Shrivastava, Amulya Nidhi; Aperia, Anita; Melki, Ronald; Triller, Antoine
2017-07-05
Several neurodegenerative disorders, such as Alzheimer's and Parkinson's disease, are characterized by prominent loss of synapses and neurons associated with the presence of abnormally structured or misfolded protein assemblies. Cell-to-cell transfer of misfolded proteins has been proposed for the intra-cerebral propagation of these diseases. When released, misfolded proteins diffuse in the 3D extracellular space before binding to the plasma membrane of neighboring cells, where they diffuse on a 2D plane. This reduction in diffusion dimension and the cell surface molecular crowding promote deleterious interactions with native membrane proteins, favoring clustering and further aggregation of misfolded protein assemblies. These processes open up new avenues for therapeutics development targeting the initial interactions of deleterious proteins with the plasma membrane or the subsequent pathological signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
Calcium accelerates SNARE-mediated lipid mixing through modulating α-synuclein membrane interaction.
Zhang, Zeting; Jiang, Xin; Xu, Danrui; Zheng, Wenwen; Liu, Maili; Li, Conggang
2018-04-04
α-Synuclein is involved in Parkinson's disease, and its interaction with cell membrane is vital to its pathological and physiological functions. We have shown that Ca 2+ can regulate α-synuclein membrane interaction, but the physiological role of Ca 2+ in modulating α-synuclein membrane interaction is still unexplored. Based on the previous findings that α-synuclein inhibits membrane fusion and its inhibitory effect is highly related to its membrane binding, here we employed solution state Nuclear Magnetic Resonance (NMR) spectroscopy and the ensemble fluorescence fusion assay to show that Ca 2+ can modulate the inhibitory effect of α-synuclein on SNARE-mediated membrane fusion through disrupting α-synuclein membrane interaction, resulting in acceleration of SNARE-mediated membrane fusion. These results suggest a modulatory effect of Ca 2+ on membrane mediated normal function of α-synuclein, which of importance for the study of the Parkinson's disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Amyloid and membrane complexity: The toxic interplay revealed by AFM.
Canale, Claudio; Oropesa-Nuñez, Reinier; Diaspro, Alberto; Dante, Silvia
2018-01-01
Lipid membranes play a fundamental role in the pathological development of protein misfolding diseases. Several pieces of evidence suggest that the lipid membrane could act as a catalytic surface for protein aggregation. Furthermore, a leading theory indicates the interaction between the cell membrane and misfolded oligomer species as the responsible for cytotoxicity, hence, for neurodegeneration in disorders such as Alzheimer's and Parkinson's disease. The definition of the mechanisms that drive the interaction between pathological protein aggregates and plasma membrane is fundamental for the development of effective therapies for a large class of diseases. Atomic force microscopy (AFM) has been employed to study how amyloid aggregates affect the cell physiological properties. Considerable efforts were spent to characterize the interaction with model systems, i.e., planar supported lipid bilayers, but some works also addressed the problem directly on living cells. Here, an overview of the main works involving the use of the AFM on both model system and living cells will be provided. Different kind of approaches will be presented, as well as the main results derived from the AFM analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Connelly, Laura; Arce, Fernando Teran; Jang, Hyunbum; Capone, Ricardo; Kotler, Samuel A.; Ramachandran, Srinivasan; Kagan, Bruce L.; Nussinov, Ruth; Lal, Ratnesh
2012-01-01
Alzheimer’s disease (AD) is a protein misfolding disease characterized by a build-up of β-amyloid (Aβ) peptide as senile plaques, uncontrolled neurodegeneration, and memory loss. AD pathology is linked to the destabilization of cellular ionic homeostasis and involves Aβ peptide-plasma membrane interactions. In principle, there are two possible ways through which disturbance of the ionic homeostasis can take place: directly, where the Aβ peptide either inserts into the membrane and creates ion-conductive pores or destabilizes the membrane organization; or, indirectly, where the Aβ peptide interacts with existing cell membrane receptors. To distinguish between these two possible types of Aβ-membrane interactions, we took advantage of the biochemical tenet that ligand-receptor interactions are stereospecific; L-amino acid peptides, but not their D-counterparts, bind to cell membrane receptors. However, with respect to the ion channel-mediated mechanism, like L-amino acids, D-amino acid peptides will also form ion channel-like structures. Using atomic force microscopy (AFM) we imaged the structures of both D- and L-enantiomers of the full length Aβ1-42 when reconstituted in lipid bilayers. AFM imaging shows that both L- and D-Aβ isomers form similar channel-like structures. Molecular dynamics (MD) simulations support the AFM imaged 3D structures. Earlier we have shown that D-Aβ1-42 channels conduct ions similarly to their L-counter parts. Taken together, our results support the direct mechanism of Aβ ion channel-mediated destabilization of ionic homeostasis rather than the indirect mechanism through Aβ interaction with membrane receptors. PMID:22217000
The pathological prion protein forms ionic conductance in lipid bilayer.
Paulis, Daniele; Maras, Bruno; Schininà, M Eugenia; di Francesco, Laura; Principe, Serena; Galeno, Roberta; Abdel-Haq, Hanin; Cardone, Franco; Florio, Tullio; Pocchiari, Maurizio; Mazzanti, Michele
2011-08-01
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative pathologies characterized by the accumulation of amyloid fibrils mainly composed of the pathological isoform of the prion protein (PrP(TSE)). PrP(TSE) pre-amyloid fibrils are supposed to induce neurodegenerative lesions possibly through the alteration of membrane permeability. The effect of PrP(TSE) on cellular membranes has been modeled in vitro by synthetic peptides that are, however, only partially representative of PrP(TSE) isoforms found in vivo. In the present work we show that a synthetic membrane exposed to PrP27-30 extracted from TSE-infected hamster brains changes its permeability because of the formation of molecular pores that alter the conductance of the synthetic lipid bilayer. Synthetic membrane challenged with the recombinant prion peptide PrP90-231 shows a much lower conductance. Elevation of calcium ion concentration not only increases the current amplitude due to the action of both PrP27-30 and PrP90-231 on the membrane, but also amplifies the interaction of PrP90-231 with the lipid bilayer. Copyright © 2011 Elsevier B.V. All rights reserved.
Signal Diversity of Receptor for Advanced Glycation End Products.
Sakaguchi, Masakiyo; Kinoshita, Rie; Putranto, Endy Widya; Ruma, I Made Winarsa; Sumardika, I Wayan; Youyi, Chen; Tomonobu, Naoko; Yamamoto, Ken-Ichi; Murata, Hitoshi
2017-12-01
The receptor for advanced glycation end products (RAGE) is involved in inflammatory pathogenesis. It functions as a receptor to multiple ligands such as AGEs, HMGB1 and S100 proteins, activating multiple intracellular signaling pathways with each ligand binding. The molecular events by which ligand-activated RAGE controls diverse signaling are not well understood, but some progress was made recently. Accumulating evidence revealed that RAGE has multiple binding partners within the cytoplasm and on the plasma membrane. It was first pointed out in 2008 that RAGE's cytoplasmic tail is able to recruit Diaphanous-1 (Dia-1), resulting in the acquisition of increased cellular motility through Rac1/Cdc42 activation. We also observed that within the cytosol, RAGE's cytoplasmic tail behaves similarly to a Toll-like receptor (TLR4)-TIR domain, interacting with TIRAP and MyD88 adaptor molecules that in turn activate multiple downstream signals. Subsequent studies demonstrated the presence of an alternative adaptor molecule, DAP10, on the plasma membrane. The coupling of RAGE with DAP10 is critical for enhancing the RAGE-mediated survival signal. Interestingly, RAGE interaction on the membrane was not restricted to DAP10 alone. The chemotactic G-protein-coupled receptors (GPCRs) formyl peptide receptors1 and 2 (FPR1 and FPR2) also interacted with RAGE on the plasma membrane. Binding interaction between leukotriene B4 receptor 1 (BLT1) and RAGE was also demonstrated. All of the interactions affected the RAGE signal polarity. These findings indicate that functional interactions between RAGE and various molecules within the cytoplasmic area or on the membrane area coordinately regulate multiple ligand-mediated RAGE responses, leading to typical cellular phenotypes in several pathological settings. Here we review RAGE's signaling diversity, to contribute to the understanding of the elaborate functions of RAGE in physiological and pathological contexts.
The vascular basement membrane in the healthy and pathological brain.
Thomsen, Maj S; Routhe, Lisa J; Moos, Torben
2017-10-01
The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.
Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.
Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi
2014-10-01
All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the American Physiological Society.
Sherif, Mahmoud S; Mervat, Ali A; Eman, Aly M
2017-07-01
Cigarette smoking is a serious health problem throughout the world, with a complicated and not totally clear bio-effect. In this study, erythrocytes were obtained from healthy male volunteers aged 22 ± 2 years and, the possible effects of three cigarette smoking rates namely 10, 15 and 20 cigarette/day on erythrocytes membrane characteristics were examined by Fourier transform infrared spectroscopy (FTIR). The results of this study indicate many smoking-dependent variations on erythrocytes membrane without an obvious dose-response relationship. There was disruption in the acyl chain packing; changes in membrane order and phases as well as membrane proteins becoming more folded. These physico-chemical changes should have an impact on the function of erythrocytes and may explain the complex interaction of cigarette smoke mainstream with erythrocyte membrane and to some extent clarify the pathological processes associated with cigarette smoking.
Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.
Prada, Ilaria; Meldolesi, Jacopo
2016-08-09
Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.
Ameziane-Le Hir, Sarah; Paboeuf, Gilles; Tascon, Christophe; Hubert, Jean-François; Le Rumeur, Elisabeth; Vié, Véronique; Raguénès-Nicol, Céline
2016-07-26
Dystrophin (DYS) is a membrane skeleton protein whose mutations lead to lethal Duchenne muscular dystrophy or to the milder Becker muscular dystrophy (BMD). One third of BMD "in-frame" exon deletions are located in the region that codes for spectrin-like repeats R16 to R21. We focused on four prevalent mutated proteins deleted in this area (called RΔ45-47, RΔ45-48, RΔ45-49, and RΔ45-51 according to the deleted exon numbers), analyzing protein/membrane interactions. Two of the mutants, RΔ45-48 and RΔ45-51, led to mild pathologies and displayed a similar triple coiled-coil structure as the full-length DYS R16-21, whereas the two others, RΔ45-47 and RΔ45-49, induced more severe pathologies and showed "fractional" structures unrelated to the normal one. To explore lipid packing, small unilamellar liposomes (SUVs) and planar monolayers were used at various initial surface pressures. The dissociation constants determined by microscale thermophoresis (MST) were much higher for the full-length DYS R161-21 than for the mutants; thus the wild type protein has weaker SUV binding. Comparing surface pressures after protein adsorption and analysis of atomic force microscopy images of mixed protein/lipid monolayers revealed that the mutants insert more into the lipid monolayer than the wild type does. In fact, in both models every deletion mutant showed more interactions with membranes than the full-length protein did. This means that mutations in the R16-21 part of dystrophin disturb the protein's molecular behavior as it relates to membranes, regardless of whether the accompanying pathology is mild or severe.
Witschas, Katja; Jobin, Marie-Lise; Korkut, Dursun Nizam; Vladan, Maria Magdalena; Salgado, Gilmar; Lecomte, Sophie; Vlachova, Viktorie; Alves, Isabel D
2015-05-01
The transient receptor potential ankyrin 1 channel (TRPA1) belongs to the TRP cation channel superfamily that responds to a panoply of stimuli such as changes in temperature, calcium levels, reactive oxygen and nitrogen species and lipid mediators among others. The TRP superfamily has been implicated in diverse pathological states including neurodegenerative disorders, kidney diseases, inflammation, pain and cancer. The intracellular C-terminus is an important regulator of TRP channel activity. Studies with this and other TRP superfamily members have shown that the C-terminus association with lipid bilayer alters channel sensitivity and activation, especially interactions occurring through basic residues. Nevertheless, it is not yet clear how this process takes place and which regions in the C-terminus would be responsible for such membrane recognition. With that in mind, herein the first putative membrane interacting region of the C-terminus of human TRPA1, (corresponding to a 29 residue peptide, IAEVQKHASLKRIAMQVELHTSLEKKLPL) named H1 due to its potential helical character was chosen for studies of membrane interaction. The affinity of H1 to lipid membranes, H1 structural changes occurring upon this interaction as well as effects of this interaction in lipid organization and integrity were investigated using a biophysical approach. Lipid models systems composed of zwitterionic and anionic lipids, namely those present in the lipid membrane inner leaflet, where H1 is prone to interact, where used. The study reveals a strong interaction and affinity of H1 as well as peptide structuration especially with membranes containing anionic lipids. Moreover, the interactions and peptide structure adoption are headgroup specific. Copyright © 2015 Elsevier B.V. All rights reserved.
Membrane composition and dynamics: a target of bioactive virgin olive oil constituents.
Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Varela, Lourdes M; Ortega-Gomez, Almudena; Abia, Rocio; Muriana, Francisco J G
2014-06-01
The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure elucidation of dimeric transmembrane domains of bitopic proteins.
Bocharov, Eduard V; Volynsky, Pavel E; Pavlov, Konstantin V; Efremov, Roman G; Arseniev, Alexander S
2010-01-01
The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.
Jones, Emmalee M.; Dubey, Manish; Camp, Phillip J.; Vernon, Briana C.; Biernat, Jacek; Mandelkow, Eckhard; Majewski, Jaroslaw; Chi, Eva Y.
2012-01-01
The misfolding and aggregation of the intrinsically disordered, microtubule-associated tau protein into neurofibrillary tangles is implicated in the pathogenesis of Alzheimer's disease. However, the mechanisms of tau aggregation and toxicity remain unknown. Recent work has shown that lipid membrane can induce tau aggregation and that membrane permeabilization may serve as a pathway by which protein aggregates exert toxicity, suggesting that the plasma membrane may play dual roles in tau pathology. This prompted our investigation to assess tau's propensity to interact with membranes and to elucidate the mutually disruptive structural perturbations the interactions induce in both tau and the membrane. We show that although highly charged and soluble, the full-length tau (hTau40) is also highly surface active, selectively inserts into anionic DMPG lipid monolayers and induces membrane morphological changes. To resolve molecular-scale structural details of hTau40 associated with lipid membranes, X-ray and neutron scattering techniques are utilized. X-ray reflectivity indicates hTau40's presence underneath a DMPG monolayer and penetration into the lipid headgroups and tailgroups, whereas grazing incidence X-ray diffraction shows that hTau40 insertion disrupts lipid packing. Moreover, both air/water and DMPG lipid membrane interfaces induce the disordered hTau40 to partially adopt a more compact conformation with density similar to that of a folded protein. Neutron reflectivity shows that tau completely disrupts supported DMPG bilayers while leaving the neutral DPPC bilayer intact. Our results show that hTau40's strong interaction with anionic lipids induces tau structural compaction and membrane disruption, suggesting possible membrane-based mechanisms of tau aggregation and toxicity in neurodegenerative diseases. PMID:22401494
Dong, Bo; Hannezo, Edouard; Hayashi, Shigeo
2014-05-22
The morphological stability of biological tubes is crucial for the efficient circulation of fluids and gases. Failure of this stability causes irregularly shaped tubes found in multiple pathological conditions. Here, we report that Drosophila mutants of the ESCRT III component Shrub/Vps32 exhibit a strikingly elongated sinusoidal tube phenotype. This is caused by excessive apical membrane synthesis accompanied by the ectopic accumulation and overactivation of Crumbs in swollen endosomes. Furthermore, we demonstrate that the apical extracellular matrix (aECM) of the tracheal tube is a viscoelastic material coupled with the apical membrane. We present a simple mechanical model in which aECM elasticity, apical membrane growth, and their interaction are three vital parameters determining the stability of biological tubes. Our findings demonstrate a mechanical role for the extracellular matrix and suggest that the interaction of the apical membrane and an elastic aECM determines the final morphology of biological tubes independent of cell shape. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Charge Inversion in semi-permeable membranes
NASA Astrophysics Data System (ADS)
Das, Siddhartha; Sinha, Shayandev; Jing, Haoyuan
Role of semi-permeable membranes like lipid bilayer is ubiquitous in a myriad of physiological and pathological phenomena. Typically, lipid membranes are impermeable to ions and solutes; however, protein channels embedded in the membrane allow the passage of selective, small ions across the membrane enabling the membrane to adopt a semi-permeable nature. This semi-permeability, in turn, leads to electrostatic potential jump across the membrane, leading to effects such as regulation of intracellular calcium, extracellular-vesicle-membrane interactions, etc. In this study, we theoretically demonstrate that this semi-permeable nature may trigger the most remarkable charge inversion (CI) phenomenon in the cytosol-side of the negatively-charged lipid bilayer membrane that are selectively permeable to only positive ions of a given salt. This CI is manifested as the changing of the sign of the electrostatic potential from negative to positive from the membrane-cytosol interface to deep within the cytosol. We study the impact of the parameters such as the concentration of this salt with selectively permeable ions as well as the concentration of an external salt in the development of this CI phenomenon. We anticipate such CI will profoundly influence the interaction of membrane and intra-cellular moieties (e.g., exosome or multi-cellular vesicles) having implications for a host of biophysical processes.
NASA Astrophysics Data System (ADS)
Wang, Jia-Yu; Kausik, Ravinath; Chen, Chi-Yuan; Han, Song-I.; Marks, Jeremy; Lee, Ka Yee
2010-03-01
Cell membrane dysfunction due to loss of structural integrity is the pathology of tissue death in trauma and common diseases. It is now established that certain biocompatible polymers, such as Poloxamer 188, Poloxamine 1107 and polyethylene glycol (PEG), are effective in sealing of injured cell membranes, and able to prevent acute necrosis. Despite these broad applications of these polymers for human health, the fundamental mechanisms by which these polymers interact with cell membranes are still under debate. Here, the effects of a group of biocompatible polymers on phospholipid membrane integrity under osmotic and oxidative stress were explored using giant unilamellar vesicles as model cell membranes. Our results suggest that the adsorption of the polymers on the membrane surface is responsible for the cell membrane resealing process due to its capability of slowing down the surface hydration dynamics.
Qian, Zhenyu; Zou, Yu; Zhang, Qingwen; Chen, Peijie; Ma, Buyong; Wei, Guanghong; Nussinov, Ruth
2018-02-09
The pathology of type 2 diabetes mellitus is associated with the aggregation of human islet amyloid polypeptide (hIAPP) and aggregation-mediated membrane disruption. The interactions of hIAPP aggregates with lipid membrane, as well as the effects of pH and lipid composition at the atomic level, remain elusive. Herein, using molecular dynamics simulations, we investigate the interactions of hIAPP protofibrillar oligomers with lipids, and the membrane perturbation that they induce, when they are partially inserted in an anionic dipalmitoyl-phosphatidylglycerol (DPPG) membrane or a mixed dipalmitoyl-phosphatidylcholine (DPPC)/DPPG (7:3) lipid bilayer under acidic/neutral pH conditions. We observed that the tilt angles and insertion depths of the hIAPP protofibril are strongly correlated with the pH and lipid composition. At neutral pH, the tilt angle and insertion depth of hIAPP protofibrils at a DPPG bilayer reach ~52° and ~1.62 nm with respect to the membrane surface, while they become ~77° and ~1.75 nm at a mixed DPPC/DPPG membrane. The calculated tilt angle of hIAPP at DPPG membrane is consistent with a recent chiral sum frequency generation spectroscopic study. The acidic pH induces a smaller tilt angle of ~40° and a shallower insertion depth (~1.24 nm) of hIAPP at the DPPG membrane surface, mainly due to protonation of His18 near the turn region. These differences mainly result from a combination of distinct electrostatic, van der Waals, hydrogen bonding and salt-bridge interactions between hIAPP and lipid bilayers. The hIAPP-membrane interaction energy analysis reveals that besides charged residues K1, R11 and H18, aromatic residues Phe15 and Phe23 also exhibit strong interactions with lipid bilayers, revealing the crucial role of aromatic residues in stabilizing the membrane-bound hIAPP protofibrils. hIAPP-membrane interactions disturb the lipid ordering and the local bilayer thickness around the peptides. Our results provide atomic-level information of membrane interaction of hIAPP protofibrils, revealing pH-dependent and membrane-modulated hIAPP aggregation at the early stage. Copyright © 2018 Elsevier B.V. All rights reserved.
Disruption of Ankyrin B and Caveolin-1 Interaction Sites Alters Na+,K+-ATPase Membrane Diffusion.
Junghans, Cornelia; Vukojević, Vladana; Tavraz, Neslihan N; Maksimov, Eugene G; Zuschratter, Werner; Schmitt, Franz-Josef; Friedrich, Thomas
2017-11-21
The Na + ,K + -ATPase is a plasma membrane ion transporter of high physiological importance for ion homeostasis and cellular excitability in electrically active tissues. Mutations in the genes coding for Na + ,K + -ATPase α-subunit isoforms lead to severe human pathologies including Familial Hemiplegic Migraine type 2, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia Parkinsonism, or epilepsy. Many of the reported mutations lead to change- or loss-of-function effects, whereas others do not alter the functional properties, but lead to, e.g., reduced protein stability, reduced protein expression, or defective plasma membrane targeting. Na + ,K + -ATPase frequently assembles with other membrane transporters or cellular matrix proteins in specialized plasma membrane microdomains, but the effects of these interactions on targeting or protein mobility are elusive so far. Mutation of established interaction motifs of the Na + ,K + -ATPase with ankyrin B and caveolin-1 are expected to result in changes in plasma membrane targeting, changes of the localization pattern, and of the diffusion behavior of the enzyme. We studied the consequences of mutations in these binding sites by monitoring diffusion of eGFP-labeled Na + ,K + -ATPase constructs in the plasma membrane of HEK293T cells by fluorescence correlation spectroscopy as well as fluorescence recovery after photobleaching or photoswitching, and observed significant differences compared to the wild-type enzyme, with synergistic effects for combinations of interaction site mutations. These measurements expand the possibilities to study the consequences of Na + ,K + -ATPase mutations and provide information about the interaction of Na + ,K + -ATPase α-isoforms with cellular matrix proteins, the cytoskeleton, or other membrane protein complexes. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
TM4SF5-mediated protein-protein networks and tumorigenic roles
Lee, Jung Weon
2014-01-01
Transmembrane 4 L six family member 5 (TM4SF5), as a membrane glycoprotein with 4 transmembrane domains, is similar to the tetraspanins in terms of membrane topology and plays important roles in tumorigenesis and tumor metastasis. Especially, TM4SF5 appears to form a massive protein-protein complex consisting of diverse membrane proteins and/or receptors in addition to cytosolic signaling molecules to regulate their signaling activities during the pathological processes. TM4SF5 is shown to interact with integrins α2, α5, and β1, EGFR, IL6R, CD151, focal adhesion kinase (FAK), and c-Src. This review focuses on the significance of the interactions with regards to TM4SF5-positive tumorigenesis and metastasis. [BMB Reports 2014; 47(9): 483-487] PMID:25027595
Uptake of raft components into amyloid β-peptide aggregates and membrane damage.
Sasahara, Kenji; Morigaki, Kenichi; Mori, Yasuko
2015-07-15
Amyloid aggregation and deposition of amyloid β-peptide (Aβ) are pathologic characteristics of Alzheimer's disease (AD). Recent reports have shown that the association of Aβ with membranes containing ganglioside GM1 (GM1) plays a pivotal role in amyloid deposition and the pathogenesis of AD. However, the molecular interactions responsible for membrane damage associated with Aβ deposition are not fully understood. In this study, we microscopically observed amyloid aggregation of Aβ in the presence of lipid vesicles and on a substrate-supported planar membrane containing raft components and GM1. The experimental system enabled us to observe lipid-associated aggregation of Aβ, uptake of the raft components into Aβ aggregates, and relevant membrane damage. The results indicate that uptake of raft components from the membrane into Aβ deposits induces macroscopic heterogeneity of the membrane structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Regulation of age-related macular degeneration-like pathology by complement factor H
Toomey, Christopher B.; Kelly, Una; Saban, Daniel R.; Bowes Rickman, Catherine
2015-01-01
Complement factor H (CFH) is a major susceptibility gene for age-related macular degeneration (AMD); however, its impact on AMD pathobiology is unresolved. Here, the role of CFH in the development of AMD pathology in vivo was interrogated by analyzing aged Cfh+/− and Cfh−/− mice fed a high-fat, cholesterol-enriched diet. Strikingly, decreased levels of CFH led to increased sub-retinal pigmented epithelium (sub-RPE) deposit formation, specifically basal laminar deposits, following high-fat diet. Mechanistically, our data show that deposits are due to CFH competition for lipoprotein binding sites in Bruch’s membrane. Interestingly and despite sub-RPE deposit formation occurring in both Cfh+/− and Cfh−/− mice, RPE damage accompanied by loss of vision occurred only in old Cfh+/− mice. We demonstrate that such pathology is a function of excess complement activation in Cfh+/− mice versus complement deficiency in Cfh−/− animals. Due to the CFH-dependent increase in sub-RPE deposit height, we interrogated the potential of CFH as a previously unidentified regulator of Bruch’s membrane lipoprotein binding and show, using human Bruch’s membrane explants, that CFH removes endogenous human lipoproteins in aged donors. Thus, advanced age, high-fat diet, and decreased CFH induce sub-RPE deposit formation leading to complement activation, which contributes to RPE damage and visual function impairment. This new understanding of the complicated interactions of CFH in AMD-like pathology provides an improved foundation for the development of targeted therapies for AMD. PMID:25991857
Baggott, Rhiannon R; Alfranca, Arantzazu; López-Maderuelo, Dolores; Mohamed, Tamer M A; Escolano, Amelia; Oller, Jorge; Ornes, Beatriz C; Kurusamy, Sathishkumar; Rowther, Farjana B; Brown, James E; Oceandy, Delvac; Cartwright, Elizabeth J; Wang, Weiguang; Gómez-del Arco, Pablo; Martínez-Martínez, Sara; Neyses, Ludwig; Redondo, Juan Miguel; Armesilla, Angel Luis
2014-10-01
Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis. © 2014 American Heart Association, Inc.
2015-01-01
Membrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimer’s disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients. Although membrane permeability mechanisms have been studied for full-length Aβ1–40/42 peptides, these have not been sufficiently characterized for the more abundant AβpE3–42 fragment. Here we have compared the adsorbed and membrane-inserted oligomeric species of AβpE3–42 and Aβ1–42 peptides. We find lower concentrations and larger dimensions for both species of membrane-associated AβpE3–42 oligomers. The larger dimensions are attributed to the faster self-assembly kinetics of AβpE3–42, and the lower concentrations are attributed to weaker interactions with zwitterionic lipid headgroups. While adsorbed oligomers produced little or no significant membrane structural damage, increased membrane permeabilization to ionic species is understood in terms of enlarged membrane-inserted oligomers. Membrane-inserted AβpE3–42 oligomers were also found to modify the mechanical properties of the membrane. Taken together, our results suggest that membrane-inserted oligomers are the primary species responsible for membrane permeability. PMID:24950761
Nuclear envelopathies: a complex LINC between nuclear envelope and pathology.
Janin, Alexandre; Bauer, Delphine; Ratti, Francesca; Millat, Gilles; Méjat, Alexandre
2017-08-30
Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.
Surface charges promote nonspecific nanoparticle adhesion to stiffer membranes
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha
2018-04-01
This letter establishes the manner in which the electric double layer induced by the surface charges of the plasma membrane (PM) enhances the nonspecific adhesion (NSA) of a metal nanoparticle (NP) to stiffer PMs (i.e., PMs with larger bending moduli). The NSA is characterized by the physical attachment of the NP to the membrane and occurs when the decrease in the surface energy (or any other mechanism) associated with the attachment process provides the energy for bending the membrane. Such an attachment does not involve receptor-ligand interactions that characterize the specific membrane-NP adhesion. Here, we demonstrate that a significant decrease in the electrostatic energy caused by the NP-attachment-induced destruction of the charged-membrane-electrolyte interface is responsible for providing the additional energy needed for bending the membrane during the NP adhesion to stiffer membranes. A smaller salt concentration and a larger membrane charge density augment this effect, which can help to design drug delivery to cells with stiffer membranes due to pathological conditions, fabricate NPs with biomimetic cholesterol-rich lipid bilayer encapsulation, etc.
Modulation of physiological and pathological activities of lysozyme by biological membranes.
Trusova, Valeriya
2012-09-01
The molecular details of interactions between lipid membranes and lysozyme (Lz), a small polycationic protein with a wide range of biological activities, have long been the focus of numerous studies. The biological consequences of this process are considered to embrace at least two aspects: i) correlation between antimicrobial and membranotropic properties of this protein, and ii) lipid-mediated Lz amyloidogenesis. The mechanisms underlying the lipid-assisted protein fibrillogenesis and membrane disruption exerted by Lz in bacterial cells are believed to be similar. The present investigation was undertaken to gain further insight into Lz-lipid interactions and explore the routes by which Lz exerts its antimicrobial and amyloidogenic actions. Binding and Förster resonance energy transfer studies revealed that upon increasing the content of anionic lipids in lipid vesicles, Lz forms aggregates in a membrane environment. Total internal reflection fluorescence microscopy and pyrene excimerization reaction were employed to study the effect of Lz on the structural and dynamic properties of lipid bilayers. It was found that Lz induces lipid demixing and reduction of bilayer free volume, the magnitude of this effect being much more pronounced for oligomeric protein.
Family of pH-Low-Insertion-Peptides (pHLIPs)
NASA Astrophysics Data System (ADS)
Weerakkody, Dhammika; Moshnikova, Anna; Moshnikova, Valentina; Thakur, Mak; Rossi, Bethany; Engelman, Donald; Andreev, Oleg; Reshetnyak, Yana
2012-02-01
pHLIP (pH (Low) Insertion Peptide) is a novel delivery system for targeting of acidic diseased tissue such as solid tumors, sites of inflammation, arthritis and other pathological states. The molecular mechanism of pHLIP action is based on pH-dependent insertion and folding of pHLIP in membrane. We performed sequence variation and investigated 16 pHLIP variants with main goals of understanding the main principles of peptide-lipid interactions and tune delivery capability of pHLIP. The biophysical studies including thermodynamics and kinetics of the peptides interaction with a lipid bilayer of liposomes and cellular membranes were carried out. We found that peptides association to membrane at neutral and low pH could be modulated by 3-4 times. The apparent pK of transition from surface bound to membrane-inserted state could be tuned from 6.5 to 4.5. The rate of peptide's insertion across a bilayer could be enhanced 100 times compared to parent pHLIP. As a result, blood clearance and tumor targeting were modulated in a significant degree. The work is supported by NIH grants CA133890 to OAA, DME, YRK.
NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes*
Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi
2016-01-01
NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. PMID:26987901
NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes.
Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi
2016-05-13
NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides.
Saarikangas, Juha; Zhao, Hongxia; Lappalainen, Pekka
2010-01-01
The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.
Common α2A and α2C adrenergic receptor polymorphisms do not affect plasma membrane trafficking.
Hurt, Carl M; Sorensen, Matt W; Angelotti, Timothy
2014-06-01
Various naturally occurring polymorphic forms of human G protein-coupled receptors (GPCRs) have been identified and linked to diverse pathological diseases, including receptors for vasopressin type 2 (nephrogenic diabetes insipidus) and gonadotropin releasing hormone (hypogonadotropic hypogonadism). In most cases, polymorphic amino acid mutations disrupt protein folding, altering receptor function as well as plasma membrane expression. Other pathological GPCR variants have been found that do not alter receptor function, but instead affect only plasma membrane trafficking (e.g., delta opiate and histamine type 1 receptors). Thus, altered membrane trafficking with retained receptor function may be another mechanism causing polymorphic GPCR dysfunction. Two common human α2A and α2C adrenergic receptor (AR) variants have been identified (α2A N251K and α2C Δ322-325 ARs), but pharmacological analysis of ligand binding and second messenger signaling has not consistently demonstrated altered receptor function. However, possible alterations in plasma membrane trafficking have not been investigated. We utilized a systematic approach previously developed for the study of GPCR trafficking motifs and accessory proteins to assess whether these α2 AR variants affected intracellular trafficking or plasma membrane expression. By combining immunofluorescent microscopy, glycosidic processing analysis, and quantitative fluorescent-activated cell sorting (FACS), we demonstrate that neither variant receptor had altered intracellular localization, glycosylation, nor plasma membrane expression compared to wild-type α2 ARs. Therefore, pathopharmacological properties of α2A N251K and α2C Δ322-325 ARs do not appear to be due to altered receptor pharmacology or plasma membrane trafficking, but may involve interactions with other intracellular signaling cascades or proteins.
Yasuda-Yamahara, M; Rogg, M; Frimmel, J; Trachte, P; Helmstaedter, M; Schroder, P; Schiffer, M; Schell, C; Huber, T B
2018-01-11
Simplification and retraction of podocyte protrusions, generally termed as foot process effacement, is a uniform pathological pattern observed in the majority of glomerular disease, including focal segmental glomerulosclerosis. However, it is still incompletely understood how the interaction of cortical actin structures, actomyosin contractility and focal adhesions, is being orchestrated to control foot process morphology in health and disease. By uncovering the functional role of fermitin family member 2 (FERMT2 or kindlin-2) in podocytes, we provide now evidence, how cell-extracellular matrix (ECM) interactions modulate membrane tension and actomyosin contractility. A genetic modeling approach was applied by deleting FERMT2 in a set of in vivo systems as well as in CRISPR/Cas9 modified human podocytes. Loss of FERMT2 results in altered cortical actin composition, cell cortex destabilization associated with plasma membrane blebbing and a remodeling of focal adhesions. We further show that FERMT2 knockout podocytes have high levels of RhoA activation and concomitantly increased actomyosin contractility. Inhibition of actomyosin tension reverses the membrane blebbing phenotype. Thus, our findings establish a direct link between cell-matrix adhesions, cortical actin structures and plasma membrane tension allowing to better explain cell morphological changes in foot process effacement. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Winslow, Ashley R.; Moussaud, Simon; Zhu, Liya; Post, Katherine L.; Dickson, Dennis W.
2014-01-01
A growing number of PSEN1 mutations have been associated with dementia with Lewy bodies and familial Alzheimer’s disease with concomitant α-synuclein pathology. The objective of this study was to determine if PSEN1 plays a direct role in the development of α-synuclein pathology in these diseases. Using mass spectrometry, immunoelectron microscopy and fluorescence lifetime image microscopy based on Forster resonance energy transfer (FLIM-FRET) we identified α-synuclein as a novel interactor of PSEN1 in wild-type mouse brain tissue. The interaction of α-synuclein with PSEN1 was detected in post-mortem brain tissue from cognitively normal cases and was significantly increased in tissue from cases with dementia with Lewy bodies and familial Alzheimer’s disease associated with known PSEN1 mutations. We confirmed an increased interaction of PSEN1 and α-synuclein in cell lines expressing well characterized familial Alzheimer’s disease PSEN1 mutations, L166P and delta exon 9, and demonstrated that PSEN1 mutations associate with increased membrane association and accumulation of α-synuclein. Our data provides evidence of a molecular interaction of PSEN1 and α-synuclein that may explain the clinical and pathophysiological overlap seen in synucleinopathies, including Parkinson’s disease, dementia with Lewy bodies, and some forms of Alzheimer’s disease. PMID:24860142
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syed, Aleem
Systematic spatial and temporal fluctuations are a fundamental part of any biological process. For example, lateral diffusion of membrane proteins is one of the key mechanisms in their cellular function. Lateral diffusion governs how membrane proteins interact with intracellular, transmembrane, and extracellular components to achieve their function. Herein, fluorescence-based techniques are used to elucidate the dynamics of receptor for advanced glycation end-products (RAGE) and integrin membrane proteins. RAGE is a transmembrane protein that is being used as a biomarker for various diseases. RAGE dependent signaling in numerous pathological conditions is well studied. However, RAGE lateral diffusion in the cell membranemore » is poorly understood. For this purpose, effect of cholesterol, cytoskeleton dynamics, and presence of ligand on RAGE lateral diffusion is investigated.« less
COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.
Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R
2018-03-16
To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.
Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong
2015-05-09
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
NASA Astrophysics Data System (ADS)
Dąbrowski, M.; Dulski, R.; Żmuda, S.; Zaborowski, P.; Pogorzelski, C.
2002-06-01
This article presents initial results of investigations of the temperature distribution changes in oral cavity mucous membrane. The investigations aimed to prepare a model of temperature changes existing within mucosal membrane in physiological conditions and to compare those changes with those under pathological conditions. Our investigations were carried out using an infrared imaging system. A representative group of patients was tested.
Rab GTPases and Membrane Trafficking in Neurodegeneration
Kiral, Ferdi Ridvan; Kohrs, Friederike Elisabeth; Jin, Eugene Jennifer; Hiesinger, Peter Robin
2018-01-01
Defects in membrane trafficking are hallmarks of neurodegeneration. Rab GTPases are key regulators of membrane trafficking. Alterations of Rab GTPases, or the membrane compartments they regulate, are associated with virtually all neuronal activities in health and disease. The observation that many Rab GTPases are associated with neurodegeneration has proven a challenge in the quest for cause and effect. Neurodegeneration can be a direct consequence of a defect in membrane trafficking. Alternatively, changes in membrane trafficking may be secondary consequences or cellular responses. The secondary consequences and cellular responses, in turn, may protect, represent inconsequential correlates or function as drivers of pathology. Here, we attempt to disentangle the different roles of membrane trafficking in neurodegeneration by focusing on selected associations with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and selected neuropathies. We provide an overview of current knowledge on Rab GTPase functions in neurons and review the associations of Rab GTPases with neurodegeneration with respect to the following classifications: primary cause, secondary cause driving pathology or secondary correlate. This analysis is devised to aid the interpretation of frequently observed membrane trafficking defects in neurodegeneration and facilitate the identification of true causes of pathology. PMID:29689231
Ibarguren, Maitane; López, David J; Escribá, Pablo V
2014-06-01
This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
PTPN6 regulates the cell-surface expression of TRPM4 channels in HEK293 cells.
Lee, Dong Kun; Park, Jung Yeon; Yoo, Jae Cheal; Byun, Eun Hye; Bae, Yeon-Ju; Lee, Young-Sun; Park, Nammi; Kang, Dawon; Han, Jaehee; Park, Jae Yong; Hwang, Eunmi; Hong, Seong-Geun
2018-06-21
Transient receptor-potential, cation channel, subfamily M, member 4 (TRPM4) channels regulate a variety of physiological and pathological processes; however, their roles as functional channels under diverse conditions remain unclear. In this study, cytosolic protein tyrosine phosphatase non-receptor type 6 (PTPN6) interacted with TRPM4 channels. We confirmed their interaction by performing co-immunoprecipitation (Co-IP) assays following heterologous PTPN6 and TRPM4 channel expression in HEK293 cells. Furthermore, biomolecular fluorescence complementation (BiFC) image analysis confirmed TRPM4-PTPN6 binding. In addition, immunoblotting and Co-IP analyses revealed that TRPM4 expression significantly decreased in the membrane fraction of cells after PTPN6 was silenced with a specific short-hairpin RNA (shRNA-PTPN6). In agreement, TRPM4-induced changes in whole-cell currents were not detected in PTPN6-silenced HEK cells, in contrast to cells transfected with a scrambled RNA (scRNA) or in naïve HEK cells. These data suggest that PTPN6 inhibits TRPM4 channel activity by disrupting TRPM4 expression. Furthermore, TRPM4 channels were expressed in the membrane of naïve cells and scRNA transfectants, but not in those of PTPN6-silenced cells. These results indicated that PTPN6 is critically associated with TRPM4 trafficking. This role of PTPN6 in TRPM4 membrane localization was also demonstrated in HeLa cells. TRPM4 overexpression significantly enhanced cell proliferation in untreated HeLa cells, but not in HeLa cells with silenced PTPN6 expression. These findings indicate that PTPN6-dependent TRPM4 expression and trafficking to the plasma membrane is critical for cell proliferation in both HEK293 and HeLa cells. Therefore, PTPN6 is a novel therapeutic target for treating pathologic diseases involving TRPM4.
Dursun, Erdinç; Gezen-Ak, Duygu
2017-01-01
Our recent study indicated that vitamin D and its receptors are important parts of the amyloid processing pathway in neurons. Yet the role of vitamin D receptor (VDR) in amyloid pathogenesis is complex and all regulations over the production of amyloid beta cannot be explained solely with the transcriptional regulatory properties of VDR. Given that we hypothesized that VDR might exist on the neuronal plasma membrane in close proximity with amyloid precursor protein (APP) and secretase complexes. The present study primarily focused on the localization of VDR in neurons and its interaction with amyloid pathology-related proteins. The localization of VDR on neuronal membranes and its co-localization with target proteins were investigated with cell surface staining followed by immunofluorescence labelling. The FpClass was used for protein-protein interaction prediction. Our results demonstrated the localization of VDR on the neuronal plasma membrane and the co-localization of VDR and APP or ADAM10 or Nicastrin and limited co-localization of VDR and PS1. E-cadherin interaction with APP or the γ-secretase complex may involve NOTCH1, NUMB, or FHL2, according to FpClass. This suggested complex might also include VDR, which greatly contributes to Ca+2 hemostasis with its ligand vitamin D. Consequently, we suggested that VDR might be a member of this complex also with its own non-genomic action and that it can regulate the APP processing pathway in this way in neurons.
Sphingolipid hydroxylation in mammals, yeast and plants - An integrated view.
Marquês, Joaquim Trigo; Susana Marinho, H; de Almeida, Rodrigo Freire Martins
2018-05-07
This review is focused on sphingolipid backbone hydroxylation, a small but widespread structural feature, with profound impact on membrane biophysical properties. We start by summarizing sphingolipid metabolism in mammalian cells, yeast and plants, focusing on how distinct hydroxylation patterns emerge in different eukaryotic kingdoms. Then, a comparison of the biophysical properties in membrane model systems and cellular membranes from diverse organisms is made. From an integrative perspective, these results can be rationalized considering that superficial hydroxyl groups in the backbone of sphingolipids (by intervening in the H-bond network) alter the balance of favorable interactions between membrane lipids. They may strengthen the bonding or compete with other hydroxyl groups, in particular the one of membrane sterols. Different sphingolipid hydroxylation patterns can stabilize/disrupt specific membrane domains or change whole plasma membrane properties, and therefore be important in the control of protein distribution, function and lateral diffusion and in the formation and overtime stability of signaling platforms. The recent examples explored throughout this review unveil a potentially key role for sphingolipid backbone hydroxylation in both physiological and pathological situations, as they can be of extreme importance for the proper organization of cell membranes in mammalian cells, yeast and, most likely, also in plants. Copyright © 2017. Published by Elsevier Ltd.
Winslow, Ashley R; Moussaud, Simon; Zhu, Liya; Post, Kathryn L; Post, Katherine L; Dickson, Dennis W; Berezovska, Oksana; McLean, Pamela J
2014-07-01
A growing number of PSEN1 mutations have been associated with dementia with Lewy bodies and familial Alzheimer's disease with concomitant α-synuclein pathology. The objective of this study was to determine if PSEN1 plays a direct role in the development of α-synuclein pathology in these diseases. Using mass spectrometry, immunoelectron microscopy and fluorescence lifetime image microscopy based on Forster resonance energy transfer (FLIM-FRET) we identified α-synuclein as a novel interactor of PSEN1 in wild-type mouse brain tissue. The interaction of α-synuclein with PSEN1 was detected in post-mortem brain tissue from cognitively normal cases and was significantly increased in tissue from cases with dementia with Lewy bodies and familial Alzheimer's disease associated with known PSEN1 mutations. We confirmed an increased interaction of PSEN1 and α-synuclein in cell lines expressing well characterized familial Alzheimer's disease PSEN1 mutations, L166P and delta exon 9, and demonstrated that PSEN1 mutations associate with increased membrane association and accumulation of α-synuclein. Our data provides evidence of a molecular interaction of PSEN1 and α-synuclein that may explain the clinical and pathophysiological overlap seen in synucleinopathies, including Parkinson's disease, dementia with Lewy bodies, and some forms of Alzheimer's disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nicolson, Garth L
2014-06-01
In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. © 2013.
Petersen, Richard C
2017-01-01
A breakthrough has been discovered in pathology chemistry related to increasing molecular structure that can interfere with oxygen diffusion through cell membranes. Free radicals can crosslink unsaturated low-viscosity fatty acid oils by chain-growth polymerization into more viscous liquids and even solids. Free radicals are released by mitochondria in response to intermittent hypoxia that can increase membrane molecular organization to reduce fluidity and oxygen diffusion in a possible continuing vicious cycle toward pathological disease. Alternate computational chemistry demonstrates molecular bond dynamics in free energy for cell membrane physiologic movements. Paired electrons in oxygen and nitrogen atoms require that oxygen bonds rotate and nitrogen bonds invert to seek polar nano-environments and hide from nonpolar nano-environments thus creating fluctuating instability at a nonpolar membrane and polar biologic fluid interface. Subsequent mechanomolecular movements provide free energy to increase diffusion by membrane transport of molecules and oxygen into the cell, cell-membrane signaling/recognition/defense in addition to protein movements for enzyme mixing. In other chemistry calcium bonds to membrane phosphates primarily on the outer plasma cell membrane surface to influence the membrane firing threshold for excitability and better seal out water permeation. Because calcium is an excellent metal conductor and membrane phosphate headgroups form a semiconductor at the biologic fluid interface, excess electrons released by mitochondria may have more broad dissipation potential by safe conduction through calcium atomic-sized circuits on the outer membrane surface. Regarding medical conditions, free radicals are known to produce pathology especially in age-related disease in addition to aging. Because cancer cell membranes develop extreme polymorphism that has been extensively followed in research, accentuated easily-visualized free-radical models are developed. In terms of treatment, use of vitamin nutrient supplements purported to be antioxidants that remove free radicals has not proved worthwhile in clinical trials presumably due to errors with early antioxidant measurements based on inaccurate colorimetry tests. However, newer covalent-bond shrinkage tests now provide accurate measurements for free-radical inhibitor hydroquinone and other molecules toward drug therapy.
Petersen, Richard C
2017-01-01
A breakthrough has been discovered in pathology chemistry related to increasing molecular structure that can interfere with oxygen diffusion through cell membranes. Free radicals can crosslink unsaturated low-viscosity fatty acid oils by chain-growth polymerization into more viscous liquids and even solids. Free radicals are released by mitochondria in response to intermittent hypoxia that can increase membrane molecular organization to reduce fluidity and oxygen diffusion in a possible continuing vicious cycle toward pathological disease. Alternate computational chemistry demonstrates molecular bond dynamics in free energy for cell membrane physiologic movements. Paired electrons in oxygen and nitrogen atoms require that oxygen bonds rotate and nitrogen bonds invert to seek polar nano-environments and hide from nonpolar nano-environments thus creating fluctuating instability at a nonpolar membrane and polar biologic fluid interface. Subsequent mechanomolecular movements provide free energy to increase diffusion by membrane transport of molecules and oxygen into the cell, cell-membrane signaling/recognition/defense in addition to protein movements for enzyme mixing. In other chemistry calcium bonds to membrane phosphates primarily on the outer plasma cell membrane surface to influence the membrane firing threshold for excitability and better seal out water permeation. Because calcium is an excellent metal conductor and membrane phosphate headgroups form a semiconductor at the biologic fluid interface, excess electrons released by mitochondria may have more broad dissipation potential by safe conduction through calcium atomic-sized circuits on the outer membrane surface. Regarding medical conditions, free radicals are known to produce pathology especially in age-related disease in addition to aging. Because cancer cell membranes develop extreme polymorphism that has been extensively followed in research, accentuated easily-visualized free-radical models are developed. In terms of treatment, use of vitamin nutrient supplements purported to be antioxidants that remove free radicals has not proved worthwhile in clinical trials presumably due to errors with early antioxidant measurements based on inaccurate colorimetry tests. However, newer covalent-bond shrinkage tests now provide accurate measurements for free-radical inhibitor hydroquinone and other molecules toward drug therapy. PMID:29202036
Membrane-associated stress proteins: more than simply chaperones.
Horváth, Ibolya; Multhoff, Gabriele; Sonnleitner, Alois; Vígh, László
2008-01-01
The protein- and/or lipid-mediated association of chaperone proteins to membranes is a widespread phenomenon and implicated in a number of physiological and pathological events that were earlier partially or completely overlooked. A temporary association of certain HSPs with membranes can re-establish the fluidity and bilayer stability and thereby restore the membrane functionality during stress conditions. The fluidity and microdomain organization of membranes are decisive factors in the perception and transduction of stresses into signals that trigger the activation of specific HS genes. Conversely, the membrane association of HSPs may result in the inactivation of membrane-perturbing signals, thereby switch off the heat shock response. Interactions between certain HSPs and specific lipid microdomains ("rafts") might be a previously unrecognized means for the compartmentalization of HSPs to specific signaling platforms, where key signaling proteins are known to be concentrated. Any modulations of the membranes, especially the raft-lipid composition of the cells can alter the extracellular release and thus the immuno-stimulatory activity of certain HSPs. Reliable techniques, allowing mapping of the composition and dynamics of lipid microdomains and simultaneously the spatio-temporal localization of HSPs in and near the plasma membrane can provide suitable means with which to address fundamental questions, such as how HSPs are transported to and translocated through the plasma membrane. The possession of such information is critical if we are to target the membrane association principles of HSPs for successful drug development in most various diseases.
Chávez-García, César; Jiménez-Corona, Aída; Graue-Hernández, Enrique O; Zaga-Clavellina, Verónica; García-Mejía, Mariana; Jiménez-Martínez, María Carmen; Garfias, Yonathan
2016-06-01
Amniotic membrane, the inner layer of the placenta, has biological properties (e.g. promotes epithelization, reduces fibrosis, secretes antimicrobial products and inhibits immune responses) which make it a useful option for several ophthalmologic procedures, especially those involving the ocular surface. Its use in eye surgery has been reported by other authors. To our knowledge, there is a lack of descriptive studies on surgical indications using amniotic membrane in Mexican population. Here we describe the eight years Amniotic Membrane Bank experience in Mexico, including a detailed protocol of the donors selection, tissue harvesting, preparation, storage and distribution of amniotic membrane since its establishment in 2007. Moreover, we describe the Ophthalmological indications of amniotic membrane transplantation of the total of 1686 amniotic membranes fragments used during eight years. The five most common indications for amniotic membrane transplantation were pterygium (46 %), corneal ulcers (12.6 %), conjunctival surface repair (11.1 %), neoplasms (7.4 %), and persistent epithelial defects (7.3 %). In addition, we compared the indications of amniotic membrane use in two different types of Institutions: general hospitals and ophthalmologic reference hospitals. We found interesting differences between the indications and use rates between these institutions, although pterygium was the most frequent pathology that amniotic membrane fragments were used in both institutions, there was up to a five-fold increase in the use of amniotic membrane for correction of persistent epithelial defects in reference hospitals which could be explained due to the more complex and severe ophthalmological pathologies admitted in reference hospitals. In conclusion, Amniotic Membrane is used in a numerous ocular pathologies and especially on pterygium in our Mexican population.
Bergsdorf, Christian; Fiez-Vandal, Cédric; Sykes, David A; Bernet, Pascal; Aussenac, Sonia; Charlton, Steven J; Schopfer, Ulrich; Ottl, Johannes; Duckely, Myriam
2016-03-01
Integral membrane proteins (IMPs) play an important role in many cellular events and are involved in numerous pathological processes. Therefore, understanding the structure and function of IMPs is a crucial prerequisite to enable successful targeting of these proteins with low molecular weight (LMW) ligands early on in the discovery process. To optimize IMP purification/crystallization and to identify/characterize LMW ligand-target interactions, robust, reliable, high-throughput, and sensitive biophysical methods are needed. Here, we describe a differential scanning fluorimetry (DSF) screening method using the thiol-reactive BODIPY FL-cystine dye to monitor thermal unfolding of the G-protein-coupled receptor (GPCR), CXCR2. To validate this method, the seven-transmembrane protein CXCR2 was analyzed with a set of well-characterized antagonists. This study showed that the new DSF assay assessed reliably the stability of CXCR2 in a 384-well format. The analysis of 14 ligands with a potency range over 4 log units demonstrated the detection/characterization of LMW ligands binding to the membrane protein target. Furthermore, DSF results cross-validated with the label-free differential static light scattering (DSLS) thermal denaturation method. These results underline the potential of the BODIPY assay format as a general tool to investigate membrane proteins and their interaction partners. © 2015 Society for Laboratory Automation and Screening.
Bram, Yaron; Frydman-Marom, Anat; Yanai, Inbal; Gilead, Sharon; Shaltiel-Karyo, Ronit; Amdursky, Nadav; Gazit, Ehud
2014-01-01
Soluble oligomeric assemblies of amyloidal proteins appear to act as major pathological agents in several degenerative disorders. Isolation and characterization of these oligomers is a pivotal step towards determination of their pathological relevance. Here we describe the isolation of Type 2 diabetes-associated islet amyloid polypeptide soluble cytotoxic oligomers; these oligomers induced apoptosis in cultured pancreatic cells, permeated model lipid vesicles and interacted with cell membranes following complete internalization. Moreover, antibodies which specifically recognized these assemblies, but not monomers or amyloid fibrils, were exclusively identified in diabetic patients and were shown to neutralize the apoptotic effect induced by these oligomers. Our findings support the notion that human IAPP peptide can form highly toxic oligomers. The presence of antibodies identified in the serum of diabetic patients confirms the pathological relevance of the oligomers. In addition, the newly identified structural epitopes may also provide new mechanistic insights and a molecular target for future therapy. PMID:24589570
Roles for Ca2+ mobilization and its regulation in mast cell functions: recent progress.
Holowka, David; Wilkes, Marcus; Stefan, Christopher; Baird, Barbara
2016-04-15
Ca(2+)mobilization in response to cross-linking of IgE bound to its high affinity receptor, FcεRI, on mast cells is central to immune allergic responses. Stimulated tyrosine phosphorylation caused by this cross-linking activates store-operated Ca(2+)entry that results in sustained Ca(2+)oscillations dependent on Rho family GTPases and phosphoinositide synthesis. Coupling of the endoplasmic reticulum (ER) Ca(2+)sensor, stromal interaction molecule 1 (STIM1), to the Ca(2+)-selective channel, Orai1, is regulated by these elements and depends on membrane organization, both at the plasma membrane and at the ER. Mitochondria also contribute to the regulation of Ca(2+)mobilization, and we describe recent evidence that the ER membrane protein vesicle-associated membrane protein-associated protein (VAP) plays a significant role in the coupling between ER and mitochondria in this process. In addition to granule exocytosis, Ca(2+)mobilization in these cells also contributes to stimulated outward trafficking of recycling endosomes and to antigen-stimulated chemotaxis, and it is pathologically regulated by protozoan parasitic invasion. © 2016 Authors; published by Portland Press Limited.
2015-01-01
Cell membrane chromatography (CMC) derived from pathological tissues is ideal for screening specific components acting on specific diseases from complex medicines owing to the maximum simulation of in vivo drug-receptor interactions. However, there are no pathological tissue-derived CMC models that have ever been developed, as well as no visualized affinity comparison of potential active components between normal and pathological CMC columns. In this study, a novel comparative normal/failing rat myocardium CMC analysis system based on online column selection and comprehensive two-dimensional (2D) chromatography/monolithic column/time-of-flight mass spectrometry was developed for parallel comparison of the chromatographic behaviors on both normal and pathological CMC columns, as well as rapid screening of the specific therapeutic agents that counteract doxorubicin (DOX)-induced heart failure from Acontium carmichaeli (Fuzi). In total, 16 potential active alkaloid components with similar structures in Fuzi were retained on both normal and failing myocardium CMC models. Most of them had obvious decreases of affinities on failing myocardium CMC compared with normal CMC model except for four components, talatizamine (TALA), 14-acetyl-TALA, hetisine, and 14-benzoylneoline. One compound TALA with the highest affinity was isolated for further in vitro pharmacodynamic validation and target identification to validate the screen results. Voltage-dependent K+ channel was confirmed as a binding target of TALA and 14-acetyl-TALA with high affinities. The online high throughput comparative CMC analysis method is suitable for screening specific active components from herbal medicines by increasing the specificity of screened results and can also be applied to other biological chromatography models. PMID:24731167
Mencarelli, Chiara; Bode, Gerard H.; Losen, Mario; Kulharia, Mahesh; Molenaar, Peter C.; Veerhuis, Robert; Steinbusch, Harry W. M.; De Baets, Marc H.; Nicolaes, Gerry A. F.; Martinez-Martinez, Pilar
2012-01-01
Serum amyloid P component (SAP) is a non-fibrillar glycoprotein belonging to the pentraxin family of the innate immune system. SAP is present in plasma, basement membranes, and amyloid deposits. This study demonstrates, for the first time, that the Goodpasture antigen-binding protein (GPBP) binds to human SAP. GPBP is a nonconventional Ser/Thr kinase for basement membrane type IV collagen. Also GPBP is found in plasma and in the extracellular matrix. In the present study, we demonstrate that GPBP specifically binds SAP in its physiological conformations, pentamers and decamers. The START domain in GPBP is important for this interaction. SAP and GPBP form complexes in blood and partly colocalize in amyloid plaques from Alzheimer disease patients. These data suggest the existence of complexes of SAP and GPBP under physiological and pathological conditions. These complexes are important for understanding basement membrane, blood physiology, and plaque formation in Alzheimer disease. PMID:22396542
Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.
Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S
2013-11-05
Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Circulating membrane-derived microvesicles in redox biology.
Larson, Michael Craig; Hillery, Cheryl A; Hogg, Neil
2014-08-01
Microparticles or microvesicles (MVs) are subcellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or as a result of cellular redox signaling, has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown that circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids and harbor redox-regulated matrix metalloproteinases and procoagulative surface molecules; and circulating MVs from red blood cells and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. Although our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes-developmental, homeostatic, and pathological-and the role of MVs in redox signaling is a rich and exciting area of investigation. Copyright © 2014 Elsevier Inc. All rights reserved.
Functional TASK-3-Like Channels in Mitochondria of Aldosterone-Producing Zona Glomerulosa Cells.
Yao, Junlan; McHedlishvili, David; McIntire, William E; Guagliardo, Nick A; Erisir, Alev; Coburn, Craig A; Santarelli, Vincent P; Bayliss, Douglas A; Barrett, Paula Q
2017-08-01
Ca 2+ drives aldosterone synthesis in the cytosolic and mitochondrial compartments of the adrenal zona glomerulosa cell. Membrane potential across each of these compartments regulates the amplitude of the Ca 2+ signal; yet, only plasma membrane ion channels and their role in regulating cell membrane potential have garnered investigative attention as pathological causes of human hyperaldosteronism. Previously, we reported that genetic deletion of TASK-3 channels (tandem pore domain acid-sensitive K + channels) from mice produces aldosterone excess in the absence of a change in the cell membrane potential of zona glomerulosa cells. Here, we report using yeast 2-hybrid, immunoprecipitation, and electron microscopic analyses that TASK-3 channels are resident in mitochondria, where they regulate mitochondrial morphology, mitochondrial membrane potential, and aldosterone production. This study provides proof of principle that mitochondrial K + channels, by modulating inner mitochondrial membrane morphology and mitochondrial membrane potential, have the ability to play a pathological role in aldosterone dysregulation in steroidogenic cells. © 2017 American Heart Association, Inc.
Biophysical regulation of Chlamydia pneumoniae-infected monocyte recruitment to atherosclerotic foci
NASA Astrophysics Data System (ADS)
Evani, Shankar J.; Ramasubramanian, Anand K.
2016-01-01
Chlamydia pneumoniae infection is implicated in atherosclerosis although the contributory mechanisms are poorly understood. We hypothesize that C. pneumoniae infection favors the recruitment of monocytes to atherosclerotic foci by altering monocyte biophysics. Primary, fresh human monocytes were infected with C. pneumoniae for 8 h, and the interactions between monocytes and E-selectin or aortic endothelium under flow were characterized by video microscopy and image analysis. The distribution of membrane lipid rafts and adhesion receptors were analyzed by imaging flow cytometry. Infected cells rolled on E-selectin and endothelial surfaces, and this rolling was slower, steady and uniform compared to uninfected cells. Infection decreases cholesterol levels, increases membrane fluidity, disrupts lipid rafts, and redistributes CD44, which is the primary mediator of rolling interactions. Together, these changes translate to higher firm adhesion of infected monocytes on endothelium, which is enhanced in the presence of LDL. Uninfected monocytes treated with LDL or left untreated were used as baseline control. Our results demonstrate that the membrane biophysical changes due to infection and hyperlipidemia are one of the key mechanisms by which C. pneumoniae can exacerbate atherosclerotic pathology. These findings provide a framework to characterize the role of ‘infectious burden’ in the development and progression of atherosclerosis.
