Identification of metabolic pathways using pathfinding approaches: a systematic review.
Abd Algfoor, Zeyad; Shahrizal Sunar, Mohd; Abdullah, Afnizanfaizal; Kolivand, Hoshang
2017-03-01
Metabolic pathways have become increasingly available for various microorganisms. Such pathways have spurred the development of a wide array of computational tools, in particular, mathematical pathfinding approaches. This article can facilitate the understanding of computational analysis of metabolic pathways in genomics. Moreover, stoichiometric and pathfinding approaches in metabolic pathway analysis are discussed. Three major types of studies are elaborated: stoichiometric identification models, pathway-based graph analysis and pathfinding approaches in cellular metabolism. Furthermore, evaluation of the outcomes of the pathways with mathematical benchmarking metrics is provided. This review would lead to better comprehension of metabolism behaviors in living cells, in terms of computed pathfinding approaches. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei
2017-08-16
Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways
Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-01-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers’ exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes. PMID:27832067
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.
Koumakis, Lefteris; Kanterakis, Alexandros; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Tsiknakis, Manolis; Vassou, Despoina; Kafetzopoulos, Dimitris; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-11-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers' exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes.
Comparative study on gene set and pathway topology-based enrichment methods.
Bayerlová, Michaela; Jung, Klaus; Kramer, Frank; Klemm, Florian; Bleckmann, Annalen; Beißbarth, Tim
2015-10-22
Enrichment analysis is a popular approach to identify pathways or sets of genes which are significantly enriched in the context of differentially expressed genes. The traditional gene set enrichment approach considers a pathway as a simple gene list disregarding any knowledge of gene or protein interactions. In contrast, the new group of so called pathway topology-based methods integrates the topological structure of a pathway into the analysis. We comparatively investigated gene set and pathway topology-based enrichment approaches, considering three gene set and four topological methods. These methods were compared in two extensive simulation studies and on a benchmark of 36 real datasets, providing the same pathway input data for all methods. In the benchmark data analysis both types of methods showed a comparable ability to detect enriched pathways. The first simulation study was conducted with KEGG pathways, which showed considerable gene overlaps between each other. In this study with original KEGG pathways, none of the topology-based methods outperformed the gene set approach. Therefore, a second simulation study was performed on non-overlapping pathways created by unique gene IDs. Here, methods accounting for pathway topology reached higher accuracy than the gene set methods, however their sensitivity was lower. We conducted one of the first comprehensive comparative works on evaluating gene set against pathway topology-based enrichment methods. The topological methods showed better performance in the simulation scenarios with non-overlapping pathways, however, they were not conclusively better in the other scenarios. This suggests that simple gene set approach might be sufficient to detect an enriched pathway under realistic circumstances. Nevertheless, more extensive studies and further benchmark data are needed to systematically evaluate these methods and to assess what gain and cost pathway topology information introduces into enrichment analysis. Both types of methods for enrichment analysis require further improvements in order to deal with the problem of pathway overlaps.
Exploring pathway interactions in insulin resistant mouse liver
2011-01-01
Background Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset. Results We developed an analysis approach to study interactions between pathways by integrating gene and protein interaction networks, biological pathway information and high-throughput data. This approach was applied to a transcriptomics dataset to investigate pathway interactions in insulin resistant mouse liver in response to a glucose challenge. We identified regulated pathway interactions at different time points following the glucose challenge and also studied the underlying protein interactions to find possible mechanisms and key proteins involved in pathway cross-talk. A large number of pathway interactions were found for the comparison between the two diet groups at t = 0. The initial response to the glucose challenge (t = 0.6) was typed by an acute stress response and pathway interactions showed large overlap between the two diet groups, while the pathway interaction networks for the late response were more dissimilar. Conclusions Studying pathway interactions provides a new perspective on the data that complements established pathway analysis methods such as enrichment analysis. This study provided new insights in how interactions between pathways may be affected by insulin resistance. In addition, the analysis approach described here can be generally applied to different types of high-throughput data and will therefore be useful for analysis of other complex datasets as well. PMID:21843341
George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon
2014-08-01
The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.
Foroushani, Amir B.K.; Brinkman, Fiona S.L.
2013-01-01
Motivation. Predominant pathway analysis approaches treat pathways as collections of individual genes and consider all pathway members as equally informative. As a result, at times spurious and misleading pathways are inappropriately identified as statistically significant, solely due to components that they share with the more relevant pathways. Results. We introduce the concept of Pathway Gene-Pair Signatures (Pathway-GPS) as pairs of genes that, as a combination, are specific to a single pathway. We devised and implemented a novel approach to pathway analysis, Signature Over-representation Analysis (SIGORA), which focuses on the statistically significant enrichment of Pathway-GPS in a user-specified gene list of interest. In a comparative evaluation of several published datasets, SIGORA outperformed traditional methods by delivering biologically more plausible and relevant results. Availability. An efficient implementation of SIGORA, as an R package with precompiled GPS data for several human and mouse pathway repositories is available for download from http://sigora.googlecode.com/svn/. PMID:24432194
Methods and approaches in the topology-based analysis of biological pathways
Mitrea, Cristina; Taghavi, Zeinab; Bokanizad, Behzad; Hanoudi, Samer; Tagett, Rebecca; Donato, Michele; Voichiţa, Călin; Drăghici, Sorin
2013-01-01
The goal of pathway analysis is to identify the pathways significantly impacted in a given phenotype. Many current methods are based on algorithms that consider pathways as simple gene lists, dramatically under-utilizing the knowledge that such pathways are meant to capture. During the past few years, a plethora of methods claiming to incorporate various aspects of the pathway topology have been proposed. These topology-based methods, sometimes referred to as “third generation,” have the potential to better model the phenomena described by pathways. Although there is now a large variety of approaches used for this purpose, no review is currently available to offer guidance for potential users and developers. This review covers 22 such topology-based pathway analysis methods published in the last decade. We compare these methods based on: type of pathways analyzed (e.g., signaling or metabolic), input (subset of genes, all genes, fold changes, gene p-values, etc.), mathematical models, pathway scoring approaches, output (one or more pathway scores, p-values, etc.) and implementation (web-based, standalone, etc.). We identify and discuss challenges, arising both in methodology and in pathway representation, including inconsistent terminology, different data formats, lack of meaningful benchmarks, and the lack of tissue and condition specificity. PMID:24133454
A System-Level Pathway-Phenotype Association Analysis Using Synthetic Feature Random Forest
Pan, Qinxin; Hu, Ting; Malley, James D.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.
2015-01-01
As the cost of genome-wide genotyping decreases, the number of genome-wide association studies (GWAS) has increased considerably. However, the transition from GWAS findings to the underlying biology of various phenotypes remains challenging. As a result, due to its system-level interpretability, pathway analysis has become a popular tool for gaining insights on the underlying biology from high-throughput genetic association data. In pathway analyses, gene sets representing particular biological processes are tested for significant associations with a given phenotype. Most existing pathway analysis approaches rely on single-marker statistics and assume that pathways are independent of each other. As biological systems are driven by complex biomolecular interactions, embracing the complex relationships between single-nucleotide polymorphisms (SNPs) and pathways needs to be addressed. To incorporate the complexity of gene-gene interactions and pathway-pathway relationships, we propose a system-level pathway analysis approach, synthetic feature random forest (SF-RF), which is designed to detect pathway-phenotype associations without making assumptions about the relationships among SNPs or pathways. In our approach, the genotypes of SNPs in a particular pathway are aggregated into a synthetic feature representing that pathway via Random Forest (RF). Multiple synthetic features are analyzed using RF simultaneously and the significance of a synthetic feature indicates the significance of the corresponding pathway. We further complement SF-RF with pathway-based Statistical Epistasis Network (SEN) analysis that evaluates interactions among pathways. By investigating the pathway SEN, we hope to gain additional insights into the genetic mechanisms contributing to the pathway-phenotype association. We apply SF-RF to a population-based genetic study of bladder cancer and further investigate the mechanisms that help explain the pathway-phenotype associations using SEN. The bladder cancer associated pathways we found are both consistent with existing biological knowledge and reveal novel and plausible hypotheses for future biological validations. PMID:24535726
Pathway analysis of high-throughput biological data within a Bayesian network framework.
Isci, Senol; Ozturk, Cengizhan; Jones, Jon; Otu, Hasan H
2011-06-15
Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Proposed method takes into account the connectivity and relatedness between nodes of the pathway through factoring pathway topology in its model. Our simulations using synthetic data demonstrated robustness of our approach. We tested proposed method, Bayesian Pathway Analysis (BPA), on human microarray data regarding renal cell carcinoma (RCC) and compared our results with gene set enrichment analysis. BPA was able to find broader and more specific pathways related to RCC. Accompanying BPA software (BPAS) package is freely available for academic use at http://bumil.boun.edu.tr/bpa.
Detecting Disease Specific Pathway Substructures through an Integrated Systems Biology Approach
Alaimo, Salvatore; Marceca, Gioacchino Paolo; Ferro, Alfredo; Pulvirenti, Alfredo
2017-01-01
In the era of network medicine, pathway analysis methods play a central role in the prediction of phenotype from high throughput experiments. In this paper, we present a network-based systems biology approach capable of extracting disease-perturbed subpathways within pathway networks in connection with expression data taken from The Cancer Genome Atlas (TCGA). Our system extends pathways with missing regulatory elements, such as microRNAs, and their interactions with genes. The framework enables the extraction, visualization, and analysis of statistically significant disease-specific subpathways through an easy to use web interface. Our analysis shows that the methodology is able to fill the gap in current techniques, allowing a more comprehensive analysis of the phenomena underlying disease states. PMID:29657291
Service-based analysis of biological pathways
Zheng, George; Bouguettaya, Athman
2009-01-01
Background Computer-based pathway discovery is concerned with two important objectives: pathway identification and analysis. Conventional mining and modeling approaches aimed at pathway discovery are often effective at achieving either objective, but not both. Such limitations can be effectively tackled leveraging a Web service-based modeling and mining approach. Results Inspired by molecular recognitions and drug discovery processes, we developed a Web service mining tool, named PathExplorer, to discover potentially interesting biological pathways linking service models of biological processes. The tool uses an innovative approach to identify useful pathways based on graph-based hints and service-based simulation verifying user's hypotheses. Conclusion Web service modeling of biological processes allows the easy access and invocation of these processes on the Web. Web service mining techniques described in this paper enable the discovery of biological pathways linking these process service models. Algorithms presented in this paper for automatically highlighting interesting subgraph within an identified pathway network enable the user to formulate hypothesis, which can be tested out using our simulation algorithm that are also described in this paper. PMID:19796403
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano; Fontana, Paolo
2017-02-01
Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact:paolo.fontana@fmach.it
Mining disease fingerprints from within genetic pathways.
Nabhan, Ahmed Ragab; Sarkar, Indra Neil
2012-01-01
Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components ('fingerprints') of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ~77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways.
Mining Disease Fingerprints From Within Genetic Pathways
Nabhan, Ahmed Ragab; Sarkar, Indra Neil
2012-01-01
Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components (‘fingerprints’) of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ∼77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways. PMID:23304411
Chen, Xiao-Min; Feng, Ming-Jun; Shen, Cai-Jie; He, Bin; Du, Xian-Feng; Yu, Yi-Bo; Liu, Jing; Chu, Hui-Min
2017-07-01
The present study was designed to develop a novel method for identifying significant pathways associated with human hypertrophic cardiomyopathy (HCM), based on gene co‑expression analysis. The microarray dataset associated with HCM (E‑GEOD‑36961) was obtained from the European Molecular Biology Laboratory‑European Bioinformatics Institute database. Informative pathways were selected based on the Reactome pathway database and screening treatments. An empirical Bayes method was utilized to construct co‑expression networks for informative pathways, and a weight value was assigned to each pathway. Differential pathways were extracted based on weight threshold, which was calculated using a random model. In order to assess whether the co‑expression method was feasible, it was compared with traditional pathway enrichment analysis of differentially expressed genes, which were identified using the significance analysis of microarrays package. A total of 1,074 informative pathways were screened out for subsequent investigations and their weight values were also obtained. According to the threshold of weight value of 0.01057, 447 differential pathways, including folding of actin by chaperonin containing T‑complex protein 1 (CCT)/T‑complex protein 1 ring complex (TRiC), purine ribonucleoside monophosphate biosynthesis and ubiquinol biosynthesis, were obtained. Compared with traditional pathway enrichment analysis, the number of pathways obtained from the co‑expression approach was increased. The results of the present study demonstrated that this method may be useful to predict marker pathways for HCM. The pathways of folding of actin by CCT/TRiC and purine ribonucleoside monophosphate biosynthesis may provide evidence of the underlying molecular mechanisms of HCM, and offer novel therapeutic directions for HCM.
Topological analysis of metabolic control.
Sen, A K
1990-12-01
A topological approach is presented for the analysis of control and regulation in metabolic pathways. In this approach, the control structure of a metabolic pathway is represented by a weighted directed graph. From an inspection of the topology of the graph, the control coefficients of the enzymes are evaluated in a heuristic manner in terms of the enzyme elasticities. The major advantage of the topological approach is that it provides a visual framework for (1) calculating the control coefficients of the enzymes, (2) analyzing the cause-effect relationships of the individual enzymes, (3) assessing the relative importance of the enzymes in metabolic regulation, and (4) simplifying the structure of a given pathway, from a regulatory viewpoint. Results are obtained for (a) an unbranched pathway in the absence of feedback the feedforward regulation and (b) an unbranched pathway with feedback inhibition. Our formulation is based on the metabolic control theory of Kacser and Burns (1973) and Heinrich and Rapoport (1974).
Pathway Analysis in Attention Deficit Hyperactivity Disorder: An Ensemble Approach
Mooney, Michael A.; McWeeney, Shannon K.; Faraone, Stephen V.; Hinney, Anke; Hebebrand, Johannes; Nigg, Joel T.; Wilmot, Beth
2016-01-01
Despite a wealth of evidence for the role of genetics in attention deficit hyperactivity disorder (ADHD), specific and definitive genetic mechanisms have not been identified. Pathway analyses, a subset of gene-set analyses, extend the knowledge gained from genome-wide association studies (GWAS) by providing functional context for genetic associations. However, there are numerous methods for association testing of gene sets and no real consensus regarding the best approach. The present study applied six pathway analysis methods to identify pathways associated with ADHD in two GWAS datasets from the Psychiatric Genomics Consortium. Methods that utilize genotypes to model pathway-level effects identified more replicable pathway associations than methods using summary statistics. In addition, pathways implicated by more than one method were significantly more likely to replicate. A number of brain-relevant pathways, such as RhoA signaling, glycosaminoglycan biosynthesis, fibroblast growth factor receptor activity, and pathways containing potassium channel genes, were nominally significant by multiple methods in both datasets. These results support previous hypotheses about the role of regulation of neurotransmitter release, neurite outgrowth and axon guidance in contributing to the ADHD phenotype and suggest the value of cross-method convergence in evaluating pathway analysis results. PMID:27004716
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano
2017-01-01
Abstract Summary: Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Availability and Implementation: Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact: paolo.fontana@fmach.it PMID:28158604
Identifying novel glioma associated pathways based on systems biology level meta-analysis.
Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong
2013-01-01
With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.
MacLean, Adam L; Harrington, Heather A; Stumpf, Michael P H; Byrne, Helen M
2016-01-01
The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.
On-line metabolic pathway analysis based on metabolic signal flow diagram.
Shi, H; Shimizu, K
In this work, an integrated modeling approach based on a metabolic signal flow diagram and cellular energetics was used to model the metabolic pathway analysis for the cultivation of yeast on glucose. This approach enables us to make a clear analysis of the flow direction of the carbon fluxes in the metabolic pathways as well as of the degree of activation of a particular pathway for the synthesis of biomaterials for cell growth. The analyses demonstrate that the main metabolic pathways of Saccharomyces cerevisiae change significantly during batch culture. Carbon flow direction is toward glycolysis to satisfy the increase of requirement for precursors and energy. The enzymatic activation of TCA cycle seems to always be at normal level, which may result in the overflow of ethanol due to its limited capacity. The advantage of this approach is that it adopts both virtues of the metabolic signal flow diagram and the simple network analysis method, focusing on the investigation of the flow directions of carbon fluxes and the degree of activation of a particular pathway or reaction loop. All of the variables used in the model equations were determined on-line; the information obtained from the calculated metabolic coefficients may result in a better understanding of cell physiology and help to evaluate the state of the cell culture process. Copyright 1998 John Wiley & Sons, Inc.
Yi, Ming; Mudunuri, Uma; Che, Anney; Stephens, Robert M
2009-06-29
One of the challenges in the analysis of microarray data is to integrate and compare the selected (e.g., differential) gene lists from multiple experiments for common or unique underlying biological themes. A common way to approach this problem is to extract common genes from these gene lists and then subject these genes to enrichment analysis to reveal the underlying biology. However, the capacity of this approach is largely restricted by the limited number of common genes shared by datasets from multiple experiments, which could be caused by the complexity of the biological system itself. We now introduce a new Pathway Pattern Extraction Pipeline (PPEP), which extends the existing WPS application by providing a new pathway-level comparative analysis scheme. To facilitate comparing and correlating results from different studies and sources, PPEP contains new interfaces that allow evaluation of the pathway-level enrichment patterns across multiple gene lists. As an exploratory tool, this analysis pipeline may help reveal the underlying biological themes at both the pathway and gene levels. The analysis scheme provided by PPEP begins with multiple gene lists, which may be derived from different studies in terms of the biological contexts, applied technologies, or methodologies. These lists are then subjected to pathway-level comparative analysis for extraction of pathway-level patterns. This analysis pipeline helps to explore the commonality or uniqueness of these lists at the level of pathways or biological processes from different but relevant biological systems using a combination of statistical enrichment measurements, pathway-level pattern extraction, and graphical display of the relationships of genes and their associated pathways as Gene-Term Association Networks (GTANs) within the WPS platform. As a proof of concept, we have used the new method to analyze many datasets from our collaborators as well as some public microarray datasets. This tool provides a new pathway-level analysis scheme for integrative and comparative analysis of data derived from different but relevant systems. The tool is freely available as a Pathway Pattern Extraction Pipeline implemented in our existing software package WPS, which can be obtained at http://www.abcc.ncifcrf.gov/wps/wps_index.php.
Carbonetto, Peter; Stephens, Matthew
2013-01-01
Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn's disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and “Measles” pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14, and FYN) constitute novel putative T1D loci for further study. PMID:24098138
An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants.
Peng, Qing-Zhong; Zhu, Yue; Liu, Zhong; Du, Ci; Li, Ke-Gang; Xie, De-Yu
2012-09-01
Proanthocyanidins (PAs) are oligomers or polymers of plant flavan-3-ols and are important to plant adaptation in extreme environmental conditions. The characterization of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) has demonstrated the different biogenesis of four stereo-configurations of flavan-3-ols. It is important to understand whether ANR and the ANR pathway widely occur in the plant kingdom. Here, we report an integrated approach to demonstrate the ANR pathway in plants. This includes different methods to extract native ANR from different tissues of eight angiosperm plants (Lotus corniculatus, Desmodium uncinatum, Medicago sativa, Hordeum vulgare, Vitis vinifera, Vitis bellula, Parthenocissus heterophylla, and Cerasus serrulata) and one fern plant (Dryopteris pycnopteroides), a general enzymatic analysis approach to demonstrate the ANR activity, high-performance liquid chromatography-based fingerprinting to demonstrate (-)-epicatechin and other flavan-3-ol molecules, and phytochemical analysis of PAs. Results demonstrate that in addition to leaves of M. sativa, tissues of other eight plants contain an active ANR pathway. Particularly, the leaves, flowers and pods of D. uncinatum, which is a model plant to study LAR and the LAR pathways, are demonstrated to express an active ANR pathway. This finding suggests that the ANR pathway involves PA biosynthesis in D. uncinatum. In addition, a sequence BLAST analysis reveals that ANR homologs have been sequenced in plants from both gymnosperms and angiosperms. These data show that the ANR pathway to PA biosynthesis occurs in both seed and seedless vascular plants.
Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni
2013-01-01
Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function. PMID:24278029
Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni
2013-11-01
Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function.
Aghdasi, Nava; Whipple, Mark; Humphreys, Ian M; Moe, Kris S; Hannaford, Blake; Bly, Randall A
2018-06-01
Successful multidisciplinary treatment of skull base pathology requires precise preoperative planning. Current surgical approach (pathway) selection for these complex procedures depends on an individual surgeon's experiences and background training. Because of anatomical variation in both normal tissue and pathology (eg, tumor), a successful surgical pathway used on one patient is not necessarily the best approach on another patient. The question is how to define and obtain optimized patient-specific surgical approach pathways? In this article, we demonstrate that the surgeon's knowledge and decision making in preoperative planning can be modeled by a multiobjective cost function in a retrospective analysis of actual complex skull base cases. Two different approaches- weighted-sum approach and Pareto optimality-were used with a defined cost function to derive optimized surgical pathways based on preoperative computed tomography (CT) scans and manually designated pathology. With the first method, surgeon's preferences were input as a set of weights for each objective before the search. In the second approach, the surgeon's preferences were used to select a surgical pathway from the computed Pareto optimal set. Using preoperative CT and magnetic resonance imaging, the patient-specific surgical pathways derived by these methods were similar (85% agreement) to the actual approaches performed on patients. In one case where the actual surgical approach was different, revision surgery was required and was performed utilizing the computationally derived approach pathway.
Herskind, Carsten; Talbot, Christopher J.; Kerns, Sarah L.; Veldwijk, Marlon R.; Rosenstein, Barry S.; West, Catharine M. L.
2016-01-01
Adverse reactions in normal tissue after radiotherapy (RT) limit the dose that can be given to tumour cells. Since 80% of individual variation in clinical response is estimated to be caused by patient-related factors, identifying these factors might allow prediction of patients with increased risk of developing severe reactions. While inactivation of cell renewal is considered a major cause of toxicity in early-reacting normal tissues, complex interactions involving multiple cell types, cytokines, and hypoxia seem important for late reactions. Here, we review ‘omics’ approaches such as screening of genetic polymorphisms or gene expression analysis, and assess the potential of epigenetic factors, posttranslational modification, signal transduction, and metabolism. Furthermore, functional assays have suggested possible associations with clinical risk of adverse reaction. Pathway analysis incorporating different ‘omics’ approaches may be more efficient in identifying critical pathways than pathway analysis based on single ‘omics’ data sets. Integrating these pathways with functional assays may be powerful in identifying multiple subgroups of RT patients characterized by different mechanisms. Thus ‘omics’ and functional approaches may synergize if they are integrated into radiogenomics ‘systems biology’ to facilitate the goal of individualised radiotherapy. PMID:26944314
Vivar, Juan C; Pemu, Priscilla; McPherson, Ruth; Ghosh, Sujoy
2013-08-01
Abstract Unparalleled technological advances have fueled an explosive growth in the scope and scale of biological data and have propelled life sciences into the realm of "Big Data" that cannot be managed or analyzed by conventional approaches. Big Data in the life sciences are driven primarily via a diverse collection of 'omics'-based technologies, including genomics, proteomics, metabolomics, transcriptomics, metagenomics, and lipidomics. Gene-set enrichment analysis is a powerful approach for interrogating large 'omics' datasets, leading to the identification of biological mechanisms associated with observed outcomes. While several factors influence the results from such analysis, the impact from the contents of pathway databases is often under-appreciated. Pathway databases often contain variously named pathways that overlap with one another to varying degrees. Ignoring such redundancies during pathway analysis can lead to the designation of several pathways as being significant due to high content-similarity, rather than truly independent biological mechanisms. Statistically, such dependencies also result in correlated p values and overdispersion, leading to biased results. We investigated the level of redundancies in multiple pathway databases and observed large discrepancies in the nature and extent of pathway overlap. This prompted us to develop the application, ReCiPa (Redundancy Control in Pathway Databases), to control redundancies in pathway databases based on user-defined thresholds. Analysis of genomic and genetic datasets, using ReCiPa-generated overlap-controlled versions of KEGG and Reactome pathways, led to a reduction in redundancy among the top-scoring gene-sets and allowed for the inclusion of additional gene-sets representing possibly novel biological mechanisms. Using obesity as an example, bioinformatic analysis further demonstrated that gene-sets identified from overlap-controlled pathway databases show stronger evidence of prior association to obesity compared to pathways identified from the original databases.
Cavill, Rachel; Kamburov, Atanas; Ellis, James K; Athersuch, Toby J; Blagrove, Marcus S C; Herwig, Ralf; Ebbels, Timothy M D; Keun, Hector C
2011-03-01
Using transcriptomic and metabolomic measurements from the NCI60 cell line panel, together with a novel approach to integration of molecular profile data, we show that the biochemical pathways associated with tumour cell chemosensitivity to platinum-based drugs are highly coincident, i.e. they describe a consensus phenotype. Direct integration of metabolome and transcriptome data at the point of pathway analysis improved the detection of consensus pathways by 76%, and revealed associations between platinum sensitivity and several metabolic pathways that were not visible from transcriptome analysis alone. These pathways included the TCA cycle and pyruvate metabolism, lipoprotein uptake and nucleotide synthesis by both salvage and de novo pathways. Extending the approach across a wide panel of chemotherapeutics, we confirmed the specificity of the metabolic pathway associations to platinum sensitivity. We conclude that metabolic phenotyping could play a role in predicting response to platinum chemotherapy and that consensus-phenotype integration of molecular profiling data is a powerful and versatile tool for both biomarker discovery and for exploring the complex relationships between biological pathways and drug response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgans, D. L.; Lindberg, S. L.
The purpose of this technical approach document (TAD) is to document the assumptions, equations, and methods used to perform the groundwater pathway radiological dose calculations for the revised Hanford Site Composite Analysis (CA). DOE M 435.1-1, states, “The composite analysis results shall be used for planning, radiation protection activities, and future use commitments to minimize the likelihood that current low-level waste disposal activities will result in the need for future corrective or remedial actions to adequately protect the public and the environment.”
Verma, Mansi; Lal, Devi; Saxena, Anjali; Anand, Shailly; Kaur, Jasvinder; Kaur, Jaspreet; Lal, Rup
2013-12-01
Actinobacteria are known for their diverse metabolism and physiology. Some are dreadful human pathogens whereas some constitute the natural flora for human gut. Therefore, the understanding of metabolic pathways is a key feature for targeting the pathogenic bacteria without disturbing the symbiotic ones. A big challenge faced today is multiple drug resistance by Mycobacterium and other pathogens that utilize alternative fluxes/effluxes. With the availability of genome sequence, it is now feasible to conduct the comparative in silico analysis. Here we present a simplified approach to compare metabolic pathways so that the species specific enzyme may be traced and engineered for future therapeutics. The analyses of four key carbohydrate metabolic pathways, i.e., glycolysis, pyruvate metabolism, tri carboxylic acid cycle and pentose phosphate pathway suggest the presence of alternative fluxes. It was found that the upper pathway of glycolysis was highly variable in the actinobacterial genomes whereas lower glycolytic pathway was highly conserved. Likewise, pentose phosphate pathway was well conserved in contradiction to TCA cycle, which was found to be incomplete in majority of actinobacteria. The clustering based on presence and absence of genes of these metabolic pathways clearly revealed that members of different genera shared identical pathways and, therefore, provided an easy method to identify the metabolic similarities/differences between pathogenic and symbiotic organisms. The analyses could identify isoenzymes and some key enzymes that were found to be missing in some pathogenic actinobacteria. The present work defines a simple approach to explore the effluxes in four metabolic pathways within the phylum actinobacteria. The analysis clearly reflects that actinobacteria exhibit diverse routes for metabolizing substrates. The pathway comparison can help in finding the enzymes that can be used as drug targets for pathogens without effecting symbiotic organisms within the same host. This may help to prevail over the multiple drug resistance, for designing broad spectrum drugs, in food industries and other clinical research areas. © 2013.
Zhang, Fangbo; Tang, Shihuan; Liu, Xi; Gao, Yibo; Wang, Yanping
2013-01-01
At the molecular level, it is acknowledged that a TCM formula is often a complex system, which challenges researchers to fully understand its underlying pharmacological action. However, module detection technique developed from complex network provides new insight into systematic investigation of the mode of action of a TCM formula from the molecule perspective. We here proposed a computational approach integrating the module detection technique into a 2-class heterogeneous network (2-HN) which models the complex pharmacological system of a TCM formula. This approach takes three steps: construction of a 2-HN, identification of primary pharmacological units, and pathway analysis. We employed this approach to study Shu-feng-jie-du (SHU) formula, which aimed at discovering its molecular mechanism in defending against influenza infection. Actually, four primary pharmacological units were identified from the 2-HN for SHU formula and further analysis revealed numbers of biological pathways modulated by the four pharmacological units. 24 out of 40 enriched pathways that were ranked in top 10 corresponding to each of the four pharmacological units were found to be involved in the process of influenza infection. Therefore, this approach is capable of uncovering the mode of action underlying a TCM formula via module analysis. PMID:24376467
Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections
Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael
2016-01-01
Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573
Ozerov, Ivan V; Lezhnina, Ksenia V; Izumchenko, Evgeny; Artemov, Artem V; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N; Labat, Ivan; West, Michael D; Buzdin, Anton; Cantor, Charles R; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex
2016-11-16
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy.
Ozerov, Ivan V.; Lezhnina, Ksenia V.; Izumchenko, Evgeny; Artemov, Artem V.; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N.; Labat, Ivan; West, Michael D.; Buzdin, Anton; Cantor, Charles R.; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex
2016-01-01
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy. PMID:27848968
Reconstruction of metabolic pathways for the cattle genome
Seo, Seongwon; Lewin, Harris A
2009-01-01
Background Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement. Results An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1) as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly. Conclusion CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology. PMID:19284618
Xu, Xi-Xi; Bi, Jian-Ping; Ping, Li; Li, Ping; Li, Fei
2018-01-01
The purpose of this study was to investigate the therapeutic mechanism(s) of Clematis chinensis Osbeck/ Notopterygium incisum K.C. Ting ex H.T (CN). A network pharmacology approach integrating prediction of ingredients, target exploration, network construction, module partition and pathway analysis was used. This approach successfully helped to identify 12 active ingredients of CN, interacting with 13 key targets (Akt1, STAT3, TNFsf13, TP53, EPHB2, IL-10, IL-6, TNF, MAPK8, IL-8, RELA, ROS1 and STAT4). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that CN-regulated pathways were mainly classified into signal transduction and immune system. The present work may help to illustrate the mechanism(s) of action of CN, and it may provide a better understanding of antirheumatic effects.
Del Sorbo, Maria Rosaria; Balzano, Walter; Donato, Michele; Draghici, Sorin
2013-11-01
Differential expression of genes detected with the analysis of high throughput genomic experiments is a commonly used intermediate step for the identification of signaling pathways involved in the response to different biological conditions. The impact analysis was the first approach for the analysis of signaling pathways involved in a certain biological process that was able to take into account not only the magnitude of the expression change of the genes but also the topology of signaling pathways including the type of each interactions between the genes. In the impact analysis, signaling pathways are represented as weighted directed graphs with genes as nodes and the interactions between genes as edges. Edges weights are represented by a β factor, the regulatory efficiency, which is assumed to be equal to 1 in inductive interactions between genes and equal to -1 in repressive interactions. This study presents a similarity analysis between gene expression time series aimed to find correspondences with the regulatory efficiency, i.e. the β factor as found in a widely used pathway database. Here, we focused on correlations among genes directly connected in signaling pathways, assuming that the expression variations of upstream genes impact immediately downstream genes in a short time interval and without significant influences by the interactions with other genes. Time series were processed using three different similarity metrics. The first metric is based on the bit string matching; the second one is a specific application of the Dynamic Time Warping to detect similarities even in presence of stretching and delays; the third one is a quantitative comparative analysis resulting by an evaluation of frequency domain representation of time series: the similarity metric is the correlation between dominant spectral components. These three approaches are tested on real data and pathways, and a comparison is performed using Information Retrieval benchmark tools, indicating the frequency approach as the best similarity metric among the three, for its ability to detect the correlation based on the correspondence of the most significant frequency components. Copyright © 2013. Published by Elsevier Ireland Ltd.
Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis.
Antoniewicz, Maciek R
2015-12-01
Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kent, Jack W
2016-02-03
New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.
Harper, Marc; Gronenberg, Luisa; Liao, James; Lee, Christopher
2014-01-01
Discovering all the genetic causes of a phenotype is an important goal in functional genomics. We combine an experimental design for detecting independent genetic causes of a phenotype with a high-throughput sequencing analysis that maximizes sensitivity for comprehensively identifying them. Testing this approach on a set of 24 mutant strains generated for a metabolic phenotype with many known genetic causes, we show that this pathway-based phenotype sequencing analysis greatly improves sensitivity of detection compared with previous methods, and reveals a wide range of pathways that can cause this phenotype. We demonstrate our approach on a metabolic re-engineering phenotype, the PEP/OAA metabolic node in E. coli, which is crucial to a substantial number of metabolic pathways and under renewed interest for biofuel research. Out of 2157 mutations in these strains, pathway-phenoseq discriminated just five gene groups (12 genes) as statistically significant causes of the phenotype. Experimentally, these five gene groups, and the next two high-scoring pathway-phenoseq groups, either have a clear connection to the PEP metabolite level or offer an alternative path of producing oxaloacetate (OAA), and thus clearly explain the phenotype. These high-scoring gene groups also show strong evidence of positive selection pressure, compared with strictly neutral selection in the rest of the genome.
Prioritizing biological pathways by recognizing context in time-series gene expression data.
Lee, Jusang; Jo, Kyuri; Lee, Sunwon; Kang, Jaewoo; Kim, Sun
2016-12-23
The primary goal of pathway analysis using transcriptome data is to find significantly perturbed pathways. However, pathway analysis is not always successful in identifying pathways that are truly relevant to the context under study. A major reason for this difficulty is that a single gene is involved in multiple pathways. In the KEGG pathway database, there are 146 genes, each of which is involved in more than 20 pathways. Thus activation of even a single gene will result in activation of many pathways. This complex relationship often makes the pathway analysis very difficult. While we need much more powerful pathway analysis methods, a readily available alternative way is to incorporate the literature information. In this study, we propose a novel approach for prioritizing pathways by combining results from both pathway analysis tools and literature information. The basic idea is as follows. Whenever there are enough articles that provide evidence on which pathways are relevant to the context, we can be assured that the pathways are indeed related to the context, which is termed as relevance in this paper. However, if there are few or no articles reported, then we should rely on the results from the pathway analysis tools, which is termed as significance in this paper. We realized this concept as an algorithm by introducing Context Score and Impact Score and then combining the two into a single score. Our method ranked truly relevant pathways significantly higher than existing pathway analysis tools in experiments with two data sets. Our novel framework was implemented as ContextTRAP by utilizing two existing tools, TRAP and BEST. ContextTRAP will be a useful tool for the pathway based analysis of gene expression data since the user can specify the context of the biological experiment in a set of keywords. The web version of ContextTRAP is available at http://biohealth.snu.ac.kr/software/contextTRAP .
Graphite Web: web tool for gene set analysis exploiting pathway topology
Sales, Gabriele; Calura, Enrica; Martini, Paolo; Romualdi, Chiara
2013-01-01
Graphite web is a novel web tool for pathway analyses and network visualization for gene expression data of both microarray and RNA-seq experiments. Several pathway analyses have been proposed either in the univariate or in the global and multivariate context to tackle the complexity and the interpretation of expression results. These methods can be further divided into ‘topological’ and ‘non-topological’ methods according to their ability to gain power from pathway topology. Biological pathways are, in fact, not only gene lists but can be represented through a network where genes and connections are, respectively, nodes and edges. To this day, the most used approaches are non-topological and univariate although they miss the relationship among genes. On the contrary, topological and multivariate approaches are more powerful, but difficult to be used by researchers without bioinformatic skills. Here we present Graphite web, the first public web server for pathway analysis on gene expression data that combines topological and multivariate pathway analyses with an efficient system of interactive network visualizations for easy results interpretation. Specifically, Graphite web implements five different gene set analyses on three model organisms and two pathway databases. Graphite Web is freely available at http://graphiteweb.bio.unipd.it/. PMID:23666626
Wei, Qingyi Wei
2012-01-01
Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene–environment interactions. To determine gene–asbestos interactions in lung cancer risk, we conducted genome-wide gene–environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10–6, which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10–5). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene–asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk. Abbreviations:CIconfidence intervalEenvironmentFDRfalse discovery rateGgeneGSEAgene-set-enrichment analysisGWASgenome-wide association studiesi-GSEAimproved gene-set-enrichment analysis approachORodds ratioSNPsingle nucleotide polymorphism PMID:22637743
Vivar, Juan C.; Sarzynski, Mark A.; Sung, Yun Ju; Timmons, James A.; Bouchard, Claude; Rankinen, Tuomo
2013-01-01
We previously reported the findings from a genome-wide association study of the response of maximal oxygen uptake (V̇o2max) to an exercise program. Here we follow up on these results to generate hypotheses on genes, pathways, and systems involved in the ability to respond to exercise training. A systems biology approach can help us better establish a comprehensive physiological description of what underlies V̇o2maxtrainability. The primary material for this exploration was the individual single-nucleotide polymorphism (SNP), SNP-gene mapping, and statistical significance levels. We aimed to generate novel hypotheses through analyses that go beyond statistical association of single-locus markers. This was accomplished through three complementary approaches: 1) building de novo evidence of gene candidacy through informatics-driven literature mining; 2) aggregating evidence from statistical associations to link variant enrichment in biological pathways to V̇o2max trainability; and 3) predicting possible consequences of variants residing in the pathways of interest. We started with candidate gene prioritization followed by pathway analysis focused on overrepresentation analysis and gene set enrichment analysis. Subsequently, leads were followed using in silico analysis of predicted SNP functions. Pathways related to cellular energetics (pantothenate and CoA biosynthesis; PPAR signaling) and immune functions (complement and coagulation cascades) had the highest levels of SNP burden. In particular, long-chain fatty acid transport and fatty acid oxidation genes and sequence variants were found to influence differences in V̇o2max trainability. Together, these methods allow for the hypothesis-driven ranking and prioritization of genes and pathways for future experimental testing and validation. PMID:23990238
Chin, Yoon-Ming; Tan, Lu Ping; Abdul Aziz, Norazlin; Mushiroda, Taisei; Kubo, Michiaki; Mohd Kornain, Noor Kaslina; Tan, Geok Wee; Khoo, Alan Soo-Beng; Krishnan, Gopala; Pua, Kin-Choo; Yap, Yoke-Yeow; Teo, Soo-Hwang; Lim, Paul Vey-Hong; Nakamura, Yusuke; Lum, Chee Lun; Ng, Ching-Ching
2016-10-15
Nasopharyngeal carcinoma (NPC) is an epithelial squamous cell carcinoma on the mucosal lining of the nasopharynx. The etiology of NPC remains elusive despite many reported studies. Most studies employ a single platform approach, neglecting the cumulative influence of both the genome and transcriptome toward NPC development. We aim to employ an integrated pathway approach to identify dysregulated pathways linked to NPC. Our approach combines imputation NPC GWAS data from a Malaysian cohort as well as published expression data GSE12452 from both NPC and non-NPC nasopharynx tissues. Pathway association for GWAS data was performed using MAGENTA while for expression data, GSA-SNP was used with gene p values derived from differential expression values from GEO2R. Our study identified NPC association in the gene ontology (GO) axonemal dynein complex pathway (pGWAS-GSEA = 1.98 × 10(-2) ; pExpr-GSEA = 1.27 × 10(-24) ; pBonf-Combined = 4.15 × 10(-21) ). This association was replicated in a separate cohort using gene expression data from NPC and non-NPC nasopharynx tissues (pAmpliSeq-GSEA = 6.56 × 10(-4) ). Loss of function in the axonemal dynein complex causes impaired cilia function, leading to poor mucociliary clearance and subsequently upper or lower respiratory tract infection, the former of which includes the nasopharynx. Our approach illustrates the potential use of integrated pathway analysis in detecting gene sets involved in the development of NPC in the Malaysian cohort. © 2016 UICC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.
Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significancemore » analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.« less
Piegorsch, Walter W.; Lussier, Yves A.
2015-01-01
Motivation: The conventional approach to personalized medicine relies on molecular data analytics across multiple patients. The path to precision medicine lies with molecular data analytics that can discover interpretable single-subject signals (N-of-1). We developed a global framework, N-of-1-pathways, for a mechanistic-anchored approach to single-subject gene expression data analysis. We previously employed a metric that could prioritize the statistical significance of a deregulated pathway in single subjects, however, it lacked in quantitative interpretability (e.g. the equivalent to a gene expression fold-change). Results: In this study, we extend our previous approach with the application of statistical Mahalanobis distance (MD) to quantify personal pathway-level deregulation. We demonstrate that this approach, N-of-1-pathways Paired Samples MD (N-OF-1-PATHWAYS-MD), detects deregulated pathways (empirical simulations), while not inflating false-positive rate using a study with biological replicates. Finally, we establish that N-OF-1-PATHWAYS-MD scores are, biologically significant, clinically relevant and are predictive of breast cancer survival (P < 0.05, n = 80 invasive carcinoma; TCGA RNA-sequences). Conclusion: N-of-1-pathways MD provides a practical approach towards precision medicine. The method generates the magnitude and the biological significance of personal deregulated pathways results derived solely from the patient’s transcriptome. These pathways offer the opportunities for deriving clinically actionable decisions that have the potential to complement the clinical interpretability of personal polymorphisms obtained from DNA acquired or inherited polymorphisms and mutations. In addition, it offers an opportunity for applicability to diseases in which DNA changes may not be relevant, and thus expand the ‘interpretable ‘omics’ of single subjects (e.g. personalome). Availability and implementation: http://www.lussierlab.net/publications/N-of-1-pathways. Contact: yves@email.arizona.edu or piegorsch@math.arizona.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072495
Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka
2017-09-05
Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic approach for ADPKD redressal. Copyright © 2017 Elsevier B.V. All rights reserved.
Duell, Eric J.; Yu, Kai; Risch, Harvey A.; Olson, Sara H.; Kooperberg, Charles; Wolpin, Brian M.; Jiao, Li; Dong, Xiaoqun; Wheeler, Bill; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Fuchs, Charles S.; Gallinger, Steven; Gross, Myron; Hartge, Patricia; Hoover, Robert N.; Holly, Elizabeth A.; Jacobs, Eric J.; Klein, Alison P.; LaCroix, Andrea; Mandelson, Margaret T.; Petersen, Gloria; Zheng, Wei; Agalliu, Ilir; Albanes, Demetrius; Boutron-Ruault, Marie-Christine; Bracci, Paige M.; Buring, Julie E.; Canzian, Federico; Chang, Kenneth; Chanock, Stephen J.; Cotterchio, Michelle; Gaziano, J.Michael; Giovannucci, Edward L.; Goggins, Michael; Hallmans, Göran; Hankinson, Susan E.; Hoffman Bolton, Judith A.; Hunter, David J.; Hutchinson, Amy; Jacobs, Kevin B.; Jenab, Mazda; Khaw, Kay-Tee; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; McWilliams, Robert R.; Mendelsohn, Julie B.; Patel, Alpa V.; Rabe, Kari G.; Riboli, Elio; Shu, Xiao-Ou; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Virtamo, Jarmo; Visvanathan, Kala; Watters, Joanne; Yu, Herbert; Zeleniuch-Jacquotte, Anne; Stolzenberg-Solomon, Rachael Z.
2012-01-01
Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case–control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10−6, 1.6 × 10−5, 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10−5), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H. pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer. PMID:22523087
Cannistraci, Carlo V; Ogorevc, Jernej; Zorc, Minja; Ravasi, Timothy; Dovc, Peter; Kunej, Tanja
2013-02-14
Cryptorchidism is the most frequent congenital disorder in male children; however the genetic causes of cryptorchidism remain poorly investigated. Comparative integratomics combined with systems biology approach was employed to elucidate genetic factors and molecular pathways underlying testis descent. Literature mining was performed to collect genomic loci associated with cryptorchidism in seven mammalian species. Information regarding the collected candidate genes was stored in MySQL relational database. Genomic view of the loci was presented using Flash GViewer web tool (http://gmod.org/wiki/Flashgviewer/). DAVID Bioinformatics Resources 6.7 was used for pathway enrichment analysis. Cytoscape plug-in PiNGO 1.11 was employed for protein-network-based prediction of novel candidate genes. Relevant protein-protein interactions were confirmed and visualized using the STRING database (version 9.0). The developed cryptorchidism gene atlas includes 217 candidate loci (genes, regions involved in chromosomal mutations, and copy number variations) identified at the genomic, transcriptomic, and proteomic level. Human orthologs of the collected candidate loci were presented using a genomic map viewer. The cryptorchidism gene atlas is freely available online: http://www.integratomics-time.com/cryptorchidism/. Pathway analysis suggested the presence of twelve enriched pathways associated with the list of 179 literature-derived candidate genes. Additionally, a list of 43 network-predicted novel candidate genes was significantly associated with four enriched pathways. Joint pathway analysis of the collected and predicted candidate genes revealed the pivotal importance of the muscle-contraction pathway in cryptorchidism and evidence for genomic associations with cardiomyopathy pathways in RASopathies. The developed gene atlas represents an important resource for the scientific community researching genetics of cryptorchidism. The collected data will further facilitate development of novel genetic markers and could be of interest for functional studies in animals and human. The proposed network-based systems biology approach elucidates molecular mechanisms underlying co-presence of cryptorchidism and cardiomyopathy in RASopathies. Such approach could also aid in molecular explanation of co-presence of diverse and apparently unrelated clinical manifestations in other syndromes.
Pathway-based variant enrichment analysis on the example of dilated cardiomyopathy.
Backes, Christina; Meder, Benjamin; Lai, Alan; Stoll, Monika; Rühle, Frank; Katus, Hugo A; Keller, Andreas
2016-01-01
Genome-wide association (GWA) studies have significantly contributed to the understanding of human genetic variation and its impact on clinical traits. Frequently only a limited number of highly significant associations were considered as biologically relevant. Increasingly, network analysis of affected genes is used to explore the potential role of the genetic background on disease mechanisms. Instead of first determining affected genes or calculating scores for genes and performing pathway analysis on the gene level, we integrated both steps and directly calculated enrichment on the genetic variant level. The respective approach has been tested on dilated cardiomyopathy (DCM) GWA data as showcase. To compute significance values, 5000 permutation tests were carried out and p values were adjusted for multiple testing. For 282 KEGG pathways, we computed variant enrichment scores and significance values. Of these, 65 were significant. Surprisingly, we discovered the "nucleotide excision repair" and "tuberculosis" pathways to be most significantly associated with DCM (p = 10(-9)). The latter pathway is driven by genes of the HLA-D antigen group, a finding that closely resembles previous discoveries made by expression quantitative trait locus analysis in the context of DCM-GWA. Next, we implemented a sub-network-based analysis, which searches for affected parts of KEGG, however, independent on the pre-defined pathways. Here, proteins of the contractile apparatus of cardiac cells as well as the FAS sub-network were found to be affected by common polymorphisms in DCM. In this work, we performed enrichment analysis directly on variants, leveraging the potential to discover biological information in thousands of published GWA studies. The applied approach is cutoff free and considers a ranked list of genetic variants as input.
Exploring metabolic pathways in genome-scale networks via generating flux modes.
Rezola, A; de Figueiredo, L F; Brock, M; Pey, J; Podhorski, A; Wittmann, C; Schuster, S; Bockmayr, A; Planes, F J
2011-02-15
The reconstruction of metabolic networks at the genome scale has allowed the analysis of metabolic pathways at an unprecedented level of complexity. Elementary flux modes (EFMs) are an appropriate concept for such analysis. However, their number grows in a combinatorial fashion as the size of the metabolic network increases, which renders the application of EFMs approach to large metabolic networks difficult. Novel methods are expected to deal with such complexity. In this article, we present a novel optimization-based method for determining a minimal generating set of EFMs, i.e. a convex basis. We show that a subset of elements of this convex basis can be effectively computed even in large metabolic networks. Our method was applied to examine the structure of pathways producing lysine in Escherichia coli. We obtained a more varied and informative set of pathways in comparison with existing methods. In addition, an alternative pathway to produce lysine was identified using a detour via propionyl-CoA, which shows the predictive power of our novel approach. The source code in C++ is available upon request.
Centler, Florian; Heße, Falk; Thullner, Martin
2013-09-01
At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.
Li, Xinzhong; Long, Jintao; He, Taigang; Belshaw, Robert; Scott, James
2015-01-01
Previous studies have evaluated gene expression in Alzheimer’s disease (AD) brains to identify mechanistic processes, but have been limited by the size of the datasets studied. Here we have implemented a novel meta-analysis approach to identify differentially expressed genes (DEGs) in published datasets comprising 450 late onset AD (LOAD) brains and 212 controls. We found 3124 DEGs, many of which were highly correlated with Braak stage and cerebral atrophy. Pathway Analysis revealed the most perturbed pathways to be (a) nitric oxide and reactive oxygen species in macrophages (NOROS), (b) NFkB and (c) mitochondrial dysfunction. NOROS was also up-regulated, and mitochondrial dysfunction down-regulated, in healthy ageing subjects. Upstream regulator analysis predicted the TLR4 ligands, STAT3 and NFKBIA, for activated pathways and RICTOR for mitochondrial genes. Protein-protein interaction network analysis emphasised the role of NFKB; identified a key interaction of CLU with complement; and linked TYROBP, TREM2 and DOK3 to modulation of LPS signalling through TLR4 and to phosphatidylinositol metabolism. We suggest that NEUROD6, ZCCHC17, PPEF1 and MANBAL are potentially implicated in LOAD, with predicted links to calcium signalling and protein mannosylation. Our study demonstrates a highly injurious combination of TLR4-mediated NFKB signalling, NOROS inflammatory pathway activation, and mitochondrial dysfunction in LOAD. PMID:26202100
Du, Yiyang; He, Bosai; Li, Qing; He, Jiao; Wang, Di; Bi, Kaishun
2017-07-01
Suan-Zao-Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan-Zao-Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in-depth pharmacological research of Suan-Zao-Ren granule and provided a chemical basis for its rational. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors.
Weiner, Michael; Tröndle, Julia; Albermann, Christoph; Sprenger, Georg A; Weuster-Botz, Dirk
2016-01-01
In the last decades, targeted metabolic engineering of microbial cells has become one of the major tools in bioprocess design and optimization. For successful application, a detailed knowledge is necessary about the relevant metabolic pathways and their regulation inside the cells. Since in vitro experiments cannot display process conditions and behavior properly, process data about the cells' metabolic state have to be collected in vivo. For this purpose, special techniques and methods are necessary. Therefore, most techniques enabling in vivo characterization of metabolic pathways rely on perturbation experiments, which can be divided into dynamic and steady-state approaches. To avoid any process disturbance, approaches which enable perturbation of cell metabolism in parallel to the continuing production process are reasonable. Furthermore, the fast dynamics of microbial production processes amplifies the need of parallelized data generation. These points motivate the development of a parallelized approach for multiple metabolic perturbation experiments outside the operating production reactor. An appropriate approach for in vivo characterization of metabolic pathways is presented and applied exemplarily to a microbial L-phenylalanine production process on a 15 L-scale.
Durmaz, Arda; Henderson, Tim A D; Brubaker, Douglas; Bebek, Gurkan
2017-01-01
Large scale genomics studies have generated comprehensive molecular characterization of numerous cancer types. Subtypes for many tumor types have been established; however, these classifications are based on molecular characteristics of a small gene sets with limited power to detect dysregulation at the patient level. We hypothesize that frequent graph mining of pathways to gather pathways functionally relevant to tumors can characterize tumor types and provide opportunities for personalized therapies. In this study we present an integrative omics approach to group patients based on their altered pathway characteristics and show prognostic differences within breast cancer (p < 9:57E - 10) and glioblastoma multiforme (p < 0:05) patients. We were able validate this approach in secondary RNA-Seq datasets with p < 0:05 and p < 0:01 respectively. We also performed pathway enrichment analysis to further investigate the biological relevance of dysregulated pathways. We compared our approach with network-based classifier algorithms and showed that our unsupervised approach generates more robust and biologically relevant clustering whereas previous approaches failed to report specific functions for similar patient groups or classify patients into prognostic groups. These results could serve as a means to improve prognosis for future cancer patients, and to provide opportunities for improved treatment options and personalized interventions. The proposed novel graph mining approach is able to integrate PPI networks with gene expression in a biologically sound approach and cluster patients in to clinically distinct groups. We have utilized breast cancer and glioblastoma multiforme datasets from microarray and RNA-Seq platforms and identified disease mechanisms differentiating samples. Supplementary methods, figures, tables and code are available at https://github.com/bebeklab/dysprog.
A novel bi-level meta-analysis approach: applied to biological pathway analysis.
Nguyen, Tin; Tagett, Rebecca; Donato, Michele; Mitrea, Cristina; Draghici, Sorin
2016-02-01
The accumulation of high-throughput data in public repositories creates a pressing need for integrative analysis of multiple datasets from independent experiments. However, study heterogeneity, study bias, outliers and the lack of power of available methods present real challenge in integrating genomic data. One practical drawback of many P-value-based meta-analysis methods, including Fisher's, Stouffer's, minP and maxP, is that they are sensitive to outliers. Another drawback is that, because they perform just one statistical test for each individual experiment, they may not fully exploit the potentially large number of samples within each study. We propose a novel bi-level meta-analysis approach that employs the additive method and the Central Limit Theorem within each individual experiment and also across multiple experiments. We prove that the bi-level framework is robust against bias, less sensitive to outliers than other methods, and more sensitive to small changes in signal. For comparative analysis, we demonstrate that the intra-experiment analysis has more power than the equivalent statistical test performed on a single large experiment. For pathway analysis, we compare the proposed framework versus classical meta-analysis approaches (Fisher's, Stouffer's and the additive method) as well as against a dedicated pathway meta-analysis package (MetaPath), using 1252 samples from 21 datasets related to three human diseases, acute myeloid leukemia (9 datasets), type II diabetes (5 datasets) and Alzheimer's disease (7 datasets). Our framework outperforms its competitors to correctly identify pathways relevant to the phenotypes. The framework is sufficiently general to be applied to any type of statistical meta-analysis. The R scripts are available on demand from the authors. sorin@wayne.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Tejera, Eduardo; Cruz-Monteagudo, Maykel; Burgos, Germán; Sánchez, María-Eugenia; Sánchez-Rodríguez, Aminael; Pérez-Castillo, Yunierkis; Borges, Fernanda; Cordeiro, Maria Natália Dias Soeiro; Paz-Y-Miño, César; Rebelo, Irene
2017-08-08
Preeclampsia is a multifactorial disease with unknown pathogenesis. Even when recent studies explored this disease using several bioinformatics tools, the main objective was not directed to pathogenesis. Additionally, consensus prioritization was proved to be highly efficient in the recognition of genes-disease association. However, not information is available about the consensus ability to early recognize genes directly involved in pathogenesis. Therefore our aim in this study is to apply several theoretical approaches to explore preeclampsia; specifically those genes directly involved in the pathogenesis. We firstly evaluated the consensus between 12 prioritization strategies to early recognize pathogenic genes related to preeclampsia. A communality analysis in the protein-protein interaction network of previously selected genes was done including further enrichment analysis. The enrichment analysis includes metabolic pathways as well as gene ontology. Microarray data was also collected and used in order to confirm our results or as a strategy to weight the previously enriched pathways. The consensus prioritized gene list was rationally filtered to 476 genes using several criteria. The communality analysis showed an enrichment of communities connected with VEGF-signaling pathway. This pathway is also enriched considering the microarray data. Our result point to VEGF, FLT1 and KDR as relevant pathogenic genes, as well as those connected with NO metabolism. Our results revealed that consensus strategy improve the detection and initial enrichment of pathogenic genes, at least in preeclampsia condition. Moreover the combination of the first percent of the prioritized genes with protein-protein interaction network followed by communality analysis reduces the gene space. This approach actually identifies well known genes related with pathogenesis. However, genes like HSP90, PAK2, CD247 and others included in the first 1% of the prioritized list need to be further explored in preeclampsia pathogenesis through experimental approaches.
Assessing natural direct and indirect effects through multiple pathways.
Lange, Theis; Rasmussen, Mette; Thygesen, Lau Caspar
2014-02-15
Within the fields of epidemiology, interventions research and social sciences researchers are often faced with the challenge of decomposing the effect of an exposure into different causal pathways working through defined mediator variables. The goal of such analyses is often to understand the mechanisms of the system or to suggest possible interventions. The case of a single mediator, thus implying only 2 causal pathways (direct and indirect) from exposure to outcome, has been extensively studied. By using the framework of counterfactual variables, researchers have established theoretical properties and developed powerful tools. However, in practical problems, it is not uncommon to have several distinct causal pathways from exposure to outcome operating through different mediators. In this article, we suggest a widely applicable approach to quantifying and ranking different causal pathways. The approach is an extension of the natural effect models proposed by Lange et al. (Am J Epidemiol. 2012;176(3):190-195). By allowing the analysis of distinct multiple pathways, the suggested approach adds to the capabilities of modern mediation techniques. Furthermore, the approach can be implemented using standard software, and we have included with this article implementation examples using R (R Foundation for Statistical Computing, Vienna, Austria) and Stata software (StataCorp LP, College Station, Texas).
Multi-membership gene regulation in pathway based microarray analysis
2011-01-01
Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531
Multi-membership gene regulation in pathway based microarray analysis.
Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M
2011-09-22
Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.
Wilson, Paul; Larminie, Christopher; Smith, Rona
2016-01-01
To use literature mining to catalogue Behçet's associated genes, and advanced computational methods to improve the understanding of the pathways and signalling mechanisms that lead to the typical clinical characteristics of Behçet's patients. To extend this technique to identify potential treatment targets for further experimental validation. Text mining methods combined with gene enrichment tools, pathway analysis and causal analysis algorithms. This approach identified 247 human genes associated with Behçet's disease and the resulting disease map, comprising 644 nodes and 19220 edges, captured important details of the relationships between these genes and their associated pathways, as described in diverse data repositories. Pathway analysis has identified how Behçet's associated genes are likely to participate in innate and adaptive immune responses. Causal analysis algorithms have identified a number of potential therapeutic strategies for further investigation. Computational methods have captured pertinent features of the prominent disease characteristics presented in Behçet's disease and have highlighted NOD2, ICOS and IL18 signalling as potential therapeutic strategies.
Although metabolomics can successfully detect effects from overall contaminant exposure, its ability to elucidate specific metabolic pathways impacted by those exposures can be hindered by bottlenecks in metabolite identification. However, improved analytical approaches that com...
RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG
2015-01-01
The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways
NASA Astrophysics Data System (ADS)
Yang, Yunlai; Arouri, Khaled
2016-03-01
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways
Yang, Yunlai; Arouri, Khaled
2016-01-01
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations. PMID:26965479
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways.
Yang, Yunlai; Arouri, Khaled
2016-03-11
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.
Telomere sequence content can be used to determine ALT activity in tumours
Lee, Michael; Teber, Erdahl T; Holmes, Oliver; Nones, Katia; Patch, Ann-Marie; Dagg, Rebecca A; Lau, Loretta M S; Lee, Joyce H; Napier, Christine E; Arthur, Jonathan W; Grimmond, Sean M; Hayward, Nicholas K; Johansson, Peter A; Mann, Graham J; Scolyer, Richard A; Wilmott, James S; Reddel, Roger R; Pearson, John V; Waddell, Nicola; Pickett, Hilda A
2018-01-01
Abstract The replicative immortality of human cancer cells is achieved by activation of a telomere maintenance mechanism (TMM). To achieve this, cancer cells utilise either the enzyme telomerase, or the Alternative Lengthening of Telomeres (ALT) pathway. These distinct molecular pathways are incompletely understood with respect to activation and propagation, as well as their associations with clinical outcomes. We have identified significant differences in the telomere repeat composition of tumours that use ALT compared to tumours that do not. We then employed a machine learning approach to stratify tumours according to telomere repeat content with an accuracy of 91.6%. Importantly, this classification approach is applicable across all tumour types. Analysis of pathway mutations that were under-represented in ALT tumours, across 1,075 tumour samples, revealed that the autophagy, cell cycle control of chromosomal replication, and transcriptional regulatory network in embryonic stem cells pathways are involved in the survival of ALT tumours. Overall, our approach demonstrates that telomere sequence content can be used to stratify ALT activity in cancers, and begin to define the molecular pathways involved in ALT activation. PMID:29718321
Reconstructing biochemical pathways from time course data.
Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago
2007-03-01
Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.
