with tissue Doppler SR and oxidative stress in asymptomatic HH subjects and control normal subjects. Ninety-four consecutive visits of 43 HH subjects, age 30-74 (50 +/- 10, mean +/- SD), and 37 consecutive visits of 21 normal volunteers, age 30-63 (48 +/- 8), were evaluated over a 3-year period. SR was obtained from the basal septum in apical four-chamber views. All patients had confirmed C282Y homozygosity, a documented history of iron overload, and were New York Heart Association functional class I. Normal volunteers lacked HFE gene mutations causing HH. In the HH subjects, the SR demonstrated moderate but significant correlations with biomarkers of oxidative stress; however, no correlations were noted in normal subjects. The biomarkers of iron overload per se did not show significant correlations with the SR. Although our study was limited by the relatively small subject number, these results suggest that a possible role of oxidative stress to affect LV diastolic function in asymptomatic HH subjects and SR imaging may be a sensitive measure to detect that effect.
Delea, Thomas E; Sofrygin, Oleg; Thomas, Simu K; Baladi, Jean-Francois; Phatak, Pradyumna D; Coates, Thomas D
2007-01-01
Deferasirox is a recently approved once-daily oral iron chelator that has been shown to reduce liver iron concentrations and serum ferritin levels to a similar extent as infusional deferoxamine. To determine the cost effectiveness of deferasirox versus deferoxamine in patients with beta-thalassaemia major from a US healthcare system perspective. A Markov model was used to estimate the total additional lifetime costs and QALYs gained with deferasirox versus deferoxamine in patients with beta-thalassaemia major and chronic iron overload from blood transfusions. Patients were assumed to be 3 years of age at initiation of chelation therapy and to receive prescribed dosages of deferasirox and deferoxamine that have been shown to be similarly effective in such patients. Compliance with chelation therapy and probabilities of iron overload-related cardiac disease and death by degree of compliance were estimated using data from published studies. Costs ($US, year 2006 values) of deferoxamine administration and iron overload-related cardiac disease were based on analyses of health insurance claims of transfusion-dependent thalassaemia patients. Utilities were based on a study of patient preferences for oral versus infusional chelation therapy, as well as published literature. Probabilistic and deterministic sensitivity analyses were employed to examine the robustness of the results to key assumptions. Deferasirox resulted in a gain of 4.5 QALYs per patient at an additional expected lifetime cost of $US126,018 per patient; the cost per QALY gained was $US28,255. The cost effectiveness of deferasirox versus deferoxamine was sensitive to the estimated costs of deferoxamine administration and the quality-of-life benefit associated with oral versus infusional therapy. Cost effectiveness was also relatively sensitive to the equivalent daily dose of deferasirox, and the unit costs of deferasirox and deferoxamine, and was more favourable in younger patients. Results of this analysis of the cost effectiveness of oral deferasirox versus infusional deferoxamine suggest that deferasirox is a cost effective iron chelator from a US healthcare perspective.
Phlebotomy improves histology in chronic hepatitis C males with mild iron overload
Sartori, Massimo; Andorno, Silvano; Rossini, Angelo; Boldorini, Renzo; Bozzola, Cristina; Carmagnola, Stefania; Piano, Mario Del; Albano, Emanuele
2010-01-01