The G-protein coupled estrogen receptor, GPER: The inside and inside-out story.
Gaudet, H M; Cheng, S B; Christensen, E M; Filardo, E J
2015-12-15
GPER possesses structural and functional characteristics shared by members of the G-protein-coupled receptor (GPCR) superfamily, the largest class of plasma membrane receptors. This newly appreciated estrogen receptor is localized predominately within intracellular membranes in most, but not all, cell types and its surface expression is modulated by steroid hormones and during tissue injury. An intracellular staining pattern is not unique among GPCRs, which employ a diverse array of molecular mechanisms that restrict cell surface expression and effectively regulating receptor binding and activation. The finding that GPER displays an intracellular predisposition has created some confusion as the estrogen-inducible transcription factors, ERα and ERβ, also reside intracellularly, and has led to complex suggestions of receptor interaction. GPER undergoes constitutive retrograde trafficking from the plasma membrane to the endoplasmic reticulum and recent studies indicate its interaction with PDZ binding proteins that sort transmembrane receptors to synaptosomes and endosomes. Genetic targeting and selective ligand approaches as well as cell models that express GPER in the absence of ERs clearly supports GPER as a bonafide "stand alone" receptor. Here, the molecular details that regulate GPER action, its cell biological activities and its implicated roles in physiological and pathological processes are reviewed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Varghese, Soma Susan; Sarojini, Sreenivasan Bargavan; George, Giju Baby; Vinod, Sankar; Mathew, Philips; Babu, Anulekh; Sebastian, Joseph
2015-01-01
Background: The role of tumour inflammation and the dysplastic epithelial-stromal interactions on the nature of collagen fibres in the extracellular matrix of dysplastic epithelium is not fully understood. The present study was aimed to evaluate and compare the inflammation and pathological stromal collagen (loosely packed thin disorganized collagen) present in mild, moderate and severe epithelial dysplasias with that of inflammatory fibrous hyperplasias. The basement membrane intactness of epithelial dysplasias was also evaluated to determine if dysplastic epithelial mesenchymal interaction has any role in the integrity of stromal collagen in epithelial dysplasia. Methods: Oral epithelial dysplasias, inflammatory fibrous hyperplasia and normal oral mucosal samples were used for the study. Packing, thickness and orientation of collagen fibres in mild, moderate and severe grades of oral epithelial dysplasias (n = 24), inflammatory fibrous hyperplasia (n = 8) and normal oral mucosal samples (n = 8) were analysed based on the polarisation of collagen fibres in picrosirius red polarising stain under polarising microscope. Results: All the grades of epithelial dysplasias showed greenish yellow birefringence confirming the presence of loosely arranged pathological collagen in the presence of moderate inflammation. All the cases of inflammatory fibrous hyperplasia showed red polarisation hue and moderate inflammation. A statistically significant difference was found in the packing and orientation of collagen when epithelial dysplasias and inflammatory fibrous hyperplasia were compared (P < 0.01). When the intactness of basement membrane integrity was compared in all the groups of epithelial dysplasia, a statistically significant result was obtained (P < 0.05). Conclusions: Presence of significant amount of loosely packed thin disoriented collagen even in mild epithelial dysplasia suggests that tumourigenic factors are released to connective tissue stroma much earlier than expected. Hence we suggest considering the integrity of extracellular matrix collagen, intactness of basement membrane and inflammation associated with dysplasia along with the anaplasia of epithelial cells in the microscopic assessment of dysplastic epithelium. PMID:26734590
Varghese, Soma Susan; Sarojini, Sreenivasan Bargavan; George, Giju Baby; Vinod, Sankar; Mathew, Philips; Babu, Anulekh; Sebastian, Joseph
2015-12-01
The role of tumour inflammation and the dysplastic epithelial-stromal interactions on the nature of collagen fibres in the extracellular matrix of dysplastic epithelium is not fully understood. The present study was aimed to evaluate and compare the inflammation and pathological stromal collagen (loosely packed thin disorganized collagen) present in mild, moderate and severe epithelial dysplasias with that of inflammatory fibrous hyperplasias. The basement membrane intactness of epithelial dysplasias was also evaluated to determine if dysplastic epithelial mesenchymal interaction has any role in the integrity of stromal collagen in epithelial dysplasia. Oral epithelial dysplasias, inflammatory fibrous hyperplasia and normal oral mucosal samples were used for the study. Packing, thickness and orientation of collagen fibres in mild, moderate and severe grades of oral epithelial dysplasias (n = 24), inflammatory fibrous hyperplasia (n = 8) and normal oral mucosal samples (n = 8) were analysed based on the polarisation of collagen fibres in picrosirius red polarising stain under polarising microscope. All the grades of epithelial dysplasias showed greenish yellow birefringence confirming the presence of loosely arranged pathological collagen in the presence of moderate inflammation. All the cases of inflammatory fibrous hyperplasia showed red polarisation hue and moderate inflammation. A statistically significant difference was found in the packing and orientation of collagen when epithelial dysplasias and inflammatory fibrous hyperplasia were compared (P < 0.01). When the intactness of basement membrane integrity was compared in all the groups of epithelial dysplasia, a statistically significant result was obtained (P < 0.05). Presence of significant amount of loosely packed thin disoriented collagen even in mild epithelial dysplasia suggests that tumourigenic factors are released to connective tissue stroma much earlier than expected. Hence we suggest considering the integrity of extracellular matrix collagen, intactness of basement membrane and inflammation associated with dysplasia along with the anaplasia of epithelial cells in the microscopic assessment of dysplastic epithelium.
Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.
Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda
2016-07-25
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.
Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging
Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda
2016-01-01
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176
Huebert, Robert C.; Vasdev, Meher M.; Shergill, Uday; Das, Amitava; Huang, Bing Q.; Charlton MR, Michael R.; LaRusso, Nicholas F.; Shah, Vijay H.
2010-01-01
Increasing evidence suggests that hepatic fibrosis and pathologic angiogenesis are inter-dependent processes that occur in parallel. Endothelial cell invasion is requisite for angiogenesis and thus studies of the mechanisms governing liver endothelial cell (LEC) invasion during cirrhosis are of great importance. Emerging research implicates amoeboid-type motility and membrane blebbing as features that may facilitate invasion through matrix-rich microenvironments. Aquaporins (AQPs) are integral membrane water channels, recognized for their importance in epithelial secretion and absorption. However, recent studies also suggest links between water transport and cell motility / invasion. Therefore, the purpose of this study was to test the hypothesis that AQP-1 is involved in amoeboid motility and angiogenic invasion during cirrhosis. AQP-1 expression and localization was examined in normal and cirrhotic liver tissues derived from human and mouse. AQP-1 levels were modulated in LEC using retroviral overexpression or siRNA knockdown and functional effects on invasion, membrane blebbing dynamics, and osmotic water permeability were assayed. Results demonstrate that AQP-1 is up-regulated in the small, angiogenic, neo-vasculature within the fibrotic septa of cirrhotic liver. AQP-1 overexpression promotes FGF-induced dynamic membrane blebbing in LEC which is sufficient to augment invasion through extracellular matrix. Additionally, AQP-1 localizes to plasma membrane blebs where it increases osmotic water permeability and locally facilitates the rapid, trans-membrane flux of water. CONCLUSION AQP-1 enhances osmotic water permeability and FGF-induced dynamic membrane blebbing in LEC and thereby drives invasion and pathologic angiogenesis during cirrhosis PMID:20578142
Structural decoding of netrin-4 reveals a regulatory function towards mature basement membranes
Reuten, Raphael; Patel, Trushar R.; McDougall, Matthew; Rama, Nicolas; Nikodemus, Denise; Gibert, Benjamin; Delcros, Jean-Guy; Prein, Carina; Meier, Markus; Metzger, Stéphanie; Zhou, Zhigang; Kaltenberg, Jennifer; McKee, Karen K.; Bald, Tobias; Tüting, Thomas; Zigrino, Paola; Djonov, Valentin; Bloch, Wilhelm; Clausen-Schaumann, Hauke; Poschl, Ernst; Yurchenco, Peter D.; Ehrbar, Martin; Mehlen, Patrick; Stetefeld, Jörg; Koch, Manuel
2016-01-01
Netrins, a family of laminin-related molecules, have been proposed to act as guidance cues either during nervous system development or the establishment of the vascular system. This was clearly demonstrated for netrin-1 via its interaction with the receptors DCC and UNC5s. However, mainly based on shared homologies with netrin-1, netrin-4 was also proposed to play a role in neuronal outgrowth and developmental/pathological angiogenesis via interactions with netrin-1 receptors. Here, we present the high-resolution structure of netrin-4, which shows unique features in comparison with netrin-1, and show that it does not bind directly to any of the known netrin-1 receptors. We show that netrin-4 disrupts laminin networks and basement membranes (BMs) through high-affinity binding to the laminin γ1 chain. We hypothesize that this laminin-related function is essential for the previously described effects on axon growth promotion and angiogenesis. Our study unveils netrin-4 as a non-enzymatic extracellular matrix protein actively disrupting pre-existing BMs. PMID:27901020
Mir, Enrique; Rovira, Montse; Escolar, Ginés; Carreras, Enric; Diaz-Ricart, Maribel
2016-01-01
Defibrotide (DF) has received European Medicines Agency authorization to treat sinusoidal obstruction syndrome, an early complication after hematopoietic cell transplantation. DF has a recognized role as an endothelial protective agent, although its precise mechanism of action remains to be elucidated. The aim of the present study was to investigate the interaction of DF with endothelial cells (ECs). A human hepatic EC line was exposed to different DF concentrations, previously labeled. Using inhibitory assays and flow cytometry techniques along with confocal microscopy, we explored: DF-EC interaction, endocytic pathways, and internalization kinetics. Moreover, we evaluated the potential role of adenosine receptors in DF-EC interaction and if DF effects on endothelium were dependent of its internalization. Confocal microscopy showed interaction of DF with EC membranes followed by internalization, though DF did not reach the cell nucleus even after 24 hours. Flow cytometry revealed concentration, temperature, and time dependent uptake of DF in 2 EC models but not in other cell types. Moreover, inhibitory assays indicated that entrance of DF into ECs occurs primarily through macropinocytosis. Our experimental approach did not show any evidence of the involvement of adenosine receptors in DF-EC interaction. The antiinflammatory and antioxidant properties of DF seem to be caused by the interaction of the drug with the cell membrane. Our findings contribute to a better understanding of the precise mechanisms of action of DF as a therapeutic and potential preventive agent on the endothelial damage underlying different pathologic situations. PMID:26755708
Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.
Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W
2015-10-14
Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton produces the normal biconcave erythrocyte shape and how it is perturbed in pathological conditions that destabilize the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.
Yıldırım, Timur; Eylen, Alpaslan; Lule, Sevda; Erdener, Sefik Evren; Vural, Atay; Karatas, Hulya; Ozveren, Mehmet Faik; Dalkara, Turgay; Gursoy-Ozdemir, Yasemin
2015-01-01
Under pathological conditions such as brain trauma, subarachnoid hemorrhage and stroke, cortical spreading depression (CSD) or peri-infarct depolarizations contribute to brain damage in animal models of neurological disorders as well as in human neurological diseases. CSD causes transient megachannel opening on the neuronal membrane, which may compromise neuronal survival under pathological conditions. Poloxamer-188 (P-188) and citicoline are neuroprotectants with membrane sealing properties. The aim of this study is to investigate the effect of P-188 and citicoline on the neuronal megachannel opening induced by CSD in the mouse brain. We have monitored megachannel opening with propidium iodide, a membrane impermeable fluorescent dye and, demonstrate that P-188 and citicoline strikingly decreased CSD-induced neuronal PI influx in cortex and hippocampal dentate gyrus. Therefore, these agents may be providing neuroprotection by blocking megachannel opening, which may be related to their membrane sealing action and warrant further investigation for treatment of traumatic brain injury and ischemic stroke.
Targeting diseased tissues by pHLIP insertion at low cell surface pH.
Andreev, Oleg A; Engelman, Donald M; Reshetnyak, Yana K
2014-01-01
The discovery of the pH Low Insertion Peptides (pHLIPs®) provides an opportunity to develop imaging and drug delivery agents targeting extracellular acidity. Extracellular acidity is associated with many pathological states, such as those in cancer, ischemic stroke, neurotrauma, infection, lacerations, and others. The metabolism of cells in injured or diseased tissues often results in the acidification of the extracellular environment, so acidosis might be useful as a general marker for the imaging and treatment of diseased states if an effective targeting method can be developed. The molecular mechanism of a pHLIP peptide is based on pH-dependent membrane-associated folding. pHLIPs, being moderately hydrophobic peptides, have high affinities for cellular membranes at normal pH, but fold and insert across membranes at low pH, allowing them to sense pH at the surfaces of cells in diseased tissues, where it is the lowest. Here we discuss the main principles of pHLIP interactions with membrane lipid bilayers at neutral and low pHs, the possibility of tuning the folding and insertion pH by peptide sequence variation, and potential applications of pHLIPs for imaging, therapy and image-guided interventions.
Scalise, Mariafrancesca; Galluccio, Michele; Pochini, Lorena; Console, Lara; Barile, Maria; Giangregorio, Nicola; Tonazzi, Annamaria; Indiveri, Cesare
2017-01-01
Transport systems are hydrophobic proteins localized in cell membranes where they mediate transmembrane flow of nutrients, ions and any other compounds essential for cell metabolism. More than 400 transporters of the SoLuteCarrier (SLC) group are present in human cells. Transporters take contacts also with xenobiotics, thus mediating absorption and/or interaction with these exogenous compounds. Since drugs belong to xenobiotics, transporters gained interest also in drug discovery. Transporters differentially expressed in pathological conditions are exploited as drug targets. Among the methodologies for defining drug interactions, in silico ligand screening and intact cell transport assay were the most diffused, so far. The first is a predictive methodology based on docking chemicals to transporters. It presents limitations due to the small number of human transporter 3D structures that have to be constructed by homology modeling. Intact cells are used for testing effects of drugs and for validating predictions. The challenges of handling this very complex experimental system, are the interferences caused by other transporters and/or intracellular enzymes. Thus, methodologies with lower complexity are welcome. One of the most updated is the proteoliposome nanotechnology consisting in a cell mimicking phospholipid membrane in which a purified transporter is inserted. In this system, drug-transporter interaction can be studied defining kinetics and mechanisms. Several data have been obtained by proteoliposome nanotechnology. An overview of data obtained on the organic cation transporters OCTN1, OCTN2 and on the amino acid transporters ASCT2 and B0AT1 will be presented. Standardized procedures, expected to be pointed out, will enlarge the assay to High Throughput Screenings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Focus on Kir7.1: physiology and channelopathy
Kumar, Mohit; Pattnaik, Bikash R
2014-01-01
Genetic studies have linked alterations in Kir7.1 channel to diverse pathologies. We summarize functional relevance of Kir7.1 channel in retinal pigment epithelium (RPE), regulation of channel function by various cytoplasmic metabolites, and mutations that cause channelopathies. At the apical membrane of RPE, K+ channels contribute to subretinal K+ homeostasis and support Na+/K+ pump and Na+-K+-2Cl− cotransporter function by providing a pathway for K+ secretion. Electrophysiological studies have established that barium- and cesium-sensitive inwardly rectifying K+ (Kir) channels make up a major component of the RPE apical membrane K+ conductance. Native human RPE expresses transcripts for Kir1.1, Kir2.1, Kir2.2, Kir3.1, Kir3.4, Kir4.2, and Kir6.1, albeit at levels at least 50-fold lower than Kir7.1. Kir7.1 is structurally similar to other Kir channels, consisting of 2 trans-membrane domains, a pore-forming loop that contains the selectivity filter, and 2 cytoplasmic polar tails. Within the cytoplasmic structure, clusters of amino acid sequences form regulatory domains that interact with cellular metabolites and control the opening and closing of the channel. Recent evidence indicated that intrinsic sequence motifs present in Kir7.1 control surface expression. Mutant Kir7.1 channels are associated with inherited eye pathologies such as Snowflake Vitreoretinal Degeneration (SVD) and Lebers Congenital Amaurosis (LCA16). Based on the current evidence, mutations implicated in channelopathies have the potential to be used for genetic testing to diagnose blindness due to Kir7.1. PMID:25558901
Mitochondrial lipids in neurodegeneration.
Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina
2017-01-01
Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.
Melatonin membrane receptors in peripheral tissues: Distribution and functions
Slominski, Radomir M.; Reiter, Russel J.; Schlabritz-Loutsevitch, Natalia; Ostrom, Rennolds S.; Slominski, Andrzej T.
2012-01-01
Many of melatonin’s actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes. PMID:22245784
The interactions of peripheral membrane proteins with biological membranes
Johs, Alexander; Whited, A. M.
2015-07-29
The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less
Instrumenting a Fetal Membrane on a Chip as Emerging Technology for Preterm Birth Research.
Gnecco, Juan S; Anders, Anjali P; Cliffel, David; Pensabene, Virginia; Rogers, Lisa M; Osteen, Kevin; Aronoff, David M
2017-01-01
Preterm birth (PTB) is clinically defined as process of giving birth before 37 weeks of gestation and is a leading cause of death among neonates and children under the age of five. Prematurity remains a critical issue in developed countries, yet our understanding of the pathophysiology of PTB remains largely unknown. Among pregnancy complications, subclinical infections such as chorioamnionitis (CAM) are implicated in up to 70% of PTB cases. Specifically, CAM is characterized by the infection of the fetal membranes that surround the developing fetus and extend from the placenta, and is often associated with preterm, premature rupture of the fetal membranes (PPROM). The fetal membrane plays a key structural role in maintaining the fetal and maternal compartments of the gravid uterus. However, our understanding of the mechanisms of PPROM and the spatio-temporal progress of CAM remains vastly unknown. A lack of human-derived models have hindered our understanding of the mechanism that govern spontaneous PTB. Thus, in this short review, we discuss the emerging microfabrication technologies, specifically, organ-on-chip (OoCs) models, that seek to recapitulate the cellular and molecular context of the gestational membranes in vitro. These models show promise to facilitate the investigation of pathologic mechanisms that drive these disease conditions by mimicking the interactive contribution of the major cell types that make up the microenvironment of the fetal membrane and enable high throughput screening. Herein, we histologically characterize the microenvironment of the fetal membrane as a metric for scaling to recapitulate the functional components of the human fetal membrane. We review the current OoC models of the gravid uterus and conceptualize an "Instrumented Fetal Membrane on a Chip" (IFMOC) design as a prototype for PPROM and CAM research. Lastly, we discuss further applications of these OoC models for toxicological or pharmacological screening and personalized medicine. Fetal membrane OoCs offer an innovative and valuable platform to explore complex interactions between multiple drug types, toxic substances, and/or pathogenic microbes and their potential impacts on pregnancy outcomes. Further work will be required by integrating technological and analytical capabilities in order to characterize the fetal membrane microenvironment for preterm birth research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Investigations into the Membrane Interactions of m-Calpain Domain V
Dennison, Sarah R.; Dante, Silvia; Hauß, Thomas; Brandenburg, Klaus; Harris, Frederick; Phoenix, David A.
2005-01-01
m-Calpain is a calcium-dependent heterodimeric protease implicated in a number of pathological conditions. The activation of m-calpain appears to be modulated by membrane interaction, which has been predicted to involve oblique-orientated α-helix formation by a GTAMRILGGVI segment located in domain V of the protein's small subunit. Here, we have investigated this prediction. Fourier transform infrared conformational analysis showed that VP1, a peptide homolog of this segment, exhibited α-helicity of ∼45% in the presence of dimyristoylphosphatidylcholine/dimyristoylphosphatidylserine (DMPS) vesicles. The level of helicity was unaffected over a 1- to 8-mM concentration range and did not alter when the anionic lipid composition of these vesicles was varied between 1% and 10% DMPS. Similar levels of α-helicity were observed in trifluoroethanol and the peptide appeared to adopt α-helical structure at an air/water interface with a molecular area of 164 Å2 at the monolayer collapse pressure. VP1 was found to penetrate dimyristoylphosphatidylcholine/DMPS monolayers, and at an initial surface pressure of 30 mN m−1, the peptide induced surface pressure changes in these monolayers that correlated strongly with their anionic lipid content (maximal at 4 mN m−1 in the presence of 10% DMPS). Neutron diffraction studies showed VP1 to be localized at the hydrophobic core of model palmitoyloleylphosphatidylcholine/palmitoyloleylphosphatidylserine (10:1 molar ratio) bilayer structures and, in combination, these results are consistent with the oblique membrane penetration predicted for the peptide. It would also appear that although not needed for structural stabilization anionic lipid was required for membrane penetration. PMID:15653743
Wei, Jianshe; Fujita, Masayo; Nakai, Masaaki; Waragai, Masaaki; Sekigawa, Akio; Sugama, Shuei; Takenouchi, Takato; Masliah, Eliezer; Hashimoto, Makoto
2009-01-01
Gangliosides may be involved in the pathogenesis of Parkinson’s disease and related disorders, although the precise mechanisms governing this involvement remain unknown. In this study, we determined whether changes in endogenous ganglioside levels affect lysosomal pathology in a cellular model of synucleinopathy. For this purpose, dementia with Lewy body-linked P123H β-synuclein (β-syn) neuroblastoma cells transfected with α-synuclein were used as a model system because these cells were characterized as having extensive formation of lysosomal inclusions bodies. Treatment of these cells with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosyl ceramide synthase, resulted in various features of lysosomal pathology, including compromised lysosomal activity, enhanced lysosomal membrane permeabilization, and increased cytotoxicity. Consistent with these findings, expression levels of lysosomal membrane proteins, ATP13A2 and LAMP-2, were significantly decreased, and electron microscopy demonstrated alterations in the lysosomal membrane structures. Furthermore, the accumulation of both P123H β-syn and α-synuclein proteins was significant in PDMP-treated cells because of the suppressive effect of PDMP on the autophagy pathway. Finally, the detrimental effects of PDMP on lysosomal pathology were significantly ameliorated by the addition of gangliosides to the cultured cells. These data suggest that endogenous gangliosides may play protective roles against the lysosomal pathology of synucleinopathies. PMID:19349362
Ferreri, Carla; Masi, Annalisa; Sansone, Anna; Giacometti, Giorgia; Larocca, Anna Vita; Menounou, Georgia; Scanferlato, Roberta; Tortorella, Silvia; Rota, Domenico; Conti, Marco; Deplano, Simone; Louka, Maria; Maranini, Anna Rosaria; Salati, Arianna; Sunda, Valentina; Chatgilialoglu, Chryssostomos
2016-12-22
Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress-with an excess of radical and oxidative processes-cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.
Ferreri, Carla; Masi, Annalisa; Sansone, Anna; Giacometti, Giorgia; Larocca, Anna Vita; Menounou, Georgia; Scanferlato, Roberta; Tortorella, Silvia; Rota, Domenico; Conti, Marco; Deplano, Simone; Louka, Maria; Maranini, Anna Rosaria; Salati, Arianna; Sunda, Valentina; Chatgilialoglu, Chryssostomos
2016-01-01
Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects. PMID:28025506
Palomo, Marta; Mir, Enrique; Rovira, Montse; Escolar, Ginés; Carreras, Enric; Diaz-Ricart, Maribel
2016-03-31
Defibrotide (DF) has received European Medicines Agency authorization to treat sinusoidal obstruction syndrome, an early complication after hematopoietic cell transplantation. DF has a recognized role as an endothelial protective agent, although its precise mechanism of action remains to be elucidated. The aim of the present study was to investigate the interaction of DF with endothelial cells (ECs). A human hepatic EC line was exposed to different DF concentrations, previously labeled. Using inhibitory assays and flow cytometry techniques along with confocal microscopy, we explored: DF-EC interaction, endocytic pathways, and internalization kinetics. Moreover, we evaluated the potential role of adenosine receptors in DF-EC interaction and if DF effects on endothelium were dependent of its internalization. Confocal microscopy showed interaction of DF with EC membranes followed by internalization, though DF did not reach the cell nucleus even after 24 hours. Flow cytometry revealed concentration, temperature, and time dependent uptake of DF in 2 EC models but not in other cell types. Moreover, inhibitory assays indicated that entrance of DF into ECs occurs primarily through macropinocytosis. Our experimental approach did not show any evidence of the involvement of adenosine receptors in DF-EC interaction. The antiinflammatory and antioxidant properties of DF seem to be caused by the interaction of the drug with the cell membrane. Our findings contribute to a better understanding of the precise mechanisms of action of DF as a therapeutic and potential preventive agent on the endothelial damage underlying different pathologic situations. © 2016 by The American Society of Hematology.
Unloading oxygen in a capillary vessel under a pathological condition.
Escobar, C; Méndez, F
2008-10-01
In this work, we study theoretically the unloading of oxygen from a hemoglobin molecule to the wall of a typical capillary vessel, considering that the hemoglobin under pathological conditions, obeys the rheological Maxwell model. Based on recent experimental evidences in hypertension, we consider that the red blood cells (RBCs) are composed by a single continuous medium in contrast with the classical particulate or discrete RBC models, which are only valid under normal physiological conditions. The analysis considers the hemodynamic interactions between the plasma and the hemoglobin, both circulating in a long horizontal capillary. We apply numerical and analytical methods to obtain the main fluid-dynamic characteristics for both fluids in the limit of low Reynolds and Womersley numbers. A diffusion boundary layer formulation for the oxygen transport in the combined plasma-hemoglobin core region is presented. The main aspects derived are the time and spatial evolution of the membrane. The hemoglobin and plasma velocities and the pressure distributions are shown. For the oxygen unloading the results are the oxy-hemoglobin saturation, the oxygen flux and the oxygen concentration in the cell-free plasma layer. The volume fraction of red blood cells and the Strouhal number have a great influence on the hemodynamic interactions.
Chemical burns of the oral mucosa: report of a case.
Isenberg, S R; Hier, L A; Chauvin, P J
1996-03-01
Clinical diagnosis of a chemical burn of the oral mucous membranes may be a diagnostic challenge. This article's intent is to illustrate the typical appearance of a chemical mucosal burn and to increase awareness of the various compounds which, when in contact with the mucous membranes, can result in a burn. The authors present a case involving a self-inflicted chemical injury of the oral mucous membranes and illustrate how the submission of an easily-obtained tissue specimen for pathologic examination may aid in the diagnosis. Because these superficial tissues can be obtained and submitted without the need for local anesthetic, pathologic examination is a quick, easy, and valuable diagnostic test when a patient's history is difficult to obtain or intentionally misleading.
Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases
NASA Astrophysics Data System (ADS)
Buzhynskyy, Nikolay; Sens, Pierre; Behar-Cohen, Francine; Scheuring, Simon
2011-08-01
The eye lens is a transparent tissue constituted of tightly packed fiber cells. To maintain homeostasis and transparency of the lens, the circulation of water, ions and metabolites is required. Junctional microdomains connect the lens cells and ensure both tight cell-to-cell adhesion and intercellular flow of fluids through a microcirculation system. Here, we overview membrane morphology and tissue functional requirements of the mammalian lens. Atomic force microscopy (AFM) has opened up the possibility of visualizing the junctional microdomains at unprecedented submolecular resolution, revealing the supramolecular assembly of lens-specific aquaporin-0 (AQP0) and connexins (Cx). We compare the membrane protein assembly in healthy lenses with senile and diabetes-II cataract cases and novel data of the lens membranes from a congenital cataract. In the healthy case, AQP0s form characteristic square arrays confined by connexons. In the cases of senile and diabetes-II cataract patients, connexons were degraded, leading to malformation of AQP0 arrays and breakdown of the microcirculation system. In the congenital cataract, connexons are present, indicating probable non-membranous grounds for lens opacification. Further, we discuss the energetic aspects of the membrane organization in junctional microdomains. The AFM hence becomes a biomedical nano-imaging tool for the analysis of single-membrane protein supramolecular association in healthy and pathological membranes.
Boiteux, Céline; Vorobyov, Igor; French, Robert J.; French, Christopher; Yarov-Yarovoy, Vladimir; Allen, Toby W.
2014-01-01
Voltage-gated sodium (Nav) channels are important targets in the treatment of a range of pathologies. Bacterial channels, for which crystal structures have been solved, exhibit modulation by local anesthetic and anti-epileptic agents, allowing molecular-level investigations into sodium channel-drug interactions. These structures reveal no basis for the “hinged lid”-based fast inactivation, seen in eukaryotic Nav channels. Thus, they enable examination of potential mechanisms of use- or state-dependent drug action based on activation gating, or slower pore-based inactivation processes. Multimicrosecond simulations of NavAb reveal high-affinity binding of benzocaine to F203 that is a surrogate for FS6, conserved in helix S6 of Domain IV of mammalian sodium channels, as well as low-affinity sites suggested to stabilize different states of the channel. Phenytoin exhibits a different binding distribution owing to preferential interactions at the membrane and water–protein interfaces. Two drug-access pathways into the pore are observed: via lateral fenestrations connecting to the membrane lipid phase, as well as via an aqueous pathway through the intracellular activation gate, despite being closed. These observations provide insight into drug modulation that will guide further developments of Nav inhibitors. PMID:25136136
Zhao, Leihong; Qu, Xiaolu; Zhang, Meijia; Lin, Hongjun; Zhou, Xiaoling; Liao, Bao-Qiang; Mei, Rongwu; Hong, Huachang
2016-08-01
Failure of membrane hydrophobicity in predicting membrane fouling requires a more reliable indicator. In this study, influences of membrane acid base (AB) property on interfacial interactions in two different interaction scenarios in a submerged membrane bioreactor (MBR) were studied according to thermodynamic approaches. It was found that both the polyvinylidene fluoride (PVDF) membrane and foulant samples in the MBR had relatively high electron donor (γ(-)) component and low electron acceptor (γ(+)) component. For both of interaction scenarios, AB interaction was the major component of the total interaction. The results showed that, the total interaction monotonically decreased with membrane γ(-), while was marginally affected by membrane γ(+), suggesting that γ(-) could act as a reliable indicator for membrane fouling prediction. This study suggested that membrane modification for fouling mitigation should orient to improving membrane surface γ(-) component rather than hydrophilicity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Jianrong; Shen, Liguo; Zhang, Meijia; Hong, Huachang; He, Yiming; Liao, Bao-Qiang; Lin, Hongjun
2016-02-01
Concept of hydrophobicity always fails to accurately assess the interfacial interaction and membrane fouling, which calls for reliable parameters for this purpose. In this study, effects of contact angle on interfacial interactions related to membrane fouling were investigated based on thermodynamic analysis. It was found that, total interaction energy between sludge foulants and membrane monotonically decreases and increases with water and glycerol contact angle, respectively, indicating that these two parameters can be reliable indicators predicting total interaction energy and membrane fouling. Membrane roughness decreases interaction strength for over 20 times, and effects of membrane roughness on membrane fouling should consider water and glycerol contact angle on membrane. It was revealed existence of a critical water and glycerol contact angle for a given membrane bioreactor. Meanwhile, diiodomethane contact angle has minor effect on the total interaction, and cannot be regarded as an effective indicator assessing interfacial interactions and membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Grass, G Daniel; Toole, Bryan P
2015-11-24
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. © 2016 Authors.
Grass, G. Daniel; Toole, Bryan P.
2015-01-01
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. PMID:26604323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Matthew A.; Davies, John D.; Zhang Qiuping
2007-08-01
Emerin and specific isoforms of nesprin-1 and -2 are nuclear membrane proteins which are binding partners in multi-protein complexes spanning the nuclear envelope. We report here the characterisation of the residues both in emerin and in nesprin-1{alpha} and -2{beta} which are involved in their interaction and show that emerin requires nesprin-1 or -2 to retain it at the nuclear membrane. Using several protein-protein interaction methods, we show that residues 368 to 627 of nesprin-1{alpha} and residues 126 to 219 of nesprin-2{beta}, which show high homology to one another, both mediate binding to emerin residues 140-176. This region has previously beenmore » implicated in binding to F-actin, {beta}-catenin and lamin A/C suggesting that it is critical for emerin function. Confirmation that these protein domains interact in vivo was shown using GFP-dominant negative assays. Exogenous expression of either of these nesprin fragments in mouse myoblast C2C12 cells displaced endogenous emerin from the nuclear envelope and reduced the targeting of newly synthesised emerin. Furthermore, we are the first to report that emerin mutations which give rise to X-linked Emery-Dreifuss muscular dystrophy, disrupt binding to both nesprin-1{alpha} and -2{beta} isoforms, further indicating a role of nesprins in the pathology of Emery-Dreifuss muscular dystrophy.« less
The Contribution of α-Synuclein Spreading to Parkinson's Disease Synaptopathy
Faustini, Gaia; Missale, Cristina; Pizzi, Marina; Spano, PierFranco
2017-01-01
Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson's disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration. PMID:28133550
Ultrastructural pathology of cortical capillary pericytes in human traumatic brain oedema.
Castejón, Orlando J
2011-01-01
In human traumatic brain oedema pericytes exhibit remarkable oedematous changes, increased vacuolar and vesicular transport, transient transpericytal channels, and tubular structures demonstrating pericyte brain barrier dysfunction. They show nuclear invaginations, actin and myosin-like filaments, and coupled interaction with endothelial cells through the macula occludens. Some pericytes display hypertrophic and necrotic changes, and phagocytic capacity. Hypertrophic pericytes induce basement membrane splitting. Degenerated pericytes exhibit lacunar enlargement of endoplasmic reticulum, dense osmiophilic bodies, glycogen granules, vacuolization, oedematous Golgi apparatus, and pleomorphic mitochondria. Certain micropinocytotic vesicles are orientated to the Golgi complex and multivesicular bodies, suggesting that pericytes play some role in oedema resolution.
PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.
Dunn, Henry A; Ferguson, Stephen S G
2015-10-01
G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and leukemia-associated RhoGEF), RGS3 and RGS12, spinophilin and neurabin-1, SRC homology 3 domain and multiple ankyrin repeat domain (Shank) proteins (Shank1, Shank2, and Shank3), partitioning defective proteins 3 and 6, multiple PDZ protein 1, Tamalin, neuronal nitric oxide synthase, syntrophins, protein interacting with protein kinase C α 1, syntenin-1, and sorting nexin 27. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Varela, Ana R P; Ventura, Ana E; Carreira, Ana C; Fedorov, Aleksander; Futerman, Anthony H; Prieto, Manuel; Silva, Liana C
2016-12-21
Glucosylceramide (GlcCer) plays an active role in the regulation of various cellular events. Moreover, GlcCer is also a key modulator of membrane biophysical properties, which might be linked to the mechanism of its biological action. In order to understand the biophysical implications of GlcCer on membranes of living cells, we first studied the effect of GlcCer on artificial membranes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). Using an array of biophysical methods, we demonstrate that at lower GlcCer/Chol ratios, GlcCer stabilizes SM/Chol-enriched liquid-ordered domains. However, upon decreasing the Chol content, GlcCer significantly increased membrane order through the formation of gel domains. Changes in pH disturbed the packing properties of GlcCer-containing membranes, leading to an increase in membrane fluidity and reduced membrane electronegativity. To address the biophysical impact of GlcCer in biological membranes, studies were performed in wild type and in fibroblasts treated with conduritol-B-epoxide (CBE), which causes intracellular GlcCer accumulation, and in fibroblasts from patients with type I Gaucher disease (GD). Decreased membrane fluidity was observed in cells containing higher levels of GlcCer, such as in CBE-treated and GD cells. Together, we demonstrate that elevated GlcCer levels change the biophysical properties of cellular membranes, which might compromise membrane-associated cellular events and be of relevance for understanding the pathology of diseases, such as GD, in which GlcCer accumulates at high levels.
Haller, Thomas; Cerrada, Alejandro; Pfaller, Kristian; Braubach, Peter; Felder, Edward
2018-05-01
In alveolar type II (AT II) cells, pulmonary surfactant (PS) is synthetized, stored and exocytosed from lamellar bodies (LBs), specialized large secretory organelles. By applying polarization microscopy (PM), we confirm a specific optical anisotropy of LBs, which indicates a liquid-crystalline mesophase of the stored surfactant phospholipids (PL) and an unusual case of a radiation-symmetric, spherocrystalline organelle. Evidence is shown that the degree of anisotropy is dependent on the amount of lipid layers and their degree of hydration, but unaffected by acutely modulating vital cell parameters like intravesicular pH or cellular energy supply. In contrast, physiological factors that perturb this structure include osmotic cell volume changes and LB exocytosis. In addition, we found two pharmaceuticals, Amiodarone and Ambroxol, both of which severely affect the liquid-crystalline order. Our study shows that PM is an easy, very sensitive, but foremost non-invasive and label-free method able to collect important structural information of PS assembly in live AT II cells which otherwise would be accessible by destructive or labor intense techniques only. This may open new approaches to dynamically investigate LB biosynthesis - the incorporation, folding and packing of lipid membranes - or the initiation of pathological states that manifest in altered LB structures. Due to the observed drug effects, we further suggest that PM provides an appropriate way to study unspecific drug interactions with alveolar cells and even drug-membrane interactions in general. Copyright © 2018 Elsevier B.V. All rights reserved.
Specific Receptor Usage in Plasmodium falciparum Cytoadherence Is Associated with Disease Outcome
Ochola, Lucy B.; Siddondo, Bethsheba R.; Ocholla, Harold; Nkya, Siana; Kimani, Eva N.; Williams, Thomas N.; Makale, Johnstone O.; Liljander, Anne; Urban, Britta C.; Bull, Pete C.; Szestak, Tadge; Marsh, Kevin; Craig, Alister G.
2011-01-01
Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases. PMID:21390226
Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.
Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo
2015-08-01
Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Novel Functional Role of Collagen Glycosylation
Jürgensen, Henrik J.; Madsen, Daniel H.; Ingvarsen, Signe; Melander, Maria C.; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H.; Behrendt, Niels
2011-01-01
Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation. PMID:21768090
He, XiaoCong; Qu, ZhiGuo; Xu, Feng; Lin, Min; Wang, JiuLing; Shi, XingHua; Lu, TianJian
2014-01-07
Studying dendrimer-biomembrane interactions is important for understanding drug and gene delivery. In this study, coarse-grained molecular dynamics simulations were performed to investigate the behaviors of polyamidoamine (PAMAM) dendrimers (G4 and G5) as they interacted with asymmetric membranes from different sides of the bilayer, thus mimicking different dendrimer transport stages. The G4 dendrimer could insert into the membrane during an equilibrated state, and the G5 dendrimer could induce pore formation in the membrane when the dendrimers interacted with the outer side (outer interactions) of an asymmetric membrane [with 10% dipalmitoyl phosphatidylserine (DPPS) in the inner leaflet of the membrane]. During the interaction with the inner side of the asymmetric membrane (inner interactions), the G4 and G5 dendrimers only adsorbed onto the membrane. As the membrane asymmetry increased (e.g., increased DPPS percentage in the inner leaflet of the membrane), the G4 and G5 dendrimers penetrated deeper into the membrane during the outer interactions and the G4 and G5 dendrimers were adsorbed more tightly onto the membrane for the inner interactions. When the DPPS content reached 50%, the G4 dendrimer could completely penetrate through the membrane from the outer side to the inner side. Our study provides molecular understanding and reference information about different dendrimer transport stages during drug and gene delivery.
Pathological alterations typical of human Tay-Sachs disease, in the retina of a deep-sea fish.
Fishelson, L; Delarea, Y; Galil, B S
2000-08-01
Micrographs of retinas from the deep-sea fish Cataetyx laticeps revealed visual cells containing membranous whorls in the ellipsoids of the inner segments resulting from stretching and modifications of the mitochondria membranes and their cristae. These pathological structures seem to be homologous to the whorls observed in retinas of human carriers of Tay-Sachs disease. This disease, a genetic disorder, is found in humans and some mammals. Our findings in fish suggest that the gene responsible can be found throughout the vertebrate evolutionary tree, possibly dormant in most taxa.
Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina
2015-08-18
Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic single amino acid mutations that cause skeletal and cranial dysplasias, as well as cancer, we also study the effects of these mutations on dimerization. First, we show that the A391E mutation, linked to Crouzon syndrome with acanthosis nigricans and to bladder cancer, significantly enhances FGFR3 dimerization in the absence of ligand and thus induces aberrant receptor interactions. Second, we present results about the effect of three cysteine mutations that cause thanatophoric dysplasia, a lethal phenotype. Such cysteine mutations have been hypothesized previously to cause constitutive dimerization, but we find instead that they have a surprisingly modest effect on dimerization. Most of the studied pathogenic mutations also altered FGFR3 dimer structure, suggesting that both increases in dimerization propensities and changes in dimer structure contribute to the pathological phenotypes. The results acquired with the QI-FRET method further our understanding of the interactions between FGFR3 molecules and RTK molecules in general. Since RTK dimerization regulates RTK signaling, our findings advance our knowledge of RTK activity in health and disease. The utility of the QI-FRET method is not restricted to RTKs, and we thus hope that in the future the QI-FRET method will be applied to other classes of membrane proteins, such as channels and G protein-coupled receptors.
Membrane-Mediated Cooperativity of Proteins
NASA Astrophysics Data System (ADS)
Weikl, Thomas R.
2018-04-01
Besides direct protein-protein interactions, indirect interactions mediated by membranes play an important role for the assembly and cooperative function of proteins in membrane shaping and adhesion. The intricate shapes of biological membranes are generated by proteins that locally induce membrane curvature. Indirect curvature-mediated interactions between these proteins arise because the proteins jointly affect the bending energy of the membranes. These curvature-mediated interactions are attractive for crescent-shaped proteins and are a driving force in the assembly of the proteins during membrane tubulation. Membrane adhesion results from the binding of receptor and ligand proteins that are anchored in the apposing membranes. The binding of these proteins strongly depends on nanoscale shape fluctuations of the membranes, leading to a fluctuation-mediated binding cooperativity. A length mismatch between receptor-ligand complexes in membrane adhesion zones causes repulsive curvature-mediated interactions that are a driving force for the length-based segregation of proteins during membrane adhesion.
Bianchi, Anna Rita; Ferreri, Carla; Ruggiero, Simona; Deplano, Simone; Sunda, Valentina; Galloro, Giuseppe; Formisano, Cesare; Mennella, Maria Rosaria Faraone
2016-01-01
Establishing by statistical analyses whether the analyses of auto-modified poly(ADP-ribose)polymerase and erythrocyte membrane fatty acid composition (Fat Profile(®)), separately or in tandem, help monitoring the physio-pathology of the cell, and correlate with diseases, if present. Ninety five subjects were interviewed and analyzed blindly. Blood lymphocytes and erythrocytes were prepared to assay poly(ADP-ribose)polymerase automodification and fatty acid based membrane lipidome, respectively. Poly(ADP-ribose)polymerase automodification levels confirmed their correlation with DNA damage extent, and allowed monitoring disease activity, upon surgical/therapeutic treatment. Membrane lipidome profiles showed lipid unbalance mainly linked to inflammatory states. Statistically both tests were separately significant, and correlated each other within some pathologies. In the laboratory routine, both tests, separately or in tandem, might be a preliminary and helpful step to investigate the occurrence of a given disease. Their combination represents a promising integrated panel for sensible, noninvasive and routine health monitoring.
Wang, Lu; Wang, Jingbo; Cai, Weile; Shi, Yongquan; Zhou, Xinmin; Guo, Guanya; Guo, Changcun; Huang, Xiaofeng; Han, Zheyi; Zhang, Shuai; Ma, Shuoyi; Zhou, Xia; Fan, Daiming; Gershwin, M Eric; Han, Ying
2017-08-01
Danon disease is a genetic deficiency in lysosome-associated membrane protein 2 (LAMP-2), a highly glycosylated constituent of the lysosomal membrane and characterized by a cardiomyopathy, skeletal muscle myopathy, and cognitive impairment. Patients, however, often manifest hepatic abnormalities, but liver function has not been well evaluated and the syndrome is relatively uncommon. Hence, we have taken advantage of a rat that has been deleted of LAMP-2 to study the relative role of LAMP-2 on liver function. Interestingly, rats deficient in LAMP-2 develop a striking increase in serum alkaline phosphatase (ALP) and a decrease in bile flow compared with wild-type littermates. Importantly and by ultrastructural analysis, deficient rats manifest dilated canaliculi that lack microvilli with evidence of bile-containing bodies. Moreover, following bile duct ligation, LAMP-2-deficient rats develop rapid and severe evidence of advanced cholestasis, with an increase in serum bilirubin, as early as 6 h later. In wild-type control rats, multidrug resistance-associated protein 2 (Mrp2) normally concentrates at the bile canalicular membranes to secrete conjugated bilirubin into bile. However, in LAMP-2 y/- rats, Mrp2 was detected in hepatocytes compared with other canalicular proteins including P-glycoproteins, dipeptidyl peptidase IV (CD26), and aminopeptidase (CD13). Our data further suggest that LAMP-2 interacts with the membrane cytoskeletal proteins radixin and F-actin in determining the localization of integral membrane proteins.
Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications.
Hong, Huachang; Peng, Wei; Zhang, Meijia; Chen, Jianrong; He, Yiming; Wang, Fangyuan; Weng, Xuexiang; Yu, Haiying; Lin, Hongjun
2013-10-01
The thermodynamic interactions between membrane and sludge flocs in a submerged membrane bioreactor (MBR) were investigated. It was found that Lewis acid-base (AB) interaction predominated in the total interactions. The interaction energy composition of membrane-sludge flocs combination was quite similar to that of membrane-bovine serum albumin (BSA) combination, indicating the critical role of proteins in adhesion process. Detailed analysis revealed the existence of a repulsive energy barrier in membrane-foulants interaction. Calculation results demonstrated that small flocs possessed higher attractive interaction energy per unit mass, and therefore adhered to membrane surface more easily as compared to large flocs. Meanwhile, initial sludge adhesion would facilitate the following adhesion due to the reduced repulsive energy barrier. Membrane with high electron donor surface tension component was a favor option for membrane fouling abatement. These findings offered new insights into membrane fouling, and also provided significant implications for fouling control in MBRs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Foffani, Guglielmo; Uzcategui, Yoryani G; Gal, Beatriz; Menendez de la Prida, Liset
2007-09-20
Ripples are sharp-wave-associated field oscillations (100-300 Hz) recorded in the hippocampus during behavioral immobility and slow-wave sleep. In epileptic rats and humans, a different and faster oscillation (200-600 Hz), termed fast ripples, has been described. However, the basic mechanisms are unknown. Here, we propose that fast ripples emerge from a disorganized ripple pattern caused by unreliable firing in the epileptic hippocampus. Enhanced synaptic activity is responsible for the irregular bursting of CA3 pyramidal cells due to large membrane potential fluctuations. Lower field interactions and a reduced spike-timing reliability concur with decreased spatial synchronization and the emergence of fast ripples. Reducing synaptically driven membrane potential fluctuations improves both spike-timing reliability and spatial synchronization and restores ripples in the epileptic hippocampus. Conversely, a lower spike-timing reliability, with reduced potassium currents, is associated with ripple shuffling in normal hippocampus. Therefore, fast ripples may reflect a pathological desynchronization of the normal ripple pattern.
Emerging roles for lipids in non-apoptotic cell death
Magtanong, L; Ko, P J; Dixon, S J
2016-01-01
Non-apoptotic regulated cell death (RCD) is essential to maintain organismal homeostasis and may be aberrantly activated during certain pathological states. Lipids are emerging as key components of several non-apoptotic RCD pathways. For example, a direct interaction between membrane phospholipids and the pore-forming protein mixed lineage kinase domain-like (MLKL) is needed for the execution of necroptosis, while the oxidative destruction of membrane polyunsaturated fatty acids (PUFAs), following the inactivation of glutathione peroxidase 4 (GPX4), is a requisite gateway to ferroptosis. Here, we review the roles of lipids in the initiation and execution of these and other forms of non-apoptotic cell death. We also consider new technologies that are allowing for the roles of lipids and lipid metabolism in RCD to be probed in increasingly sophisticated ways. In certain cases, this new knowledge may enable the development of therapies that target lipids and lipid metabolic processes to enhance or suppress specific non-apoptotic RCD pathways. PMID:26967968
Posttranslational modification of autophagy-related proteins in macroautophagy
Xie, Yangchun; Kang, Rui; Sun, Xiaofang; Zhong, Meizuo; Huang, Jin; Klionsky, Daniel J.; Tang, Daolin
2014-01-01
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases. PMID:25484070
NASA Technical Reports Server (NTRS)
Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.
2000-01-01
Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.
El-Warrak, Alexander O; Olmstead, Marvin; Schneider, Rebecca; Meinel, Lorenz; Bettschart-Wolfisberger, Regula; Akens, Margarete K; Auer, Joerg; von Rechenberg, Brigitte
2004-01-01
Background Aseptic loosening of hip prosthesis as it occurs in clinical cases in human patients was attributed to wear particles of the implants, the response of the tissue dominated by macrophages and the production of inflammatory mediators and matrix degrading enzymes; however, the cascade of events initiating the process and their interaction regarding the time course is still open and discussed controversially. Therefore, the goal of this study was to establish an experimental animal model in sheep allowing to follow the cascade of early mechanical and biochemical events within the interface membrane and study the sequence of how they contribute to the pathological bone resorption necessary for aseptic loosening of the implant. Methods A cemented modular system (Biomedtrix) was used as a hip replacement in 24 adult Swiss Alpine sheep, with one group receiving a complete cement mantle as controls (n = 12), and the other group a cement mantle with a standardized, lateral, primary defect in the cement mantle (n = 12). Animals were followed over time for 2 and 8.5 months (n = 6 each). After sacrifice, samples from the interface membranes were harvested from five different regions of the femur and joint capsule. Explant cell cultures were performed and supernatant of cultures were tested and assayed for nitric oxide, prostaglandin E2, caseinolytic and collagenolytic activity. RNA extraction and quantification were performed for inducible nitric oxide synthase, cyclooxygenase-2, interleukin 1, and interleukin 6. Overall differences between groups and time periods and interactions thereof were calculated using a factorial analysis of variance (ANOVA). Results The development of an interface membrane was noticed in both groups at both time points. However, in the controls the interface membrane regressed in thickness and biological activity, while both variables increased in the experimental group with the primary cement mantle defect over time. Nitric oxide (NO) and PGE2 concentrations were higher in the 8.5 months group (P < 0.0001) compared to the 2 months group with a tendency for the unstable group to have higher concentrations. The same was true for collagenolytic activity (P = 0.05), but not for caseinolytic activity that decreased over time (P < 0.0001). Conclusion In this study, a primary cement mantle defect of the femoral shaft elicited biomechanical instability and biochemical changes over time in an experimental animal study in sheep, that resembled the changes described at the bone cement-interface in aseptic loosening of total hip prosthesis in humans. The early biochemical changes may well explain the pathologic bone resorption and formation of an interface membrane as is observed in clinical cases. This animal model may aid in future studies aiming at prevention of aseptic loosening of hip prosthesis and reflect some aspects of the pathogenesis involved. PMID:15113432
van Wijk, Nick; Broersen, Laus M; de Wilde, Martijn C; Hageman, Robert J J; Groenendijk, Martine; Sijben, John W C; Kamphuis, Patrick J G H
2014-01-01
Synapse loss and synaptic dysfunction are pathological processes already involved in the early stages of Alzheimer's disease (AD). Synapses consist principally of neuronal membranes, and the neuronal and synaptic losses observed in AD have been linked to the degeneration and altered composition and structure of these membranes. Consequently, synapse loss and membrane-related pathology provide viable targets for intervention in AD. The specific nutrient combination Fortasyn Connect (FC) is designed to ameliorate synapse loss and synaptic dysfunction in AD by addressing distinct nutritional needs believed to be present in these patients. This nutrient combination comprises uridine, docosahexaenoic acid, eicosapentaenoic acid, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium, and is present in Souvenaid, a medical food intended for use in early AD. It has been hypothesized that FC counteracts synaptic loss and reduces membrane-related pathology in AD by providing nutritional precursors and cofactors that act together to support neuronal membrane formation and function. Preclinical studies formed the basis of this hypothesis which is being validated in a broad clinical study program investigating the potential of this nutrient combination in AD. Memory dysfunction is one key early manifestation in AD and is associated with synapse loss. The clinical studies to date show that the FC-containing medical food improves memory function and preserves functional brain network organization in mild AD compared with controls, supporting the hypothesis that this intervention counteracts synaptic dysfunction. This review provides a comprehensive overview of basic scientific studies that led to the creation of FC and of its effects in various preclinical models.
Martel, Cecile; Allouche, Maya; Esposti, Davide Degli; Fanelli, Elena; Boursier, Céline; Henry, Céline; Chopineau, Joel; Calamita, Giuseppe; Kroemer, Guido; Lemoine, Antoinette; Brenner, Catherine
2013-01-01
Nonalcoholic steatosis is a liver pathology characterized by fat accumulation and severe metabolic alterations involving early mitochondrial impairment and late hepatocyte cell death. However, mitochondrial dysfunction mechanisms remain elusive. Using four models of nonalcoholic steatosis, i.e., livers from patients with fatty liver disease, ob/ob mice, mice fed a high-fat diet, and in vitro models of lipotoxicity, we show that outer mitochondrial membrane permeability is altered and identified a posttranslational modification of voltage-dependent anion channel (VDAC), a membrane channel and NADH oxidase, as a cause of early mitochondrial dysfunction. Thus, in nonalcoholic steatosis VDAC exhibits reduced threonine phosphorylation, which increases the influx of water and calcium into mitochondria, sensitizes the organelle to matrix swelling, depolarization, and cytochrome c release without inducing cell death. This also amplifies VDAC enzymatic and channel activities regulation by calcium and modifies its interaction with proteic partners. Moreover, lipid accumulation triggers a rapid lack of VDAC phosphorylation by glycogen synthase kinase 3 (GSK3). Pharmacological and genetic manipulations proved GSK3 to be responsible for VDAC phosphorylation in normal cells. Notably, VDAC phosphorylation level correlated with steatosis severity in patients. VDAC acts as an early sensor of lipid toxicity and its GSK3-mediated phosphorylation status controls outer mitochondrial membrane permeabilization in hepatosteatosis. Copyright © 2012 American Association for the Study of Liver Diseases.
Huang, Jiqing; Kast, Juergen
2015-08-07
Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.
Taylor, M L; Duarte-Escalante, E; Reyes-Montes, M R; Elizondo, N; Maldonado, G; Zenteno, E
1998-01-01
The interaction of macrophage-membrane proteins and histoplasmin, a crude antigen of the pathogenic fungus Histoplasma capsulatum, was studied using murine peritoneal macrophages. Membrane proteins were purified via membrane attachment to polycationic beads and solubilized in Tris–HCl/SDS/DTT/glycerol for protein extraction; afterwards they were adsorbed or not with H. capsulatum yeast or lectin binding-enriched by affinity chromatography. Membrane proteins and histoplasmin interactions were detected by ELISA and immunoblotting assays using anti-H. capsulatum human or mouse serum and biotinylated goat anti-human or anti-mouse IgG/streptavidin-peroxidase system to reveal the interaction. Results indicate that macrophage-membrane proteins and histoplasmin components interact in a dose-dependent reaction, and adsorption of macrophage-membrane proteins by yeast cells induces a critical decrease in the interaction. Macrophage-membrane glycoproteins with terminal d-galactosyl residues, purified by chromatography with Abrus precatorius lectin, bound to histoplasmin; and two bands of 68 kD and 180 kD of transferred membrane protein samples interacted with histoplasmin components, as revealed by immunoblot assays. Specificity for β-galactoside residues on the macrophage-membrane was confirmed by galactose inhibition of the interaction between macrophage-membrane proteins and histoplasmin components, in competitive ELISA using sugars, as well as by enzymatic cleavage of the galactoside residues. PMID:9737672
In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs
Röck, Ruth; Bachmann, Verena; Bhang, Hyo-eun C; Malleshaiah, Mohan; Raffeiner, Philipp; Mayrhofer, Johanna E; Tschaikner, Philipp M; Bister, Klaus; Aanstad, Pia; Pomper, Martin G; Michnick, Stephen W; Stefan, Eduard
2015-01-01
Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems. PMID:26099953
Reddy, Tyler; Manrique, Santiago; Buyan, Amanda; Hall, Benjamin A; Chetwynd, Alan; Sansom, Mark S P
2014-01-21
Receptor tyrosine kinases are single-pass membrane proteins that form dimers within the membrane. The interactions of their transmembrane domains (TMDs) play a key role in dimerization and signaling. Fibroblast growth factor receptor 3 (FGFR3) is of interest as a G380R mutation in its TMD is the underlying cause of ~99% of the cases of achondroplasia, the most common form of human dwarfism. The structural consequences of this mutation remain uncertain: the mutation shifts the position of the TMD relative to the lipid bilayer but does not alter the association free energy. We have combined coarse-grained and all-atom molecular dynamics simulations to study the dimerization of wild-type, heterodimer, and mutant FGFR3 TMDs. The simulations reveal that the helices pack together in the dimer to form a flexible interface. The primary packing mode is mediated by a Gx3G motif. There is also a secondary dimer interface that is more highly populated in heterodimer and mutant configurations that may feature in the molecular mechanism of pathology. Both coarse-grained and atomistic simulations reveal a significant shift of the G380R mutant dimer TMD relative to the bilayer to allow interactions of the arginine side chain with lipid headgroup phosphates.
Reddy, Tyler; Manrique, Santiago; Buyan, Amanda; Hall, Benjamin A.; Chetwynd, Alan; Sansom, Mark S.P.
2016-01-01
Receptor tyrosine kinases are single pass membrane proteins which form dimers within the membrane. The interactions of their transmembrane domains (TMDs) play a key role in dimerization and signaling. The fibroblast growth factor receptor 3 (FGFR3) is of interest as a G380R mutation in its TMD is the underlying cause of ~99% of cases of achondroplasia, the most common form of human dwarfism. The structural consequences of this mutation remain uncertain: the mutation shifts the position relative of the TMD relative to the lipid bilayer but does not alter the association free energy. We have combined coarse-grained and all-atom molecular dynamics simulations to study the dimerization of wild-type, heterodimer, and mutant FGFR3 TMDs. The simulations reveal that the helices pack together in the dimer to form a flexible interface. The primary packing mode is mediated by a Gx3G motif. There is also a secondary dimer interface which is more highly populated in heterodimer and mutant configurations which may feature in the molecular mechanism of pathology. Both coarse-grained and atomistic simulations reveal a significant shift of the G380R mutant dimer TMD relative to the bilayer so as to enable interactions of the arginine sidechain with lipid head group phosphates. PMID:24397339
[Effect of tobacco smoking on skin and mucosa appearance, ageing and pathological conditions].
Czogała, Jan; Goniewicz, Maciej Ł; Czubek, Agnieszka; Gołabek, Karolina; Sobczak, Andrzej
2008-01-01
Tobacco smoking is considered to be one of the main factors that negatively affect the skin, mucous membranes and teeth, i.e. the body parts that decide on the so called 'healthy look' and 'attraction'. This paper is a review of literature on the subject of harmful and pathological influence of tobacco smoking on the skin and the immunological system. Furthermore, the paper described such smoking results as wrinkle development, skin elasticity and thickness loss, as well as a decreased ability of tissues to regenerate. Finally, the authors discussed various diseases connected with tobacco use: changes in the skin, teeth and mucous membranes, and cancerous lesions.
Connexins and Pannexins in Vascular Function and Disease.
Molica, Filippo; Figueroa, Xavier F; Kwak, Brenda R; Isakson, Brant E; Gibbins, Jonathan M
2018-06-05
Connexins (Cxs) and pannexins (Panxs) are ubiquitous membrane channel forming proteins that are critically involved in many aspects of vascular physiology and pathology. The permeation of ions and small metabolites through Panx channels, Cx hemichannels and gap junction channels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. This review provides an overview of current knowledge with respect to the pathophysiological role of these channels in large arteries, the microcirculation, veins, the lymphatic system and platelet function. The essential nature of these membrane proteins in vascular homeostasis is further emphasized by the pathologies that are linked to mutations and polymorphisms in Cx and Panx genes.
Trans-plasma membrane electron transport in mammals: functional significance in health and disease.