Srivastava, Isha; Khurana, Pooja; Yadav, Mohini; Hasija, Yasha
2017-12-01
Aging, though an inevitable part of life, is becoming a worldwide social and economic problem. Healthy aging is usually marked by low probability of age related disorders. Good therapeutic approaches are still in need to cure age related disorders. Occurrence of more than one ARD in an individual, expresses the need of discovery of such target proteins, which can affect multiple ARDs. Advanced scientific and medical research technologies throughout last three decades have arrived to the point where lots of key molecular determinants affect human disorders can be examined thoroughly. In this study, we designed and executed an approach to prioritize drugs that may target multiple age related disorders. Our methodology, focused on the analysis of biological pathways and protein protein interaction networks that may contribute to the pharmacology of age related disorders, included various steps such as retrieval and analysis of data, protein-protein interaction network analysis, and statistical and comparative analysis of topological coefficients, pathway, and functional enrichment analysis, and identification of drug-target proteins. We assume that the identified molecular determinants may be prioritized for further screening as novel drug targets to cure multiple ARDs. Based on the analysis, an online tool named as 'ARDnet' has been developed to construct and demonstrate ARD interactions at the level of PPI, ARDs and ARDs protein interaction, ARDs pathway interaction and drug-target interaction. The tool is freely made available at http://genomeinformatics.dtu.ac.in/ARDNet/Index.html. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Sunho; Kim, Seung-Jun; Yu, Donghyeon; Peña-Llopis, Samuel; Gao, Jianjiong; Park, Jin Suk; Chen, Beibei; Norris, Jessie; Wang, Xinlei; Chen, Min; Kim, Minsoo; Yong, Jeongsik; Wardak, Zabi; Choe, Kevin; Story, Michael; Starr, Timothy; Cheong, Jae-Ho; Hwang, Tae Hyun
2016-01-01
Motivation: Identification of altered pathways that are clinically relevant across human cancers is a key challenge in cancer genomics. Precise identification and understanding of these altered pathways may provide novel insights into patient stratification, therapeutic strategies and the development of new drugs. However, a challenge remains in accurately identifying pathways altered by somatic mutations across human cancers, due to the diverse mutation spectrum. We developed an innovative approach to integrate somatic mutation data with gene networks and pathways, in order to identify pathways altered by somatic mutations across cancers. Results: We applied our approach to The Cancer Genome Atlas (TCGA) dataset of somatic mutations in 4790 cancer patients with 19 different types of tumors. Our analysis identified cancer-type-specific altered pathways enriched with known cancer-relevant genes and targets of currently available drugs. To investigate the clinical significance of these altered pathways, we performed consensus clustering for patient stratification using member genes in the altered pathways coupled with gene expression datasets from 4870 patients from TCGA, and multiple independent cohorts confirmed that the altered pathways could be used to stratify patients into subgroups with significantly different clinical outcomes. Of particular significance, certain patient subpopulations with poor prognosis were identified because they had specific altered pathways for which there are available targeted therapies. These findings could be used to tailor and intensify therapy in these patients, for whom current therapy is suboptimal. Availability and implementation: The code is available at: http://www.taehyunlab.org. Contact: jhcheong@yuhs.ac or taehyun.hwang@utsouthwestern.edu or taehyun.cs@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26635139
Computation of elementary modes: a unifying framework and the new binary approach
Gagneur, Julien; Klamt, Steffen
2004-01-01
Background Metabolic pathway analysis has been recognized as a central approach to the structural analysis of metabolic networks. The concept of elementary (flux) modes provides a rigorous formalism to describe and assess pathways and has proven to be valuable for many applications. However, computing elementary modes is a hard computational task. In recent years we assisted in a multiplication of algorithms dedicated to it. We require a summarizing point of view and a continued improvement of the current methods. Results We show that computing the set of elementary modes is equivalent to computing the set of extreme rays of a convex cone. This standard mathematical representation provides a unified framework that encompasses the most prominent algorithmic methods that compute elementary modes and allows a clear comparison between them. Taking lessons from this benchmark, we here introduce a new method, the binary approach, which computes the elementary modes as binary patterns of participating reactions from which the respective stoichiometric coefficients can be computed in a post-processing step. We implemented the binary approach in FluxAnalyzer 5.1, a software that is free for academics. The binary approach decreases the memory demand up to 96% without loss of speed giving the most efficient method available for computing elementary modes to date. Conclusions The equivalence between elementary modes and extreme ray computations offers opportunities for employing tools from polyhedral computation for metabolic pathway analysis. The new binary approach introduced herein was derived from this general theoretical framework and facilitates the computation of elementary modes in considerably larger networks. PMID:15527509
Construction and engineering of large biochemical pathways via DNA assembler
Shao, Zengyi; Zhao, Huimin
2015-01-01
Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442
Integrated omics analysis of specialized metabolism in medicinal plants.
Rai, Amit; Saito, Kazuki; Yamazaki, Mami
2017-05-01
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Double Dutch: A Tool for Designing Combinatorial Libraries of Biological Systems.
Roehner, Nicholas; Young, Eric M; Voigt, Christopher A; Gordon, D Benjamin; Densmore, Douglas
2016-06-17
Recently, semirational approaches that rely on combinatorial assembly of characterized DNA components have been used to engineer biosynthetic pathways. In practice, however, it is not practical to assemble and test millions of pathway variants in order to elucidate how different DNA components affect the behavior of a pathway. To address this challenge, we apply a rigorous mathematical approach known as design of experiments (DOE) that can be used to construct empirical models of system behavior without testing all variants. To support this approach, we have developed a tool named Double Dutch, which uses a formal grammar and heuristic algorithms to automate the process of DOE library design. Compared to designing by hand, Double Dutch enables users to more efficiently and scalably design libraries of pathway variants that can be used in a DOE framework and uniquely provides a means to flexibly balance design considerations of statistical analysis, construction cost, and risk of homologous recombination, thereby demonstrating the utility of automating decision making when faced with complex design trade-offs.
2013-01-01
Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/. PMID:23822816
A systematic analysis of a mi-RNA inter-pathway regulatory motif
2013-01-01
Background The continuing discovery of new types and functions of small non-coding RNAs is suggesting the presence of regulatory mechanisms far more complex than the ones currently used to study and design Gene Regulatory Networks. Just focusing on the roles of micro RNAs (miRNAs), they have been found to be part of several intra-pathway regulatory motifs. However, inter-pathway regulatory mechanisms have been often neglected and require further investigation. Results In this paper we present the result of a systems biology study aimed at analyzing a high-level inter-pathway regulatory motif called Pathway Protection Loop, not previously described, in which miRNAs seem to play a crucial role in the successful behavior and activation of a pathway. Through the automatic analysis of a large set of public available databases, we found statistical evidence that this inter-pathway regulatory motif is very common in several classes of KEGG Homo Sapiens pathways and concurs in creating a complex regulatory network involving several pathways connected by this specific motif. The role of this motif seems also confirmed by a deeper review of other research activities on selected representative pathways. Conclusions Although previous studies suggested transcriptional regulation mechanism at the pathway level such as the Pathway Protection Loop, a high-level analysis like the one proposed in this paper is still missing. The understanding of higher-level regulatory motifs could, as instance, lead to new approaches in the identification of therapeutic targets because it could unveil new and “indirect” paths to activate or silence a target pathway. However, a lot of work still needs to be done to better uncover this high-level inter-pathway regulation including enlarging the analysis to other small non-coding RNA molecules. PMID:24152805
Ahir, Bhavesh K.; Sanders, Alison P.; Rager, Julia E.
2013-01-01
Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. Objectives: First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibition of the identified pathway prevents developmental defects. Methods: Seven environmental metals were selected for inclusion in the computational analysis: arsenic, cadmium, chromium, lead, mercury, nickel, and selenium. We used an in silico strategy to predict genes and pathways associated with both metal exposure and developmental defects. The most significant pathway was identified and tested using an in ovo whole chick embryo culture assay. We further evaluated the role of the pathway as a mediator of metal-induced toxicity using the in vitro midbrain micromass culture assay. Results: The glucocorticoid receptor pathway was computationally predicted to be a key mediator of multiple metal-induced birth defects. In the chick embryo model, structural malformations induced by inorganic arsenic (iAs) were prevented when signaling of the glucocorticoid receptor pathway was inhibited. Further, glucocorticoid receptor inhibition demonstrated partial to complete protection from both iAs- and cadmium-induced neurodevelopmental toxicity in vitro. Conclusions: Our findings highlight a novel approach to computationally identify a targeted biological pathway for examining birth defects prevention. PMID:23458687
Ravichandran, Srikanth; Michelucci, Alessandro; del Sol, Antonio
2018-01-01
Alzheimer's disease (AD) is a major neurodegenerative disease and is one of the most common cause of dementia in older adults. Among several factors, neuroinflammation is known to play a critical role in the pathogenesis of chronic neurodegenerative diseases. In particular, studies of brains affected by AD show a clear involvement of several inflammatory pathways. Furthermore, depending on the brain regions affected by the disease, the nature and the effect of inflammation can vary. Here, in order to shed more light on distinct and common features of inflammation in different brain regions affected by AD, we employed a computational approach to analyze gene expression data of six site-specific neuronal populations from AD patients. Our network based computational approach is driven by the concept that a sustained inflammatory environment could result in neurotoxicity leading to the disease. Thus, our method aims to infer intracellular signaling pathways/networks that are likely to be constantly activated or inhibited due to persistent inflammatory conditions. The computational analysis identified several inflammatory mediators, such as tumor necrosis factor alpha (TNF-a)-associated pathway, as key upstream receptors/ligands that are likely to transmit sustained inflammatory signals. Further, the analysis revealed that several inflammatory mediators were mainly region specific with few commonalities across different brain regions. Taken together, our results show that our integrative approach aids identification of inflammation-related signaling pathways that could be responsible for the onset or the progression of AD and can be applied to study other neurodegenerative diseases. Furthermore, such computational approaches can enable the translation of clinical omics data toward the development of novel therapeutic strategies for neurodegenerative diseases. PMID:29551980
Ravichandran, Srikanth; Michelucci, Alessandro; Del Sol, Antonio
2018-01-01
Alzheimer's disease (AD) is a major neurodegenerative disease and is one of the most common cause of dementia in older adults. Among several factors, neuroinflammation is known to play a critical role in the pathogenesis of chronic neurodegenerative diseases. In particular, studies of brains affected by AD show a clear involvement of several inflammatory pathways. Furthermore, depending on the brain regions affected by the disease, the nature and the effect of inflammation can vary. Here, in order to shed more light on distinct and common features of inflammation in different brain regions affected by AD, we employed a computational approach to analyze gene expression data of six site-specific neuronal populations from AD patients. Our network based computational approach is driven by the concept that a sustained inflammatory environment could result in neurotoxicity leading to the disease. Thus, our method aims to infer intracellular signaling pathways/networks that are likely to be constantly activated or inhibited due to persistent inflammatory conditions. The computational analysis identified several inflammatory mediators, such as tumor necrosis factor alpha (TNF-a)-associated pathway, as key upstream receptors/ligands that are likely to transmit sustained inflammatory signals. Further, the analysis revealed that several inflammatory mediators were mainly region specific with few commonalities across different brain regions. Taken together, our results show that our integrative approach aids identification of inflammation-related signaling pathways that could be responsible for the onset or the progression of AD and can be applied to study other neurodegenerative diseases. Furthermore, such computational approaches can enable the translation of clinical omics data toward the development of novel therapeutic strategies for neurodegenerative diseases.
Howes, Mark T.; Kirkham, Matthew; Riches, James; Cortese, Katia; Walser, Piers J.; Simpson, Fiona; Hill, Michelle M.; Jones, Alun; Lundmark, Richard; Lindsay, Margaret R.; Hernandez-Deviez, Delia J.; Hadzic, Gordana; McCluskey, Adam; Bashir, Rumasia; Liu, Libin; Pilch, Paul; McMahon, Harvey; Robinson, Phillip J.; Hancock, John F.; Mayor, Satyajit
2010-01-01
Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells. PMID:20713605
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies
Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike
2017-01-01
The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.
Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin
2017-01-01
The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.
NASA Astrophysics Data System (ADS)
Antle, J. M.; Valdivia, R. O.; Jones, J.; Rosenzweig, C.; Ruane, A. C.
2013-12-01
This presentation provides an overview of the new methods developed by researchers in the Agricultural Model Inter-comparison and Improvement Project (AgMIP) for regional climate impact assessment and analysis of adaptation in agricultural systems. This approach represents a departure from approaches in the literature in several dimensions. First, the approach is based on the analysis of agricultural systems (not individual crops) and is inherently trans-disciplinary: it is based on a deep collaboration among a team of climate scientists, agricultural scientists and economists to design and implement regional integrated assessments of agricultural systems. Second, in contrast to previous approaches that have imposed future climate on models based on current socio-economic conditions, this approach combines bio-physical and economic models with a new type of pathway analysis (Representative Agricultural Pathways) to parameterize models consistent with a plausible future world in which climate change would be occurring. Third, adaptation packages for the agricultural systems in a region are designed by the research team with a level of detail that is useful to decision makers, such as research administrators and donors, who are making agricultural R&D investment decisions. The approach is illustrated with examples from AgMIP's projects currently being carried out in Africa and South Asia.
Inter-species pathway perturbation prediction via data-driven detection of functional homology.
Hafemeister, Christoph; Romero, Roberto; Bilal, Erhan; Meyer, Pablo; Norel, Raquel; Rhrissorrakrai, Kahn; Bonneau, Richard; Tarca, Adi L
2015-02-15
Experiments in animal models are often conducted to infer how humans will respond to stimuli by assuming that the same biological pathways will be affected in both organisms. The limitations of this assumption were tested in the IMPROVER Species Translation Challenge, where 52 stimuli were applied to both human and rat cells and perturbed pathways were identified. In the Inter-species Pathway Perturbation Prediction sub-challenge, multiple teams proposed methods to use rat transcription data from 26 stimuli to predict human gene set and pathway activity under the same perturbations. Submissions were evaluated using three performance metrics on data from the remaining 26 stimuli. We present two approaches, ranked second in this challenge, that do not rely on sequence-based orthology between rat and human genes to translate pathway perturbation state but instead identify transcriptional response orthologs across a set of training conditions. The translation from rat to human accomplished by these so-called direct methods is not dependent on the particular analysis method used to identify perturbed gene sets. In contrast, machine learning-based methods require performing a pathway analysis initially and then mapping the pathway activity between organisms. Unlike most machine learning approaches, direct methods can be used to predict the activation of a human pathway for a new (test) stimuli, even when that pathway was never activated by a training stimuli. Gene expression data are available from ArrayExpress (accession E-MTAB-2091), while software implementations are available from http://bioinformaticsprb.med.wayne.edu?p=50 and http://goo.gl/hJny3h. christoph.hafemeister@nyu.edu or atarca@med.wayne.edu. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
Climate Risk Informed Decision Analysis: A Hypothetical Application to the Waas Region
NASA Astrophysics Data System (ADS)
Gilroy, Kristin; Mens, Marjolein; Haasnoot, Marjolijn; Jeuken, Ad
2016-04-01
More frequent and intense hydrologic events under climate change are expected to enhance water security and flood risk management challenges worldwide. Traditional planning approaches must be adapted to address climate change and develop solutions with an appropriate level of robustness and flexibility. The Climate Risk Informed Decision Analysis (CRIDA) method is a novel planning approach embodying a suite of complementary methods, including decision scaling and adaptation pathways. Decision scaling offers a bottom-up approach to assess risk and tailors the complexity of the analysis to the problem at hand and the available capacity. Through adaptation pathway,s an array of future strategies towards climate robustness are developed, ranging in flexibility and immediacy of investments. Flexible pathways include transfer points to other strategies to ensure that the system can be adapted if future conditions vary from those expected. CRIDA combines these two approaches in a stakeholder driven process which guides decision makers through the planning and decision process, taking into account how the confidence in the available science, the consequences in the system, and the capacity of institutions should influence strategy selection. In this presentation, we will explain the CRIDA method and compare it to existing planning processes, such as the US Army Corps of Engineers Principles and Guidelines as well as Integrated Water Resources Management Planning. Then, we will apply the approach to a hypothetical case study for the Waas Region, a large downstream river basin facing rapid development threatened by increased flood risks. Through the case study, we will demonstrate how a stakeholder driven process can be used to evaluate system robustness to climate change; develop adaptation pathways for multiple objectives and criteria; and illustrate how varying levels of confidence, consequences, and capacity would play a role in the decision making process, specifically in regards to the level of robustness and flexibility in the selected strategy. This work will equip practitioners and decision makers with an example of a structured process for decision making under climate uncertainty that can be scaled as needed to the problem at hand. This presentation builds further on another submitted abstract "Climate Risk Informed Decision Analysis (CRIDA): A novel practical guidance for Climate Resilient Investments and Planning" by Jeuken et al.
Suresh, Rahul; Li, Xing; Chiriac, Anca; Goel, Kashish; Terzic, Andre; Perez-Terzic, Carmen; Nelson, Timothy J
2014-09-01
Whole-genome gene expression analysis has been successfully utilized to diagnose, prognosticate, and identify potential therapeutic targets for high-risk cardiovascular diseases. However, the feasibility of this approach to identify outcome-related genes and dysregulated pathways following first-time myocardial infarction (AMI) remains unknown and may offer a novel strategy to detect affected expressome networks that predict long-term outcome. Whole-genome expression microarray on blood samples from normal cardiac function controls (n=21) and first-time AMI patients (n=31) within 48-hours post-MI revealed expected differential gene expression profiles enriched for inflammation and immune-response pathways. To determine molecular signatures at the time of AMI associated with long-term outcomes, transcriptional profiles from sub-groups of AMI patients with (n=5) or without (n=22) any recurrent events over an 18-month follow-up were compared. This analysis identified 559 differentially-expressed genes. Bioinformatic analysis of this differential gene-set for associated pathways revealed 1) increasing disease severity in AMI patients is associated with a decreased expression of genes involved in the developmental epithelial-to-mesenchymal transition pathway, and 2) modulation of cholesterol transport genes that include ABCA1, CETP, APOA1, and LDLR is associated with clinical outcome. Differentially regulated genes and modulated pathways were identified that were associated with recurrent cardiovascular outcomes in first-time AMI patients. This cell-based approach for risk stratification in AMI could represent a novel, non-invasive platform to anticipate modifiable pathways and therapeutic targets to optimize long-term outcome for AMI patients and warrants further study to determine the role of metabolic remodeling and regenerative processes required for optimal outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Nani; Zhao, Guizhi; Zhang, Yang; Wang, Xuping; Zhao, Lisha; Xu, Pingcui; Shou, Dan
2017-10-27
BACKGROUND Osteoporosis is a complex bone disorder with a genetic predisposition, and is a cause of health problems worldwide. In China, Curculigo orchioides (CO) has been widely used as a herbal medicine in the prevention and treatment of osteoporosis. However, research on the mechanism of action of CO is still lacking. The aim of this study was to identify the absorbable components, potential targets, and associated treatment pathways of CO using a network pharmacology approach. MATERIAL AND METHODS We explored the chemical components of CO and used the five main principles of drug absorption to identify absorbable components. Targets for the therapeutic actions of CO were obtained from the PharmMapper server database. Pathway enrichment analysis was performed using the Comparative Toxicogenomics Database (CTD). Cytoscape was used to visualize the multiple components-multiple target-multiple pathways-multiple disease network for CO. RESULTS We identified 77 chemical components of CO, of which 32 components could be absorbed in the blood. These potential active components of CO regulated 83 targets and affected 58 pathways. Data analysis showed that the genes for estrogen receptor alpha (ESR1) and beta (ESR2), and the gene for 11 beta-hydroxysteroid dehydrogenase type 1, or cortisone reductase (HSD11B1) were the main targets of CO. Endocrine regulatory factors and factors regulating calcium reabsorption, steroid hormone biosynthesis, and metabolic pathways were related to these main targets and to ten corresponding compounds. CONCLUSIONS The network pharmacology approach used in our study has attempted to explain the mechanisms for the effects of CO in the prevention and treatment of osteoporosis, and provides an alternative approach to the investigation of the effects of this complex compound.
A chain reaction approach to modelling gene pathways.
Cheng, Gary C; Chen, Dung-Tsa; Chen, James J; Soong, Seng-Jaw; Lamartiniere, Coral; Barnes, Stephen
2012-08-01
BACKGROUND: Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. RESULTS: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By applying it to microarray data, the chain reaction model computed a set of reaction rates to examine the effects of three polyphenols (EGCG, genistein, and resveratrol) on gene expression in this pathway during puberty. We first performed statistical analysis to test the time factor on the estrogen synthesis pathway. Global tests were used to evaluate an overall gene expression change during puberty for each experimental group. Then, a chain reaction model was employed to simulate the estrogen synthesis pathway. Specifically, the model computed the reaction rates in a set of ordinary differential equations to describe interactions between genes in the pathway (A reaction rate K of A to B represents gene A will induce gene B per unit at a rate of K; we give details in the "method" section). Since disparate changes of gene expression may cause numerical error problems in solving these differential equations, we used an implicit scheme to address this issue. We first applied the chain reaction model to obtain the reaction rates for the control group. A sensitivity study was conducted to evaluate how well the model fits to the control group data at Day 50. Results showed a small bias and mean square error. These observations indicated the model is robust to low random noises and has a good fit for the control group. Then the chain reaction model derived from the control group data was used to predict gene expression at Day 50 for the three polyphenol groups. If these nutrients affect the estrogen synthesis pathways during puberty, we expect discrepancy between observed and expected expressions. Results indicated some genes had large differences in the EGCG (e.g., Hsd3b and Sts) and the resveratrol (e.g., Hsd3b and Hrmt12) groups. CONCLUSIONS: In the present study, we have presented (I) experimental studies of the effect of nutrient diets on the gene expression changes in a selected estrogen synthesis pathway. This experiment is valuable because it allows us to examine how the nutrient-containing diets regulate gene expression in the estrogen synthesis pathway during puberty; (II) global tests to assess an overall association of this particular pathway with time factor by utilizing generalized linear models to analyze microarray data; and (III) a chain reaction model to simulate the pathway. This is a novel application because we are able to translate the gene pathway into the chemical reactions in which each reaction channel describes gene-gene relationship in the pathway. In the chain reaction model, the implicit scheme is employed to efficiently solve the differential equations. Data analysis results show the proposed model is capable of predicting gene expression changes and demonstrating the effect of nutrient-containing diets on gene expression changes in the pathway. One of the objectives of this study is to explore and develop a numerical approach for simulating the gene expression change so that it can be applied and calibrated when the data of more time slices are available, and thus can be used to interpolate the expression change at a desired time point without conducting expensive experiments for a large amount of time points. Hence, we are not claiming this is either essential or the most efficient way for simulating this problem, rather a mathematical/numerical approach that can model the expression change of a large set of genes of a complex pathway. In addition, we understand the limitation of this experiment and realize that it is still far from being a complete model of predicting nutrient-gene interactions. The reason is that in the present model, the reaction rates were estimated based on available data at two time points; hence, the gene expression change is dependent upon the reaction rates and a linear function of the gene expressions. More data sets containing gene expression at various time slices are needed in order to improve the present model so that a non-linear variation of gene expression changes at different time can be predicted.
Combinatorial complexity of pathway analysis in metabolic networks.
Klamt, Steffen; Stelling, Jörg
2002-01-01
Elementary flux mode analysis is a promising approach for a pathway-oriented perspective of metabolic networks. However, in larger networks it is hampered by the combinatorial explosion of possible routes. In this work we give some estimations on the combinatorial complexity including theoretical upper bounds for the number of elementary flux modes in a network of a given size. In a case study, we computed the elementary modes in the central metabolism of Escherichia coli while utilizing four different substrates. Interestingly, although the number of modes occurring in this complex network can exceed half a million, it is still far below the upper bound. Hence, to a certain extent, pathway analysis of central catabolism is feasible to assess network properties such as flexibility and functionality.
Gilabert, Aude; Curran, David M; Harvey, Simon C; Wasmuth, James D
2016-06-27
Signalling pathways underlie development, behaviour and pathology. To understand patterns in the evolution of signalling pathways, we undertook a comprehensive investigation of the pathways that control the switch between growth and developmentally quiescent dauer in 24 species of nematodes spanning the phylum. Our analysis of 47 genes across these species indicates that the pathways and their interactions are not conserved throughout the Nematoda. For example, the TGF-β pathway was co-opted into dauer control relatively late in a lineage that led to the model species Caenorhabditis elegans. We show molecular adaptations described in C. elegans that are restricted to its genus or even just to the species. Similarly, our analyses both identify species where particular genes have been lost and situations where apparently incorrect orthologues have been identified. Our analysis also highlights the difficulties of working with genome sequences from non-model species as reliance on the published gene models would have significantly restricted our understanding of how signalling pathways evolve. Our approach therefore offers a robust standard operating procedure for genomic comparisons.
Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M
2017-03-27
Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome-wide analysis to improved alignment quality, suggesting that enhanced genomic alignments may reveal many more conserved intronic sequences.
NASA Astrophysics Data System (ADS)
Koseki, Jun; Matsui, Hidetoshi; Konno, Masamitsu; Nishida, Naohiro; Kawamoto, Koichi; Kano, Yoshihiro; Mori, Masaki; Doki, Yuichiro; Ishii, Hideshi
2016-02-01
Bioinformatics and computational modelling are expected to offer innovative approaches in human medical science. In the present study, we performed computational analyses and made predictions using transcriptome and metabolome datasets obtained from fluorescence-based visualisations of chemotherapy-resistant cancer stem cells (CSCs) in the human oesophagus. This approach revealed an uncharacterized role for the ornithine metabolic pathway in the survival of chemotherapy-resistant CSCs. The present study fastens this rationale for further characterisation that may lead to the discovery of innovative drugs against robust CSCs.
Drug target inference through pathway analysis of genomics data
Ma, Haisu; Zhao, Hongyu
2013-01-01
Statistical modeling coupled with bioinformatics is commonly used for drug discovery. Although there exist many approaches for single target based drug design and target inference, recent years have seen a paradigm shift to system-level pharmacological research. Pathway analysis of genomics data represents one promising direction for computational inference of drug targets. This article aims at providing a comprehensive review on the evolving issues is this field, covering methodological developments, their pros and cons, as well as future research directions. PMID:23369829
Metabolic Flux Analysis in Isotope Labeling Experiments Using the Adjoint Approach.
Mottelet, Stephane; Gaullier, Gil; Sadaka, Georges
2017-01-01
Comprehension of metabolic pathways is considerably enhanced by metabolic flux analysis (MFA-ILE) in isotope labeling experiments. The balance equations are given by hundreds of algebraic (stationary MFA) or ordinary differential equations (nonstationary MFA), and reducing the number of operations is therefore a crucial part of reducing the computation cost. The main bottleneck for deterministic algorithms is the computation of derivatives, particularly for nonstationary MFA. In this article, we explain how the overall identification process may be speeded up by using the adjoint approach to compute the gradient of the residual sum of squares. The proposed approach shows significant improvements in terms of complexity and computation time when it is compared with the usual (direct) approach. Numerical results are obtained for the central metabolic pathways of Escherichia coli and are validated against reference software in the stationary case. The methods and algorithms described in this paper are included in the sysmetab software package distributed under an Open Source license at http://forge.scilab.org/index.php/p/sysmetab/.
ERIC Educational Resources Information Center
Woods, Jeffrey G.
2012-01-01
Purpose: The purpose of this research is to provide an in-depth analysis of the labor market for apprentice training in the US construction industry. Also, the paper analyzes the learning process of apprentices and discusses the role of apprenticeships as a pathway to higher education. Design/methodology/approach: The interdisciplinary approach of…
Bar-Even, Arren; Noor, Elad; Flamholz, Avi; Milo, Ron
2013-01-01
Electrosynthesis is a promising approach that enables the biological production of commodities, like fuels and fine chemicals, using renewably produced electricity. Several techniques have been proposed to mediate the transfer of electrons from the cathode to living cells. Of these, the electroproduction of formate as a mediator seems especially promising: formate is readily soluble, of low toxicity and can be produced at relatively high efficiency and at reasonable current density. While organisms that are capable of formatotrophic growth, i.e. growth on formate, exist naturally, they are generally less suitable for bulk cultivation and industrial needs. Hence, it may be helpful to engineer a model organism of industrial relevance, such as E. coli, for growth on formate. There are numerous metabolic pathways that can potentially support formatotrophic growth. Here we analyze these diverse pathways according to various criteria including biomass yield, thermodynamic favorability, chemical motive force, kinetics and the practical challenges posed by their expression. We find that the reductive glycine pathway, composed of the tetrahydrofolate system, the glycine cleavage system, serine hydroxymethyltransferase and serine deaminase, is a promising candidate to support electrosynthesis in E. coli. The approach presented here exemplifies how combining different computational approaches into a systematic analysis methodology provides assistance in redesigning metabolism. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2012 Elsevier B.V. All rights reserved.
PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data.
Hernández-de-Diego, Rafael; Tarazona, Sonia; Martínez-Mira, Carlos; Balzano-Nogueira, Leandro; Furió-Tarí, Pedro; Pappas, Georgios J; Conesa, Ana
2018-05-25
The increasing availability of multi-omic platforms poses new challenges to data analysis. Joint visualization of multi-omics data is instrumental in better understanding interconnections across molecular layers and in fully utilizing the multi-omic resources available to make biological discoveries. We present here PaintOmics 3, a web-based resource for the integrated visualization of multiple omic data types onto KEGG pathway diagrams. PaintOmics 3 combines server-end capabilities for data analysis with the potential of modern web resources for data visualization, providing researchers with a powerful framework for interactive exploration of their multi-omics information. Unlike other visualization tools, PaintOmics 3 covers a comprehensive pathway analysis workflow, including automatic feature name/identifier conversion, multi-layered feature matching, pathway enrichment, network analysis, interactive heatmaps, trend charts, and more. It accepts a wide variety of omic types, including transcriptomics, proteomics and metabolomics, as well as region-based approaches such as ATAC-seq or ChIP-seq data. The tool is freely available at www.paintomics.org.
Peifer, Susanne; Schneider, Konstantin; Nürenberg, Gudrun; Volmer, Dietrich A; Heinzle, Elmar
2012-11-01
Intermediates of the purine biosynthesis pathway play key roles in cellular metabolism including nucleic acid synthesis and signal mediation. In addition, they are also of major interest to the biotechnological industry as several intermediates either possess flavor-enhancing characteristics or are applied in medical therapy. In this study, we have developed an analytical method for quantitation of 12 intermediates from the purine biosynthesis pathway including important nucleotides and their corresponding nucleosides and nucleobases. The approach comprised a single-step acidic extraction/quenching procedure, followed by quantitative electrospray LC-MS/MS analysis. The assay was validated in terms of accuracy, precision, reproducibility, and applicability for complex biological matrices. The method was subsequently applied for determination of free intracellular pool sizes of purine biosynthetic pathway intermediates in the two Gram-positive bacteria Corynebacterium glutamicum and Corynebacterium ammoniagenes. Importantly, no ion pair reagents were applied in this approach as usually required for liquid chromatography analysis of large classes of diverse metabolites.
Zhang, Bo; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Wu, Ziyin; Zhang, Wenjuan; Yang, Xiaoyan; Gong, Fukai; Li, Yuerong; Chen, Xiaoyu; Gao, Shuo; Chen, Xuetong; Li, Yan; Lu, Aiping; Wang, Yonghua
2016-02-25
The development of modern omics technology has not significantly improved the efficiency of drug development. Rather precise and targeted drug discovery remains unsolved. Here a large-scale cross-species molecular network association (CSMNA) approach for targeted drug screening from natural sources is presented. The algorithm integrates molecular network omics data from humans and 267 plants and microbes, establishing the biological relationships between them and extracting evolutionarily convergent chemicals. This technique allows the researcher to assess targeted drugs for specific human diseases based on specific plant or microbe pathways. In a perspective validation, connections between the plant Halliwell-Asada (HA) cycle and the human Nrf2-ARE pathway were verified and the manner by which the HA cycle molecules act on the human Nrf2-ARE pathway as antioxidants was determined. This shows the potential applicability of this approach in drug discovery. The current method integrates disparate evolutionary species into chemico-biologically coherent circuits, suggesting a new cross-species omics analysis strategy for rational drug development.
R-Based Software for the Integration of Pathway Data into Bioinformatic Algorithms
Kramer, Frank; Bayerlová, Michaela; Beißbarth, Tim
2014-01-01
Putting new findings into the context of available literature knowledge is one approach to deal with the surge of high-throughput data results. Furthermore, prior knowledge can increase the performance and stability of bioinformatic algorithms, for example, methods for network reconstruction. In this review, we examine software packages for the statistical computing framework R, which enable the integration of pathway data for further bioinformatic analyses. Different approaches to integrate and visualize pathway data are identified and packages are stratified concerning their features according to a number of different aspects: data import strategies, the extent of available data, dependencies on external tools, integration with further analysis steps and visualization options are considered. A total of 12 packages integrating pathway data are reviewed in this manuscript. These are supplemented by five R-specific packages for visualization and six connector packages, which provide access to external tools. PMID:24833336
Ye, Hanhui; Yuan, Jinjin; Wang, Zhengwu; Huang, Aiqiong; Liu, Xiaolong; Han, Xiao; Chen, Yahong
2016-01-01
Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS.
Integrated Proteomic Approaches for Understanding Toxicity of Environmental Chemicals
To apply quantitative proteomic analysis to the evaluation of toxicity of environmental chemicals, we have developed an integrated proteomic technology platform. This platform has been applied to the analysis of the toxic effects and pathways of many important environmental chemi...