AIM: To investigate the usefulness of mild iron depletion and the factors predictive for histological improvement following phlebotomy in Caucasians with chronic hepatitis C (CHC). METHODS: We investigated 28 CHC Caucasians with persistently elevated serum aminotransferase levels and non responders to, or unsuitable for, antiviral therapy who underwent mild iron depletion (ferritin ≤ 70 ng/mL) by long-term phlebotomy. Histological improvement, as defined by at least one point reduction in the staging score or, in case of unchanged stage, as at least two points reduction in the grading score (Knodell), was evaluated in two subsequent liver biopsies (before and at the end of phlebotomy, 48 ± 16 mo apart). RESULTS: Phlebotomy showed an excellent safety profile. Histological improvement occurred in 12/28 phlebotomized patients. Only males responded to phlebotomy. At univariate logistic analysis alcohol intake (P = 0.034), high histological grading (P = 0.01) and high hepatic iron concentration (HIC) (P = 0.04) before treatment were associated with histological improvement. Multivariate logistic analysis showed that in males high HIC was the only predictor of histological improvement following phlebotomy (OR = 1.41, 95% CI: 1.03-1.94, P = 0.031). Accordingly, 12 out of 17 (70%) patients with HIC ≥ 20 μmol/g showed histological improvements at the second biopsy. CONCLUSION: Male CHC Caucasian non-responders to antiviral therapy with low-grade iron overload can benefit from mild iron depletion by long-term phlebotomy. PMID:20128028
Neufeld, Ellis J; Galanello, Renzo; Viprakasit, Vip; Aydinok, Yesim; Piga, Antonio; Harmatz, Paul; Forni, Gian Luca; Shah, Farrukh T; Grace, Rachael F; Porter, John B; Wood, John C; Peppe, Jennifer; Jones, Amber; Rienhoff, Hugh Young
2012-04-05
This was a 24-week, multicenter phase-2 study designed to assess safety, tolerability, and pharmacodynamics of FBS0701, a novel oral chelator, in adults with transfusional iron overload. Fifty-one patients, stratified by transfusional iron intake, were randomized to FBS0701 at either 14.5 or 29 mg/kg/d (16 and 32 mg/kg/d salt form). FBS0701 was generally well tolerated at both doses. Forty-nine patients (96%) completed the study. There were no drug-related serious adverse events. No adverse events (AEs) showed dose-dependency in frequency or severity. Treatment-related nausea, vomiting, abdominal pain, and diarrhea were each noted in < 5% of patients. Mean serum creatinine did not change significantly from Baseline or between dose groups. Transaminases wer increased in 8 (16%), three of whom acquired HCV on-study from a single blood bank while five had an abnormal baseline ALT. The 24 week mean change in liver iron concentration (ΔLIC) at 14.5 mg/kg/d was +3.1 mg/g (dw); 29% achieved a decrease in LIC. Mean ΔLIC at 29 mg/kg/d was -0.3 mg/g (dw); 44% achieved a decrease in LIC (P < .03 for ΔLIC between doses). The safety and tolerability profile at therapeutic doses compare favorably to other oral chelators.
Iron overload and HFE gene mutations in Czech patients with chronic liver diseases.
Dostalikova-Cimburova, Marketa; Kratka, Karolina; Stransky, Jaroslav; Putova, Ivana; Cieslarova, Blanka; Horak, Jiri
2012-01-01
The aim of the study was to identify the prevalence of HFE gene mutations in Czech patients with chronic liver diseases and the influence of the mutations on iron status. The presence of HFE gene mutations (C282Y, H63D, and S65C) analyzed by the PCR-RFLP method, presence of cirrhosis, and serum iron indices were compared among 454 patients with different chronic liver diseases (51 with chronic hepatitis B, 122 with chronic hepatitis C, 218 with alcoholic liver disease, and 63 patients with hemochromatosis). Chronic liver diseases patients other than hemochromatics did not have an increased frequency of HFE gene mutations compared to controls. Although 33.3% of patients with hepatitis B, 43% of patients with hepatitis C, and 73.2% of patients with alcoholic liver disease had elevated transferrin saturation or serum ferritin levels, the presence of HFE gene mutations was not significantly associated with iron overload in these patients. Additionally, patients with cirrhosis did not have frequencies of HFE mutations different from those without cirrhosis. This study emphasizes the importance, not only of C282Y, but also of the H63D homozygous genetic constellation in Czech hemochromatosis patients. Our findings show that increased iron indices are common in chronic liver diseases but {\\it HFE} mutations do not play an important role in the pathogenesis of chronic hepatitis B, chronic hepatitis C, and alcoholic liver disease.