Del Principe, Domenico; Avigliano, Luciana; Savini, Isabella; Catani, Maria Valeria
2011-06-01
Trans-plasma membrane electron transport (t-PMET) has been established since the 1960s, but it has only been subject to more intensive research in the last decade. The discovery and characterization at the molecular level of its novel components has increased our understanding of how t-PMET regulates distinct cellular functions. This review will give an update on t-PMET, with particular emphasis on how its malfunction relates to some diseases, such as cancer, abnormal cell death, cardiovascular diseases, aging, obesity, neurodegenerative diseases, pulmonary fibrosis, asthma, and genetically linked pathologies. Understanding these relationships may provide novel therapeutic approaches for pathologies associated with unbalanced redox state.
Circulating Membrane-Derived Microvesicles in Redox Biology
Larson, Michael Craig; Hillery, Cheryl A.; Hogg, Neil
2015-01-01
Microparticles or microvesicles (MV) are sub-cellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or result of cellular redox signaling has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids, and harbor redox-regulated matrix metalloproteinases and pro-coagulative surface molecules; and circulating MVs from RBCs and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. While our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely a pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes—developmental, homeostatic and pathological—and the role of MVs in redox signaling is an rich and exciting area of investigation. PMID:24751526
Exosomal miRNAs as potential biomarkers of cardiovascular risk in children
2014-01-01
Intercellular interactions are essential for basic cellular activities and errors in either receiving or transferring these signals have shown to cause pathological conditions. These signals are not only regulated by membrane surface molecules but also by soluble secreted proteins, thereby allowing for an exquisite coordination of cell functions. Exosomes are released by cells upon fusion of multivesicular bodies (MVB) with the plasma membrane. Their envelope reflects their cellular origin and their surface and internal contents include important signaling components. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, miRNAs and small RNAs that are representative to their cellular origin and shuttle from donor cells to recipient cells. The exosome formation cargo content and delivery is of immense biological interest because exosomes are believed to play major roles in various pathological conditions, and therefore provide unique opportunities for biomarker discovery and development of non-invasive diagnostics when examined in biological fluids such as urine and blood plasma. For example, circulating miRNAs in exosomes have been applied as functional biomarkers for diagnosis and outcomes prediction, while synthetic miRNAs in polymer-based nanoparticles are applicable for therapeutics. This review provides insights into the composition and functional properties of exosomes, and focuses on their potential value as diagnostic markers in the context of cardiovascular disease risk estimates in children who suffer from conditions associated with heightened prevalence of adverse cardiovascular disease, namely obesity and sleep-disordered-breathing. PMID:24912806
Monocarboxylate transporters in the brain and in cancer.
Pérez-Escuredo, Jhudit; Van Hée, Vincent F; Sboarina, Martina; Falces, Jorge; Payen, Valéry L; Pellerin, Luc; Sonveaux, Pierre
2016-10-01
Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1-4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells and between glycolytic cells and endothelial cells. Lactate is not only a metabolic waste for glycolytic cells and a metabolic fuel for oxidative cells, but it also behaves as a signaling agent that promotes angiogenesis and as an immunosuppressive metabolite. Because MCTs gate the activities of lactate, drugs targeting these transporters have been developed that could constitute new anticancer treatments. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Lin, Hongjun; Zhang, Meijia; Mei, Rongwu; Chen, Jianrong; Hong, Huachang
2014-11-01
This study proposed a novel approach for quantitative evaluation of the physicochemical interactions between a particle and rough surface. The approach adopts the composite Simpson's rule to numerically calculate the double integrals in the surface element integration of these physicochemical interactions. The calculation could be achieved by a MATLAB program based on this approach. This approach was then applied to assess the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor (MBR). The results showed that, as compared with smooth membrane surface, rough membrane surface had a much lower strength of interactions with sludge foulants. Meanwhile, membrane surface morphology significantly affected the strength and properties of the interactions. This study showed that the newly developed approach was feasible, and could serve as a primary tool for investigating membrane fouling in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Surfaces modulate beta-amyloid peptide aggregation associated with Alzheimer's disease
NASA Astrophysics Data System (ADS)
Yates, Elizabeth Anne
A hallmark of Alzheimer's disease, a late onset neurodegenerative disease, is the presence of neuritic amyloid plaques deposited within the brain composed of beta-amyloid (Abeta) peptide aggregates. Abeta can aggregate into a variety of polymorphic aggregate structures under different chemical environments, specifically affected by the presence of differing surfaces. There are several point mutations clustered around the central hydrophobic core of Abeta (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation). These mutations are associated with hereditary diseases ranging from almost pure cerebral amyloid angiopathy to typical Alzheimer's disease pathology with both plaques and tangles. To determine how these different point mutations, which modify both peptide charge and hydrophobic character, altered Abeta aggregation and morphology under free solution conditions, at an anionic surface/liquid interface and in the presence of supported lipid bilayers, atomic force microscopy was used. Additionally, the non-native conformation of Abeta leads to the formation of nanoscale, toxic aggregates which have been shown to strongly interact with supported lipid bilayers, which may represent a key step in potential toxic mechanisms. Understanding how specific regions of Abeta regulate its aggregation in the absence and presence of surfaces can provide insight into the fundamental interaction of Abeta with cellular surfaces. Specific fragments of Abeta (Abeta1-11, Abeta 1-28, Abeta10-26, Abeta12-24, Abeta 16-22, Abeta22-35, and Abeta1-40), represent a variety of chemically unique regions along Abeta, i.e., the extracellular domain, the central hydrophobic core, and transmembrane domain. Using various scanning probe microscopic techniques, the interaction of these Abeta sequences with lipid membranes was shown to alter aggregate morphology and induce mechanical changes of lipid bilayers compared to aggregates formed under free solution conditions. Lastly, in order to determine how chemical environment can lead to distinct polymorph fibril formation influencing disease pathology, various peptide preparation and fibril growth conditions of Abeta were studied in free solution and with a model lipid membrane.
Experimental basis of laser therapy in pharynx pathology
NASA Astrophysics Data System (ADS)
Toropova, Lyudmila A.; Fedyukovich, Lyudmila V.; Egorova, Alla B.
1998-07-01
Membrane-damaging action of laser irradiation comparing with membranotoxic activity of model xenobiotics (Novocain and Acrylamide) has been evaluated in our experiments using Rosette-Forming Ability test (RFA) on rat blood lymphocytes, thymocytes, splenocytes for the assessment of membrane- mediated and receptor-mediated immune cells interactions. Infra-red laser irradiation (80 and 1500 Hz, 0.89 mkM) in vivo induced 2-fold increase of lymphocytes capable to form specific rosettes with xenogenous erythrocytes. T-lymphocytes were greatly sensitive to the laser influence. Acute laser exposure (128 sec) induced changes similar to Novocain action (1/2 LD50). Five-fold increase of the laser exposure time (especially for low frequency regime) resulted in more prominent changes in intercellular communication which were found to be similar to the action of Acrylamide (1/2 LD50). B-lymphocytes and splenocytes have been assumed as target cells for the action of laser with the frequency of 1500 Hz. Course application of IR or He-Ne laser induced decrease of RFA for all immune cells tested, and for blood lymphocytes, respectively. Thus, laser-induced changes in immune cells interaction may be connected with reversible injury of cell surface membrane followed by the dysregulation of cellular communication. Based on experimental data, the optimal regime of IR laserotherapy (0.89 and 0.63 micrometer) was chosen for the treatment of 200 patients with chronic decompensated tonsillitis. Efficiency of laser application was confirmed by cytological analysis of lacunes, laserodopplerofluometria, vegetative nervous system evaluation etc. and was found to be dependent on membranotropic activity of laser irradiation.
Kumar, Ambuj; Purohit, Rituraj
2013-01-01
Background AKT1 (v-akt murine thymoma viral oncogene homologue 1) kinase is one of the most frequently activated proliferated and survival pathway of cancer. Recently it has been shown that E17K mutation in the Pleckstrin Homology (PH) domain of AKT1 protein leads to cancer by amplifying the phosphorylation and membrane localization of protein. The mutant has shown resistance to AKT1/2 inhibitor VIII drug molecule. In this study we have demonstrated the detailed structural and molecular consequences associated with the activity regulation of mutant protein. Methods The docking score exhibited significant loss in the interaction affinity to AKT1/2 inhibitor VIII drug molecule. Furthermore, the molecular dynamics simulation studies presented an evidence of rapid conformational drift observed in mutant structure. Results There was no stability loss in mutant as compared to native structure and the major cation–π interactions were also shown to be retained. Moreover, the active residues involved in membrane localization of protein exhibited significant rise in NHbonds formation in mutant. The rise in NHbond formation in active residues accounts for the 4-fold increase in the membrane localization potential of protein. Conclusion The overall result suggested that, although the mutation did not induce any stability loss in structure, the associated pathological consequences might have occurred due to the rapid conformational drifts observed in the mutant AKT1 PH domain. General Significance The methodology implemented and the results obtained in this work will facilitate in determining the core molecular mechanisms of cancer-associated mutations and in designing their potential drug inhibitors. PMID:23741320
Knutti, Nadine; Kuepper, Michael; Friedrich, Karlheinz
2015-11-01
EMMPRIN (extracellular matrix metalloproteinase inducer) is a widely expressed glycoprotein and a member of the immunoglobulin superfamily which exists in both a membrane-spanning and a soluble form. Homotypic interactions of EMMPRIN underlie its multiple roles in normal development and pathological situations such as viral infections, Alzheimer's disease and cancer. This study employed a recombinant soluble, fully glycosylated EMMPRIN domain (rhsEMN) as a tool to characterize the structural basis of EMMPRIN-EMMPRIN receptor (EMNR) contacts and their functional effects on MCF-7 breast carcinoma cells. rhsEMN did not form dimers in solution but bound to surface EMMPRIN (EMN) on MCF-7 cells with high affinity and was readily internalized. The interaction interface for the homotypic contact was localized to the N-terminal Ig domain. rhsEMN exerted a stimulatory effect on proliferation of MCF-7 cells whereas it reduced cell migration in a dose-dependent manner. These effects were accompanied by an upregulation of endogenous EMMPRIN as well as of matrix metalloproteinase-14 (MMP-14), a membrane-bound protease involved in the extracellular release of soluble EMMPRIN, indicating a regulatory feedback mechanism. The proliferation-promoting activity of rhsEMN was mimicked by a novel functional antibody directed to EMMPRIN, underscoring that crosslinking of cell surface EMMPRIN (EMNR) is crucial for eliciting intracellular signalling. Addressing malignancy-related signal transduction in HEK-293 cells, we could show that rhsEMN triggers the oncogenic Wnt pathway. © 2015 FEBS.
Hong, Huachang; Cai, Xiang; Shen, Liguo; Li, Renjie; Lin, Hongjun
2017-10-01
Quantification of interfacial interactions between two rough surfaces represents one of the most pressing requirements for membrane fouling prediction and control in membrane bioreactors (MBRs). This study firstly constructed regularly rough membrane and particle surfaces by using rigorous mathematical equations. Thereafter, a new method involving surface element integration (SEI) method, differential geometry and composite Simpson's rule was proposed to quantify the interfacial interactions between the two constructed rough surfaces. This new method were then applied to investigate interfacial interactions in a MBR with the data of surface properties of membrane and foulants experimentally measured. The feasibility of the new method was verified. It was found that asperity amplitude and period of the membrane surface exerted profound effects on the total interaction. The new method had broad potential application fields especially including guiding membrane surface design for membrane fouling mitigation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Posokhov, Yevgen
2016-09-01
Environment-sensitive fluorescent probes were used for the spectroscopic visualization of pathological changes in human platelet membranes during cerebral atherosclerosis. It has been estimated that the ratiometric probes 2-(2‧-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole and 2-phenyl-phenanthr[9,10]oxazole can detect changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during the disease.
Wang, Huan; Wang, Qingguo; Yang, Meijuan; Yang, Lili; Wang, Weili; Ding, Haobin; Zhang, Dong; Xu, Jing; Tang, Xuezhang; Ding, Haitao; Wang, Qingfu
2018-02-01
Osteoarthritis (OA) is a common chronic degenerative disease that affects all joints. At present, the pathological processes and mechanisms of OA are still unclear. Innate immunity, a key player in damage to the structure of the joint and the mechanism by which the host attempts to repair OA, affects all pathological stages of the disease. In the present study, our aim was to assess changes in innate immunity during the pathological processes of OA in articular cartilage (AC) and the synovial membrane (SM), which are the major structures in joints, and to systematically examine the histological changes in AC and SM in mild, moderate and severe cases of OA, in order to further speculate about the manner in which the interactions of AC and SM are facilitated by innate immunity. Histological methods (including HE and Safranin O-fast green staining), immunofluorescent double staining, TUNEL stain, and Western blots were used to assess the morphological changes within AC and SM tissues in healthy and mild, moderate, or severe OA rats. Our results showed that the damage to AC and SM within the joints progressively worsened in different degrees during the course of the disease, and that the innate immune system was closely involved in the AC and SM during each stage of OA. These findings also confirmed that SM may affect the pathological changes in AC through the innate immune system, and therefore affect the progress of OA. © 2017 Wiley Periodicals, Inc.
Henry, Sarah; Vignaud, Hélène; Bobo, Claude; Decossas, Marion; Lambert, Oliver; Harte, Etienne; Alves, Isabel D; Cullin, Christophe; Lecomte, Sophie
2015-03-09
The toxicity of amyloids, as Aβ(1-42) involved in Alzheimer disease, is a subject under intense scrutiny. Many studies link their toxicity to the existence of various intermediate structures prior to fiber formation and/or their specific interaction with membranes. In this study we focused on the interaction between membrane models and Aβ(1-42) peptides and variants (L34T, mG37C) produced in E. coli and purified in monomeric form. We evaluated the interaction of a toxic stable oligomeric form (oG37C) with membranes as comparison. Using various biophysical techniques as fluorescence and plasmon waveguide resonance, we clearly established that the oG37C interacts strongly with membranes leading to its disruption. All the studied peptides destabilized liposomes and accumulated slowly on the membrane (rate constant 0.02 min(-1)). Only the oG37C exhibited a particular pattern of interaction, comprising two steps: the initial binding followed by membrane reorganization. Cryo-TEM was used to visualize the peptide effect on liposome morphologies. Both oG37C and mG37C lead to PG membrane fragmentation. The PG membrane promotes peptide oligomerization, implicated in membrane disruption. WT (Aβ(1-42)) also perturbs liposome organization with membrane deformation rather than disruption. For all the peptides studied, their interaction with the membranes changes their fibrillization process, with less fibers and more small aggregates being formed. These studies allowed to establish, a correlation between toxicity, fiber formation, and membrane disruption.
Peetla, Chiranjeevi; Stine, Andrew; Labhasetwar, Vinod
2009-01-01
The transport of drugs or drug delivery systems across the cell membrane is a complex biological process, often difficult to understand because of its dynamic nature. In this regard, model lipid membranes, which mimic many aspects of cell-membrane lipids, have been very useful in helping investigators to discern the roles of lipids in cellular interactions. One can use drug-lipid interactions to predict pharmacokinetic properties of drugs, such as their transport, biodistribution, accumulation, and hence efficacy. These interactions can also be used to study the mechanisms of transport, based on the structure and hydrophilicity/hydrophobicity of drug molecules. In recent years, model lipid membranes have also been explored to understand their mechanisms of interactions with peptides, polymers, and nanocarriers. These interaction studies can be used to design and develop efficient drug delivery systems. Changes in the lipid composition of cells and tissue in certain disease conditions may alter biophysical interactions, which could be explored to develop target-specific drugs and drug delivery systems. In this review, we discuss different model membranes, drug-lipid interactions and their significance, studies of model membrane interactions with nanocarriers, and how biophysical interaction studies with lipid model membranes could play an important role in drug discovery and drug delivery. PMID:19432455
Procalcitonin for prediction of chorioamnionitis in preterm premature rupture of membranes.
Thornburg, Loralei L; Queenan, Ruthanne; Brandt-Griffith, Brianne; Pressman, Eva K
2016-01-01
To assess serum procalcitonin (PCT), a marker of monocyte activity, in predicting chorioamnionitis in preterm premature rupture of membranes (PPROM). Prospective cohort study in singleton gestation patients with PPROM between 2 2 + 0 to 3 3 + 6 weeks gestation. Two blood samples were taken - admission and delivery or diagnosis of clinical chorioamnionitis. Maternal serum PCT > 0.1 ng/mL was considered positive. Patients were divided into four groups: clinical evidence of chorioamnionitis confirmed by placental pathology (group C + P); pathological evidence of chorioamnionitis without clinical signs (group P); clinical signs only (group C); and patients without clinical or pathological findings (group N). Groups were compared to gestational age matched controls. Forty eight patients recruited, with 28 eligible for analysis: 10 in C + P group, 10 P group, 3 C group, and 5 N group. None of the control or PPROM patients had positive PCT on admission. At delivery, 3 of 10 group C + P and 4 of 10 group P had positive PCT. Maternal serum PCT sensitivity was 50% and specificity 55.6% for diagnosis of pathological chorioamnionitis. Maternal serum PCT is not detectable in PPROM patients at admission or in uncomplicated pregnant controls and is a poor predictor for clinical or pathological chorioamnionitis.
Mammalian plasma membrane proteins as potential biomarkers and drug targets.
Rucevic, Marijana; Hixson, Douglas; Josic, Djuro
2011-06-01
Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tsuchiya, Hironori
2015-10-16
In addition to interacting with functional proteins such as receptors, ion channels, and enzymes, a variety of drugs mechanistically act on membrane lipids to change the physicochemical properties of biomembranes as reported for anesthetic, adrenergic, cholinergic, non-steroidal anti-inflammatory, analgesic, antitumor, antiplatelet, antimicrobial, and antioxidant drugs. As well as these membrane-acting drugs, bioactive plant components, phytochemicals, with amphiphilic or hydrophobic structures, are presumed to interact with biological membranes and biomimetic membranes prepared with phospholipids and cholesterol, resulting in the modification of membrane fluidity, microviscosity, order, elasticity, and permeability with the potencies being consistent with their pharmacological effects. A novel mechanistic point of view of phytochemicals would lead to a better understanding of their bioactivities, an insight into their medicinal benefits, and a strategic implication for discovering drug leads from plants. This article reviews the membrane interactions of different classes of phytochemicals by highlighting their induced changes in membrane property. The phytochemicals to be reviewed include membrane-interactive flavonoids, terpenoids, stilbenoids, capsaicinoids, phloroglucinols, naphthodianthrones, organosulfur compounds, alkaloids, anthraquinonoids, ginsenosides, pentacyclic triterpene acids, and curcuminoids. The membrane interaction's applicability to the discovery of phytochemical drug leads is also discussed while referring to previous screening and isolating studies.
Naughton, Fiona B; Kalli, Antreas C; Sansom, Mark S P
2018-02-02
Pleckstrin homology (PH) domains mediate protein-membrane interactions by binding to phosphatidylinositol phosphate (PIP) molecules. The structural and energetic basis of selective PH-PIP interactions is central to understanding many cellular processes, yet the molecular complexities of the PH-PIP interactions are largely unknown. Molecular dynamics simulations using a coarse-grained model enables estimation of free-energy landscapes for the interactions of 12 different PH domains with membranes containing PIP 2 or PIP 3 , allowing us to obtain a detailed molecular energetic understanding of the complexities of the interactions of the PH domains with PIP molecules in membranes. Distinct binding modes, corresponding to different distributions of cationic residues on the PH domain, were observed, involving PIP interactions at either the "canonical" (C) and/or "alternate" (A) sites. PH domains can be grouped by the relative strength of their C- and A-site interactions, revealing that a higher affinity correlates with increased C-site interactions. These simulations demonstrate that simultaneous binding of multiple PIP molecules by PH domains contributes to high-affinity membrane interactions, informing our understanding of membrane recognition by PH domains in vivo. Copyright © 2017. Published by Elsevier Ltd.
Lysosomal exocytosis and lipid storage disorders
Samie, Mohammad Ali; Xu, Haoxing
2014-01-01
Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. PMID:24668941
Milrot, Elad; Mutsafi, Yael; Fridmann-Sirkis, Yael; Shimoni, Eyal; Rechav, Katya; Gurnon, James R; Van Etten, James L; Minsky, Abraham
2016-01-01
The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway. © 2015 John Wiley & Sons Ltd.
Reaction of cells to local, regional, and general low-intensive laser irradiation
NASA Astrophysics Data System (ADS)
Baibekov, Iskander M.; Kasymov, A. S.; Musaev, Erkin S.; Vorojeikin, V. M.; Artikov, S. N.
1993-07-01
Local influence of low intensive laser irradiation (LILI) of Helium-Neon (HNL), Copper vapor (CVL), Nitrogen (UVL) and Arsenic Gallium (AGL) lasers cause stimulation of processes of physiological and reparative regeneration in intact skin, and mucous membrane of stomach and duodenum, dermatome wounds and gastroduodenal ulcers. Structural bases of these effects are the acceleration of cell proliferation and differentiation and also the activation of intracellular structures and intensification of cell secretion. Regional influence of the pointed types of LILI on hepar in cirrhosis and hepatitis causes decreasing of the inflammatory and cirrhotic changes. After endo- and exo-vascular laser irradiations of blood the decreasing of the number of pathological forms of erythrocytes and the increasing of their catalase activity, are indicated. General (total) laser irradiation of the organism--laser shower, increases the bone marrow cells proliferation, especially myeloid series. It is accompanied with acceleration of their differentiation and migration in circulation. It was revealed, that HNL to a considerable extent influences the epithelial cells and CVL the connective tissue cells. UVL increases the amount of microorganisms on cell surfaces (membrane bound microorganisms). Regional irradiation of the LILI causes both direct and indirect influence of cells. Structural changes of bone marrow cells and gut mucous membrane cells indicate intersystemic interaction.
Multiple functions of neuronal plasma membrane neurotransmitter transporters.
Raiteri, Luca; Raiteri, Maurizio
2015-11-01
Removal from receptors of neurotransmitters just released into synapses is one of the major steps in neurotransmission. Transporters situated on the plasma membrane of nerve endings and glial cells perform the process of neurotransmitter (re)uptake. Because the density of transporters in the membranes can fluctuate, transporters can determine the transmitter concentrations at receptors, thus modulating indirectly the excitability of neighboring neurons. Evidence is accumulating that neurotransmitter transporters can exhibit multiple functions. Being bidirectional, neurotransmitter transporters can mediate transmitter release by working in reverse, most often under pathological conditions that cause ionic gradient dysregulations. Some transporters reverse to release transmitters, like dopamine or serotonin, when activated by 'indirectly acting' substrates, like the amphetamines. Some transporters exhibit as one major function the ability to capture transmitters into nerve terminals that perform insufficient synthesis. Transporter activation can generate conductances that regulate directly neuronal excitability. Synaptic and non-synaptic transporters play different roles. Cytosolic Na(+) elevations accompanying transport can interact with plasmalemmal or/and mitochondrial Na(+)/Ca(2+) exchangers thus generating calcium signals. Finally, neurotransmitter transporters can behave as receptors mediating releasing stimuli able to cause transmitter efflux through multiple mechanisms. Neurotransmitter transporters are therefore likely to play hitherto unknown roles in multiple therapeutic treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kohlwein, Sepp D.; Veenhuis, Marten; van der Klei, Ida J.
2013-01-01
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide. PMID:23275493
Noto, Benjamin; Auf der Springe, Katharina; Huss, Sebastian; Allkemper, Thomas; Stegger, Lars
2018-06-01
Ga-PSMA-11 PET/CT was performed in a 74-year-old man because of biochemical recurrence of prostate cancer following radiation therapy of the prostate gland 24 months earlier. Besides focal nuclide accumulation in the prostate gland suggestive of local recurrence, PET scan revealed no further pathologic uptake. However, CT showed multiple pulmonic nodules suggestive of metastases. Thoracotomy and pathologic examination revealed the nodules to be prostate cancer metastasis. Furthermore, immunohistochemical staining with PSMA antibodies demonstrated a virtual lack of PSMA expression. This case demonstrates the possibility of PSMA-negative metastases of prostate cancer an important pitfall that should be known to physicians interpreting PSMA PET.
HCN Channels Modulators: The Need for Selectivity
Romanelli, Maria Novella; Sartiani, Laura; Masi, Alessio; Mannaioni, Guido; Manetti, Dina; Mugelli, Alessandro; Cerbai, Elisabetta
2016-01-01
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators. PMID:26975509
Di Marino, Daniele; Oteri, Francesco; Morozzo Della Rocca, Blasco; Chillemi, Giovanni; Falconi, Mattia
2010-12-01
Molecular dynamics simulations of the wild type bovine ADP/ATP mitochondrial carrier, and of the single Ala113Pro and double Ala113Pro/Val180Met mutants, embedded in a lipid bilayer, have been carried out for 30ns to shed light on the structural-dynamical changes induced by the Val180Met mutation restoring the carrier function in the Ala113Pro pathologic mutant. Principal component analysis indicates that, for the three systems, the protein dynamics is mainly characterized by the motion of the matrix loops and of the odd-numbered helices having a conserved proline in their central region. Analysis of the motions shows a different behaviour of single pathological mutant with respect of the other two systems. The single mutation induces a regularization and rigidity of the H3 helix, lost upon the introduction of the second mutation. This is directly correlated to the salt bridge distribution involving residues Arg79, Asp134 and Arg234, hypothesized to interact with the substrate. In fact, in the wild type simulation two stable inter-helices salt bridges, crucial for substrate binding, are present almost over all the simulation time. In line with the impaired ADP transport, one salt interaction is lost in the single mutant trajectory but reappears in the double mutant simulation, where a salt bridge network matching the wild type is restored. Other important structural-dynamical properties, such as the trans-membrane helices mobility, analyzed via the principal component analysis, are similar for the wild type and double mutant while are different for the single mutant, providing a mechanistic explanation for their different functional properties. Copyright © 2010 Elsevier Inc. All rights reserved.
Heidrich, Jennifer; Thurotte, Adrien; Schneider, Dirk
2017-04-01
The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding IM30-membrane interactions, as the membrane properties as well as the oligomeric state of IM30 appear to affect proper interaction of IM30 with membrane surfaces. Interaction of IM30 with membranes results in an altered membrane structure and can finally trigger fusion of adjacent membranes, when Mg 2+ is present. Based on recent results, we finally present a model summarizing individual steps involved in IM30-mediated membrane fusion. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016 Elsevier B.V. All rights reserved.
Kanagawa, Motoi; Lu, Zhongpeng; Ito, Chiyomi; Matsuda, Chie; Miyake, Katsuya; Toda, Tatsushi
2014-01-01
Defects in dystroglycan glycosylation are associated with a group of muscular dystrophies, termed dystroglycanopathies, that include Fukuyama congenital muscular dystrophy (FCMD). It is widely believed that abnormal glycosylation of dystroglycan leads to disease-causing membrane fragility. We previously generated knock-in mice carrying a founder retrotransposal insertion in fukutin, the gene responsible for FCMD, but these mice did not develop muscular dystrophy, which hindered exploring therapeutic strategies. We hypothesized that dysferlin functions may contribute to muscle cell viability in the knock-in mice; however, pathological interactions between glycosylation abnormalities and dysferlin defects remain unexplored. To investigate contributions of dysferlin deficiency to the pathology of dystroglycanopathy, we have crossed dysferlin-deficient dysferlin sjl/sjl mice to the fukutin-knock-in fukutin Hp/− and Large-deficient Large myd/myd mice, which are phenotypically distinct models of dystroglycanopathy. The fukutin Hp/− mice do not show a dystrophic phenotype; however, (dysferlin sjl/sjl: fukutin Hp/−) mice showed a deteriorated phenotype compared with (dysferlin sjl/sjl: fukutin Hp/+) mice. These data indicate that the absence of functional dysferlin in the asymptomatic fukutin Hp/− mice triggers disease manifestation and aggravates the dystrophic phenotype. A series of pathological analyses using double mutant mice for Large and dysferlin indicate that the protective effects of dysferlin appear diminished when the dystrophic pathology is severe and also may depend on the amount of dysferlin proteins. Together, our results show that dysferlin exerts protective effects on the fukutin Hp/− FCMD mouse model, and the (dysferlin sjl/sjl: fukutin Hp/−) mice will be useful as a novel model for a recently proposed antisense oligonucleotide therapy for FCMD. PMID:25198651
Interactions of Ras proteins with the plasma membrane and their roles in signaling.
Eisenberg, Sharon; Henis, Yoav I
2008-01-01
The complex dynamic structure of the plasma membrane plays critical roles in cellular signaling; interactions with the membrane lipid milieu, spatial segregation within and between cellular membranes and/or targeting to specific membrane-associated scaffolds are intimately involved in many signal transduction pathways. In this review, we focus on the membrane interactions of Ras proteins. These small GTPases play central roles in the regulation of cell growth and proliferation, and their excessive activation is commonly encountered in human tumors. Ras proteins associate with the membrane continuously via C-terminal lipidation and additional interactions in both their inactive and active forms; this association, as well as the targeting of specific Ras isoforms to plasma membrane microdomains and to intracellular organelles, have recently been implicated in Ras signaling and oncogenic potential. We discuss biochemical and biophysical evidence for the roles of specific domains of Ras proteins in mediating their association with the plasma membrane, and consider the potential effects of lateral segregation and interactions with membrane-associated protein assemblies on the signaling outcomes.
Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina
2006-05-19
Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.
VDAC1 as pharmacological target in cancer and neurodegeneration: focus on its role in apoptosis.
NASA Astrophysics Data System (ADS)
Magrì, Andrea; Reina, Simona; De Pinto, Vito
2018-04-01
Cancer and neurodegeneration are different classes of diseases that share the involvement of mitochondria in their pathogenesis. Whereas the high glycolytic rate (the so-called Warburg metabolism) and the suppression of apoptosis are key elements for the establishment and maintenance of cancer cells, mitochondrial dysfunction and increased cell death mark neurodegeneration. As a main actor in the regulation of cell metabolism and apoptosis, VDAC may represent the common point between these two broad families of pathologies. Located in the outer mitochondrial membrane, VDAC forms channels that control the flux of ions and metabolites across the mitochondrion thus mediating the organelle's cross-talk with the rest of the cell. Furthermore, the interaction with both pro-apoptotic and anti-apoptotic factors makes VDAC a gatekeeper for mitochondria-mediated cell death and survival signaling pathways. Unfortunately, the lack of an evident druggability of this protein, since it has no defined binding or active sites, makes the quest for VDAC interacting molecules a difficult tale. Pharmacologically active molecules of different classes have been proposed to hit cancer and neurodegeneration. In this work, we provide an exhaustive and detailed survey of all the molecules, peptides and microRNAs that exploit VDAC in the treatment of the two examined classes of pathologies. The mechanism of action and the potential or effectiveness of each compound are discussed.
Lateral organization of biological membranes: role of long-range interactions.
Duneau, Jean-Pierre; Sturgis, James N
2013-12-01
The lateral organization of biological membranes is of great importance in many biological processes, both for the formation of specific structures such as super-complexes and for function as observed in signal transduction systems. Over the last years, AFM studies, particularly of bacterial photosynthetic membranes, have revealed that certain proteins are able to segregate into functional domains with a specific organization. Furthermore, the extended non-random nature of the organization has been suggested to be important for the energy and redox transport properties of these specialized membranes. In the work reported here, using a coarse-grained Monte Carlo approach, we have investigated the nature of interaction potentials able to drive the formation and segregation of specialized membrane domains from the rest of the membrane and furthermore how the internal organization of the segregated domains can be modulated by the interaction potentials. These simulations show that long-range interactions are necessary to allow formation of membrane domains of realistic structure. We suggest that such possibly non-specific interactions may be of great importance in the lateral organization of biological membranes in general and in photosynthetic systems in particular. Finally, we consider the possible molecular origins of such interactions and suggest a fundamental role for lipid-mediated interactions in driving the formation of specialized photosynthetic membrane domains. We call these lipid-mediated interactions a 'lipophobic effect.'
Spearman, P; Horton, R; Ratner, L; Kuli-Zade, I
1997-01-01
The interaction of the human immunodeficiency virus (HIV) Gag protein with the plasma membrane of a cell is a critical event in the assembly of HIV particles. The matrix protein region (MA) of HIV type 1 (HIV-1) Pr55Gag has previously been demonstrated to confer membrane-binding properties on the precursor polyprotein. Both the myristic acid moiety and additional determinants within MA are essential for plasma membrane binding and subsequent particle formation. In this study, we demonstrated the myristylation-dependent membrane interaction of MA in an in vivo membrane-binding assay. When expressed within mammalian cells, MA was found both in association with cellular membranes and in a membrane-free form. In contrast, the intact precursor Pr55Gag molecule analyzed in an identical manner was found almost exclusively bound to membranes. Both membrane-bound and membrane-free forms of MA were myristylated and phosphorylated. Differential membrane binding was not due to the formation of multimers, as dimeric and trimeric forms of MA were also found in both membrane-bound and membrane-free fractions. To define the requirements for membrane binding of MA, we analyzed the membrane binding of a series of MA deletion mutants. Surprisingly, deletions within alpha-helical regions forming the globular head of MA led to a dramatic increase in overall membrane binding. The stability of the MA-membrane interaction was not affected by these deletions, and no deletion eliminated membrane binding of the molecule. These results establish that myristic acid is a primary determinant of the stability of the Gag protein-membrane interaction and provide support for the hypothesis that a significant proportion of HIV-1 MA molecules may adopt a conformation in which myristic acid is hidden and unavailable for membrane interaction. PMID:9261380
Curvature-Mediated Assembly of Janus Nanoparticles on Membrane Vesicles.
Bahrami, Amir Houshang; Weikl, Thomas R
2018-02-14
Besides direct particle-particle interactions, nanoparticles adsorbed to biomembranes experience indirect interactions that are mediated by the membrane curvature arising from particle adsorption. In this Letter, we show that the curvature-mediated interactions of adsorbed Janus particles depend on the initial curvature of the membrane prior to adsorption, that is, on whether the membrane initially bulges toward or away from the particles in our simulations. The curvature-mediated interaction can be strongly attractive for Janus particles adsorbed to the outside of a membrane vesicle, which initially bulges away from the particles. For Janus particles adsorbed to the vesicle inside, in contrast, the curvature-mediated interactions are repulsive. We find that the area fraction of the adhesive Janus particle surface is an important control parameter for the curvature-mediated interaction and assembly of the particles, besides the initial membrane curvature.
Adams, Yvonne; Kuhnrae, Pongsak; Higgins, Matthew K; Ghumra, Ashfaq; Rowe, J Alexandra
2014-03-01
Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 μg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.
De Munari, Annalisa; Semiao, Andrea Joana Correia; Antizar-Ladislao, Blanca
2013-06-15
Nanofiltration (NF) is a well-established process used in drinking water production to effectively remove Natural Organic Matter (NOM) and organic micropollutants. The presence of NOM has been shown to have contrasting results on micropollutant retention by NF membranes and removal mechanisms are to date poorly understood. The permeate water quality can therefore vary during operation and its decrease would be an undesired outcome for potable water treatment. It is hence important to establish the mechanisms involved in the removal of organic micropollutants by NF membranes in the presence of NOM. In this study, the retention mechanisms of pesticide Endosulfan (ES) in the presence of humic acids (HA) by two NF membranes, TFC-SR2 and TFC-SR3, a "loose" and a "tight" membrane, respectively, were elucidated. The results showed that two mechanisms were involved: (1) the formation of ES-HA complexes (solute-solute interactions), determined from solid-phase micro-extraction (SPME), increased ES retention, and (2) the interactions between HA and the membrane (solute-membrane interactions) increased membrane molecular weight cut-off (MWCO) and decreased ES retention. HA concentration, pH, and the ratio between micropollutant molecular weight (MW) and membrane MWCO were shown to influence ES retention mechanisms. In the absence of HA-membrane interactions at pH 4, an increase of HA concentration increased ES retention from 60% to 80% for the TFC-SR2 and from 80% to 95% for the TFC-SR3 due to ES-HA complex formation. At pH 8, interactions between HA and the loose TFC-SR2 increased the membrane MWCO from 460 to 496 g/mol and ES retention decreased from 55% to 30%, as HA-membrane interactions were the dominant mechanism for ES retention. In contrast, for the "tight" TFC-SR3 membrane the increase in the MWCO (from 165 to 179 g/mol), was not sufficient to decrease ES retention which was dominated by ES-HA interactions. Quantification of the contribution of both solute-solute interactions and solute-membrane interactions is hence fundamental in understanding the removal mechanisms of micropollutant by NF membranes in the presence of NOM in order to optimize the treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Interactions of sugar-based bolaamphiphiles with biomimetic systems of plasma membranes.
Nasir, Mehmet Nail; Crowet, Jean-Marc; Lins, Laurence; Obounou Akong, Firmin; Haudrechy, Arnaud; Bouquillon, Sandrine; Deleu, Magali
2016-11-01
Glycolipids constitute a class of molecules with various biological activities. Among them, sugar-based bolaamphiphiles characterized by their biocompatibility, biodegradability and lower toxicity, became interesting for the development of efficient and low cost lipid-based drug delivery systems. Their activity seems to be closely related to their interactions with the lipid components of the plasma membrane of target cells. Despite many works devoted to the chemical synthesis and characterization of sugar-based bolaamphiphiles, their interactions with plasma membrane have not been completely elucidated. In this work, two sugar-based bolaamphiphiles differing only at the level of their sugar residues were chemically synthetized. Their interactions with membranes have been investigated using model membranes containing or not sterol and with in silico approaches. Our findings indicate that the nature of sugar residues has no significant influence for their membrane interacting properties, while the presence of sterol attenuates the interactions of both bolaamphiphiles with the membrane systems. The understanding of this distinct behavior of bolaamphiphiles towards sterol-containing membrane systems could be useful for their applications as drug delivery systems. Copyright © 2016. Published by Elsevier B.V.
Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano
2016-01-01
Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain. PMID:26861302
Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression.
Yan, Li; Zucker, Stanley; Toole, Bryan P
2005-02-01
Emmprin (basigin;CD147) is a widely distributed cell surface glycoprotein that belongs to the Ig superfamily and is highly enriched on the surface of malignant tumour cells. Emmprin is involved in numerous physiological and pathological systems and exhibits several molecular and cellular characteristics, but a major function of emmprin is stimulation of synthesis of several matrix metalloproteinases. In tumours, emmprin most likely stimulates matrix metalloproteinase production in stromal fibroblasts and endothelial cells as well as in tumour cells themselves by a mechanism involving homophilic interactions between emmprin molecules on apposing cells or on neighbouring cells after membrane vesicle shedding. Membrane-associated cofactors, including caveolin-1 and annexin II, regulate emmprin activity. Emmprin induces angiogenesis via stimulation of VEGF production, invasiveness via stimulation of matrix metalloproteinase production and multidrug resistance via hyaluronan-mediated up-regulation of ErbB2 signaling and cell survival pathway activities. Although the detailed mechanisms whereby it regulates these numerous phenomena are not yet known, it is clear that emmprin is a major mediator of malignant cell behavior.
NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.
Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana
2016-01-01
NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions.
Willis, Charlene; Wang, Conan K.; Osman, Asiah; Simon, Anne; Pickering, Darren; Mulvenna, Jason; Riboldi-Tunicliffe, Alan; Jones, Malcolm K.; Loukas, Alex; Hofmann, Andreas
2011-01-01
Saposin-like proteins (SAPLIPs) from soil-transmitted helminths play pivotal roles in host-pathogen interactions and have a high potential as targets for vaccination against parasitic diseases. We have identified two non-orthologous SAPLIPs from human and dog hookworm, Na-SLP-1 and Ac-SLP-1, and solved their three-dimensional crystal structures. Both proteins share the property of membrane binding as monitored by liposome co-pelleting assays and monolayer adsorption. Neither SAPLIP displayed any significant haemolytic or bactericidal activity. Based on the structural information, as well as the results from monolayer adsorption, we propose models of membrane interactions for both SAPLIPs. Initial membrane contact of the monomeric Na-SLP-1 is most likely by electrostatic interactions between the membrane surface and a prominent basic surface patch. In case of the dimeric Ac-SLP-1, membrane interactions are most likely initiated by a unique tryptophan residue that has previously been implicated in membrane interactions in other SAPLIPs. PMID:21991310
Willis, Charlene; Wang, Conan K; Osman, Asiah; Simon, Anne; Pickering, Darren; Mulvenna, Jason; Riboldi-Tunicliffe, Alan; Jones, Malcolm K; Loukas, Alex; Hofmann, Andreas
2011-01-01
Saposin-like proteins (SAPLIPs) from soil-transmitted helminths play pivotal roles in host-pathogen interactions and have a high potential as targets for vaccination against parasitic diseases. We have identified two non-orthologous SAPLIPs from human and dog hookworm, Na-SLP-1 and Ac-SLP-1, and solved their three-dimensional crystal structures. Both proteins share the property of membrane binding as monitored by liposome co-pelleting assays and monolayer adsorption. Neither SAPLIP displayed any significant haemolytic or bactericidal activity. Based on the structural information, as well as the results from monolayer adsorption, we propose models of membrane interactions for both SAPLIPs. Initial membrane contact of the monomeric Na-SLP-1 is most likely by electrostatic interactions between the membrane surface and a prominent basic surface patch. In case of the dimeric Ac-SLP-1, membrane interactions are most likely initiated by a unique tryptophan residue that has previously been implicated in membrane interactions in other SAPLIPs.
Microvesicating effects of sulfur mustard on an in vitro human skin model.
Hayden, Patrick J; Petrali, John P; Stolper, Gina; Hamilton, Tracey A; Jackson, George R; Wertz, Philip W; Ito, Susumu; Smith, William J; Klausner, Mitchell
2009-10-01
Bis-(beta-chloroethyl) sulfide (SM) is a potent skin vesicant previously used for chemical warfare. Progress in determination of the mechanistic basis of SM pathology, and development of prophylactic and/or therapeutic countermeasures to SM exposure has been hampered by lack of physiologically relevant models of human skin. The current work evaluated a newly developed tissue engineered full-thickness human skin model in a completely in vitro approach to investigation of SM-induced dermal pathology. The model was first characterized with regard to overall morphology, lipid composition, basement membrane (BM) composition and ultrastructural features that are important targets of SM pathologic activity. Well-developed BM ultrastructural features were observed at the dermal-epidermal junction (DEJ), thus demonstrating successful resolution of a primary deficiency of models previously evaluated for SM studies. Studies were then conducted to evaluate histopathological effects of SM on the model. Good replication of in vivo effects was observed, including apoptosis of basal keratinocytes (KC) and microblister formation at the DEJ. Tissue engineered skin models with well-developed basement membrane structures thus appear to be useful tools for in vitro mechanistic studies of SM vesicant activity and development of preventive/therapeutic approaches for SM pathology.
Cai, Xiang; Shen, Liguo; Zhang, Meijia; Chen, Jianrong; Hong, Huachang; Lin, Hongjun
2017-11-01
Quantitatively evaluating interaction energy between two randomly rough surfaces is the prerequisite to quantitatively understand and control membrane fouling in membrane bioreactors (MBRs). In this study, a new unified approach to construct rough topographies and to quantify interaction energy between a randomly rough particle and a randomly rough membrane was proposed. It was found that, natural rough topographies of both foulants and membrane could be well constructed by a modified two-variable Weierstrass-Mandelbrot (WM) function included in fractal theory. Spatial differential relationships between two constructed surfaces were accordingly established. Thereafter, a new approach combining these relationships, surface element integration (SEI) approach and composite Simpson's rule was deduced to calculate the interaction energy between two randomly rough surfaces in a submerged MBR. The obtained results indicate the profound effects of surface morphology on interaction energy and membrane fouling. This study provided a basic approach to investigate membrane fouling and interface behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains
Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard
2015-01-01
The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes. PMID:25635869
Membrane-mediated interaction between retroviral capsids
NASA Astrophysics Data System (ADS)
Zhang, Rui; Nguyen, Toan
2012-02-01
A retrovirus is an RNA virus that is replicated through a unique strategy of reverse transcription. Unlike regular enveloped viruses which are assembled inside the host cells, the assembly of retroviral capsids happens right on the cell membrane. During the assembly process, the partially formed capsids deform the membrane, giving rise to an elastic energy. When two such partial capsids approach each other, this elastic energy changes. Or in other words, the two partial capsids interact with each other via the membrane. This membrane mediated interaction between partial capsids plays an important role in the kinetics of the assembly process. In this work, this membrane mediated interaction is calculated both analytically and numerically. It is worth noting that the diferential equation determining the membrane shape in general nonlinear and cannot be solved analytically,except in the linear region of small deformations. And it is exactly the nonlinear regime that is important for the assembly kinetics of retroviruses as it provides a large energy barrier. The theory developed here is applicable to more generic cases of membrane mediated interactions between two membrane-embedded proteins.
Mechanisms of physiological and epileptic HFO generation
Jefferys, John G.R.; de la Prida, Liset Menendez; Wendling, Fabrice; Bragin, Anatol; Avoli, Massimo; Timofeev, Igor; Lopes da Silva, Fernando H.
2016-01-01
High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs. PMID:22420980
Connexin and Pannexin hemichannels are regulated by redox potential
Retamal, Mauricio A.
2014-01-01
Connexins (Cxs) and Pannexins (Panxs) are two non-related protein families, having both the property to form hemichannels at the plasma membrane. There are 21 genes coding for different Cx based proteins and only 3 for Panx. Under physiological conditions, these hemichannels (Cxs and Panxs) present a low open probability, but when open, they allow the release of signaling molecules to the extracellular space. However, under pathological conditions, these hemichannels increase their open probability, inducing important lysis of metabolites, and ionic imbalance, which in turn induce the massive entry of Ca+2 to the cell. Actually, it is well recognized that Cxs and Panxs based channels play an important role in several diseases and -in many cases- this is associated with an aberrant hemichannel opening. Hemichannel opening and closing are controlled by a plethora of signaling including changes of the voltage plasma membrane, protein-protein interactions, and several posttranslational modifications, including protein cleavage, phosphorylation, glycosylation, hydroxylation and S-nitrosylation, among others. In particular, it has been recently shown that the cellular redox status modulates the opening/closing and permeability of at least Cx43, Cx46, and Panx1 hemichannels. Thus, for example, the gaseous transmitter nitric oxide (NO) can induce the S-nitrosylation of these proteins modulating in turn several of their properties. The reason is that the redox status of a cell is fundamental to set their response to the environment and also plays an important role in several pathologies. In this review, I will discuss how NO and other molecules associated with redox signaling modulate Cxs and Panx hemichannels properties. PMID:24611056
Insulin amyloid structures and their influence on neural cells.
Bystrenova, Eva; Bednarikova, Zuzana; Barbalinardo, Marianna; Valle, Francesco; Gazova, Zuzana; Biscarini, Fabio
2018-01-01
Peptide aggregation into oligomers and fibrillar architectures is a hallmark of severe neurodegenerative pathologies, diabetes mellitus or systemic amyloidoses. The polymorphism of amyloid forms and their distribution are both effectors that potentially modulate the disease, thus it is important to understand the molecular basis of protein amyloid disorders through the interaction of the different amyloid forms with neural cells and tissues. Here we explore the effect of amyloid fibrils on the human neuroblastoma (SH-SY5Y) cell line in vitro. We control the kinetic of fibrillization of insulin at low pH and higher temperature. We use a multiscale characterization via fluorescence microscopy and multimodal scanning probe microscopy to correlate the number of cells and their morphology, with the finer details of the insulin deposits. Our results show that insulin aggregates deposited on neuroblastoma cell cultures lead to a progressive modification and decreased number of cells that correlates with the degree of fibrillization. SPM unravels that the aggregates strongly interact with the cell membrane, forming a stiff encase that possibly leads to an increased cell membrane stiffness and deficit in the metabolic exchanges between the cells and their environment. The presence of fibrils does not affect the number of cells at 24h whereas drop down to 60% is observed after 48h of incubation. Copyright © 2017 Elsevier B.V. All rights reserved.
Pathophysiologic mechanisms of biomedical nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn
Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future.more » We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.« less
Nondiabetic retinal pathology - prevalence in diabetic retinopathy screening.
Nielsen, Nathan; Jackson, Claire; Spurling, Geoffrey; Cranstoun, Peter
2011-07-01
To determine the prevalence of photographic signs of nondiabetic retinal pathology in Australian general practice patients with diabetes. Three hundred and seven patients with diabetes underwent retinal photography at two general practices, one of which was an indigenous health centre. The images were assessed for signs of pathology by an ophthalmologist. Signs of nondiabetic retinal pathology were detected in 31% of subjects with adequate photographs. Features suspicious of glaucoma were detected in 7.7% of subjects. Other abnormalities detected included signs of age related macular degeneration (1.9%), epiretinal membranes (2.4%), vascular pathology (9.6%), chorioretinal lesions (2.9%), and congenital disc anomalies (2.9%). Indigenous Australian patients were more likely to have signs of retinal pathology and glaucoma. Signs of nondiabetic retinal pathology were frequently encountered. In high risk groups, general practice based diabetic retinopathy screening may reduce the incidence of preventable visual impairment, beyond the benefits of detection of diabetic retinopathy alone.
Synergistic role of ADP and Ca2+ in diastolic myocardial stiffness
Sequeira, Vasco; Najafi, Aref; McConnell, Mark; Fowler, Ewan D; Bollen, Ilse A E; Wüst, Rob C I; dos Remedios, Cris; Helmes, Michiel; White, Ed; Stienen, Ger J M; Tardiff, Jil; Kuster, Diederik W D; van der Velden, Jolanda
2015-01-01
Abstract Heart failure (HF) with diastolic dysfunction has been attributed to increased myocardial stiffness that limits proper filling of the ventricle. Altered cross-bridge interaction may significantly contribute to high diastolic stiffness, but this has not been shown thus far. Cross-bridge interactions are dependent on cytosolic [Ca2+] and the regeneration of ATP from ADP. Depletion of myocardial energy reserve is a hallmark of HF leading to ADP accumulation and disturbed Ca2+ handling. Here, we investigated if ADP elevation in concert with increased diastolic [Ca2+] promotes diastolic cross-bridge formation and force generation and thereby increases diastolic stiffness. ADP dose-dependently increased force production in the absence of Ca2+ in membrane-permeabilized cardiomyocytes from human hearts. Moreover, physiological levels of ADP increased actomyosin force generation in the presence of Ca2+ both in human and rat membrane-permeabilized cardiomyocytes. Diastolic stress measured at physiological lattice spacing and 37°C in the presence of pathological levels of ADP and diastolic [Ca2+] revealed a 76 ± 1% contribution of cross-bridge interaction to total diastolic stress in rat membrane-permeabilized cardiomyocytes. Inhibition of creatine kinase (CK), which increases cytosolic ADP, in enzyme-isolated intact rat cardiomyocytes impaired diastolic re-lengthening associated with diastolic Ca2+ overload. In isolated Langendorff-perfused rat hearts, CK inhibition increased ventricular stiffness only in the presence of diastolic [Ca2+]. We propose that elevations of intracellular ADP in specific types of cardiac disease, including those where myocardial energy reserve is limited, contribute to diastolic dysfunction by recruiting cross-bridges, even at low Ca2+, and thereby increase myocardial stiffness. Key points Diastolic dysfunction in heart failure patients is evident from stiffening of the passive properties of the ventricular wall. Increased actomyosin interactions may significantly limit diastolic capacity, however, direct evidence is absent. From experiments at the cellular and whole organ level, in humans and rats, we show that actomyosin-related force development contributes significantly to high diastolic stiffness in environments where high ADP and increased diastolic [Ca2+] are present, such as the failing myocardium. Our basal study provides a mechanical mechanism which may partly underlie diastolic dysfunction. PMID:26096258
Khelashvili, George; Harries, Daniel; Weinstein, Harel
2009-01-01
We use a self-consistent mean-field theory, designed to investigate membrane reshaping and lipid demixing upon interaction with proteins, to explore BAR domains interacting with large patches of lipid membranes of heterogeneous compositions. The computational model includes contributions to the system free energy from electrostatic interactions and elastic energies of the membrane, as well as salt and lipid mixing entropies. The results from our simulation of a single adsorbing Amphiphysin BAR dimer indicate that it is capable of stabilizing a significantly curved membrane. However, we predict that such deformations will occur only for membrane patches that have the inherent propensity for high curvature, reflected in the tendency to create local distortions that closely match the curvature of the BAR dimer itself. Such favorable preconditioning for BAR-membrane interaction may be the result of perturbations such as local lipid demixing induced by the interaction, or of a prior insertion of the BAR domain's amphiphatic N-helix. From our simulations it appears that local segregation of charged lipids under the influence of the BAR dimer cannot produce high enough asymmetry between bilayer leaflets to induce significant bending. In the absence of additional energy contributions that favor membrane asymmetry, the membrane will remain nearly flat upon single BAR dimer adsorption, relative to the undulation expected from thermal fluctuations. Thus, we conclude that the N-helix insertions have a critical mechanistic role in the local perturbation and curving of the membrane, which is then stabilized by the electrostatic interaction with the BAR dimer. We discuss how these results can be used to estimate the tendency of BARs to bend membranes in terms of a spatially nonisotropic spontaneous curvature. PMID:19751667
Cometa, M Anthony; Wasilko, Scott M; Wendling, Adam L
2018-04-01
Uterine and placental pathology can be a major cause of morbidity and mortality in the parturient and infant. When presenting alone, placental abruption, uterine rupture, or placenta accreta can result in significant peripartum hemorrhage, requiring aggressive surgical and anesthetic management; however, the presence of multiple concurrent uterine and placental pathologies can result in significant morbidity and mortality. We present the anesthetic management of a parturient who underwent an urgent cesarean delivery for non-reassuring fetal tracing in the setting of chronic hypertension, preterm premature rupture of membranes, and chorioamnionitis who was subsequently found to have placental abruption, uterine rupture, and placenta accreta.
Wasilko, Scott M.; Wendling, Adam L.
2018-01-01
Uterine and placental pathology can be a major cause of morbidity and mortality in the parturient and infant. When presenting alone, placental abruption, uterine rupture, or placenta accreta can result in significant peripartum hemorrhage, requiring aggressive surgical and anesthetic management; however, the presence of multiple concurrent uterine and placental pathologies can result in significant morbidity and mortality. We present the anesthetic management of a parturient who underwent an urgent cesarean delivery for non-reassuring fetal tracing in the setting of chronic hypertension, preterm premature rupture of membranes, and chorioamnionitis who was subsequently found to have placental abruption, uterine rupture, and placenta accreta. PMID:29756067
NASA Astrophysics Data System (ADS)
Jones, Emmalee M.
A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped clarify the role of the microtubule binding domain in anionic lipid affinity and demonstrated even "hyperphosphorylation" did not prevent interaction with anionic membranes. Additional studies investigated more complex membrane models to increase physiological relevance. These insights revealed structural changes in tau protein and lipid membranes after interaction. We observed tau's affinity for interfaces, and aggregation and compaction once tau partitions to interfaces. We observed the beginnings of beta-sheet formation in tau at anionic lipid membranes. We also examined disruption to the membrane on a molecular scale.
Khorramdel, Azin; Shirmohammadi, Adileh; Sadighi, Alireza; Faramarzi, Masoumeh; Babaloo, Amir Reza; Sadighi Shamami, Mehrnoosh; Mousavi, Amin; Ebrahim Adhami, Zia
2017-01-01
Background. This study was undertaken to assess the pathological and spatial associations between periapical and periodontal diseases of the maxillary first molars and thickening of maxillary sinus mucosa with cone-beam computed tomography. Methods. A total of 132 CBCT images of subjects 20‒60 years of age were evaluated retrospectively. The patients' sex and age and demographic and pathologic findings of the maxillary sinus in the first molar area were recorded, graded and analyzed. Results. Approximately 59% of patients were male and 41% were female, with no significant difference in the thickness of schneiderian membrane between males and females. Based on the periapical index scoring, the highest frequency was detected in group 1. Based on the results of ANOVA, there were no significant differences in the frequencies of endodontic‒periodontal lesions and an increase in schneiderian membrane thickness. There were significant relationships between periapical and periodontal infections (P<0.001) and schneiderian membrane thickness. Furthermore, a significant relationship was detected between the thickness of the schneiderian membrane and the distance between the sinus floor and the root apices (P=0.38). Conclusion. A retrospective inspection of CBCT imaging revealed that periapical lesions and periodontal infections in the posterior area of the maxilla were associated with thickening of the schneiderian membrane. In addition, there was a significant relationship between the location of maxillary posterior teeth, i.e. the thickness of bone from the root apex to the maxillary sinus floor, and schneiderian membrane thickness.
Tiwari, Anuj; Prince, Ashutosh; Arakha, Manoranjan; Jha, Suman; Saleem, Mohammed
2018-02-15
The internalization of nanoparticles through the biological membrane is of immense importance for biomedical applications. A fundamental understanding of the lipid specificity and the role of the membrane biochemical and physical forces at play in modulating penetration are lacking. The current understanding of nanoparticle-membrane interaction is drawn mostly from computational studies and lacks sufficient experimental evidence. Herein, using confocal fluorescence imaging and potentiometric dye-based fluorimetry, we first investigated the interaction of ZnONP in both multi-component and individual lipid membranes using cell-like giant unilamellar vesicles to dissect the lipid specificity; also, we investigated the changes in membrane order, anisotropy and hydrophobicity. ZnONP was found to interact with phosphatidylinositol and phosphatidylcholine head-group-containing lipids specifically. We further investigated the interaction of ZnONP with three physiologically relevant membrane conditions varying in composition and dipole potential. We found that ZnONP interaction leads to a photoinduced enhancement of the partial-to-complete phase separation depending upon the membrane composition and cholesterol content. Interestingly, while the lipid order of a partially-phase-separated membrane remained unchanged upon ZnONP crowding, a fully-phase-separated membrane showed an increase in the lipid order. Strikingly, ZnONP crowding induced a contrasting effect on the fluorescence anisotropy of the membrane upon binding to the two membrane conditions, in line with the measured diffusion coefficient. ZnONP seems to preferentially penetrate through the liquid disordered areas of the membrane and the boundaries of the phase-separated regions driven by the interplay between the electrostatics and phase boundary conditions, which are collectively dictated by the composition and ZnONP-induced lipid reorganization. The results may lead to a greater understanding of the interplay of membrane parameters and ZnONP interaction in driving passive penetration.
Transport Characteristics of Aquaporins.
Geng, Xiaoqiang; Yang, Baoxue
2017-01-01
Aquaporins (AQPs ) are a class of the integral membrane proteins, which are permeable to water , some small neutral solutes and certain gases across biological membranes. AQPs are considered as critical transport mediators that are involved in many physiological functions and pathological processes such as transepithelial fluid transport , cell migration, brain edema , neuro excitation and carcinoma. This chapter will provide information about the transport characteristics of AQPs .
Pathogenesis of Acute and Delayed Corneal Lesions after Ocular Exposure to Sulfur Mustard Vapor
2012-01-01
mechanistic understanding and therapeutic development. Here we evaluate the histopathologic, biochemical and ultrastructural expressions of...were identified, including destabilization of the basal corneal epithelium , basement membrane zone abnormalities and stromal deformation. Clinical...pathology of MGK, in part resulting from persistent necrosis of the basal corneal epithelium and deterioration of the basement membrane. The findings
Weng, Ping; Zhang, Xiao-Tong; Sheng, Qiong; Tian, Wen-Fang; Chen, Jun-Liang; Yuan, Jia-Jia; Zhang, Ji-Ru; Pang, Qing-Feng
2017-06-20
Caveolin-1(Cav-1) scaffolding domain (CSD) peptides compete with the plasma membrane Cav-1, inhibit the interaction of the proteins and Cav-1, and re-store the functions of Cav-1 binding proteins. Heme oxygenase-1 (HO-1) binds to Cav-1 and its enzymatic activity was inhibited. In this study, we investigated the effect of CSD peptides on interaction between HO-1 and Cav-1, and on the HO-1 activity in vitro and in vivo. Our data showed that CSD peptides decreased the compartmentalization of HO-1 and Cav-1, and increased the HO-1 activity both in LPS-treated alveolar macrophages and in mice. Meanwhile, CSD peptides obviously ameliorated the pathology changes in mice and lowered the following injury indexes: the wet/dry ratio of lung tissues, total cell numbers in bronchoalveolar lavage fluid and lactate dehydrogenase activity in the serum. Mechanistically, it was firstly found that CSD peptides promoted alveolar macrophages polarization to M2 phenotype and inhibited the IκB degeneration. Furthermore, CSD peptides down-regulated the expression of IL-1β, IL-6, TNF-α, MCP-1, and iNOS in alveolar macrophages and in lung tissue. However, the protective role of CSD peptides on LPS-induced acute lung injury in mice could be abolished by zinc protoporphyrin IX (ZnPP, a HO-1 activity inhibitor). In summary, CSD peptides have beneficial anti-inflammatory effects by restoring the HO-1 activity suppressed by Cav-1 on plasma membrane.