Application of Monte Carlo cross-validation to identify pathway cross-talk in neonatal sepsis.
Zhang, Yuxia; Liu, Cui; Wang, Jingna; Li, Xingxia
2018-03-01
To explore genetic pathway cross-talk in neonates with sepsis, an integrated approach was used in this paper. To explore the potential relationships between differently expressed genes between normal uninfected neonates and neonates with sepsis and pathways, genetic profiling and biologic signaling pathway were first integrated. For different pathways, the score was obtained based upon the genetic expression by quantitatively analyzing the pathway cross-talk. The paired pathways with high cross-talk were identified by random forest classification. The purpose of the work was to find the best pairs of pathways able to discriminate sepsis samples versus normal samples. The results found 10 pairs of pathways, which were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways were identified according to analysis of extensive literature. Impact statement To find the best pairs of pathways able to discriminate sepsis samples versus normal samples, an RF classifier, the DS obtained by DEGs of paired pathways significantly associated, and Monte Carlo cross-validation were applied in this paper. Ten pairs of pathways were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways ((7) IL-6 Signaling and Phospholipase C Signaling (PLC); (8) Glucocorticoid Receptor (GR) Signaling and Dendritic Cell Maturation) were identified according to analysis of extensive literature.
B-cell Ligand Processing Pathways Detected by Large-scale Comparative Analysis
Towfic, Fadi; Gupta, Shakti; Honavar, Vasant; Subramaniam, Shankar
2012-01-01
The initiation of B-cell ligand recognition is a critical step for the generation of an immune response against foreign bodies. We sought to identify the biochemical pathways involved in the B-cell ligand recognition cascade and sets of ligands that trigger similar immunological responses. We utilized several comparative approaches to analyze the gene coexpression networks generated from a set of microarray experiments spanning 33 different ligands. First, we compared the degree distributions of the generated networks. Second, we utilized a pairwise network alignment algorithm, BiNA, to align the networks based on the hubs in the networks. Third, we aligned the networks based on a set of KEGG pathways. We summarized our results by constructing a consensus hierarchy of pathways that are involved in B cell ligand recognition. The resulting pathways were further validated through literature for their common physiological responses. Collectively, the results based on our comparative analyses of degree distributions, alignment of hubs, and alignment based on KEGG pathways provide a basis for molecular characterization of the immune response states of B-cells and demonstrate the power of comparative approaches (e.g., gene coexpression network alignment algorithms) in elucidating biochemical pathways involved in complex signaling events in cells. PMID:22917187
Rodd, Z A; Bertsch, B A; Strother, W N; Le-Niculescu, H; Balaraman, Y; Hayden, E; Jerome, R E; Lumeng, L; Nurnberger, J I; Edenberg, H J; McBride, W J; Niculescu, A B
2007-08-01
We describe a comprehensive translational approach for identifying candidate genes for alcoholism. The approach relies on the cross-matching of animal model brain gene expression data with human genetic linkage data, as well as human tissue data and biological roles data, an approach termed convergent functional genomics. An analysis of three animal model paradigms, based on inbred alcohol-preferring (iP) and alcohol-non-preferring (iNP) rats, and their response to treatments with alcohol, was used. A comprehensive analysis of microarray gene expression data from five key brain regions (frontal cortex, amygdala, caudate-putamen, nucleus accumbens and hippocampus) was carried out. The Bayesian-like integration of multiple independent lines of evidence, each by itself lacking sufficient discriminatory power, led to the identification of high probability candidate genes, pathways and mechanisms for alcoholism. These data reveal that alcohol has pleiotropic effects on multiple systems, which may explain the diverse neuropsychiatric and medical pathology in alcoholism. Some of the pathways identified suggest avenues for pharmacotherapy of alcoholism with existing agents, such as angiotensin-converting enzyme (ACE) inhibitors. Experiments we carried out in alcohol-preferring rats with an ACE inhibitor show a marked modulation of alcohol intake. Other pathways are new potential targets for drug development. The emergent overall picture is that physical and physiological robustness may permit alcohol-preferring individuals to withstand the aversive effects of alcohol. In conjunction with a higher reactivity to its rewarding effects, they may able to ingest enough of this nonspecific drug for a strong hedonic and addictive effect to occur.
USDA-ARS?s Scientific Manuscript database
A gene co-expression network was generated using a dual RNA-seq study with the fungal pathogen A. flavus and its plant host Z. mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network reveal...
Li, Xiaofang; Tian, Run; Gao, Hugh; Yan, Feng; Ying, Le; Yang, Yongkang; Yang, Pei
2018-01-01
Cervical cancer is the leading cause of death with gynecological malignancies. We aimed to explore the molecular mechanism of carcinogenesis and biomarkers for cervical cancer by integrated bioinformatic analysis. We employed RNA-sequencing details of 254 cervical squamous cell carcinomas and 3 normal samples from The Cancer Genome Atlas. To explore the distinct pathways, messenger RNA expression was submitted to a Gene Set Enrichment Analysis. Kyoto Encyclopedia of Genes and Genomes and protein–protein interaction network analysis of differentially expressed genes were performed. Then, we conducted pathway enrichment analysis for modules acquired in protein–protein interaction analysis and obtained a list of pathways in every module. After intersecting the results from the 3 approaches, we evaluated the survival rates of both mutual pathways and genes in the pathway, and 5 survival-related genes were obtained. Finally, Cox hazards ratio analysis of these 5 genes was performed. DNA replication pathway (P < .001; 12 genes included) was suggested to have the strongest association with the prognosis of cervical squamous cancer. In total, 5 of the 12 genes, namely, minichromosome maintenance 2, minichromosome maintenance 4, minichromosome maintenance 5, proliferating cell nuclear antigen, and ribonuclease H2 subunit A were significantly correlated with survival. Minichromosome maintenance 5 was shown as an independent prognostic biomarker for patients with cervical cancer. This study identified a distinct pathway (DNA replication). Five genes which may be prognostic biomarkers and minichromosome maintenance 5 were identified as independent prognostic biomarkers for patients with cervical cancer. PMID:29642758
Gandhi, Deepa; Sivanesan, Saravanadevi; Kannan, Krishnamurthi
2018-06-01
Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 μM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.
Di Silvestre, Dario; Brambilla, Francesca; Scardoni, Giovanni; Brunetti, Pietro; Motta, Sara; Matteucci, Marco; Laudanna, Carlo; Recchia, Fabio A; Lionetti, Vincenzo; Mauri, Pierluigi
2017-05-01
We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp + ) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp + in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp + or unconditioned stem cells. Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. The proteomic remodeling was largely prevented in MSCp + group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp + . In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp + . Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart. Copyright © 2017 Elsevier B.V. All rights reserved.
HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis.
Barrero, Carlos A; Datta, Prasun K; Sen, Satarupa; Deshmane, Satish; Amini, Shohreh; Khalili, Kamel; Merali, Salim
2013-01-01
Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2 (AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK), glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.
Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile
Stanberry, Larissa; Mias, George I.; Haynes, Winston; Higdon, Roger; Snyder, Michael; Kolker, Eugene
2013-01-01
The integrative personal omics profile (iPOP) is a pioneering study that combines genomics, transcriptomics, proteomics, metabolomics and autoantibody profiles from a single individual over a 14-month period. The observation period includes two episodes of viral infection: a human rhinovirus and a respiratory syncytial virus. The profile studies give an informative snapshot into the biological functioning of an organism. We hypothesize that pathway expression levels are associated with disease status. To test this hypothesis, we use biological pathways to integrate metabolomics and proteomics iPOP data. The approach computes the pathways’ differential expression levels at each time point, while taking into account the pathway structure and the longitudinal design. The resulting pathway levels show strong association with the disease status. Further, we identify temporal patterns in metabolite expression levels. The changes in metabolite expression levels also appear to be consistent with the disease status. The results of the integrative analysis suggest that changes in biological pathways may be used to predict and monitor the disease. The iPOP experimental design, data acquisition and analysis issues are discussed within the broader context of personal profiling. PMID:24958148
Biomarkers of the Hedgehog/Smoothened pathway in healthy volunteers
Kadam, Sunil K; Patel, Bharvin K R; Jones, Emma; Nguyen, Tuan S; Verma, Lalit K; Landschulz, Katherine T; Stepaniants, Sergey; Li, Bin; Brandt, John T; Brail, Leslie H
2012-01-01
The Hedgehog (Hh) pathway is involved in oncogenic transformation and tumor maintenance. The primary objective of this study was to select surrogate tissue to measure messenger ribonucleic acid (mRNA) levels of Hh pathway genes for measurement of pharmacodynamic effect. Expression of Hh pathway specific genes was measured by quantitative real time polymerase chain reaction (qRT-PCR) and global gene expression using Affymetrix U133 microarrays. Correlations were made between the expression of specific genes determined by qRT-PCR and normalized microarray data. Gene ontology analysis using microarray data for a broader set of Hh pathway genes was performed to identify additional Hh pathway-related markers in the surrogate tissue. RNA extracted from blood, hair follicle, and skin obtained from healthy subjects was analyzed by qRT-PCR for 31 genes, whereas 8 samples were analyzed for a 7-gene subset. Twelve sample sets, each with ≤500 ng total RNA derived from hair, skin, and blood, were analyzed using Affymetrix U133 microarrays. Transcripts for several Hh pathway genes were undetectable in blood using qRT-PCR. Skin was the most desirable matrix, followed by hair follicle. Whether processed by robust multiarray average or microarray suite 5 (MAS5), expression patterns of individual samples showed co-clustered signals; both normalization methods were equally effective for unsupervised analysis. The MAS5- normalized probe sets appeared better suited for supervised analysis. This work provides the basis for selection of a surrogate tissue and an expression analysis-based approach to evaluate pathway-related genes as markers of pharmacodynamic effect with novel inhibitors of the Hh pathway. PMID:22611475
Scholarly Concentration Program Development: A Generalizable, Data-Driven Approach.
Burk-Rafel, Jesse; Mullan, Patricia B; Wagenschutz, Heather; Pulst-Korenberg, Alexandra; Skye, Eric; Davis, Matthew M
2016-11-01
Scholarly concentration programs-also known as scholarly projects, pathways, tracks, or pursuits-are increasingly common in U.S. medical schools. However, systematic, data-driven program development methods have not been described. The authors examined scholarly concentration programs at U.S. medical schools that U.S. News & World Report ranked as top 25 for research or primary care (n = 43 institutions), coding concentrations and mission statements. Subsequently, the authors conducted a targeted needs assessment via a student-led, institution-wide survey, eliciting learners' preferences for 10 "Pathways" (i.e., concentrations) and 30 "Topics" (i.e., potential content) augmenting core curricula at their institution. Exploratory factor analysis (EFA) and a capacity optimization algorithm characterized best institutional options for learner-focused Pathway development. The authors identified scholarly concentration programs at 32 of 43 medical schools (74%), comprising 199 distinct concentrations (mean concentrations per program: 6.2, mode: 5, range: 1-16). Thematic analysis identified 10 content domains; most common were "Global/Public Health" (30 institutions; 94%) and "Clinical/Translational Research" (26 institutions; 81%). The institutional needs assessment (n = 468 medical students; response rate 60% overall, 97% among first-year students) demonstrated myriad student preferences for Pathways and Topics. EFA of Topic preferences identified eight factors, systematically related to Pathway preferences, informing content development. Capacity modeling indicated that offering six Pathways could guarantee 95% of first-year students (162/171) their first- or second-choice Pathway. This study demonstrates a generalizable, data-driven approach to scholarly concentration program development that reflects student preferences and institutional strengths, while optimizing program diversity within capacity constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht; Institute for Risk Assessment Sciences
2013-10-01
The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol andmore » saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.« less
2013-01-01
Background While the majority of studies have focused on the association between sex hormones and dementia, emerging evidence supports the role of other hormone signals in increasing dementia risk. However, due to the lack of an integrated view on mechanistic interactions of hormone signaling pathways associated with dementia, molecular mechanisms through which hormones contribute to the increased risk of dementia has remained unclear and capacity of translating hormone signals to potential therapeutic and diagnostic applications in relation to dementia has been undervalued. Methods Using an integrative knowledge- and data-driven approach, a global hormone interaction network in the context of dementia was constructed, which was further filtered down to a model of convergent hormone signaling pathways. This model was evaluated for its biological and clinical relevance through pathway recovery test, evidence-based analysis, and biomarker-guided analysis. Translational validation of the model was performed using the proposed novel mechanism discovery approach based on ‘serendipitous off-target effects’. Results Our results reveal the existence of a well-connected hormone interaction network underlying dementia. Seven hormone signaling pathways converge at the core of the hormone interaction network, which are shown to be mechanistically linked to the risk of dementia. Amongst these pathways, estrogen signaling pathway takes the major part in the model and insulin signaling pathway is analyzed for its association to learning and memory functions. Validation of the model through serendipitous off-target effects suggests that hormone signaling pathways substantially contribute to the pathogenesis of dementia. Conclusions The integrated network model of hormone interactions underlying dementia may serve as an initial translational platform for identifying potential therapeutic targets and candidate biomarkers for dementia-spectrum disorders such as Alzheimer’s disease. PMID:23885764
Overcoming the matched-sample bottleneck: an orthogonal approach to integrate omic data.
Nguyen, Tin; Diaz, Diana; Tagett, Rebecca; Draghici, Sorin
2016-07-12
MicroRNAs (miRNAs) are small non-coding RNA molecules whose primary function is to regulate the expression of gene products via hybridization to mRNA transcripts, resulting in suppression of translation or mRNA degradation. Although miRNAs have been implicated in complex diseases, including cancer, their impact on distinct biological pathways and phenotypes is largely unknown. Current integration approaches require sample-matched miRNA/mRNA datasets, resulting in limited applicability in practice. Since these approaches cannot integrate heterogeneous information available across independent experiments, they neither account for bias inherent in individual studies, nor do they benefit from increased sample size. Here we present a novel framework able to integrate miRNA and mRNA data (vertical data integration) available in independent studies (horizontal meta-analysis) allowing for a comprehensive analysis of the given phenotypes. To demonstrate the utility of our method, we conducted a meta-analysis of pancreatic and colorectal cancer, using 1,471 samples from 15 mRNA and 14 miRNA expression datasets. Our two-dimensional data integration approach greatly increases the power of statistical analysis and correctly identifies pathways known to be implicated in the phenotypes. The proposed framework is sufficiently general to integrate other types of data obtained from high-throughput assays.
Wang, Xijun; Wang, Huiyu; Zhang, Aihua; Lu, Xin; Sun, Hui; Dong, Hui; Wang, Ping
2012-02-03
The mother and lateral root of Aconitum carmichaelii Debx, named "Chuanwu" (CW) and "Fuzi", respectively, has been used to relieve joint pain and treat rheumatic diseases for over 2000 years. However, it has a very narrow therapeutic range, and the toxicological risk of its usage remains very high. The traditional Chinese processing approach, Paozhi (detoxifying measure),can decompose poisonous Aconitum alkaloids into less or nontoxic derivatives and plays an important role in detoxification. The difference in metabolomic characters among the crude and processed preparations is still unclear, limited by the lack of sensitive and reliable biomarkers. Therefore, this paper was designed to investigate comprehensive metabolomic characters of the crude and its processed products by UPLC-Q-TOF-HDMS combined with pattern recognition methods and ingenuity pathway analysis (IPA). The significant difference in metabolic profiles and changes of metabolite biomarkers of interest between the crude and processed preparations were well observed. The underlying regulations of Paozhi-perturbed metabolic pathways are discussed according to the identified metabolites, and four metabolic pathways are identified using IPA. The present study demonstrates that metabolomic analysis could greatly facilitate and provide useful information to further comprehensively understand the pharmacological activity and potential toxicity of processed Aconite roots in the clinic.
Disrupting the Pipeline: Critical Analyses of Student Pathways through Postsecondary STEM Education
ERIC Educational Resources Information Center
Metcalf, Heather E.
2014-01-01
Critical mixed methods approaches allow us to reflect upon the ways in which we collect, measure, interpret, and analyze data, providing novel alternatives for quantitative analysis. For institutional researchers, whose work influences institutional policies, programs, and practices, the approach has the transformative ability to expose and create…
Gu, Yunyan; Wang, Hongwei; Qin, Yao; Zhang, Yujing; Zhao, Wenyuan; Qi, Lishuang; Zhang, Yuannv; Wang, Chenguang; Guo, Zheng
2013-03-01
The heterogeneity of genetic alterations in human cancer genomes presents a major challenge to advancing our understanding of cancer mechanisms and identifying cancer driver genes. To tackle this heterogeneity problem, many approaches have been proposed to investigate genetic alterations and predict driver genes at the individual pathway level. However, most of these approaches ignore the correlation of alteration events between pathways and miss many genes with rare alterations collectively contributing to carcinogenesis. Here, we devise a network-based approach to capture the cooperative functional modules hidden in genome-wide somatic mutation and copy number alteration profiles of glioblastoma (GBM) from The Cancer Genome Atlas (TCGA), where a module is a set of altered genes with dense interactions in the protein interaction network. We identify 7 pairs of significantly co-altered modules that involve the main pathways known to be altered in GBM (TP53, RB and RTK signaling pathways) and highlight the striking co-occurring alterations among these GBM pathways. By taking into account the non-random correlation of gene alterations, the property of co-alteration could distinguish oncogenic modules that contain driver genes involved in the progression of GBM. The collaboration among cancer pathways suggests that the redundant models and aggravating models could shed new light on the potential mechanisms during carcinogenesis and provide new indications for the design of cancer therapeutic strategies.
Zhang, Han; Wheeler, William; Hyland, Paula L; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai
2016-06-01
Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs.
Zhang, Han; Wheeler, William; Hyland, Paula L.; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai
2016-01-01
Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs. PMID:27362418
Managing patient pathways to achieve lung cancer waiting time targets: mixed methods study
Ip, Hugh; Amer, Tarik; Dangoor, Michael; Zamir, Affan; Gibbings-Isaac, Darryl; Kochhar, Ranjeev; Heymann, Timothy
2012-01-01
Objectives England's National Health Service (NHS) introduced a 62-day target, from referral to treatment, to make lung cancer patient pathways more efficient. This study aims to understand pathway delays that lead to breaches of the target when patients need care in both secondary and tertiary setting, so more than one institution is involved. Design Mixed methods cross case analysis. Setting Two tertiary referral hospitals in London. Participants Database records of 53 patients were analysed. Nineteen sets of patient notes were used for pathway mapping. Seventeen doctors, four nurses, eight managers and administrators were interviewed. Main outcome measures Qualitative methods include pathway mapping and semi-structured interviews. Quantitative analysis of patient pathway times from cancer services records. Results The majority of the patient pathway (68.4%) is spent in secondary centres. There is more variability in the processes of secondary centres but tertiary centres do not have perfect processes either. Three themes emerged from discussions: information flows, pathway performance and the role of the multidisciplinary approach. Conclusions The actions of secondary centres have a greater influence on whether a patient breaches the 62-day target, compared with tertiary centres. Nevertheless variability exists in both, with potential for improvement. PMID:23162682
Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine
Chen, Xiao-Wu; Di, Yuan Ming; Zhang, Jian; Zhou, Zhi-Wei; Li, Chun Guang; Zhou, Shu-Feng
2012-01-01
Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer's disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach. PMID:23213296
Computer animation in teaching science: Effectiveness in teaching retrograde motion to 9th graders
NASA Astrophysics Data System (ADS)
Klenk, Kristin Elmstrom
The purpose of this study is to determine whether an instructional approach which includes computer animations is more effective than a traditional textbook-only approach in helping ninth grade students learn an abstract concept, in this case planetary retrograde motion. This investigation uses a quasi-experimental design with convenient sampling. The independent variable is the type of instruction provided to students; traditional text-based instruction (control group) compared to traditional instruction which also includes the viewing of 4 computer animations (treatment). Two conditions of the treatment examine the relative advantage of the order of the presentation of the animations and text-based instruction, as well as the quality of understanding and the retention of the learning over time. The dependent variable is student achievement which is measured using an instrument designed specifically for this study. Comparison of the independent variable to the dependent variable based upon the results from a Repeated Measure Factorial Design in ANOVA indicates that the treatment is an effective instructional technique. The posttest1 mean score of the treatment groups was significantly greater than the posttest1 mean score of the control group. Further posthoc tests indicate that there was no significant difference between the two treatments (1 and 2); read/animation versus animation/read. However, there was a significant difference in the mean score depending on the pathway, students enrolled in the A pathway achieved a significantly higher mean score after the treatment than students in the B pathway. The A pathway (n = 185) represent the larger heterogeneous population of students as compared to the B pathway (n=16) which includes students with lower cognitive abilities and special needs. When all of the students are included in the analysis the results indicate that students do not retain their understanding of the concept. However, when the students in the B pathway are removed from the data set the analysis changes, the posttest1 and posttest2 means are not significantly different. Students in the A pathway did retain their understanding of the concept and were able to demonstrate it on the assessment. A detailed item analysis of the multiple choice question suggest that students in the B pathway were much more likely to guess on the multiple choice questions than students in the A pathway who show no evidence of guessing. The outcome of this study suggests that an instructional approach with includes viewing computer animations is an effective strategy for teaching and learning an abstract concept in a ninth grade Earth Science classroom.
A Research Roadmap for Computation-Based Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald; Mandelli, Diego; Joe, Jeffrey
2015-08-01
The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is oftenmore » secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.« less
Application of Petri net based analysis techniques to signal transduction pathways.
Sackmann, Andrea; Heiner, Monika; Koch, Ina
2006-11-02
Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules.
Application of Petri net based analysis techniques to signal transduction pathways
Sackmann, Andrea; Heiner, Monika; Koch, Ina
2006-01-01
Background Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. Methods We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. Results We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. Conclusion The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules. PMID:17081284
Integrating genomics and proteomics data to predict drug effects using binary linear programming.
Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo
2014-01-01
The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be used to elucidate potential mechanisms of a compound's efficacy.
Woo, Jongmin; Han, Dohyun; Wang, Joseph Injae; Park, Joonho; Kim, Hyunsoo; Kim, Youngsoo
2017-09-01
The development of systematic proteomic quantification techniques in systems biology research has enabled one to perform an in-depth analysis of cellular systems. We have developed a systematic proteomic approach that encompasses the spectrum from global to targeted analysis on a single platform. We have applied this technique to an activated microglia cell system to examine changes in the intracellular and extracellular proteomes. Microglia become activated when their homeostatic microenvironment is disrupted. There are varying degrees of microglial activation, and we chose to focus on the proinflammatory reactive state that is induced by exposure to such stimuli as lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Using an improved shotgun proteomics approach, we identified 5497 proteins in the whole-cell proteome and 4938 proteins in the secretome that were associated with the activation of BV2 mouse microglia by LPS or IFN-γ. Of the differentially expressed proteins in stimulated microglia, we classified pathways that were related to immune-inflammatory responses and metabolism. Our label-free parallel reaction monitoring (PRM) approach made it possible to comprehensively measure the hyper-multiplex quantitative value of each protein by high-resolution mass spectrometry. Over 450 peptides that corresponded to pathway proteins and direct or indirect interactors via the STRING database were quantified by label-free PRM in a single run. Moreover, we performed a longitudinal quantification of secreted proteins during microglial activation, in which neurotoxic molecules that mediate neuronal cell loss in the brain are released. These data suggest that latent pathways that are associated with neurodegenerative diseases can be discovered by constructing and analyzing a pathway network model of proteins. Furthermore, this systematic quantification platform has tremendous potential for applications in large-scale targeted analyses. The proteomics data for discovery and label-free PRM analysis have been deposited to the ProteomeXchange Consortium with identifiers
Dato, Serena; Soerensen, Mette; De Rango, Francesco; Rose, Giuseppina; Christensen, Kaare; Christiansen, Lene; Passarino, Giuseppe
2018-06-01
In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin-like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1,089 unrelated nonagenarians from the Danish 1905 Birth Cohort Study and 736 Danish controls aged 46-55 years) for evaluating synergic interactions by SNPsyn. Synergies were further tested by the multidimensional reduction (MDR) approach, both intra- and interpathways. The best combinations (FDR<0.0001) resulted those encompassing IGF1R-rs12437963 and PTPN1-rs6067484, TP53-rs2078486 and ERCC2-rs50871, TXNRD1-rs17202060 and TP53-rs2078486, the latter two supporting a central role of TP53 in mediating the concerted activation of the DNA repair and pro-antioxidant pathways in human longevity. Results were consistently replicated with both approaches, as well as a significant effect on longevity was found for the GHSR gene, which also interacts with partners belonging to both IIS and DNA repair pathways (PAPPA, PTPN1, PARK7, MRE11A). The combination GHSR-MREA11, positively associated with longevity by MDR, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP-SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes of additional networks involved in human longevity. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Morine, Melissa J; McMonagle, Jolene; Toomey, Sinead; Reynolds, Clare M; Moloney, Aidan P; Gormley, Isobel C; Gaora, Peadar O; Roche, Helen M
2010-10-07
Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways--selenoamino acid metabolism and steroid biosynthesis--illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.
2010-01-01
Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease. PMID:20929581
Ali, Muhammad; Rathnayake, Rathnayake M L D; Zhang, Lei; Ishii, Satoshi; Kindaichi, Tomonori; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi
2016-10-01
Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4(+) concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2(-) reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2(-) reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2(-) reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O production pathways is essential to establish a strategy to mitigate N2O emission from biological nitrogen removal processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Elvis Genbo; Mager, Edward M.; Grosell, Martin; Hazard, E. Starr; Hardiman, Gary; Schlenk, Daniel
2017-03-01
The impacts of Deepwater Horizon (DWH) oil on morphology and function during embryonic development have been documented for a number of fish species, including the economically and ecologically important pelagic species, mahi-mahi (Coryphaena hippurus). However, further investigations on molecular events and pathways responsible for developmental toxicity have been largely restricted due to the limited molecular data available for this species. We sought to establish the de novo transcriptomic database from the embryos and larvae of mahi-mahi exposed to water accommodated fractions (HEWAFs) of two DWH oil types (weathered and source oil), in an effort to advance our understanding of the molecular aspects involved during specific toxicity responses. By high throughput sequencing (HTS), we obtained the first de novo transcriptome of mahi-mahi, with 60,842 assembled transcripts and 30,518 BLAST hits. Among them, 2,345 genes were significantly regulated in 96hpf larvae after exposure to weathered oil. With comparative analysis to a reference-transcriptome-guided approach on gene ontology and tox-pathways, we confirmed the novel approach effective for exploring tox-pathways in non-model species, and also identified a list of co-expressed genes as potential biomarkers which will provide information for the construction of an Adverse Outcome Pathway which could be useful in Ecological Risk Assessments.
Li, Yingfu
2017-01-01
The elucidation of the cellular processes involved in vitamin and cofactor biosynthesis is a challenging task. The conventional approaches to these investigations rely on the discovery and purification of the products (i.e proteins and metabolites) of a particular transport or biosynthetic pathway, prior to their subsequent analysis. However, the purification of low-abundance proteins or metabolites is a formidable undertaking that presents considerable technical challenges. As a solution, we present an alternative approach to such studies that circumvents the purification step. The proposed approach takes advantage of: (1) the molecular detection capabilities of a riboswitch-based sensor to detect the cellular levels of its cognate molecule, as a means to probe the integrity of the transport and biosynthetic pathways of the target molecule in cells, (2) the high-throughput screening ability of fluorescence-activated cell sorters to isolate cells in which only these specific pathways are disrupted, and (3) the ability of next-generation sequencing to quickly identify the genes of the FACS-sorted populations. This approach was named “RiboFACSeq”. Following their identification by RiboFACSeq, the role of these genes in the presumed pathway needs to be verified through appropriate functional assays. To demonstrate the utility of our approach, an adenosylcobalamin (AdoCbl)-responsive riboswitch-based sensor was used in this study to demonstrate that RiboFACSeq can be used to track and sort cells carrying genetic mutations in known AdoCbl transport and biosynthesis genes with desirable sensitivity and specificity. This method could potentially be used to elucidate any pathway of interest, as long as a suitable riboswitch-based sensor can be created. We believe that RiboFACSeq would be especially useful for the elucidation of biological pathways in which the proteins and/or their metabolites are present at very low physiological concentrations in cells, as is the case with vitamin and cofactor biosynthesis. PMID:29211762
Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Ji, Lin-Dan
2017-01-01
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the "neurotrophin-MAPK signaling pathway" was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment.
A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data
Chen, Yi-Hau
2017-01-01
Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA. PMID:28622336
A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data.
Lai, En-Yu; Chen, Yi-Hau; Wu, Kun-Pin
2017-06-01
Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA.
Whole-Genome Analysis of the SHORT-ROOT Developmental Pathway in Arabidopsis
Busch, Wolfgang; Cui, Hongchang; Wang, Jean Y; Blilou, Ikram; Hassan, Hala; Nakajima, Keiji; Matsumoto, Noritaka; Lohmann, Jan U; Scheres, Ben
2006-01-01
Stem cell function during organogenesis is a key issue in developmental biology. The transcription factor SHORT-ROOT (SHR) is a critical component in a developmental pathway regulating both the specification of the root stem cell niche and the differentiation potential of a subset of stem cells in the Arabidopsis root. To obtain a comprehensive view of the SHR pathway, we used a statistical method called meta-analysis to combine the results of several microarray experiments measuring the changes in global expression profiles after modulating SHR activity. Meta-analysis was first used to identify the direct targets of SHR by combining results from an inducible form of SHR driven by its endogenous promoter, ectopic expression, followed by cell sorting and comparisons of mutant to wild-type roots. Eight putative direct targets of SHR were identified, all with expression patterns encompassing subsets of the native SHR expression domain. Further evidence for direct regulation by SHR came from binding of SHR in vivo to the promoter regions of four of the eight putative targets. A new role for SHR in the vascular cylinder was predicted from the expression pattern of several direct targets and confirmed with independent markers. The meta-analysis approach was then used to perform a global survey of the SHR indirect targets. Our analysis suggests that the SHR pathway regulates root development not only through a large transcription regulatory network but also through hormonal pathways and signaling pathways using receptor-like kinases. Taken together, our results not only identify the first nodes in the SHR pathway and a new function for SHR in the development of the vascular tissue but also reveal the global architecture of this developmental pathway. PMID:16640459
van Haaften, Rachel I M; Luceri, Cristina; van Erk, Arie; Evelo, Chris T A
2009-06-01
Omics technology used for large-scale measurements of gene expression is rapidly evolving. This work pointed out the need of an extensive bioinformatics analyses for array quality assessment before and after gene expression clustering and pathway analysis. A study focused on the effect of red wine polyphenols on rat colon mucosa was used to test the impact of quality control and normalisation steps on the biological conclusions. The integration of data visualization, pathway analysis and clustering revealed an artifact problem that was solved with an adapted normalisation. We propose a possible point to point standard analysis procedure, based on a combination of clustering and data visualization for the analysis of microarray data.