Astrocytes acquire resistance to iron-dependent oxidative stress upon proinflammatory activation
2013-01-01
Background Astrocytes respond to local insults within the brain and the spinal cord with important changes in their phenotype. This process, overall known as “activation”, is observed upon proinflammatory stimulation and leads astrocytes to acquire either a detrimental phenotype, thereby contributing to the neurodegenerative process, or a protective phenotype, thus supporting neuronal survival. Within the mechanisms responsible for inflammatory neurodegeneration, oxidative stress plays a major role and has recently been recognized to be heavily influenced by changes in cytosolic iron levels. In this work, we investigated how activation affects the competence of astrocytes to handle iron overload and the ensuing oxidative stress. Methods Cultures of pure cortical astrocytes were preincubated with proinflammatory cytokines (interleukin-1β and tumor necrosis factor α) or conditioned medium from lipopolysaccharide-activated microglia to promote activation and then exposed to a protocol of iron overload. Results We demonstrate that activated astrocytes display an efficient protection against iron-mediated oxidative stress and cell death. Based on this evidence, we performed a comprehensive biochemical and molecular analysis, including a transcriptomic approach, to identify the molecular basis of this resistance. Conclusions We propose the protective phenotype acquired after activation not to involve the most common astrocytic antioxidant pathway, based on the Nrf2 transcription factor, but to result from a complex change in the expression and activity of several genes involved in the control of cellular redox state. PMID:24160637
Schrag, Matthew; Mueller, Claudius; Oyoyo, Udochukwu; Kirsch, Wolff M.
2011-01-01
Dysfunctional homeostasis of transition metals is believed to play a role in the pathogenesis of Alzheimer’s disease (AD). Although questioned by some, brain copper, zinc, and particularly iron overload are widely accepted features of AD which have led to the hypothesis that oxidative stress generated from aberrant homeostasis of these transition metals might be a pathogenic mechanism behind AD. This meta-analysis compiled and critically assessed available quantitative data on brain iron, zinc and copper levels in AD patients compared to aged controls. The results were very heterogeneous. A series of heavily cited articles from one laboratory reported a large increase in iron in AD neocortex compared to age-matched controls (p<0.0001) while seven laboratories failed to reproduce these findings reporting no significant difference between the groups (p=0.76). A more than three-fold citation bias was found to favor outlier studies reporting increases in iron and this bias was particularly prominent among narrative review articles. Additionally, while zinc was not significantly changed in the neocortex (p=0.29), copper was significantly depleted in AD (p=0.0003). In light of these findings, it will be important to re-evaluate the hypothesis that transition metal overload accounts for oxidative injury noted in AD. PMID:21600264
Synthesis, characterization and electrochemistry studies of iron(III) complex with curcumin ligand.
Özbolat, Gülüzar; Yegani, Arash Alizadeh; Tuli, Abdullah
2018-05-11
Iron overload is a serious clinical condition for humans and is a key target in drug development. The aim of this study was to investigate the coordination of iron(III) ions with curcumin ligand that may be used in the treatment of iron overload. Iron(III) complex of curcumin was synthesized and structurally characterized in its solid and solution state by FT-IR, UV-Vis, elemental analysis, and magnetic susceptibility. Electrochemical behaviour of the ligand and the complexes were examined using cyclic voltammetry. The cytotoxic activities of the ligand and the iron(III) complex were evaluated by the MTT assay. Curcumin reacted with iron in high concentrations at physiological pH at room temperature. Subsequently, a brown-red complex was formed. Data regarding magnetic susceptibility showed that the complexes with a 1:2 (metal/ligand) mole ratio had octahedral geometry. The complex showed higher anti-oxidant effect towards the cell line ECV304 at IC 50 values of 4.83 compared to curcumin. The complex exhibited very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand. The potentials for redox were calculated as 0.180 V and 0.350 V, respectively. The electrochemistry studies showed that Fe 3+ /Fe 2+ couple redox process occurred at low potentials. This value was within the range of compounds that are expected to show superoxide dismutase activity. This finding indicates that the iron complex is capable of removing free radicals. The observed cytotoxicity could be pursued to obtain a potential drug. Further studies investigating the use of curcumin for this purpose are needed. © 2018 John Wiley & Sons Australia, Ltd.
Iron overload cardiomyopathy: from diagnosis to management.
Díez-López, Carles; Comín-Colet, Josep; González-Costello, José
2018-05-01
Iron overload cardiomyopathy (IOC) is an important predictor of prognosis in a significant number of patients with hereditary hemochromatosis and hematologic diseases. Its prevalence is increasing because of improved treatment strategies, which significantly improve life expectancy. We will review diagnosis, treatment, and recent findings in the field. The development of preclinical translational disease models during the last years have helped our understanding of specific disease pathophysiological pathways that might eventually change the outcomes of these patients. IOC is an overlooked disease because of the progressive silent disease pattern and the lack of physicians' expertise. It mainly affects patients with hemochromatosis and hematologic diseases and its prevalence is expected to increase with the improvement in life expectancy of hematologic disorders. Early diagnosis of IOC in patients at risk by means of biochemical parameters and cardiac imaging can lead to early treatment and improved prognosis. The mainstay of treatment of IOC is conventional heart failure treatment, combined with phlebotomies or iron chelation in the context of anemia. The development of preclinical models has provided a comprehensive look into specific pathophysiological pathways with potential treatment strategies that must be sustained by future randomized trials.