Alzheimer Abeta(1-42) monomer adsorbed on the self-assembled monolayers.
Wang, Qiuming; Zhao, Jun; Yu, Xiang; Zhao, Chao; Li, Lingyan; Zheng, Jie
2010-08-03
Amyloid-beta (Abeta) peptide aggregation on the cell membranes is a key pathological event responsible for neuron cell death in Alzheimer's disease (AD). We present a collection of molecular docking and molecular dynamics simulations to study the conformational dynamics and adsorption behavior of Abeta monomer on the self-assembled monolayer (SAM), in comparison to Abeta structure in bulk solution. Two distinct Abeta conformations (i.e., alpha-helix and beta-hairpin) are selected as initial structures to mimic different adsorption states, whereas four SAM surfaces with different end groups in hydrophobicity and charge distribution are used to examine the effect of surface chemistry on Abeta structure and adsorption. Simulation results show that alpha-helical monomer displays higher structural stability than beta-hairpin monomer on all SAMs, suggesting that the preferential conformation of Abeta monomer could be alpha-helical or random structure when bound to surfaces. Structural stability and adsorption behavior of Abeta monomer on the SAMs originates from competitive interactions between Abeta and SAM and between SAM and interfacial water, which involve the conformation of Abeta, the surface chemistry of SAM, and the structure and dynamics of interfacial waters. The relative net binding affinity of Abeta with the SAMs is in the favorable order of COOH-SAM > NH(2)-SAM > CH(3)-SAM > OH-SAM, highlighting the importance of electrostatic and hydrophobic interactions for driving Abeta adsorption at the SAMs, but both interactions contribute differently to each Abeta-SAM complex. This work provides parallel insights into the understanding of Abeta structure and aggregation on cell membrane.
The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis.
Wong, Ka-Wing
2017-05-01
In this article, we have described several cellular pathological effects caused by the Mycobacterium tuberculosis ESX-1. The effects include induction of necrosis, NOD2 signaling, type I interferon production, and autophagy. We then attempted to suggest that these pathological effects are mediated by the cytosolic access of M. tuberculosis -derived materials as a result of the phagosome-disrupting activity of the major ESX-1 substrate ESAT-6. Such activity of ESAT-6 is most likely due to its pore-forming activity at the membrane. The amyloidogenic characteristic of ESAT-6 is reviewed here as a potential mechanism of membrane pore formation. In addition to ESAT-6, the ESX-1 substrate EspB interferes with membrane-mediated innate immune mechanisms such as efferocytosis and autophagy, most likely through its ability to bind phospholipids. Overall, the M. tuberculosis ESX-1 secretion system appears to be a specialized system for the deployment of host membrane-targeting proteins, whose primary function is to interrupt key steps in innate immune mechanisms against pathogens. Inhibitors that block the ESX-1 system or block host factors critical for ESX-1 toxicity have been identified and should represent attractive potential new antituberculosis drugs.
Characterization of the motion of membrane proteins using high-speed atomic force microscopy
NASA Astrophysics Data System (ADS)
Casuso, Ignacio; Khao, Jonathan; Chami, Mohamed; Paul-Gilloteaux, Perrine; Husain, Mohamed; Duneau, Jean-Pierre; Stahlberg, Henning; Sturgis, James N.; Scheuring, Simon
2012-08-01
For cells to function properly, membrane proteins must be able to diffuse within biological membranes. The functions of these membrane proteins depend on their position and also on protein-protein and protein-lipid interactions. However, so far, it has not been possible to study simultaneously the structure and dynamics of biological membranes. Here, we show that the motion of unlabelled membrane proteins can be characterized using high-speed atomic force microscopy. We find that the molecules of outer membrane protein F (OmpF) are widely distributed in the membrane as a result of diffusion-limited aggregation, and while the overall protein motion scales roughly with the local density of proteins in the membrane, individual protein molecules can also diffuse freely or become trapped by protein-protein interactions. Using these measurements, and the results of molecular dynamics simulations, we determine an interaction potential map and an interaction pathway for a membrane protein, which should provide new insights into the connection between the structures of individual proteins and the structures and dynamics of supramolecular membranes.
Ionic protein-lipid interaction at the plasma membrane: what can the charge do?
Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi
2014-03-01
Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potential Role for ADAM15 in Pathological Neovascularization in Mice
Horiuchi, Keisuke; Weskamp, Gisela; Lum, Lawrence; Hammes, Hans-Peter; Cai, Hui; Brodie, Thomas A.; Ludwig, Thomas; Chiusaroli, Riccardo; Baron, Roland; Preissner, Klaus T.; Manova, Katia; Blobel, Carl P.
2003-01-01
ADAM15 (named for a disintegrin and metalloprotease 15, metargidin) is a membrane-anchored glycoprotein that has been implicated in cell-cell or cell-matrix interactions and in the proteolysis of molecules on the cell surface or extracellular matrix. To characterize the potential roles of ADAM15 during development and in adult mice, we analyzed its expression pattern by mRNA in situ hybridization and generated mice carrying a targeted deletion of ADAM15 (adam15−/− mice). A high level of expression of ADAM15 was found in vascular cells, the endocardium, hypertrophic cells in developing bone, and specific areas of the hippocampus and cerebellum. However, despite the pronounced expression of ADAM15 in these tissues, no major developmental defects or pathological phenotypes were evident in adam15−/− mice. The elevated levels of ADAM15 in endothelial cells prompted an evaluation of its role in neovascularization. In a mouse model for retinopathy of prematurity, adam15−/− mice had a major reduction in neovascularization compared to wild-type controls. Furthermore, the size of tumors resulting from implanted B16F0 mouse melanoma cells was significantly smaller in adam15−/− mice than in wild-type controls. Since ADAM15 does not appear to be required for developmental angiogenesis or for adult homeostasis, it may represent a novel target for the design of inhibitors of pathological neovascularization. PMID:12897135
Delas, Barbara; Julio, Gemma; Fernández-Vega, Álvaro; Casaroli-Marano, Ricardo P; Nadal, Jeroni
2017-11-01
To compare the foveal characteristics in fellow eyes (FE) of patients with unilateral idiopathic macular hole without vitreomacular pathologic changes with eyes of healthy controls. Forty-seven FE and 52 eyes of 52 age- and sex-matched healthy controls were studied. Quantitative assessment of the dome-shaped appearance of the hyperreflective lines that represent external limiting membrane (ELM_bulge) and inner outer segment junctions (IS/OS_bulge) were made by optical coherence tomography (OCT) images. Inner retinal complex thickness (IRCT) was quantitatively assessed at 1000 and 2000 μm of the foveal center in nasal and temporal quadrants. Presence of alterations in the inner retinal outer layers and central foveal thickness (CFT) were also analyzed. Significantly lower ELM_bulge (p < 0.0001; Mann-Whitney test) and IS/OS_bulge (p < 0.001; student t test) and higher cases with COST alterations, expressed as a diffuse line (p < 0.006; Chi 2 test) were found in FE than control eyes. IRCT were significantly reduced in FE at all the studied locations when comparing to control eyes (p < 0.05; student t test), maintaining anatomical proportionality among locations. FE without pathologic vitreomacular interactions seems to present some central cone alterations that may be related to other causes than vitreomacular traction.
Interactions between HIV-1 Neutralizing Antibodies and Model Lipid Membranes imaged with AFM
NASA Astrophysics Data System (ADS)
Zauscher, Stefan; Hardy, Gregory; Alam, Munir; Shapter, Joseph
2012-02-01
Lipid membrane interactions with rare, broadly neutralizing antibodies (NAbs), 2F5 and 4E10, play a critical role in HIV-1 neutralization. Our research is motivated by recent immunization studies that have shown that induction of antibodies that avidly bind the gp41-MPER antigen is not sufficient for neutralization. Rather, it is required that antigen designs induce polyreactive antibodies that recognize MPER antigens as well as the viral lipid membrane. However, the mechanistic details of how membrane properties influence NAb-lipid and NAb-antigen interactions remain unknown. Furthermore, it is well established that the native viral membrane is heterogeneous, representing a mosaic of lipid rafts and protein clustering. However, the size, physical properties, and dynamics of these regions are poorly characterized and their potential roles in HIV-1 neutralization are also unknown. To understand how membrane properties contribute to 2F5/4E10 membrane interactions, we have engineered biomimetic supported lipid bilayers (SLBs) and use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody-membrane interactions at sub-nanometer z-resolution. Our results show that localized binding of HIV-1 antigens and NAbs occur preferentially with the most fluid membrane domain. This supports the theory that NAbs may interact with regions of low lateral lipid forces that allow antibody insertion into the bilayer.
NASA Astrophysics Data System (ADS)
Lee, SangYun; Kim, Kyoohyun; Park, YongKeun
2017-02-01
There is a strong correlation between the dynamic membrane fluctuations and the biomechanical properties of living cells. The dynamic membrane fluctuation consists of submicron displacements, and can be altered by changing the cells' pathophysiological conditions. These results have significant relevance to the understanding of RBC biophysics and pathology, as follows. RBCs must withstand large mechanical deformations during repeated passages through the microvasculature and the fenestrated walls of the splenic sinusoids. This essential ability is diminished with senescence, resulting in physiological destruction of the aging RBCs. Pathological destruction of the red cells, however, occurs in cells affected by a host of diseases such as spherocytosis, malaria, and Sickle cell disease, as RBCs depart from their normal discoid shape and lose their deformability. Therefore, quantifying the RBC deformability insight into a variety of problems regarding the interplay of cell structure, dynamics, and function. Furthermore, the ability to monitor mechanical properties of RBCs is of vital interest in monitoring disease progression or response to treatment as molecular and pharmaceutical approaches for treatment of chronic diseases. Here, we present the measurements of dynamic membrane fluctuations in live cells using quantitative phase imaging techniques. Measuring both the 3-D refractive index maps and the dynamic phase images of live cells are simultaneously measured, from which dynamic membrane fluctuation and deformability of cells are precisely calculated. We also present its applications to various diseases ranging from sickle cell diseases, babesiosis, and to diabetes.
Membrane-targeted strategies for modulating APP and Aβ-mediated toxicity
Price, Katherine A; Crouch, Peter J; Donnelly, Paul S; Masters, Colin L; White, Anthony R; Curtain, Cyril C
2009-01-01
Abstract Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by numerous pathological features including the accumulation of neurotoxic amyloid-β (Aβ) peptide. There is currently no effective therapy for AD, but the development of therapeutic strategies that target the cell membrane is gaining increased interest. The amyloid precursor protein (APP) from which Aβ is formed is a membrane-bound protein, and Aβ production and toxicity are both membrane mediated events. This review describes the critical role of cell membranes in AD with particular emphasis on how the composition and structure of the membrane and its specialized regions may influence toxic or benign Aβ/APP pathways in AD. The putative role of copper (Cu) in AD is also discussed, and we highlight how targeting the cell membrane with Cu complexes has therapeutic potential in AD. PMID:19278455
Spontaneous Membranous Dysmenorrhea in an Adolescent Girl: A Case Report and Literature Review.
Topçu, Hasan Onur; Topçu, Seda; Kokanalı, Demet; Memur, Tuba; Doğanay, Melike
2015-10-01
Membranous dysmenorrhea is a rare entity. It involves the sloughing of the endometrium in 1 cylindrical or membranous piece, retaining the shape of the uterine cavity. Herein, we report the first case of spontaneous membranous dysmenorrhea in an adolescent girl. A 17-year-old girl was admitted to the emergency clinic with severe painful menstrual bleeding and passage of tissue via the vagina. Bloody endometrial tissue resembling the endometrial cavity expulsed from the vagina was seen on inspection. The pathologic diagnosis of the mass was membranous dysmenorrhea. To our knowledge, this is the first case of the spontaneous occurrence of membranous dysmenorrhea. The relationship between membranous dysmenorrhea and endogenous or exogenous progesterone should be investigated further. A review of the literature on membranous dysmenorrhea is presented. Copyright © 2015 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
A protein interaction network analysis for yeast integral membrane protein.
Shi, Ming-Guang; Huang, De-Shuang; Li, Xue-Ling
2008-01-01
Although the yeast Saccharomyces cerevisiae is the best exemplified single-celled eukaryote, the vast number of protein-protein interactions of integral membrane proteins of Saccharomyces cerevisiae have not been characterized by experiments. Here, based on the kernel method of Greedy Kernel Principal Component analysis plus Linear Discriminant Analysis, we identify 300 protein-protein interactions involving 189 membrane proteins and get the outcome of a highly connected protein-protein interactions network. Furthermore, we study the global topological features of integral membrane proteins network of Saccharomyces cerevisiae. These results give the comprehensive description of protein-protein interactions of integral membrane proteins and reveal global topological and robustness of the interactome network at a system level. This work represents an important step towards a comprehensive understanding of yeast protein interactions.
Griffiths, Genevieve S.; Galileo, Deni S.; Aravindan, Rolands G.; Martin-DeLeon, Patricia A.
2009-01-01
Glycosyl phosphatidylinositol (GPI)-linked proteins, which are involved in post-testicular maturation of sperm and have a role in fertilization, are acquired on the sperm surface from both vesicular and membrane-free soluble fractions of epididymal luminal fluid (LF) and uterine LF. Herein, we investigate the mechanism of uptake of these proteins from the soluble fraction of LFs using sperm adhesion molecule 1 (SPAM1) as a model. Ultracentrifugation and native Western blot analysis of the soluble fraction revealed that SPAM1 is present in low-molecular-weight (monomeric) and high-molecular-weight (oligomeric) complexes. The latter are incapable of transferring SPAM1 and may serve to produce monomers. Monomers are stabilized by hydrophobic interactions with clusterin (CLU), a lipid carrier that is abundantly expressed in LFs. We show that CLU is involved in the transfer of SPAM1 monomers, whose delivery was decreased by anti-CLU antibody under normal and apolipoprotein-enhanced conditions. Coimmunoprecipitation revealed an intimate association of CLU with SPAM1. Both plasma and recombinant CLU had a dose-related effect on transfer efficiency: high concentrations reduced and low concentrations enhanced delivery of SPAM1 to human and mouse sperm membranes, reflecting physiological states in the epididymal tract. We propose a lipid exchange model (akin to the lipid-poor model for cholesterol efflux) for the delivery of GPI-linked proteins to sperm membranes via CLU. Our investigation defines specific conditions for membrane-free GPI-linked protein transfer in vitro and could lead to technology for improving fertility or treating sperm pathology by the addition of relevant GPI-linked proteins critical for successful fertilization in humans and domestic animals. PMID:19357365
Blood flow and blood cell interactions and migration in microvessels
NASA Astrophysics Data System (ADS)
Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard
2011-11-01
Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.
Arruda, Ana Paula; Pers, Benedicte M; Parlakgül, Güneş; Güney, Ekin; Inouye, Karen; Hotamisligil, Gökhan S
2014-12-01
Proper function of the endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site has been linked to pathophysiological states, including metabolic diseases. Although the ER and mitochondria play distinct cellular roles, these organelles also form physical interactions with each other at sites defined as mitochondria-associated ER membranes (MAMs), which are essential for calcium, lipid and metabolite exchange. Here we show that in the liver, obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, compromised mitochondrial oxidative capacity and augmented oxidative stress. Experimental induction of ER-mitochondria interactions results in oxidative stress and impaired metabolic homeostasis, whereas downregulation of PACS-2 or IP3R1, proteins important for ER-mitochondria tethering or calcium transport, respectively, improves mitochondrial oxidative capacity and glucose metabolism in obese animals. These findings establish excessive ER-mitochondrial coupling as an essential component of organelle dysfunction in obesity that may contribute to the development of metabolic pathologies such as insulin resistance and diabetes.
A TRPV2 interactome-based signature for prognosis in glioblastoma patients.
Doñate-Macián, Pau; Gómez, Antonio; Dégano, Irene R; Perálvarez-Marín, Alex
2018-04-06
Proteomics aids to the discovery and expansion of protein-protein interaction networks, which are key to understand molecular mechanisms in physiology and physiopathology, but also to infer protein function in a guilt-by-association fashion. In this study we use a systematic protein-protein interaction membrane yeast two-hybrid method to expand the interactome of TRPV2, a cation channel related to nervous system development. After validation of the interactome in silico , we define a TRPV2-interactome signature combining proteomics with the available physio-pathological data in Disgenet to find interactome-disease associations, highlighting nervous system disorders and neoplasms. The TRPV2-interactome signature against available experimental data is capable of discriminating overall risk in glioblastoma multiforme prognosis, progression, recurrence, and chemotherapy resistance. Beyond the impact on glioblastoma physiopathology, this study shows that combining systematic proteomics with in silico methods and available experimental data is key to open new perspectives to define novel biomarkers for diagnosis, prognosis and therapeutics in disease.
A TRPV2 interactome-based signature for prognosis in glioblastoma patients
Dégano, Irene R.; Perálvarez-Marín, Alex
2018-01-01
Proteomics aids to the discovery and expansion of protein-protein interaction networks, which are key to understand molecular mechanisms in physiology and physiopathology, but also to infer protein function in a guilt-by-association fashion. In this study we use a systematic protein-protein interaction membrane yeast two-hybrid method to expand the interactome of TRPV2, a cation channel related to nervous system development. After validation of the interactome in silico, we define a TRPV2-interactome signature combining proteomics with the available physio-pathological data in Disgenet to find interactome-disease associations, highlighting nervous system disorders and neoplasms. The TRPV2-interactome signature against available experimental data is capable of discriminating overall risk in glioblastoma multiforme prognosis, progression, recurrence, and chemotherapy resistance. Beyond the impact on glioblastoma physiopathology, this study shows that combining systematic proteomics with in silico methods and available experimental data is key to open new perspectives to define novel biomarkers for diagnosis, prognosis and therapeutics in disease. PMID:29719613
Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion*
He, Tao; Gershenson, Anne; Eyles, Stephen J.; Lee, Yan-Jiun; Liu, Wenshe R.; Wang, Jiangyun; Gao, Jianmin; Roberts, Mary F.
2015-01-01
Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins. PMID:26092728
NASA Astrophysics Data System (ADS)
Torreno-Pina, Juan A.; Manzo, Carlo; Garcia-Parajo, Maria F.
2016-03-01
The plasma membrane of eukaryotic cells is responsible for a myriad of functions that regulate cell physiology and plays a crucial role in a multitude of processes that include adhesion, migration, signaling recognition and cell-cell communication. This is accomplished by specific interactions between different membrane components such as lipids and proteins on the lipid bilayer but also through interactions with the underlying cortical actin cytoskeleton on the intracellular side and the glycocalyx matrix in close proximity to the extracellular side. Advanced biophysical techniques, including single particle tracking (SPT) have revealed that the lateral diffusion of molecular components on the plasma membrane represents a landmark manifestation of such interactions. Indeed, by studying changes in the diffusivity of individual membrane molecules, including sub-diffusion, confined diffusion and/or transient arrest of molecules in membrane compartments, it has been possible to gain insight on the nature of molecular interactions and to infer on its functional role for cell response. In this review, we will revise some exciting results where SPT has been crucial to reveal homo- and hetero-interactions on the cell membrane.
Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.
2014-01-01
The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530
Effect of Polycation Structure on Interaction with Lipid Membranes.
Wilkosz, Natalia; Jamróz, Dorota; Kopeć, Wojciech; Nakai, Keita; Yusa, Shin-Ichi; Wytrwal-Sarna, Magdalena; Bednar, Jan; Nowakowska, Maria; Kepczynski, Mariusz
2017-08-03
Interaction of polycations with lipid membranes is a very important issue in many biological and medical applications such as gene delivery or antibacterial usage. In this work, we address the influence of hydrophobic substitution of strong polycations containing quaternary ammonium groups on the polymer-zwitterionic membrane interactions. In particular, we focus on the polymer tendency to adsorb on or/and incorporate into the membrane. We used complementary experimental and computational methods to enhance our understanding of the mechanism of the polycation-membrane interactions. Polycation adsorption on liposomes was assessed using dynamic light scattering (DLS) and zeta potential measurements. The ability of the polymers to form hydrophilic pores in the membrane was evaluated using a calcein-release method. The polymer-membrane interaction at the molecular scale was explored by performing atomistic molecular dynamics (MD) simulations. Our results show that the length of the alkyl side groups plays an essential role in the polycation adhesion on the zwitterionic surface, while the degree of substitution affects the polycation ability to incorporate into the membrane. Both the experimental and computational results show that the membrane permeability can be dramatically affected by the amount of alkyl side groups attached to the polycation main chain.
Chen, Jianrong; Mei, Rongwu; Shen, Liguo; Ding, Linxian; He, Yiming; Lin, Hongjun; Hong, Huachang
2015-03-01
The interfacial interactions between a foulant particle and rough membrane surface in a submerged membrane bioreactor (MBR) were quantitatively assessed by using a new-developed method. It was found that the profile of total interaction versus separation distance was complicated. There were an energy barrier and two negative energy ranges in the profile. Further analysis showed that roughness scale significantly affected the strength and properties of interfacial interactions. It was revealed that there existed a critical range of roughness scale within which the total energy in the separation distance ranged from 0 to several nanometers was continually repulsive. Decrease in foulant size would increase the strength of specific interaction energy, but did not change the existence of a critical roughness scale range. These findings suggested the possibility to "tailor" membrane surface morphology for membrane fouling mitigation, and thus gave significant implications for membrane selection and fabrication in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modeling of annexin A2-Membrane interactions by molecular dynamics simulations.
Hakobyan, Davit; Gerke, Volker; Heuer, Andreas
2017-01-01
The annexins are a family of Ca2+-regulated phospholipid binding proteins that are involved in membrane domain organization and membrane trafficking. Although they are widely studied and crystal structures are available for several soluble annexins their mode of membrane association has never been studied at the molecular level. Here we obtained molecular information on the annexin-membrane interaction that could serve as paradigm for the peripheral membrane association of cytosolic proteins by Molecular Dynamics simulations. We analyzed systems containing the monomeric annexin A2 (AnxA2), a membrane with negatively charged phosphatidylserine (POPS) lipids as well as Ca2+ ions. On the atomic level we identify the AnxA2 orientations and the respective residues which display the strongest interaction with Ca2+ ions and the membrane. The simulation results fully agree with earlier experimental findings concerning the positioning of bound Ca2+ ions. Furthermore, we identify for the first time a significant interaction between lysine residues of the protein and POPS lipids that occurs independently of Ca2+ suggesting that AnxA2-membrane interactions can also occur in a low Ca2+ environment. Finally, by varying Ca2+ concentrations and lipid composition in our simulations we observe a calcium-induced negative curvature of the membrane as well as an AnxA2-induced lipid ordering.
[Helicobacter pylori-associated pathology of oral cavity in children (clinical-laboratory study)].
Elizarova, V M; Gorelov, A V; Tabolova, E N; Skatova, E A
2006-01-01
As the result of the study of stomatological status indices in children with gastroduodenal pathology associated with Helicobacter pylori it was established that caries incidence in children did not depend upon contamination while caries prevalence in examined children unlike caries incidence was associated with HP-status of the oral cavity. Patients with concomitant gastroduodenal pathology had frequently periodontal disease (PD). In children with chronic antral gastritis associated with Helicobacter pylori clinical manifestations were poor and tended towards inflammatory process chronicity. All the patients had chronic catarrhal gingivitis. In children with Helicobacter pylori associated pathology of GIT it proceeded with 100% contamination of gingival mucous membrane by Helicobacter pylori as shown by bacterioscopic study.
The pathology of shin splints.
Kues, J M
1990-01-01
The purpose of this review is to critically evaluate experimental evidence describing the pathology associated with shin splints. Shin splints are defined as medial or posteromedial leg pain which is brought about by walking, running, or related activities and which decreases with rest. The evidence indicates that shin splints may be due to pathology of the posteromedial tibial cortex, the periosteum of the posteromedial tibia, or the crural fascia of the deep posterior compartment of the leg. Research is needed to determine if increased pressure in the deep posterior compartment of the leg or pathology of the muscles, tendons, or interosseous membrane of the leg are associated with shin splints. J Orthop Sports Phys Ther 1990;12(3):115-121.
NASA Astrophysics Data System (ADS)
Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.
2015-03-01
The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.
NASA Astrophysics Data System (ADS)
Drenscko, Mihaela
Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. To begin with, we characterize the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained molecular simulation. We next explore the scaling behavior of the collapsed globular shape at the minimum energy configuration, characterized by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behavior of the Solvent Accessible Surface Area (SASA) as a function of chain length, finding a similar exponent for both all-atomistic and coarse-grained simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths. Next, in order to investigate the molecular interactions between single hydrophobic polymer chains and lipids in biological membranes and at lipid membrane/solvent interface, we perform a series of molecular dynamics simulations of small membranes using all atomistic and coarse-grained methods. The molecular interaction between common polymer chains used in biomedical applications and the cell membrane is unknown. This interaction may affect the biocompatibility of the polymer chains. Molecular dynamics simulations offer an emerging tool to characterize the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. We systematically characterize with long-time all-atomistic molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a model phospholipid membrane. We find that the length of polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilize advanced sampling techniques in molecular dynamics to characterize the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. These results can be used to design polymer chain lengths and chemistries to optimize their interaction with cell membranes at the molecular level.
Merkwirth, Carsten; Morbin, Michela; Brönneke, Hella S.; Jordan, Sabine D.; Rugarli, Elena I.; Langer, Thomas
2012-01-01
Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies caused by a dysfunction of mitochondria and raise the possibility that tau pathologies are associated with other neurodegenerative disorders caused by deficiencies in mitochondrial dynamics. PMID:23144624
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.
2016-01-01
The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes containmore » a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.« less
Analysis of Protein Interactions at Native Chloroplast Membranes by Ellipsometry
Kriechbaumer, Verena; Nabok, Alexei; Mustafa, Mohd K.; Al-Ammar, Rukaiah; Tsargorodskaya, Anna; Smith, David P.; Abell, Ben M.
2012-01-01
Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE). We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins. PMID:22479632
Intraocular osseous metaplasia. A clinico-pathological study.
Vemuganti, Geeta K; Honavar, Santosh G; Jalali, Subhadra
2002-09-01
To evaluate the clinico-pathologic features of intraocular osseous metaplasia. Pathology specimens of enucleated eyes submitted to the ophthalmic pathology service at a tertiary eye-care referral center between January 1995 and June 1999 were studied for intraocular osseous metaplasia. Specific histopathologic features noted in specimens with osseous metaplasia were the presence of retinal detachment, gliosis, retinal pigment epithelial hyperplasia, drusen, epiretinal membrane, fibrovascular proliferation and inflammation. Immunohistochemistry using monoclonal antibody against glial fibrillary acidic protein was performed to assess the glial component within the membranes and the proliferative vitreoretinal mass. Clinical records were reviewed and correlated with histopathologic findings. Osseous metaplasiaS was noted in 8 of 151 (5.2%) eyes examined. Clinical diagnosis in these was phthisis bulbi, staphyloma, absolute glaucoma and microphthalmos. Enucleation was performed for relief of symptoms (in painful blind eyes) or for cosmesis, and in an eye inciting sympathetic ophthalmia. Retinal detachment, gliosis and retinal pigment epithelial hyperplasia were noted in all the cases. Drusen with calcification or ossification (5 of 8), fibrovascular proliferation in the vitreous (5 of 8) and active inflammation (4 of 8) were the other associated histologic features. Location of ossification was subretinal in 3 cases, preretinal (ora serrata) in 1 case and in both locations in 4 cases. The eyes with subretinal osseous metaplasia had associated calcified drusen, while preretinal ossification was seen within the fibrovascular membranes. Chronic retinal detachment, hyperplasia and transdifferentiation of retinal pigment epithelium appear to be a few of the prerequisites for intraocular osseous metaplasia. Ossification can occur at isolated subretinal and preretinal locations or can involve both. Though a larger study is required to postulate the chronology of events, in this small series, isolated subretinal ossification appears to be initiated by calcification and ossification of drusen, while in the pre-retinal region it is associated with vitreoretinal proliferation.
Biernatowska, Agnieszka; Augoff, Katarzyna; Podkalicka, Joanna; Tabaczar, Sabina; Gajdzik-Nowak, Weronika; Czogalla, Aleksander; Sikorski, Aleksander F
2017-11-01
Flotillins are prominent, oligomeric protein components of erythrocyte (RBC) membrane raft domains and are considered to play an important structural role in lateral organization of the plasma membrane. In our previous work on erythroid membranes and giant plasma membrane vesicles (GPMVs) derived from them we have shown that formation of functional domains (resting state rafts) depends on the presence of membrane palmitoylated protein 1 (MPP1/p55), pointing to its new physiological role. Exploration of the molecular mechanism of MPP1 function in organizing membrane domains described here, through searching for its molecular partners in RBC membrane by using different methods, led to the identification of the raft-marker proteins, flotillin 1 and flotillin 2, as hitherto unreported direct MPP1 binding-partners in the RBC membrane. These proteins are found in high molecular-weight complexes in native RBC membrane and, significantly, their presence was shown to be separate from the well-known protein 4.1-dependent interactions of MPP1 with membrane proteins. Furthermore, FLIM analysis revealed that loss of the endogenous MPP1-flotillins interactions resulted in significant changes in RBC membrane-fluidity, emphasizing the physiological importance of such interactions in vivo. Therefore, our data establish a new perspective on the role of MPP1 in erythroid cells and suggests that direct MPP1-flotillins interactions could be the major driving-force behind the formation of raft domains in RBC. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Lopes, Daniela; Jakobtorweihen, Sven; Nunes, Cláudia; Sarmento, Bruno; Reis, Salette
2017-01-01
Lipid membranes work as barriers, which leads to inevitable drug-membrane interactions in vivo. These interactions affect the pharmacokinetic properties of drugs, such as their diffusion, transport, distribution, and accumulation inside the membrane. Furthermore, these interactions also affect their pharmacodynamic properties with respect to both therapeutic and toxic effects. Experimental membrane models have been used to perform in vitro assessment of the effects of drugs on the biophysical properties of membranes by employing different experimental techniques. In in silico studies, molecular dynamics simulations have been used to provide new insights at an atomistic level, which enables the study of properties that are difficult or even impossible to measure experimentally. Each model and technique has its advantages and disadvantages. Hence, combining different models and techniques is necessary for a more reliable study. In this review, the theoretical backgrounds of these (in vitro and in silico) approaches are presented, followed by a discussion of the pharmacokinetic and pharmacodynamic properties of drugs that are related to their interactions with membranes. All approaches are discussed in parallel to present for a better connection between experimental and simulation studies. Finally, an overview of the molecular dynamics simulation studies used for drug-membrane interactions is provided. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Ying; Wang, Xuejing; Wang, Lei; Yu, Miao; Han, Xiaojun
2014-02-01
The baicalin and baicalein are the major flavonoids found in Radix Scutellariae, an essential herb in traditional Chinese medicine for thousands of years. The interactions of the baicalin and baicalein with lipid bilayer membranes were studied using cyclic voltammetry and UV-Vis spectroscopy. The thickness d of supported bilayer lipid membranes was calculated as d=4.59(±0.36) nm using AC impedance spectroscopy. The baicalein interacted with egg PC bilayer membranes in a dose-dependent manner. The responses of K3Fe(CN)6 on lipid bilayer membrane modified Pt electrode linearly increased in a concentration range of baicalein from 6.25μM to 25μM with a detection limit of 0.1μM and current-concentration sensitivity of 0.11(±0.01) μA/μM, and then reached a plateau from 25μM to 50μM. However the baicalin showed much weaker interactions with egg PC bilayer membranes. UV-Vis spectroscopy also confirmed that the baicalein could interact with egg PC membranes noticeably, but the interaction of baicalin with membranes was hard to be detected. The results provide useful information on understanding the mechanism of action of Radix Scutellariae in vivo. © 2013.
Frontier of Epilepsy Research - mTOR signaling pathway
2011-01-01
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism. PMID:21467839
Zhao, Lian; Wang, Zhenfang; Liu, Yun; Song, Ying; Li, Yiwen; Laties, Alan M.
2007-01-01
Purpose A cardinal pathological feature of age-related macular degeneration (AMD) is the deposition of extracellular material between the retinal pigment epithelium (RPE) and Bruch's membrane, pathologically described as sub-RPE deposits. Both the presence and local organization of these deposits contribute to the clinical manifestations of AMD, including localized deposits clinically recognized as drusen. The biogenesis of sub-RPE deposits remains elusive. This work explores the pathological processes of sub-RPE deposit formation. Methods Matrigel was injected to the subretinal space of rats to create an amorphous deposit. Tissue sections were examined by light or confocal microscopy. Results In the presence of the subretinal deposit of Matrigel, RPE cells leave Bruch's membrane to migrate toward photoreceptors and then form a new layer between the deposit and photoreceptors, resulting in RPE translocation. The new RPE layer displaces the deposit to the sub-RPE location and therefore it becomes a sub-RPE deposit. The RPE mobilization requires the presence of photoreceptors. Bruch's membrane devoid of RPE attachment becomes vulnerable to invasion by new blood vessels from the choroid. Conclusions Our work supports a novel model of sub-RPE deposit formation in which excessive material first accumulates in the subretinal space, disrupting the physical contact between RPE cells and photoreceptors. To restore the contact, RPE cells migrate toward photoreceptors and form a new layer. The subretinal material is consequently displaced to the sub-RPE location and becomes sub-RPE deposit. Our data also provide evidence that the presence of sub-RPE deposit is sufficient to induce choroidal neovascularization to penetrate Bruch's membrane. PMID:17615538
Najib, Omaima N; Martin, Gary P; Kirton, Stewart B; Sallam, Al-Sayed; Murnane, Darragh
2016-06-15
The diffusion process through a non-porous barrier membrane depends on the properties of the drug, vehicle and membrane. The aim of the current study was to investigate whether a series of oily vehicles might have the potential to interact to varying degrees with synthetic membranes and to determine whether any such interaction might affect the permeation of co-formulated permeants: methylparaben (MP); butylparaben (BP) or caffeine (CF). The oils (isopropyl myristate (IPM), isohexadecane (IHD), hexadecane (HD), oleic acid (OA) and liquid paraffin (LP)) and membranes (silicone, high density polyethylene and polyurethane) employed in the study were selected such that they displayed a range of different structural, and physicochemical properties. Diffusion studies showed that many of the vehicles were not inert and did interact with the membranes resulting in a modification of the permeants' flux when corrected for membrane thickness (e.g. normalized flux of MP increased from 1.25±0.13μgcm(-1)h(-1) in LP to 17.94±0.25μgcm(-1)h(-1)in IPM). The oils were sorbed differently to membranes (range of weight gain: 2.2±0.2% for polyurethane with LP to 105.6±1.1% for silicone with IHD). Membrane interaction was apparently dependent upon the physicochemical properties including; size, shape, flexibility and the Hansen solubility parameter values of both the membranes and oils. Sorbed oils resulted in modified permeant diffusion through the membranes. No simple correlation was found to exist between the Hansen solubility parameters of the oils or swelling of the membrane and the normalized fluxes of the three compounds investigated. More sophisticated modelling would appear to be required to delineate and quantify the key molecular parameters of membrane, permeant and vehicle compatibility and their interactions of relevance to membrane permeation. Copyright © 2016 Elsevier B.V. All rights reserved.
DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes
NASA Astrophysics Data System (ADS)
You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Sam Wu, Cuichen; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong
2017-05-01
Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, mimicking motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within the same lipid domains.
Xu, Ming; Zhu, Jianqiang; Wang, Fanfan; Xiong, Yunjing; Wu, Yakun; Wang, Qiuquan; Weng, Jian; Zhang, Zhihong; Chen, Wei; Liu, Sijin
2016-03-22
The unique physicochemical properties of two-dimensional (2D) graphene oxide (GO) could greatly benefit the biomedical field; however, recent research demonstrated that GO could induce in vitro and in vivo toxicity. We determined the mechanism of GO induced toxicity, and our in vitro experiments revealed that pristine GO could impair cell membrane integrity and functions including regulation of membrane- and cytoskeleton-associated genes, membrane permeability, fluidity and ion channels. Furthermore, GO induced platelet depletion, pro-inflammatory response and pathological changes of lung and liver in mice. To improve the biocompatibility of pristine GO, we prepared a series of GO derivatives including aminated GO (GO-NH2), poly(acrylamide)-functionalized GO (GO-PAM), poly(acrylic acid)-functionalized GO (GO-PAA) and poly(ethylene glycol)-functionalized GO (GO-PEG), and compared their toxicity with pristine GO in vitro and in vivo. Among these GO derivatives, GO-PEG and GO-PAA induced less toxicity than pristine GO, and GO-PAA was the most biocompatible one in vitro and in vivo. The differences in biocompatibility were due to the differential compositions of protein corona, especially immunoglobulin G (IgG), formed on their surfaces that determine their cell membrane interaction and cellular uptake, the extent of platelet depletion in blood, thrombus formation under short-term exposure and the pro-inflammatory effects under long-term exposure. Overall, our combined data delineated the key molecular mechanisms underlying the in vivo and in vitro biological behaviors and toxicity of pristine GO, and identified a safer GO derivative that could be used for future applications.
The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.
Sergé, Arnauld
2016-01-01
The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.
Atomic Force Microscopy Study of the Interactions of Indolicidin with Model Membranes and DNA.
Fojan, Peter; Gurevich, Leonid
2017-01-01
The cell membrane is the first barrier and quite often the primary target that antimicrobial peptides (AMPs) have to destroy or penetrate to fulfill their mission. Upon penetrating through the membrane, the peptides can further attack intracellular targets, in particular DNA. Studying the interaction of an antimicrobial peptide with a cell membrane and DNA holds keys to understanding its killing mechanisms. Commonly, these interactions are studied by using optical or scanning electron microscopy and appropriately labeled peptides. However, labeling can significantly affect the hydrophobicity, conformation, and size of the peptide, hence altering the interaction significantly. Here, we describe the use of atomic force microscopy (AFM) for a label-free study of the interactions of peptides with model membranes under physiological conditions and DNA as a possible intracellular target.
Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes.
Barker, Robert D; McKinley, Laura E; Titmuss, Simon
2016-01-01
The principles of neutron reflectivity and its application as a tool to provide structural information at the (sub-) molecular unit length scale from models for bacterial membranes are described. The model membranes can take the form of a monolayer for a single leaflet spread at the air/water interface, or bilayers of increasing complexity at the solid/liquid interface. Solid-supported bilayers constrain the bilayer to 2D but can be used to characterize interactions with antimicrobial peptides and benchmark high throughput lab-based techniques. Floating bilayers allow for membrane fluctuations, making the phase behaviour more representative of native membranes. Bilayers of varying levels of compositional accuracy can now be constructed, facilitating studies with aims that range from characterizing the fundamental physical interactions, through to the characterization of accurate mimetics for the inner and outer membranes of Gram-negative bacteria. Studies of the interactions of antimicrobial peptides with monolayer and bilayer models for the inner and outer membranes have revealed information about the molecular control of the outer membrane permeability, and the mode of interaction of antimicrobials with both inner and outer membranes.
Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation
Barros, Marilia; Nanda, Hirsh
2016-01-01
ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane-bounded protein lattice that recruits genomic RNA into the virus and forms the shell of a budding immature viral capsid. In binding studies of HIV-1 Gag MA to model membranes with well-controlled lipid composition, we dissect the multiple interactions of the MA domain with its target membrane. This results in a detailed understanding of the thermodynamic aspects that determine membrane association, preferential lipid recruitment to the viral shell, and those aspects of Gag assembly into the membrane-bound protein lattice that are determined by MA. PMID:26912608
Minireview: Emerging Roles for Extracellular Vesicles in Diabetes and Related Metabolic Disorders
Lakhter, Alexander J.
2015-01-01
Extracellular vesicles (EVs), membrane-contained vesicles released by most cell types, have attracted a large amount of research interest over the past decade. Because of their ability to transfer cargo via regulated processes, causing functional impacts on recipient cells, these structures may play important roles in cell-cell communication and have implications in the physiology of numerous organ systems. In addition, EVs have been described in most human biofluids and have wide potential as relatively noninvasive biomarkers of various pathologic conditions. Specifically, EVs produced by the pancreatic β-cell have been demonstrated to regulate physiologic and pathologic responses to β-cell stress, including β-cell proliferation and apoptosis. β-Cell EVs are also capable of interacting with immune cells and may contribute to the activation of autoimmune processes that trigger or propagate β-cell inflammation and destruction during the development of diabetes. EVs from adipose tissue have been shown to contribute to the development of the chronic inflammation and insulin resistance associated with obesity and metabolic syndrome via interactions with other adipose, liver, and muscle cells. Circulating EVs may also serve as biomarkers for metabolic derangements and complications associated with diabetes. This minireview describes the properties of EVs in general, followed by a more focused review of the literature describing EVs affecting the β-cell, β-cell autoimmunity, and the development of insulin resistance, which all have the potential to affect development of type 1 or type 2 diabetes. PMID:26393296
Ferhan, Abdul Rahim; Ma, Gamaliel Junren; Jackman, Joshua A.; Sut, Tun Naw; Park, Jae Hyeon; Cho, Nam-Joon
2017-01-01
The integration of supported lipid membranes with surface-based nanoplasmonic arrays provides a powerful sensing approach to investigate biointerfacial phenomena at membrane interfaces. While a growing number of lipid vesicles, protein, and nucleic acid systems have been explored with nanoplasmonic sensors, there has been only very limited investigation of the interactions between solution-phase nanomaterials and supported lipid membranes. Herein, we established a surface-based localized surface plasmon resonance (LSPR) sensing platform for probing the interaction of dielectric nanoparticles with supported lipid bilayer (SLB)-coated, plasmonic nanodisk arrays. A key emphasis was placed on controlling membrane functionality by tuning the membrane surface charge vis-à-vis lipid composition. The optical sensing properties of the bare and SLB-coated sensor surfaces were quantitatively compared, and provided an experimental approach to evaluate nanoparticle–membrane interactions across different SLB platforms. While the interaction of negatively-charged silica nanoparticles (SiNPs) with a zwitterionic SLB resulted in monotonic adsorption, a stronger interaction with a positively-charged SLB resulted in adsorption and lipid transfer from the SLB to the SiNP surface, in turn influencing the LSPR measurement responses based on the changing spatial proximity of transferred lipids relative to the sensor surface. Precoating SiNPs with bovine serum albumin (BSA) suppressed lipid transfer, resulting in monotonic adsorption onto both zwitterionic and positively-charged SLBs. Collectively, our findings contribute a quantitative understanding of how supported lipid membrane coatings influence the sensing performance of nanoplasmonic arrays, and demonstrate how the high surface sensitivity of nanoplasmonic sensors is well-suited for detecting the complex interactions between nanoparticles and lipid membranes. PMID:28644423
Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity
Yamamoto, Eiji; Akimoto, Takuma; Kalli, Antreas C.; Yasuoka, Kenji; Sansom, Mark S. P.
2017-01-01
Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphatidylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time. Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements. This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules. Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound proteins may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:28116358
Friedrich, Ulrike; Stöhr, Heidi; Hilfinger, Daniela; Loenhardt, Thomas; Schachner, Melitta; Langmann, Thomas; Weber, Bernhard H F
2011-03-15
Mutations in the RS1 gene that encodes the discoidin domain containing retinoschisin cause X-linked juvenile retinoschisis (XLRS), a common macular degeneration in males. Disorganization of retinal layers and electroretinogram abnormalities are hallmarks of the disease and are also found in mice deficient for the orthologous murine protein, indicating that retinoschisin is important for the maintenance of retinal cell integrity. Upon secretion, retinoschisin associates with plasma membranes of photoreceptor and bipolar cells, although the components by which the protein is linked to membranes in vivo are still unclear. Here, we show that retinoschisin fails to bind to phospholipids or unilamellar lipid vesicles. A recent proteomic approach identified the Na/K-ATPase subunits ATP1A3 and ATP1B2 as binding partners of retinoschisin. We analyzed mice deficient for retinoschisin (Rs1h(-/Y)) and ATP1B2 (Atp1b2(-/-)) to characterize the role of Na/K-ATPase interaction in the organization of retinoschisin on cellular membranes. We demonstrate that both the Na/K-ATPase and retinoschisin are significantly reduced in Atp1b2(-/-) retinas, suggesting that retinoschisin membrane association is severely impaired in the absence of ATP1A3 and ATP1B2 subunits. Conversely, the presence of ATP1A3 and ATP1B2 are obligatory for binding of exogenously applied retinoschisin to crude membranes. Also, co-expression of ATP1A3 and ATP1B2 is required for retinoschisin binding to intact Hek293 cells. Taken together, our data support a predominant role of Na/K-ATPase in anchoring retinoschisin to retinal cell surfaces. Furthermore, altered localization of ATP1A3 and ATP1B2 is a notable consequence of retinoschisin deficiency and thus may be an important downstream aspect of cellular pathology in XLRS.
Sakowicz-Burkiewicz, Monika; Kuczkowski, Jerzy; Przybyła, Tomasz; Grdeń, Marzena; Starzyńska, Anna; Pawełczyk, Tadeusz
2017-09-01
Tympanosclerosis is a pathological process involving the middle ear. The hallmark of this disease is the formation of calcium deposits. In the submucosal layer, as well as in the right layer of the tympanic membrane, the calcium deposits result in a significant increase in the activity of fibroblasts and deposition of collagen fibers. The aim of our study was to examine the expression level of genes encoding collagen type I, II, III and IV (COL1A1, COL2A1, COL3A1, COL4A1) and osteopontin (SPP1) in the tympanic membrane of patients with tympanosclerosis. The total RNA was isolated from middle ear tissues with tympanosclerosis, received from 25 patients and from 19 normal tympanic membranes. The gene expression level was determined by real-time RT-PCR. The gene expression levels were correlated with clinical Tos classification of tympanosclerosis. We observed that in the tympanic membrane of patients with tympanosclerosis, the expression of type I collagen is decreased, while the expression of type II and IV collagen and osteopontin is increased. Moreover, mRNA levels of the investigated genes strongly correlated with the clinical stages of tympanosclerosis. The strong correlations between the expression of type I, II, IV collagen and osteopontin and the clinical stage of tympanosclerosis indicate the involvement of these proteins in excessive fibrosis and pathological remodeling of the tympanic membrane. In the future, a treatment aiming to modulate these gene expressions and/or regulation of the degradation of their protein products could be used as a new medical approach for patients with tympanosclerosis.
Gerald, II, Rex E.; Ruscic, Katarina J [Chicago, IL; Sears, Devin N [Spruce Grove, CA; Smith, Luis J [Natick, MA; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL
2012-02-21
The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.
Butterfield, D Allan; Hardas, Sarita S; Lange, Miranda L Bader
2010-01-01
Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc., that play important roles in normal and pathologic cell function. Specifically, GAPDH has been shown to interact with neurodegenerative disease-associated proteins, including the amyloid-beta protein precursor (AbetaPP). Studies from our laboratory have shown significant inhibition of GAPDH dehydrogenase activity in Alzheimer's disease (AD) brain due to oxidative modification. Although oxidative stress and damage is a common phenomenon in the AD brain, it would seem that inhibition of glycolytic enzyme activity is merely one avenue in which AD pathology affects neuronal cell development and survival, as oxidative modification can also impart a toxic gain-of-function to many proteins, including GAPDH. In this review, we examine the many functions of GAPDH with respect to AD brain; in particular, the apparent role(s) of GAPDH in AD-related apoptotic cell death is emphasized.
Identification of Key Interactions in the Initial Self-Assembly of Amylin in a Membrane Environment.
Christensen, Mikkel; Skeby, Katrine K; Schiøtt, Birgit
2017-09-12
Islet amyloid polypeptide, also known as amylin, forms aggregates that reduce the amount of insulin-producing cells in patients with type II diabetes mellitus. Much remains unknown about the process of aggregation and cytotoxicity, but it is known that certain cell membrane components can alter the rate of aggregation. Using atomistic molecular dynamics simulations combined with the highly mobile membrane mimetic model incorporating enhanced sampling of lipid diffusion, we investigate interaction of amylin peptides with the membrane components as well as the self-assembly of amylin. Consistent with experimental evidence, we find that an initial membrane-bound α-helical state folds into stable β-sheet structures upon self-assembly. Our results suggest the following mechanism for the initial phase of amylin self-assembly. The peptides move around on the membrane with the positively charged N-terminus interacting with the negatively charged lipid headgroups. When the peptides start to interact, they partly unfold and break some of the contacts with the membrane. The initial interactions between the peptides are dominated by aromatic and hydrophobic interactions. Oligomers are formed showing both intra- and interpeptide β-sheets, initially with interactions mainly in the C-terminal domain of the peptides. Decreasing the pH to 5.5 is known to inhibit amyloid formation. At low pH, His18 is protonated, adding a fourth positive charge at the peptide. With His18 protonated, no oligomerization is observed in the simulations. The additional charge gives a strong midpoint anchoring of the peptides to negatively charged membrane components, and the peptides experience additional interpeptide repulsion, thereby preventing interactions.
Shen, Liguo; Cui, Xia; Yu, Genying; Li, Fengquan; Li, Liang; Feng, Shushu; Lin, Hongjun; Chen, Jianrong
2017-05-15
In this study, polyvinylidene fluoride (PVDF) microfiltration membrane was coated by dipping the membrane alternatingly in solutions of the polyelectrolytes (poly-diallyldimethylammonium chloride (PDADMAC) and polystyrenesulfonate (PSS)) via layer-by-layer (LBL) self-assembly technique to improve the membrane antifouling ability. Filtration experiments showed that, sludge cake layer on the coated membrane could be more easily washed off, and moreover, the remained flux ratio (RFR) of the coated membrane was obviously improved as compared with the control membrane. Characterization of the membranes showed that a polyelectrolyte layer was successfully coated on the membrane surfaces, and the hydrophilicity, surface charge and surface morphology of the coated membrane were changed. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approaches, quantification of interfacial interactions between foulants and membranes in three different scenarios was achieved. It was revealed that there existed a repulsive energy barrier when a particle foulant adhered to membrane surface, and the enhanced electrostatic double layer (EL) interaction and energy barrier should be responsible for the improved antifouling ability of the coated membrane. This study provided a combined solution to membrane modification and interaction energy evaluation related with membrane fouling simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Yi-Ning; Tang, Chuyang Y
2011-08-01
Protein fouling of nanofiltration (NF), reverse osmosis (RO), and ultrafiltration (UF) membranes by bovine serum albumin (BSA), lysozyme (LYS), and their mixture was investigated under cross-flow conditions. The effect of solution chemistry, membrane properties, and permeate flux level was systematically studied. When the solution pH was within the isoelectric points (IEPs) of the two proteins (i.e., pH 4.7-10.4), the mixed protein system experienced more severe flux decline compared to the respective single protein systems, which may be attributed to the electrostatic attraction between the negatively charged BSA and positively charged LYS molecules. Unlike a typical single protein system, membrane fouling by BSA-LYS mixture was only weakly dependent on solution pH within this pH range, and increased ionic strength was found to enhance the membrane flux as a result of the suppressed BSA-LYS electrostatic attraction. Membrane fouling was likely controlled by foulant-fouled-membrane interaction under severe fouling conditions (elevated flux level and unfavorable solution chemistry that promotes fouling), whereas it was likely dominated by foulant-clean-membrane interaction under mild fouling conditions. Compared to nonporous NF and RO membranes, the porous UF membrane was more susceptible to dramatic flux decline due to the increased risk of membrane pore plugging. This study reveals that membrane fouling by mixed macromolecules may behave very differently from that by typical single foulant system, especially when the inter-foulant-species interaction dominates over the intra-species interaction in the mixed foulant system.
2015-01-01
To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In conclusion, biomechanical interactions with membrane lipids are involved in cellular uptake and endosomal escape of NPs. Biophysical interaction studies could help us better understand the role of membrane lipids in cellular uptake and intracellular trafficking of NPs. PMID:24911361
[Detection of antibodies to adipose tissue cell membranes in human blood].
Bershteĭn, L M; Shemerovskaia, T G; Sofronov, B N; Dil'man, V M
1991-07-01
In serum of some healthy women and patients with fibroadenomatosis of the mammary gland antibodies to the cell membranes of adipocytes were detected. Interconnections between these antibodies and corresponding antigens in blood, on the one hand, and hormonal-metabolic status of probands, on the other hand, were observed. Possible autoimmune origin of phenomenon detected and its relation to the normal and pathological processes in adipose tissue are discussed.
Pérez-Cañamás, A; Benvegnù, S; Rueda, C B; Rábano, A; Satrústegui, J; Ledesma, M D
2017-05-01
Niemann-Pick disease type A (NPA) is a rare lysosomal storage disorder characterized by severe neurological alterations that leads to death in childhood. Loss-of-function mutations in the acid sphingomyelinase (ASM) gene cause NPA, and result in the accumulation of sphingomyelin (SM) in lysosomes and plasma membrane of neurons. Using ASM knockout (ASMko) mice as a NPA disease model, we investigated how high SM levels contribute to neural pathology in NPA. We found high levels of oxidative stress both in neurons from these mice and a NPA patient. Impaired activity of the plasma membrane calcium ATPase (PMCA) increases intracellular calcium. SM induces PMCA decreased activity, which causes oxidative stress. Incubating ASMko-cultured neurons in the histone deacetylase inhibitor, SAHA, restores PMCA activity and calcium homeostasis and, consequently, reduces the increased levels of oxidative stress. No recovery occurs when PMCA activity is pharmacologically impaired or genetically inhibited in vitro. Oral administration of SAHA prevents oxidative stress and neurodegeneration, and improves behavioral performance in ASMko mice. These results demonstrate a critical role for plasma membrane SM in neuronal calcium regulation. Thus, we identify changes in PMCA-triggered calcium homeostasis as an upstream mediator for NPA pathology. These findings can stimulate new approaches for pharmacological remediation in a disease with no current clinical treatments.
Montis, Costanza; Generini, Viola; Boccalini, Giulia; Bergese, Paolo; Bani, Daniele; Berti, Debora
2018-04-15
Understanding the interaction between nanomaterials and biological interfaces is a key unmet goal that still hampers clinical translation of nanomedicine. Here we investigate and compare non-specific interaction of gold nanoparticles (AuNPs) with synthetic lipid and wild type macrophage membranes. A comprehensive data set was generated by systematically varying the structural and physicochemical properties of the AuNPs (size, shape, charge, surface functionalization) and of the synthetic membranes (composition, fluidity, bending properties and surface charge), which allowed to unveil the matching conditions for the interaction of the AuNPs with macrophage plasma membranes in vitro. This effort directly proved for the first time that synthetic bilayers can be set to mimic and predict with high fidelity key aspects of nanoparticle interaction with macrophage eukaryotic plasma membranes. It then allowed to model the experimental observations according to classical interface thermodynamics and in turn determine the paramount role played by non-specific contributions, primarily electrostatic, Van der Waals and bending energy, in driving nanoparticle-plasma membrane interactions. Copyright © 2018 Elsevier Inc. All rights reserved.
Pivovarov, Yu I; Kuznetsova, E E; Koryakina, L B; Gorokhova, V G; Kuril'skaya, T E
2015-05-01
We studied specific features of erythrocyte membrane response to short-term occlusion of the brachial artery in patients with cardiovascular pathology. Under ischemic conditions, processes of sorption were primarily intensified in patients with effort angina and processes of hemoglobin binding with erythrocyte membrane predominated in patients with essential hypertension. These changes in the cell membrane were related to modulation of aggregation properties of erythrocytes (in patients with angina) and plasminogen activity (in patients with essential hypertension). They can also be associated with changes in glucose levels (effort angina) and uric acid (essential hypertension) whose effects can be significantly modified by other endogenous factors.
DNA probe for monitoring dynamic and transient molecular encounters on live cell membranes
You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Wu, Cuichen Sam; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong
2017-01-01
Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, such as motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within different lipid domains. PMID:28319616
DiChiara, Thomas; DiNunno, Nadia; Clark, Jeffrey; Bu, Riana Lo; Cline, Erika N.; Rollins, Madeline G.; Gong, Yuesong; Brody, David L.; Sligar, Stephen G.; Velasco, Pauline T.; Viola, Kirsten L.; Klein, William L.
2017-01-01
Toxic amyloid beta oligomers (AβOs) are known to accumulate in Alzheimer’s disease (AD) and in animal models of AD. Their structure is heterogeneous, and they are found in both intracellular and extracellular milieu. When given to CNS cultures or injected ICV into non-human primates and other non-transgenic animals, AβOs have been found to cause impaired synaptic plasticity, loss of memory function, tau hyperphosphorylation and tangle formation, synapse elimination, oxidative and ER stress, inflammatory microglial activation, and selective nerve cell death. Memory loss and pathology in transgenic models are prevented by AβO antibodies, while Aducanumab, an antibody that targets AβOs as well as fibrillar Aβ, has provided cognitive benefit to humans in early clinical trials. AβOs have now been investigated in more than 3000 studies and are widely thought to be the major toxic form of Aβ. Although much has been learned about the downstream mechanisms of AβO action, a major gap concerns the earliest steps: How do AβOs initially interact with surface membranes to generate neuron-damaging transmembrane events? Findings from Ohnishi et al (PNAS 2005) combined with new results presented here are consistent with the hypothesis that AβOs act as neurotoxins because they attach to particular membrane protein docks containing Na/K ATPase-α3, where they inhibit ATPase activity and pathologically restructure dock composition and topology in a manner leading to excessive Ca++ build-up. Better understanding of the mechanism that makes attachment of AβOs to vulnerable neurons a neurotoxic phenomenon should open the door to therapeutics and diagnostics targeting the first step of a complex pathway that leads to neural damage and dementia. PMID:28356893
The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.
Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri
2011-06-21
In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar membranes and charged proteins or biopolymers for encapsulation and delivery applications. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne
2013-03-01
Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).
Membrane Repair: Mechanisms and Pathophysiology
Cooper, Sandra T.; McNeil, Paul L.
2015-01-01
Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body. PMID:26336031
Díaz-Flores, L; Gutiérrez, R; Madrid, J F; Varela, H; Valladares, F; Acosta, E; Martín-Vasallo, P; Díaz-Flores, L
2009-07-01
We review the morphofunctional characteristics of pericytes and report our observations. After a brief historical background, we consider the following aspects of pericytes: A) Origin in embryonic vasculogenesis (mesenchymal stem cells, neurocrest and other possible sources) and in embryonic and postnatal life angiogenesis (pre-existing pericytes, fibroblast/ myofibroblasts and circulating progenitor cells). B) Location in pericytic microvasculature and in the other blood vessels (including transitional cell forms and absence in lymphatic vessels), incidence (differences depending on species, topographical location, and type and stage of vessels) and distribution (specific polarities) in blood vessels. C) Morphology (cell body, and longitudinal and circumferential cytoplasmic processes), structure (nucleus, cytoplasmic organelles and distribution of microtubules, intermediate filaments and microfilaments) and surface (caveolae system). D) Basement membrane disposition, formation, components and functions. E) Contacts with endothelial cells (ECs) (peg and socket arrangements, adherent junctions and gap junctions) and with basal membrane (adhesion plaques). F) Molecular expression (pericyte marker identification). G) Functions, such as vessel stabilization, regulation of vascular tone and maintenance of local and tissue homeostasis (contractile capacity and vessel permeability regulation), matrix protein synthesis, macrophage-like properties, immunological defense, intervention in coagulation, participation in mechanisms that regulate the quiescent and angiogenic stages of blood vessels (including the behaviour of pericytes during sprouting angiogenesis and intussuceptive vascular growth, as well as pericyte interactions with endothelium and other cells, and with extracellular matrix) and plasticity, as progenitor cells with great mesenchymal potential, originating other pericytes, fibroblast/myofibroblasts, preadipocytes, chondroblasts, osteoblasts, odontoblasts, vascular smooth muscle and myointimal cells. This mesenchymal capacity is seen in a broad section on the perivascular mesenchymal cell niche hypothesis and in the concept of pericyte and EC "marriage and divorce". H) Peculiar pericyte types, such as hepatic stellate cells (Ito cells), bone marrow reticular cells and mesangial cells. I) Involvement in pathological processes, such as repair through granulation tissue, pericyte-derived tumors, tumor angiogenesis and tumoral cell metastasis, diabetic microangiopathy, fibrosis, atherosclerosis and calcific vasculopathy, lymphedema distichiasis, chronic venous insufficiency, pulmonary hypertension, Alzheimer disease and multiple sclerosis. J) Clinical and therapeutic implications (de-stabilization of vessels or formation of a stable vasculature).