Zakirova, Zuchra; Reed, Jon; Crynen, Gogce; Horne, Lauren; Hassan, Samira; Mathura, Venkatarajan; Mullan, Michael; Crawford, Fiona; Ait-Ghezala, Ghania
2017-09-01
Long-term consequences of combined pyridostigmine bromide (PB) and permethrin (PER) exposure in C57BL6/J mice using a well-characterized mouse model of exposure to these Gulf War (GW) agents were explored at the protein level. We used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane-bound protein fractions from brain samples using two orthogonal isotopic labeling LC-MS/MS proteomic approaches-stable isotope dimethyl labeling and iTRAQ. The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation. Collectively, our work identified key pathways which were chronically impacted in the mouse CNS following acute GW agent exposure, this may lead to the identification of potential targets for therapeutic intervention in the future. Long-term consequences of combined PB and PER exposure in C57BL6/J mice using a well-characterized mouse model of exposure to these GW agents were explored at the protein level. Expanding on earlier work, we used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane-bound protein fractions from brain samples using two orthogonal isotopic labeling LC-MS/MS proteomic approaches-stable isotope dimethyl labeling and iTRAQ. The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation at 5 months postexposure to PB + PER. © 2017 The Authors. PROTEOMICS - Clinical Applications published by WILEY-VCH Verlag GmbH & Co. KGaA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Shirong; Davis, Michael J.; Skodje, Rex T.
2015-11-12
The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of howmore » that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H-2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux« less
Pathway analyses and understanding disease associations
Liu, Yu; Chance, Mark R
2013-01-01
High throughput technologies have been applied to investigate the underlying mechanisms of complex diseases, identify disease-associations and help to improve treatment. However it is challenging to derive biological insight from conventional single gene based analysis of “omics” data from high throughput experiments due to sample and patient heterogeneity. To address these challenges, many novel pathway and network based approaches were developed to integrate various “omics” data, such as gene expression, copy number alteration, Genome Wide Association Studies, and interaction data. This review will cover recent methodological developments in pathway analysis for the detection of dysregulated interactions and disease-associated subnetworks, prioritization of candidate disease genes, and disease classifications. For each application, we will also discuss the associated challenges and potential future directions. PMID:24319650
Guo, Leilei; Song, Chunhua; Wang, Peng; Dai, Liping; Zhang, Jianying; Wang, Kaijuan
2015-11-01
The aim of the present study was to explore key molecular pathways contributing to gastric cancer (GC) and to construct an interaction network between significant pathways and potential biomarkers. Publicly available gene expression profiles of GSE29272 for GC, and data for the corresponding normal tissue, were downloaded from Gene Expression Omnibus. Pre‑processing and differential analysis were performed with R statistical software packages, and a number of differentially expressed genes (DEGs) were obtained. A functional enrichment analysis was performed for all the DEGs with a BiNGO plug‑in in Cytoscape. Their correlation was analyzed in order to construct a network. The modularity analysis and pathway identification operations were used to identify graph clusters and associated pathways. The underlying molecular mechanisms involving these DEGs were also assessed by data mining. A total of 249 DEGs, which were markedly upregulated and downregulated, were identified. The extracellular region contained the most significantly over‑represented functional terms, with respect to upregulated and downregulated genes, and the closest topological matches were identified for taste transduction and regulation of autophagy. In addition, extracellular matrix‑receptor interactions were identified as the most relevant pathway associated with the progression of GC. The genes for fibronectin 1, secreted phosphoprotein 1, collagen type 4 variant α‑1/2 and thrombospondin 1, which are involved in the pathways, may be considered as potential therapeutic targets for GC. A series of associations between candidate genes and key pathways were also identified for GC, and their correlation may provide novel insights into the pathogenesis of GC.
Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu
2014-01-01
Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079
Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu
2014-01-01
Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wettersten, Hiromi I.; Hakimi, A. Ari; Morin, Dexter
Kidney cancer [or renal cell carcinoma (RCC)] is known as “the internist's tumor” because it has protean systemic manifestations, suggesting that it utilizes complex, nonphysiologic metabolic pathways. Given the increasing incidence of this cancer and its lack of effective therapeutic targets, we undertook an extensive analysis of human RCC tissue employing combined grade-dependent proteomics and metabolomics analysis to determine how metabolic reprogramming occurring in this disease allows it to escape available therapeutic approaches. After validation experiments in RCC cell lines that were wild-type or mutant for the Von Hippel–Lindau tumor suppressor, in characterizing higher-grade tumors, we found that the Warburgmore » effect is relatively more prominent at the expense of the tricarboxylic acid cycle and oxidative metabolism in general. Further, we found that the glutamine metabolism pathway acts to inhibit reactive oxygen species, as evidenced by an upregulated glutathione pathway, whereas the β-oxidation pathway is inhibited, leading to increased fatty acylcarnitines. In support of findings from previous urine metabolomics analyses, we also documented tryptophan catabolism associated with immune suppression, which was highly represented in RCC compared with other metabolic pathways. Altogether, our results offer a rationale to evaluate novel antimetabolic treatment strategies being developed in other disease settings as therapeutic strategies in RCC« less
Wettersten, Hiromi I.; Hakimi, A. Ari; Morin, Dexter; ...
2015-05-07
Kidney cancer [or renal cell carcinoma (RCC)] is known as “the internist's tumor” because it has protean systemic manifestations, suggesting that it utilizes complex, nonphysiologic metabolic pathways. Given the increasing incidence of this cancer and its lack of effective therapeutic targets, we undertook an extensive analysis of human RCC tissue employing combined grade-dependent proteomics and metabolomics analysis to determine how metabolic reprogramming occurring in this disease allows it to escape available therapeutic approaches. After validation experiments in RCC cell lines that were wild-type or mutant for the Von Hippel–Lindau tumor suppressor, in characterizing higher-grade tumors, we found that the Warburgmore » effect is relatively more prominent at the expense of the tricarboxylic acid cycle and oxidative metabolism in general. Further, we found that the glutamine metabolism pathway acts to inhibit reactive oxygen species, as evidenced by an upregulated glutathione pathway, whereas the β-oxidation pathway is inhibited, leading to increased fatty acylcarnitines. In support of findings from previous urine metabolomics analyses, we also documented tryptophan catabolism associated with immune suppression, which was highly represented in RCC compared with other metabolic pathways. Altogether, our results offer a rationale to evaluate novel antimetabolic treatment strategies being developed in other disease settings as therapeutic strategies in RCC« less
Ghosh, Sujoy; Vivar, Juan; Nelson, Christopher P; Willenborg, Christina; Segrè, Ayellet V; Mäkinen, Ville-Petteri; Nikpay, Majid; Erdmann, Jeannette; Blankenberg, Stefan; O'Donnell, Christopher; März, Winfried; Laaksonen, Reijo; Stewart, Alexandre FR; Epstein, Stephen E; Shah, Svati H; Granger, Christopher B; Hazen, Stanley L; Kathiresan, Sekar; Reilly, Muredach P; Yang, Xia; Quertermous, Thomas; Samani, Nilesh J; Schunkert, Heribert; Assimes, Themistocles L; McPherson, Ruth
2016-01-01
Objective Genome-wide association (GWA) studies have identified multiple genetic variants affecting the risk of coronary artery disease (CAD). However, individually these explain only a small fraction of the heritability of CAD and for most, the causal biological mechanisms remain unclear. We sought to obtain further insights into potential causal processes of CAD by integrating large-scale GWA data with expertly curated databases of core human pathways and functional networks. Approaches and Results Employing pathways (gene sets) from Reactome, we carried out a two-stage gene set enrichment analysis strategy. From a meta-analyzed discovery cohort of 7 CADGWAS data sets (9,889 cases/11,089 controls), nominally significant gene-sets were tested for replication in a meta-analysis of 9 additional studies (15,502 cases/55,730 controls) from the CARDIoGRAM Consortium. A total of 32 of 639 Reactome pathways tested showed convincing association with CAD (replication p<0.05). These pathways resided in 9 of 21 core biological processes represented in Reactome, and included pathways relevant to extracellular matrix integrity, innate immunity, axon guidance, and signaling by PDRF, NOTCH, and the TGF-β/SMAD receptor complex. Many of these pathways had strengths of association comparable to those observed in lipid transport pathways. Network analysis of unique genes within the replicated pathways further revealed several interconnected functional and topologically interacting modules representing novel associations (e.g. semaphorin regulated axonal guidance pathway) besides confirming known processes (lipid metabolism). The connectivity in the observed networks was statistically significant compared to random networks (p<0.001). Network centrality analysis (‘degree’ and ‘betweenness’) further identified genes (e.g. NCAM1, FYN, FURIN etc.) likely to play critical roles in the maintenance and functioning of several of the replicated pathways. Conclusions These findings provide novel insights into how genetic variation, interpreted in the context of biological processes and functional interactions among genes, may help define the genetic architecture of CAD. PMID:25977570
A Skyline Plugin for Pathway-Centric Data Browsing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degan, Michael G.; Ryadinskiy, Lillian; Fujimoto, Grant M.
For targeted proteomics to be broadly adopted in biological laboratories as a routine experimental protocol, wet-bench biologists must be able to approach SRM assay design in the same way they approach biological experimental design. Most often, biological hypotheses are envisioned in a set of protein interactions, networks and pathways. We present a plugin for the popular Skyline tool that presents public mass spectrometry data in a pathway-centric view to assist users in browsing available data and determining how to design quantitative experiments. Selected proteins and their underlying mass spectra are imported to Skyline for further assay design (transition selection). Themore » same plugin can be used for hypothesis-drive DIA data analysis, again utilizing the pathway view to help narrow down the set of proteins which will be investigated. The plugin is backed by the PNNL Biodiversity Library, a corpus of 3 million peptides from >100 organisms, and the draft human proteome. Users can upload personal data to the plugin to use the pathway navigation prior to importing their own data into Skyline.« less
A Skyline Plugin for Pathway-Centric Data Browsing
NASA Astrophysics Data System (ADS)
Degan, Michael G.; Ryadinskiy, Lillian; Fujimoto, Grant M.; Wilkins, Christopher S.; Lichti, Cheryl F.; Payne, Samuel H.
2016-11-01
For targeted proteomics to be broadly adopted in biological laboratories as a routine experimental protocol, wet-bench biologists must be able to approach selected reaction monitoring (SRM) and parallel reaction monitoring (PRM) assay design in the same way they approach biological experimental design. Most often, biological hypotheses are envisioned in a set of protein interactions, networks, and pathways. We present a plugin for the popular Skyline tool that presents public mass spectrometry data in a pathway-centric view to assist users in browsing available data and determining how to design quantitative experiments. Selected proteins and their underlying mass spectra are imported to Skyline for further assay design (transition selection). The same plugin can be used for hypothesis-driven data-independent acquisition (DIA) data analysis, again utilizing the pathway view to help narrow down the set of proteins that will be investigated. The plugin is backed by the Pacific Northwest National Laboratory (PNNL) Biodiversity Library, a corpus of 3 million peptides from >100 organisms, and the draft human proteome. Users can upload personal data to the plugin to use the pathway navigation prior to importing their own data into Skyline.
Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei
2017-01-01
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the “neurotrophin-MAPK signaling pathway” was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment. PMID:28900628
Rajendran, Barani Kumar; Deng, Chu-Xia
2017-01-01
Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis. PMID:28477017
Nurse Leaders' Experiences of Implementing Career Advancement Programs for Nurses in Iran.
Sheikhi, Mohammad Reza; Fallahi Khoshknab, Masoud; Mohammadi, Farahnaz; Oskouie, Fatemeh
2015-02-24
Career advancement programs are currently implemented in many countries. In Iran, the first career advancement program was Nurses' Career Advancement Pathway. The purpose of this study was to explore nurse leaders' experiences about implementing the Nurses' Career Advancement Pathway program in Iran. This exploratory qualitative study was conducted in 2013. Sixteen nurse managers were recruited from the teaching hospitals affiliated to Shahid Behesthi, Qazvin, and Iran Universities of Medical Sciences in Iran. Participants were recruited using purposive sampling method. Study data were collected through in-depth semi-structured interviews. The conventional content analysis approach was used for data analysis. participants' experiences about implementing the Nurses' Career Advancement Pathway fell into three main categories including: a) the shortcomings of performance evaluation, b) greater emphasis on point accumulation, c) the advancement-latitude mismatch. The Nurses' Career Advancement pathway has several shortcomings regarding both its content and its implementation. Therefore, it is recommended to revise the program.
ERIC Educational Resources Information Center
Mills, Rosemary S. L.; Hastings, Paul D.; Helm, Jonathan; Serbin, Lisa A.; Etezadi, Jamshid; Stack, Dale M.; Schwartzman, Alex E.; Li, Hai Hong
2012-01-01
This study evaluated a comprehensive model of factors associated with internalizing problems (IP) in early childhood, hypothesizing direct, mediated, and moderated pathways linking child temperamental inhibition, maternal overcontrol and rejection, and contextual stressors to IP. In a novel approach, three samples were integrated to form a large…
Hsu, Han-Hsiu; Araki, Michihiro; Mochizuki, Masao; Hori, Yoshimi; Murata, Masahiro; Kahar, Prihardi; Yoshida, Takanobu; Hasunuma, Tomohisa; Kondo, Akihiko
2017-03-02
Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture.
Ma, Danjun; Wang, Jiarui; Zhao, Yingchun; Lee, Wai-Nang Paul; Xiao, Jing; Go, Vay Liang W.; Wang, Qi; Recker, Robert; Xiao, Gary Guishan
2011-01-01
Objectives Novel quantitative proteomic approaches were used to study the effects of inhibition of glycogen phosphorylase on proteome and signaling pathways in MIA PaCa-2 pancreatic cancer cells. Methods We performed quantitative proteomic analysis in MIA PaCa-2 cancer cells treated with a stratified dose of CP-320626 (25 μM, 50 μM and 100 μM). The effect of metabolic inhibition on cellular protein turnover dynamics was also studied using the modified SILAC method (mSILAC). Results A total of twenty-two protein spots and four phosphoprotein spots were quantitatively analyzed. We found that dynamic expression of total proteins and phosphoproteins was significantly changed in MIA PaCa-2 cells treated with an incremental dose of CP-320626. Functional analyses suggested that most of the proteins differentially expressed were in the pathways of MAPK/ERK and TNF-α/NF-κB. Conclusions Signaling pathways and metabolic pathways share many common cofactors and substrates forming an extended metabolic network. The restriction of substrate through one pathway such as inhibition of glycogen phosphorylation induces pervasive metabolomic and proteomic changes manifested in protein synthesis, breakdown and post-translational modification of signaling molecules. Our results suggest that quantitative proteomic is an important approach to understand the interaction between metabolism and signaling pathways. PMID:22158071
Arumugam, Saravanan; Mincheva-Tasheva, Stefka; Periyakaruppiah, Ambika; de la Fuente, Sandra; Soler, Rosa M; Garcera, Ana
2018-06-01
Survival motor neuron (SMN) protein deficiency causes the genetic neuromuscular disorder spinal muscular atrophy (SMA), characterized by spinal cord motoneuron degeneration. Since SMN protein level is critical to disease onset and severity, analysis of the mechanisms involved in SMN stability is one of the central goals of SMA research. Here, we describe the role of several members of the NF-κB pathway in regulating SMN in motoneurons. NF-κB is one of the main regulators of motoneuron survival and pharmacological inhibition of NF-κB pathway activity also induces mouse survival motor neuron (Smn) protein decrease. Using a lentiviral-based shRNA approach to reduce the expression of several members of NF-κB pathway, we observed that IKK and RelA knockdown caused Smn reduction in mouse-cultured motoneurons whereas IKK or RelB knockdown did not. Moreover, isolated motoneurons obtained from the severe SMA mouse model showed reduced protein levels of several NF-κB members and RelA phosphorylation. We describe the alteration of NF-κB pathway in SMA cells. In the context of recent studies suggesting regulation of altered intracellular pathways as a future pharmacological treatment of SMA, we propose the NF-κB pathway as a candidate in this new therapeutic approach.
Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua
2016-03-17
L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells.
Yi, Ming; Stephens, Robert M.
2008-01-01
Analysis of microarray and other high throughput data often involves identification of genes consistently up or down-regulated across samples as the first step in extraction of biological meaning. This gene-level paradigm can be limited as a result of valid sample fluctuations and biological complexities. In this report, we describe a novel method, SLEPR, which eliminates this limitation by relying on pathway-level consistencies. Our method first selects the sample-level differentiated genes from each individual sample, capturing genes missed by other analysis methods, ascertains the enrichment levels of associated pathways from each of those lists, and then ranks annotated pathways based on the consistency of enrichment levels of individual samples from both sample classes. As a proof of concept, we have used this method to analyze three public microarray datasets with a direct comparison with the GSEA method, one of the most popular pathway-level analysis methods in the field. We found that our method was able to reproduce the earlier observations with significant improvements in depth of coverage for validated or expected biological themes, but also produced additional insights that make biological sense. This new method extends existing analyses approaches and facilitates integration of different types of HTP data. PMID:18818771
García-Sevillano, M A; García-Barrera, T; Navarro, F; Montero-Lobato, Z; Gómez-Ariza, J L
2015-04-01
Mass spectrometry (MS)-based toxicometabolomics requires analytical approaches for obtaining unbiased metabolic profiles. The present work explores the general application of direct infusion MS using a high mass resolution analyzer (a hybrid systems triple quadrupole-time-of-flight) and a complementary gas chromatography-MS analysis to mitochondria extracts from mouse hepatic cells, emphasizing on mitochondria isolation from hepatic cells with a commercial kit, sample treatment after cell lysis, comprehensive metabolomic analysis and pattern recognition from metabolic profiles. Finally, the metabolomic platform was successfully checked on a case-study based on the exposure experiment of mice Mus musculus to inorganic arsenic during 12 days. Endogenous metabolites alterations were recognized by partial least squares-discriminant analysis. Subsequently, metabolites were identified by combining MS/MS analysis and metabolomics databases. This work reports for the first time the effects of As-exposure on hepatic mitochondria metabolic pathways based on MS, and reveals disturbances in Krebs cycle, β-oxidation pathway, amino acids degradation and perturbations in creatine levels. This non-target analysis provides extensive metabolic information from mitochondrial organelle, which could be applied to toxicology, pharmacology and clinical studies.
Zhang, Tianyu; Xu, Jielin; Deng, Siyuan; Zhou, Fengqi; Li, Jin; Zhang, Liwei; Li, Lang; Wang, Qi-En; Li, Fuhai
2018-01-01
Tumor recurrence occurs in more than 70% of ovarian cancer patients, and the majority eventually becomes refractory to treatments. Ovarian Cancer Stem Cells (OCSCs) are believed to be responsible for the tumor relapse and drug resistance. Therefore, eliminating ovarian CSCs is important to improve the prognosis of ovarian cancer patients. However, there is a lack of effective drugs to eliminate OCSCs because the core signaling pathways regulating OCSCs remain unclear. Also it is often hard for biologists to identify a few testable targets and infer driver signaling pathways regulating CSCs from a large number of differentially expression genes in an unbiased manner. In this study, we propose a straightforward and integrative analysis to identify potential core signaling pathways of OCSCs by integrating transcriptome data of OCSCs isolated based on two distinctive markers, ALDH and side population, with regulatory network (Transcription Factor (TF) and Target Interactome) and signaling pathways. We first identify the common activated TFs in two OCSC populations integrating the gene expression and TF-target Interactome; and then uncover up-stream signaling cascades regulating the activated TFs. In specific, 22 activated TFs are identified. Through literature search validation, 15 of them have been reported in association with cancer stem cells. Additionally, 10 TFs are found in the KEGG signaling pathways, and their up-stream signaling cascades are extracted, which also provide potential treatment targets. Moreover, 40 FDA approved drugs are identified to target on the up-stream signaling cascades, and 15 of them have been reported in literatures in cancer stem cell treatment. In conclusion, the proposed approach can uncover the activated up-stream signaling, activated TFs and up-regulated target genes that constitute the potential core signaling pathways of ovarian CSC. Also drugs and drug combinations targeting on the core signaling pathways might be able to eliminate OCSCs. The proposed approach can also be applied for identifying potential activated signaling pathways of other types of cancers.
Lessons and challenges from adaptation pathways planning applications
NASA Astrophysics Data System (ADS)
Haasnoot, M.; Lawrence, J.; Kwakkel, J. H.; Walker, W.; Timmermans, J.; Bloemen, P.; Thissen, W.
2015-12-01
Planning for adaptation to dynamic risks (e.g., because of climate change) is a critical need. The concept of 'adaptive policies' is receiving increasing attention as a way of performing strategic planning that is able to address many of the inherent challenges of uncertainty and dynamic change. Several approaches for developing adaptive policies are available in the literature. One approach, for which several applications already exist, is Dynamic Adaptive Policy Pathways (DAPP). Pathway maps enable policy analysts, decision makers, and stakeholders to recognize potential 'locked-in' situations and to assess the flexibility, robustness, and efficacy of decision alternatives. Most of the applications of DAPP have been in deltas, coastal cities, or floodplains, often within the context of climate change adaptation. In this talk, we describe the DAPP approach and present a framework for designing signposts as adaptation signals, together with an illustrative application for the Rhine River in the Netherlands. We also draw lessons and challenges from pathways applications that differ in environment, culture, and institutional context. For example, the Dutch Delta Programme has used pathways to identify short-term decisions and long-term policy options. In Bangladesh, an application is in its early phase. Steps before generating pathways - such as long- term thinking in multiple possible futures and acknowledging uncertainties - are already a big challenge there. In New Zealand, the 'Sustainable Delta Game' has been used as the catalyst for pathways thinking by two local councils. This has led to its application in decision making for coastal and flood risk management and economic analysis of policy options.
Cells of Origin of Epithelial Ovarian Cancers
2015-09-01
cells in oral squamous cell carcinomas by a novel pathway-based lineage tracing approach in a murine model. ! 13! Specific aims: 1. Determine...SUNDARESAN Lineage tracing and clonal analysis of oral cancer initiating cells The goal of this project is to study cancer stem cells /cancer initiating...whether oral cancer cells genetically marked based on their activities for stem cell -related pathways exhibit cancer stem cell properties in vivo by
Cultural pathways through universal development.
Greenfield, Patricia M; Keller, Heidi; Fuligni, Andrew; Maynard, Ashley
2003-01-01
We focus our review on three universal tasks of human development: relationship formation, knowledge acquisition, and the balance between autonomy and relatedness at adolescence. We present evidence that each task can be addressed through two deeply different cultural pathways through development: the pathways of independence and interdependence. Whereas core theories in developmental psychology are universalistic in their intentions, they in fact presuppose the independent pathway of development. Because the independent pathway is therefore well-known in psychology, we focus a large part of our review on empirically documenting the alternative, interdependent pathway for each developmental task. We also present three theoretical approaches to culture and development: the ecocultural, the sociohistorical, and the cultural values approach. We argue that an understanding of cultural pathways through human development requires all three approaches. We review evidence linking values (cultural values approach), ecological conditions (ecocultural approach), and socialization practices (sociohistorical approach) to cultural pathways through universal developmental tasks.
NASA Astrophysics Data System (ADS)
Soltani, S. S.; Cvetkovic, V.
2017-07-01
This focuses on solute discharge from boreal catchments with relatively shallow groundwater table and topography-driven groundwater flow. We explore whether a simplified semianalytical approach can be used for predictive modeling of the statistical distribution of tracer discharge. The approach is referred to as the "kinematic pathways approach" (KPA). This approach uses hydrological and tracer inputs and topographical and hydrogeological information; the latter regards average aquifer depth to the less permeable bedrock. A characteristic velocity of water flow through the catchment is further obtained from the overall water balance in the catchment. For the waterborne tracer transport through the catchment, morphological dispersion is accounted for by topographical analysis of the distribution of pathway lengths to the catchment outlet. Macrodispersion is accounted for heuristically by assuming an effective Péclet number. Distribution of water travel times through the catchment reflect the dispersion on both levels and are derived in both a forward mode (transit time from input to outlet) and a backward mode (water age when arriving at outlet arrival). The forward distribution of water travel times is further used for the tracer discharge modeling by convolution. The approach is applied to modeling of a 23 year long chloride data series for a specific catchment Kringlan (Sweden), and for generic modeling to better understand the dependence of the tracer discharge distribution on different dispersion aspects. The KPA is found to provide reasonable estimates of tracer discharge distribution, and particularly of extreme values, depending on method for determining the pathway length distribution. As a possible alternative analytical model of tracer transport through a catchment, the reservoir approach generally results in large tracer dispersion. This implies that tracer discharge distributions obtained from a mixed reservoir approach and from KPA are only compatible under large dispersion conditions.
Mathematical Justification of Expression-Based Pathway Activation Scoring (PAS).
Aliper, Alexander M; Korzinkin, Michael B; Kuzmina, Natalia B; Zenin, Alexander A; Venkova, Larisa S; Smirnov, Philip Yu; Zhavoronkov, Alex A; Buzdin, Anton A; Borisov, Nikolay M
2017-01-01
Although modeling of activation kinetics for various cell signaling pathways has reached a high grade of sophistication and thoroughness, most such kinetic models still remain of rather limited practical value for biomedicine. Nevertheless, recent advancements have been made in application of signaling pathway science for real needs of prescription of the most effective drugs for individual patients. The methods for such prescription evaluate the degree of pathological changes in the signaling machinery based on two types of data: first, on the results of high-throughput gene expression profiling, and second, on the molecular pathway graphs that reflect interactions between the pathway members. For example, our algorithm OncoFinder evaluates the activation of molecular pathways on the basis of gene/protein expression data in the objects of the interest.Yet, the question of assessment of the relative importance for each gene product in a molecular pathway remains unclear unless one call for the methods of parameter sensitivity /stiffness analysis in the interactomic kinetic models of signaling pathway activation in terms of total concentrations of each gene product.Here we show two principal points: 1. First, the importance coefficients for each gene in pathways that were obtained using the extremely time- and labor-consuming stiffness analysis of full-scaled kinetic models generally differ from much easier-to-calculate expression-based pathway activation score (PAS) not more than by 30%, so the concept of PAS is kinetically justified. 2. Second, the use of pathway-based approach instead of distinct gene analysis, due to the law of large numbers, allows restoring the correlation between the similar samples that were examined using different transcriptome investigation techniques.
Yang, Mei; Cong, Min; Peng, Xiuming; Wu, Junrui; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing
2016-05-18
Milk fat globule membrane (MFGM) proteins have many functions. To explore the different proteomics of human and bovine MFGM, MFGM proteins were separated from human and bovine colostrum and mature milk, and analyzed by the iTRAQ proteomic approach. A total of 411 proteins were recognized and quantified. Among these, 232 kinds of differentially expressed proteins were identified. These differentially expressed proteins were analyzed based on multivariate analysis, gene ontology (GO) annotation and KEGG pathway. Biological processes involved were response to stimulus, localization, establishment of localization, and the immune system process. Cellular components engaged were the extracellular space, extracellular region parts, cell fractions, and vesicles. Molecular functions touched upon were protein binding, nucleotide binding, and enzyme inhibitor activity. The KEGG pathway analysis showed several pathways, including regulation of the actin cytoskeleton, focal adhesion, neurotrophin signaling pathway, leukocyte transendothelial migration, tight junction, complement and coagulation cascades, vascular endothelial growth factor signaling pathway, and adherens junction. These results enhance our understanding of different proteomes of human and bovine MFGM across different lactation phases, which could provide important information and potential directions for the infant milk powder and functional food industries.
Application of stable isotope ratio analysis for biodegradation monitoring in groundwater
Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.
2013-01-01
Stable isotope ratio analysis is increasingly being applied as a tool to detect, understand, and quantify biodegradation of organic and inorganic contaminants in groundwater. An important feature of this approach is that it allows degradative losses of contaminants to be distinguished from those caused by non-destructive processes such as dilution, dispersion, and sorption. Recent advances in analytical techniques, and new approaches for interpreting stable isotope data, have expanded the utility of this method while also exposing complications and ambiguities that must be considered in data interpretations. Isotopic analyses of multiple elements in a compound, and multiple compounds in the environment, are being used to distinguish biodegradative pathways by their characteristic isotope effects. Numerical models of contaminant transport, degradation pathways, and isotopic composition are improving quantitative estimates of in situ contaminant degradation rates under realistic environmental conditions.
Stavrakas, Vassilis; Melas, Ioannis N; Sakellaropoulos, Theodore; Alexopoulos, Leonidas G
2015-01-01
Modeling of signal transduction pathways is instrumental for understanding cells' function. People have been tackling modeling of signaling pathways in order to accurately represent the signaling events inside cells' biochemical microenvironment in a way meaningful for scientists in a biological field. In this article, we propose a method to interrogate such pathways in order to produce cell-specific signaling models. We integrate available prior knowledge of protein connectivity, in a form of a Prior Knowledge Network (PKN) with phosphoproteomic data to construct predictive models of the protein connectivity of the interrogated cell type. Several computational methodologies focusing on pathways' logic modeling using optimization formulations or machine learning algorithms have been published on this front over the past few years. Here, we introduce a light and fast approach that uses a breadth-first traversal of the graph to identify the shortest pathways and score proteins in the PKN, fitting the dependencies extracted from the experimental design. The pathways are then combined through a heuristic formulation to produce a final topology handling inconsistencies between the PKN and the experimental scenarios. Our results show that the algorithm we developed is efficient and accurate for the construction of medium and large scale signaling networks. We demonstrate the applicability of the proposed approach by interrogating a manually curated interaction graph model of EGF/TNFA stimulation against made up experimental data. To avoid the possibility of erroneous predictions, we performed a cross-validation analysis. Finally, we validate that the introduced approach generates predictive topologies, comparable to the ILP formulation. Overall, an efficient approach based on graph theory is presented herein to interrogate protein-protein interaction networks and to provide meaningful biological insights.
Lee, Sang-Yeop; Kim, Gun-Hwa; Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il
2016-01-01
Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.
Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il
2016-01-01
Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467
Son, Su Young; Kim, Na Kyung; Lee, Sunmin; Singh, Digar; Kim, Ga Ryun; Lee, Jong Seok; Yang, Hee-Sun; Yeo, Joohong; Lee, Sarah; Lee, Choong Hwan
2016-09-01
A multi-parallel approach gauging the mass spectrometry-based metabolite fingerprinting coupled with bioactivity and pathway evaluations could serve as an efficacious tool for inferring plant taxonomic orders. Thirty-four species from three plant families, namely Cornaceae (7), Fabaceae (9), and Rosaceae (18) were subjected to metabolite profiling using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS), followed by multivariate analyses to determine the metabolites characteristic of these families. The partial least squares discriminant analysis (PLS-DA) revealed the distinct clustering pattern of metabolites for each family. The pathway analysis further highlighted the relatively higher proportions of flavonols and ellagitannins in the Cornaceae family than in the other two families. Higher levels of phenolic acids and flavan-3-ols were observed among species from the Rosaceae family, while amino acids, flavones, and isoflavones were more abundant among the Fabaceae family members. The antioxidant activities of plant extracts were measured using ABTS, DPPH, and FRAP assays, and indicated that extracts from the Rosaceae family had the highest activity, followed by those from Cornaceae and Fabaceae. The correlation map analysis positively links the proportional concentration of metabolites with their relative antioxidant activities, particularly in Cornaceae and Rosaceae. This work highlights the pre-eminence of the multi-parallel approach involving metabolite profiling and bioactivity evaluations coupled with metabolic pathways as an efficient methodology for the evaluation of plant phylogenies.