Hypersensitivity reaction with deferasirox
Sharma, Atul; Arora, Ekta; Singh, Harmanjit
2015-01-01
Thalassemias comprise a group of hereditary blood disorders. Thalassemia major presents with anemia within the first 2 years of life requiring frequent blood transfusions for sustaining life. Regular blood transfusions lead to iron overload-related complications. Prognosis of thalassemia has improved because of the availability of iron-chelating agents. Oral iron chelators are the mainstay of chelation therapy. Deferasirox is a new-generation oral iron chelator for once daily usage. We herein describe a patient of beta thalassemia major who developed an allergic manifestation in the form of erythematous pruritic skin rashes to the oral iron chelator deferasirox. This is a rare adverse reaction reported with deferasirox that led to a therapeutic dilemma in this particular case. PMID:25969661
[Role of melatonin in calcium overload-induced heart injury].
Kong, Lingheng; Wei, Ming; Sun, Na; Zhu, Juanxia; Su, Xingli
2017-06-28
To investigate the role of melatonin in calcium overload-induced heart injury. Methods: Thirty-two rats were divided into 4 groups: a control group (Control), a melatonin control group (Mel), a calcium overload group (CaP), and a calcium overload plus melatonin group (Mel+CaP). Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Triphenyltetrazolium chloride staining was used to measure the infarct size of myocardium. Lactate dehydrogenase (LDH) activity in the coronary flow was determined. The expressions of caspase-3 and cytochrome c were determined by Western blot. The pathological morphological changes in myocardial fiber were analyzed by HE staining. Results: Compared with the control group, calcium overload significantly induced an enlarged infarct size (P<0.01), accompanied by the disordered arrangement of myocardial fiber, up-regulation of cytochrome c and caspase-3 (P<0.01), and the increased activity of LDH (P<0.01). These effects were significantly attenuated by 10 μmol/L melatonin (P<0.01). Conclusion: Melatonin can alleviate calcium overload-induced heart injury.
Jenkins, Zandra A; Hagar, Ward; Bowlus, Christopher L; Johansson, Hans E; Harmatz, Paul; Vichinsky, Elliott P; Theil, Elizabeth C
2007-06-01
Hypertransfusional (>8 transfusions/year) iron in liver biopsies collected immediately after transfusions in beta-thalassemia and sickle cell disease correlated with increased expression (RNA) for iron regulatory proteins 1 and 2 (3-, 9- to 11-fold) and hepcidin RNA: (5- to 8-fold) (each p <.01), while ferritin H and L RNA remained constant. A different H:L ferritin ratio in RNA (0.03) and protein (0.2-0.6) indicated disease-specific trends and suggests novel post-transcriptional effects. Increased iron regulatory proteins could stabilize the transferrin receptor mRNA and, thereby, iron uptake. Increased hepcidin, after correction of anemia by transfusion, likely reflects excess liver iron. Finally, the absence of a detectable change in ferritin mRNA indicates insufficient oxidative stress to significantly activate MARE/ARE promoters.
Effect of Militarily-Relevant Metals on Muscle Wound Repair
2010-12-01
patients with myelodysplastic syndromes and transfusional overload . Leukemia Res 2007; 31 (Suppl 3): S10-S15. 16. Graeme KA, Pollack CV Jr: Heavy...lead, and antimony inhibit wound repair. Soluble forms of iron , as well as insoluble forms of cobalt, also inhibited repair. In many cases, repair...antimony, tungsten, nickel, cobalt, iron , tin, and copper. Aim 3: Assess the effect of pharmacological intervention on the mitigation of
Lubiatowski, Przemysław; Kaczmarek, Piotr K; Ślęzak, Marta; Długosz, Jan; Bręborowicz, Maciej; Dudziński, Witold; Romanowski, Leszek
2014-05-23
In throwing sports shoulder is exposed to enormous and often repetitive overloads. Some sports (contact sports) are also connected with direct trauma. We are thus dealing with traumatic injuries, overload and degenerative damage. The article discusses the most frequent injuries of the shoulder characteristic for throwing sports. These are mainly disorders of arm rotation, internal impingement, lesion of the labrum (SLAP) and rotator cuff tears (PASTA).