Zhao, X; Xie, Y; Liu, J
2017-01-01
Exosomes are small membrane vesicles that are produced by cells and excreted into extracellular space. Contents of exosomes generally include lipid, membrane, and soluble proteins, and various types of coding and noncoding RNAs. Over the past decades, it has become clear that exosomes constitute an important vector for intercellular transport and communication with significant functional relevance. Evaluating exosome contents and their changes are vital for understanding its role in different physiological and pathological processes. Infection by certain pathogens, including viruses as well as intracellular bacteria, fungi, and parasites, has been shown to induce specific content changes in exosomes produced by infected cells. Evidences also indicate that exosomes produced by infected cells may actively participate in host-virus interactions, including immune responses. Studies of exosome content changes involve highly complex experimental and computational procedures, which can become even more complicated in the context of viral infections, due to the production and secretion of multiple virus-derived proteins and particles by infected cells. In this chapter, general and specific considerations relating to studies of exosome content changes induced by virus activities are discussed and illustrated with the detailed protocols previously used to identify protein content changes in Huh-7 cell exosomes induced by transfection with hepatitis B virus replicon plasmids, using SILAC labeling and LS-MS/MS. Hopefully, this would help enable more and further studies along similar lines and enhance the understanding of this new aspect of host-pathogen interactions. © 2017 Elsevier Inc. All rights reserved.
PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells.
Llorens, Franc; Carulla, Patricia; Villa, Ana; Torres, Juan M; Fortes, Puri; Ferrer, Isidre; del Río, José A
2013-10-01
The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrP(SC)) has been studied in depth, the physiological role of PrP(C) remains elusive and controversial. PrP(C) is a cell-surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrP(C) in animals and in cellular models. In this article, we present PrP(C)-dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrP(C) over-expression enhances cell proliferation and cell cycle re-entrance after serum stimulation, while PrP(C) silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrP(C) in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrP(C) in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrP(C) over-expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT-Cdc42-N-WASP-dependent pathway. © 2013 International Society for Neurochemistry.
Takeda, Tetsuro
2003-12-01
During development, glomerular visceral epithelial cells, or podocytes, undergo extensive morphologic changes necessary for the creation of the glomerular filter. These changes include formation of interdigitating foot processes, replacement of tight junctions with slit diaphragms, and the concomitant opening of filtration slits. It was postulated previously and confirmed recently that podocalyxin, a sialomucin, plays a major role in keeping the urinary space open by virtue of the physicochemical properties of its highly negatively charged ectodomain. By a cell aggregation assay, the expression level of podocalyxin correlated closely with the anti-adhesion effect. Treatment of the cells with sialidase reversed the inhibitory effect of podocalyxin, indicating that sialic acid residue is required for inhibition of cell adhesion. In addition to its ectodomain, the highly conserved cytoplasmic tail of podocalyxin may contribute to the unique organization of podocytes. By immunocytochemistry, it was shown that two cytosolic adaptor proteins, Na(+)/H(+)-exchanger regulatory factor 2 (NHERF2) and ezrin, colocalize with podocalyxin along the apical plasma membrane of podocytes, where they form a co-immunoprecipitable complex. Moreover, the podocalyxin/NHERF2 /ezrin complex interacts with the actin cytoskeleton, and this interaction is disrupted in pathologic conditions associated with changes in the foot processes, indicating its importance in maintaining the unique organization of this epithelium. Further studies will be needed to identify the signaling molecules responsible for the regulation of this complex in podocyte damage.
Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D; Fisher, John T; Zhang, Shetuan
2011-10-07
Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.
Lipid membrane-mediated attraction between curvature inducing objects
NASA Astrophysics Data System (ADS)
van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J.
2016-09-01
The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (-3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles.
HAMLET interacts with lipid membranes and perturbs their structure and integrity.
Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger
2010-02-23
Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.
2013-01-01
Despite a long history in medical and dental application, the molecular mechanism and precise site of action are still arguable for local anesthetics. Their effects are considered to be induced by acting on functional proteins, on membrane lipids, or on both. Local anesthetics primarily interact with sodium channels embedded in cell membranes to reduce the excitability of nerve cells and cardiomyocytes or produce a malfunction of the cardiovascular system. However, the membrane protein-interacting theory cannot explain all of the pharmacological and toxicological features of local anesthetics. The administered drug molecules must diffuse through the lipid barriers of nerve sheaths and penetrate into or across the lipid bilayers of cell membranes to reach the acting site on transmembrane proteins. Amphiphilic local anesthetics interact hydrophobically and electrostatically with lipid bilayers and modify their physicochemical property, with the direct inhibition of membrane functions, and with the resultant alteration of the membrane lipid environments surrounding transmembrane proteins and the subsequent protein conformational change, leading to the inhibition of channel functions. We review recent studies on the interaction of local anesthetics with biomembranes consisting of phospholipids and cholesterol. Understanding the membrane interactivity of local anesthetics would provide novel insights into their anesthetic and cardiotoxic effects. PMID:24174934
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiyamoorthy, Karthik; Hu, Yao Xiong; Möhl, Britta S.
Herpesvirus entry into host cells is mediated by multiple virally encoded receptor binding and membrane fusion glycoproteins. Despite their importance in host cell tropism and associated disease pathology, the underlying and essential interactions between these viral glycoproteins remain poorly understood. For Epstein–Barr virus (EBV), gHgL/gp42 complexes bind HLA class II to activate membrane fusion with B cells, but gp42 inhibits fusion and entry into epithelial cells. To clarify the mechanism by which gp42 controls the cell specificity of EBV infection, in this paper we determined the structure of gHgL/gp42 complex bound to an anti-gHgL antibody (E1D1). The critical regulator ofmore » EBV tropism is the gp42 N-terminal domain, which tethers the HLA-binding domain to gHgL by wrapping around the exterior of three gH domains. Both the gp42 N-terminal domain and E1D1 selectively inhibit epithelial-cell fusion; however, they engage distinct surfaces of gHgL. Finally, these observations clarify key determinants of EBV host cell tropism.« less
Sathiyamoorthy, Karthik; Hu, Yao Xiong; Möhl, Britta S.; ...
2016-12-08
Herpesvirus entry into host cells is mediated by multiple virally encoded receptor binding and membrane fusion glycoproteins. Despite their importance in host cell tropism and associated disease pathology, the underlying and essential interactions between these viral glycoproteins remain poorly understood. For Epstein–Barr virus (EBV), gHgL/gp42 complexes bind HLA class II to activate membrane fusion with B cells, but gp42 inhibits fusion and entry into epithelial cells. To clarify the mechanism by which gp42 controls the cell specificity of EBV infection, in this paper we determined the structure of gHgL/gp42 complex bound to an anti-gHgL antibody (E1D1). The critical regulator ofmore » EBV tropism is the gp42 N-terminal domain, which tethers the HLA-binding domain to gHgL by wrapping around the exterior of three gH domains. Both the gp42 N-terminal domain and E1D1 selectively inhibit epithelial-cell fusion; however, they engage distinct surfaces of gHgL. Finally, these observations clarify key determinants of EBV host cell tropism.« less
Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.
Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R
2016-06-01
Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.
NASA Astrophysics Data System (ADS)
Pattnaik, Shrikant; Banerjee, Rupak; Kim, Jay
2012-04-01
Hand-arm vibration syndrome (HAVS) is collectively a vasospastic and neurodegenerative occupational disease. One of the major symptoms of HAVS is vibration white finger (VWF) caused by exaggerated vasoconstriction of the arteries and skin arterioles. While VWF is a very painful and costly occupational illness, its pathology has not been well understood. In this study a small artery is modeled as a fluid filled elastic tube whose diameter changes along the axial direction. Equations of motion are developed by considering interactions between the fluid, artery wall and soft-tissue bed. It is shown that the resulting wave equation is the same as that of the basilar membrane in the cochlea of mammals. Therefore, the artery system shows a spatial resonance as in the basilar membrane, which responds with the highest amplitude at the location determined by the vibration frequency. This implies that a long-term use of one type of tool will induce high-level stresses at a few identical locations of the artery that correspond to the major frequency components of the tool. Hardening and deterioration of the artery at these locations may be a possible cause of VWF.
Influence of Lipid Membrane Rigidity on Properties of Supporting Polymer
Jablin, Michael S.; Dubey, Manish; Zhernenkov, Mikhail; Toomey, Ryan; Majewski, Jarosław
2011-01-01
Temperature-sensitive hydrogel polymers are utilized as responsive layers in various applications. Although the polymer's native characteristics have been studied extensively, details concerning its properties during interaction with biorelated structures are lacking. This work investigates the interaction between a thermoresponsive polymer cushion and different lipid membrane capping layers probed by neutron reflectometry. N-isopropylacrylamide copolymerized with methacroylbenzophenone first supported a lipid bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and subsequently 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The polymer-membrane systems were investigated above and below the polymer transition temperature (37 and 25°C). Although the same cushion supported each lipid membrane, the polymer hydration profile and thickness were markedly different for DPPE and DPPC systems. Because DPPE and DPPC have different bending rigidities, these results establish that the polymer-membrane interaction is critically mediated by the mechanics of the membrane, providing better insight into cell-hydrogel interactions. PMID:21723822
Plant Endocytosis Requires the ER Membrane-Anchored Proteins VAP27-1 and VAP27-3.
Stefano, Giovanni; Renna, Luciana; Wormsbaecher, Clarissa; Gamble, Jessie; Zienkiewicz, Krzysztof; Brandizzi, Federica
2018-05-22
Through yet-undefined mechanisms, the plant endoplasmic reticulum (ER) has a critical role in endocytosis. The plant ER establishes a close association with endosomes and contacts the plasma membrane (PM) at ER-PM contact sites (EPCSs) demarcated by the ER membrane-associated VAMP-associated-proteins (VAP). Here, we investigated two plant VAPs, VAP27-1 and VAP27-3, and found an interaction with clathrin and a requirement for the homeostasis of clathrin dynamics at endocytic membranes and endocytosis. We also demonstrated direct interaction of VAP27-proteins with phosphatidylinositol-phosphate lipids (PIPs) that populate endocytic membranes. These results support that, through interaction with PIPs, VAP27-proteins bridge the ER with endocytic membranes and maintain endocytic traffic, likely through their interaction with clathrin. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Caveolins: targeting pro-survival signaling in the heart and brain
Stary, Creed M.; Tsutsumi, Yasuo M.; Patel, Piyush M.; Head, Brian P.; Patel, Hemal H.; Roth, David M.
2012-01-01
The present review discusses intracellular signaling moieties specific to membrane lipid rafts (MLRs) and the scaffolding proteins caveolin and introduces current data promoting their potential role in the treatment of pathologies of the heart and brain. MLRs are discreet microdomains of the plasma membrane enriched in gylcosphingolipids and cholesterol that concentrate and localize signaling molecules. Caveolin proteins are necessary for the formation of MLRs, and are responsible for coordinating signaling events by scaffolding and enriching numerous signaling moieties in close proximity. Specifically in the heart and brain, caveolins are necessary for the cytoprotective phenomenon termed ischemic and anesthetic preconditioning. Targeted overexpression of caveolin in the heart and brain leads to induction of multiple pro-survival and pro-growth signaling pathways; thus, caveolins represent a potential novel therapeutic target for cardiac and neurological pathologies. PMID:23060817
Laser Doppler Vibrometry measurements of human cadaveric tympanic membrane vibration
2013-01-01
Objective To determine the feasibility of measuring tympanic membrane (TM) vibrations at multiple locations on the TM to differentiate normal eardrums from those with associated ossicular pathologies. Design Cadaveric human temporal bone study. Setting Basic science laboratory. Methods A mastoidectomy and facial recess approach was performed on four cadaveric temporal bones to obtain access to the ossicles without disrupting the TM. Ossicles were palpated to ensure normal mobility and an intact ossicular chain. Laser Doppler Vibrometry (LDV) measurements were then taken on all four TMs. LDV measurements were repeated on each TM following stapes footplate fixation, incudo-stapedial joint dislocation, and malleus head fixation. Main outcome measures LDV measurements of TM vibration at the umbo, the lateral process of the malleus, and in each of the four quadrants of the TM. Results The best signal-to-noise ratios were found between 2 and 4 kHz, at the umbo, the anterior superior quadrant, the anterior inferior quadrant, and the posterior inferior quadrant. Since our goal was to assess the ossicular chain, we selected the TM locations closest to the ossicular chain (the umbo and lateral process of the malleus) for further analysis. Differences could be seen between normals and the simulated ossicular pathologies, but values were not statistically significant. Conclusions LDV measurements are technically challenging and require optimization to obtain consistent measurements. This study demonstrates the potential of LDV to differentiate ossicular pathologies behind an intact tympanic membrane. Future studies will further characterize the clinical role of this diagnostic modality. PMID:23663748
Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.
Lopes, Jose L S; Beltramini, Leila M; Wallace, Bonnie A; Araujo, Ana P U
2015-01-01
Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.
Aqua-vanadyl ion interaction with Nafion® membranes
Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; ...
2015-03-23
Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.
Continuum electromechanical modeling of protein-membrane interactions
NASA Astrophysics Data System (ADS)
Zhou, Y. C.; Lu, Benzhuo; Gorfe, Alemayehu A.
2010-10-01
A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.
Pereira-Leite, Catarina; Nunes, Cláudia; Lima, José L F C; Reis, Salette; Lúcio, Marlene
2012-11-26
The present work provides a biophysical characterization of the interaction of celecoxib, a cyclo-oxigenase-2 selective nonsteroidal anti-inflammatory drug, with membranes using liposomes, constituted by phosphatidylcholines, as membrane model systems. In order to mimic biological conditions, the experiments were performed at physiological pH (7.4); at an acidic pH to mimic the conditions of the inflamed cells (5.0); and at different membrane physical states (gel, ripple, and fluid phase). Important information regarding the celecoxib-membrane interactions was gathered by the complementary biophysical techniques: derivative spectrophotometry was used to determine liposome/water partition coefficient of celecoxib; dynamic light scattering (DLS) measurements were performed to study the influence of celecoxib on lipid main phase transition temperature; fluorescence binding measurements were made to assess the location of celecoxib within the membrane; and small-angle and wide-angle X-ray scattering (SAXS and WAXS) were used to assess the changes in the structure and order of phosphatidylcholine bilayers caused by the presence of celecoxib. The overall results obtained indicate that celecoxib greatly interacts with membranes. Briefly, celecoxib exhibits a high liposome/water partition coefficient that is non-pH-dependent, but the location of celecoxib within the membrane is pH-dependent. In fact, celecoxib is more deeply located inside the membrane at pH 5.0, while it locates closer to the surface at pH 7.4. DLS, SAXS, and WAXS results have shown a high membrane fluidization in the presence of celecoxib, especially at pH 7.4. Overall, the current study can contribute to a biophysical characterization of the celecoxib-membrane interaction. The relevance of the gathered results will be discussed in terms of the reported celecoxib therapeutic and toxic effects.
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha
2017-12-01
Receptor-ligand (R-L) binding mediated interactions between the plasma membrane (PM) and a nanoparticle (NP) require the ligand-functionalized NPs to come to a distance of separation (DOS) of at least dRL (length of the R-L complex) from the receptor-bearing membranes. In this letter, we establish that the membrane surface charges and the surrounding ionic environment dictate whether or not the attainment of such a critical DOS is possible. The negatively charged membrane invariably induces a negative electrostatic potential at the NP surface, repelling the NP from the membrane. This is countered by the attractive influences of the thermal fluctuations and van der Waals (vdw) interactions that drive the NP close to the membrane. For a NP approaching the membrane from a distance, the ratio of the repulsive (electrostatic) and attractive (thermal and vdW) effects balances at a critical NP-membrane DOS of dg,c. For a given set of parameters, there can be two possible values of dg,c, namely, dg,c,1 and dg,c,2 with dg,c,1 ≫ dg,c,2. We establish that any R-L mediated NP-membrane interaction is possible only if dRL > dg,c,1. Therefore, our study proposes a design criterion for engineering ligands for a NP that will ensure the appropriate length of the R-L complex in order to ensure the successful membrane-NP interaction in the presence of a given electrostatic environment. Finally, we discuss the manner in which our theory can help designing ligand-grafted NPs for targeted drug delivery, design biomimetics NPs, and also explain various experimental results.
Sherratt, Samuel C R; Mason, R Preston
2018-01-31
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differentially influence lipid oxidation, signal transduction, fluidity, and cholesterol domain formation, potentially due in part to distinct membrane interactions. We used small angle X-ray diffraction to evaluate the EPA and DHA effects on membrane structure. Membrane vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (C) (0.3C:POPC mole ratio) were prepared and treated with vehicle, EPA, or DHA (1:10 mol ratio to POPC). Electron density profiles generated from the diffraction data showed that EPA increased membrane hydrocarbon core electron density over a broad area, up to ± 20 Å from the membrane center, indicating an energetically favorable extended orientation for EPA likely stabilized by van der Waals interactions. By contrast, DHA increased electron density in the phospholipid head group region starting at ± 12 Å from the membrane center, presumably due to DHA-surface interactions, with coincident reduction in electron density in the membrane hydrocarbon core centered ± 7-9 Å from the membrane center. The membrane width (d-space) decreased by 5 Å in the presence of vehicle as the temperature increased from 10 °C to 30 °C due to increased acyl chain trans-gauche isomerizations, which was unaffected by addition of EPA or DHA. The influence of DHA on membrane structure was modulated by temperature changes while the interactions of EPA were unaffected. The contrasting EPA and DHA effects on membrane structure indicate distinct molecular locations and orientations that may contribute to observed differences in biological activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Ohvo-Rekilä, Henna; Mattjus, Peter
2011-01-01
The glycolipid transfer protein (GLTP) is a protein capable of binding and transferring glycolipids. GLTP is cytosolic and it can interact through its FFAT-like (two phenylalanines in an acidic tract) motif with proteins localized on the surface of the endoplasmic reticulum. Previous in vitro work with GLTP has focused mainly on the complete transfer reaction of the protein, that is, binding and subsequent removal of the glycolipid from the donor membrane, transfer through the aqueous environment, and the final release of the glycolipid to an acceptor membrane. Using bilayer vesicles and surface plasmon resonance spectroscopy, we have now, for the first time, analyzed the binding and lipid removal capacity of GLTP with a completely label-free technique. This technique is focused on the initial steps in GLTP-mediated transfer and the parameters affecting these steps can be more precisely determined. We used the new approach for detailed structure-function studies of GLTP by examining the glycolipid transfer capacity of specific GLTP tryptophan mutants. Tryptophan 96 is crucial for the transfer activity of the protein and tryptophan 142 is an important part of the proteins membrane interacting domain. Further, we varied the composition of the used lipid vesicles and gained information on the effect of membrane properties on GLTP activity. GLTP prefers to interact with more tightly packed membranes, although GLTP-mediated transfer is faster from more fluid membranes. This technique is very useful for the study of membrane-protein interactions and lipid-transfer rates and it can easily be adapted to other membrane-interacting proteins. Copyright © 2010 Elsevier B.V. All rights reserved.
Impact of two different saponins on the organization of model lipid membranes.
Korchowiec, Beata; Gorczyca, Marcelina; Wojszko, Kamila; Janikowska, Maria; Henry, Max; Rogalska, Ewa
2015-10-01
Saponins, naturally occurring plant compounds are known for their biological and pharmacological activity. This activity is strongly related to the amphiphilic character of saponins that allows them to aggregate in aqueous solution and interact with membrane components. In this work, Langmuir monolayer techniques combined with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and Brewster angle microscopy were used to study the interaction of selected saponins with lipid model membranes. Two structurally different saponins were used: digitonin and a commercial Merck Saponin. Membranes of different composition, namely, cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) were formed at the air/water and air/saponin solution interfaces. The saponin-lipid interaction was characterized by changes in surface pressure, surface potential, surface morphology and PM-IRRAS signal. Both saponins interact with model membranes and change the physical state of membranes by perturbing the lipid acyl chain orientation. The changes in membrane fluidity were more significant upon the interaction with Merck Saponin. A higher affinity of saponins for cholesterol than phosphatidylglycerols was observed. Moreover, our results indicate that digitonin interacts strongly with cholesterol and solubilize the cholesterol monolayer at higher surface pressures. It was shown, that digitonin easily penetrate to the cholesterol monolayer and forms a hydrogen bond with the hydroxyl groups. These findings might be useful in further understanding of the saponin action at the membrane interface and of the mechanism of membrane lysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Melikishvili, Sophie; Poturnayova, Alexandra; Ionov, Maksim; Bryszewska, Maria; Vary, Tomáš; Cirak, Julius; Muñoz-Fernández, María Ángeles; Gomez-Ramirez, Rafael; de la Mata, Francisco Javier; Hianik, Tibor
2016-12-01
In this study, dendrimers have been purposed as an alternative approach for delivery of HIV peptides to dendritic cells. We have investigated the interaction of dendriplexes formed from polyanionic HIV peptide Nef and cationic carbosilane dendrimer (CBD) with model lipid membranes - large unilamellar vesicles (LUVs), Langmuir monolayers and supported lipid membranes (sBLMs) containing various molar ratio of zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG 2000 ). In our experiments, the lipid membranes represented the model of the plasma membrane of the cell. PEGylated lipids were used in order to model glycocalyx which constitutes the outer leaflet of cellular membranes. The presence of PEGylated lipids resulted in an increase of the phase transition temperature of the lipid bilayer of LUVs, in a decrease of specific volume and adiabatic compressibility. Fluorescence anisotropy study suggests that PEGylated LUVs possessed higher lipid order and decreased fluidity when compared to zwitterionic DMPC vesicles. The interaction of dendriplexes with monolayers was accompanied by the formation of the aggregates as revealed by BAM experiments. This conclusion has been confirmed also by AFM imaging of sBLMs. We have demonstrated that dendriplexes interact with lipid membranes for all types of lipid composition. Moreover, the stronger interaction of cationic dendrimer/peptide complexes with lipid monolayers, vesicles and sBLMs was observed for membranes composed of zwitterionic lipids than for PEGylated lipid membranes. Increased concentration of PEGylated lipids made this interaction weaker. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tristram-Nagle, Stephanie
2018-05-01
This review summarizes over a decade of investigations into how membrane-binding proteins from the HIV-1 virus interact with lipid membrane mimics of various HIV and host T-cell membranes. The goal of the work was to characterize at the molecular level both the elastic and structural changes that occur due to HIV protein/membrane interactions, which could lead to new drugs to thwart the HIV virus. The main technique used to study these interactions is diffuse x-ray scattering, which yields the bending modulus, K C, as well as structural parameters such as membrane thickness, area/lipid and position of HIV peptides (parts of HIV proteins) in the membrane. Our methods also yield information about lipid chain order or disorder caused by the peptides. This review focuses on three stages of the HIV-1 life cycle: (1) infection, (2) Tat membrane transport, and (3) budding. In the infection stage, our lab studied three different parts of HIV-1 gp41 (glycoprotein 41 fusion protein): (1) FP23, the N-terminal 23 amino acids that interact non-specifically with the T-cell host membrane to cause fusion of two membranes, and its trimer version, (2) cholesterol recognition amino acid consensus sequence, on the membrane proximal external region near the membrane-spanning domain, and (3) lentiviral lytic peptide 2 on the cytoplasmic C-terminal tail. For Tat transport, we used membrane mimics of the T-cell nuclear membrane as well as simpler models that varied charge and negative curvature. For membrane budding, we varied the myristoylation of the MA31 peptide as well as the negatively charged lipid. These studies show that HIV peptides with different roles in the HIV life cycle affect differently the relevant membrane mimics. In addition, the membrane lipid composition plays an important role in the peptides’ effects.
GSL-enriched membrane microdomains in innate immune responses.
Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa
2013-06-01
Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.
Bouvrais, Hélène; Cornelius, Flemming; Ipsen, John H.; Mouritsen, Ole G.
2012-01-01
Interaction between integral membrane proteins and the lipid-bilayer component of biological membranes is expected to mutually influence the proteins and the membrane. We present quantitative evidence of a manifestation of the lipid–protein interactions in liposomal membranes, reconstituted with actively pumping Na+,K+-ATPase, in terms of nonequilibrium shape fluctuations that contain a relaxation time, τ, which is robust and independent of the specific fluctuation modes of the membrane. In the case of pumping Na+-ions, analysis of the flicker-noise temporal correlation spectrum of the liposomes leads to τ ≃ 0.5 s, comparing favorably with an intrinsic reaction-cycle time of about 0.4 s from enzymology. PMID:23093677
Interaction of injectable neurotropic drugs with the red cell membrane.
Reinhart, Walter H; Lubszky, Szabina; Thöny, Sandra; Schulzki, Thomas
2014-10-01
The normal red blood cell (RBC) shape is a biconcave discocyte. An intercalation of a drug in the outer half of the membrane lipid bilayer leads to echinocytosis, an intercalation in the inner half to stomatocytosis. We have used the shape transforming capacity of RBCs as a model to analyse the membrane interaction potential of various neurotropic drugs. Chlorpromazine, clomipramine, citalopram, clonazepam, and diazepam induced a reversible stomatocytosis, phenytoin induced echinocytosis, while the anticonvulsants levetiracetam, valproic acid and phenobarbital had no effect. This diversity of RBC shape transformations suggests that the pharmacological action is not linked to the membrane interaction. We conclude that this simple RBC shape transformation assay could be a useful tool to screen for potential drug interactions with cell membranes. Copyright © 2014. Published by Elsevier Ltd.
Seydel, J K; Coats, E A; Cordes, H P; Wiese, M
1994-10-01
Some aspects of drug membrane interaction and its influence on drug transport, accumulation, efficacy and resistance have been discussed. The interactions manifest themselves macroscopically in changes in the physical and thermodynamic properties of "pure membranes" or bilayers. As various amounts of foreign molecules enter the membrane, in particular the main gel to liquid crystalline phase transition can be dramatically changed. This may change permeability, cell-fusion, cell resistance and may also lead to changes in conformation of the embedded receptor proteins. Furthermore, specific interactions with lipids may lead to drug accumulation in membranes and thus to much larger concentrations at the active site than present in the surrounding water phase. The lipid environment may also lead to changes in the preferred conformation of drug molecules. These events are directly related to drug efficacy. The determination of essential molecular criteria for the interaction could be used to design new and more selective therapeutics. This excursion in some aspects of drug membrane interaction underlines the importance of lipids and their interaction with drug molecules for our understanding of drug action, but this is not really a new thought but has been formulated in 1884 by THUDICUM: "Phospholipids are the centre, life and chemical soul of all bioplasm whatsoever, that of plants as well as of animals".
Kalli, Antreas C.; Morgan, Gareth; Sansom, Mark S.P.
2013-01-01
Auxilin-1 is a neuron-specific membrane-binding protein involved in a late stage of clathrin-mediated endocytosis. It recruits Hsc70, thus initiating uncoating of the clathrin-coated vesicles. Interactions of auxilin-1 with the vesicle membrane are crucial for this function and are mediated via an N-terminal PTEN-like domain. We have used multiscale molecular dynamics simulations to probe the interactions of the auxilin-1 PTEN-like domain with lipid bilayers containing differing phospholipid composition, including bilayers containing phosphatidyl inositol phosphates. Our results suggest a novel, to our knowledge, model for the auxilin/membrane encounter and subsequent interactions. Negatively charged lipids (especially PIP2) enhance binding of auxilin to lipid bilayers and facilitate its correct orientation relative to the membrane. Mutations in three basic residues (R301E/R307E/K311E) of the C2 subdomain of the PTEN-like domain perturbed its interaction with the bilayer, changing its orientation. The interaction of membrane-bound auxilin-1 PTEN-like domain with negatively charged lipid headgroups results in nanoclustering of PIP2 molecules in the adjacent bilayer leaflet. PMID:23823232
Interactions of surfactants with lipid membranes.
Heerklotz, Heiko
2008-01-01
Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.
Procyanidins can interact with Caco-2 cell membrane lipid rafts: involvement of cholesterol.
Verstraeten, Sandra V; Jaggers, Grayson K; Fraga, Cesar G; Oteiza, Patricia I
2013-11-01
Large procyanidins (more than three subunits) are not absorbed at the gastrointestinal tract but could exert local effects through their interactions with membranes. We previously showed that hexameric procyanidins (Hex), although not entering cells, interact with membranes modulating cell signaling and fate. This paper investigated if Hex, as an example of large procyanidins, can selectively interact with lipid rafts which could in part explain its biological actions. This mechanism was studied in both synthetic membranes (liposomes) and Caco-2 cells. Hex promoted Caco-2 cell membrane rigidification and dehydration, effects that were abolished upon cholesterol depletion with methyl-β-cyclodextrin (MCD). Hex prevented lipid raft structure disruption induced by cholesterol depletion/redistribution by MCD or sodium deoxycholate. Supporting the involvement of cholesterol-Hex bonding in Hex interaction with lipid rafts, the absence of cholesterol markedly decreased the capacity of Hex to prevent deoxycholate- and Triton X-100-mediated disruption of lipid raft-like liposomes. Stressing the functional relevance of this interaction, Hex mitigated lipid raft-associated activation of the extracellular signal-regulated kinases (ERK) 1/2. Results support the capacity of a large procyanidin (Hex) to interact with membrane lipid rafts mainly through Hex-cholesterol bondings. Procyanidin-lipid raft interactions can in part explain the capacity of large procyanidins to modulate cell physiology. © 2013 Elsevier B.V. All rights reserved.
Bauman, Tyler M; Ewald, Jonathan A; Huang, Wei; Ricke, William A
2015-07-25
CD147 is an MMP-inducing protein often implicated in cancer progression. The purpose of this study was to investigate the expression of CD147 in prostate cancer (PCa) progression and the prognostic ability of CD147 in predicting biochemical recurrence after prostatectomy. Plasma membrane-localized CD147 protein expression was quantified in patient samples using immunohistochemistry and multispectral imaging, and expression was compared to clinico-pathological features (pathologic stage, Gleason score, tumor volume, preoperative PSA, lymph node status, surgical margins, biochemical recurrence status). CD147 specificity and expression were confirmed with immunoblotting of prostate cell lines, and CD147 mRNA expression was evaluated in public expression microarray datasets of patient prostate tumors. Expression of CD147 protein was significantly decreased in localized tumors (pT2; p = 0.02) and aggressive PCa (≥pT3; p = 0.004), and metastases (p = 0.001) compared to benign prostatic tissue. Decreased CD147 was associated with advanced pathologic stage (p = 0.009) and high Gleason score (p = 0.02), and low CD147 expression predicted biochemical recurrence (HR 0.55; 95 % CI 0.31-0.97; p = 0.04) independent of clinico-pathologic features. Immunoblot bands were detected at 44 kDa and 66 kDa, representing non-glycosylated and glycosylated forms of CD147 protein, and CD147 expression was lower in tumorigenic T10 cells than non-tumorigenic BPH-1 cells (p = 0.02). Decreased CD147 mRNA expression was associated with increased Gleason score and pathologic stage in patient tumors but is not associated with recurrence status. Membrane-associated CD147 expression is significantly decreased in PCa compared to non-malignant prostate tissue and is associated with tumor progression, and low CD147 expression predicts biochemical recurrence after prostatectomy independent of pathologic stage, Gleason score, lymph node status, surgical margins, and tumor volume in multivariable analysis.
Heinrich, Frank; Nanda, Hirsh; Goh, Haw Zan; Bachert, Collin; Lösche, Mathias; Linstedt, Adam D.
2014-01-01
The mammalian Golgi reassembly stacking protein (GRASP) proteins are Golgi-localized homotypic membrane tethers that organize Golgi stacks into a long, contiguous ribbon-like structure. It is unknown how GRASPs undergo trans pairing given that cis interactions between the proteins in the plane of the membrane are intrinsically favored. To test the hypothesis that myristoylation of the self-interacting GRASP domain restricts its orientation on the membrane to favor trans pairing, we established an in vitro assay that recapitulates GRASP-dependent membrane tethering and used neutron reflection under similar conditions to determine the orientation of the GRASP domain. In vivo, the membrane association of GRASP proteins is conferred by the simultaneous insertion of an N-terminal myristic acid and binding to a Golgi-associated binding partner. In our assay, the latter contact was replaced using a C-terminal hexa-His moiety, which bound to Ni2+-conjugated lipids incorporated into a substrate-supported bilayer lipid membrane. Nonmyristoylated protein lacked a fixed orientation on the membrane and inefficiently tethered liposomes. In contrast, myristoylated GRASP promoted tethering and exhibited a unique membrane complex. Thus, myristoylation restricts the membrane orientation of the GRASP domain favoring interactions in trans for membrane tethering. PMID:24505136
[Pathological features and clinical manifestations in 313 children with nephropathy under 6].
Dang, Xi-qiang; Cao, Yan; Yi, Zhu-wen; Xu, Zi-chuan; He, Xiao-jie; Huang, Dan-lin
2008-03-01
To explore the relationship between pathological features and clinical manifestations in children with nephropathy under 6 years old. Renal biopsy by rapid percutaneous puncturation was performed on 313 children under 6 who were all diagnosed clinically as kidney diseases of 14 different kinds. The specimens were divided into 3 parts for microscope, electron microscope and immuno fluorescence examination respectively and processed by HE, PAS, PASM, and Masson staining. Immunofluorescence was used to detect the deposition of IgG, IgM, IgA, C3, C4, C1q, and Fb in the renal tissues. Additional examinations were done to detect HBs-Ag, HBeAg and HBcAg deposition in some cases with positive serum HBs-Ag. Altogether 290 of the specimens (290/313, 92.65%) were examined by electron microscope. All the renal biopsy performances were successful. The clinical manifestations comprised of persistent haematuria (32.92%, 103/313), idiopathic nephritic syndrome (26.1%, 82/313), acute nephritic syndrome (20.14%, 63/313), Henoch Schonlein purpura nephritis (8.32%, 26/313), HBV-nephritis (4.79%, 15/313), and isolated proteinuria (2.56%, 8/313). The main pathological patterns of glomerular disease were identified as mesangial proliferation (51.75%, 162/313), IgM nephropathy (8.31%,26/313), minor and minimal change (7.99%, 25/313), IgA nephropathy (7.35%, 23/313), endocapillary proliferative glomerulonephritis (5.11%, 16/313), focus segmental glomerulosclerosis (4.47%, 14/313), thin basement membrane nephropathy (4.47%, 14/313), and membrane nephropathy (4.47%, 14/313). Alport syndrome, congenital nephrotic syndrome, and thin basement membrane nephropathy can be diagnosed by electron microscope, white IgA nephropathy, IgM nephropathy and C1q nephropathy by immunopathology. Similar clinical manifestations may differ in the pathology and the clinical features of one pathological diagnosis may vary greatly. Renal biopsy is of great help to the diagnosis, treatment and the prognosis evaluation for children with nephropathy under 6. Electron microscopes also play an important role in the diagnosis of nephropathy.
[Advance in research on regulatory mechanism and functions of neutral sphingomyelinse 2].
Zhang, Lan; Guo, Jun
2013-10-01
Neutral sphingomyelinase 2 (nSMase2), which located mainly on the plasma membrane, hydrolyzes sphingomyelin into ceramide and plays an important role in the physiological and pathological regulation of cell apoptosis, cell growth arrest, and inflammation. nSMase2 is also involved in the development of Alzheimer's disease and the bone growth.Under neutral pH and the presence of Ca(2+), Mg(2+), and Mn(+), the activity of nSMase2 is induced by oxidative stress through phosphorylation. Furthermore, the induced interaction of anionic phospholipids and the signaling molecules like receptor for activated C-kinase 1/embryonic ectodermal development with nSMase2 are also crucial mechanisms of protein activation. In the review, recent research advances in the structure and function of nSMase2 and its underlying mechanisms are summarized.
Kofler, Natalie M.; Cuervo, Henar; Uh, Minji K.; Murtomäki, Aino; Kitajewski, Jan
2015-01-01
Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1+/−; Notch3−/− mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature. Notch1 and Notch3 were shown to cooperate to promote proper vascular basement membrane formation and contribute to endothelial cell quiescence. Accordingly, loss of pericyte function due to Notch deficiency exacerbates endothelial cell activation caused by Notch1 haploinsufficiency. Mice mutant for Notch1 and Notch3 develop arteriovenous malformations and display hallmarks of the ischemic stroke disease CADASIL. Thus, Notch deficiency compromises pericyte function and contributes to vascular pathologies. PMID:26563570
Duckney, Patrick; Deeks, Michael J; Dixon, Martin R; Kroon, Johan; Hawkins, Timothy J; Hussey, Patrick J
2017-12-01
During fertilization, Pollen Receptor-Like Kinases (PRKs) control pollen tube growth through the pistil in response to extracellular signals, and regulate the actin cytoskeleton at the tube apex to drive tip growth. We investigated a novel link between membrane-integral PRKs and the actin cytoskeleton, mediated through interactions between PRKs and NET2A; a pollen-specific member of the NETWORKED superfamily of actin-binding proteins. We characterize NET2A as a novel actin-associated protein that localizes to punctae at the plasma membrane of the pollen tube shank, which are stably associated with cortical longitudinal actin cables. NET2A was demonstrated to interact specifically with PRK4 and PRK5 in Nicotiana benthamiana transient expression assays, and associated at discreet foci at the shank membrane of Arabidopsis pollen tubes. Our data indicate that NET2A is recruited to the plasma membrane by PRK4 and PRK5, and that PRK kinase activity is important in facilitating its interaction with NET2A. We conclude that NET2A-PRK interactions mediate discreet sites of stable interactions between the cortical longitudinal actin cables and plasma membrane in the shank region of growing pollen tubes, which we have termed Actin-Membrane Contact Sites (AMCSs). Interactions between PRKs and NET2A implicate a role for NET2A in signal transduction to the actin cytoskeleton during fertilization. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Takayasu, Takeshi; Harada, Kunyu; Nishimura, Shigeru; Onda, Jun; Nishi, Tohru; Takagaki, Hisashi
2012-01-01
Arachnoid cysts are well known to induce chronic subdural hematoma (CSDH) after head injury. However, histological observations of the arachnoid cyst and hematoma membrane have only been rarely described. An 8-year-old boy and a 3-year-old boy presented with CSDH associated with arachnoid cyst. Surgical removal of the hematoma and biopsy of the hematoma membrane and cyst wall were performed. Clinical courses were good and without recurrence more than 1.5 years after surgery. Histological examination suggested that the cysts did not contribute to hematoma development. Pediatric hematoma membranes, similar to adult hematoma membranes, are key in the growth of CSDH. Therefore, simple hematoma evacuation is adequate as a first operation for CSDH associated with arachnoid cyst.
[Pathological changes in rats with acute Dysosma versipellis poisoning].
Xu, Xiang; Xu, Mao-sheng; Zhu, Jian-hua; Huang, Guang-zhao
2013-10-01
To observe the pathological changes of major organs in rats with acute Dysosma versipellis poisoning and investigate the toxic mechanism and the injuries of target tissues and organs. Forty Sprague-Dawley (SD) rats were randomly divided into three experimental groups, which were given the gavage with 0.5, 1.0 and 2.0 LDo doses of Dysosma versipellis decoction, and one control group, which was given the gavage with 1.0 LD0 dose of normal saline. The rats were sacrificed 14 days after Dysosma versipellis poisoning and samples including brain, heart, liver, lung, and kidney were taken. After pathological process, the pathological changes of the major organs and tissues were observed by light microscope and electron microscope. The experimental data were statistical analyzed by chi2 test. The observations of light microscopy: loose cytoplasm of neurons with loss of most Nissl bodies; swelling of myocardial cells with disappearance of intercalated disk and striations; hepatocellular edema with ballooning degeneration; and swelling epithelial cells of renal proximal convoluted tubule with red light coloring protein-like substances in the tube. The observations of electron microscopy: the structures of cell membrane and nuclear membrane of neurons were destroyed; cytoplasm of neurons, obvious edema; and most organelles, destroyed and disappeared. The mortalities of rats after acute poisoning of the four groups increased with doses (P < 0.05). Acute Dysosma versipellis poisoning can cause multi-organ pathological changes. There is a positive correlation between the toxic effect and the dosage. The target tissues and organs are brain (neurons), heart, liver and kidney.
Loss of Bin1 Promotes the Propagation of Tau Pathology.
Calafate, Sara; Flavin, William; Verstreken, Patrik; Moechars, Diederik
2016-10-18
Tau pathology propagates within synaptically connected neuronal circuits, but the underlying mechanisms are unclear. BIN1-amphiphysin2 is the second most prevalent genetic risk factor for late-onset Alzheimer's disease. In diseased brains, the BIN1-amphiphysin2 neuronal isoform is downregulated. Here, we show that lowering BIN1-amphiphysin2 levels in neurons promotes Tau pathology propagation whereas overexpression of neuronal BIN1-amphiphysin2 inhibits the process in two in vitro models. Increased Tau propagation is caused by increased endocytosis, given our finding that BIN1-amphiphysin2 negatively regulates endocytic flux. Furthermore, blocking endocytosis by inhibiting dynamin also reduces Tau pathology propagation. Using a galectin-3-binding assay, we show that internalized Tau aggregates damage the endosomal membrane, allowing internalized aggregates to leak into the cytoplasm to propagate pathology. Our work indicates that lower BIN1 levels promote the propagation of Tau pathology by efficiently increasing aggregate internalization by endocytosis and endosomal trafficking. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Maraviglia, B; Herring, F G; Weeks, G; Godin, D V
1979-01-01
The membrane fluidity of erythrocytes from patients with Lecithin: cholesterol acyltransferase (LCAT) deficiency was studied by means of electron spin resonance. The temperature dependence of the separation of the outer extrema of the spectra of 2-(3-carboxy-propyl)-4,4-dimethyl, 2-tridecyl-3-oxazolidinyloxyl spin probe was monitored for normal, presumed carrier and clinically affected subjects. The temperature profile of controls was significantly different from that of the presumed carriers and the clinically affected individuals. The results show that the compositional abnormalities previously noted in erythrocyte membranes from patients with LCAT deficiency are associated with alterations in the physiocochemical state of the membrane. An investigation of the spectral lineshapes below 10 degrees C allowed a distinction to be made at the membrane level between clinically affected subjects and clinically normal heterozygous carriers. Alterations in the temperature dependence of elec-ron spin resonance parameters may provide a sensitive index of red cell membrane alterations in pathological states of generalized membrane involvement.
Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin
2016-07-01
In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.
Ibsen, Stuart; Benchimol, Michael; Esener, Sadik
2013-01-01
Rapid development in the field of ultrasound triggered drug delivery has made it essential to study the real-time interaction between the membranes of live cells and the membranes of echogenic delivery vehicles under exposure to focused ultrasound. The objective of this work was to design an analysis system that combined fluorescent imagining, high speed videography, and definable pulse sequences of focused ultrasound to allow for real time observations of both cell and vehicle membranes. Documenting the behavior of the membranes themselves has not previously been possible due to limitations with existing optical systems used to understand the basic physics of microbubble/ultrasound interaction and the basic interaction between microbubbles and cells. The performance of this new system to monitor membrane behavior was demonstrated by documenting the modes of vehicle fragmentation at different ultrasound intensity levels. At 1.5MPa the membranes were shown to completely fragment while at intensities below 1MPa the membranes pop open and slowly unfold. The interaction between these vehicles and cell membranes was also documented by the removal of fluorescent particles from the surfaces of live cells out to 20μm from the microbubble location. The fluid flow created by microstreaming around ensonated microbubbles was documented at video recording speeds from 60 to 18,000 frames per second. This information about membrane behavior allows the chemical and physical properties of the drug delivery vehicle to be designed along with the ultrasound pulse sequence to cause the most efficient drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.
Ghoufi, Aziz; Dražević, Emil; Szymczyk, Anthony
2017-03-07
In this work we have examined a computational approach in predicting the interactions between uncharged organic solutes and polyamide membranes. We used three model organic molecules with identical molecular weights (100.1 g/mol), 4-aminopiperidine, 3,3-dimethyl-2-butanone (pinacolone) and methylisobutyl ketone for which we obtained experimental data on partitioning, diffusion and separation on a typical seawater reverse osmosis (RO) membrane. The interaction energy between the solutes and the membrane phase (fully aromatic polyamide) was computed from molecular dynamics (MD) simulations and the resulting sequence was found to correlate well with the experimental rejections and sorption data. Sorption of the different organic solutes within the membrane skin layer determined from attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) nicely agreed with interaction energies computed from molecular simulations. Qualitative information about solute diffusivity inside the membrane was also extracted from MD simulations while ATR-FTIR experiments indicated strongly hindered diffusion with diffusion coefficients in the membrane about 10 -15 m 2 /s. The computational approach presented here could be a first step toward predicting rejections trends of, for example, hormones and pharmaceuticals by RO dense membranes.
UV-Visible and Infrared Methods for Investigating Lipid-Rhodopsin Membrane Interactions
Brown, Michael F.
2017-01-01
Summary Experimental UV-visible and Fourier transform infrared (FTIR) spectroscopic methods are described for characterizing lipid-protein interactions for the example of rhodopsin in a membrane bilayer environment. The combined use of FTIR and UV-visible difference spectroscopy monitors the structural and functional changes during rhodopsin activation. Such studies investigate how membrane lipids stabilize the various rhodopsin photoproducts, analogous to mutating the protein. Interpretation of the results entails a non-specific flexible surface model for explaining the role of membrane lipid-protein interactions in biological functions. PMID:22976026
Interaction between La(III) and proteins on the plasma membrane of horseradish
NASA Astrophysics Data System (ADS)
Yang, Guang-Mei; Chu, Yun-Xia; Lv, Xiao-Fen; Zhou, Qing; Huang, Xiao-Hua
2012-06-01
Lanthanum (La) is an important rare earth element in the ecological environment of plant. The proteins on the plasma membrane control the transport of molecules into and out of cell. It is very important to investigate the effect of La(III) on the proteins on the plasma membrane in the plant cell. In the present work, the interaction between La(III) and proteins on the plasma membrane of horseradish was investigated using optimization of the fluorescence microscopy and fluorescence spectroscopy. It is found that the fluorescence of the complex system of protoplasts and 1-aniline Kenai-8-sulfonic acid in horseradish treated with the low concentration of La(III) is increased compared with that of the control horseradish. The opposite effect is observed in horseradish treated with the high concentration of La(III). These results indicated that the low concentration of La(III) can interact with the proteins on the plasma membrane of horseradish, causing the improvement in the structure of proteins on the plasma membrane. The high concentration of La(III) can also interact with the proteins on the plasma membrane of horseradish, leading to the destruction of the structure of proteins on the plasma membrane. We demonstrate that the proteins on the plasma membrane are the targets of La(III) action on plant cell.
Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane
Mitchell, Jana M.; Mansfeld, Jörg; Capitanio, Juliana; Kutay, Ulrike
2010-01-01
Nuclear pore complexes (NPCs) control the movement of molecules across the nuclear envelope (NE). We investigated the molecular interactions that exist at the interface between the NPC scaffold and the pore membrane. We show that key players mediating these interactions in mammalian cells are the nucleoporins Nup155 and Nup160. Nup155 depletion massively alters NE structure, causing a dramatic decrease in NPC numbers and the improper targeting of membrane proteins to the inner nuclear membrane. The role of Nup155 in assembly is likely closely linked to events at the membrane as we show that Nup155 interacts with pore membrane proteins Pom121 and NDC1. Furthermore, we demonstrate that the N terminus of Pom121 directly binds the β-propeller regions of Nup155 and Nup160. We propose a model in which the interactions of Pom121 with Nup155 and Nup160 are predicted to assist in the formation of the nuclear pore and the anchoring of the NPC to the pore membrane. PMID:20974814
Wu, Zht Cheng; de Keyzer, Jeanine; Kusters, Ilja; Driessen, Arnold J M
2013-01-01
The interaction between membrane proteins and their (protein) ligands is conventionally investigated by nonequilibrium methods such as co-sedimentation or pull-down assays. Surface Plasmon Resonance can be used to monitor such binding events in real-time using isolated membranes immobilized to a surface providing insights in the kinetics of binding under equilibrium conditions. This application provides a fast, automated way to detect interacting species and to determine the kinetics and affinity (Kd) of the interaction.
Hedger, George; Sansom, Mark S. P.
2017-01-01
Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterisation of these sites is of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. PMID:26946244
Interactions of a Charged Nanoparticle with a Lipid Membrane: Implications for Gene Delivery
Ting, Christina L.; Wang, Zhen-Gang
2011-01-01
We employ self-consistent field theory to study the thermodynamics of membrane-particle interactions in the context of gene delivery systems, with the aim to guide the design of dendrimers that can overcome the endosomal escape barrier by inserting into membranes and creating pores. We consider the interaction between a model polyamidoamine dendrimer and a membrane under controlled tension as a function of the separation between the dendrimer and the membrane. In all the cases we have studied, the lowest free energy state corresponds to the membrane partially wrapping the dendrimer. However, with moderate tension, we find that a G5 (or larger) generation dendrimer, through thermal fluctuation, can induce the formation of metastable pores. These metastable pores are subsequently shown to significantly lower the critical tension necessary for membrane rupture, thus possibly enhancing the release of the trapped genetic material from the endosome. PMID:21354402
Krishnan, Subramanian; Chang, Alexander C.; Stoltz, Brian M.; Prasadarao, Nemani V.
2016-01-01
Escherichia coli K1 meningitis continues to be a major threat to neonatal health. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with endothelial cell glycoprotein 96 (Ecgp96) in the blood-brain barrier to enter the central nervous system. Here we show that the interaction between OmpA and Ecgp96 downregulates peroxisome proliferator–activated receptor γ (PPAR-γ) and glucose transporter 1 (GLUT-1) levels in human brain microvascular endothelial cells, causing disruption of barrier integrity and inhibition of glucose uptake. The suppression of PPAR-γ and GLUT-1 by the bacteria in the brain microvessels of newborn mice causes extensive pathophysiology owing to interleukin 6 production. Pretreatment with partial or selective PPAR-γ agonists ameliorate the pathological outcomes of infection by suppressing interleukin 6 production in the brain. Thus, inhibition of PPAR-γ and GLUT-1 by E. coli K1 is a novel pathogenic mechanism in meningitis, and pharmacological upregulation of PPAR-γ and GLUT-1 levels may provide novel therapeutic avenues. PMID:27456707
Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity.
Sojka, Stephen; Amin, Nirav M; Gibbs, Devin; Christine, Kathleen S; Charpentier, Marta S; Conlon, Frank L
2014-08-01
The identification and characterization of the cellular and molecular pathways involved in the differentiation and morphogenesis of specific cell types of the developing heart are crucial to understanding the process of cardiac development and the pathology associated with human congenital heart disease. Here, we show that the cardiac transcription factor CASTOR (CASZ1) directly interacts with congenital heart disease 5 protein (CHD5), which is also known as tryptophan-rich basic protein (WRB), a gene located on chromosome 21 in the proposed region responsible for congenital heart disease in individuals with Down's syndrome. We demonstrate that loss of CHD5 in Xenopus leads to compromised myocardial integrity, improper deposition of basement membrane, and a resultant failure of hearts to undergo cell movements associated with cardiac formation. We further report that CHD5 is essential for CASZ1 function and that the CHD5-CASZ1 interaction is necessary for cardiac morphogenesis. Collectively, these results establish a role for CHD5 and CASZ1 in the early stages of vertebrate cardiac development. © 2014. Published by The Company of Biologists Ltd.
Interaction of capsaicinoids with cell membrane models does not correlate with pungency of peppers
NASA Astrophysics Data System (ADS)
Geraldo, Vananélia P. N.; Ziglio, Analine C.; Gonçalves, Débora; Oliveira, Osvaldo N.
2017-04-01
Mixed monolayers were prepared using phospholipids in order to mimic cell membranes and fractions of capsaicinoids (extracted from Malagueta, Caps-M, and Bhut Jolokia, Caps-B, peppers). According to their surface-pressure isotherms and polarization-modulated infrared reflection absorption spectra (PM-IRRAS), weak molecular-level interactions were observed between Caps and phospholipids. Both Caps-M and Caps-B penetrated into the alkyl tail region of the monolayer, interacted with the phosphate group of the phospholipids and affected hydration of their Cdbnd O groups. Since the physiological activity of Caps is not governed solely by interaction with cell membranes, it should require participation of a neuronal membrane receptor, e.g. vanilloid receptor (TRPV1).
Genetic disruption of Pten in a novel mouse model of tomaculous neuropathy
Goebbels, Sandra; Oltrogge, Jan H; Wolfer, Susanne; Wieser, Georg L; Nientiedt, Tobias; Pieper, Alexander; Ruhwedel, Torben; Groszer, Matthias; Sereda, Michael W; Nave, Klaus-Armin
2012-01-01
‘Tomacula’ and myelin outfoldings are striking neuropathological features of a diverse group of inherited demyelinating neuropathies. Whereas the underlying genetic defects are well known, the molecular mechanisms of tomacula formation have remained obscure. We hypothesized that they are caused by uncontrolled, excessive myelin membrane growth, a process, which is regulated in normal development by neuregulin-1/ErbB2, PI3 Kinase signalling and ERK/MAPK signalling. Here, we demonstrate by targeted disruption of Pten in Schwann cells that hyperactivation of the endogenous PI3 Kinase pathway causes focal hypermyelination, myelin outfoldings and tomacula, even when induced in adult animals by tamoxifen, and is associated with progressive peripheral neuropathy. Activated AKT kinase is associated with PtdIns(3,4,5)P3 at paranodal loops and Schmidt–Lanterman incisures. This striking myelin pathology, with features of human CMT type 4B1 and HNPP, is dependent on AKT/mTOR signalling, as evidenced by a significant amelioration of the pathology in mice treated with rapamycin. We suggest that regions of non-compact myelin are under lifelong protection by PTEN against abnormal membrane outgrowth, and that dysregulated phosphoinositide levels play a critical role in the pathology of tomaculous neuropathies. PMID:22488882
Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K
2015-10-07
Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.
NASA Astrophysics Data System (ADS)
Lombardi, Lucia; Stellato, Marco Ignazio; Oliva, Rosario; Falanga, Annarita; Galdiero, Massimiliano; Petraccone, Luigi; D'Errico, Geradino; de Santis, Augusta; Galdiero, Stefania; Del Vecchio, Pompea
2017-03-01
Antimicrobial peptides are promising candidates as future therapeutics in order to face the problem of antibiotic resistance caused by pathogenic bacteria. Myxinidin is a peptide derived from the hagfish mucus displaying activity against a broad range of bacteria. We have focused our studies on the physico-chemical characterization of the interaction of myxinidin and its mutant WMR, which contains a tryptophan residue at the N-terminus and four additional positive charges, with two model biological membranes (DOPE/DOPG 80/20 and DOPE/DOPG/CL 65/23/12), mimicking respectively Escherichia coli and Pseudomonas aeruginosa membrane bilayers. All our results have coherently shown that, although both myxinidin and WMR interact with the two membranes, their effect on membrane microstructure and stability are different. We further have shown that the presence of cardiolipin plays a key role in the WMR-membrane interaction. Particularly, WMR drastically perturbs the DOPE/DOPG/CL membrane stability inducing a segregation of anionic lipids. On the contrary, myxinidin is not able to significantly perturb the DOPE/DOPG/CL bilayer whereas interacts better with the DOPE/DOPG bilayer causing a significant perturbing effect of the lipid acyl chains. These findings are fully consistent with the reported greater antimicrobial activity of WMR against P. aeruginosa compared with myxinidin.
Rungaldier, Stefanie; Oberwagner, Walter; Salzer, Ulrich; Csaszar, Edina; Prohaska, Rainer
2013-01-01
The widely expressed, homo-oligomeric, lipid raft-associated, monotopic integral membrane protein stomatin and its homologues are known to interact with and modulate various ion channels and transporters. Stomatin is a major protein of the human erythrocyte membrane, where it associates with and modifies the glucose transporter GLUT1; however, previous attempts to purify hetero-oligomeric stomatin complexes for biochemical analysis have failed. Because lateral interactions of membrane proteins may be short-lived and unstable, we have used in situ chemical cross-linking of erythrocyte membranes to fix the stomatin complexes for subsequent purification by immunoaffinity chromatography. To further enrich stomatin, we prepared detergent-resistant membranes either before or after cross-linking. Mass spectrometry of the isolated, high molecular, cross-linked stomatin complexes revealed the major interaction partners as glucose transporter-1 (GLUT1), anion exchanger (band 3), and water channel (aquaporin-1). Moreover, ferroportin-1 (SLC40A1), urea transporter-1 (SLC14A1), nucleoside transporter (SLC29A1), the calcium-pump (Ca-ATPase-4), CD47, and flotillins were identified as stomatin-interacting proteins. These findings are in line with the hypothesis that stomatin plays a role as membrane-bound scaffolding protein modulating transport proteins. PMID:23219802
Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids.
Ashrafuzzaman, Mohammad; Tseng, Chih-Yuan; Duszyk, Marek; Tuszynski, Jack A
2012-12-01
We demonstrate the effects on membrane of the tubulin-binding chemotherapy drugs: thiocolchicoside and taxol. Electrophysiology recordings across lipid membranes in aqueous phases containing drugs were used to investigate the drug effects on membrane conductance. Molecular dynamics simulation of the chemotherapy drug-lipid complexes was used to elucidate the mechanism at an atomistic level. Both drugs are observed to induce stable ion-flowing pores across membranes. Discrete pore current-time plots exhibit triangular conductance events in contrast to rectangular ones found for ion channels. Molecular dynamics simulations indicate that drugs and lipids experience electrostatic and van der Waals interactions for short periods of time when found within each other's proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides and lipids due to mainly their charge properties while forming peptide-induced ion channels in lipid bilayers. Experimental and in silico studies together suggest that the chemotherapy drugs induce ion pores inside lipid membranes due to drug-lipid physical interactions. The findings reveal cytotoxic effects of drugs on the cell membrane, which may aid in novel drug development for treatment of cancer and other diseases. © 2012 John Wiley & Sons A/S.
Membrane proteins from the cyanobacterium Synechocystis sp. PCC 6803 interacting with thioredoxin.
Mata-Cabana, Alejandro; Florencio, Francisco J; Lindahl, Marika
2007-11-01
Cysteine dithiol/disulphide exchange forms the molecular basis for regulation of a wide variety of enzymatic activities and for transduction of cellular signals. Thus, the search for proteins with reactive, accessible cysteines is expected to contribute to the unravelling of new molecular mechanisms for enzyme regulation and signal transduction. Several methods have been designed for this purpose taking advantage of the interactions between thioredoxins and their protein substrates. Thioredoxins comprise a family of redox-active enzymes, which catalyse reduction of protein disulphides and sulphenic acids. Due to the inherent practical difficulties associated with studies of membrane proteins these have been largely overlooked in the many proteomic studies of thioredoxin-interacting proteins. In the present work, we have developed a procedure to isolate membrane proteins interacting with thioredoxin by binding in situ to a monocysteinic His-tagged thioredoxin added directly to the intact membranes. Following fractionation and solubilisation of the membranes, thioredoxin target proteins were isolated by Ni-affinity chromatography and 2-DE SDS-PAGE under nonreducing/reducing conditions. Applying this method to total membranes, including thylakoid and plasma membranes, from the cyanobacterium Synechocystis sp. PCC 6803 we have identified 50 thioredoxin-interacting proteins. Among the 38 newly identified thioredoxin targets are the ATP-binding subunits of several transporters and members of the AAA-family of ATPases.
Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis.
Mahata, Paritosh; Das, Sovan Lal
2017-05-01
We carry out a linear elastic analysis to study wavy structure generation on lipid membrane by peripheral membrane proteins. We model the lipid membrane as linearly elastic and anisotropic material. The hydrophobic insertion by proteins into the lipid membrane has been idealized as penetration of rigid rod-like inclusions into the membrane and the electrostatic interaction between protein and membrane has been modeled by a distributed surface traction acting on the membrane surface. With the proposed model we study curvature generation by several binding domains of peripheral membrane proteins containing BAR domains and amphipathic alpha-helices. It is observed that electrostatic interaction is essential for curvature generation by the BAR domains. © 2017 Federation of European Biochemical Societies.