Qiu, Wei-Hai; Chen, Gui-Yan; Cui, Lu; Zhang, Ting-Ming; Wei, Feng; Yang, Yong
2016-01-01
To identify differential pathways between papillary thyroid carcinoma (PTC) patients and normal controls utilizing a novel method which combined pathway with co-expression network. The proposed method included three steps. In the first step, we conducted pretreatments for background pathways and gained representative pathways in PTC. Subsequently, a co-expression network for representative pathways was constructed using empirical Bayes (EB) approach to assign a weight value for each pathway. Finally, random model was extracted to set the thresholds of identifying differential pathways. We obtained 1267 representative pathways and their weight values based on the co-expressed pathway network, and then by meeting the criterion (Weight > 0.0296), 87 differential pathways in total across PTC patients and normal controls were identified. The top three ranked differential pathways were CREB phosphorylation, attachment of GPI anchor to urokinase plasminogen activator receptor (uPAR) and loss of function of SMAD2/3 in cancer. In conclusion, we successfully identified differential pathways (such as CREB phosphorylation, attachment of GPI anchor to uPAR and post-translational modification: synthesis of GPI-anchored proteins) for PTC using the proposed pathway co-expression method, and these pathways might be potential biomarkers for target therapy and detection of PTC.
van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B
2015-01-01
Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.
Chan, She-Hung; Liang, Pi-Hui; Guh, Jih-Hwa
2018-06-01
Although the therapeutics have improved the rates of remission and cure of acute myelogenous leukemia (AML) in recent decades, there is still an unmet medical need for AML therapies because disease relapses are a major obstacle in patients who become refractory to salvage therapy. The development of therapeutic agents promoting both cytotoxicity and cell differentiation may provide opportunities to improve the clinical outcome. Dioscin-induced apoptosis in leukemic cells was identified through death receptor-mediated extrinsic apoptosis pathway. The formation of Bak and tBid, and loss of mitochondrial membrane potential were induced by dioscin suggesting the activation of intrinsic apoptotsis pathway. A functional analysis of transcription factors using transcription factor-DNA interaction array and IPA analysis demonstrated that dioscin induced a profound increase of protein expression of CCAAT/enhancer-binding protein α (C/EBPα), a critical factor for myeloid differentiation. Two-dimensional gel electrophoresis assay confirmed the increase of C/EBPα expression. Dioscin-induced differentiation was substantiated by an increase of CD11b protein expression and the induction of differentiation toward myelomonocytic/granulocytic lineages using hematoxylin and eosin staining. Moreover, both glycolysis and gluconeogenesis pathways after two-dimensional gel electrophoresis assay and IPA network enrichment analysis were proposed to dioscin action. In conclusion, the data suggest that dioscin exerts its antileukemic effect through the upregulation of both death ligands and death receptors and a crosstalk activation of mitochondrial apoptosis pathway with the collaboration of tBid and Bak formation. In addition, proteomics approach reveals an altered metabolic signature of dioscin-treated cells and the induction of differentiation of promyelocytes to granulocytes and monocytes in which the C/EBPα plays a key role.
Pathways Involved in Sasang Constitution from Genome-Wide Analysis in a Korean Population
Yu, Sung-Gon; Kim, Jong-Yeol; Song, Kwang Hoon
2012-01-01
Abstract Objective Sasang constitution (SC) medicine, a branch of Korean traditional medicine, classifies the individual into one of four constitutional types (Taeum, TE; Soeum, SE; Soyang, SY; and Taeyang, TY) based on physiologic characteristics. The authors of the current article recently reported individual genetic elements associated with SC types via genome-wide association (GWA) analysis. However, to understand the biologic mechanisms underlying constitution, a comprehensive approach that combines individual genetic effects was applied. Design Genotypes of 1222 subjects of defined constitution types were measured for 341,998 genetic loci across the entire genome. The biologic pathways associated with SC types were identified via GWA analysis using three different algorithms—namely, the Z-static method, a restandardized gene set assay, and a gene set enrichment assay. Results Distinct pathways were associated (p<0.05) with each constitution type. The TE type was significantly associated with cytoskeleton-related pathways. The SE type was significantly associated with cardio- and amino-acid metabolism–related pathways. The SY type was associated with enriched melanoma-related pathways. TY subjects were excluded because of the small size of that sample. Among these functionally related pathways, core-node genes regulating multiple pathways were identified. TJP1, PTK2, and SRC were selected as core-nodes for TE; RHOA, and MAOA/MAOB for SE; and GNAO1 for SY (p<0.05), respectively. Conclusions The current authors systematically identified the biologic pathways and core-node genes associated with SC types from the GWA study; this information should provide insights regarding the molecular mechanisms inherent in constitutional pathophysiology. PMID:22889377
Voyle, Nicola; Keohane, Aoife; Newhouse, Stephen; Lunnon, Katie; Johnston, Caroline; Soininen, Hilkka; Kloszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon; Hodges, Angela; Kiddle, Steven; Dobson, Richard Jb
2016-01-01
Recent studies indicate that gene expression levels in blood may be able to differentiate subjects with Alzheimer's disease (AD) from normal elderly controls and mild cognitively impaired (MCI) subjects. However, there is limited replicability at the single marker level. A pathway-based interpretation of gene expression may prove more robust. This study aimed to investigate whether a case/control classification model built on pathway level data was more robust than a gene level model and may consequently perform better in test data. The study used two batches of gene expression data from the AddNeuroMed (ANM) and Dementia Case Registry (DCR) cohorts. Our study used Illumina Human HT-12 Expression BeadChips to collect gene expression from blood samples. Random forest modeling with recursive feature elimination was used to predict case/control status. Age and APOE ɛ4 status were used as covariates for all analysis. Gene and pathway level models performed similarly to each other and to a model based on demographic information only. Any potential increase in concordance from the novel pathway level approach used here has not lead to a greater predictive ability in these datasets. However, we have only tested one method for creating pathway level scores. Further, we have been able to benchmark pathways against genes in datasets that had been extensively harmonized. Further work should focus on the use of alternative methods for creating pathway level scores, in particular those that incorporate pathway topology, and the use of an endophenotype based approach.
2013-01-01
Background The availability of gene expression data that corresponds to pig immune response challenges provides compelling material for the understanding of the host immune system. Meta-analysis offers the opportunity to confirm and expand our knowledge by combining and studying at one time a vast set of independent studies creating large datasets with increased statistical power. In this study, we performed two meta-analyses of porcine transcriptomic data: i) scrutinized the global immune response to different challenges, and ii) determined the specific response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection. To gain an in-depth knowledge of the pig response to PRRSV infection, we used an original approach comparing and eliminating the common genes from both meta-analyses in order to identify genes and pathways specifically involved in the PRRSV immune response. The software Pointillist was used to cope with the highly disparate data, circumventing the biases generated by the specific responses linked to single studies. Next, we used the Ingenuity Pathways Analysis (IPA) software to survey the canonical pathways, biological functions and transcription factors found to be significantly involved in the pig immune response. We used 779 chips corresponding to 29 datasets for the pig global immune response and 279 chips obtained from 6 datasets for the pig response to PRRSV infection, respectively. Results The pig global immune response analysis showed interconnected canonical pathways involved in the regulation of translation and mitochondrial energy metabolism. Biological functions revealed in this meta-analysis were centred around translation regulation, which included protein synthesis, RNA-post transcriptional gene expression and cellular growth and proliferation. Furthermore, the oxidative phosphorylation and mitochondria dysfunctions, associated with stress signalling, were highly regulated. Transcription factors such as MYCN, MYC and NFE2L2 were found in this analysis to be potentially involved in the regulation of the immune response. The host specific response to PRRSV infection engendered the activation of well-defined canonical pathways in response to pathogen challenge such as TREM1, toll-like receptor and hyper-cytokinemia/ hyper-chemokinemia signalling. Furthermore, this analysis brought forth the central role of the crosstalk between innate and adaptive immune response and the regulation of anti-inflammatory response. The most significant transcription factor potentially involved in this analysis was HMGB1, which is required for the innate recognition of viral nucleic acids. Other transcription factors like interferon regulatory factors IRF1, IRF3, IRF5 and IRF8 were also involved in the pig specific response to PRRSV infection. Conclusions This work reveals key genes, canonical pathways and biological functions involved in the pig global immune response to diverse challenges, including PRRSV infection. The powerful statistical approach led us to consolidate previous findings as well as to gain new insights into the pig immune response either to common stimuli or specifically to PRRSV infection. PMID:23552196
Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach.
Zhen, Cheng; Zhu, Caizhong; Chen, Haoyang; Xiong, Yiru; Tan, Junyuan; Chen, Dong; Li, Jin
2017-02-21
To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.
Li, Teng; Ye, Jianwen; Shen, Rui; Zong, Yeqing; Zhao, Xuejin; Lou, Chunbo; Chen, Guo-Qiang
2016-11-18
As a product of a multistep enzymatic reaction, accumulation of poly(3-hydroxybutyrate) (PHB) in Escherichia coli (E. coli) can be achieved by overexpression of the PHB synthesis pathway from a native producer involving three genes phbC, phbA, and phbB. Pathway optimization by adjusting expression levels of the three genes can influence properties of the final product. Here, we reported a semirational approach for highly efficient PHB pathway optimization in E. coli based on a phbCAB operon cloned from the native producer Ralstonia entropha (R. entropha). Rationally designed ribosomal binding site (RBS) libraries with defined strengths for each of the three genes were constructed based on high or low copy number plasmids in a one-pot reaction by an oligo-linker mediated assembly (OLMA) method. Strains with desired properties were evaluated and selected by three different methodologies, including visual selection, high-throughput screening, and detailed in-depth analysis. Applying this approach, strains accumulating 0%-92% PHB contents in cell dry weight (CDW) were achieved. PHB with various weight-average molecular weights (M w ) of 2.7-6.8 × 10 6 were also efficiently produced in relatively high contents. These results suggest that the semirational approach combining library design, construction, and proper screening is an efficient way to optimize PHB and other multienzyme pathways.
Mrabet, Yassine; Semmar, Nabil
2010-05-01
Complexity of metabolic systems can be undertaken at different scales (metabolites, metabolic pathways, metabolic network map, biological population) and under different aspects (structural, functional, evolutive). To analyse such a complexity, metabolic systems need to be decomposed into different components according to different concepts. Four concepts are presented here consisting in considering metabolic systems as sets of metabolites, chemical reactions, metabolic pathways or successive processes. From a metabolomic dataset, such decompositions are performed using different mathematical methods including correlation, stiochiometric, ordination, classification, combinatorial and kinetic analyses. Correlation analysis detects and quantifies affinities/oppositions between metabolites. Stoichiometric analysis aims to identify the organisation of a metabolic network into different metabolic pathways on the hand, and to quantify/optimize the metabolic flux distribution through the different chemical reactions of the system. Ordination and classification analyses help to identify different metabolic trends and their associated metabolites in order to highlight chemical polymorphism representing different variability poles of the metabolic system. Then, metabolic processes/correlations responsible for such a polymorphism can be extracted in silico by combining metabolic profiles representative of different metabolic trends according to a weighting bootstrap approach. Finally evolution of metabolic processes in time can be analysed by different kinetic/dynamic modelling approaches.
Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.
Unrean, Pornkamol; Nguyen, Nhung H A
2013-01-01
We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.
Exploring Genetic Attributions Underlying Radiotherapy-Induced Fatigue in Prostate Cancer Patients.
Hashemi, Sepehr; Fernandez Martinez, Juan Luis; Saligan, Leorey; Sonis, Stephen
2017-09-01
Despite numerous proposed mechanisms, no definitive pathophysiology underlying radiotherapy-induced fatigue (RIF) has been established. However, the dysregulation of a set of 35 genes was recently validated to predict development of fatigue in prostate cancer patients receiving radiotherapy. To hypothesize novel pathways, and provide genetic targets for currently proposed pathways implicated in RIF development through analysis of the previously validated gene set. The gene set was analyzed for all phenotypic attributions implicated in the phenotype of fatigue. Initially, a "directed" approach was used by querying specific fatigue-related sub-phenotypes against all known phenotypic attributions of the gene set. Then, an "undirected" approach, reviewing the entirety of the literature referencing the 35 genes, was used to increase analysis sensitivity. The dysregulated genes attribute to neural, immunological, mitochondrial, muscular, and metabolic pathways. In addition, certain genes suggest phenotypes not previously emphasized in the context of RIF, such as ionizing radiation sensitivity, DNA damage, and altered DNA repair frequency. Several genes also associated with prostate cancer depression, possibly emphasizing variable radiosensitivity by RIF-prone patients, which may have palliative care implications. Despite the relevant findings, many of the 35 RIF-predictive genes are poorly characterized, warranting their investigation. The implications of herein presented RIF pathways are purely theoretical until specific end-point driven experiments are conducted in more congruent contexts. Nevertheless, the presented attributions are informative, directing future investigation to definitively elucidate RIF's pathoetiology. This study demonstrates an arguably comprehensive method of approaching known differential expression underlying a complex phenotype, to correlate feasible pathophysiology. Copyright © 2017 American Academy of Hospice and Palliative Medicine. All rights reserved.
Integrative pathway knowledge bases as a tool for systems molecular medicine.
Liang, Mingyu
2007-08-20
There exists a sense of urgency to begin to generate a cohesive assembly of biomedical knowledge as the pace of knowledge accumulation accelerates. The urgency is in part driven by the emergence of systems molecular medicine that emphasizes the combination of systems analysis and molecular dissection in the future of medical practice and research. A potentially powerful approach is to build integrative pathway knowledge bases that link organ systems function with molecules.
Suthar, Mehul S.; Brassil, Margaret M.; Blahnik, Gabriele; McMillan, Aimee; Ramos, Hilario J.; Proll, Sean C.; Belisle, Sarah E.; Katze, Michael G.; Gale, Michael
2013-01-01
The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs−/−×Ifnar−/− mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs−/−×Ifnar−/− infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. PMID:23544010
Oligonucleotide microarrays and other ‘omics’ approaches are powerful tools for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-b...
Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H
2017-11-01
Gene co-expression network analysis has been a research method widely used in systematically exploring gene function and interaction. Using the Weighted Gene Co-expression Network Analysis (WGCNA) approach to construct a gene co-expression network using data from a customized 44K microarray transcriptome of chicken epidermal embryogenesis, we have identified two distinct modules that are highly correlated with scale or feather development traits. Signaling pathways related to feather development were enriched in the traditional KEGG pathway analysis and functional terms relating specifically to embryonic epidermal development were also enriched in the Gene Ontology analysis. Significant enrichment annotations were discovered from customized enrichment tools such as Modular Single-Set Enrichment Test (MSET) and Medical Subject Headings (MeSH). Hub genes in both trait-correlated modules showed strong specific functional enrichment toward epidermal development. Also, regulatory elements, such as transcription factors and miRNAs, were targeted in the significant enrichment result. This work highlights the advantage of this methodology for functional prediction of genes not previously associated with scale- and feather trait-related modules.
Bergerat, Agnes; Decano, Julius; Wu, Chang-Jiun; Choi, Hyungwon; Nesvizhskii, Alexey I; Moran, Ann Marie; Ruiz-Opazo, Nelson; Steffen, Martin; Herrera, Victoria LM
2011-01-01
Stroke is the third leading cause of death in the United States with high rates of morbidity among survivors. The search to fill the unequivocal need for new therapeutic approaches would benefit from unbiased proteomic analyses of animal models of spontaneous stroke in the prestroke stage. Since brain microvessels play key roles in neurovascular coupling, we investigated prestroke microvascular proteome changes. Proteomic analysis of cerebral cortical microvessels (cMVs) was done by tandem mass spectrometry comparing two prestroke time points. Metaprotein-pathway analyses of proteomic spectral count data were done to identify risk factor–induced changes, followed by QSPEC-analyses of individual protein changes associated with increased stroke susceptibility. We report 26 cMV proteome profiles from male and female stroke-prone and non–stroke-prone rats at 2 months and 4.5 months of age prior to overt stroke events. We identified 1,934 proteins by two or more peptides. Metaprotein pathway analysis detected age-associated changes in energy metabolism and cell-to-microenvironment interactions, as well as sex-specific changes in energy metabolism and endothelial leukocyte transmigration pathways. Stroke susceptibility was associated independently with multiple protein changes associated with ischemia, angiogenesis or involved in blood brain barrier (BBB) integrity. Immunohistochemical analysis confirmed aquaporin-4 and laminin-α1 induction in cMVs, representative of proteomic changes with >65 Bayes factor (BF), associated with stroke susceptibility. Altogether, proteomic analysis demonstrates significant molecular changes in ischemic cerebral microvasculature in the prestroke stage, which could contribute to the observed model phenotype of microhemorrhages and postischemic hemorrhagic transformation. These pathways comprise putative targets for translational research of much needed novel diagnostic and therapeutic approaches for stroke. PMID:21519634
Kim, Young Hwan; Cho, Kun; Yun, Sung-Ho; Kim, Jin Young; Kwon, Kyung-Hoon; Yoo, Jong Shin; Kim, Seung Il
2006-02-01
Proteomic analysis of Pseudomonas putida KT2440 cultured in monocyclic aromatic compounds was performed using 2-DE/MS and cleavable isotope-coded affinity tag (ICAT) to determine whether proteins involved in aromatic compound degradation pathways were altered as predicted by genomic analysis (Jiménez et al., Environ Microbiol. 2002, 4, 824-841). Eighty unique proteins were identified by 2-DE/MS or MS/MS analysis from P. putida KT2440 cultured in the presence of six different organic compounds. Benzoate dioxygenase (BenA, BenD) and catechol 1,2-dioxygenase (CatA) were induced by benzoate. Protocatechuate 3,4-dixoygenase (PcaGH) was induced by p-hydroxybenzoate and vanilline. beta-Ketoadipyl CoA thiolase (PcaF) and 3-oxoadipate enol-lactone hydrolase (PcaD) were induced by benzoate, p-hydroxybenzoate and vanilline, suggesting that benzoate, p-hydroxybenzoate and vanilline were degraded by different dioxygenases and then converged in the same beta-ketoadipate degradation pathway. An additional 110 proteins, including 19 proteins from 2-DE analysis, were identified by cleavable ICAT analysis for benzoate-induced proteomes, which complemented the 2-DE results. Phenylethylamine exposure induced beta-ketoacyl CoA thiolase (PhaD) and ring-opening enzyme (PhaL), both enzymes of the phenylacetate (pha) biodegradation pathway. Phenylalanine induced 4-hydroxyphenyl-pyruvate dioxygenase (Hpd) and homogentisate 1,2-dioxygenase (HmgA), key enzymes in the homogentisate degradation pathway. Alkyl hydroperoxide reductase (AphC) was induced under all aromatic compounds conditions. These results suggest that proteome analysis complements and supports predictive information obtained by genomic sequence analysis.
Systems Proteomics for Translational Network Medicine
Arrell, D. Kent; Terzic, Andre
2012-01-01
Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016
Modeling Emergence in Neuroprotective Regulatory Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.
2013-01-05
The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatorymore » networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.« less
Guimarães-Dias, Fábia; Neves-Borges, Anna Cristina; Viana, Antonio Americo Barbosa; Mesquita, Rosilene Oliveira; Romano, Eduardo; de Fátima Grossi-de-Sá, Maria; Nepomuceno, Alexandre Lima; Loureiro, Marcelo Ehlers; Alves-Ferreira, Márcio
2012-06-01
Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mechanisms in this model plant. Through combining an in silico approach and gene expression analysis by quantitative real-time PCR, the present work aims at identifying genes of soybean metabolic pathways potentially associated with water deficit. Digital expression patterns of Arabidopsis genes, which were selected based on the basis of literature reports, were evaluated under drought stress condition by Genevestigator. Genes that showed strong induction under drought stress were selected and used as bait to identify orthologs in the soybean genome. This allowed us to select 354 genes of putative soybean orthologs of 79 Arabidopsis genes belonging to 38 distinct metabolic pathways. The expression pattern of the selected genes was verified in the subtractive libraries available in the GENOSOJA project. Subsequently, 13 genes from different metabolic pathways were selected for validation by qPCR experiments. The expression of six genes was validated in plants undergoing drought stress in both pot-based and hydroponic cultivation systems. The results suggest that the metabolic response to drought stress is conserved in Arabidopsis and soybean plants.
Iatropoulos, Paraskevas; Daina, Erica; Curreri, Manuela; Piras, Rossella; Valoti, Elisabetta; Mele, Caterina; Bresin, Elena; Gamba, Sara; Alberti, Marta; Breno, Matteo; Perna, Annalisa; Bettoni, Serena; Sabadini, Ettore; Murer, Luisa; Vivarelli, Marina; Noris, Marina; Remuzzi, Giuseppe
2018-01-01
Membranoproliferative GN (MPGN) was recently reclassified as alternative pathway complement-mediated C3 glomerulopathy (C3G) and immune complex-mediated membranoproliferative GN (IC-MPGN). However, genetic and acquired alternative pathway abnormalities are also observed in IC-MPGN. Here, we explored the presence of distinct disease entities characterized by specific pathophysiologic mechanisms. We performed unsupervised hierarchical clustering, a data-driven statistical approach, on histologic, genetic, and clinical data and data regarding serum/plasma complement parameters from 173 patients with C3G/IC-MPGN. This approach divided patients into four clusters, indicating the existence of four different pathogenetic patterns. Specifically, this analysis separated patients with fluid-phase complement activation (clusters 1-3) who had low serum C3 levels and a high prevalence of genetic and acquired alternative pathway abnormalities from patients with solid-phase complement activation (cluster 4) who had normal or mildly altered serum C3, late disease onset, and poor renal survival. In patients with fluid-phase complement activation, those in clusters 1 and 2 had massive activation of the alternative pathway, including activation of the terminal pathway, and the highest prevalence of subendothelial deposits, but those in cluster 2 had additional activation of the classic pathway and the highest prevalence of nephrotic syndrome at disease onset. Patients in cluster 3 had prevalent activation of C3 convertase and highly electron-dense intramembranous deposits. In addition, we provide a simple algorithm to assign patients with C3G/IC-MPGN to specific clusters. These distinct clusters may facilitate clarification of disease etiology, improve risk assessment for ESRD, and pave the way for personalized treatment. Copyright © 2018 by the American Society of Nephrology.
Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans
2016-01-01
Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087
Klein, Theo; Viner, Rosa I; Overall, Christopher M
2016-10-28
Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.
Entourage: Visualizing Relationships between Biological Pathways using Contextual Subsets
Lex, Alexander; Partl, Christian; Kalkofen, Denis; Streit, Marc; Gratzl, Samuel; Wassermann, Anne Mai; Schmalstieg, Dieter; Pfister, Hanspeter
2014-01-01
Biological pathway maps are highly relevant tools for many tasks in molecular biology. They reduce the complexity of the overall biological network by partitioning it into smaller manageable parts. While this reduction of complexity is their biggest strength, it is, at the same time, their biggest weakness. By removing what is deemed not important for the primary function of the pathway, biologists lose the ability to follow and understand cross-talks between pathways. Considering these cross-talks is, however, critical in many analysis scenarios, such as judging effects of drugs. In this paper we introduce Entourage, a novel visualization technique that provides contextual information lost due to the artificial partitioning of the biological network, but at the same time limits the presented information to what is relevant to the analyst’s task. We use one pathway map as the focus of an analysis and allow a larger set of contextual pathways. For these context pathways we only show the contextual subsets, i.e., the parts of the graph that are relevant to a selection. Entourage suggests related pathways based on similarities and highlights parts of a pathway that are interesting in terms of mapped experimental data. We visualize interdependencies between pathways using stubs of visual links, which we found effective yet not obtrusive. By combining this approach with visualization of experimental data, we can provide domain experts with a highly valuable tool. We demonstrate the utility of Entourage with case studies conducted with a biochemist who researches the effects of drugs on pathways. We show that the technique is well suited to investigate interdependencies between pathways and to analyze, understand, and predict the effect that drugs have on different cell types. Fig. 1Entourage showing the Glioma pathway in detail and contextual information of multiple related pathways. PMID:24051820
Gene expression profiles in whole blood and associations with metabolic dysregulation in obesity.
Cox, Amanda J; Zhang, Ping; Evans, Tiffany J; Scott, Rodney J; Cripps, Allan W; West, Nicholas P
Gene expression data provides one tool to gain further insight into the complex biological interactions linking obesity and metabolic disease. This study examined associations between blood gene expression profiles and metabolic disease in obesity. Whole blood gene expression profiles, performed using the Illumina HT-12v4 Human Expression Beadchip, were compared between (i) individuals with obesity (O) or lean (L) individuals (n=21 each), (ii) individuals with (M) or without (H) Metabolic Syndrome (n=11 each) matched on age and gender. Enrichment of differentially expressed genes (DEG) into biological pathways was assessed using Ingenuity Pathway Analysis. Association between sets of genes from biological pathways considered functionally relevant and Metabolic Syndrome were further assessed using an area under the curve (AUC) and cross-validated classification rate (CR). For OvL, only 50 genes were significantly differentially expressed based on the selected differential expression threshold (1.2-fold, p<0.05). For MvH, 582 genes were significantly differentially expressed (1.2-fold, p<0.05) and pathway analysis revealed enrichment of DEG into a diverse set of pathways including immune/inflammatory control, insulin signalling and mitochondrial function pathways. Gene sets from the mTOR signalling pathways demonstrated the strongest association with Metabolic Syndrome (p=8.1×10 -8 ; AUC: 0.909, CR: 72.7%). These results support the use of expression profiling in whole blood in the absence of more specific tissue types for investigations of metabolic disease. Using a pathway analysis approach it was possible to identify an enrichment of DEG into biological pathways that could be targeted for in vitro follow-up. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Application of artifical intelligence principles to the analysis of "crazy" speech.
Garfield, D A; Rapp, C
1994-04-01
Artificial intelligence computer simulation methods can be used to investigate psychotic or "crazy" speech. Here, symbolic reasoning algorithms establish semantic networks that schematize speech. These semantic networks consist of two main structures: case frames and object taxonomies. Node-based reasoning rules apply to object taxonomies and pathway-based reasoning rules apply to case frames. Normal listeners may recognize speech as "crazy talk" based on violations of node- and pathway-based reasoning rules. In this article, three separate segments of schizophrenic speech illustrate violations of these rules. This artificial intelligence approach is compared and contrasted with other neurolinguistic approaches and is discussed as a conceptual link between neurobiological and psychodynamic understandings of psychopathology.
Mason, Clifford W; Swaan, Peter W; Weiner, Carl P
2006-06-01
The transition from myometrial quiescence to activation is poorly understood, and the analysis of array data is limited by the available data mining tools. We applied functional analysis and logical operations along regulatory gene networks to identify molecular processes and pathways underlying quiescence and activation. We analyzed some 18,400 transcripts and variants in guinea pig myometrium at stages corresponding to quiescence and activation, and compared them to the nonpregnant (control) counterpart using a functional mapping tool, MetaCore (GeneGo, St Joseph, MI) to identify novel gene networks composed of biological pathways during mid (MP) and late (LP) pregnancy. Genes altered during quiescence and or activation were identified following gene specific comparisons with myometrium from nonpregnant animals, and then linked to curated pathways and formulated networks. The MP and LP networks were subtracted from each other to identify unique genomic events during those periods. For example, changes 2-fold or greater in genes mediating protein biosynthesis, programmed cell death, microtubule polymerization, and microtubule based movement were noted during the transition to LP. We describe a novel approach combining microarrays and genetic data to identify networks associated with normal myometrial events. The resulting insights help identify potential biomarkers and permit future targeted investigations of these pathways or networks to confirm or refute their importance.
Nurse Leaders’ Experiences of Implementing Career Advancement Programs for Nurses in Iran
Sheikhi, Mohammad Reza; Khoshknab, Masoud Fallahi; Mohammadi, Farahnaz; Oskouie, Fatemeh
2015-01-01
Background and purpose: Career advancement programs are currently implemented in many countries. In Iran, the first career advancement program was Nurses’ Career Advancement Pathway. The purpose of this study was to explore nurse leaders’ experiences about implementing the Nurses’ Career Advancement Pathway program in Iran. Methods: This exploratory qualitative study was conducted in 2013. Sixteen nurse managers were recruited from the teaching hospitals affiliated to Shahid Behesthi, Qazvin, and Iran Universities of Medical Sciences in Iran. Participants were recruited using purposive sampling method. Study data were collected through in-depth semi-structured interviews. The conventional content analysis approach was used for data analysis. Results: participants’ experiences about implementing the Nurses’ Career Advancement Pathway fell into three main categories including: a) the shortcomings of performance evaluation, b) greater emphasis on point accumulation, c) the advancement-latitude mismatch. Conclusion: The Nurses’ Career Advancement pathway has several shortcomings regarding both its content and its implementation. Therefore, it is recommended to revise the program. PMID:26156907
Hicks, Chindo; Kumar, Ranjit; Pannuti, Antonio; Miele, Lucio
2012-01-01
Variable response and resistance to tamoxifen treatment in breast cancer patients remains a major clinical problem. To determine whether genes and biological pathways containing SNPs associated with risk for breast cancer are dysregulated in response to tamoxifen treatment, we performed analysis combining information from 43 genome-wide association studies with gene expression data from 298 ER(+) breast cancer patients treated with tamoxifen and 125 ER(+) controls. We identified 95 genes which distinguished tamoxifen treated patients from controls. Additionally, we identified 54 genes which stratified tamoxifen treated patients into two distinct groups. We identified biological pathways containing SNPs associated with risk for breast cancer, which were dysregulated in response to tamoxifen treatment. Key pathways identified included the apoptosis, P53, NFkB, DNA repair and cell cycle pathways. Combining GWAS with transcription profiling provides a unified approach for associating GWAS findings with response to drug treatment and identification of potential drug targets.
Medina, S; Ferreres, F; García-Viguera, C; Horcajada, M N; Orduna, J; Savirón, M; Zurek, G; Martínez-Sanz, J M; Gil, J I; Gil-Izquierdo, A
2013-01-15
Citrus juice intake has been highlighted because of its health-promoting effects. LC-MS based metabolomics approaches are applied to obtain a better knowledge on changes in the concentration of metabolites due to its dietary intake and allow a better understanding of involved metabolic pathways. Eight volunteers daily consumed 400 mL of juice for four consecutive days and urine samples were collected before intake and 24h after each citrus juice intake. Urine samples were analysed by nanoHPLC-q-TOF, followed by principal component analysis (PCA) and Student's t-test (p<0.05). PCA showed a separation between two groups (before and after citrus juice consumption). This approach allowed the identification of four endocrine compounds (tetrahydroaldosterone-3-glucuronide, cortolone-3-glucuronide, testosterone-glucuronide and 17-hydroxyprogesterone), which belonged to the steroid biosynthesis pathway as significant metabolites upregulated by citrus juice intake. Additionally, these results confirmed the importance of using the non-targeted metabolomics technique to identify new endogenous metabolites, up- or down-regulated as a consequence of food intake. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wettersten, Hiromi I.; Hakimi, A. Ari; Morin, Dexter; Bianchi, Cristina; Johnstone, Megan E.; Donohoe, Dallas R.; Trott, Josephine F.; Aboud, Omran Abu; Stirdivant, Steven; Neri, Bruce; Wolfert, Robert; Stewart, Benjamin; Perego, Roberto; Hsieh, James J.; Weiss, Robert H.
2015-01-01
Kidney cancer (or renal cell carcinoma [RCC]) is known as “the internist’s tumor” because it has protean systemic manifestations suggesting it utilizes complex, non-physiologic metabolic pathways. Given the increasing incidence of this cancer and its lack of effective therapeutic targets, we undertook an extensive analysis of human RCC tissue employing combined grade-dependent proteomics and metabolomics analysis to determine how metabolic reprogramming occurring in this disease allows it to escape available therapeutic approaches. After validation experiments in RCC cell lines that were wild-type or mutant for the VHL tumor suppressor, in characterizing higher grade tumors we found that the Warburg effect is relatively more prominent at the expense of the tricarboxylic acid cycle and oxidative metabolism in general. Further, we found that the glutamine metabolism pathway acts to inhibit reactive oxygen species, as evidenced by an upregulated glutathione pathway, while the β-oxidation pathway is inhibited leading to increased fatty acyl-carnitines. In support of findings from previous urine metabolomics analyses, we also documented tryptophan catabolism associated with immune suppression, which was highly represented in RCC compared to other metabolic pathways. Together, our results offer a rationale to evaluate novel anti-metabolic treatment strategies being developed in other disease settings as therapeutic strategies in RCC. PMID:25952651
The exploration of contrasting pathways in Triple Negative Breast Cancer (TNBC).