Quantitative Susceptibility Mapping of the Midbrain in Parkinson’s Disease
Du, Guangwei; Liu, Tian; Lewis, Mechelle M.; Kong, Lan; Wang, Yi; Connor, James; Mailman, Richard B.; Huang, Xuemei
2017-01-01
Background Parkinson’s disease (PD) is marked pathologically by dopamine neuron loss and iron overload in the substantia nigra pars compacta. Midbrain iron content is reported to be increased in PD based on magnetic resonance imaging (MRI) R2* changes. Because quantitative susceptibility mapping is a novel MRI approach to measure iron content, we compared it with R2* for assessing midbrain changes in PD. Methods Quantitative susceptibility mapping and R2* maps were obtained from 47 PD patients and 47 healthy controls. Midbrain susceptibility and R2* values were analyzed by using both voxel-based and region-of-interest approaches in normalized space, and analyzed along with clinical data, including disease duration, Unified Parkinson’s Disease Rating Scale (UPDRS) I, II, and III sub-scores, and levodopa-equivalent daily dosage. All studies were done while PD patients were “on drug.” Results Compared with controls, PD patients showed significantly increased susceptibility values in both right (cluster size = 106 mm3) and left (164 mm3) midbrain, located ventrolateral to the red nucleus that corresponded to the substantia nigra pars compacta. Susceptibility values in this region were correlated significantly with disease duration, UPDRS II, and levodopa-equivalent daily dosage. Conversely, R2* was increased significantly only in a much smaller region (62 mm3) of the left lateral substantia nigra pars compacta and was not significantly correlated with clinical parameters. Conclusion The use of quantitative susceptibility mapping demonstrated marked nigral changes that correlated with clinical PD status more sensitively than R2*. These data suggest that quantitative susceptibility mapping may be a superior imaging biomarker to R2* for estimating brain iron levels in PD. PMID:26362242
Shi, Jun; Chang, Hong; Zhang, Li; Shao, Yinqi; Nie, Neng; Zhang, Jing; Huang, Jinbo; Zhang, Li; Tang, Xudong; Quan, Richeng; Zheng, Chunmei; Xiao, Haiyan; Hu, Dengming; Hu, Lingyan; Liu, Feng; Zhou, Yongming; Zheng, Yizhou; Zhang, Fengkui
2016-01-01
To explore the efficacy and safety of deferasirox in aplastic anemia (AA)patients with iron overload. A single arm, multi- center, prospective, open- label study was conducted to evaluate absolute change in serum ferritin (SF)from baseline to 12 months of deferasirox administration, initially at a dose of 20 mg·kg(-1)·d(-1), and the safety in 64 AA patients with iron overload. All patients started their deferasirox treatment with a daily dose of 20 mg · kg(-1) ·d(-1). The mean actual dose was (18.6±3.60) mg · kg(-1)·d(-1). The median SF decreased from 4 924 (2 718- 6 765)μg/L at baseline (n=64) to 3 036 (1 474- 5 551)μg/L at 12 months (n=23) with the percentage change from baseline as 38%. A median SF decrease of 651 (126-2 125)μg/L was observed at the end of study in 23 patients who completed 12 months' treatment, the median SF level decreased by 1 167(580-4 806)μg/L [5 271(3 420-8 278)μg/L at baseline; 3 036(1 474-5 551)μg/L after 12 months' treatment; the percentage change from baseline as 42% ] after 12 months of deferasirox treatment. The most common adverse events (AEs) were increased serum creatinine levels (40.98%), gastrointestinal discomfort (40.98%), elevated liver transaminase (ALT: 21.31%; AST: 13.11%)and proteinuria (24.59%). The increased serum creatinine levels were reversible and non-progressive. Of 38 patients with concomitant cyclosporine use, 12(31.8%)patients had two consecutive values >ULN, 10(26.3%)patients had two consecutive values >1.33 baseline values, but only 1(2.6%)patient's serum creatinine increased more than 1.33 baseline values and exceeded ULN. For both AST and ALT, no patients experienced two post- baseline values >5 ×ULN or >10 × ULN during the whole study. In AA patients with low baseline PLT count (less than 50 × 10(9)/L), there was no decrease for median PLT level during 12 months' treatment period. AA patients with iron overload could achieve satisfactory efficacy of iron chelation by deferasirox treatment. The drug was well tolerated with a clinically manageable safety profile and no major adverse events.