Interactions of Polyethylenimines with Zwitterionic and Anionic Lipid Membranes.
Kwolek, Urszula; Jamróz, Dorota; Janiczek, Małgorzata; Nowakowska, Maria; Wydro, Paweł; Kepczynski, Mariusz
2016-05-17
Interactions between polyethylenimines (PEIs) and phospholipid membranes are of fundamental importance for various biophysical applications of these polymers such as gene delivery. Despite investigations into the nature of these interactions, their molecular basis remains poorly understood. In this article, we combined experimental methods and atomistic molecular dynamics (MD) simulations to obtain comprehensive insight into the effect of linear and branched PEIs on zwitterionic and anionic bilayers used as simple models of mammalian cellular membranes. Our results show that PEIs adsorb only partially on the surface of zwitterionic membranes by forming hydrogen bonds to the lipid headgroups, whereas a large part of the polymer chains dangles freely in the aqueous phase. In contrast, PEIs readily adhere to and insert into the anionic membrane. The attraction of the polymer chains to the membrane is due to electrostatic interactions as well as hydrogen bonding between the amine groups of PEI and the phosphate groups of lipids. These interactions were found to induce a substantial reorganization of the bilayer in the polymer vicinity due to the reorientation of lipid molecules. The lipid headgroups were pulled toward the center of the membrane, which can facilitate transmembrane translocations of anionic lipids. Furthermore, the PEI-lipid interactions affect the stability of liposomal dispersions, but we did not see any evidence of disruption of the vesicular structures into small fragments at polymer concentrations typically used in gene therapy. Our results provide a detailed molecular-level description of the lipid organization in the membrane in the presence of polycations that can be useful in understanding their mechanisms of in vitro and in vivo cytotoxicity.
STARD4 Membrane Interactions and Sterol Binding
2016-01-01
The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix. PMID:26168008
Domiciano, Isabela G.; Domit, Camila; Broadhurst, Matt K.; Koch, Mariana S.; Bracarense, Ana Paula F. R. L.
2016-01-01
Cetaceans are considered environmental sentinels and their health often reflects either anthropogenic or natural spatio-temporal disturbances. This study investigated the pathological findings and mortality of small cetaceans with the aim of detecting hazards and monitoring health trends in a high-biodiversity area. Between 2007 and 2012, 218 stranded cetaceans were recorded on the Paraná coast, southern Brazil. Fifty-seven (26.1%) of these animals, including 50 Sotalia guianensis, 2 Pontoporia blainvillei, 2 Stenella frontalis, 1 Stenella longirostris, 1 Tursiops truncatus and 1 Globicephala melas were necropsied and samples were collected for histopathology. Causes of death were determined in 46 of the 57 (80.7%) animals and most (30 or 65.2%) were ascribed to anthropogenic activities, including fisheries bycatch (28/30) and trauma (2/30). The remaining 16 fatalities were considered natural, and attributed to pneumonia (10/16), emaciation (3/16), septicemia (1/16), neonatal pathology (1/16) and choking via food obstruction (1/16). Irrespective of the cause, bronchointerstitial pneumonia, associated with parasitism, lymphadenitis and membranous glomerulonephritis were common findings among all fatalities. These results suggest, that while anthropogenic activities are a leading cause of cetacean strandings in Paraná, underlying pre-existing diseases may contribute towards deaths. Although the studied area is considered a biosphere reserve by UNESCO, complex anthropogenic and natural interactions might be occurring, increasing cetacean susceptibility to hazards. This study may help facilitate developing an effective conservation plan for coastal cetaceans focusing on reducing fisheries interactions, habitat degradation and pollution as mechanisms for ultimately increasing species resilience. PMID:26871703
Comparison of Ear-Canal Reflectance and Umbo Velocity in Patients with Conductive Hearing Loss
NASA Astrophysics Data System (ADS)
Merchant, Gabrielle R.; Nakajima, Hideko H.; Pisano, Dominic V.; Röösli, Christof; Hamade, Mohamad A.; Mafoud, Lorice; Halpin, Christopher F.; Merchant, Saumil N.; Rosowski, John J.
2011-11-01
Patients who present at hearing clinics with a conductive hearing loss (CHL) in the presence of an intact, healthy tympanic membrane create a unique challenge for otologists. While patient counseling, treatment options, and outcome vary with differing middle-ear pathologies, a non-invasive diagnostic that can differentiate between these pathologies does not currently exist. We evaluated the clinical utility and diagnostic accuracy of two non-invasive measures of middle-ear mechanics: ear-canal reflectance (ECR) and umbo velocity (VU).
Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan
2015-01-01
Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/E. coli polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. PMID:25707312
Kawanishi, Kunio; Honda, Kazuho; Tsukada, Misao; Oda, Hideaki; Nitta, Kosaku
2013-01-01
♦ Background: The effects of novel biocompatible peritoneal dialysis (PD) solutions on human peritoneal membrane pathology have yet to be determined. Quantitative evaluation of human peritoneal biopsy specimens may reveal the effects of the new solutions on peritoneal membrane pathology. ♦ Methods: Peritoneal specimens from 24 PD patients being treated with either acidic solution containing high-glucose degradation products [GDPs (n = 12)] or neutral solution with low GDPs (n = 12) were investigated at the end of PD. As controls, pre-PD peritoneal specimens, obtained from 13 patients at PD catheter insertion, were also investigated. The extent of peritoneal fibrosis, vascular sclerosis, and advanced glycation end-product (AGE) accumulation were evaluated by quantitative or semi-quantitative methods. The average densities of CD31-positive vessels and podoplanin-positive lymphatic vessels were also determined. ♦ Results: Peritoneal membrane fibrosis, vascular sclerosis, and AGE accumulation were significantly suppressed in the neutral group compared with the acidic group. The neutral group also showed lower peritoneal equilibration test scores and preserved ultrafiltration volume. The density of blood capillaries, but not of lymphatic capillaries, was significantly increased in the neutral group compared with the acidic and pre-PD groups. ♦ Conclusions: Neutral solutions with low GDPs are associated with less peritoneal membrane fibrosis and vascular sclerosis through suppression of AGE accumulation. However, contrary to expectation, blood capillary density was increased in the neutral group. The altered contents of the new PD solutions modified peritoneal membrane morphology and function in patients undergoing PD. PMID:23123670
Coarse-Grained Molecular Dynamics Simulations of Membrane-Trehalose Interactions.
Kapla, Jon; Stevensson, Baltzar; Maliniak, Arnold
2016-09-15
It is well established that trehalose (TRH) affects the physical properties of lipid bilayers and stabilizes biological membranes. We present molecular dynamics (MD) computer simulations to investigate the interactions between lipid membranes formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and TRH. Both atomistic and coarse-grained (CG) interaction models were employed, and the coarse graining of DMPC leads to a reduction in the acyl chain length corresponding to a 1,2-dilauroyl-sn-glycero-3-phosphocholine lipid (DLPC). Several modifications of the Martini interaction model, used for CG simulations, were implemented, resulting in different potentials of mean force (PMFs) for DMPC bilayer-TRH interactions. These PMFs were subsequently used in a simple two-site analytical model for the description of sugar binding at the membrane interface. In contrast to that in atomistic MD simulations, the binding in the CG model was not in agreement with the two-site model. Our interpretation is that the interaction balance, involving water, TRH, and lipids, in the CG systems needs further tuning of the force-field parameters. The area per lipid is only weakly affected by TRH concentration, whereas the compressibility modulus related to the fluctuations of the membrane increases with an increase in TRH content. In agreement with experimental findings, the bending modulus is not affected by the inclusion of TRH. The important aspects of lipid bilayer interactions with biomolecules are membrane curvature generation and sensing. In the present investigation, membrane curvature is generated by artificial buckling of the bilayer in one dimension. It turns out that TRH prefers the regions with the highest curvature, which enables the most favorable situation for lipid-sugar interactions.
Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies.
Rudomanova, Valeria; Blaxall, Burns C
2017-08-01
The pathologic crosstalk between the heart and kidney is known as cardiorenal syndrome (CRS). While the specific mechanisms underlying this crosstalk remain poorly understood, CRS is associated with exacerbated dysfunction of either or both organs and reduced survival. Maladaptive fibrotic remodeling is a key component of both heart and kidney failure pathogenesis and progression. G-protein coupled receptor (GPCR) signaling is a crucial regulator of cardiovascular and renal function. Chronic/pathologic GPCR signaling elicits the interaction of the G-protein Gβγ subunit with GPCR kinase 2 (GRK2), targeting the receptor for internalization, scaffolding to pathologic signals, and receptor degradation. Targeting this pathologic Gβγ-GRK2 interaction has been suggested as a possible strategy for the treatment of HF. In the current review, we discuss recent updates in understanding the role of GPCR-Gβγ-GRK2 signaling as a crucial mediator of maladaptive organ remodeling detected in HF and kidney dysfunction, with specific attention to small molecule-mediated inhibition of pathologic Gβγ-GRK2 interactions. Further, we explore the potential of GPCR-Gβγ-GRK2 signaling as a possible therapeutic target for cardiorenal pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.
Olafiranye, Feyisayo; Kyaw, Win; Olafiranye, Oladipupo
2011-01-01
Blood and dialyzer membrane interaction can cause significant thrombocytopenia through the activation of complement system. The extent of this interaction determines the biocompatibility of the membrane. Although the newer synthetic membranes have been shown to have better biocompatibility profile than the cellulose-based membranes, little is known about the difference in biocompatibility between synthetic membrane and modified cellulose membrane. Herein, we report a case of a patient on hemodialysis who developed dialyzer-membrane-related thrombocytopenia with use of synthetic membrane (F200NR polysulfone). The diagnosis of dialyzer membrane-associated thrombocytopenia was suspected by the trend of platelet count before and after dialysis, and the absence of other possible causes of thrombocytopenia. We observed significant improvement in platelet count when the membrane was changed to modified cellulose membrane (cellulose triacetate). In patients at high risk for thrombocytopenia, the modified cellulose membrane could be a better alternative to the standard synthetic membranes during hemodialysis. PMID:21547252
Brown, Anne M; Bevan, David R
2016-09-06
The aggregation cascade and peptide-membrane interactions of the amyloid β-peptide (Aβ) have been implicated as toxic events in the development and progression of Alzheimer's disease. Aβ42 forms oligomers and ultimately plaques, and it has been hypothesized that these oligomeric species are the main toxic species contributing to neuronal cell death. To better understand oligomerization events and subsequent oligomer-membrane interactions of Aβ42, we performed atomistic molecular-dynamics (MD) simulations to characterize both interpeptide interactions and perturbation of model membranes by the peptides. MD simulations were utilized to first show the formation of a tetramer unit by four separate Aβ42 peptides. Aβ42 tetramers adopted an oblate ellipsoid shape and showed a significant increase in β-strand formation in the final tetramer unit relative to the monomers, indicative of on-pathway events for fibril formation. The Aβ42 tetramer unit that formed in the initial simulations was used in subsequent MD simulations in the presence of a pure POPC or cholesterol-rich raft model membrane. Tetramer-membrane simulations resulted in elongation of the tetramer in the presence of both model membranes, with tetramer-raft interactions giving rise to the rearrangement of key hydrophobic regions in the tetramer and the formation of a more rod-like structure indicative of a fibril-seeding aggregate. Membrane perturbation by the tetramer was manifested in the form of more ordered, rigid membranes, with the pure POPC being affected to a greater extent than the raft membrane. These results provide critical atomistic insight into the aggregation pathway of Aβ42 and a putative toxic mechanism in the pathogenesis of Alzheimer's disease. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Sorrentino, Sacha; Bucciarelli, Tonino; Corsaro, Alessandro; Tosatto, Alessio; Thellung, Stefano; Villa, Valentina; Schininà, M Eugenia; Maras, Bruno; Galeno, Roberta; Scotti, Luca; Creati, Francesco; Marrone, Alessandro; Re, Nazzareno; Aceto, Antonio; Florio, Tullio; Mazzanti, Michele
2012-01-01
The pathological form of prion protein (PrP(Sc)), as other amyloidogenic proteins, causes a marked increase of membrane permeability. PrP(Sc) extracted from infected Syrian hamster brains induces a considerable change in membrane ionic conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is still controversial. We previously showed that the human PrP fragment 90-231 (hPrP₉₀₋₂₃₁) increases ionic conductance across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrP(Sc). In the present study we demonstrate that hPrP₉₀₋₂₃₁, pre-incubated with 10 mM Ca⁺⁺ and then re-suspended in physiological external solution increases not only membrane conductance but neurotoxicity as well. Furthermore we show the existence of a direct link between these two effects as demonstrated by a highly statistically significant correlation in several experimental conditions. A similar correlation between increased membrane conductance and cell degeneration has been observed assaying hPrP₉₀₋₂₃₁ bearing pathogenic mutations (D202N and E200K). We also report that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ induces a conformational change based on an alteration of secondary structure characterized by loss of alpha-helix content causing hydrophobic amino acid exposure and proteinase K resistance. These features, either acquired after controlled thermal denaturation or induced by D202N and E200K mutations were previously identified as responsible for hPrP₉₀₋₂₃₁ cytotoxicity. Finally, by in silico structural analysis, we propose that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ modifies amino acid orientation, in the same way induced by E200K mutation, thus suggesting a pathway for the structural alterations responsible of PrP neurotoxicity.
Corsaro, Alessandro; Tosatto, Alessio; Thellung, Stefano; Villa, Valentina; Schininà, M. Eugenia; Maras, Bruno; Galeno, Roberta; Scotti, Luca; Creati, Francesco; Marrone, Alessandro; Re, Nazzareno; Aceto, Antonio; Florio, Tullio; Mazzanti, Michele
2012-01-01
The pathological form of prion protein (PrPSc), as other amyloidogenic proteins, causes a marked increase of membrane permeability. PrPSc extracted from infected Syrian hamster brains induces a considerable change in membrane ionic conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is still controversial. We previously showed that the human PrP fragment 90–231 (hPrP90–231) increases ionic conductance across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrPSc. In the present study we demonstrate that hPrP90–231, pre-incubated with 10 mM Ca++ and then re-suspended in physiological external solution increases not only membrane conductance but neurotoxicity as well. Furthermore we show the existence of a direct link between these two effects as demonstrated by a highly statistically significant correlation in several experimental conditions. A similar correlation between increased membrane conductance and cell degeneration has been observed assaying hPrP90–231 bearing pathogenic mutations (D202N and E200K). We also report that Ca++ binding to hPrP90–231 induces a conformational change based on an alteration of secondary structure characterized by loss of alpha-helix content causing hydrophobic amino acid exposure and proteinase K resistance. These features, either acquired after controlled thermal denaturation or induced by D202N and E200K mutations were previously identified as responsible for hPrP90–231 cytotoxicity. Finally, by in silico structural analysis, we propose that Ca++ binding to hPrP90–231 modifies amino acid orientation, in the same way induced by E200K mutation, thus suggesting a pathway for the structural alterations responsible of PrP neurotoxicity. PMID:22811758
Plotnikov, E Y; Silachev, D N; Jankauskas, S S; Rokitskaya, T I; Chupyrkina, A A; Pevzner, I B; Zorova, L D; Isaev, N K; Antonenko, Y N; Skulachev, V P; Zorov, D B
2012-09-01
It is generally accepted that mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150 mV. Due to this, high values of the membrane potential are highly dangerous, specifically under pathological conditions associated with oxidative stress. Mild uncoupling of oxidative phosphorylation is an approach to preventing hyperpolarization of the mitochondrial membrane. We confirmed data obtained earlier in our group that dodecylrhodamine 19 (C(12)R1) (a penetrating cation from SkQ family not possessing a plastoquinone group) has uncoupling properties, this fact making it highly potent for use in prevention of pathologies associated with oxidative stress induced by mitochondrial hyperpolarization. Further experiments showed that C(12)R1 provided nephroprotection under ischemia/reperfusion of the kidney as well as under rhabdomyolysis through diminishing of renal dysfunction manifested by elevated level of blood creatinine and urea. Similar nephroprotective properties were observed for low doses (275 nmol/kg) of the conventional uncoupler 2,4-dinitrophenol. Another penetrating cation that did not demonstrate protonophorous activity (SkQR4) had no effect on renal dysfunction. In experiments with induced ischemic stroke, C(12)R1 did not have any effect on the area of ischemic damage, but it significantly lowered neurological deficit. We conclude that beneficial effects of penetrating cation derivatives of rhodamine 19 in renal pathologies and brain ischemia may be at least partially explained by uncoupling of oxidation and phosphorylation.
Ibsen, Stuart; Benchimol, Michael; Esener, Sadik
2012-01-01
Rapid development in the field of ultrasound triggered drug delivery has made it essential to study the real-time interaction between the membranes of live cells and the membranes of echogenic delivery vehicles under exposure to focused ultrasound. The objective of this work was to design an analysis system that combined fluorescent imagining, high speed videography, and definable pulse sequences of focused ultrasound to allow for real time observations of both cell and vehicle membranes. Documenting the behavior of the membranes themselves has not previously been possible due to limitations with existing optical systems used to understand the basic physics of microbubble/ultrasound interaction and the basic interaction between microbubbles and cells. The performance of this new system to monitor membrane behavior was demonstrated by documenting the modes of vehicle fragmentation at different ultrasound intensity levels. At 1.5 MPa the membranes were shown to completely fragment while at intensities below 1 MPa there is a popping and slow unfolding. The interaction between these vehicles and cell membranes was also documented by the removal of fluorescent particles from the surfaces of live cells out to 20 μm from the microbubble location. The fluid flow created by microstreaming around ensonated microbubbles was documented at video recording speeds from 60 to 18,000 frames per second. This information about membrane behavior allows the chemical and physical properties of the drug delivery vehicle to be designed along with the ultrasound pulse sequence to cause the most efficient drug delivery. PMID:22749476
Hedger, George; Rouse, Sarah L; Domański, Jan; Chavent, Matthieu; Koldsø, Heidi; Sansom, Mark S P
2016-11-15
The exchange of ADP and ATP across the inner mitochondrial membrane is a fundamental cellular process. This exchange is facilitated by the adenine nucleotide translocase, the structure and function of which are critically dependent on the signature phospholipid of mitochondria, cardiolipin (CL). Here we employ multiscale molecular dynamics simulations to investigate CL interactions within a membrane environment. Using simulations at both coarse-grained and atomistic resolutions, we identify three CL binding sites on the translocase, in agreement with those seen in crystal structures and inferred from nuclear magnetic resonance measurements. Characterization of the free energy landscape for lateral lipid interaction via potential of mean force calculations demonstrates the strength of interaction compared to those of binding sites on other mitochondrial membrane proteins, as well as their selectivity for CL over other phospholipids. Extending the analysis to other members of the family, yeast Aac2p and mouse uncoupling protein 2, suggests a degree of conservation. Simulation of large patches of a model mitochondrial membrane containing multiple copies of the translocase shows that CL interactions persist in the presence of protein-protein interactions and suggests CL may mediate interactions between translocases. This study provides a key example of how computational microscopy may be used to shed light on regulatory lipid-protein interactions.
Interfacial properties of hydrosoluble polymers. Final report, June 15, 1993--June 15, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
During this period, the authors treated a myriad of problems associated with the interfacial properties of macromolecules. Many of them concerned indirect interactions between surfaces engendered by intervening species. The issues ranged from colloidal forces to membrane induced coupling between embedded macromolecules (membrane-bound proteins). This report presents summaries of the following papers published as a result of this study: membrane interactions with polymers and colloids; escape transitions and force laws for compressed polymer mushrooms; interaction between finite-sized particles and end grafted polymers; one long chain among shorter chains--the Flory approach revisited; conformation of star polymers in high molecular weight solvents;more » membrane-induced interactions between inclusions; filled polymer brushes--a hydrodynamic analogy; polymer adsorption at liquid/air interfaces under lateral pressure; flow induced instability of the interface between a fluid and a gel at low Reynolds number; and fluctuation-induced forces in stacked fluid membranes.« less
Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes.
Sonntag, Yonathan; Musgaard, Maria; Olesen, Claus; Schiøtt, Birgit; Møller, Jesper Vuust; Nissen, Poul; Thøgersen, Lea
2011-01-01
The structural elucidation of membrane proteins continues to gather pace, but we know little about their molecular interactions with the lipid environment or how they interact with the surrounding bilayer. Here, with the aid of low-resolution X-ray crystallography, we present direct structural information on membrane interfaces as delineated by lipid phosphate groups surrounding the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in its phosphorylated and dephosphorylated Ca(2+)-free forms. The protein-lipid interactions are further analysed using molecular dynamics simulations. We find that SERCA adapts to membranes of different hydrophobic thicknesses by inducing local deformations in the lipid bilayers and by undergoing small rearrangements of the amino-acid side chains and helix tilts. These mutually adaptive interactions allow smooth transitions through large conformational changes associated with the transport cycle of SERCA, a strategy that may be of general nature for many membrane proteins.
Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation
van den Bogaart, Geert; Thutupalli, Shashi; Risselada, Jelger H.; Meyenberg, Karsten; Holt, Matthew; Riedel, Dietmar; Diederichsen, Ulf; Herminghaus, Stephan; Grubmüller, Helmut; Jahn, Reinhard
2011-01-01
Synaptotagmin-1 triggers Ca2+-sensitive, rapid neurotransmitter release by promoting the interaction of SNARE proteins between the synaptic vesicles and the plasma membrane. How synaptotagmin-1 promotes this interaction is controversial, and the massive increase in membrane fusion efficiency of Ca2+-synaptotagmin-1 has not been reproduced in vitro. However, previous experiments have been performed at relatively high salt concentrations, screening potentially important electrostatic interactions. Using functional reconstitution in liposomes, we show here that at low ionic strength SNARE-mediated membrane fusion becomes strictly dependent on both Ca2+ and synaptotagmin-1. Under these conditions, synaptotagmin-1 functions as a distance regulator: tethering the liposomes too far for SNARE nucleation in the absence of Ca2+, but brings the liposomes close enough for membrane fusion in the presence of Ca2+. These results may explain how the relatively weak electrostatic interactions of synaptotagmin-1 with membranes substantially accelerate fusion. PMID:21642968
Cell death versus cell survival instructed by supramolecular cohesion of nanostructures
NASA Astrophysics Data System (ADS)
Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.
2014-02-01
Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.
Modeling of interactions between nanoparticles and cell membranes
NASA Astrophysics Data System (ADS)
Ban, Young-Min
Rapid development of nanotechnology and ability to manufacture materials and devices with nanometer feature size leads to exciting innovations in many areas including the medical and electronic fields. However, the possible health and environmental impacts of manufactured nanomaterials are not fully known. Recent experimental reports suggest that some of the manufactured nanomaterials, such as fullerenes and carbon nanotubes, are highly toxic even in small concentrations. The goal of the current work is to understand the mechanisms responsible for the toxicity of nanomaterials. In the current study coarse-grained molecular dynamics simulations are employed to investigate the interactions between NPs and cellular membranes at a molecular level. One of the possible toxicity mechanisms of the nanomaterials is membrane disruption. Possibility of membrane disruption exposed to the manufactured nanomaterials are examined by considering chemical reactions and non-reactive physical interactions as chemical as well as physical mechanisms. Mechanisms of transport of carbon-based nanoparticles (fullerene and its derivative) across a phospholipid bilayer are investigated. The free energy profile is obtained using constrained simulations. It is shown that the considered nanoparticles are hydrophobic and therefore they tend to reside in the interior of the lipid bilayer. In addition, the dynamics of the membrane fluctuations is significantly affected by the nanoparticles at the bilayer-water interface. The hydrophobic interaction between the particles and membrane core induces the strong coupling between the nanoparticle motion and membrane deformation. It is observed that the considered nanoparticles affect several physical properties of the membrane. The nanoparticles embedded into the membrane interior lead to the membrane softening, which becomes more significant with increase in CNT length and concentration. The lateral pressure profile and membrane energy in the membrane containing the nanoparticles exhibit localized perturbation around the nanoparticle. The nanoparticles are not likely to affect membrane protein function by the weak perturbation of the internal stress in the membrane. Due to the short-ranged interactions between the nanoparticles, the nanoparticles would not form aggregates inside membranes. The effect of lipid peroxidation on cell membrane deformation is assessed. The peroxidized lipids introduce a perturbation to the internal structure of the membrane leading to higher amplitude of the membrane fluctuations. Higher concentration of the peroxidized lipids induces more significant perturbation. Cumulative effects of lipid peroxidation caused by nanoparticles are examined for the first time. The considered amphiphilic particle appears to reduce the perturbation of the membrane structure at its equilibrium position inside the peroxidized membrane. This suggests a possibility of antioxidant effect of the nanoparticle.
Is chloroplast import of photosynthesis proteins facilitated by an actin-TOC-TIC-VIPP1 complex?
Jouhet, Juliette; Gray, John C
2009-10-01
Actin filaments are major components of the cytoskeleton that interact with chloroplast envelope membranes to allow chloroplast positioning and movement, stromule mobility and gravitropism perception. We recently reported that Toc159, a component of the TOC complex of the chloroplast protein import apparatus, interacts directly with actin. The interaction of Toc159 and actin was identified by co-immunoprecipitation and co-sedimentation experiments with detergent-solubilised pea chloroplast envelope membranes. In addition, many of the components of the TOC-TIC protein import apparatus and VIPP1 (vesicle-inducing protein in plastids 1) were identified by mass spectroscopy in the material co-immunoprecipitated with antibodies to actin. Toc159 is the receptor for the import of photosynthesis proteins and VIPP1 is involved in thylakoid membrane formation by inducing vesicle formation from the chloroplast inner envelope membrane, suggesting we may have identified an actin-TOC-TIC-VIPP1 complex that may provide a means of channeling cytosolic preproteins to the thylakoid membrane. The interaction of Toc159 with actin may facilitate exchange between the putative soluble and membrane forms of Toc159 and promote the interaction of cytosolic preproteins with the TOC complex.
Interaction of chiral rafts in self-assembled colloidal membranes
NASA Astrophysics Data System (ADS)
Xie, Sheng; Hagan, Michael F.; Pelcovits, Robert A.
2016-03-01
Colloidal membranes are monolayer assemblies of rodlike particles that capture the long-wavelength properties of lipid bilayer membranes on the colloidal scale. Recent experiments on colloidal membranes formed by chiral rodlike viruses showed that introducing a second species of virus with different length and opposite chirality leads to the formation of rafts—micron-sized domains of one virus species floating in a background of the other viruses [Sharma et al., Nature (London) 513, 77 (2014), 10.1038/nature13694]. In this article we study the interaction of such rafts using liquid crystal elasticity theory. By numerically minimizing the director elastic free energy, we predict the tilt angle profile for both a single raft and two rafts in a background membrane, and the interaction between two rafts as a function of their separation. We find that the chiral penetration depth in the background membrane sets the scale for the range of the interaction. We compare our results with the experimental data and find good agreement for the strength and range of the interaction. Unlike the experiments, however, we do not observe a complete collapse of the data when rescaled by the tilt angle at the raft edge.
Shi, Xiaojun; Kohram, Maryam; Zhuang, Xiaodong; Smith, Adam W
2016-02-23
Phosphatidylinositol phosphate (PIP) lipids are critical to many cell signaling pathways, in part by acting as molecular beacons that recruit peripheral membrane proteins to specific locations within the plasma membrane. Understanding the biophysics of PIP-protein interactions is critical to developing a chemically detailed model of cell communication. Resolving such interactions is challenging, even in model membrane systems, because of the difficulty in preparing PIP-containing membranes with high fluidity and integrity. Here we report on a simple, vesicle-based protocol for preparing asymmetric supported lipid bilayers in which fluorescent PIP lipid analogues are found only on the top leaflet of the supported membrane facing the bulk solution. With this asymmetric distribution of lipids between the leaflets, the fluorescent signal from the PIP lipid analogue reports directly on interactions between the peripheral molecules and the top leaflet of the membrane. Asymmetric PIP-containing bilayers are an ideal platform to investigate the interaction of PIP with peripheral membrane proteins using fluorescence-based imaging approaches. We demonstrate their usefulness here with a combined fluorescence correlation spectroscopy and single particle tracking study of the interaction between PIP2 lipids and a polycationic polymer, quaternized polyvinylpyridine (QPVP). With this approach we are able to quantify the microscopic features of the mobility coupling between PIP2 lipids and polybasic QPVP. With single particle tracking we observe individual PIP2 lipids switch from Brownian to intermittent motion as they become transiently trapped by QPVP.
Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes.
Nguyen, Khoa; Garcia, Alvaro; Sani, Marc-Antoine; Diaz, Dil; Dubey, Vikas; Clayton, Daniel; Dal Poggetto, Giovanni; Cornelius, Flemming; Payne, Richard J; Separovic, Frances; Khandelia, Himanshu; Clarke, Ronald J
2018-06-01
The Na + ,K + -ATPase, which is present in the plasma membrane of all animal cells, plays a crucial role in maintaining the Na + and K + electrochemical potential gradients across the membrane. Recent studies have suggested that the N-terminus of the protein's catalytic α-subunit is involved in an electrostatic interaction with the surrounding membrane, which controls the protein's conformational equilibrium. However, because the N-terminus could not yet be resolved in any X-ray crystal structures, little information about this interaction is so far available. In measurements utilising poly-l-lysine as a model of the protein's lysine-rich N-terminus and using lipid vesicles of defined composition, here we have identified the most likely origin of the interaction as one between positively charged lysine residues of the N-terminus and negatively charged headgroups of phospholipids (notably phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state 31 P and 2 H NMR using these N-terminal fragments as well as MD simulations it appears that the membrane interaction arises from lysine residues prior to the conserved LKKE motif of the N-terminus. The MD simulations indicate that the strength of the interaction varies significantly between different enzyme conformations. Copyright © 2018 Elsevier B.V. All rights reserved.
Nano- and microparticles at fluid and biological interfaces.
Dasgupta, S; Auth, T; Gompper, G
2017-09-20
Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.
Nano- and microparticles at fluid and biological interfaces
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Auth, T.; Gompper, G.
2017-09-01
Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.
Electrostatic interactions and binding orientation of HIV-1 matrix studied by neutron reflectivity.
Nanda, Hirsh; Datta, Siddhartha A K; Heinrich, Frank; Lösche, Mathias; Rein, Alan; Krueger, Susan; Curtis, Joseph E
2010-10-20
The N-terminal matrix (MA) domain of the HIV-1 Gag protein is responsible for binding to the plasma membrane of host cells during viral assembly. The putative membrane-binding interface of MA was previously mapped by means of mutagenesis and analysis of its trimeric crystal structure. However, the orientation of MA on membranes has not been directly determined by experimental measurements. We present neutron reflectivity measurements that resolve the one-dimensional scattering length density profile of MA bound to a biomimetic of the native viral membrane. A molecular refinement procedure was developed using atomic structures of MA to determine the orientation of the protein on the membrane. The orientation defines a lipid-binding interface consistent with previous mutagenesis results. The MA protein maintains this orientation without the presence of a myristate group, driven only by electrostatic interactions. Furthermore, MA is found to penetrate the membrane headgroup region peripherally such that only the side chains of specific Lys and Arg residues interact with the surface. The results suggest that electrostatic interactions are sufficient to favorably orient MA on viral membrane mimics. The spatial determination of the membrane-bound protein demonstrates the ability of neutron reflectivity to discern orientation and penetration under physiologically relevant conditions. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Antimicrobial Peptides Targeting Gram-Positive Bacteria
Malanovic, Nermina; Lohner, Karl
2016-01-01
Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092
Kim, Kun-Hyung; Jun, Yong-Woo; Park, Yongsoo; Lee, Jin-A; Suh, Byung-Chang; Lim, Chae-Seok; Lee, Yong-Seok; Kaang, Bong-Kiun; Jang, Deok-Jin
2014-01-01
Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively. PMID:25077971
Giudici, Marcela; Pascual, Roberto; de la Canal, Laura; Pfüller, Karola; Pfüller, Uwe; Villalaín, José
2003-01-01
Viscotoxins are small proteins that are thought to interact with biomembranes, displaying different toxic activities against a varied number of cell types, being viscotoxin A3 (VtA3) the most cytotoxic whereas viscotoxin B (VtB) is the less potent. By using infrared and fluorescence spectroscopies, we have studied the interaction of VtA3 and VtB, both wild and reduced ones, with model membranes containing negatively charged phospholipids. Both VtA3 and VtB present a high conformational stability, and a similar conformation both in solution and when bound to membranes. In solution, the infrared spectra of the reduced proteins show an increase in bandwidth compared to the nonreduced ones indicating a greater flexibility. VtA3 and VtB bind with high affinity to membranes containing negatively charged phospholipids and are motional restricted, their binding being dependent on phospholipid composition. Whereas nonreduced proteins maintain their structure when bound to membranes, reduced ones aggregate. Furthermore, leakage experiments show that wild proteins were capable of disrupting membranes whereas reduced proteins were not. The effect of VtA3 and VtB on membranes having different phospholipid composition is diverse, affecting the cooperativity and fluidity of the membranes. Viscotoxins interact with membranes in a complex way, most likely organizing themselves at the surface inducing the appearance of defects that lead to the destabilization and disruption of the membrane bilayer. PMID:12885644
Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.
Li, Shixin; Luo, Zhen; Xu, Yan; Ren, Hao; Deng, Li; Zhang, Xianren; Huang, Fang; Yue, Tongtao
2017-10-01
Lipid nanodisc, a model membrane platform originally synthesized for study of membrane proteins, has recently been used as the carrier to deliver amphiphilic drugs into target tumor cells. However, the central question of how cells interact with such emerging nanomaterials remains unclear and deserves our research for both improving the delivery efficiency and reducing the side effect. In this work, a binary lipid nanodisc is designed as the minimum model to investigate its interactions with plasma membranes by using the dissipative particle dynamics method. Three typical interaction pathways, including the membrane attachment with lipid domain exchange of nanodiscs, the partial membrane wrapping with nanodisc vesiculation, and the receptor-mediated endocytosis, are discovered. For the first pathway, the boundary normal lipids acting as ligands diffuse along the nanodisc rim to gather at the membrane interface, repelling the central bola lipids to reach a stable membrane attachment. If bola lipids are positioned at the periphery and act as ligands, they diffuse to form a large aggregate being wrapped by the membrane, leaving the normal lipids exposed on the membrane exterior by assembling into a vesicle. Finally, by setting both central normal lipids and boundary bola lipids as ligands, the receptor-mediated endocytosis occurs via both deformation and self-rotation of the nanodiscs. All above pathways for soft lipid nanodiscs are quite different from those for rigid nanoparticles, which may provide useful guidelines for design of soft lipid nanodiscs in widespread biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Berndt-Paetz, Mandy; Herbst, Luise; Weimann, Annett; Gonsior, Andreas; Stolzenburg, Jens-Uwe; Neuhaus, Jochen
2018-05-01
Muscarinic acetylcholine receptors (mAChRs) regulate a number of important physiological functions. Alteration of mAChR expression or function has been associated in the etiology of several pathologies including functional bladder disorders (e.g bladder pain syndrome/interstitial cystitis - BPS/IC). In a previous study we found specific mAChR expression patterns associated with BPS/IC, while correlation between protein and gene expression was lacking. Posttranslational regulatory mechanisms, e.g. altered intracellular receptor trafficking, could explain those differences. In addition, alternative G protein (GP) coupling could add to the pathophysiology via modulation of muscarinic signaling. In our proof-of-principle study, we addressed these questions in situ. We established PLA in combination with confocal laserscanning microscopy (CLSM) and 3D object reconstruction for highly specific detection and analysis of muscarinic 3 receptors (M3), G protein (GP) coupling and intracellular trafficking in human detrusor samples. Paraffin sections of formalin-fixed bladder tissue (FFPE) of BPS/IC patients receiving transurethral biopsy were examined by Cy3-PLA for M3 expression, coupling of M3 to GPs (G αq/11 , G αs , G αi ) and interaction of M3 with endocytic regulator proteins. Membranes were labeled with wheat germ agglutinin-Alexa Fluor ® 488, nuclei were stained with DAPI. Object density and co-localization were analyzed in 3D-reconstruction of high resolution confocal z-stacks. Confocal image stack processing resulted in well demarcated objects. Calculated receptor densities correlated significantly with existing confocal expression data, while significantly improved specificity of M3 detection by PLA was verified using bladder tissue samples from transgenic mice. 50-60% of the M3 receptor complexes were plasma membrane associated in human bladder detrusor. Application of PLA for M3 and GPs allowed visualization of M3-GP interactions and revealed individual GP-subtype coupling patterns. Detection of M3 interactions with endocytic trafficking proteins by PLA resulted in object sizes correlating with well-documented vesicle sizes of the endocytosis pathway. PLA enabled highly specific detection of M3 receptor expression, demonstration of M3/GP differential coupling and intracellular M3 trafficking in human detrusor smooth muscle cells. This new approach minimized background fluorescence and antibody cross-reactions resulting from single antibody application, and enhanced specificity due to the use of two primary antibodies. Use of subcellular markers allowed visualization of subcellular receptor location. PLA/CLSM allows analyses of muscarinic "receptor - G protein - promiscuity" and intracellular trafficking even in bladder paraffin sections and may give new insights into the etiology and pathology of BPS/IC. Copyright © 2018 Elsevier GmbH. All rights reserved.
Biophysics of α-Synuclein Membrane Interactions
Pfefferkorn, Candace M.; Jiang, Zhiping; Lee, Jennifer C.
2011-01-01
Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson’s disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. PMID:21819966
Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells.
Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J; Méndez, Ernesto; Arias, Carlos F
2015-10-01
Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. Astroviruses are common etiological agents of acute gastroenteritis in children and immunocompromised patients. More recently, they have been associated with neurological diseases in mammals, including humans, and are also responsible for different pathologies in birds. In this work, we provide evidence that astrovirus RNA replication and virus assembly occur in contact with cell membranes potentially derived from multiple cell organelles and show that membrane-associated cellular proteins involved in lipid metabolism are required for efficient viral replication. Our findings provide information to enhance our knowledge of astrovirus biology and provide information that might be useful for the development of therapeutic interventions to prevent virus replication. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells
Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J.; Méndez, Ernesto
2015-01-01
ABSTRACT Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. IMPORTANCE Astroviruses are common etiological agents of acute gastroenteritis in children and immunocompromised patients. More recently, they have been associated with neurological diseases in mammals, including humans, and are also responsible for different pathologies in birds. In this work, we provide evidence that astrovirus RNA replication and virus assembly occur in contact with cell membranes potentially derived from multiple cell organelles and show that membrane-associated cellular proteins involved in lipid metabolism are required for efficient viral replication. Our findings provide information to enhance our knowledge of astrovirus biology and provide information that might be useful for the development of therapeutic interventions to prevent virus replication. PMID:26246569
Pogmore, Justin P; Pemberton, James M; Chi, Xiaoke; Andrews, David W
2016-01-01
The Bcl-2 family of proteins regulates the process of mitochondrial outer membrane permeabilization, causing the release of cytochrome c and committing a cell to apoptosis. The majority of the functional interactions between these proteins occur at, on, or within the mitochondrial outer membrane, complicating structural studies of the proteins and complexes. As a result most in vitro studies of these protein-protein interactions use truncated proteins and/or detergents which can cause artificial interactions. Herein, we describe a detergent-free, fluorescence-based, in vitro technique to study binding between full-length recombinant Bcl-2 family proteins, particularly cleaved BID (cBID) and BCL-XL, on the membranes of purified mitochondria.
Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins
NASA Astrophysics Data System (ADS)
Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.
2010-03-01
The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.
Adam, Philip R; Barta, Michael L; Dickenson, Nicholas E
2017-01-01
In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.
Biophysics of α-synuclein membrane interactions.
Pfefferkorn, Candace M; Jiang, Zhiping; Lee, Jennifer C
2012-02-01
Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function. Copyright © 2011. Published by Elsevier B.V.
Behavior of polysulfone composite and nanocomposite membranes under hypochlorite ageing
NASA Astrophysics Data System (ADS)
Anadão, Priscila; Souza de Santis, Henrique; Rezende Montes, Rafael; Wiebeck, Hélio
2018-05-01
Polysulfone activated carbon or graphite composite membranes and polysulfone montmorillonite clay nanocomposite membranes were prepared by wet-phase inversion method. Its effectiveness against hypochlorite degradation by forming composite and nanocomposite structures was studied by means of an ageing experiment. The formation of some fissures on the composite membrane surface was observed through electron micrographs scanning. The number-average molecular weight of the polysulfone of all membranes was reduced. This reduction was more noticeable in the composite membranes owing to the lower interaction between polymer chains and filler, such interaction being also the reason for polydispersity increase. Fourier transform infrared spectroscopy detected the reduction of the PSf bands in the nanocomposite membranes; in the composite membranes, some PSf band intensities were probably increased owing to the exposure of the PSf groups to the ageing process. All membranes presented brittleness with ageing, which was more pronounced in the composite membranes due to the membrane defects formed.
Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne
2014-09-01
Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.
Peptides that influence membrane topology
NASA Astrophysics Data System (ADS)
Wong, Gerard C. L.
2014-03-01
We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)
Molecular Transport Studies Through Unsupported Lipid Membranes
NASA Astrophysics Data System (ADS)
Rock, William; Parekh, Sapun; Bonn, Mischa
2014-03-01
Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.
Sakamuri, Rama Murthy; Price, Dominique N.; Lee, Myungsun; ...
2013-02-14
Understanding the pathophysiology of tuberculosis, and the bio-distribution of pathogen-associated molecules in the host is essential for the development of efficient methods of intervention. One of the key virulence factors in the pathology of tuberculosis infection is Lipoarabinomannan (LAM). Previously, we have demonstrated the reliable detection of LAM in urine from tuberculosis patients in a sandwich immunoassay format. We also applied an ultra-sensitive detection strategy developed for amphiphilic biomarkers, membrane insertion, to the detection of LAM with a limit of detection of 10 fM. Herein, we evaluate the application of membrane insertion to the detection of LAM in patient serum,more » and demonstrate that the circulating concentrations of ‘monomeric’ LAM in serum are very low, despite significantly higher concentrations in the urine. Using spiked samples, we demonstrate that this discrepancy is due to the association of LAM with high-density lipoprotein (HDL) nanodiscs in human serum. Indeed, pull-down of HDL nanodiscs from human serum allows for the recovery of HDL-associated LAM. These studies suggest that LAM is likely associated with carrier molecules such as HDL in the blood of patients infected with tuberculosis. Furthermore, this phenomenon may not be limited to LAM in that many pathogen-associated molecular patterns like LAM are amphiphilic in nature and may also be associated with host lipid carriers. Such interactions are likely to affect host–pathogen interactions, pathogen bio-distribution and clearance in the host, and must be thoroughly understood for the effective design of vaccines and diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamuri, Rama Murthy; Price, Dominique N.; Lee, Myungsun
Understanding the pathophysiology of tuberculosis, and the bio-distribution of pathogen-associated molecules in the host is essential for the development of efficient methods of intervention. One of the key virulence factors in the pathology of tuberculosis infection is Lipoarabinomannan (LAM). Previously, we have demonstrated the reliable detection of LAM in urine from tuberculosis patients in a sandwich immunoassay format. We also applied an ultra-sensitive detection strategy developed for amphiphilic biomarkers, membrane insertion, to the detection of LAM with a limit of detection of 10 fM. Herein, we evaluate the application of membrane insertion to the detection of LAM in patient serum,more » and demonstrate that the circulating concentrations of ‘monomeric’ LAM in serum are very low, despite significantly higher concentrations in the urine. Using spiked samples, we demonstrate that this discrepancy is due to the association of LAM with high-density lipoprotein (HDL) nanodiscs in human serum. Indeed, pull-down of HDL nanodiscs from human serum allows for the recovery of HDL-associated LAM. These studies suggest that LAM is likely associated with carrier molecules such as HDL in the blood of patients infected with tuberculosis. Furthermore, this phenomenon may not be limited to LAM in that many pathogen-associated molecular patterns like LAM are amphiphilic in nature and may also be associated with host lipid carriers. Such interactions are likely to affect host–pathogen interactions, pathogen bio-distribution and clearance in the host, and must be thoroughly understood for the effective design of vaccines and diagnostics.« less
Graciotti, Laura; Becker, Jodi; Granata, Anna Luisa; Procopio, Antonio Domenico; Tessarollo, Lino; Fulgenzi, Gianluca
2011-01-01
Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (KATP) complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including KATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm) is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of KATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the KATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective KATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients. PMID:22066028
Modeling of Fluid-Membrane Interaction in Cellular Microinjection Process
NASA Astrophysics Data System (ADS)
Karzar-Jeddi, Mehdi; Diaz, Jhon; Olgac, Nejat; Fan, Tai-Hsi
2009-11-01
Cellular microinjection is a well-accepted method to deliver matters such as sperm, nucleus, or macromolecules into biological cells. To improve the success rate of in vitro fertilization and to establish the ideal operating conditions for a novel computer controlled rotationally oscillating intracytoplasmic sperm injection (ICSI) technology, we investigate the fluid-membrane interactions in the ICSI procedure. The procedure consists of anchoring the oocyte (a developing egg) using a holding pipette, penetrating oocyte's zona pellucida (the outer membrane) and the oolemma (the plasma or inner membrane) using an injection micropipette, and finally to deliver sperm into the oocyte for fertilization. To predict the large deformation of the oocyte membranes up to the piercing of the oolemma and the motion of fluids across both membranes, the dynamic fluid-pipette-membrane interactions are formulated by the coupled Stokes' equations and the continuum membrane model based on Helfrich's energy theory. A boundary integral model is developed to simulate the transient membrane deformation and the local membrane stress induced by the longitudinal motion of the injection pipette. The model captures the essential features of the membranes shown on optical images of ICSI experiments, and is capable of suggesting the optimal deformation level of the oolemma to start the rotational oscillations for piercing into the oolemma.
Derde, Melanie; Nau, Françoise; Guérin-Dubiard, Catherine; Lechevalier, Valérie; Paboeuf, Gilles; Jan, Sophie; Baron, Florence; Gautier, Michel; Vié, Véronique
2015-04-01
Antimicrobial resistance is currently an important public health issue. The need for innovative antimicrobials is therefore growing. The ideal antimicrobial compound should limit antimicrobial resistance. Antimicrobial peptides or proteins such as hen egg white lysozyme are promising molecules that act on bacterial membranes. Hen egg white lysozyme has recently been identified as active on Gram-negative bacteria due to disruption of the outer and cytoplasmic membrane integrity. Furthermore, dry-heating (7 days and 80 °C) improves the membrane activity of lysozyme, resulting in higher antimicrobial activity. These in vivo findings suggest interactions between lysozyme and membrane lipids. This is consistent with the findings of several other authors who have shown lysozyme interaction with bacterial phospholipids such as phosphatidylglycerol and cardiolipin. However, until now, the interaction between lysozyme and bacterial cytoplasmic phospholipids has been in need of clarification. This study proposes the use of monolayer models with a realistic bacterial phospholipid composition in physiological conditions. The lysozyme/phospholipid interactions have been studied by surface pressure measurements, ellipsometry and atomic force microscopy. Native lysozyme has proved able to absorb and insert into a bacterial phospholipid monolayer, resulting in lipid packing reorganization, which in turn has lead to lateral cohesion modifications between phospholipids. Dry-heating of lysozyme has increased insertion capacity and ability to induce lipid packing modifications. These in vitro findings are then consistent with the increased membrane disruption potential of dry heated lysozyme in vivo compared to native lysozyme. Moreover, an eggPC monolayer study suggested that lysozyme/phospholipid interactions are specific to bacterial cytoplasmic membranes. Copyright © 2015 Elsevier B.V. All rights reserved.
Living target of Ce(III) action on horseradish cells: proteins on/in cell membrane.
Yang, Guangmei; Sun, Zhaoguo; Lv, Xiaofen; Deng, Yunyun; Zhou, Qing; Huang, Xiaohua
2012-12-01
Positive and negative effects of rare earth elements (REEs) in life have been reported in many papers, but the cellular mechanisms have not been answered, especially the action sites of REEs on plasma membrane are unknown. Proteins on/in the plasma membrane perform main functions of the plasma membrane. Cerium (Ce) is the richest REEs in crust. Thus, the interaction between Ce(III) and the proteins on/in the plasma membrane, the morphology of protoplast, and the contents of nutrient elements in protoplast of horseradish were investigated using the optimized combination of the fluorescence microscopy, fluorescence spectroscopy, circular dichroism, scanning electron microscopy, and X-ray energy dispersive spectroscopy. It was found that Ce(III) at the low concentrations (10, 30 μM) could interact with proteins on/in the plasma membrane of horseradish, leading to the improvement in the structure of membrane proteins and the plasma membrane, which accelerated the intra-/extra-cellular substance exchange and further promoted the development of cells. When horseradish was treated with Ce(III) at the high concentrations (60, 80 μM), Ce(III) also could interact with the proteins on/in the plasma membrane of horseradish, leading to the destruction in the structure of membrane proteins and the plasma membrane. These effects decelerated the intra-/extra-cellular substance exchange and further inhibited the development of cells. Thus, the interaction between Ce(III) and proteins on/in the plasma membrane in plants was an important reason of the positive and negative effects of Ce(III) on plants. The results would provide some references for understanding the cellular effect mechanisms of REEs on plants.
Ichikawa, Kazunobu; Konta, Tsuneo; Sato, Hiroshi; Ueda, Yoshihiko; Yokoyama, Hitoshi
2017-12-01
In connective tissue diseases, a wide variety of glomerular, tubulointerstitial, and vascular lesions of the kidney are observed. Nonetheless, recent information is limited regarding renal lesions in connective tissue diseases, except in systemic lupus erythematosus (SLE). In this study, we used a nationwide database of biopsy-confirmed renal diseases in Japan (J-RBR) (UMIN000000618). In total, 20,523 registered patients underwent biopsy between 2007 and 2013; from 110 patients with connective tissue diseases except SLE, we extracted data regarding the clinico-pathological characteristics of the renal biopsy. Our analysis included patients with rheumatoid arthritis (RA) (n = 52), Sjögren's syndrome (SjS) (n = 35), scleroderma (n = 10), mixed connective tissue disease (MCTD; n = 5), anti-phospholipid syndrome (APS; n = 3), polymyositis/dermatomyositis (PM/DM; n = 1), Behçet's disease (n = 1) and others (n = 3). The clinico-pathological features differed greatly depending on the underlying disease. The major clinical diagnosis was nephrotic syndrome in RA; chronic nephritic syndrome with mild proteinuria and reduced renal function in SjS; rapidly progressive nephritic syndrome in scleroderma. The major pathological diagnosis was membranous nephropathy (MN) and amyloidosis in RA; tubulointerstitial nephritis in SjS; proliferative obliterative vasculopathy in scleroderma; MN in MCTD. In RA, most patients with nephrosis were treated using bucillamine, and showed membranous nephropathy. Using the J-RBR database, our study revealed that biopsy-confirmed cases of connective tissue diseases such as RA, SjS, scleroderma, and MCTD show various clinical and pathological characteristics, depending on the underlying diseases and the medication used.
ERIC Educational Resources Information Center
Leaby, Margaret M.; Walsh, Irene P.
2008-01-01
The importance of learning about and applying clinical discourse analysis to enhance the talk in interaction in the speech-language pathology clinic is discussed. The benefits of analyzing clinical discourse to explicate therapy dynamics are described.
Rungaldier, Stefanie; Oberwagner, Walter; Salzer, Ulrich; Csaszar, Edina; Prohaska, Rainer
2013-03-01
The widely expressed, homo-oligomeric, lipid raft-associated, monotopic integral membrane protein stomatin and its homologues are known to interact with and modulate various ion channels and transporters. Stomatin is a major protein of the human erythrocyte membrane, where it associates with and modifies the glucose transporter GLUT1; however, previous attempts to purify hetero-oligomeric stomatin complexes for biochemical analysis have failed. Because lateral interactions of membrane proteins may be short-lived and unstable, we have used in situ chemical cross-linking of erythrocyte membranes to fix the stomatin complexes for subsequent purification by immunoaffinity chromatography. To further enrich stomatin, we prepared detergent-resistant membranes either before or after cross-linking. Mass spectrometry of the isolated, high molecular, cross-linked stomatin complexes revealed the major interaction partners as glucose transporter-1 (GLUT1), anion exchanger (band 3), and water channel (aquaporin-1). Moreover, ferroportin-1 (SLC40A1), urea transporter-1 (SLC14A1), nucleoside transporter (SLC29A1), the calcium-pump (Ca-ATPase-4), CD47, and flotillins were identified as stomatin-interacting proteins. These findings are in line with the hypothesis that stomatin plays a role as membrane-bound scaffolding protein modulating transport proteins. Copyright © 2012 Elsevier B.V. All rights reserved.
The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.
2010-12-17
Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended themore » study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.« less
Soares, Júlia Ribeiro; José Tenório de Melo, Edésio; da Cunha, Maura; Fernandes, Kátia Valevski Sales; Taveira, Gabriel Bonan; da Silva Pereira, Lidia; Pimenta, Samy; Trindade, Fernanda Gomes; Regente, Mariana; Pinedo, Marcela; de la Canal, Laura; Gomes, Valdirene Moreira; de Oliveira Carvalho, André
2017-01-01
Plant defensins were discovered at beginning of the 90s'; however, their precise mechanism of action is still unknown. Herein, we studied ApDef 1 -Saccharomyces cerevisiae interaction. ApDef 1 -S. cerevisiae interaction was studied by determining the MIC, viability and death kinetic assays. Viability assay was repeated with hydroxyurea synchronized-yeast and pretreated with CCCP. Plasma membrane permeabilization, ROS induction, chromatin condensation, and caspase activation analyses were assessed through Sytox green, DAB, DAPI and FITC-VAD-FMK, respectively. Viability assay was done in presence of ascorbic acid and Z-VAD-FMK. Ultrastructural analysis was done by electron microscopy. ApDef 1 caused S. cerevisiae cell death and MIC was 7.8μM. Whole cell population died after 18h of ApDef 1 interaction. After 3h, 98.76% of synchronized cell population died. Pretreatment with CCCP protected yeast from ApDef 1 induced death. ApDef 1 -S. cerevisiae interaction resulted in membrane permeabilization, H 2 O 2 increased production, chromatin condensation and caspase activation. Ascorbic acid prevented yeast cell death and membrane permeabilization. Z-VAD-FMK prevented yeast cell death. ApDef 1 -S. cerevisiae interaction caused cell death through cell cycle dependentprocess which requires preserved membrane potential. After interaction, yeast went through uncontrolled ROS production and accumulation, which led to plasma membrane permeabilization, chromatin condensation and, ultimately, cell death by activation of caspase-dependent apoptosis via. We show novel requirements for the interaction between plant defensin and fungi cells, i.e. cell cycle phase and membrane potential, and we indicate that membrane permeabilization is probably caused by ROS and therefore, it would be an indirect event of the ApDef 1 -S. cerevisiae interaction. Copyright © 2016 Elsevier B.V. All rights reserved.
Mohamad Yusoff, Mohamad Ariff; Abdul Hamid, Azzmer Azzar; Mohammad Bunori, Noraslinda; Abd Halim, Khairul Bariyyah
2018-06-01
Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP 2 ) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP 2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP 2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP 2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane. Copyright © 2018 Elsevier Inc. All rights reserved.
Interaction of nanoparticles with lipid layers
NASA Astrophysics Data System (ADS)
Park, Jonghyun; Lu, Wei
2009-08-01
Poly (amidoamine) dendrimer nanoparticles are used extensively in diverse biological and medical applications. Examples include gene and drug delivery, where nanoparticles disrupt cell membranes to allow the transport of material into cells. The size and surface chemistry of these particles have a strong effect on their interaction with membranes. This paper proposes a three-dimensional phase-field model to investigate how the interaction drives deformation and morphological evolution of the membrane. Attention is focused on the hole-formation process in the membrane. The simulations have demonstrated that a larger amine-terminated generation 7 dendrimer, which has positive charges, causes the formation of a hole in the membrane. The displaced membrane molecules enclose the particle and form a dendrimer-filled membrane vesicle. The effect is significantly reduced for a smaller dendrimer. An acetamide-terminated dendrimer, which has a neutral charge at the surface, does not cause hole formation. These results agree with experimental observations from atomic force microscopy. The study will provide insight into the design of appropriate nanoparticle surface properties for medical applications.
Structure and hydration of membranes embedded with voltage-sensing domains.
Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J
2009-11-26
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.
Structure and hydration of membranes embedded with voltage-sensing domains
Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J. Alfredo; Schow, Eric V.; Worcester, David L.; Gawrisch, Klaus; Tobias, Douglas; White, Stephen H.; Swartz, Kenton J.
2009-01-01
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1–S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1–S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field. PMID:19940918
Direct simulation of amphiphilic nanoparticle mediated membrane interactions
NASA Astrophysics Data System (ADS)
Tahir, Mukarram; Alexander-Katz, Alfredo
Membrane fusion is a critical step in the transport of biological cargo through membrane-bound compartments like vesicles. Membrane proteins that alleviate energy barriers for initial stalk formation and eventual rupture of the hemifusion intermediate during fusion generally assist this process. Gold nanoparticles functionalized with a combination of hydrophobic and hydrophilic alkanethiol ligands have recently been shown to induce membrane re-arrangements that are similar to those associated with these fusion proteins. In this work, we utilize molecular dynamics simulation to systematically design nanoparticles that exhibit targeted interactions with membranes. We introduce a method for rapidly parameterizing nanoparticle topology for the MARTINI biomolecular force field to permit long timescale simulation of their interactions with lipid bilayers. We leverage this model to investigate how ligand chemistry governs the nanoparticle's insertion efficacy and the perturbations it generates in the membrane environment. We further demonstrate through unbiased simulations that these nanoparticles can direct the fusion of lipid assemblies such as micelles and vesicles in a manner that mimics the function of biological fusion peptides and SNARE proteins.
Membrane rafts stabilized by chiral liquid crystal correction to bare interfacial tension
NASA Astrophysics Data System (ADS)
Kang, Louis; Lubensky, T. C.
Lipid rafts are hypothesized to facilitate protein interaction, tension regulation, and trafficking in biological membranes, but the mechanisms responsible for their formation and maintenance are not clear. Recently, experiments showed that bidisperse mixtures of filamentous viruses can self-assemble into colloidal monolayers with thermodynamically stable rafts that exhibit chiral structure and repulsive interactions. We quantitatively explain these observations by modeling the membrane particles as chiral liquid crystals. Chiral twist promotes the formation of finite-sized rafts by decreasing the effective interfacial tension between rafts and background membrane. It also mediates a repulsion that distributes rafts evenly throughout the membrane. Although this system is composed of filamentous viruses whose aggregation is entropically driven by dextran depletants instead of phospholipids and cholesterol with prominent electrostatic interactions, colloidal and biological membranes share many of the same physical symmetries. Chiral twist can contribute to the behavior of both systems and may account for certain stereospecific effects observed in molecular membranes.
Nonlinear analysis of a shock-loaded membrane.
NASA Technical Reports Server (NTRS)
Madden, R.; Remington, P. J.
1973-01-01
Results from a computer method for analyzing the unsteady interaction of a fluid stream and a flat circular elastic membrane are presented. The loading on the membrane is assumed to be caused by the firing of a shock tube. The fluid pressures and velocities are determined from a scheme based on the numerical method of characteristics, and the membrane is analyzed using exact relations for membrane strain. The interactive solution is found to give peak stresses 40% lower than a solution which assumes a pressure invariant in space and time.
Anbazhagan, V; Sankhala, Rajeshwer S; Singh, Bhanu Pratap; Swamy, Musti J
2011-01-01
The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process.
Anbazhagan, V.; Sankhala, Rajeshwer S.; Singh, Bhanu Pratap; Swamy, Musti J.
2011-01-01
The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process. PMID:22022488
Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in; Kuroda, Kenichi, E-mail: kkuroda@umich.edu
Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probablemore » location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.« less
Quantitation of Membrane-Ligand Interactions Using Backscattering Interferometry
Baksh, Michael M.; Kussrow, Amanda K.; Mileni, Mauro; Finn, M.G.; Bornhop, Darryl J.