Narrandes, Shavira; Huang, Shujun; Murphy, Leigh; Xu, Wayne
2018-01-04
Triple Negative Breast Cancers (TNBCs) lack the appropriate targets for currently used breast cancer therapies, conferring an aggressive phenotype, more frequent relapse and poorer survival rates. The biological heterogeneity of TNBC complicates the clinical treatment further. We have explored and compared the biological pathways in TNBC and other subtypes of breast cancers, using an in silico approach and the hypothesis that two opposing effects (Yin and Yang) pathways in cancer cells determine the fate of cancer cells. Identifying breast subgroup specific components of these opposing pathways may aid in selecting potential therapeutic targets as well as further classifying the heterogeneous TNBC subtype. Gene expression and patient clinical data from The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used for this study. Gene Set Enrichment Analysis (GSEA) was used to identify the more active pathways in cancer (Yin) than in normal and the more active pathways in normal (Yang) than in cancer. The clustering analysis was performed to compare pathways of TNBC with other types of breast cancers. The association of pathway classified TNBC sub-groups to clinical outcomes was tested using Cox regression model. Among 4729 curated canonical pathways in GSEA database, 133 Yin pathways (FDR < 0.05) and 71 Yang pathways (p-value <0.05) were discovered in TNBC. The FOXM1 is the top Yin pathway while PPARα is the top Yang pathway in TNBC. The TNBC and other types of breast cancers showed different pathways enrichment significance profiles. Using top Yin and Yang pathways as classifier, the TNBC can be further subtyped into six sub-groups each having different clinical outcomes. We first reported that the FOMX1 pathway is the most upregulated and the PPARα pathway is the most downregulated pathway in TNBC. These two pathways could be simultaneously targeted in further studies. Also the pathway classifier we performed in this study provided insight into the TNBC heterogeneity.
Awaad, Aziz; Nakamura, Michihiro; Ishimura, Kazunori
2012-07-01
We investigated size-dependent uptake of fluorescent thiol-organosilica particles by Peyer's patches (PPs). We performed an oral single-particle administration (95, 130, 200, 340, 695 and 1050 nm) and a simultaneous dual-particle administration using 2 kinds of particles. Histological imaging and quantitative analysis revealed that particles taken up by the PP subepithelial dome were size dependent, and there was an optimal size range for higher uptake. Quantitative analysis of simultaneous dual-particle administration revealed that the percentage of fluorescence areas for 95, 130, 200, 340, 695 and 1050 nm with respect to 110 nm area was 124.0, 89.1, 73.8, 20.2, 9.2 and 0.5%, respectively. Additionally, imaging using fluorescent thiol-organosilica particles could detect 2 novel pathways through mouse PP epithelium: the transcellular pathway and the paracellular pathway. The uptake of nanoparticles based on an optimal size range and 2 novel pathways could indicate a new approach for vaccine delivery and nanomedicine development. Studying various sizes of fluorescent organosilica particles and their uptake in Peyer's patches, this team of authors determined the optimal size range of administration. Two novel pathways through mouse Peyer's patch epithelium were detected, i.e., the transcellular pathway and the paracellular pathway. This observation may have important applications in future vaccine delivery and nano-drug delivery. Copyright © 2012 Elsevier Inc. All rights reserved.
An overview of bioinformatics methods for modeling biological pathways in yeast
Hou, Jie; Acharya, Lipi; Zhu, Dongxiao
2016-01-01
The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein–protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae. In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways in S. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. PMID:26476430
NASA Astrophysics Data System (ADS)
Baya, P. A.; Point, D.; Amouroux, D. P.; Lebreton, B.; Guillou, G.
2015-12-01
Methylmercury (CH3Hg) is a potent neurotoxin which is readily assimilated by organisms and bio-accumulates in aquatic food webs. In humans, consumption of CH3Hg contaminated marine fish is the major route of mercury exposure. However, our understanding of CH3Hg transformation pathways is still incomplete. To close this knowledge gap, we propose to explore the stable carbon isotopic composition (δ13C) of the methyl group of CH3Hg for a better understanding of its sources and transformation mechanisms. The method developed for the determination of the δ13C value of CH3Hg in biological samples involves (i) CH3Hg selective extraction, (ii) derivatization, and (iii) separation by gas chromatography (GC) prior to analysis by combustion isotope ratio mass spectrometry (C-IRMS). We present the figures of merit of this novel method and the first δ13C signatures for certified materials (ERM-CE464, BCR414) and biological samples at different marine trophic levels (i.e., tuna fish, zooplankton). The implications of this new approach to trace the pathways associated with Hg methylation and the mechanisms involved will be discussed.
Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang
2016-05-01
Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Krieg, S A; Fan, X; Hong, Y; Sang, Q-X; Giaccia, A; Westphal, L M; Lathi, R B; Krieg, A J; Nayak, N R
2012-09-01
Recurrent pregnancy loss (RPL) occurs in ∼5% of women. However, the etiology is still poorly understood. Defects in decidualization of the endometrium during early pregnancy contribute to several pregnancy complications, such as pre-eclampsia and intrauterine growth restriction (IUGR), and are believed to be important in the pathogenesis of idiopathic RPL. We performed microarray analysis to identify gene expression alterations in the deciduas of idiopathic RPL patients. Control patients had one antecedent term delivery, but were undergoing dilation and curettage for current aneuploid miscarriage. Gene expression differences were evaluated using both pathway and gene ontology (GO) analysis. Selected genes were validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 155 genes were found to be significantly dysregulated in the deciduas of RPL patients (>2-fold change, P < 0.05), with 22 genes up-regulated and 133 genes down-regulated. GO analysis linked a large percentage of genes to discrete biological functions, including immune response (23%), cell signaling (18%) and cell invasion (17.1%), and pathway analysis revealed consistent changes in both the interleukin 1 (IL-1) and IL-8 pathways. All genes in the IL-8 pathway were up-regulated while genes in the IL-1 pathway were down-regulated. Although both pathways can promote inflammation, IL-1 pathway activity is important for normal implantation. Additionally, genes known to be critical for degradation of the extracellular matrix, including matrix metalloproteinase 26 and serine peptidase inhibitor Kazal-type 1, were also highly up-regulated. In this first microarray approach to decidual gene expression in RPL patients, our data suggest that dysregulation of genes associated with cell invasion and immunity may contribute significantly to idiopathic recurrent miscarriage.
Wang, Yin-Yin; Li, Jie; Wu, Zeng-Rui; Zhang, Bo; Yang, Hong-Bin; Wang, Qin; Cai, Ying-Chun; Liu, Gui-Xia; Li, Wei-Hua; Tang, Yun
2017-05-01
An increasing number of cases of herb-induced liver injury (HILI) have been reported, presenting new clinical challenges. In this study, taking Polygonum multiflorum Thunb (PmT) as an example, we proposed a computational systems toxicology approach to explore the molecular mechanisms of HILI. First, the chemical components of PmT were extracted from 3 main TCM databases as well as the literature related to natural products. Then, the known targets were collected through data integration, and the potential compound-target interactions (CTIs) were predicted using our substructure-drug-target network-based inference (SDTNBI) method. After screening for hepatotoxicity-related genes by assessing the symptoms of HILI, a compound-target interaction network was constructed. A scoring function, namely, Ascore, was developed to estimate the toxicity of chemicals in the liver. We conducted network analysis to determine the possible mechanisms of the biphasic effects using the analysis tools, including BiNGO, pathway enrichment, organ distribution analysis and predictions of interactions with CYP450 enzymes. Among the chemical components of PmT, 54 components with good intestinal absorption were used for analysis, and 2939 CTIs were obtained. After analyzing the mRNA expression data in the BioGPS database, 1599 CTIs and 125 targets related to liver diseases were identified. In the top 15 compounds, seven with Ascore values >3000 (emodin, quercetin, apigenin, resveratrol, gallic acid, kaempferol and luteolin) were obviously associated with hepatotoxicity. The results from the pathway enrichment analysis suggest that multiple interactions between apoptosis and metabolism may underlie PmT-induced liver injury. Many of the pathways have been verified in specific compounds, such as glutathione metabolism, cytochrome P450 metabolism, and the p53 pathway, among others. Hepatitis symptoms, the perturbation of nine bile acids and yellow or tawny urine also had corresponding pathways, justifying our method. In conclusion, this computational systems toxicology method reveals possible toxic components and could be very helpful for understanding the mechanisms of HILI. In this way, the method might also facilitate the identification of novel hepatotoxic herbs.
Fang, H; Tong, W; Perkins, R; Shi, L; Hong, H; Cao, X; Xie, Q; Yim, SH; Ward, JM; Pitot, HC; Dragan, YP
2005-01-01
Background The completion of the sequencing of human, mouse and rat genomes and knowledge of cross-species gene homologies enables studies of differential gene expression in animal models. These types of studies have the potential to greatly enhance our understanding of diseases such as liver cancer in humans. Genes co-expressed across multiple species are most likely to have conserved functions. We have used various bioinformatics approaches to examine microarray expression profiles from liver neoplasms that arise in albumin-SV40 transgenic rats to elucidate genes, chromosome aberrations and pathways that might be associated with human liver cancer. Results In this study, we first identified 2223 differentially expressed genes by comparing gene expression profiles for two control, two adenoma and two carcinoma samples using an F-test. These genes were subsequently mapped to the rat chromosomes using a novel visualization tool, the Chromosome Plot. Using the same plot, we further mapped the significant genes to orthologous chromosomal locations in human and mouse. Many genes expressed in rat 1q that are amplified in rat liver cancer map to the human chromosomes 10, 11 and 19 and to the mouse chromosomes 7, 17 and 19, which have been implicated in studies of human and mouse liver cancer. Using Comparative Genomics Microarray Analysis (CGMA), we identified regions of potential aberrations in human. Lastly, a pathway analysis was conducted to predict altered human pathways based on statistical analysis and extrapolation from the rat data. All of the identified pathways have been known to be important in the etiology of human liver cancer, including cell cycle control, cell growth and differentiation, apoptosis, transcriptional regulation, and protein metabolism. Conclusion The study demonstrates that the hepatic gene expression profiles from the albumin-SV40 transgenic rat model revealed genes, pathways and chromosome alterations consistent with experimental and clinical research in human liver cancer. The bioinformatics tools presented in this paper are essential for cross species extrapolation and mapping of microarray data, its analysis and interpretation. PMID:16026603
Melas, Ioannis N; Mitsos, Alexander; Messinis, Dimitris E; Weiss, Thomas S; Rodriguez, Julio-Saez; Alexopoulos, Leonidas G
2012-04-01
Construction of large and cell-specific signaling pathways is essential to understand information processing under normal and pathological conditions. On this front, gene-based approaches offer the advantage of large pathway exploration whereas phosphoproteomic approaches offer a more reliable view of pathway activities but are applicable to small pathway sizes. In this paper, we demonstrate an experimentally adaptive approach to construct large signaling pathways from phosphoproteomic data within a 3-day time frame. Our approach--taking advantage of the fast turnaround time of the xMAP technology--is carried out in four steps: (i) screen optimal pathway inducers, (ii) select the responsive ones, (iii) combine them in a combinatorial fashion to construct a phosphoproteomic dataset, and (iv) optimize a reduced generic pathway via an Integer Linear Programming formulation. As a case study, we uncover novel players and their corresponding pathways in primary human hepatocytes by interrogating the signal transduction downstream of 81 receptors of interest and constructing a detailed model for the responsive part of the network comprising 177 species (of which 14 are measured) and 365 interactions.
2012-01-01
Background Gene Set Analysis (GSA) has proven to be a useful approach to microarray analysis. However, most of the method development for GSA has focused on the statistical tests to be used rather than on the generation of sets that will be tested. Existing methods of set generation are often overly simplistic. The creation of sets from individual pathways (in isolation) is a poor reflection of the complexity of the underlying metabolic network. We have developed a novel approach to set generation via the use of Principal Component Analysis of the Laplacian matrix of a metabolic network. We have analysed a relatively simple data set to show the difference in results between our method and the current state-of-the-art pathway-based sets. Results The sets generated with this method are semi-exhaustive and capture much of the topological complexity of the metabolic network. The semi-exhaustive nature of this method has also allowed us to design a hypergeometric enrichment test to determine which genes are likely responsible for set significance. We show that our method finds significant aspects of biology that would be missed (i.e. false negatives) and addresses the false positive rates found with the use of simple pathway-based sets. Conclusions The set generation step for GSA is often neglected but is a crucial part of the analysis as it defines the full context for the analysis. As such, set generation methods should be robust and yield as complete a representation of the extant biological knowledge as possible. The method reported here achieves this goal and is demonstrably superior to previous set analysis methods. PMID:22876834
ADAGE signature analysis: differential expression analysis with data-defined gene sets.
Tan, Jie; Huyck, Matthew; Hu, Dongbo; Zelaya, René A; Hogan, Deborah A; Greene, Casey S
2017-11-22
Gene set enrichment analysis and overrepresentation analyses are commonly used methods to determine the biological processes affected by a differential expression experiment. This approach requires biologically relevant gene sets, which are currently curated manually, limiting their availability and accuracy in many organisms without extensively curated resources. New feature learning approaches can now be paired with existing data collections to directly extract functional gene sets from big data. Here we introduce a method to identify perturbed processes. In contrast with methods that use curated gene sets, this approach uses signatures extracted from public expression data. We first extract expression signatures from public data using ADAGE, a neural network-based feature extraction approach. We next identify signatures that are differentially active under a given treatment. Our results demonstrate that these signatures represent biological processes that are perturbed by the experiment. Because these signatures are directly learned from data without supervision, they can identify uncurated or novel biological processes. We implemented ADAGE signature analysis for the bacterial pathogen Pseudomonas aeruginosa. For the convenience of different user groups, we implemented both an R package (ADAGEpath) and a web server ( http://adage.greenelab.com ) to run these analyses. Both are open-source to allow easy expansion to other organisms or signature generation methods. We applied ADAGE signature analysis to an example dataset in which wild-type and ∆anr mutant cells were grown as biofilms on the Cystic Fibrosis genotype bronchial epithelial cells. We mapped active signatures in the dataset to KEGG pathways and compared with pathways identified using GSEA. The two approaches generally return consistent results; however, ADAGE signature analysis also identified a signature that revealed the molecularly supported link between the MexT regulon and Anr. We designed ADAGE signature analysis to perform gene set analysis using data-defined functional gene signatures. This approach addresses an important gap for biologists studying non-traditional model organisms and those without extensive curated resources available. We built both an R package and web server to provide ADAGE signature analysis to the community.
Zakirova, Zuchra; Reed, Jon; Crynen, Gogce; Horne, Lauren; Hassan, Samira; Mathura, Venkatarajan; Mullan, Michael; Crawford, Fiona
2017-01-01
Purpose Long‐term consequences of combined pyridostigmine bromide (PB) and permethrin (PER) exposure in C57BL6/J mice using a well‐characterized mouse model of exposure to these Gulf War (GW) agents were explored at the protein level. Experimental design We used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane‐bound protein fractions from brain samples using two orthogonal isotopic labeling LC‐MS/MS proteomic approaches—stable isotope dimethyl labeling and iTRAQ. Results The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. Conclusions and clinical relevance The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation. Collectively, our work identified key pathways which were chronically impacted in the mouse CNS following acute GW agent exposure, this may lead to the identification of potential targets for therapeutic intervention in the future. Long‐term consequences of combined PB and PER exposure in C57BL6/J mice using a well‐characterized mouse model of exposure to these GW agents were explored at the protein level. Expanding on earlier work, we used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane‐bound protein fractions from brain samples using two orthogonal isotopic labeling LC‐MS/MS proteomic approaches—stable isotope dimethyl labeling and iTRAQ. The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation at 5 months postexposure to PB + PER. PMID:28371386
Niu, Xiaoyi; He, Bosai; Du, Yiyang; Sui, Zhenyu; Rong, Weiwei; Wang, Xiaotong; Li, Qing; Bi, Kaishun
2018-06-01
Suanzaoren decoction, as one of the traditional Chinese medicine prescriptions, has been most commonly used in Asian countries and reported to inhibit the process of immunodeficiency insomnia. Polysaccharide is important component which also contributes to the role of immunoprotective and sedative hypnotic effects. This study was aimed to explore the immunoprotective and sedative hypnotic mechanisms of polysaccharide from Suanzaoren decoction by serum metabonomics approach. With this purpose, complex physical and chemical immunodeficiency insomnia models were firstly established according to its multi-target property. Serum samples were analyzed using UHPLC/Q-TOF-MS spectrometry approach to determine endogenous metabolites. Then, principal component analysis was used to distinguish the groups, and partial least squares discriminate analysis was carried out to confirm the important variables. The serum metabolic profiling was identified and pathway analysis was performed after the total polysaccharide administration. The twenty-one potential biomarkers were screened, and the levels were all reversed to different degrees in the total polysaccharide treated groups. These potential biomarkers were mainly related to vitamin, sphingolipid, bile acid, phospholipid and acylcarnitine metabolisms. The result has indicated that total polysaccharide could inhibit insomnia triggered by immunodeficiency stimulation through regulating those metabolic pathways. This study provides a useful approach for exploring the mechanism and evaluating the efficacy of total polysaccharide from Suanzaoren decoction. Copyright © 2018 Elsevier B.V. All rights reserved.
Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L; Mandelli, Diego; Zhegang Ma
2014-11-01
As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe themore » RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.« less
Lee, Yun; Chen, Fang; Gallego-Giraldo, Lina; Dixon, Richard A.; Voit, Eberhard O.
2011-01-01
The entanglement of lignin polymers with cellulose and hemicellulose in plant cell walls is a major biological barrier to the economically viable production of biofuels from woody biomass. Recent efforts of reducing this recalcitrance with transgenic techniques have been showing promise for ameliorating or even obviating the need for costly pretreatments that are otherwise required to remove lignin from cellulose and hemicelluloses. At the same time, genetic manipulations of lignin biosynthetic enzymes have sometimes yielded unforeseen consequences on lignin composition, thus raising the question of whether the current understanding of the pathway is indeed correct. To address this question systemically, we developed and applied a novel modeling approach that, instead of analyzing the pathway within a single target context, permits a comprehensive, simultaneous investigation of different datasets in wild type and transgenic plants. Specifically, the proposed approach combines static flux-based analysis with a Monte Carlo simulation in which very many randomly chosen sets of parameter values are evaluated against kinetic models of lignin biosynthesis in different stem internodes of wild type and lignin-modified alfalfa plants. In addition to four new postulates that address the reversibility of some key reactions, the modeling effort led to two novel postulates regarding the control of the lignin biosynthetic pathway. The first posits functionally independent pathways toward the synthesis of different lignin monomers, while the second postulate proposes a novel feedforward regulatory mechanism. Subsequent laboratory experiments have identified the signaling molecule salicylic acid as a potential mediator of the postulated control mechanism. Overall, the results demonstrate that mathematical modeling can be a valuable complement to conventional transgenic approaches and that it can provide biological insights that are otherwise difficult to obtain. PMID:21625579
2018-01-01
Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181
Zhang, Xiuxiu; Li, Yubo; Zhou, Huifang; Fan, Simiao; Zhang, Zhenzhu; Wang, Lei; Zhang, Yanjun
2014-08-01
Acyclovir (ACV) is an antiviral agent. However, its use is limited by adverse side effect, particularly by its nephrotoxicity. Metabonomics technology can provide essential information on the metabolic profiles of biofluids and organs upon drug administration. Therefore, in this study, mass spectrometry-based metabonomics coupled with multivariate data analysis was used to identify the plasma metabolites and metabolic pathways related to nephrotoxicity caused by intraperitoneal injection of low (50mg/kg) and high (100mg/kg) doses of acyclovir. Sixteen biomarkers were identified by metabonomics and nephrotoxicity results revealed the dose-dependent effect of acyclovir on kidney tissues. The present study showed that the top four metabolic pathways interrupted by acyclovir included the metabolisms of arachidonic acid, tryptophan, arginine and proline, and glycerophospholipid. This research proves the established metabonomic approach can provide information on changes in metabolites and metabolic pathways, which can be applied to in-depth research on the mechanism of acyclovir-induced kidney injury. Copyright © 2014 Elsevier B.V. All rights reserved.
Electronic Implementation of Integrated End-of-life Care: A Local Approach
Schlieper, Daniel; Altreuther, Christiane; Schallenburger, Manuela; Neukirchen, Martin; Schmitz, Andrea
2017-01-01
Introduction: The Liverpool Care Pathway for the Dying Patient is an instrument to deliver integrated care for patients in their last hours of life. Originally a paper-based system, this study investigates the feasibility of an electronic version. Methods: An electronic Liverpool Care Pathway was implemented in a specialized palliative care unit of a German university hospital. Its use is exemplified by means of auditing and analysis of the proportion of recorded items. Results: In the years 2013 and 2014 the electronic Liverpool Care Pathway was used for the care of 159 patients. The uptake of the instrument was high (67%). Most items were recorded. Apart from a high usability, the fast data retrieval allows fast analysis for auditing and research. Conclusions and discussion: The electronic instrument is feasible in a computerized ward and has strong advantages for retrospective analysis. Trial registration: Internal Clinical Trial Register of the Medical Faculty, Heinrich Heine University Düsseldorf, No. 2015124683 (7 December 2015). PMID:28970746
McAlearney, Ann Scheck; Walker, Daniel; Moss, Alexandra DeNardis; Bickell, Nina A.
2015-01-01
Background Qualitative Comparative Analysis (QCA) is a methodology created to address causal complexity in social sciences research by preserving the objectivity of quantitative data analysis without losing detail inherent in qualitative research. However, its use in health services research (HSR) is limited, and questions remain about its application in this context. Objective To explore the strengths and weaknesses of using QCA for HSR. Research Design Using data from semi-structured interviews conducted as part of a multiple case study about adjuvant treatment underuse among underserved breast cancer patients, findings were compared using qualitative approaches with and without QCA to identify strengths, challenges, and opportunities presented by QCA. Subjects Ninety administrative and clinical key informants interviewed across ten NYC area safety net hospitals. Measures Transcribed interviews were coded by three investigators using an iterative and interactive approach. Codes were calibrated for QCA, as well as examined using qualitative analysis without QCA. Results Relative to traditional qualitative analysis, QCA strengths include: (1) addressing causal complexity, (2) results presentation as pathways as opposed to a list, (3) identification of necessary conditions, (4) the option of fuzzy-set calibrations, and (5) QCA-specific parameters of fit that allow researchers to compare outcome pathways. Weaknesses include: (1) few guidelines and examples exist for calibrating interview data, (2) not designed to create predictive models, and (3) unidirectionality. Conclusions Through its presentation of results as pathways, QCA can highlight factors most important for production of an outcome. This strength can yield unique benefits for HSR not available through other methods. PMID:26908085
McAlearney, Ann Scheck; Walker, Daniel; Moss, Alexandra D; Bickell, Nina A
2016-04-01
Qualitative comparative analysis (QCA) is a methodology created to address causal complexity in social sciences research by preserving the objectivity of quantitative data analysis without losing detail inherent in qualitative research. However, its use in health services research (HSR) is limited, and questions remain about its application in this context. To explore the strengths and weaknesses of using QCA for HSR. Using data from semistructured interviews conducted as part of a multiple case study about adjuvant treatment underuse among underserved breast cancer patients, findings were compared using qualitative approaches with and without QCA to identify strengths, challenges, and opportunities presented by QCA. Ninety administrative and clinical key informants interviewed across 10 NYC area safety net hospitals. Transcribed interviews were coded by 3 investigators using an iterative and interactive approach. Codes were calibrated for QCA, as well as examined using qualitative analysis without QCA. Relative to traditional qualitative analysis, QCA strengths include: (1) addressing causal complexity, (2) results presentation as pathways as opposed to a list, (3) identification of necessary conditions, (4) the option of fuzzy-set calibrations, and (5) QCA-specific parameters of fit that allow researchers to compare outcome pathways. Weaknesses include: (1) few guidelines and examples exist for calibrating interview data, (2) not designed to create predictive models, and (3) unidirectionality. Through its presentation of results as pathways, QCA can highlight factors most important for production of an outcome. This strength can yield unique benefits for HSR not available through other methods.
Deriving pathway maps from automated text analysis using a grammar-based approach.
Olsson, Björn; Gawronska, Barbara; Erlendsson, Björn
2006-04-01
We demonstrate how automated text analysis can be used to support the large-scale analysis of metabolic and regulatory pathways by deriving pathway maps from textual descriptions found in the scientific literature. The main assumption is that correct syntactic analysis combined with domain-specific heuristics provides a good basis for relation extraction. Our method uses an algorithm that searches through the syntactic trees produced by a parser based on a Referent Grammar formalism, identifies relations mentioned in the sentence, and classifies them with respect to their semantic class and epistemic status (facts, counterfactuals, hypotheses). The semantic categories used in the classification are based on the relation set used in KEGG (Kyoto Encyclopedia of Genes and Genomes), so that pathway maps using KEGG notation can be automatically generated. We present the current version of the relation extraction algorithm and an evaluation based on a corpus of abstracts obtained from PubMed. The results indicate that the method is able to combine a reasonable coverage with high accuracy. We found that 61% of all sentences were parsed, and 97% of the parse trees were judged to be correct. The extraction algorithm was tested on a sample of 300 parse trees and was found to produce correct extractions in 90.5% of the cases.
Nam, Seungyoon
2017-04-01
Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.
Maneuvering in the Complex Path from Genotype to Phenotype
NASA Astrophysics Data System (ADS)
Strohman, Richard
2002-04-01
Human disease phenotypes are controlled not only by genes but by lawful self-organizing networks that display system-wide dynamics. These networks range from metabolic pathways to signaling pathways that regulate hormone action. When perturbed, networks alter their output of matter and energy which, depending on the environmental context, can produce either a pathological or a normal phenotype. Study of the dynamics of these networks by approaches such as metabolic control analysis may provide new insights into the pathogenesis and treatment of complex diseases.
Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.
Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju
2017-04-27
Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.
NASA Technical Reports Server (NTRS)
Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)
2001-01-01
Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.
Jiang, Z; Gui, S; Zhang, Y
2011-05-01
Nonfunctioning pituitary adenomas (NFPAs) are relatively common, accounting for 30% of all pituitary adenomas; however, their pathogenesis remains enigmatic. To explore the possible pathogenesis of NFPAs, we used fiber-optic BeadArray to examine gene expression in 5 NFPAs compared with 3 normal pituitaries. 4 differentially expressed genes were chosen randomly for validation by reverse transcriptase-real time quantitative polymerase chain reaction (RT-qPCR). We then analyzed the differentially expressed gene profile with Kyoto Encyclopedia of Genes and Genomes (KEGG). The array analysis indentified significant increases in the expression of 1,402 genes and 383 expressed sequence tags (ESTs), and decreases in 1,697 genes and 113 ESTs in the NFPAs. Bioinformatic and pathway analysis showed that the genes HIGD1B, FAM5C, PMAIP1 and the pathway cell-cycle regulation may play an important role in tumorigenesis and progression of NFPAs. Our data suggest fiber-optic BeadArray combined with pathway analysis of differential gene expression profile appears to be a valid approach for investigating the pathogenesis of tumors. © Georg Thieme Verlag KG Stuttgart · New York.
Reverse Engineering a Signaling Network Using Alternative Inputs
Tanaka, Hiromasa; Yi, Tau-Mu
2009-01-01
One of the goals of systems biology is to reverse engineer in a comprehensive fashion the arrow diagrams of signal transduction systems. An important tool for ordering pathway components is genetic epistasis analysis, and here we present a strategy termed Alternative Inputs (AIs) to perform systematic epistasis analysis. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. We introduced the concept of an “AIs-Deletions matrix” that summarizes the outputs of all combinations of alternative inputs and deletions. We developed the theory and algorithms to construct a pairwise relationship graph from the AIs-Deletions matrix capturing both functional ordering (upstream, downstream) and logical relationships (AND, OR), and then interpreting these relationships into a standard arrow diagram. As a proof-of-principle, we applied this methodology to a subset of genes involved in yeast mating signaling. This experimental pilot study highlights the robustness of the approach and important technical challenges. In summary, this research formalizes and extends classical epistasis analysis from linear pathways to more complex networks, facilitating computational analysis and reconstruction of signaling arrow diagrams. PMID:19898612
In response to 'Can sugars be produced from fatty acids? A test case for pathway analysis tools'.
Faust, Karoline; Croes, Didier; van Helden, Jacques
2009-12-01
In their article entitled 'Can sugars be produced from fatty acids? A test case for pathway analysis tools' de Figueiredo and co-authors assess the performance of three pathway prediction tools (METATOOL, PathFinding and Pathway Hunter Tool) using the synthesis of glucose-6-phosphate (G6P) from acetyl-CoA in humans as a test case. We think that this article is biased for three reasons: (i) the metabolic networks used as input for the respective tools were of very different sizes; (ii) the 'assessment' is restricted to two study cases; (iii) developers are inherently more skilled to use their own tools than those developed by other people. We extended the analyses led by de Figueiredo and clearly show that the apparent superior performance of their tool (METATOOL) is partly due to the differences in input network sizes. We also see a conceptual problem in the comparison of tools that serve different purposes. In our opinion, metabolic path finding and elementary mode analysis are answering different biological questions, and should be considered as complementary rather than competitive approaches. Supplementary data are available at Bioinformatics online.
Gene expression profiles in liver of mouse after chronic exposure to drinking water.
Wu, Bing; Zhang, Yan; Zhao, Dayong; Zhang, Xuxiang; Kong, Zhiming; Cheng, Shupei
2009-10-01
cDNA micorarray approach was applied to hepatic transcriptional profile analysis in male mouse (Mus musculus, ICR) to assess the potential health effects of drinking water in Nanjing, China. Mice were treated with continuous exposure to drinking water for 90 days. Hepatic gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 arrays, and pathway analysis was carried out by Molecule Annotation System 2.0 and KEGG pathway database. A total of 836 genes were found to be significantly altered (1.5-fold, P < or = 0.05), including 294 up-regulated genes and 542 down-regulated genes. According to biological pathway analysis, drinking water exposure resulted in aberration of gene expression and biological pathways linked to xenobiotic metabolism, signal transduction, cell cycle and oxidative stress response. Further, deregulation of several genes associated with carcinogenesis or tumor progression including Ccnd1, Egfr, Map2k3, Mcm2, Orc2l and Smad2 was observed. Although transcription changes in identified genes are unlikely to be used as a sole indicator of adverse health effects, the results of this study could enhance our understanding of early toxic effects of drinking water exposure and support future studies on drinking water safety.
Lee, Hyeonjeong; Shin, Miyoung
2017-01-01
The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into distinctive associations between pathway activities in case and control samples.
Modular analysis of biological networks.
Kaltenbach, Hans-Michael; Stelling, Jörg
2012-01-01
The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.
Enriched pathways for major depressive disorder identified from a genome-wide association study.