Quantitating Iron in Serum Ferritin by Use of ICP-MS
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Gillman, Patricia L.
2003-01-01
A laboratory method has been devised to enable measurement of the concentration of iron bound in ferritin from small samples of blood (serum). Derived partly from a prior method that depends on large samples of blood, this method involves the use of an inductively-coupled-plasma mass spectrometer (ICP-MS). Ferritin is a complex of iron with the protein apoferritin. Heretofore, measurements of the concentration of serum ferritin (as distinguished from direct measurements of the concentration of iron in serum ferritin) have been used to assess iron stores in humans. Low levels of serum ferritin could indicate the first stage of iron depletion. High levels of serum ferritin could indicate high levels of iron (for example, in connection with hereditary hemochromatosis an iron-overload illness that is characterized by progressive organ damage and can be fatal). However, the picture is complicated: A high level of serum ferritin could also indicate stress and/or inflammation instead of (or in addition to) iron overload, and low serum iron concentration could indicate inflammation rather than iron deficiency. Only when concentrations of both serum iron and serum ferritin increase and decrease together can the patient s iron status be assessed accurately. Hence, in enabling accurate measurement of the iron content of serum ferritin, the present method can improve the diagnosis of the patient s iron status. The prior method of measuring the concentration of iron involves the use of an atomic-absorption spectrophotometer with a graphite furnace. The present method incorporates a modified version of the sample- preparation process of the prior method. First, ferritin is isolated; more specifically, it is immobilized by immunoprecipitation with rabbit antihuman polyclonal antibody bound to agarose beads. The ferritin is then separated from other iron-containing proteins and free iron by a series of centrifugation and wash steps. Next, the ferritin is digested with nitric acid to extract its iron content. Finally, a micronebulizer is used to inject the sample of the product of the digestion into the ICPMS for analysis of its iron content. The sensitivity of the ICP-MS is high enough to enable it to characterize samples smaller than those required in the prior method (samples can be 0.15 to 0.60 mL).
Rheumatological complications of beta-thalassaemia: an overview.
Noureldine, Mohammad Hassan A; Taher, Ali T; Haydar, Ali A; Berjawi, Ahmad; Khamashta, Munther A; Uthman, Imad
2018-01-01
Beta-thalassaemia, an autosomal recessive haemoglobinopathy, ranks among the most frequent monogenetic diseases globally. The severe form of the disease, beta-thalassaemia major, is accompanied by progressive involvement of multiple organ systems as a result of the disease pathophysiology as well as iron overload from blood transfusions on a regular basis. Some of the manifestations might also be caused by medications used to manage iron overload. The purpose of this review is to highlight the rheumatological complications of beta-thalassaemia, which include musculoskeletal manifestations, such as arthritis and arthropathies, joint effusions, osteoporosis, bone fractures and myalgias, in addition to CTDs, such as pseudoxanthoma elasticum. Rheumatologists are strongly encouraged to take part in a multidisciplinary approach to the management of this debilitating disease. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pathophysiology of Hereditary Hemochromatosis
Fleming, Robert E.; Britton, Robert S.; Waheed, Abdul; Sly, William S.; Bacon, Bruce R.
2008-01-01
Hereditary hemochromatosis (HH) encompasses several inherited disorders of iron homeostasis characterized by increased gastrointestinal iron absorption and tissue iron deposition. The most common form of this disorder is HFE-related HH, nearly always caused by homozygosity for the C282Y mutation. A substantial proportion of C282Y homozygotes do not develop clinically significant iron overload, suggesting roles for environmental factors and modifier genes in determining the phenotype. Recent studies have demonstrated that the pathogenesis of nearly all forms of HH involves inappropriately decreased expression of the iron-regulatory hormone hepcidin. Hepcidin serves to decrease the export of iron from reticuloendothelial cells and absorptive enterocytes. Thus, HH patients demonstrate increased iron release from these cell types, elevated circulating iron, and iron deposition in vulnerable tissues. The mechanism by which HFE influences hepcidin expression is an area of current investigation and may offer insights into the phenotypic variability observed in persons with mutations in HFE. PMID:16315135
Siderophore-mediated iron acquisition mechanisms in Vibrio vulnificus biotype 2.