2011-01-01
Though membrane-associated proteins are ubiquitous within all living organisms and represent the majority of drug targets, a general method for direct, label-free measurement of ligand binding to native membranes has not been reported. Here we show backscattering interferometry (BSI) to be a viable technique for quantifying ligand-receptor binding affinities in a variety of membrane environments. By detecting minute changes in the refractive index of a solution, BSI allows binding interactions of proteins with their ligands to be measured at picomolar concentrations. Equilibrium binding constants in the micromolar to picomolar range were obtained for small- and large-molecule interactions in both synthetic- and cell-derived membranes without the use of labels or supporting substrates. The simple and low-cost hardware, high sensitivity, and label-free nature of BSI should make it readily applicable to the study of many membrane-associated proteins of biochemical and pharmacological interest. PMID:21399645
Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan
2015-04-01
Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kar, Rajiv K; Mroue, Kamal H; Kumar, Dinesh; Tejo, Bimo A; Bhunia, Anirban
2016-02-11
Antifreeze proteins (AFPs) are the key biomolecules that enable species to survive under subzero temperature conditions. The physiologically relevant activities of AFPs are based on the adsorption to ice crystals, followed by the inhibition of subsequent crystal layer growth of ice, routed with depression in freezing point in a noncolligative manner. The functional attributes governing the mechanism by which AFPs inhibit freezing of body fluids in bacteria, fungi, plants, and fishes are mainly attributed to their adsorption onto the surface of ice within the physiological system. Importantly, AFPs are also known for their application in cryopreservation of biological samples that might be related to membrane interaction. To date, there is a paucity of information detailing the interaction of AFPs with membrane structures. Here, we focus on elucidating the biophysical properties of the interactions between AFPs and micelle models that mimic the membrane system. Micelle model systems of zwitterionic DPC and negatively charged SDS were utilized in this study, against which a significant interaction is experienced by two AFP molecules, namely, Peptide 1m and wfAFP (the popular AFP sourced from winter flounder). Using low- and high-resolution biophysical characterization techniques, such as circular dichroism (CD) and NMR spectroscopy, a strong evidence for the interactions of these AFPs with the membrane models is revealed in detail and is corroborated by in-depth residue-specific information derived from molecular dynamics simulation. Altogether, these results not only strengthen the fact that AFPs interact actively with membrane systems, but also demonstrate that membrane-associated AFPs are dynamic and capable of adopting a number of conformations rendering fluidity to the system.
Simulations of a Membrane-Anchored Peptide: Structure, Dynamics, and Influence on Bilayer Properties
Jensen, Morten Ø.; Mouritsen, Ole G.; Peters, Günther H.
2004-01-01
A three-dimensional structure of a model decapeptide is obtained by performing molecular dynamics simulations of the peptide in explicit water. Interactions between an N-myristoylated form of the folded peptide anchored to dipalmitoylphosphatidylcholine fluid phase lipid membranes are studied at different applied surface tensions by molecular dynamics simulations. The lipid membrane environment influences the conformational space explored by the peptide. The overall secondary structure of the anchored peptide is found to deviate at times from its structure in aqueous solution through reversible conformational transitions. The peptide is, despite the anchor, highly mobile at the membrane surface with the peptide motion along the bilayer normal being integrated into the collective modes of the membrane. Peptide anchoring moderately alters the lateral compressibility of the bilayer by changing the equilibrium area of the membrane. Although membrane anchoring moderately affects the elastic properties of the bilayer, the model peptide studied here exhibits conformational flexibility and our results therefore suggest that peptide acylation is a feasible way to reinforce peptide-membrane interactions whereby, e.g., the lifetime of receptor-ligand interactions can be prolonged. PMID:15189854
Quantification of Ligand Binding to G-Protein Coupled Receptors on Cell Membranes by Ellipsometry
Kriechbaumer, Verena; Nabok, Alexei; Widdowson, Robert; Smith, David P.; Abell, Ben M.
2012-01-01
G-protein-coupled receptors (GPCRs) are prime drug targets and targeted by approximately 60% of current therapeutic drugs such as β-blockers, antipsychotics and analgesics. However, no biophysical methods are available to quantify their interactions with ligand binding in a native environment. Here, we use ellipsometry to quantify specific interactions of receptors within native cell membranes. As a model system, the GPCR-ligand CXCL12α and its receptor CXCR4 are used. Human-derived Ishikawa cells were deposited onto gold coated slides via Langmuir-Schaefer film deposition and interactions between the receptor CXCR4 on these cells and its ligand CXCL12α were detected via total internal reflection ellipsometry (TIRE). This interaction could be inhibited by application of the CXCR4-binding drug AMD3100. Advantages of this approach are that it allows measurement of interactions in a lipid environment without the need for labelling, protein purification or reconstitution of membrane proteins. This technique is potentially applicable to a wide variety of cell types and their membrane receptors, providing a novel method to determine ligand or drug interactions targeting GPCRs and other membrane proteins. PMID:23049983
Pathology Dynamics Predict Spinal Cord Injury Therapeutic Success
Mitchell, Cassie S.
2008-01-01
Abstract Secondary injury, the complex cascade of cellular events following spinal cord injury (SCI), is a major source of post-insult neuron death. Experimental work has focused on the details of individual factors or mechanisms that contribute to secondary injury, but little is known about the interactions among factors leading to the overall pathology dynamics that underlie its propagation. Prior hypotheses suggest that the pathology is dominated by interactions, with therapeutic success lying in combinations of neuroprotective treatments. In this study, we provide the first comprehensive, system-level characterization of the entire secondary injury process using a novel relational model methodology that aggregates the findings of ~250 experimental studies. Our quantitative examination of the overall pathology dynamics suggests that, while the pathology is initially dominated by “fire-like,” rate-dependent interactions, it quickly switches to a “flood-like,” accumulation-dependent process with contributing factors being largely independent. Our evaluation of ~20,000 potential single and combinatorial treatments indicates this flood-like pathology results in few highly influential factors at clinically realistic treatment time frames, with multi-factor treatments being merely additive rather than synergistic in reducing neuron death. Our findings give new fundamental insight into the understanding of the secondary injury pathology as a whole, provide direction for alternative therapeutic strategies, and suggest that ultimate success in treating SCI lies in the pursuit of pathology dynamics in addition to individually involved factors. PMID:19125684
Sánchez, Susana A.; Tricerri, M. Alejandra; Ossato, Giulia; Gratton, Enrico
2010-01-01
Summary Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. FCS (Fluorescence Correlation Spectroscopy) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan GP (Generalized Polarization) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A–I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis, and offer a methodological design suited to different biological systems. PMID:20347719
Robin, Jérôme D.; Magdinier, Frédérique
2016-01-01
Lamins are intermediate filaments that form a complex meshwork at the inner nuclear membrane. Mammalian cells express two types of Lamins, Lamins A/C and Lamins B, encoded by three different genes, LMNA, LMNB1, and LMNB2. Mutations in the LMNA gene are associated with a group of phenotypically diverse diseases referred to as laminopathies. Lamins interact with a large number of binding partners including proteins of the nuclear envelope but also chromatin-associated factors. Lamins not only constitute a scaffold for nuclear shape, rigidity and resistance to stress but also contribute to the organization of chromatin and chromosomal domains. We will discuss here the impact of A-type Lamins loss on alterations of chromatin organization and formation of chromatin domains and how disorganization of the lamina contributes to the patho-physiology of premature aging syndromes. PMID:27602048
Wang, Ting; Hay, Jesse C.
2015-01-01
Alpha-synuclein is a predominant player in the pathogenesis of Parkinson's Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the dysfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress, and others. Here we examine recent developments in alpha-synuclein's toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration. PMID:26617485
The endothelial glycocalyx: composition, functions, and visualization
Reitsma, Sietze; Slaaf, Dick W.; Vink, Hans; van Zandvoort, Marc A. M. J.
2007-01-01
This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging. PMID:17256154
Imaging of oral pathological tissue using optical coherence tomography
NASA Astrophysics Data System (ADS)
Canjau, Silvana; Todea, Carmen; Sinescu, Cosmin; Duma, Virgil-Florin; Topala, Florin I.; Podoleanu, Adrian G.
2014-01-01
Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.
Modulation of Kv7 channels and excitability in the brain.
Greene, Derek L; Hoshi, Naoto
2017-02-01
Neuronal Kv7 channels underlie a voltage-gated non-inactivating potassium current known as the M-current. Due to its particular characteristics, Kv7 channels show pronounced control over the excitability of neurons. We will discuss various factors that have been shown to drastically alter the activity of this channel such as protein and phospholipid interactions, phosphorylation, calcium, and numerous neurotransmitters. Kv7 channels locate to key areas for the control of action potential initiation and propagation. Moreover, we will explore the dynamic surface expression of the channel modulated by neurotransmitters and neural activity. We will also focus on known principle functions of neural Kv7 channels: control of resting membrane potential and spiking threshold, setting the firing frequency, afterhyperpolarization after burst firing, theta resonance, and transient hyperexcitability from neurotransmitter-induced suppression of the M-current. Finally, we will discuss the contribution of altered Kv7 activity to pathologies such as epilepsy and cognitive deficits.
Modulation of Kv7 channels and excitability in the brain
Greene, Derek L; Hoshi, Naoto
2016-01-01
Neuronal Kv7 channels underlie a voltage-gated non-inactivating potassium current known as the M-current. Due to its particular characteristics, Kv7 channels show pronounced control over the excitability of neurons. We will discuss various factors that have been shown to drastically alter the activity of this channel such as protein and phospholipid interactions, phosphorylation, calcium, and numerous neurotransmitters. Kv7 channels locate to key areas for the control of action potential initiation and propagation. Moreover, we will explore the dynamic surface expression of the channel modulated by neurotransmitters and neural activity. We will also focus on known principle functions of neural Kv7 channels: control of resting membrane potential and spiking threshold, setting the firing frequency, afterhyperpolarization after burst firing, theta resonance, and transient hyperexcitability from neurotransmitter-induced suppression of the M-current. Finally, we will discuss the contribution of altered Kv7 activity to pathologies such as epilepsy and cognitive deficits. PMID:27645822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Hongying; Yoshimura, Kazunori; Kobayashi, Nobuharu
2012-04-01
Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detectedmore » as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with a unique structure.« less
Modeling the effect of nano-sized polymer particles on the properties of lipid membranes
NASA Astrophysics Data System (ADS)
Rossi, Giulia; Monticelli, Luca
2014-12-01
The interaction between polymers and biological membranes has recently gained significant interest in several research areas. On the biomedical side, dendrimers, linear polyelectrolytes, and neutral copolymers find application as drug and gene delivery agents, as biocidal agents, and as platforms for biological sensors. On the environmental side, plastic debris is often disposed of in the oceans and gets degraded into small particles; therefore concern is raising about the interaction of small plastic particles with living organisms. From both perspectives, it is crucial to understand the processes driving the interaction between polymers and cell membranes. In recent times progress in computer technology and simulation methods has allowed computational predictions on the molecular mechanism of interaction between polymeric materials and lipid membranes. Here we review the computational studies on the interaction between lipid membranes and different classes of polymers: dendrimers, linear charged polymers, polyethylene glycol (PEG) and its derivatives, polystyrene, and some generic models of polymer chains. We conclude by discussing some of the technical challenges in this area and future developments.
Peptide-Lipid Interactions: Experiments and Applications
Galdiero, Stefania; Falanga, Annarita; Cantisani, Marco; Vitiello, Mariateresa; Morelli, Giancarlo; Galdiero, Massimiliano
2013-01-01
The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary. PMID:24036440
Surface interactions and fouling properties of Micrococcus luteus with microfiltration membranes.
Feng, Lei; Li, Xiufen; Song, Ping; Du, Guocheng; Chen, Jian
2011-11-01
This study was conducted to investigate microbial adhesion of Micrococcus luteus to polypropylene (PP) and polyvinylidene fluoride (PVDF) membranes in relation to the variation of the interfacial energies in the membrane-bacteria systems, for revealing effects of short-range surface interactions on filtration behavior. Both the membranes and M. luteus showed typical strong electron donors and hydrophilic properties. The AB component was dominant in the interfacial energies of the two membrane-bacteria systems. M. luteus presented larger negative U(mlb)(XDLVO) to the PP membrane than to the PVDF membrane. The adhesion experiments also proved that M. luteus had higher adhesion percentage to the PP membrane. This study demonstrated that the adhesion potentials of M. luteus to the PP and PVDF membranes might be explained in terms of bacterium, membrane, and intervening medium surface properties, which are mainly determined by the interfacial energies in the systems according to the XDLVO theory.
Fantini, Jacques; Di Scala, Coralie; Baier, Carlos J; Barrantes, Francisco J
2016-09-01
The molecular mechanisms that control the multiple possible modes of protein association with membrane cholesterol are remarkably convergent. These mechanisms, which include hydrogen bonding, CH-π stacking and dispersion forces, are used by a wide variety of extracellular proteins (e.g. microbial or amyloid) and membrane receptors. Virus fusion peptides penetrate the membrane of host cells with a tilted orientation that is compatible with a transient interaction with cholesterol; this tilted orientation is also characteristic of the process of insertion of amyloid proteins that subsequently form oligomeric pores in the plasma membrane of brain cells. Membrane receptors that are associated with cholesterol generally display linear consensus binding motifs (CARC and CRAC) characterized by a triad of basic (Lys/Arg), aromatic (Tyr/phe) and aliphatic (Leu/Val) amino acid residues. In some cases, the presence of both CARC and CRAC within the same membrane-spanning domain allows the simultaneous binding of two cholesterol molecules, one in each membrane leaflet. In this review the molecular basis and the functional significance of the different modes of protein-cholesterol interactions in plasma membranes are discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sumagin, Ronen; Robin, Alex Z.; Nusrat, Asma; Parkos, Charles A.
2014-01-01
Neutrophil (PMN) transepithelial migration (TEM) and accumulation in luminal spaces is a hallmark of mucosal inflammation. TEM has been extensively modeled, however the functional consequences and molecular basis of PMN interactions with luminal epithelial ligands are not clear. Here we report that cytokine-induced expression of a PMN ligand, intercellular adhesion molecule-1 (ICAM-1), exclusively on the luminal (apical) membrane of the intestinal epithelium results in accumulation and enhanced motility of transmigrated PMN on the apical epithelial surface. Using complementary in-vitro and in-vivo approaches we demonstrate that ligation of epithelial ICAM-1 by PMN or with specific antibodies results in myosin light chain kinase (MLCK)-dependent increases in epithelial permeability that are associated with enhanced PMN TEM. Effects of ICAM-1 ligation on epithelial permeability and PMN migration in-vivo were blocked after intraluminal addition of peptides derived from the cytoplasmic domain of ICAM-1. These findings provide new evidence for functional interactions between PMN and epithelial cells after migration into the intestinal lumen. While such interactions may aid in clearance of invading microorganisms by promoting PMN recruitment, engagement of ICAM-1 under pathologic conditions would increase accumulation of epithelial-associated PMN, thus contributing to mucosal injury as observed in conditions including ulcerative colitis. PMID:24345805
Evidence that Meningeal Mast Cells Can Worsen Stroke Pathology in Mice
Arac, Ahmet; Grimbaldeston, Michele A.; Nepomuceno, Andrew R.B.; Olayiwola, Oluwatobi; Pereira, Marta P.; Nishiyama, Yasuhiro; Tsykin, Anna; Goodall, Gregory J.; Schlecht, Ulrich; Vogel, Hannes; Tsai, Mindy; Galli, Stephen J.; Bliss, Tonya M.; Steinberg, Gary K.
2015-01-01
Stroke is the leading cause of adult disability and the fourth most common cause of death in the United States. Inflammation is thought to play an important role in stroke pathology, but the factors that promote inflammation in this setting remain to be fully defined. An understudied but important factor is the role of meningeal-located immune cells in modulating brain pathology. Although different immune cells traffic through meningeal vessels en route to the brain, mature mast cells do not circulate but are resident in the meninges. With the use of genetic and cell transfer approaches in mice, we identified evidence that meningeal mast cells can importantly contribute to the key features of stroke pathology, including infiltration of granulocytes and activated macrophages, brain swelling, and infarct size. We also obtained evidence that two mast cell-derived products, interleukin-6 and, to a lesser extent, chemokine (C-C motif) ligand 7, can contribute to stroke pathology. These findings indicate a novel role for mast cells in the meninges, the membranes that envelop the brain, as potential gatekeepers for modulating brain inflammation and pathology after stroke. PMID:25134760
Patching, Simon G
2014-01-01
Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.
Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays.
Ghosh, Madhubrata; Wang, Loo Chien; Ramesh, Ranita; Morgan, Leslie K; Kenney, Linda J; Anand, Ganesh S
2017-02-28
Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S.; Gray, C. G.
2008-03-01
Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05±0.39kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.
Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S; Gray, C G
2008-03-01
Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05+/-0.39 kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.
Electrostatic interactions as governing the fouling in protein microfiltration
NASA Astrophysics Data System (ADS)
Ouammou, M.; Tijani, N.; Calvo, J. I.; Palacio, L.; Prádanos, P.; Hernández, A.
2005-03-01
The influence of pH and electrostatic interactions on the fouling mechanism during protein dead-end microfiltration (MF) has been investigated for two charged membranes. Polyethersulfone acidic membranes (ICE-450), being negatively charged, and basic ones (SB-6407), these positively charged, both from Pall Co., have been used in the investigations. BSA and Lysozyme solutions at different pH values (3.0, 5.0, 7.0, 8.5 and 10.0) were microfiltered through the membranes at a constant applied transmembrane pressure. Results have been analysed in terms of usual blocking filtration laws and a substantial change in the fouling behaviour has been observed when solution pH and/or membrane charge as the pressure was changed, this change being clearly related with the specific membrane-protein and protein-protein interactions.
Zorrilla, Silvia; Reija, Belén; Alfonso, Carlos; Mingorance, Jesús; Rivas, Germán; Jiménez, Mercedes
2012-01-01
We have obtained milligram amounts of highly pure Escherichia coli division protein FtsA from inclusion bodies with an optimized purification method that, by overcoming the reluctance of FtsA to be purified, surmounts a bottleneck for the analysis of the molecular basis of FtsA function. Purified FtsA is folded, mostly monomeric and interacts with lipids. The apparent affinity of FtsA binding to the inner membrane is ten-fold higher than to phospholipids, suggesting that inner membrane proteins could modulate FtsA-membrane interactions. Binding of FtsA to lipids and membranes is insensitive to ionic strength, indicating that a net contribution of hydrophobic interactions is involved in the association of FtsA to lipid/membrane structures. PMID:22761913
2016-01-01
The exchange of ADP and ATP across the inner mitochondrial membrane is a fundamental cellular process. This exchange is facilitated by the adenine nucleotide translocase, the structure and function of which are critically dependent on the signature phospholipid of mitochondria, cardiolipin (CL). Here we employ multiscale molecular dynamics simulations to investigate CL interactions within a membrane environment. Using simulations at both coarse-grained and atomistic resolutions, we identify three CL binding sites on the translocase, in agreement with those seen in crystal structures and inferred from nuclear magnetic resonance measurements. Characterization of the free energy landscape for lateral lipid interaction via potential of mean force calculations demonstrates the strength of interaction compared to those of binding sites on other mitochondrial membrane proteins, as well as their selectivity for CL over other phospholipids. Extending the analysis to other members of the family, yeast Aac2p and mouse uncoupling protein 2, suggests a degree of conservation. Simulation of large patches of a model mitochondrial membrane containing multiple copies of the translocase shows that CL interactions persist in the presence of protein–protein interactions and suggests CL may mediate interactions between translocases. This study provides a key example of how computational microscopy may be used to shed light on regulatory lipid–protein interactions. PMID:27786441
Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities
USDA-ARS?s Scientific Manuscript database
Molecular dynamics simulations were used to study the interactions of three theaflavin compounds with lipid bilayers. Experimental studies have linked theaflavins to beneficial health effects, some of which are related to interactions with the cell membrane. The molecular interaction of theaflavin...
Protein diffusion in plant cell plasma membranes: the cell-wall corral.
Martinière, Alexandre; Runions, John
2013-01-01
Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.
Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish
Housley, Michael P.; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A.; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y. R.
2016-01-01
Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373
Parkkila, Petteri; Stefl, Martin; Olżyńska, Agnieszka; Hof, Martin; Kinnunen, Paavo K J
2015-01-01
Oxidative stress is involved in a number of pathological conditions and the generated oxidatively modified lipids influence membrane properties and functions, including lipid-protein interactions and cellular signaling. Brewster angle microscopy demonstrated oxidatively truncated phosphatidylcholines to promote phase separation in monolayers of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). More specifically, 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), was found to increase the miscibility transition pressure of the SM/Chol-phase. Lateral diffusion of lipids is influenced by a variety of membrane properties, thus making it a sensitive parameter to observe the coexistence of different lipid phases, for instance. The dependence on lipid lateral packing of the lateral diffusion of fluorophore-containing phospholipid analogs was investigated in Langmuir monolayers composed of POPC, SM, and Chol and additionally containing oxidatively truncated phosphatidylcholines, using fluorescence correlation spectroscopy (FCS). To our knowledge, these are the first FCS results on miscibility transition in ternary lipid monolayers, confirming previous results obtained using Brewster angle microscopy on such lipid monolayers. Wide-field fluorescence microscopy was additionally employed to verify the transition, i.e. the loss and reformation of SM/Chol domains. Copyright © 2014. Published by Elsevier B.V.
Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration.
Cai, Zhenyu; Zhang, Anling; Choksi, Swati; Li, Weihua; Li, Tao; Zhang, Xue-Min; Liu, Zheng-Gang
2016-08-01
Necroptosis is a programmed, caspase-independent cell death that is morphologically similar to necrosis. TNF-induced necroptosis is mediated by receptor-interacting protein kinases, RIP1 and RIP3, and the mixed lineage kinase domain-like (MLKL). After being phosphorylated by RIP3, MLKL is translocated to the plasma membrane and mediates necroptosis. However, the execution of necroptosis and its role in inflammation and other cellular responses remain largely elusive. In this study, we report that MLKL-mediated activation of cell-surface proteases of the a disintegrin and metalloprotease (ADAM) family promotes necroptosis, inflammation and cell migration. ADAMs are specifically activated at the early stage of necroptosis when MLKL is phosphorylated and translocated to the cell plasma membrane. Activation of ADAMs induces ectodomain shedding of diverse cell-surface proteins including adhesion molecules, receptors, growth factors and cytokines. Importantly, the shedding of cell-surface proteins disrupts cell adhesion and accelerates necroptosis, while the soluble fragments of the cleaved proteins trigger the inflammatory responses. We also demonstrate that the shedding of E-cadherin ectodomain from necroptotic cells promotes cell migration. Thus, our study provides a novel mechanism of necroptosis-induced inflammation and new insights into the physiological and pathological functions of this unique form of cell death.
Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina.
Choi, Hannah; Zhang, Lei; Cembrowski, Mark S; Sabottke, Carl F; Markowitz, Alexander L; Butts, Daniel A; Kath, William L; Singer, Joshua H; Riecke, Hermann
2014-09-15
In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell. Copyright © 2014 the American Physiological Society.
Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration
Cai, Zhenyu; Zhang, Anling; Choksi, Swati; Li, Weihua; Li, Tao; Zhang, Xue-Min; Liu, Zheng-Gang
2016-01-01
Necroptosis is a programmed, caspase-independent cell death that is morphologically similar to necrosis. TNF-induced necroptosis is mediated by receptor-interacting protein kinases, RIP1 and RIP3, and the mixed lineage kinase domain-like (MLKL). After being phosphorylated by RIP3, MLKL is translocated to the plasma membrane and mediates necroptosis. However, the execution of necroptosis and its role in inflammation and other cellular responses remain largely elusive. In this study, we report that MLKL-mediated activation of cell-surface proteases of the a disintegrin and metalloprotease (ADAM) family promotes necroptosis, inflammation and cell migration. ADAMs are specifically activated at the early stage of necroptosis when MLKL is phosphorylated and translocated to the cell plasma membrane. Activation of ADAMs induces ectodomain shedding of diverse cell-surface proteins including adhesion molecules, receptors, growth factors and cytokines. Importantly, the shedding of cell-surface proteins disrupts cell adhesion and accelerates necroptosis, while the soluble fragments of the cleaved proteins trigger the inflammatory responses. We also demonstrate that the shedding of E-cadherin ectodomain from necroptotic cells promotes cell migration. Thus, our study provides a novel mechanism of necroptosis-induced inflammation and new insights into the physiological and pathological functions of this unique form of cell death. PMID:27444869
NASA Astrophysics Data System (ADS)
Chen, Yanan; Qi, Jianguo; Huang, Jing; Zhou, Xiaomin; Niu, Linqiang; Yan, Zhijie; Wang, Jianhong
2018-01-01
Herein, we reported a yellow emission probe 1-methyl-4-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) pyridin-1-ium iodide which could specifically stain mitochondria in living immortalized and normal cells. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this probe was nontoxic, photostable and ultrahigh signal-to-noise ratio, which could real-time monitor mitochondria for a long time. Moreover, this probe also showed high sensitivity towards mitochondrial membrane potential and intramitochondrial viscosity change. Consequently, this probe was used for imaging mitochondria, detecting changes in mitochondrial membrane potential and intramitochondrial viscosity in physiological and pathological processes.
Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes.
Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Zhendre, Vanessa; Henry, Sarah; Thévenot, Julie; Dufourc, Erick J; Alves, Isabel D; Peruch, Frédéric
2014-01-01
The biomembrane surrounding rubber particles from the hevea latex is well known for its content of numerous allergen proteins. HbREF (Hevb1) and HbSRPP (Hevb3) are major components, linked on rubber particles, and they have been shown to be involved in rubber synthesis or quality (mass regulation), but their exact function is still to be determined. In this study we highlighted the different modes of interactions of both recombinant proteins with various membrane models (lipid monolayers, liposomes or supported bilayers, and multilamellar vesicles) to mimic the latex particle membrane. We combined various biophysical methods (polarization-modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS)/ellipsometry, attenuated-total reflectance Fourier-transform infrared (ATR-FTIR), solid-state nuclear magnetic resonance (NMR), plasmon waveguide resonance (PWR), fluorescence spectroscopy) to elucidate their interactions. Small rubber particle protein (SRPP) shows less affinity than rubber elongation factor (REF) for the membranes but displays a kind of "covering" effect on the lipid headgroups without disturbing the membrane integrity. Its structure is conserved in the presence of lipids. Contrarily, REF demonstrates higher membrane affinity with changes in its aggregation properties, the amyloid nature of REF, which we previously reported, is not favored in the presence of lipids. REF binds and inserts into membranes. The membrane integrity is highly perturbed, and we suspect that REF is even able to remove lipids from the membrane leading to the formation of mixed micelles. These two homologous proteins show affinity to all membrane models tested but neatly differ in their interacting features. This could imply differential roles on the surface of rubber particles. © 2013.
Chong, Brandi M.; Russell, Tanya D.; Schaack, Jerome; Orlicky, David J.; Reigan, Philip; Ladinsky, Mark; McManaman, James L.
2011-01-01
Cytoplasmic lipid droplets (CLD) in mammary epithelial cells undergo secretion by a unique membrane envelopment process to produce milk lipids. Adipophilin (ADPH/Plin2), a member of the perilipin/PAT family of lipid droplet-associated proteins, is hypothesized to mediate CLD secretion through interactions with apical plasma membrane elements. We found that the secretion of CLD coated by truncated ADPH lacking the C-terminal region encoding a putative four-helix bundle structure was impaired relative to that of CLD coated by full-length ADPH. We used homology modeling and analyses of the solution and membrane binding properties of purified recombinant ADPH C terminus to understand how this region possibly mediates CLD secretion. Homology modeling supports the concept that the ADPH C terminus forms a four-helix bundle motif and suggests that this structure can form stable membrane bilayer interactions. Circular dichroism and protease mapping studies confirmed that the ADPH C terminus is an independently folding α-helical structure that is relatively resistant to urea denaturation. Liposome binding studies showed that the purified C terminus binds to phospholipid membranes through electrostatic dependent interactions, and cell culture studies documented that it localizes to the plasma membrane. Collectively, these data provide direct evidence that the ADPH C terminus forms a stable membrane binding helical structure that is important for CLD secretion. We speculate that interactions between the four-helix bundle of ADPH and membrane phospholipids may be an initial step in milk lipid secretion. PMID:21383012
Neutron Reflectometry Study of the Conformation of HIV Nef Bound to Lipid Membranes
Kent, Michael S.; Murton, Jaclyn K.; Sasaki, Darryl Y.; Satija, Sushil; Akgun, Bulent; Nanda, Hirsh; Curtis, Joseph E.; Majewski, Jaroslaw; Morgan, Christopher R.; Engen, John R.
2010-01-01
Nef is an HIV-1 accessory protein that directly contributes to AIDS progression. Nef is myristoylated on the N-terminus, associates with membranes, and may undergo a transition from a solution conformation to a membrane-associated conformation. It has been hypothesized that conformational rearrangement enables membrane-associated Nef to interact with cellular proteins. Despite its medical relevance, to our knowledge there is no direct information about the conformation of membrane-bound Nef. In this work, we used neutron reflection to reveal what we believe are the first details of the conformation of membrane-bound Nef. The conformation of Nef was probed upon binding to Langmuir monolayers through the interaction of an N-terminal His tag with a synthetic metal-chelating lipid, which models one of the possible limiting cases for myr-Nef. The data indicate that residues are inserted into the lipid headgroups during interaction, and that the core domain lies directly against the lipid headgroups, with a thickness of ∼40 Å. Binding of Nef through the N-terminal His tag apparently facilitates insertion of residues, as no insertion occurred upon binding of Nef through weak electrostatic interactions in the absence of the specific interaction through the His tag. PMID:20858440
Aspects of nuclear envelope dynamics in mitotic cells.
Burke, Brian; Shanahan, Catherine; Salina, Davide; Crisp, Melissa
2005-01-01
Major features of the nuclear envelope (NE) are a pair of inner and outer nuclear membranes (INM, ONM) spanned by nuclear pore complexes. While the composition of the ONM resembles that of the endoplasmic reticulum, the INM contains a unique spectrum of proteins. Localization of INM proteins involves a mechanism of selective retention whereby integral proteins are immobilized and concentrated by virtue of interactions with nuclear components. In the case of emerin, INM localization involves interaction with A-type lamins. Interactions between membrane proteins may also play a significant role in INM localization. This conclusion stems from studies on nesprins, a family of membrane proteins that feature a large cytoplasmic domain, a single C-terminal membrane-spanning domain and a small lumenal domain. The nesprin membrane anchor and lumenal (KASH) domains are related to the Drosophila Klarsicht protein. Evidence is emerging that this KASH region interacts with other NE proteins and may influence their distributions. Overexpression of GFP-KASH causes loss of emerin and LAP2 from the NE. This is not due to global reorganization of the NE since LAP1 as well as lamins and NPCs remain unaffected. Our results suggest that interactions between NE membrane components are far more extensive and complex than current models suggest.
Domingues, Marco M.; Lopes, Sílvia C.D.N.; Santos, Nuno C.; Quintas, Alexandre; Castanho, Miguel A.R.B.
2009-01-01
Septic or endotoxic shock is a common cause of death in hospital intensive care units. In the last decade numerous antimicrobial peptides and proteins have been tested in the search for an efficient drug to treat this lethal disease. Now in phase III clinical trials, rBPI21, a recombinant N-terminal fragment of the bactericidal/permeability-increasing protein (BPI), is a promising drug to reduce lesions caused by meningococcal sepsis. We correlated structural and stability data with functional information of rBPI21 bound to both model systems of eukaryotic and bacterial membranes. On interaction with membranes, rBPI21 loses its conformational stability, as studied by circular dichroism. This interaction of rBPI21 at membrane level was higher in the presence of negatively charged phospholipid relatively to neutral ones, with higher partition coefficients (Kp), suggesting a preference for bacterial membranes over mammalian membranes. rBPI21 binding to membranes is reinforced when its disulfide bond is broken due to conformational changes of the protein. This interaction is followed by liposome aggregation due to unfolding, which ensures protein aggregation, and interfacial localization of rBPI21 in membranes, as studied by extensive quenching by acrylamide and 5-deoxylstearic acid and not by 16-deoxylstearic acid. An uncommon model of the selectivity and mechanism of action is proposed, where membrane induces unfolding of the antimicrobial protein, rBPI21. The unfolding ensures protein aggregation, established by protein-protein interaction at membrane surface or between adjacent membranes covered by the unfolded protein. This protein aggregation step may lead to membrane perturbation. PMID:19186136
The Antimicrobial Mechanism of Action of Epsilon-Poly-l-Lysine
Hyldgaard, Morten; Mygind, Tina; Vad, Brian S.; Stenvang, Marcel; Otzen, Daniel E.
2014-01-01
Epsilon-poly-l-lysine (ε-PL) is a natural antimicrobial cationic peptide which is generally regarded as safe (GRAS) as a food preservative. Although its antimicrobial activity is well documented, its mechanism of action is only vaguely described. The aim of this study was to clarify ε-PL's mechanism of action using Escherichia coli and Listeria innocua as model organisms. We examined ε-PL's effect on cell morphology and membrane integrity and used an array of E. coli deletion mutants to study how specific outer membrane components affected the action of ε-PL. We furthermore studied its interaction with lipid bilayers using membrane models. In vitro cell studies indicated that divalent cations and the heptose I and II phosphate groups in the lipopolysaccharide layer of E. coli are critical for ε-PL's binding efficiency. ε-PL removed the lipopolysaccharide layer and affected cell morphology of E. coli, while L. innocua underwent minor morphological changes. Propidium iodide staining showed that ε-PL permeabilized the cytoplasmic membrane in both species, indicating the membrane as the site of attack. We compared the interaction with neutral or negatively charged membrane systems and showed that the interaction with ε-PL relied on negative charges on the membrane. Suspended membrane vesicles were disrupted by ε-PL, and a detergent-like disruption of E. coli membrane was confirmed by atomic force microscopy imaging of supported lipid bilayers. We hypothesize that ε-PL destabilizes membranes in a carpet-like mechanism by interacting with negatively charged phospholipid head groups, which displace divalent cations and enforce a negative curvature folding on membranes that leads to formation of vesicles/micelles. PMID:25304506
The antimicrobial mechanism of action of epsilon-poly-l-lysine.
Hyldgaard, Morten; Mygind, Tina; Vad, Brian S; Stenvang, Marcel; Otzen, Daniel E; Meyer, Rikke L
2014-12-01
Epsilon-poly-l-lysine (ε-PL) is a natural antimicrobial cationic peptide which is generally regarded as safe (GRAS) as a food preservative. Although its antimicrobial activity is well documented, its mechanism of action is only vaguely described. The aim of this study was to clarify ε-PL's mechanism of action using Escherichia coli and Listeria innocua as model organisms. We examined ε-PL's effect on cell morphology and membrane integrity and used an array of E. coli deletion mutants to study how specific outer membrane components affected the action of ε-PL. We furthermore studied its interaction with lipid bilayers using membrane models. In vitro cell studies indicated that divalent cations and the heptose I and II phosphate groups in the lipopolysaccharide layer of E. coli are critical for ε-PL's binding efficiency. ε-PL removed the lipopolysaccharide layer and affected cell morphology of E. coli, while L. innocua underwent minor morphological changes. Propidium iodide staining showed that ε-PL permeabilized the cytoplasmic membrane in both species, indicating the membrane as the site of attack. We compared the interaction with neutral or negatively charged membrane systems and showed that the interaction with ε-PL relied on negative charges on the membrane. Suspended membrane vesicles were disrupted by ε-PL, and a detergent-like disruption of E. coli membrane was confirmed by atomic force microscopy imaging of supported lipid bilayers. We hypothesize that ε-PL destabilizes membranes in a carpet-like mechanism by interacting with negatively charged phospholipid head groups, which displace divalent cations and enforce a negative curvature folding on membranes that leads to formation of vesicles/micelles. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Lee, Tzong-Hsien; Hirst, Daniel J; Kulkarni, Ketav; Del Borgo, Mark P; Aguilar, Marie-Isabel
2018-06-13
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Curvature Forces in Membrane Lipid-Protein Interactions
Brown, Michael F.
2012-01-01
Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes of membrane proteins—involving folding, stability, and membrane shape transitions—potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics, and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function. PMID:23163284
Eriksson, Sylvia K.; Kutzer, Michael; Procek, Jan; Gröbner, Gerhard; Harryson, Pia
2011-01-01
Dehydrins are intrinsically disordered plant proteins whose expression is upregulated under conditions of desiccation and cold stress. Their molecular function in ensuring plant survival is not yet known, but several studies suggest their involvement in membrane stabilization. The dehydrins are characterized by a broad repertoire of conserved and repetitive sequences, out of which the archetypical K-segment has been implicated in membrane binding. To elucidate the molecular mechanism of these K-segments, we examined the interaction between lipid membranes and a dehydrin with a basic functional sequence composition: Lti30, comprising only K-segments. Our results show that Lti30 interacts electrostatically with vesicles of both zwitterionic (phosphatidyl choline) and negatively charged phospholipids (phosphatidyl glycerol, phosphatidyl serine, and phosphatidic acid) with a stronger binding to membranes with high negative surface potential. The membrane interaction lowers the temperature of the main lipid phase transition, consistent with Lti30’s proposed role in cold tolerance. Moreover, the membrane binding promotes the assembly of lipid vesicles into large and easily distinguishable aggregates. Using these aggregates as binding markers, we identify three factors that regulate the lipid interaction of Lti30 in vitro: (1) a pH dependent His on/off switch, (2) phosphorylation by protein kinase C, and (3) reversal of membrane binding by proteolytic digest. PMID:21665998
Ferrell, Nicholas; Cameron, Kathleen O; Groszek, Joseph J; Hofmann, Christina L; Li, Lingyan; Smith, Ross A; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L; Fissell, William H
2013-04-02
Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Di Domenico, Fabio; Tramutola, Antonella; Butterfield, D Allan
2017-10-01
Oxidative stress is involved in various and numerous pathological states including several age-related neurodegenerative diseases. Peroxidation of the membrane lipid bilayer is one of the major sources of free radical-mediated injury that directly damages neurons causing increased membrane rigidity, decreased activity of membrane-bound enzymes, impairment of membrane receptors and altered membrane permeability and eventual cell death. Moreover, the peroxidation of polyunsaturated fatty acids leads to the formation of aldehydes, which can act as toxic by-products. One of the most abundant and cytotoxic lipid -derived aldehydes is 4-hydroxy 2-nonenal (HNE). HNE toxicity is mainly due to the alterations of cell functions by the formation of covalent adducts of HNE with proteins. A key marker of lipid peroxidation, HNE-protein adducts, were found to be elevated in brain tissues and body fluids of Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis subjects and/or models of the respective age-related neurodegenerative diseases. Although only a few proteins were identified as common targets of HNE modification across all these listed disorders, a high overlap of these proteins occurs concerning the alteration of common pathways, such as glucose metabolism or mitochondrial function that are known to contribute to cognitive decline. Within this context, despite the different etiological and pathological mechanisms that lead to the onset of different neurodegenerative diseases, the formation of HNE-protein adducts might represent the shared leit-motif, which aggravates brain damage contributing to disease specific clinical presentation and decline in cognitive performance observed in each case. Copyright © 2016 Elsevier Inc. All rights reserved.
Osorio-Caballero, M; Perdigón-Palacio, C; García-López, G; Flores-Herrera, O; Olvera-Sánchez, S; Morales-Méndez, I; Sosa-González, I; Acevedo, J F; Guzmán-Grenfell, A M; Molina-Hernández, A; Díaz, N F; Flores-Herrera, H
2015-03-01
Escherichia coli is recognized as an etiological bacteria associated with chorioamnionitis and the preterm premature rupture of fetal membranes. This pathological condition induces pro-inflammatory cytokines and degradative metalloproteinases, which are considered biological markers secreted in an acute stage of infection. Heat-shock proteins (HSPs) are an important component of the innate immunity response and are found in different pathological conditions. They have not been previously measured in human fetal membranes in response to infectious conditions. We hypothesized that the choriodecidual tissue and amniotic epithelium secreted temporal and differential Hsp-60, Hsp-70, and interleukin (IL)-1β mediated by E. coli infection. Fetal membranes were mounted in a two-compartment culture system and infected with two passes of live E. coli at different doses (10², 10⁴, 10⁵, and 10⁶ colony-forming units (CFU)/mL) and intervals of incubation (3, 6, and 24 h). The culture medium was collected, and Hsp-60, Hsp-70, and IL-1β were assessed using the enzyme-linked immunosorbent assay (ELISA) method. After 3 and 6 h of infection, E. coli induced an increase in Hsp-70 secretion in the choriodecidual tissue. However, after 24 h of incubation, Hsp-70 was downregulated and we observed an increase in IL-1β secretion. By contrast, E. coli induced a lower Hsp-60 secretion in the amnion compared to Hsp-70. Human fetal membranes responded actively to E. coli infection, with an increase in Hsp-70 during the first hours of infection. After 24 h, there was an increase in the liberation of IL-1β. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wavre-Shapton, Silène T; Tolmachova, Tanya; Lopes da Silva, Mafalda; da Silva, Mafalda Lopes; Futter, Clare E; Seabra, Miguel C
2013-01-01
The retinal pigment epithelium (RPE) is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM) is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1). REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (Chm(Flox), Tyr-Cre+). Transmission electron microscopy (TEM) was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch's membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5-6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the Chm(Flox), Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD) suggest that membrane traffic defects may contribute to the pathogenesis of AMD.
Malishev, Ravit; Shaham-Niv, Shira; Nandi, Sukhendu; Kolusheva, Sofiya; Gazit, Ehud; Jelinek, Raz
2017-04-19
Bacoside-A, a family of compounds extracted from the Bacopa monniera plant, is a folk-medicinal substance believed to exhibit therapeutic properties, particularly enhancing cognitive functions and improving memory. We show that bacoside-A exerted significant inhibitory effects upon cytotoxicity, fibrillation, and particularly membrane interactions of amyloid-beta (1-42) (Aβ42), the peptide playing a prominent role in Alzeheimer's disease progression and toxicity. Specifically, preincubation of bacoside-A with Aβ42 significantly reduced cell toxicity and inhibited fibril formation both in buffer solution and, more significantly, in the presence of membrane vesicles. In parallel, spectroscopic and microscopic analyses reveal that bacoside-A blocked membrane interactions of Aβ42, while formation of Aβ42 oligomers was not disrupted. These interesting phenomena suggest that inhibition of Aβ42 oligomer assembly into mature fibrils, and blocking membrane interactions of the oligomers are likely the underlying factors for ameliorating amyloid toxicity by bacoside-A and its putative physiological benefits.
Characterization of Bufo arenarum oocyte plasma membrane proteins that interact with sperm.
Coux, Gabriela; Cabada, Marcelo O
2006-04-28
Sperm-oocyte plasma membrane interaction is an essential step in fertilization. In amphibians, the molecules involved have not been identified. Our aim was to detect and characterize oocyte molecules with binding affinity for sperm. We isolated plasma membranes free from vitelline envelope and yolk proteins from surface-biotinylated Bufo arenarum oocytes. Using binding assays we detected a biotinylated 100 kDa plasma membrane protein that consistently bound to sperm. Chromatographic studies confirmed the 100 kDa protein and detected two additional oocyte molecules of 30 and 70 kDa with affinity for sperm. Competition studies with an integrin-interacting peptide and cross-reaction with an anti-HSP70 antibody suggested that the 100 and 70 kDa proteins are members of the integrin family and HSP70, respectively. MS/MS analysis suggested extra candidates for a role in this step of fertilization. In conclusion, we provide evidence for the involvement of several proteins, including integrins and HSP70, in B. arenarum sperm-oocyte plasma membrane interactions.
Mammalian autophagy and the plasma membrane.
Pavel, Mariana; Rubinsztein, David C
2017-03-01
Autophagy (literally 'self-eating') is an evolutionarily conserved degradation process where cytoplasmic components are engulfed by vesicles called autophagosomes, which are then delivered to lysosomes, where their contents are degraded. Under stress conditions, such as starvation or oxidative stress, autophagy is upregulated in order to degrade macromolecules and restore the nutrient balance. The source of membranes that participate in the initial formation of phagophores is still incompletely understood and many intracellular structures have been shown to act as lipid donors, including the endoplasmic reticulum, Golgi, nucleus, mitochondria and the plasma membrane. Here, we focus on the contributions of the plasma membrane to autophagosome biogenesis governed by ATG16L1 and ATG9A trafficking, and summarize the physiological and pathological implications of this macroautophagy route, from development and stem cell fate to neurodegeneration and cancer. © 2016 Federation of European Biochemical Societies.
Phanguphangu, Mukovhe Chad
2017-04-01
To determine the prevalence of outer and middle ear pathologies in paediatrics in Limpopo, South Africa. Cross-sectional retrospective review of otoscopy results obtained during a school health screening campaign conducted between March and June 2015. Descriptive statistics through percentages and frequency tables were used to analyse the data. Logistic regression was used to determine associations between age, gender and pathologies observed. Medical folders of 1089 pupils. Forty-nine percent had normal otoscopy results. A significant 36% (n = 392) had impacted cerumen. Furthermore, 45% of those with impacted cerumen were bilaterally impacted. Additionally, 4% presented with foreign bodies and a further 8% had otitis externa and otitis media. The remaining 3% had tympanic membrane perforations. The odds of developing outer and middle ear pathologies were higher in pupils below 6 years of age (p = 0.046). This study highlights a high prevalence of outer and middle ear pathologies in paediatrics in Limpopo and therefore recommends comprehensive baseline and periodic screenings; to identify children with outer and middle ear pathologies and need further management, and consequently prevent the complications of these pathologies. Additionally, this report highlights a rising need for large-scale research to provide comprehensive analysis of these pathologies.
Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms.
Mao, Mao; Alavi, Marcel V; Labelle-Dumais, Cassandre; Gould, Douglas B
2015-01-01
Basement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions. Type IV collagens are a major component of all basement membranes. They evolved along with the earliest multicellular organisms and have been integrated into diverse fundamental biological processes as time and evolution shaped the animal kingdom. The roles of basement membranes in humans are as complex and diverse as their distributions and molecular composition. As a result, basement membrane defects result in multisystem disorders with ambiguous and overlapping boundaries that likely reflect the simultaneous interplay and integration of multiple cellular pathways and processes. Consequently, there will be no single treatment for basement membrane disorders, and therapies are likely to be as varied as the phenotypes. Understanding tissue-specific pathology and the underlying molecular mechanism is the present challenge; personalized medicine will rely upon understanding how a given mutation impacts diverse cellular functions. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Ying; Tang, Yanli; Zhou, Zhijun; Ji, Eunkyung; Lopez, Gabriel P; Chi, Eva Y; Schanze, Kirk S; Whitten, David G
2010-08-03
Poly(phenylene ethyneylene) (PPE)-based cationic conjugated polyelectrolytes (CPEs) and cationic phenylene ethynylene oligomers (OPEs) exhibit broad-spectrum antimicrobial activity, and their main target is believed to be the cell membrane. To understand better how these antimicrobial molecules interact with membranes, a series of PPE-based CPEs and OPEs with different side chains were studied. Large unilamellar vesicles with lipid compositions mimicking those of mammalian or bacterial membranes were used as model membranes. Among the CPEs and OPEs tested, the anionic CPE, PPE-SO(3)(2-) and the smallest cationic OPE-1 are inactive against all vesicles. Other cationic CPEs and OPEs show significant membrane perturbation ability against bacterial membrane mimics but are inactive against a mammalian cell membrane mimic with the exception of PPE-DABCO and two end-only-functionalized OPEs, which also disrupted a mammalian cell membrane mimic. The results suggest that the phospholipid composition of vesicles dominates the interaction of CPE and OPE with lipid membranes.
Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.
Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L
2017-06-14
Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.
Absence of first-order unbinding transitions of fluid and polymerized membranes
NASA Technical Reports Server (NTRS)
Grotehans, Stefan; Lipowsky, Reinhard
1990-01-01
Unbinding transitions of fluid and polymerized membranes are studied by renormalization-group (RG) methods. Two different RG schemes are used and found to give rather consistent results. The fixed-point structure of both RG's exhibits a complex behavior as a function of the decay exponent tau for the fluctuation-induced interaction of the membranes. For tau greater than tau(S2) interacting membranes can undergo first-order transitions even in the strong-fluctuation regime. These estimates for tau(S2) imply, however, that both fluid and polymerized membranes unbind in a continuous way in the absence of lateral tension.
Structural interactions between lipids, water and S1-S4 voltage-sensing domains.
Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J
2012-11-02
Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. Published by Elsevier Ltd.
Structural interactions between lipids, water and S1-S4 voltage-sensing domains
Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J.
2012-01-01
Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains, and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids, and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains, and that these interactions have lifetimes on the timescale of 10−3s. Arg residues within S1-S4 domains are well-hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid head groups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane, yet are well-hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. PMID:22858867
Inaga, Sumire; Kato, Masako; Hirashima, Sayuri; Munemura, Chishio; Okada, Sinichi; Kameie, Toshio; Katsumoto, Tetsuo; Nakane, Hironobu; Tanaka, Keiichi; Hayashi, Kazuhiko; Naguro, Tomonori
2010-01-01
Renal biopsy paraffin sections were examined by low vacuum scanning electron microscopy (LVSEM) in the backscattered electron (BSE) mode, a novel method for rapid pathological analysis which allowed detailed and efficient three-dimensional observations of glomeruli. Renal samples that had been already diagnosed by light microscopy (LM) as exhibiting IgA nephropathy, minor glomerular abnormalities, and membranous glomerulonephritis (GN) were rapidly processed in the present study. Unstained paraffin sections of biopsy samples on glass slides were deparaffinized, stained with platinum blue (Pt-blue) or periodic acid silver-methenamine (PAM), and directly observed with a LVSEM. Overviews of whole sections and detailed observations of individual glomeruli were immediately performed at arbitrary magnifications between ×50 to ×18,000. Cut surface views and surface views of glomeruli were demonstrated at the same time. On Pt-blue-stained sections, podocytes, endothelia, mesangium, and glomerular basement membranes (GBMs) could be distinguished due to the different yields of BSE signals, and pathological features were investigated in every sample. The abnormal surface appearances of podocytes with foot processes and the varying thicknesses of GBM were revealed three-dimensionally, features difficult to observe under LM and transmission electron microscopy. PAM-positive GBM alterations in membranous GN were distinctly visualized through overlying cells without cell removal under LVSEM at high magnification. Not only prominent spike formation but also slight protrusions were clearly revealed in the side views of GBM. Crater-like or hole-like structures were shown in the en face views of GBM. Accordingly, LVSEM is expected to provide a novel approach to the pathological diagnosis of human glomerular diseases using conventional renal biopsy sections.
Vodicka, Petr; Mo, Shunyan; Tousley, Adelaide; Green, Karin M; Sapp, Ellen; Iuliano, Maria; Sadri-Vakili, Ghazaleh; Shaffer, Scott A; Aronin, Neil; DiFiglia, Marian; Kegel-Gleason, Kimberly B
2015-01-01
Huntington's disease (HD) is a neurodegenerative disease caused by a CAG expansion in the HD gene, which encodes the protein Huntingtin. Huntingtin associates with membranes and can interact directly with glycerophospholipids in membranes. We analyzed glycerophospholipid profiles from brains of 11 month old wild-type (WT) and Q140/Q140 HD knock-in mice to assess potential changes in glycerophospholipid metabolism. Polar lipids from cerebellum, cortex, and striatum were extracted and analyzed by liquid chromatography and negative ion electrospray tandem mass spectrometry analysis (LC-MS/MS). Gene products involved in polar lipid metabolism were studied using western blotting, immuno-electron microscopy and qPCR. Significant changes in numerous species of glycerophosphate (phosphatidic acid, PA) were found in striatum, cerebellum and cortex from Q140/Q140 HD mice compared to WT mice at 11 months. Changes in specific species could also be detected for other glycerophospholipids. Increases in species of lyso-PA (LPA) were measured in striatum of Q140/Q140 HD mice compared to WT. Protein levels for c-terminal binding protein 1 (CtBP1), a regulator of PA biosynthesis, were reduced in striatal synaptosomes from HD mice compared to wild-type at 6 and 12 months. Immunoreactivity for CtBP1 was detected on membranes of synaptic vesicles in striatal axon terminals in the globus pallidus. These novel results identify a potential site of molecular pathology caused by mutant Huntingtin that may impart early changes in HD.
Kim, Woo-Yeon; Kang, Sungsoo; Kim, Byoung-Chul; Oh, Jeehyun; Cho, Seongwoong; Bhak, Jong; Choi, Jong-Soon
2008-01-01
Cyanobacteria are model organisms for studying photosynthesis, carbon and nitrogen assimilation, evolution of plant plastids, and adaptability to environmental stresses. Despite many studies on cyanobacteria, there is no web-based database of their regulatory and signaling protein-protein interaction networks to date. We report a database and website SynechoNET that provides predicted protein-protein interactions. SynechoNET shows cyanobacterial domain-domain interactions as well as their protein-level interactions using the model cyanobacterium, Synechocystis sp. PCC 6803. It predicts the protein-protein interactions using public interaction databases that contain mutually complementary and redundant data. Furthermore, SynechoNET provides information on transmembrane topology, signal peptide, and domain structure in order to support the analysis of regulatory membrane proteins. Such biological information can be queried and visualized in user-friendly web interfaces that include the interactive network viewer and search pages by keyword and functional category. SynechoNET is an integrated protein-protein interaction database designed to analyze regulatory membrane proteins in cyanobacteria. It provides a platform for biologists to extend the genomic data of cyanobacteria by predicting interaction partners, membrane association, and membrane topology of Synechocystis proteins. SynechoNET is freely available at http://synechocystis.org/ or directly at http://bioportal.kobic.kr/SynechoNET/.
Interaction of elaiophylin with model bilayer membrane
NASA Astrophysics Data System (ADS)
Genova, J.; Dencheva-Zarkova, M.
2017-01-01
Elaiophylin is a new macrodiolide antibiotic, which is produced by the Streptomyces strains [1]. It displays biological activities against Gram-positive bacteria and fungi. The mode of action of this antibiotic has been attributed to an alteration of the membrane permeability. When this antibiotic is inserted into the bilayer membranes destabilization of the membrane and formation of ion-penetrable channels is observed. The macrodiolide antibiotic forms stable cation selective ion channels in synthetic lipid bilayer membranes. The aim of this work was to study the interactions of Elaiophylin with model bilayer membranes and to get information on the mechanical properties of lipid bilayers in presence of this antibiotic. Patch-clamp technique [2] were used in the study
Membrane trafficking pathways and their roles in plant-microbe interactions.
Inada, Noriko; Ueda, Takashi
2014-04-01
Membrane trafficking functions in the delivery of proteins that are newly synthesized in the endoplasmic reticulum (ER) to their final destinations, such as the plasma membrane (PM) and the vacuole, and in the internalization of extracellular components or PM-associated proteins for recycling or degradative regulation. These trafficking pathways play pivotal roles in the rapid responses to environmental stimuli such as challenges by microorganisms. In this review, we provide an overview of the current knowledge of plant membrane trafficking and its roles in plant-microbe interactions. Although there is little information regarding the mechanism of pathogenic modulation of plant membrane trafficking thus far, recent research has identified many membrane trafficking factors as possible targets of microbial modulation.
Hypothesis: spring-loaded boomerang mechanism of influenza hemagglutinin-mediated membrane fusion.
Tamm, Lukas K
2003-07-11
Substantial progress has been made in recent years to augment the current understanding of structures and interactions that promote viral membrane fusion. This progress is reviewed with a particular emphasis on recently determined structures of viral fusion domains and their interactions with lipid membranes. The results from the different structural and thermodynamic experimental approaches are synthesized into a new proposed mechanism, termed the "spring-loaded boomerang" mechanism of membrane fusion, which is presented here as a hypothesis.
Interaction of Defensins with Model Cell Membranes
NASA Astrophysics Data System (ADS)
Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.
2009-03-01
Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.
Chavent, Matthieu; Duncan, Anna L; Sansom, Mark Sp
2016-10-01
Molecular dynamics simulations provide a computational tool to probe membrane proteins and systems at length scales ranging from nanometers to close to a micrometer, and on microsecond timescales. All atom and coarse-grained simulations may be used to explore in detail the interactions of membrane proteins and specific lipids, yielding predictions of lipid binding sites in good agreement with available structural data. Building on the success of protein-lipid interaction simulations, larger scale simulations reveal crowding and clustering of proteins, resulting in slow and anomalous diffusional dynamics, within realistic models of cell membranes. Current methods allow near atomic resolution simulations of small membrane organelles, and of enveloped viruses to be performed, revealing key aspects of their structure and functionally important dynamics. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Weng, Haibo; Guo, Xinhua; Papoin, Julien; Wang, Jie; Coppel, Ross; Mohandas, Narla; An, Xiuli
2014-01-01
The malaria parasite Plasmodium falciparum exports a large number of proteins into the erythrocyte cytoplasm during the asexual intraerythrocytic stage of its life cycle. A subset of these proteins interacts with erythrocyte membrane skeletal proteins and grossly alters the structure and function of the membrane. Several of the exported proteins, such as PfEMP1, PfEMP3, RESA and KAHRP, interact with the preponderant erythrocyte skeleton protein, spectrin. Here we have searched for possible interaction of these four malaria proteins with another major erythrocyte skeleton protein, ankyrin R. We have shown that KAHRP, but none of the other three, binds to ankyrin R. We have mapped the binding site for ankyrin R to a 79-residue segment of the KAHRP sequence, and the reciprocal binding site for KAHRP in ankyrin R to a subdomain (D3) of the 89kDa ankyrin R membrane-binding domain. Interaction of intact ankyrin R with KAHRP was inhibited by the free D3 subdomain. When, moreover, red cells loaded with the soluble D3 subdomain were infected with P. falciparum, KAHRP secreted by the intraerythrocytic parasite no longer migrated to the host cell membrane, but remained diffusely distributed throughout the cytosol. Our findings suggest a potentially important role for interaction of KAHRP with red cell membrane skeleton in promoting the adhesion of malaria-infected red cells to endothelial surfaces, a central element in the pathophysiology of malaria. © 2013.
A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer’s Disease
Somogyi, Attila; Katonai, Zoltán; Alpár, Alán; Wolf, Ervin
2016-01-01
One century after its first description, pathology of Alzheimer’s disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD-related neuronal hyperexcitability cannot be accounted for by altered subthreshold dendritic signaling in these neurons but hyperexcitability is related to changes in active membrane properties and network connectivity. PMID:27378850
A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease.
Somogyi, Attila; Katonai, Zoltán; Alpár, Alán; Wolf, Ervin
2016-01-01
One century after its first description, pathology of Alzheimer's disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD-related neuronal hyperexcitability cannot be accounted for by altered subthreshold dendritic signaling in these neurons but hyperexcitability is related to changes in active membrane properties and network connectivity.
Williams, Dumaine; Vicôgne, Jérome; Zaitseva, Irina; McLaughlin, Stuart; Pessin, Jeffrey E
2009-12-01
The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in beta cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.
Long-range interaction between heterogeneously charged membranes.
Jho, Y S; Brewster, R; Safran, S A; Pincus, P A
2011-04-19
Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society
Amsler, K; Kuwada, S K
1999-01-01
Signal transduction from receptors is mediated by the interaction of activated receptors with proximate downstream signaling proteins. In polarized epithelial cells, the membrane is divided into subdomains: the apical and basolateral membranes. Membrane receptors may be present in one or both subdomains. Using a combination of immunoprecipitation and Western blot analyses, we tested the hypothesis that a tyrosine kinase growth factor receptor, epidermal growth factor receptor (EGFR), interacts with distinct signaling proteins when present at the apical vs. basolateral membrane of a polarized renal epithelial cell. We report here that tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) was induced only when basolateral EGFR was activated. In contrast, tyrosine phosphorylation of several other signaling proteins was increased by activation of receptor at either surface. All signaling proteins were distributed diffusely throughout the cytoplasm; however, PLC-gamma protein also displayed a concentration at lateral cell borders. These results demonstrate that in polarized epithelial cells the array of signaling pathways initiated by activation of a membrane receptor is defined, at least in part, by the membrane location of the receptor.
Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L
2017-11-01
Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.
Of von Willebrand factor and platelets.
Bryckaert, Marijke; Rosa, Jean-Philippe; Denis, Cécile V; Lenting, Peter J
2015-01-01
Hemostasis and pathological thrombus formation are dynamic processes that require multiple adhesive receptor-ligand interactions, with blood platelets at the heart of such events. Many studies have contributed to shed light on the importance of von Willebrand factor (VWF) interaction with its platelet receptors, glycoprotein (GP) Ib-IX-V and αIIbβ3 integrin, in promoting primary platelet adhesion and aggregation following vessel injury. This review will recapitulate our current knowledge on the subject from the rheological aspect to the spatio-temporal development of thrombus formation. We will also discuss the signaling events generated by VWF/GPIb-IX-V interaction, leading to platelet activation. Additionally, we will review the growing body of evidence gathered from the recent development of pathological mouse models suggesting that VWF binding to GPIb-IX-V is a promising target in arterial and venous pathological thrombosis. Finally, the pathological aspects of VWF and its impact on platelets will be addressed.
Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor
2009-06-01
Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.
Coordinated autoinhibition of F-BAR domain membrane binding and WASp activation by Nervous Wreck.
Stanishneva-Konovalova, Tatiana B; Kelley, Charlotte F; Eskin, Tania L; Messelaar, Emily M; Wasserman, Steven A; Sokolova, Olga S; Rodal, Avital A
2016-09-20
Membrane remodeling by Fes/Cip4 homology-Bin/Amphiphysin/Rvs167 (F-BAR) proteins is regulated by autoinhibitory interactions between their SRC homology 3 (SH3) and F-BAR domains. The structural basis of autoregulation, and whether it affects interactions of SH3 domains with other cellular ligands, remain unclear. Here we used single-particle electron microscopy to determine the structure of the F-BAR protein Nervous Wreck (Nwk) in both soluble and membrane-bound states. On membrane binding, Nwk SH3 domains do not completely dissociate from the F-BAR dimer, but instead shift from its concave surface to positions on either side of the dimer. Unexpectedly, along with controlling membrane binding, these autoregulatory interactions inhibit the ability of Nwk-SH3a to activate Wiskott-Aldrich syndrome protein (WASp)/actin related protein (Arp) 2/3-dependent actin filament assembly. In Drosophila neurons, Nwk autoregulation restricts SH3a domain-dependent synaptopod formation, synaptic growth, and actin organization. Our results define structural rearrangements in Nwk that control F-BAR-membrane interactions as well as SH3 domain activities, and suggest that these two functions are tightly coordinated in vitro and in vivo.
NASA Astrophysics Data System (ADS)
Cheng, Kwan; Cheng, Sara
We used molecular dynamics simulations to examine the effects of transbilayer distribution of lipid molecules, particularly anionic lipids with negatively charged headgroups, on the structure and binding kinetics of an amyloidogenic protein on the membrane surface and subsequent protein-induced structural disruption of the membrane. Our systems consisted of a model beta-sheet rich dimeric protein absorbed on asymmetric bilayers with neutral and anionic lipids and symmetric bilayers with neutral lipids. We observed larger folding, domain aggregation, and tilt angle of the absorbed protein on the asymmetric bilayer surfaces. We also detected more focused bilayer thinning in the asymmetric bilayer due to weak lipid-protein interactions. Our results support the mechanism that the higher lipid packing in the protein-contacting lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions of an amyloidogenic protein on the membrane surface. We speculate that the observed surface-induced structural and protein-lipid interaction of our model amyloidogenic protein may play a role in the early membrane-associated amyloid cascade pathway that leads to membrane structural damage of neurons in Alzheimer's disease. NSF ACI-1531594.
A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes
NASA Astrophysics Data System (ADS)
Fantini, Jacques; di Scala, Coralie; Evans, Luke S.; Williamson, Philip T. F.; Barrantes, Francisco J.
2016-02-01
Cholesterol controls the activity of a wide range of membrane receptors through specific interactions and identifying cholesterol recognition motifs is therefore critical for understanding signaling receptor function. The membrane-spanning domains of the paradigm neurotransmitter receptor for acetylcholine (AChR) display a series of cholesterol consensus domains (referred to as “CARC”). Here we use a combination of molecular modeling, lipid monolayer/mutational approaches and NMR spectroscopy to study the binding of cholesterol to a synthetic CARC peptide. The CARC-cholesterol interaction is of high affinity, lipid-specific, concentration-dependent, and sensitive to single-point mutations. The CARC motif is generally located in the outer membrane leaflet and its reverse sequence CRAC in the inner one. Their simultaneous presence within the same transmembrane domain obeys a “mirror code” controlling protein-cholesterol interactions in the outer and inner membrane leaflets. Deciphering this code enabled us to elaborate guidelines for the detection of cholesterol-binding motifs in any membrane protein. Several representative examples of neurotransmitter receptors and ABC transporters with the dual CARC/CRAC motifs are presented. The biological significance and potential clinical applications of the mirror code are discussed.
Zhou, Chengcheng; Wang, Fengyan; Chen, Hui; Li, Meng; Qiao, Fulin; Liu, Zhang; Hou, Yanbo; Wu, Chunxian; Fan, Yaxun; Liu, Libing; Wang, Shu; Wang, Yilin
2016-02-17
This work reports that cationic micelles formed by cationic trimeric, tetrameric, and hexameric surfactants bearing amide moieties in spacers can efficiently kill Gram-negative E. coli with a very low minimum inhibitory concentration (1.70-0.93 μM), and do not cause obvious toxicity to mammalian cells at the concentrations used. With the increase of the oligomerization degree, the antibacterial activity of the oligomeric surfactants increases, i.e., hexameric surfactant > tetrameric surfactant > trimeric surfactant. Isothermal titration microcalorimetry, scanning electron microscopy, and zeta potential results reveal that the cationic micelles interact with the cell membrane of E. coli through two processes. First, the integrity of outer membrane of E. coli is disrupted by the electrostatic interaction of the cationic ammonium groups of the surfactants with anionic groups of E. coli, resulting in loss of the barrier function of the outer membrane. The inner membrane then is disintegrated by the hydrophobic interaction of the surfactant hydrocarbon chains with the hydrophobic domains of the inner membrane, leading to the cytoplast leakage. The formation of micelles of these cationic oligomeric surfactants at very low concentration enables more efficient interaction with bacterial cell membrane, which endows the oligomeric surfactants with high antibacterial activity.
The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function
Scott, Emily E.; Wolf, C. Roland; Otyepka, Michal; Humphreys, Sara C.; Reed, James R.; Henderson, Colin J.; McLaughlin, Lesley A.; Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Anzenbacher, Pavel; Dahal, Upendra P.; Barnaba, Carlo; Brozik, James A.; Jones, Jeffrey P.; Estrada, D. Fernando; Laurence, Jennifer S.; Park, Ji Won
2016-01-01
This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to “helicopter” above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function. PMID:26851242
Interaction of proteins with weak amphoteric charged membrane surfaces: effect of pH.
Matsumoto, Hidetoshi; Koyama, Yoshiyuki; Tanioka, Akihiko
2003-08-01
Weak amphoteric charged membranes were prepared by the graft copolymerization of poly(ethylene glycol) (PEG) derivatives with pendant ionizable groups onto polyethylene (PE) porous membranes. Two types of weak amphoteric charged membranes and two types of weak single charged membranes were prepared. The pH dependence of the protein (fluorescein isothiocyanate-labeled bovine serum albumin, FITC-BSA) adsorption onto the membranes was investigated by fluorescence spectroscopy. The interfacial charge properties of the membranes and protein were also characterized at different pH values by streaming potential and electrophoretic light scattering (ELS) measurements, respectively. The adsorbed amount onto each ionic PEG chain grafted membrane showed a uniform maximum value near the isoelectric point (IEP) of the protein (pH 4.1). On both sides of the IEP (pHs 3.3 and 7.2), the adsorption experiments and zeta (zeta) potential measurements were well correlated: the contribution of electrostatic interaction was dominant for the protein adsorption behavior. In the alkaline condition (pH 10.2), the adsorption experiments contradict the zeta potential measurements. It suggested that the conformational change of protein molecule influenced the adsorption behavior. Finally, these results indicated the potential of controlling the protein-ionic PEG chain interaction on the membrane surfaces by the pH adjustment of the outer solution.
Yamamoto, Eiji
2017-01-01
Many cellular functions, including cell signaling and related events, are regulated by the association of peripheral membrane proteins (PMPs) with biological membranes containing anionic lipids, e.g., phosphatidylinositol phosphate (PIP). This association is often mediated by lipid recognition modules present in many PMPs. Here, I summarize computational and theoretical approaches to investigate the molecular details of the interactions and dynamics of a lipid recognition module, the pleckstrin homology (PH) domain, on biological membranes. Multiscale molecular dynamics simulations using combinations of atomistic and coarse-grained models yielded results comparable to those of actual experiments and could be used to elucidate the molecular mechanisms of the formation of protein/lipid complexes on membrane surfaces, which are often difficult to obtain using experimental techniques. Simulations revealed some modes of membrane localization and interactions of PH domains with membranes in addition to the canonical binding mode. In the last part of this review, I address the dynamics of PH domains on the membrane surface. Local PIP clusters formed around the proteins exhibit anomalous fluctuations. This dynamic change in protein-lipid interactions cause temporally fluctuating diffusivity of proteins, i.e., the short-term diffusivity of the bound protein changes substantially with time, and may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:29159013
Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation.
Wang, Zhangxin; Hou, Deyin; Lin, Shihong
2016-04-05
In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.
Quantification of fibronectin as a method to assess ex vivo extracellular matrix remodeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bager, C.L., E-mail: cba@nordicbioscience.com; Technical University of Denmark; Gudmann, N.
Altered architecture, composition and quality of the extracellular matrix (ECM) are pathological hallmarks of several inflammatory and fibro-proliferative pathological processes such as osteoarthritis (OA), rheumatoid arthritis (RA), fibrosis and cancer. One of the most important components of the ECM is fibronectin. Fibronectin serves as an adhesion molecule anchoring cells to the underlying basement membrane through direct interaction with integrin receptors. Fibronectin hereby modulates the properties of the ECM and affects cellular processes. Quantification of fibronectin remodeling could therefore be used to assess the changes in the ECM that occur during progression of fibro-proliferative pathologies. Ex vivo models are becoming state-of-the-art toolsmore » to study ECM remodeling as the cellular composition and the organization of the ECM are preserved. Ex vivo models may therefore be a valuable tool to study the ECM remodeling that occurs during progression of fibro-proliferative pathologies. The aim of this study was to quantify fibronectin remodeling in ex vivo models of cartilage and cancer. A competitive The enzyme-linked immunosorbent assay (ELISA) against the C-terminus of fibronectin was developed (FBN-C). The assay was evaluated in relation to specificity, technical performance and as a marker for quantification of fibronectin in cartilage and cancer ex vivo models. The ELISA was specific and technically stable. Cleavage of tumor tissue with MMP-2 released significantly higher levels of FBN-C compared to tissue with buffer only and western blot analysis revealed that FBN-C recognizes both full length and degraded fibronectin. When ex vivo cartilage cultures were stimulated with the anabolic factor TGFβ and catabolic factors TNF-α and OSM, significantly higher levels of FBN-C were found in the conditioned media. Lastly, FBN-C was released from a cancer ex vivo model. In conclusion, we were able to quantify fibronectin remodeling in ex vivo models of cartilage and cancer. Quantification of fibronectin remodeling could be a valuable tool to understand ECM remodeling in ex vivo models of fibro-proliferative pathologies.« less
Unbinding transition from fluid membranes with associated polymers.
Benhamou, M; Kaidi, H
2013-10-01
We consider two neighboring fluid membranes that are associated with long flexible polymers (proteins or other macromolecules). We are interested in two physical systems consisting of i) two adjacent membranes with end-grafted (or adsorbed) polymers (system I), or ii) two membranes confining a polymer solution (system II). In addition to the pure interactions between membranes, the presence of polymers gives rise to new induced mediated interactions, which are repulsive, for system I, and attractive, for system II. In fact, repulsive induced interactions are caused by the excluded-volume forces between grafted polymers, while attractive ones, by entropy loss, due to free motion of polymers between membranes. The main goal is a quantitative study of the unbinding transition thermodynamics that is drastically affected by the associated polymers. For system I, the repulsive polymer-mediated force delays this transition that can happen at low temperature. To investigate the unbinding phenomenon, we first present an exact mathematical analysis of the total potential that is the sum of the primitive and induced potentials. This mathematical study enables us to classify the total interaction potentials, in terms of all parameters of the problem. Second, use is made of the standard variational method to calculate the first moments of the membrane separation. Special attention is paid to the determination of the unbinding temperature. In particular, we discuss its dependence on the extra parameters related to the associated polymers, which are the surface coverage and the polymer layer thickness on each membrane (for system I) or the polymer density and the gyration radius of coils (for system II). Third, we compute the disjoining pressure upon membrane separation. Finally, we emphasize that the presence of polymers may be a mechanism to delay or to accentuate the appearance of the unbinding transition between fluid membranes.
Retinopathy of prematurity: molecular pathology and therapeutic strategies.
Mechoulam, Hadas; Pierce, Eric A
2003-01-01
Retinopathy of prematurity (ROP) is an ischemia-induced proliferative retinopathy, which affects premature infants with low birth weight. It is a leading cause of visual impairment and blindness in children, and shares pathophysiological characteristics with other common ocular diseases such as diabetic retinopathy, central vein occlusion, and age-related macular degeneration. Pathologically similar inherited diseases such as Norrie disease suggest a possible genetic component in the susceptibility to ROP. The process of retinal neovascularization in ROP and in animal models of oxygen-induced retinopathy is complex, and involves angiogenic factors, such as vascular endothelial growth factor, and basement membrane components. Potential medical therapies for ROP, including modulators of angiogenic factors, inhibitors of basement membrane changes, endogenous inhibitors such as pigment epithelium derived factor, and anti-inflammatory drugs, have shown efficacy against neovascularization in several animal models. Some of these therapies are in clinical trials now for diabetic retinopathy and age-related macular degeneration, and in the future may prove efficacious for the treatment of ROP.
De Oliveira, S; Vitorino de Almeida, V; Calado, A; Rosário, H S; Saldanha, C
2012-03-01
Fibrinogen is a multifunctional plasma protein that plays a crucial role in several biological processes. Elevated fibrinogen induces erythrocyte hyperaggregation, suggesting an interaction between this protein and red blood cells (RBCs). Several studies support the concept that fibrinogen interacts with RBC membrane and this binding, due to specific and non-specific mechanisms, may be a trigger to RBC hyperaggregation in inflammation. The main goals of our work were to prove that human RBCs are able to specifically bind soluble fibrinogen, and identify membrane molecular targets that could be involved in this process. RBCs were first isolated from blood of healthy individuals and then separated in different age fractions by discontinuous Percoll gradients. After isolation RBC samples were incubated with human soluble fibrinogen and/or with a blocking antibody against CD47 followed by fluorescence confocal microscopy, flow cytometry acquisitions and zeta potential measurements. Our data show that soluble fibrinogen interacts with the human RBC membrane in an age-dependent manner, with younger RBCs interacting more with soluble fibrinogen than the older cells. Importantly, this interaction is abrogated in the presence of a specific antibody against CD47. Our results support a specific and age-dependent interaction of soluble fibrinogen with human RBC membrane; additionally we present CD47 as a putative mediator in this process. This interaction may contribute to RBC hyperaggregation in inflammation. Copyright © 2011 Elsevier B.V. All rights reserved.
Mandaliti, Walter; Nepravishta, Ridvan; Sinibaldi Vallebona, Paola; Pica, Francesca; Garaci, Enrico; Paci, Maurizio
2016-03-15
Thymosin α1 is a peptidic hormone with pleiotropic activity and is used in the therapy of several diseases. It is unstructured in water solution and interacts with negative regions of vesicles by assuming two tracts of helical conformation with a structural break between them. This study reports on Thymosin α1's interaction with mixed phospholipids phosphatidylcholine and phosphatidylserine, the negative component of the membranes, by ¹H and natural abundance ¹⁵N nuclear magnetic resonance (NMR). The results indicate that interaction occurs when the membrane is negatively charged by exposing phosphatidylserine. Moreover, the direct interaction of Thymosin α1 with K562 cells with an overexposure of phosphatidylserine as a consequence of resveratrol-induced apoptosis was conducted. Thymosin α1's interaction with human serum albumin was also investigated by NMR spectroscopy. Steady-state saturation transfer, transfer nuclear Overhauser effect spectroscopy, and diffusion-ordered spectroscopy methodologies all reveal that the C-terminal region of Thymosin α1 is involved in the interaction with serum albumin. These results may shed more light on Thymosin α1's mechanism of action by its insertion in negative regions of membranes due to the exposure of phosphatidylserine. Once Thymosin α1's N-terminus has been inserted into the membrane, the rest may interact with nearby proteins and/or receptors acting as effectors and causing a biological signaling cascade, thus exerting thymosin α1's pleiotropy.
Moniruzzaman, Md; Islam, Md Zahidul; Sharmin, Sabrina; Dohra, Hideo; Yamazaki, Masahito
2017-08-22
Lactoferricin B (LfcinB) and shorter versions of this peptide have antimicrobial activity. However, the elementary processes of interactions of these peptides with lipid membranes and bacteria are still not well understood. To elucidate the mechanism of their antimicrobial activity, we investigated the interactions of LfcinB (4-9) (its sequence of RRWQWR) with Escherichia coli cells and giant unilamellar vesicles (GUVs). LfcinB (4-9) and lissamine rhodamine B red-labeled LfcinB (4-9) (Rh-LfcinB (4-9)) did not induce an influx of a membrane-impermeant fluorescent probe, SYTOX green, from the outside of E. coli cells into their cytoplasm, indicating that no damage occurred in their plasma membrane. To examine the activity of LfcinB (4-9) to enter E. coli cytoplasm, we investigated the interaction of Rh-LfcinB (4-9) with single cells of E. coli containing calcein using confocal microscopy. We found that Rh-LfcinB (4-9) entered the cytoplasm without leakage of calcein. Next, we investigated the interactions of Rh-LfcinB (4-9) with single GUVs of dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC) mixtures containing a fluorescent probe, Alexa Fluor 647 hydrazide (AF647), using the single GUV method. The results indicate that Rh-LfcinB (4-9) outside the GUV translocated through the GUV membrane and entered its lumen without leakage of AF647. Interaction of Rh-LfcinB (4-9) with DNA increased its fluorescence intensity greatly. Therefore, we can conclude that Rh-LfcinB (4-9) can translocate across lipid membrane regions of the plasma membrane of E. coli cells to enter their cytoplasm without leakage of calcein and its antimicrobial activity is not due to damage of their plasma membranes.
Ding, Bei; Soblosky, Lauren; Nguyen, Khoi; Geng, Junqing; Yu, Xinglong; Ramamoorthy, Ayyalusamy; Chen, Zhan
2013-01-01
Antimicrobial peptides (AMPs) could become the next generation antibiotic compounds which can overcome bacterial resistance by disrupting cell membranes and it is essential to determine the factors underlying its mechanism of action. Although high-resolution NMR and other biological studies have provided valuable insights, it has been a major challenge to follow the AMP-membrane interactions at physiologically-relevant low peptide concentrations. In this study, we demonstrate a novel approach to overcome this major limitation by performing Sum Frequency Generation (SFG) vibrational spectroscopic experiments on lipid bilayers containing an AMP, LL-37. Our results demonstrate the power of SFG to study non-linear helical peptides and also infer that lipid-peptide interaction and the peptide orientation depend on the lipid membrane composition. The observed SFG signal changes capture the aggregating process of LL-37 on membrane. In addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of cholesterol on peptide-induced membrane permeation process. PMID:23676762
NASA Astrophysics Data System (ADS)
Ding, Bei; Soblosky, Lauren; Nguyen, Khoi; Geng, Junqing; Yu, Xinglong; Ramamoorthy, Ayyalusamy; Chen, Zhan
2013-05-01
Antimicrobial peptides (AMPs) could become the next generation antibiotic compounds which can overcome bacterial resistance by disrupting cell membranes and it is essential to determine the factors underlying its mechanism of action. Although high-resolution NMR and other biological studies have provided valuable insights, it has been a major challenge to follow the AMP-membrane interactions at physiologically-relevant low peptide concentrations. In this study, we demonstrate a novel approach to overcome this major limitation by performing Sum Frequency Generation (SFG) vibrational spectroscopic experiments on lipid bilayers containing an AMP, LL-37. Our results demonstrate the power of SFG to study non-linear helical peptides and also infer that lipid-peptide interaction and the peptide orientation depend on the lipid membrane composition. The observed SFG signal changes capture the aggregating process of LL-37 on membrane. In addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of cholesterol on peptide-induced membrane permeation process.
Ding, Bei; Soblosky, Lauren; Nguyen, Khoi; Geng, Junqing; Yu, Xinglong; Ramamoorthy, Ayyalusamy; Chen, Zhan
2013-01-01
Antimicrobial peptides (AMPs) could become the next generation antibiotic compounds which can overcome bacterial resistance by disrupting cell membranes and it is essential to determine the factors underlying its mechanism of action. Although high-resolution NMR and other biological studies have provided valuable insights, it has been a major challenge to follow the AMP-membrane interactions at physiologically-relevant low peptide concentrations. In this study, we demonstrate a novel approach to overcome this major limitation by performing Sum Frequency Generation (SFG) vibrational spectroscopic experiments on lipid bilayers containing an AMP, LL-37. Our results demonstrate the power of SFG to study non-linear helical peptides and also infer that lipid-peptide interaction and the peptide orientation depend on the lipid membrane composition. The observed SFG signal changes capture the aggregating process of LL-37 on membrane. In addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of cholesterol on peptide-induced membrane permeation process.
Peptide-membrane Interactions by Spin-labeling EPR
Smirnova, Tatyana I.; Smirnov, Alex I.
2016-01-01
Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253
Hachez, Charles; Laloux, Timothée; Reinhardt, Hagen; Cavez, Damien; Degand, Hervé; Grefen, Christopher; De Rycke, Riet; Inzé, Dirk; Blatt, Michael R; Russinova, Eugenia; Chaumont, François
2014-07-01
Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane. © 2014 American Society of Plant Biologists. All rights reserved.
Wang, Jia-Yu; Marks, Jeremy; Lee, Ka Yee C.
2013-01-01
PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity- they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles were investigated. Specifically, the effect of copolymer hydrophobicity on its ability to prevent liposomes from peroxidation was evaluated, and partitioning free energy and coefficient involved in the interactions were derived. Our results show that the high degree of hydrophilicity is a key feature of the copolymers that can effectively protect liposomes from peroxidation and the protective effect of the copolymers stems from their adsorption at the membrane surface without penetrating into the bilayer core. The origin of this protective effect induced by polymer absorption is attributed to the retardation of membrane hydration dynamics, which is further illustrated in the accompany study on dynamic nuclear polarization (DNP)-derived hydration dynamics1. PMID:22808900
A Neutron View of Proteins in Lipid Bilayers
NASA Astrophysics Data System (ADS)
White, Stephen
2012-02-01
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.
Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.
2013-01-01
Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906
Lipid-binding analysis using a fat blot assay.
Munnik, Teun; Wierzchowiecka, Magdalena
2013-01-01
Protein-lipid interactions play an important role in lipid metabolism, membrane trafficking and cell -signaling by regulating protein localization, activation, and function. The Fat Blot assay is a relatively simple and inexpensive method to examine these interactions using nitrocellulose membrane-immobilized lipids. The assay is adapted from the method by Dowler et al. (Sci STKE 129:pl6, 2002) and provides qualitative and quantitative information on the relative affinity with which a protein binds to a particular lipid. To perform a Fat Blot assay, serial dilutions of different phospholipids are spotted onto a nitrocellulose membrane. These membranes are then incubated with a lipid-binding protein possessing a GST (or other epitope) tag. The membranes are washed and the protein, which is bound to the membrane by virtue of its interaction with the lipid's head group, is detected by immunoblotting with an antibody against GST (or other epitope). The procedure only requires a few micrograms of protein and is quick, simple and cheap to perform.
The potent effect of mycolactone on lipid membranes
Maniti, Ofelia; Marion, Estelle; Marsollier, Laurent; Dufourc, Erick J.; Canaan, Stéphane
2018-01-01
Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities can be modulated. We investigated the capacity of mycolactone to interact with membranes, to evaluate its effects on membrane lipid organization following its diffusion across the cell membrane. We used Langmuir monolayers as a cell membrane model. Experiments were carried out with a lipid composition chosen to be as similar as possible to that of the plasma membrane. Mycolactone, which has surfactant properties, with an apparent saturation concentration of 1 μM, interacted with the membrane at very low concentrations (60 nM). The interaction of mycolactone with the membrane was mediated by the presence of cholesterol and, like detergents, mycolactone reshaped the membrane. In its monomeric form, this toxin modifies lipid segregation in the monolayer, strongly affecting the formation of ordered microdomains. These findings suggest that mycolactone disturbs lipid organization in the biological membranes it crosses, with potential effects on cell functions and signaling pathways. Microdomain remodeling may therefore underlie molecular events, accounting for the ability of mycolactone to attack multiple targets and providing new insight into a single unifying mechanism underlying the pleiotropic effects of this molecule. This membrane remodeling may act in synergy with the other known effects of mycolactone on its intracellular targets, potentiating these effects. PMID:29320578
Amphipathic peptide affects the lateral domain organization of lipid bilayers.
Polozov, I V; Polozova, A I; Molotkovsky, J G; Epand, R M
1997-09-04
Using lipid-specific fluorescent probes, we studied the effects of amphipathic helical, membrane active peptides of the A- and L-type on membrane domain organization. In zwitterionic binary systems composed of mixtures of phosphatidylcholine and phosphatidylethanolamine, both types of peptides associated with the fluid phase. While binding with high affinity to fluid membranes, peptides were unable to penetrate into the lipid membrane in the gel state. If trapped kinetically by cooling from the fluid phase, peptides dissociated from the gel membrane on the time scale of several hours. While the geometrical shape of the alpha-helical peptides determines their interactions with membranes with non-bilayer phase propensity, the shape complementarity mechanism by itself is unable to induce lateral phase separation in a fluid membrane. Charge-charge interactions are capable of inducing lateral domain formation in fluid membranes. Both peptides had affinity for anionic lipids which resulted in about 30% enrichment of acidic lipids within several nanometers of the peptide's tryptophan, but there was no long-range order in peptide-induced lipid demixing. Peptide insertion in fluid acidic membranes was accompanied by only a small increase in bilayer surface and a decrease in polarity in the membrane core. Peptide-lipid charge-charge interactions were also capable of modulating existing domain composition in the course of the main phase transition in mixtures of anionic phosphatidylglycerol with zwitterionic phosphatidylcholine.
Kino, Tomoshige
2018-05-11
The human genome contains numerous single nucleotide variations (SNVs), and the human GR gene harbors ∼450 of these genetic changes. Among them, extremely rare non-synonymous variants known as pathologic GR gene mutations develop a characteristic pathologic condition, familial/sporadic generalized glucocorticoid resistance syndrome, by replacing the amino acids critical for GR protein structure and functions, whereas others known as pathologic polymorphisms develop mild manifestations recognized mainly at population bases by changing the GR activities slightly. Recent progress on the structural analysis to the GR protein and subsequent computer-based structural simulation revealed details of the molecular defects caused by such pathologic GR gene mutations, including their impact on the receptor interaction to ligands, nuclear receptor coactivators (NCoAs) or DNA glucocorticoid response elements (GREs). Indeed, those found in the GR ligand-binding domain significantly damage protein structure of the ligand-binding pocket and/or the activation function-2 transactivation domain and change their molecular interaction to glucocorticoids or the LxxLL signature motif of NCoAs. Two mutations found in GR DBD also affect interaction of the mutant receptors to GRE DNA by affecting the critical amino acid for the interaction or changing local hydrophobic circumstance. In this review, we discuss recent findings on the structural simulation of the pathologic GR mutants in connection to their functional and clinical impacts along with brief explanation to recent research achievement on the GR polymorphisms.
Multicomponent transport in membranes for redox flow batteries
NASA Astrophysics Data System (ADS)
Monroe, Charles
2015-03-01
Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that extends the approach of Heintz, Wiedemann and Ziegler [J. Membrane Science 137:1-2 (1997) 121-132] is used to establish Onsager resistances that describe the drag forces VOSO4 and H2SO4 exert on each other as they interdiffuse. The ramifications of these interactions for different classes of membranes - and for RFB applications - will be discussed. NSF CBET-1253544.
Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane.
Bayer, Simone B; Low, Felicia M; Hampton, Mark B; Winterbourn, Christine C
2016-12-01
Peroxiredoxin 2 (Prx2) is an abundant antioxidant protein in erythrocytes that protects against hemolytic anemia resulting from hemoglobin oxidation and Heinz body formation. A small fraction of Prx2 is bound to the cell membrane, but the mechanism and relevance of binding are not clear. We have investigated Prx2 interactions with the erythrocyte membrane and oxidized hemoglobin and whether these interactions are dependent on Prx2 redox state. Membrane binding of Prx2 in erythrocytes decreased when the cells were treated with H 2 O 2 , but studies with purified Prx2 and isolated ghosts showed that the interaction was independent of Prx2 redox state. Hemoglobin oxidation leads to the formation of hemichrome, a denatured form of the protein that binds to Band3 protein in the cell membrane as part of the senescence process and is a precursor of Heinz bodies. Hemichrome competed with Prx2 and decreased Prx2 binding to the membrane, potentially explaining the decreased binding in oxidant-exposed cells. The increased membrane binding of Prx2 seen with increasing intracellular calcium was less sensitive to H 2 O 2 or hemichrome, suggesting an alternative mode of binding. Prx2 was also shown to exhibit chaperone-like activity by retarding the precipitation of pre-formed hemichrome. Our results suggest that Prx2, by restricting membrane binding of hemichrome, could impede Band3 clustering and exposure of senescence antigens. This mechanism, plus the observed chaperone activity for oxidized hemoglobin, may help protect against hemolytic anemia.
Kedrov, Alexej; Janovjak, Harald; Sapra, K Tanuj; Müller, Daniel J
2007-01-01
Molecular interactions are the basic language of biological processes. They establish the forces interacting between the building blocks of proteins and other macromolecules, thus determining their functional roles. Because molecular interactions trigger virtually every biological process, approaches to decipher their language are needed. Single-molecule force spectroscopy (SMFS) has been used to detect and characterize different types of molecular interactions that occur between and within native membrane proteins. The first experiments detected and localized molecular interactions that stabilized membrane proteins, including how these interactions were established during folding of alpha-helical secondary structure elements into the native protein and how they changed with oligomerization, temperature, and mutations. SMFS also enables investigators to detect and locate molecular interactions established during ligand and inhibitor binding. These exciting applications provide opportunities for studying the molecular forces of life. Further developments will elucidate the origins of molecular interactions encoded in their lifetimes, interaction ranges, interplay, and dynamics characteristic of biological systems.
Mechanism of interaction of sitamaquine with Leishmania donovani.
Coimbra, E S; Libong, D; Cojean, S; Saint-Pierre-Chazalet, M; Solgadi, A; Le Moyec, L; Duenas-Romero, A M; Chaminade, P; Loiseau, P M
2010-12-01
This study focuses on the mechanism of interaction of sitamaquine with Leishmania donovani membranes, and its accumulation within the parasites. A biomimetic model of the outer layer of a Leishmania plasma membrane was used to examine the interactions of sitamaquine with lipids. The plasma membranes of L. donovani promastigotes were depleted of sterol using cholesterol oxidase, in order to assess the importance of sterols in drug-membrane interactions. Sterols were quantified and sitamaquine susceptibility was assessed using the MTT test. Kinetics of sitamaquine accumulation and efflux were measured under different conditions. Sitamaquine interacts first with phospholipid anionic polar head groups and then with phospholipid acyl chains to insert within biological membranes and accumulates rapidly in the Leishmania cytosol according to a sterol-independent process. The rapid sitamaquine efflux observed was related to an energy-dependent mechanism since the intracellular amount of sitamaquine was enhanced three times in the absence of glucose and the efflux was inhibited in energy-depleted conditions. (1)H NMR analysis of motile lipid showed that sitamaquine did not affect lipid trafficking in Leishmania. We propose that sitamaquine rapidly accumulates in Leishmania by diffusion along an electrical gradient and is concentrated in the cytosol by an energy- and sterol-independent process. The affinity of sitamaquine for membranes was transitory and an energy-dependent efflux was demonstrated, suggesting the presence of an as yet uncharacterized transporter.
RanGTPase regulates the interaction between the inner nuclear membrane proteins, Samp1 and Emerin.
Vijayaraghavan, Balaje; Figueroa, Ricardo A; Bergqvist, Cecilia; Gupta, Amit J; Sousa, Paulo; Hallberg, Einar
2018-06-01
Samp1, spindle associated membrane protein 1, is a type II integral membrane protein localized in the inner nuclear membrane. Recent studies have shown that the inner nuclear membrane protein, Emerin and the small monomeric GTPase, Ran are direct binding partners of Samp1. Here we addressed the question whether Ran could regulate the interaction between Samp1 and Emerin in the inner nuclear membrane. To investigate the interaction between Samp1 and Emerin in live cells, we performed FRAP experiments in cells overexpressing YFP-Emerin. We compared the mobility of YFP-Emerin in Samp1 knock out cells and cells overexpressing Samp1. The results showed that the mobility of YFP-Emerin was higher in Samp1 knock out cells and lower in cells overexpressing Samp1, suggesting that Samp1 significantly attenuates the mobility of Emerin in the nuclear envelope. FRAP experiments using tsBN2 cells showed that the mobility of Emerin depends on RanGTP. Consistently, in vitro binding experiments showed that the affinity between Samp1 and Emerin is decreased in the presence of Ran, suggesting that Ran attenuates the interaction between Samp1 and Emerin. This is the first demonstration that Ran can regulate the interaction between two proteins in the nuclear envelope. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Lim, Chanoong; Park, Sohee; Park, Jinwoo; Ko, Jina; Lee, Dong Woog; Hwang, Dong Soo
2018-04-12
Various xenobiotics interact with biological membranes, and precise evaluations of the molecular interactions between them are essential to foresee the toxicity and bioavailability of existing or newly synthesized molecules. In this study, surface forces apparatus (SFA) measurement and Langmuir trough based tensiometry are performed to reveal nanomechanical interaction mechanisms between potential toxicants and biological membranes for ex vivo toxicity evaluation. As a toxicant, polyhexamethylene guanidine (PHMG) was selected because PHMG containing humidifier disinfectant and Vodka caused lots of victims in both S. Korea and Russia, respectively, due to the lack of holistic toxicity evaluation of PHMG. Here, we measured strong attraction (Wad ∼4.2 mJ/m 2 ) between PHMG and head group of biological membranes while no detectable adhesion force between the head group and control molecules was measured. Moreover, significant changes in π-A isotherm of 1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) monolayers were measured upon PHMG adsorption. These results indicate PHMG strongly binds to hydrophilic group of lipid membranes and alters the structural and phase behavior of them. More importantly, complementary utilization of SFA and Langmuir trough techniques are found to be useful to predict the potential toxicity of a chemical by evaluating the molecular interaction with biological membranes, the primary protective barrier for living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Tanji, N; Markowitz, G S; Fu, C; Kislinger, T; Taguchi, A; Pischetsrieder, M; Stern, D; Schmidt, A M; D'Agati, V D
2000-09-01
Advanced glycation end products (AGE) contribute to diabetic tissue injury by two major mechanisms, i.e., the alteration of extracellular matrix architecture through nonenzymatic glycation, with formation of protein crosslinks, and the modulation of cellular functions through interactions with specific cell surface receptors, the best characterized of which is the receptor for AGE (RAGE). Recent evidence suggests that the AGE-RAGE interaction may also be promoted by inflammatory processes and oxidative cellular injury. To characterize the distributions of AGE and RAGE in diabetic kidneys and to determine their specificity for diabetic nephropathy, an immunohistochemical analysis of renal biopsies from patients with diabetic nephropathy (n = 26), hypertensive nephrosclerosis (n = 7), idiopathic focal segmental glomerulosclerosis (n = 11), focal sclerosis secondary to obesity (n = 7), and lupus nephritis (n = 11) and from normal control subjects (n = 2) was performed, using affinity-purified antibodies raised to RAGE and two subclasses of AGE, i.e., N(epsilon)-(carboxymethyl)-lysine (CML) and pentosidine (PENT). AGE were detected equally in diffuse and nodular diabetic nephropathy. CML was the major AGE detected in diabetic mesangium (96%), glomerular basement membranes (GBM) (42%), tubular basement membranes (85%), and vessel walls (96%). In diabetic nephropathy, PENT was preferentially located in interstitial collagen (90%) and was less consistently observed in vessel walls (54%), mesangium (77%), GBM (4%), and tubular basement membranes (31%). RAGE was expressed on normal podocytes and was upregulated in diabetic nephropathy. The restriction of RAGE mRNA expression to glomeruli was confirmed by reverse transcription-PCR analysis of microdissected renal tissue compartments. The extent of mesangial and GBM immunoreactivity for CML, but not PENT, was correlated with the severity of diabetic glomerulosclerosis, as assessed pathologically. CML and PENT were also identified in areas of glomerulosclerosis and arteriosclerosis in idiopathic and secondary focal segmental glomerulosclerosis, hypertensive nephrosclerosis, and lupus nephritis. In active lupus nephritis, CML and PENT were detected in the proliferative glomerular tufts and crescents. In conclusion, CML is a major AGE in renal basement membranes in diabetic nephropathy, and its accumulation involves upregulation of RAGE on podocytes. AGE are also accumulated in acute inflammatory glomerulonephritis secondary to systemic lupus erythematosus, possibly via enzymatic oxidation of glomerular matrix proteins.
NASA Astrophysics Data System (ADS)
Li, Hai-long; Bian, Liang; Hou, Wen-ping; Dong, Fa-Qin; Song, Mian-Xin; Zhang, Xiao-yan; Wang, Li-sheng
2016-07-01
We elucidated a number of facets regarding arginine-glycine-aspartate (RGD)-bismuth ferrite (BFO)-(1 1 1) membrane interactions and reactivity that have previously remained unexplored on a molecular level. Results demonstrate the intra-molecular interaction facilitates a ;horseshoe; structure of RGD adsorbed onto the BFO-(1 1 1) membrane, through the electrostatic (Asp-cation-Fe) and water-bridge (Osbnd H2O and H2Osbnd NH2) interactions. The effect of structural and electron-transfer interactions is attributed to the cation-valences, indicating that the divalent cations are electron-acceptors and the monovalent cations as electron-donors. Notably, the strongly bound Ca2+ ion exerts a ;gluing; effect on the Asp-side-chain, indicating a tightly packed RGD-BFO configuration. Thus, modulating the biological response of BFO-(1 1 1) membrane will allow us to design more appropriate interfaces for implantable diagnostic and therapeutic perovskite-type micro-devices.
Brignone, Maria S.; Lanciotti, Angela; Macioce, Pompeo; Macchia, Gianfranco; Gaetani, Matteo; Aloisi, Francesca; Petrucci, Tamara C.; Ambrosini, Elena
2011-01-01
Megalencephalic leucoencephalopathy with subcortical cysts (MLC) is a rare congenital leucodystrophy caused by mutations in MLC1, a membrane protein of unknown function. MLC1 expression in astrocyte end-feet contacting blood vessels and meninges, along with brain swelling, fluid cysts and myelin vacuolation observed in MLC patients, suggests a possible role for MLC1 in the regulation of fluid and ion homeostasis and cellular volume changes. To identify MLC1 direct interactors and dissect the molecular pathways in which MLC1 is involved, we used NH2-MLC1 domain as a bait to screen a human brain library in a yeast two-hybrid assay. We identified the β1 subunit of the Na,K-ATPase pump as one of the interacting clones and confirmed it by pull-downs, co-fractionation assays and immunofluorescence stainings in human and rat astrocytes in vitro and in brain tissue. By performing ouabain-affinity chromatography on astrocyte and brain extracts, we isolated MLC1 and the whole Na,K-ATPase enzyme in a multiprotein complex that included Kir4.1, syntrophin and dystrobrevin. Because Na,K-ATPase is involved in intracellular osmotic control and volume regulation, we investigated the effect of hypo-osmotic stress on MLC1/Na,K-ATPase relationship in astrocytes. We found that hypo-osmotic conditions increased MLC1 membrane expression and favoured MLC1/Na,K-ATPase-β1 association. Moreover, hypo-osmosis induced astrocyte swelling and the reversible formation of endosome-derived vacuoles, where the two proteins co-localized. These data suggest that through its interaction with Na,K-ATPase, MLC1 is involved in the control of intracellular osmotic conditions and volume regulation in astrocytes, opening new perspectives for understanding the pathological mechanisms of MLC disease. PMID:20926452
Lipid Composition of Cell Membranes and Its Relevance in Type 2 Diabetes Mellitus
Weijers, Rob N.M.
2012-01-01
Identifying the causative relationship between the fatty acid composition of cell membranes and type 2 diabetes mellitus fundamentally contributes to the understanding of the basic pathophysiological mechanisms of the disease. Important outcomes of the reviewed studies appear to support the hypotheses that the flexibility of a membrane determined by the ratio of (poly)unsaturated to saturated fatty acyl chains of its phospholipids influences the effectiveness of glucose transport by insulin-independent glucose transporters (GLUTs) and the insulin-dependent GLUT4, and from the prediabetic stage on a shift from unsaturated towards saturated fatty acyl chains of membrane phospholipids directly induces a decrease in glucose effectiveness and insulin sensitivity. In addition, it has become evident that a concomitant increase in stiffness of both plasma and erythrocyte membranes may decrease the microcirculatory flow, leading ultimately to tissue hypoxia, insufficient tissue nutrition, and diabetes-specific microvascular pathology. As to the etiology of type 2 diabetes mellitus, a revised hypothesis that attempts to accommodate the reviewed findings is presented. PMID:22698081
Shih, Yu-Ling; Huang, Kai-Fa; Lai, Hsin-Mei; Liao, Jiahn-Haur; Lee, Chai-Siah; Chang, Chiao-Min; Mak, Huey-Ming; Hsieh, Cheng-Wei; Lin, Chu-Chi
2011-01-01
Pole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear. Here we report that MinE-induced membrane deformation involves the formation of an amphipathic helix of MinE2–9, which, together with the adjacent basic residues, function as membrane anchors. Biochemical evidence suggested that the membrane association induces formation of the helix, with the helical face, consisting of A2, L3, and F6, inserted into the membrane. Insertion of this helix into the cell membrane can influence local membrane curvature and lead to drastic changes in membrane topology. Accordingly, MinE showed characteristic features of protein-induced membrane tubulation and lipid clustering in in vitro reconstituted systems. In conclusion, MinE shares common protein signatures with a group of membrane trafficking proteins in eukaryotic cells. These MinE signatures appear to affect membrane curvature. PMID:21738659
The “Electrostatic-Switch” Mechanism: Monte Carlo Study of MARCKS-Membrane Interaction
Tzlil, Shelly; Murray, Diana; Ben-Shaul, Avinoam
2008-01-01
The binding of the myristoylated alanine-rich C kinase substrate (MARCKS) to mixed, fluid, phospholipid membranes is modeled with a recently developed Monte Carlo simulation scheme. The central domain of MARCKS is both basic (ζ = +13) and hydrophobic (five Phe residues), and is flanked with two long chains, one ending with the myristoylated N-terminus. This natively unfolded protein is modeled as a flexible chain of “beads” representing the amino acid residues. The membranes contain neutral (ζ = 0), monovalent (ζ = −1), and tetravalent (ζ = −4) lipids, all of which are laterally mobile. MARCKS-membrane interaction is modeled by Debye-Hückel electrostatic potentials and semiempirical hydrophobic energies. In agreement with experiment, we find that membrane binding is mediated by electrostatic attraction of the basic domain to acidic lipids and membrane penetration of its hydrophobic moieties. The binding is opposed by configurational entropy losses and electrostatic membrane repulsion of the two long chains, and by lipid demixing upon adsorption. The simulations provide a physical model for how membrane-adsorbed MARCKS attracts several PIP2 lipids (ζ = −4) to its vicinity, and how phosphorylation of the central domain (ζ = +13 to ζ = +7) triggers an “electrostatic switch”, which weakens both the membrane interaction and PIP2 sequestration. This scheme captures the essence of “discreteness of charge” at membrane surfaces and can examine the formation of membrane-mediated multicomponent macromolecular complexes that function in many cellular processes. PMID:18502797
Hegedűs, Tamás; Chaubey, Pururawa Mayank; Várady, György; Szabó, Edit; Sarankó, Hajnalka; Hofstetter, Lia; Roschitzki, Bernd; Sarkadi, Balázs
2015-01-01
Based on recent results, the determination of the easily accessible red blood cell (RBC) membrane proteins may provide new diagnostic possibilities for assessing mutations, polymorphisms or regulatory alterations in diseases. However, the analysis of the current mass spectrometry-based proteomics datasets and other major databases indicates inconsistencies—the results show large scattering and only a limited overlap for the identified RBC membrane proteins. Here, we applied membrane-specific proteomics studies in human RBC, compared these results with the data in the literature, and generated a comprehensive and expandable database using all available data sources. The integrated web database now refers to proteomic, genetic and medical databases as well, and contains an unexpected large number of validated membrane proteins previously thought to be specific for other tissues and/or related to major human diseases. Since the determination of protein expression in RBC provides a method to indicate pathological alterations, our database should facilitate the development of RBC membrane biomarker platforms and provide a unique resource to aid related further research and diagnostics. Database URL: http://rbcc.hegelab.org PMID:26078478
A procedure for Alcian blue staining of mucins on polyvinylidene difluoride membranes.
Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko
2012-10-16
The isolation and characterization of mucins are critically important for obtaining insight into the molecular pathology of various diseases, including cancers and cystic fibrosis. Recently, we developed a novel membrane electrophoretic method, supported molecular matrix electrophoresis (SMME), which separates mucins on a polyvinylidene difluoride (PVDF) membrane impregnated with a hydrophilic polymer. Alcian blue staining is widely used to visualize mucopolysaccharides and acidic mucins on both blotted membranes and SMME membranes; however, this method cannot be used to stain mucins with a low acidic glycan content. Meanwhile, periodic acid-Schiff staining can selectively visualize glycoproteins, including mucins, but is incompatible with glycan analysis, which is indispensable for mucin characterizations. Here we describe a novel staining method, designated succinylation-Alcian blue staining, for visualizing mucins on a PVDF membrane. This method can visualize mucins regardless of the acidic residue content and shows a sensitivity 2-fold higher than that of Pro-Q Emerald 488, a fluorescent periodate Schiff-base stain. Furthermore, we demonstrate the compatibility of this novel staining procedure with glycan analysis using porcine gastric mucin as a model mucin.
Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular Trafficking.
Goiko, Maria; de Bruyn, John R; Heit, Bryan
2018-06-19
Diffusion in cellular membranes is regulated by processes that occur over a range of spatial and temporal scales. These processes include membrane fluidity, interprotein and interlipid interactions, interactions with membrane microdomains, interactions with the underlying cytoskeleton, and cellular processes that result in net membrane movement. The complex, non-Brownian diffusion that results from these processes has been difficult to characterize, and moreover, the impact of factors such as membrane recycling on membrane diffusion remains largely unexplored. We have used a careful statistical analysis of single-particle tracking data of the single-pass plasma membrane protein CD93 to show that the diffusion of this protein is well described by a continuous-time random walk in parallel with an aging process mediated by membrane corrals. The overall result is an evolution in the diffusion of CD93: proteins initially diffuse freely on the cell surface but over time become increasingly trapped within diffusion-limiting membrane corrals. Stable populations of freely diffusing and corralled CD93 are maintained by an endocytic/exocytic process in which corralled CD93 is selectively endocytosed, whereas freely diffusing CD93 is replenished by exocytosis of newly synthesized and recycled CD93. This trafficking not only maintained CD93 diffusivity but also maintained the heterogeneous distribution of CD93 in the plasma membrane. These results provide insight into the nature of the biological and biophysical processes that can lead to significantly non-Brownian diffusion of membrane proteins and demonstrate that ongoing membrane recycling is critical to maintaining steady-state diffusion and distribution of proteins in the plasma membrane. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Changes in lipid membranes may trigger amyloid toxicity in Alzheimer's disease
Drolle, Elizabeth; Negoda, Alexander; Hammond, Keely; Pavlov, Evgeny
2017-01-01
Amyloid-beta peptides (Aβ), implicated in Alzheimer’s disease (AD), interact with the cellular membrane and induce amyloid toxicity. The composition of cellular membranes changes in aging and AD. We designed multi-component lipid models to mimic healthy and diseased states of the neuronal membrane. Using atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and black lipid membrane (BLM) techniques, we demonstrated that these model membranes differ in their nanoscale structure and physical properties, and interact differently with Aβ1–42. Based on our data, we propose a new hypothesis that changes in lipid membrane due to aging and AD may trigger amyloid toxicity through electrostatic mechanisms, similar to the accepted mechanism of antimicrobial peptide action. Understanding the role of the membrane changes as a key activating amyloid toxicity may aid in the development of a new avenue for the prevention and treatment of AD. PMID:28767712
Biological interaction of living cells with COSAN-based synthetic vesicles
Tarrés, Màrius; Canetta, Elisabetta; Paul, Eleanor; Forbes, Jordan; Azzouni, Karima; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J.
2015-01-01
Cobaltabisdicarbollide (COSAN) [3,3′-Co(1,2-C2B9H11)2]−, is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes. PMID:25588708
Biological interaction of living cells with COSAN-based synthetic vesicles.
Tarrés, Màrius; Canetta, Elisabetta; Paul, Eleanor; Forbes, Jordan; Azzouni, Karima; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J
2015-01-15
Cobaltabisdicarbollide (COSAN) [3,3'-Co(1,2-C2B9H11)2](-), is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes.
Zhang, Mingzhen; Ren, Baiping; Liu, Yonglan; Liang, Guizhao; Sun, Yan; Xu, Lijian; Zheng, Jie
2017-08-16
Interaction of human islet amyloid polypeptide (hIAPP) peptides with cell membrane is crucial for the understanding of amyloid toxicity associated with Type II diabetes (T2D). While it is known that the hIAPP-membrane interactions are considered to promote hIAPP aggregation into fibrils and induce membrane disruption, the membrane-induced conformation, orientation, aggregation, and adsorption behaviors of hIAPP peptides have not been well understood at the atomic level. Herein, we perform all-atom explicit-water molecular dynamics (MD) simulations to study the adsorption, orientation, and surface interaction of hIAPP aggregates with different sizes (monomer to tetramer) and conformations (monomer with α-helix and tetramer with β-sheet-rich U-turn) upon adsorption on the lipid bilayers composed of both pure zwitterionic POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and mixed anionic POPC/POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) (3:1) lipids. MD simulation results show that hIAPP monomer with α-helical conformation and hIAPP pentamer with β-sheet conformation can adsorb on both POPC and POPC/POPE bilayers via a preferential orientation of N-terminal residues facing toward the bilayer surface. The hIAPP aggregates show stronger interactions with mixed POPC/POPE lipids than pure POPC lipids, consistent with experimental observation that hIAPP adsorption and fibrililation are enhanced on mixed lipid bilayers. While electrostatic interactions are main attractive forces to drive the hIAPP aggregates to adsorb on both bilayers, the introduction of the more hydrophilic head groups of POPE lipids further promote the formation of the interfacial hydrogen bonds. Complement to our previous studies of hIAPP aggregates in bulk solution, this computational work increases our knowledge about the mechanism of amyloid peptide-membrane interactions that is central to the understanding the progression of all amyloid diseases.
Serrano-Puebla, Ana; Boya, Patricia
2016-05-01
Recent studies have demonstrated that, in addition to their central role in cellular catabolic reactions, lysosomes are implicated in many cellular processes, including metabolism, membrane repair, and cell death. Lysosomal membrane permeabilization (LMP) has emerged as a pathway by which cell demise is regulated under physiological conditions and contributes to cell death in many pathological situations. Here, we review the latest evidence on LMP-mediated cell death, the upstream and downstream signals involved, and the role of LMP in the normal physiology of organisms. We also discuss the contributions of lysosomal damage and LMP to the pathogenic features of several disease states, such as lysosomal storage disorders and other neurodegenerative conditions. © 2015 New York Academy of Sciences.
Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells
Sun, Tiantian; Li, Shanwei; Ren, Haiyun
2013-01-01
Membrane structures and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell. Recently, the molecular mechanisms operating at this interface have been progressively addressed. Many experiments have revealed that the actin cytoskeleton can interact with membranes through various discrete membrane domains. The actin-binding protein, profilin has been proven to inhibit actin polymerization and to promote F-actin elongation. This is dependent on many factors, such as the profilin/G-actin ratio and the ionic environment of the cell. Additionally, profilin has specific domains that interact with phosphoinositides and poly-L-proline rich proteins; theoretically, this gives profilin the opportunity to interact with membranes, and a large number of experiments have confirmed this possibility. In this article, we summarize recent findings in plant cells, and discuss the evidence of the connections among actin cytoskeleton, profilin and biomembranes through direct or indirect relationships. PMID:24391654
Interaction of Impulsive Pressures of Cavitation Bubbles with Cell Membranes during Sonoporation
NASA Astrophysics Data System (ADS)
Kodama, Tetsuya; Koshiyama, Ken-ichiro; Tomita, Yukio; Suzuki, Maiko; Yano, Takeru; Fujikawa, Shigeo
2006-05-01
Ultrasound contrast agents (UCAs), are capable of enhancing non-invasive cytoplasmic molecular delivery in the presence of ultrasound. Collapse of UCAs may generate nano-scale cavitation bubbles, resulting in the transient permeabilization of the cell membrane. In the present study, we investigated the interaction of a cavitation bubble-induced shock wave with a cell membrane using acoustic theory and molecular dynamics (MD) simulation. From the theory, we obtained the shock wave propagation distance from the center of a cavitation bubble that would induce membrane damage. The MD simulation determined the relationship between the uptake of water molecules into the lipid bilayer and the shock wave. The interaction of the shock wave induced a structural change of the bilayer and subsequently increased the fluidity of each molecule. These changes in the bilayer due to shock waves may be an important factor in the use of UCAs to produce the transient membrane permeability during sonoporation.
Molecular dynamics simulation of membrane in room temperature ionic liquids
NASA Astrophysics Data System (ADS)
Theng, Soong Guan; Jumbri, Khairulazhar bin; Wirzal, Mohd Dzul Hakim
2017-10-01
The polyvinylidene difluoride (PVDF) membrane has been a popular material in membrane separation process. In this work, molecular dynamic simulation was done on the PVDF membrane with 100 wt% IL and 50 wt% IL in GROningen MAchine for Chemical Simulations (GROMACS). The results was evaluated based on potential energy, root mean square deviation (RMSD) and radial distribution function (RDF). The stability and interaction of PVDF were evaluated. Results reveal that PVDF has a stronger interaction to [C2bim]+ cation compared to water and bromine anion. Both potential energy and RMSD were lower when the weight percentage of IL is higher. This indicates that the IL is able to stabilize the PVDF structure. RMSD reveals that [C2bim]+ cation is dominant at short distance (less than 1 nm), indicating that strong interaction of cation to PVDF. This understanding of the behavior of PVDF-IL could be used as a reference for future development of stronger membrane.
Martínez-Gil, Luis; Sánchez-Navarro, Jesús A.; Cruz, Antonio; Pallás, Vicente; Pérez-Gil, Jesús; Mingarro, Ismael
2009-01-01
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement. PMID:19321624
Martínez-Gil, Luis; Sánchez-Navarro, Jesús A; Cruz, Antonio; Pallás, Vicente; Pérez-Gil, Jesús; Mingarro, Ismael
2009-06-01
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.
Pachathundikandi, Suneesh Kumar; Tegtmeyer, Nicole; Backert, Steffen
2013-01-01
Helicobacter pylori infections can induce pathologies ranging from chronic gastritis, peptic ulceration to gastric cancer. Bacterial isolates harbor numerous well-known adhesins, vacuolating cytotoxin VacA, protease HtrA, urease, peptidoglycan, and type IV secretion systems (T4SS). It appears that H. pylori targets more than 40 known host protein receptors on epithelial or immune cells. A series of T4SS components such as CagL, CagI, CagY, and CagA can bind to the integrin α5β1 receptor. Other targeted membrane-based receptors include the integrins αvβ3, αvβ5, and β2 (CD18), RPTP-α/β, GP130, E-cadherin, fibronectin, laminin, CD46, CD74, ICAM1/LFA1, T-cell receptor, Toll-like receptors, and receptor tyrosine kinases EGFR, ErbB2, ErbB3, and c-Met. In addition, H. pylori is able to activate the intracellular receptors NOD1, NOD2, and NLRP3 with important roles in innate immunity. Here we review the interplay of various bacterial factors with host protein receptors. The contribution of these interactions to signal transduction and pathogenesis is discussed. PMID:24280762
Choi, Won-Tak; An, Jing
2014-01-01
Chemokines and their receptors are implicated in a wide range of human diseases, including acquired immune deficiency syndrome (AIDS). The entry of human immunodeficiency virus type 1 (HIV-1) into a cell is initiated by the interaction of the virus’s surface envelope proteins with two cell surface components of the target cell, namely CD4 and a chemokine co-receptor, usually CXCR4 or CCR5. Typical anti-HIV-1 agents include protease and reverse transcriptase inhibitors, but the targets of these agents tend to show rapid mutation rates. As such, strategies based on HIV-1 co-receptors have appeal because they target invariant host determinants. Chemokines and their receptors are also of general interest since they play important roles in numerous physiological and pathological processes in addition to AIDS. Therefore, intensive basic and translational research is ongoing for the dissection of their structure – function relationships in an effort to understand the molecular mechanism of chemokine – receptor interactions and signal transductions across cellular membranes. This paper reviews and discusses recent advances and the translation of new knowledge and discoveries into novel interventional strategies for clinical application. PMID:21565895
Apolipoprotein J (clusterin) and Alzheimer's disease.
Calero, M; Rostagno, A; Matsubara, E; Zlokovic, B; Frangione, B; Ghiso, J
2000-08-15
Apolipoprotein J (clusterin) is a ubiquitous multifunctional glycoprotein capable of interacting with a broad spectrum of molecules. In pathological conditions, it is an amyloid associated protein, co-localizing with fibrillar deposits in systemic and localized amyloid disorders. In Alzheimer's disease, the most frequent form of amyloidosis in humans and the major cause of dementia in the elderly, apoJ is present in amyloid plaques and cerebrovascular deposits but is rarely seen in NFT-containing neurons. ApoJ expression is up-regulated in a wide variety of insults and may represent a defense response against local damage to neurons. Four different mechanisms of action could be postulated to explain the role of apoJ as a neuroprotectant during cellular stress: (1) function as an anti-apoptotic signal, (2) protection against oxidative stress, (3) inhibition of the membrane attack complex of complement proteins locally activated as a result of inflammation, and (4) binding to hydrophobic regions of partially unfolded, stressed proteins, and therefore avoiding aggregation in a chaperone-like manner. This review focuses on the association of apoJ in biological fluids with Alzheimer's soluble Abeta. This interaction prevents Abeta aggregation and fibrillization and modulates its blood-brain barrier transport at the cerebrovascular endothelium. Copyright 2000 Wiley-Liss, Inc.
Aquaporin 4 in Astrocytes is a Target for Therapy in Alzheimer's Disease.
Lan, Yu-Long; Chen, Jian-Jiao; Hu, Gang; Xu, Jun; Xiao, Ming; Li, Shao
2017-01-01
Current experimental evidence points to the conclusion that aquaporin 4 (AQP4), which is an important water-channel membrane protein found in the brain, could play major roles in various brain conditions pathologically including pathogenesis of Alzheimer's disease (AD). In this paper, we review how AQP4 and altered astrocyte functions interact in AD, and provide experimental evidence highlighting the importance of this topic for the future investigations. The interactions of AQP4 are as follows: (i) AQP4 could influence astrocytic calcium signaling and potassium homeostasis. (ii) AQP4 is linked with the removal of interstitial β-amyloid and glutamate transmission. (iii) Furthermore, AQP4 modulates the reactive astrogliosis and neuroinflammation mechanisms. (iv) To add to this, AQP4 could participate in the AD pathogenesis through affecting neurotrophic factor production. It is therefore possible to identify certain functional molecules that regulate astrocyte make-up and functions. However, making crucial efforts to develop specific agents or drugs that target AQP4 function and test their therapeutic efficiency will be a breakthrough for addressing AD in that AQP4 controls the various physiological as well as pathophysiological features of astrocytes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Porther, N; Barbieri, MA
2015-01-01
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon PMID:26317377