Biosca, E G; Fouz, B; Alcaide, E; Amaro, C
1996-01-01
Vibrio vulnificus biotype 2 is a primary pathogen for eels and, as has recently been suggested, an opportunistic pathogen for humans. In this study we have investigated the ability of V. vulnificus biotype 2 to obtain iron by siderophore-mediated mechanisms and evaluated the importance of free iron in vibriosis. The virulence degree for eels was dependent on iron availability from host fluids, as was revealed by a reduction in the 50% lethal dose for iron-overloaded eels. This biotype produced both phenolate- and hydroxamate-type siderophores of an unknown nature and two new outer membrane proteins of around 84 and 72 kDa in response to iron starvation. No alterations in lipopolysaccharide patterns were detected in response to iron stress. Finally, our data suggest that V. vulnificus biotype 2 uses the hydroxamate-type siderophore for removal of iron from transferrin rather than relying on a receptor for this iron-binding protein. PMID:8975620
Iron overload prevents oxidative damage to rat brain after chlorpromazine administration.
Piloni, Natacha E; Caro, Andres A; Puntarulo, Susana
2018-05-15
The hypothesis tested is that Fe administration leads to a response in rat brain modulating the effects of later oxidative challenges such as chlorpromazine (CPZ) administration. Either a single dose (acute Fe overload) or 6 doses every second day (sub-chronic Fe overload) of 500 or 50 mg Fe-dextran/kg, respectively, were injected intraperitoneally (ip) to rats. A single dose of 10 mg CPZ/kg was injected ip 8 h after Fe treatment. DNA integrity was evaluated by quantitative PCR, lipid radical (LR · ) generation rate by electron paramagnetic resonance (EPR), and catalase (CAT) activity by UV spectrophotometry in isolated brains. The maximum increase in total Fe brain was detected after 6 or 2 h in the acute and sub-chronic Fe overload model, respectively. Mitochondrial and nuclear DNA integrity decreased after acute Fe overload at the time of maximal Fe content; the decrease in DNA integrity was lower after sub-chronic than after acute Fe overload. CPZ administration increased LR · generation rate in control rat brain after 1 and 2 h; however, CPZ administration after acute or sub-chronic Fe overload did not affect LR · generation rate. CPZ treatment did not affect CAT activity after 1-4 h neither in control rats nor in acute Fe-overloaded rats. However, CPZ administration to rats treated sub-chronically with Fe showed increased brain CAT activity after 2 or 4 h, as compared to control values. Fe supplementation prevented brain damage in both acute and sub-chronic models of Fe overload by selectively activating antioxidant pathways.
NASA Astrophysics Data System (ADS)
Strbak, Oliver; Balejcikova, Lucia; Baciak, Ladislav; Kovac, Jozef; Masarova-Kozelova, Marta; Krafcik, Andrej; Dobrota, Dusan; Kopcansky, Peter
2017-09-01
Various pathological processes including neurodegenerative disorders are associated with the accumulation of iron, while it is believed that a precursor of iron accumulation is ferritin. Physiological ferritin is due to low relaxivity, which results in only weak detection by magnetic resonance imaging (MRI) techniques. On the other hand, pathological ferritin is associated with disrupted iron homeostasis and structural changes in the mineral core, and should increase the hypointensive artefacts in MRI. On the basis of recent findings in respect to the pathological ferritin structure, we prepared the magnetoferritin particles as a possible pathological ferritin model system. The particles were characterised with dynamic light scattering, as well as with superconducting quantum interference device measurements. With the help of low-field (0.2 T) and high-field (4.7 T) MRI standard T 2-weighted protocols we found that it is possible to clearly distinguish between native ferritin as a physiological model system, and magnetoferritin as a pathological model system. Surprisingly, the T 2-weighted short TI inversion recovery protocol at low-field system showed the optimum contrast differentiation. Such findings are highly promising for exploiting the use of iron accumulation as a noninvasive diagnostics tool of pathological processes, where the magnetoferritin particles could be utilised as MRI iron quantification calibration samples.