Kao, Chung-Feng; Jia, Peilin; Zhao, Zhongming; Kuo, Po-Hsiu
2012-11-01
Major depressive disorder (MDD) has caused a substantial burden of disease worldwide with moderate heritability. Despite efforts through conducting numerous association studies and now, genome-wide association (GWA) studies, the success of identifying susceptibility loci for MDD has been limited, which is partially attributed to the complex nature of depression pathogenesis. A pathway-based analytic strategy to investigate the joint effects of various genes within specific biological pathways has emerged as a powerful tool for complex traits. The present study aimed to identify enriched pathways for depression using a GWA dataset for MDD. For each gene, we estimated its gene-wise p value using combined and minimum p value, separately. Canonical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCarta were used. We employed four pathway-based analytic approaches (gene set enrichment analysis, hypergeometric test, sum-square statistic, sum-statistic). We adjusted for multiple testing using Benjamini & Hochberg's method to report significant pathways. We found 17 significantly enriched pathways for depression, which presented low-to-intermediate crosstalk. The top four pathways were long-term depression (p⩽1×10-5), calcium signalling (p⩽6×10-5), arrhythmogenic right ventricular cardiomyopathy (p⩽1.6×10-4) and cell adhesion molecules (p⩽2.2×10-4). In conclusion, our comprehensive pathway analyses identified promising pathways for depression that are related to neurotransmitter and neuronal systems, immune system and inflammatory response, which may be involved in the pathophysiological mechanisms underlying depression. We demonstrated that pathway enrichment analysis is promising to facilitate our understanding of complex traits through a deeper interpretation of GWA data. Application of this comprehensive analytic strategy in upcoming GWA data for depression could validate the findings reported in this study.
Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae.
McKenna, Rebekah; Thompson, Brian; Pugh, Shawn; Nielsen, David R
2014-08-21
Styrene is an important building-block petrochemical and monomer used to produce numerous plastics. Whereas styrene bioproduction by Escherichia coli was previously reported, the long-term potential of this approach will ultimately rely on the use of hosts with improved industrial phenotypes, such as the yeast Saccharomyces cerevisiae. Classical metabolic evolution was first applied to isolate a mutant capable of phenylalanine over-production to 357 mg/L. Transcription analysis revealed up-regulation of several phenylalanine biosynthesis pathway genes including ARO3, encoding the bottleneck enzyme DAHP synthase. To catalyze the first pathway step, phenylalanine ammonia lyase encoded by PAL2 from A. thaliana was constitutively expressed from a high copy plasmid. The final pathway step, phenylacrylate decarboxylase, was catalyzed by the native FDC1. Expression of FDC1 was naturally induced by trans-cinnamate, the pathway intermediate and its substrate, at levels sufficient for ensuring flux through the pathway. Deletion of ARO10 to eliminate the competing Ehrlich pathway and expression of a feedback-resistant DAHP synthase encoded by ARO4K229L preserved and promoted the endogenous availability precursor phenylalanine, leading to improved pathway flux and styrene production. These systematic improvements allowed styrene titers to ultimately reach 29 mg/L at a glucose yield of 1.44 mg/g, a 60% improvement over the initial strain. The potential of S. cerevisiae as a host for renewable styrene production has been demonstrated. Significant strain improvements, however, will ultimately be needed to achieve economical production levels.
An overview of bioinformatics methods for modeling biological pathways in yeast.
Hou, Jie; Acharya, Lipi; Zhu, Dongxiao; Cheng, Jianlin
2016-03-01
The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein-protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways inS. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Simpson, Julie E; Hosny, Ola; Wharton, Stephen B; Heath, Paul R; Holden, Hazel; Fernando, Malee S; Matthews, Fiona; Forster, Gill; O'Brien, John T; Barber, Robert; Kalaria, Raj N; Brayne, Carol; Shaw, Pamela J; Lewis, Claire E; Ince, Paul G
2009-02-01
White matter lesions (WML) in brain aging are linked to dementia and depression. Ischemia contributes to their pathogenesis but other mechanisms may contribute. We used RNA microarray analysis with functional pathway grouping as an unbiased approach to investigate evidence for additional pathogenetic mechanisms. WML were identified by MRI and pathology in brains donated to the Medical Research Council Cognitive Function and Ageing Study Cognitive Function and Aging Study. RNA was extracted to compare WML with nonlesional white matter samples from cases with lesions (WM[L]), and from cases with no lesions (WM[C]) using RNA microarray and pathway analysis. Functional pathways were validated for selected genes by quantitative real-time polymerase chain reaction and immunocytochemistry. We identified 8 major pathways in which multiple genes showed altered RNA transcription (immune regulation, cell cycle, apoptosis, proteolysis, ion transport, cell structure, electron transport, metabolism) among 502 genes that were differentially expressed in WML compared to WM[C]. In WM[L], 409 genes were altered involving the same pathways. Genes selected to validate this microarray data all showed the expected changes in RNA levels and immunohistochemical expression of protein. WML represent areas with a complex molecular phenotype. From this and previous evidence, WML may arise through tissue ischemia but may also reflect the contribution of additional factors like blood-brain barrier dysfunction. Differential expression of genes in WM[L] compared to WM[C] indicate a "field effect" in the seemingly normal surrounding white matter.
Hilton, Gillean; Unsworth, Carolyn A; Stuckey, Ruth; Murphy, Gregory C
2018-01-01
Vocational potential in people with spinal cord injury (SCI) are unrealised with rates of employment substantially lower than in the labour force participation of the general population and the pre-injury employment rates. To understand the experience and pathway of people achieving employment outcome after traumatic spinal cord injury by; classifying participants into employment outcome groups of stable, unstable and without employment; identifying pre and post-injury pathways for participants in each group and, exploring the experiences of people of seeking, gaining and maintaining employment. Thirty-one participants were interviewed. Mixed methods approach including interpretive phenomenological analysis and vocational pathway mapping of quantitative data. The most common pathway identified was from study and work pre-injury to stable employment post-injury. Four super-ordinate themes were identified from the interpretive phenomenological analysis; expectations of work, system impacts, worker identity and social supports. Implications for clinical practice include fostering cultural change, strategies for system navigation, promotion of worker identity and optimal use of social supports. The findings increase insight and understanding of the complex experience of employment after spinal cord injury. There is opportunity to guide experimental research, policy development and education concerning the complexity of the return to work experience and factors that influence pathways.
Fay, Kellie A; Villeneuve, Daniel L; Swintek, Joe; Edwards, Stephen W; Nelms, Mark D; Blackwell, Brett R; Ankley, Gerald T
2018-06-01
The U.S. Environmental Protection Agency's ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with potential apical effects relevant to risk assessors. Thus, efforts are underway to develop AOPs relevant to pathway-specific perturbations detected in ToxCast assays. Previous work identified a "cytotoxic burst" (CTB) phenomenon wherein large numbers of the ToxCast assays begin to respond at or near test chemical concentrations that elicit cytotoxicity, and a statistical approach to defining the bounds of the CTB was developed. To focus AOP development on the molecular targets corresponding to ToxCast assays indicating pathway-specific effects, we conducted a meta-analysis to identify which assays most frequently respond at concentrations below the CTB. A preliminary list of potentially important, target-specific assays was determined by ranking assays by the fraction of chemical hits below the CTB compared with the number of chemicals tested. Additional priority assays were identified using a diagnostic-odds-ratio approach which gives greater ranking to assays with high specificity but low responsivity. Combined, the two prioritization methods identified several novel targets (e.g., peripheral benzodiazepine and progesterone receptors) to prioritize for AOP development, and affirmed the importance of a number of existing AOPs aligned with ToxCast targets (e.g., thyroperoxidase, estrogen receptor, aromatase). The prioritization approaches did not appear to be influenced by inter-assay differences in chemical bioavailability. Furthermore, the outcomes were robust based on a variety of different parameters used to define the CTB.
Genome-wide protein-protein interactions and protein function exploration in cyanobacteria
Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu
2015-01-01
Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033
Dahlin, Paul; Srivastava, Vaibhav; Ekengren, Sophia; McKee, Lauren S; Bulone, Vincent
2017-01-01
The oomycete class includes pathogens of animals and plants which are responsible for some of the most significant global losses in agriculture and aquaculture. There is a need to replace traditional chemical means of controlling oomycete growth with more targeted approaches, and the inhibition of sterol synthesis is one promising area. To better direct these efforts, we have studied sterol acquisition in two model organisms: the sterol-autotrophic Saprolegnia parasitica, and the sterol-heterotrophic Phytophthora infestans. We first present a comprehensive reconstruction of a likely sterol synthesis pathway for S. parasitica, causative agent of the disease saprolegniasis in fish. This pathway shows multiple potential routes of sterol synthesis, and draws on several avenues of new evidence: bioinformatic mining for genes with sterol-related functions, expression analysis of these genes, and analysis of the sterol profiles in mycelium grown in different media. Additionally, we explore the extent to which P. infestans, which causes the late blight in potato, can modify exogenously provided sterols. We consider whether the two very different approaches to sterol acquisition taken by these pathogens represent any specific survival advantages or potential drug targets.
A wavelet analysis for the X-ray absorption spectra of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penfold, T. J.; Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne; SwissFEL, Paul Scherrer Inst, CH-5232 Villigen
2013-01-07
We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rheniummore » diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.« less
Li, Guo-Chun; Zhang, Lina; Yu, Ming; Jia, Haiyu; Tian, Ting; Wang, Junqin; Wang, Fuqiang; Zhou, Ling
2017-01-01
The systematic mechanisms of acute intracerebral hemorrhage are still unknown and unverified, although many recent researches have indicated the secondary insults. This study was aimed to disclose the pathological mechanism and identify novel biomarker and therapeutic target candidates by plasma proteome. Patients with AICH (n = 8) who demographically matched healthy controls (n = 4) were prospectively enrolled, and their plasma samples were obtained. The TMT-LC-MS/MS-based proteomics approach was used to quantify the differential proteome across plasma samples, and the results were analyzed by Ingenuity Pathway Analysis to explore canonical pathways and the relationship involved in the uploaded data. Compared with healthy controls, there were 31 differentially expressed proteins in the ICH group ( P < 0.05), of which 21 proteins increased while 10 proteins decreased in abundance. These proteins are involved in 21 canonical pathways. One network with high confidence level was selected by the function network analysis, in which 23 proteins, P38MAPK and NFκB signaling pathways participated. Upstream regulator analysis found two regulators, IL6 and TNF, with an activation z -score. Seven biomarker candidates: APCS, FGB, LBP, MGMT, IGFBP2, LYZ, and APOA4 were found. Six candidate proteins were selected to assess the validity of the results by subsequent Western blotting analysis. Our analysis provided several intriguing pathways involved in ICH, like LXR/RXR activation, acute phase response signaling, and production of NO and ROS in macrophages pathways. The three upstream regulators: IL-6, TNF, LPS, and seven biomarker candidates: APCS, APOA4, FGB, IGFBP2, LBP, LYZ, and MGMT were uncovered. LPS, APOA4, IGFBP2, LBP, LYZ, and MGMT are novel potential biomarkers in ICH development. The identified proteins and pathways provide new perspectives to the potential pathological mechanism and therapeutic targets underlying ICH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Eric S.; Brown, Houston J.; Helm, Monte L.
2016-01-20
The hydrogen production electrocatalyst Ni(PPh2NPh2)22+ (1) is capable of traversing multiple electrocatalytic pathways. When using dimethylformamidium, DMF(H)+, the mechanism of formation of H2 catalyzed by 1 changes from an ECEC to an EECC mechanism as the potential approaches the Ni(I/0) couple. Two recent electrochemical methods, current-potential analysis and foot-of-the-wave analysis (FOWA), were performed on 1 to measure the detailed chemical kinetics of the competing ECEC and EECC pathways. A sensitivity analysis was performed on the electrochemical methods using digital simulations to gain a better understanding of their strengths and limitations. Notably, chemical rate constants were significantly underestimated when not accountingmore » for electron transfer kinetics, even when electron transfer was fast enough to afford a reversible non-catalytic wave. The EECC pathway of 1 was found to be faster than the ECEC pathway under all conditions studied. Using buffered DMF: DMF(H)+ mixtures led to an increase in the catalytic rate constant (kobs) of the EECC pathway, but kobs for the ECEC pathway did not change when using buffered acid. Further kinetic analysis of the ECEC path revealed that added base increases the rate of isomerization of the exo-protonated Ni(0) isomers to the catalytically active endo-isomers, but decreases the net rate of protonation of Ni(I). FOWA on 1 did not provide accurate rate constants due to incomplete reduction of the exo-protonated Ni(I) intermediate at the foot of the wave, but FOWA could be used to estimate the reduction potential of this previously undetected intermediate. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals
NASA Astrophysics Data System (ADS)
Jiang, P.; Kumar, P.
2017-12-01
Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.
Pathway Distiller - multisource biological pathway consolidation
2012-01-01
Background One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. Methods After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. Results We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. Conclusions By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments. PMID:23134636
Pathway Distiller - multisource biological pathway consolidation.
Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong
2012-01-01
One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments.
Dozmorov, Igor; Dominguez, Nicolas; Sestak, Andrea L.; Robertson, Julie M.; Harley, John B.; James, Judith A.; Guthridge, Joel M.
2013-01-01
Recent application of gene expression profiling to the immune system has shown a great potential for characterization of complex regulatory processes. It is becoming increasingly important to characterize functional systems through multigene interactions to provide valuable insights into differences between healthy controls and autoimmune patients. Here we apply an original systematic approach to the analysis of changes in regulatory gene interconnections between in Epstein-Barr virus transformed hyperresponsive B cells from SLE patients and normal control B cells. Both traditional analysis of differential gene expression and analysis of the dynamics of gene expression variations were performed in combination to establish model networks of functional gene expression. This Pathway Dysregulation Analysis identified known transcription factors and transcriptional regulators activated uniquely in stimulated B cells from SLE patients. PMID:23977035
Mass Spectrometry: A Technique of Many Faces
Olshina, Maya A.; Sharon, Michal
2016-01-01
Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems. PMID:28100928
Kryklywy, James H; Macpherson, Ewan A; Mitchell, Derek G V
2018-04-01
Emotion can have diverse effects on behaviour and perception, modulating function in some circumstances, and sometimes having little effect. Recently, it was identified that part of the heterogeneity of emotional effects could be due to a dissociable representation of emotion in dual pathway models of sensory processing. Our previous fMRI experiment using traditional univariate analyses showed that emotion modulated processing in the auditory 'what' but not 'where' processing pathway. The current study aims to further investigate this dissociation using a more recently emerging multi-voxel pattern analysis searchlight approach. While undergoing fMRI, participants localized sounds of varying emotional content. A searchlight multi-voxel pattern analysis was conducted to identify activity patterns predictive of sound location and/or emotion. Relative to the prior univariate analysis, MVPA indicated larger overlapping spatial and emotional representations of sound within early secondary regions associated with auditory localization. However, consistent with the univariate analysis, these two dimensions were increasingly segregated in late secondary and tertiary regions of the auditory processing streams. These results, while complimentary to our original univariate analyses, highlight the utility of multiple analytic approaches for neuroimaging, particularly for neural processes with known representations dependent on population coding.
Development of an Integrated Metabolomic Profiling Approach for Infectious Diseases Research
Lv, Haitao; Hung, Chia S.; Chaturvedi, Kaveri S.; Hooton, Thomas M.; Henderson, Jeffrey P.
2013-01-01
Metabolomic profiling offers direct insights into the chemical environment and metabolic pathway activities at sites of human disease. During infection, this environment may receive important contributions from both host and pathogen. Here we apply untargeted metabolomics approach to identify compounds associated with an E. coli urinary tract infection population. Correlative and structural data from minimally processed samples were obtained using an optimized LC-MS platform capable of resolving ∼2300 molecular features. Principal components analysis readily distinguished patient groups and multiple supervised chemometric analyses resolved robust metabolomic shifts between groups. These analyses revealed nine compounds whose provisional structures suggest candidate infection-associated endocrine, catabolic, and lipid pathways. Several of these metabolite signatures may derive from microbial processing of host metabolites. Overall, this study highlights the ability of metabolomic approaches to directly identify compounds encountered by, and produced from, bacterial pathogens within human hosts. PMID:21922104
Kumar, Amit; Thotakura, Pragna Lakshmi; Tiwary, Basant Kumar; Krishna, Ramadas
2016-05-12
Fusobacterium nucleatum, a well studied bacterium in periodontal diseases, appendicitis, gingivitis, osteomyelitis and pregnancy complications has recently gained attention due to its association with colorectal cancer (CRC) progression. Treatment with berberine was shown to reverse F. nucleatum-induced CRC progression in mice by balancing the growth of opportunistic pathogens in tumor microenvironment. Intestinal microbiota imbalance and the infections caused by F. nucleatum might be regulated by therapeutic intervention. Hence, we aimed to predict drug target proteins in F. nucleatum, through subtractive genomics approach and host-pathogen protein-protein interactions (HP-PPIs). We also carried out enrichment analysis of host interacting partners to hypothesize the possible mechanisms involved in CRC progression due to F. nucleatum. In subtractive genomics approach, the essential, virulence and resistance related proteins were retrieved from RefSeq proteome of F. nucleatum by searching against Database of Essential Genes (DEG), Virulence Factor Database (VFDB) and Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) tool respectively. A subsequent hierarchical screening to identify non-human homologous, metabolic pathway-independent/pathway-specific and druggable proteins resulted in eight pathway-independent and 27 pathway-specific druggable targets. Co-aggregation of F. nucleatum with host induces proinflammatory gene expression thereby potentiates tumorigenesis. Hence, proteins from IBDsite, a database for inflammatory bowel disease (IBD) research and those involved in colorectal adenocarcinoma as interpreted from The Cancer Genome Atlas (TCGA) were retrieved to predict drug targets based on HP-PPIs with F. nucleatum proteome. Prediction of HP-PPIs exhibited 186 interactions contributed by 103 host and 76 bacterial proteins. Bacterial interacting partners were accounted as putative targets. And enrichment analysis of host interacting partners showed statistically enriched terms that were in positive correlation with CRC, atherosclerosis, cardiovascular, osteoporosis, Alzheimer's and other diseases. Subtractive genomics analysis provided a set of target proteins suggested to be indispensable for survival and pathogenicity of F. nucleatum. These target proteins might be considered for designing potent inhibitors to abrogate F. nucleatum infections. From enrichment analysis, it was hypothesized that F. nucleatum infection might enhance CRC progression by simultaneously regulating multiple signaling cascades which could lead to up-regulation of proinflammatory responses, oncogenes, modulation of host immune defense mechanism and suppression of DNA repair system.
Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data
Vital, Marius; Howe, Adina Chuang
2014-01-01
ABSTRACT Butyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate-producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzymes catalyzing the terminal reaction have been described, previous investigations are often incomplete. We undertook a broad analysis of butyrate-producing pathways and individual genes by screening 3,184 sequenced bacterial genomes from the Integrated Microbial Genome database. Genomes of 225 bacteria with a potential to produce butyrate were identified, including many previously unknown candidates. The majority of candidates belong to distinct families within the Firmicutes, but members of nine other phyla, especially from Actinobacteria, Bacteroidetes, Fusobacteria, Proteobacteria, Spirochaetes, and Thermotogae, were also identified as potential butyrate producers. The established gene catalogue (3,055 entries) was used to screen for butyrate synthesis pathways in 15 metagenomes derived from stool samples of healthy individuals provided by the HMP (Human Microbiome Project) consortium. A high percentage of total genomes exhibited a butyrate-producing pathway (mean, 19.1%; range, 3.2% to 39.4%), where the acetyl-coenzyme A (CoA) pathway was the most prevalent (mean, 79.7% of all pathways), followed by the lysine pathway (mean, 11.2%). Diversity analysis for the acetyl-CoA pathway showed that the same few firmicute groups associated with several Lachnospiraceae and Ruminococcaceae were dominating in most individuals, whereas the other pathways were associated primarily with Bacteroidetes. PMID:24757212
Li, Zheng; Srivastava, Shireesh; Yang, Xuerui; Mittal, Sheenu; Norton, Paul; Resau, James; Haab, Brian; Chan, Christina
2007-01-01
Background Free fatty acids (FFA) and tumor necrosis factor alpha (TNF-α) have been implicated in the pathogenesis of many obesity-related metabolic disorders. When human hepatoblastoma cells (HepG2) were exposed to different types of FFA and TNF-α, saturated fatty acid was found to be cytotoxic and its toxicity was exacerbated by TNF-α. In order to identify the processes associated with the toxicity of saturated FFA and TNF-α, the metabolic and gene expression profiles were measured to characterize the cellular states. A computational model was developed to integrate these disparate data to reveal the underlying pathways and mechanisms involved in saturated fatty acid toxicity. Results A hierarchical framework consisting of three stages was developed to identify the processes and genes that regulate the toxicity. First, discriminant analysis identified that fatty acid oxidation and intracellular triglyceride accumulation were the most relevant in differentiating the cytotoxic phenotype. Second, gene set enrichment analysis (GSEA) was applied to the cDNA microarray data to identify the transcriptionally altered pathways and processes. Finally, the genes and gene sets that regulate the metabolic responses identified in step 1 were identified by integrating the expression of the enriched gene sets and the metabolic profiles with a multi-block partial least squares (MBPLS) regression model. Conclusion The hierarchical approach suggested potential mechanisms involved in mediating the cytotoxic and cytoprotective pathways, as well as identified novel targets, such as NADH dehydrogenases, aldehyde dehydrogenases 1A1 (ALDH1A1) and endothelial membrane protein 3 (EMP3) as modulator of the toxic phenotypes. These predictions, as well as, some specific targets that were suggested by the analysis were experimentally validated. PMID:17498300
Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.
Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin
2018-02-10
A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu
Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 humanmore » skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA(III) perturbs Nrf2 pathway and selenoprotein synthesis.« less
NASA Astrophysics Data System (ADS)
Dippold, Michaela; Kuzyakov, Yakov
2015-04-01
Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously. This involved an intensive C recycling within the microorganisms that was observed not only for cytosolic compounds but also for cell wall polymers. Fungal metabolism and fluxes were slower than bacterial intracellular C recycling and turnover. Furthermore, position-specific labeling of glutamate and subsequent 13C analysis of microbial phospholipid fatty acids (PLFA) revealed starvation pathways, which were only active in specific microbial groups in soils. These studies revealed that position-specific labeling enables the reconstruction of metabolic pathways of LMWOS within diverse microbial communities in complex media such as soil. Processes occurring simultaneously in soil i.e. 1) within individual, reversible metabolic pathways and 2) in various microbial groups could be traced by position-specific labeling in soils in situ. Tracing these pathways and understanding their regulating factors are crucial for soil C fluxomics, the extremely complex network of transformations towards mineralization versus the formation of microbial biomass compounds. Quantitative models to assess microbial group specific metabolic networks can be generated and parameterized by this approach. The submolecular knowledge of transformation steps and biochemical pathways in soils and their regulating factors is essential for understanding C cycling and long-term C storage in soils.
The complex genetics of gait speed: genome-wide meta-analysis approach
Lunetta, Kathryn L.; Smith, Jennifer A.; Eicher, John D.; Vered, Rotem; Deelen, Joris; Arnold, Alice M.; Buchman, Aron S.; Tanaka, Toshiko; Faul, Jessica D.; Nethander, Maria; Fornage, Myriam; Adams, Hieab H.; Matteini, Amy M.; Callisaya, Michele L.; Smith, Albert V.; Yu, Lei; De Jager, Philip L.; Evans, Denis A.; Gudnason, Vilmundur; Hofman, Albert; Pattie, Alison; Corley, Janie; Launer, Lenore J.; Knopman, Davis S.; Parimi, Neeta; Turner, Stephen T.; Bandinelli, Stefania; Beekman, Marian; Gutman, Danielle; Sharvit, Lital; Mooijaart, Simon P.; Liewald, David C.; Houwing-Duistermaat, Jeanine J.; Ohlsson, Claes; Moed, Matthijs; Verlinden, Vincent J.; Mellström, Dan; van der Geest, Jos N.; Karlsson, Magnus; Hernandez, Dena; McWhirter, Rebekah; Liu, Yongmei; Thomson, Russell; Tranah, Gregory J.; Uitterlinden, Andre G.; Weir, David R.; Zhao, Wei; Starr, John M.; Johnson, Andrew D.; Ikram, M. Arfan; Bennett, David A.; Cummings, Steven R.; Deary, Ian J.; Harris, Tamara B.; Kardia, Sharon L. R.; Mosley, Thomas H.; Srikanth, Velandai K.; Windham, Beverly G.; Newman, Ann B.; Walston, Jeremy D.; Davies, Gail; Evans, Daniel S.; Slagboom, Eline P.; Ferrucci, Luigi; Kiel, Douglas P.; Murabito, Joanne M.; Atzmon, Gil
2017-01-01
Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging. PMID:28077804
Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application
Cantor, Rita M.; Lange, Kenneth; Sinsheimer, Janet S.
2010-01-01
Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. A substantial number of recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. This review is written from the viewpoint that findings from the GWAS provide preliminary genetic information that is available for additional analysis by statistical procedures that accumulate evidence, and that these secondary analyses are very likely to provide valuable information that will help prioritize the strongest constellations of results. We review and discuss three analytic methods to combine preliminary GWAS statistics to identify genes, alleles, and pathways for deeper investigations. Meta-analysis seeks to pool information from multiple GWAS to increase the chances of finding true positives among the false positives and provides a way to combine associations across GWAS, even when the original data are unavailable. Testing for epistasis within a single GWAS study can identify the stronger results that are revealed when genes interact. Pathway analysis of GWAS results is used to prioritize genes and pathways within a biological context. Following a GWAS, association results can be assigned to pathways and tested in aggregate with computational tools and pathway databases. Reviews of published methods with recommendations for their application are provided within the framework for each approach. PMID:20074509
Metabolomics, Standards, and Metabolic Modeling for Synthetic Biology in Plants
Hill, Camilla Beate; Czauderna, Tobias; Klapperstück, Matthias; Roessner, Ute; Schreiber, Falk
2015-01-01
Life on earth depends on dynamic chemical transformations that enable cellular functions, including electron transfer reactions, as well as synthesis and degradation of biomolecules. Biochemical reactions are coordinated in metabolic pathways that interact in a complex way to allow adequate regulation. Biotechnology, food, biofuel, agricultural, and pharmaceutical industries are highly interested in metabolic engineering as an enabling technology of synthetic biology to exploit cells for the controlled production of metabolites of interest. These approaches have only recently been extended to plants due to their greater metabolic complexity (such as primary and secondary metabolism) and highly compartmentalized cellular structures and functions (including plant-specific organelles) compared with bacteria and other microorganisms. Technological advances in analytical instrumentation in combination with advances in data analysis and modeling have opened up new approaches to engineer plant metabolic pathways and allow the impact of modifications to be predicted more accurately. In this article, we review challenges in the integration and analysis of large-scale metabolic data, present an overview of current bioinformatics methods for the modeling and visualization of metabolic networks, and discuss approaches for interfacing bioinformatics approaches with metabolic models of cellular processes and flux distributions in order to predict phenotypes derived from specific genetic modifications or subjected to different environmental conditions. PMID:26557642
Wang, Ruoxin; Su, Chao; Wang, Xinting; Fu, Qiang; Gao, Xingjie; Zhang, Chunyan; Yang, Jie; Yang, Xi; Wei, Minxin
2018-01-01
Mammalian cardiomyocytes may permanently lose their ability to proliferate after birth. Therefore, studying the proliferation and growth arrest of cardiomyocytes during the postnatal period may enhance the current understanding regarding this molecular mechanism. The present study identified the differentially expressed genes in hearts obtained from 24 h‑old mice, which contain proliferative cardiomyocytes; 7‑day‑old mice, in which the cardiomyocytes are undergoing a proliferative burst; and 10‑week‑old mice, which contain growth‑arrested cardiomyocytes, using global gene expression analysis. Furthermore, myocardial proliferation and growth arrest were analyzed from numerous perspectives, including Gene Ontology annotation, cluster analysis, pathway enrichment and network construction. The results of a Gene Ontology analysis indicated that, with increasing age, enriched gene function was not only associated with cell cycle, cell division and mitosis, but was also associated with metabolic processes and protein synthesis. In the pathway analysis, 'cell cycle', proliferation pathways, such as the 'PI3K‑AKT signaling pathway', and 'metabolic pathways' were well represented. Notably, the cluster analysis revealed that bone morphogenetic protein (BMP)1, BMP10, cyclin E2, E2F transcription factor 1 and insulin like growth factor 1 exhibited increased expression in hearts obtained from 7‑day‑old mice. In addition, the signal transduction pathway associated with the cell cycle was identified. The present study primarily focused on genes with altered expression, including downregulated anaphase promoting complex subunit 1, cell division cycle (CDC20), cyclin dependent kinase 1, MYC proto-oncogene, bHLH transcription factor and CDC25C, and upregulated growth arrest and DNA damage inducible α in 10-week group, which may serve important roles in postnatal myocardial cell cycle arrest. In conclusion, these data may provide important information regarding myocardial proliferation and development.
The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways.
Sun, Yahui; Ma, Chenkai; Halgamuge, Saman
2017-12-28
Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases.
Malhotra, Jyoti; Sartori, Samantha; Brennan, Paul; Zaridze, David; Szeszenia-Dabrowska, Neonila; Świątkowska, Beata; Rudnai, Peter; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Gaborieau, Valerie; Stücker, Isabelle; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo
2015-03-01
Occupational exposures are known risk factors for lung cancer. Role of genetically determined host factors in occupational exposure-related lung cancer is unclear. We used genome-wide association (GWA) data from a case-control study conducted in 6 European countries from 1998 to 2002 to identify gene-occupation interactions and related pathways for lung cancer risk. GWA analysis was performed for each exposure using logistic regression and interaction term for genotypes, and exposure was included in this model. Both SNP-based and gene-based interaction P values were calculated. Pathway analysis was performed using three complementary methods, and analyses were adjusted for multiple comparisons. We analyzed 312,605 SNPs and occupational exposure to 70 agents from 1,802 lung cancer cases and 1,725 cancer-free controls. Mean age of study participants was 60.1 ± 9.1 years and 75% were male. Largest number of significant associations (P ≤ 1 × 10(-5)) at SNP level was demonstrated for nickel, brick dust, concrete dust, and cement dust, and for brick dust and cement dust at the gene-level (P ≤ 1 × 10(-4)). Approximately 14 occupational exposures showed significant gene-occupation interactions with pathways related to response to environmental information processing via signal transduction (P < 0.001 and FDR < 0.05). Other pathways that showed significant enrichment were related to immune processes and xenobiotic metabolism. Our findings suggest that pathways related to signal transduction, immune process, and xenobiotic metabolism may be involved in occupational exposure-related lung carcinogenesis. Our study exemplifies an integrative approach using pathway-based analysis to demonstrate the role of genetic variants in occupational exposure-related lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 24(3); 570-9. ©2015 AACR. ©2015 American Association for Cancer Research.
Raad, Mohamad; El Tal, Tala; Gul, Rukhsana; Mondello, Stefania; Zhang, Zhiqun; Boustany, Rose-Mary; Guingab, Joy; Wang, Kevin K; Kobeissy, Firas
2012-12-01
Several common degenerative mechanisms and mediators underlying the neuronal injury pathways characterize several neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's disease, as well as brain neurotrauma. Such common ground invites the emergence of new approaches and tools to study the altered pathways involved in neural injury alongside with neuritogenesis, an intricate process that commences with neuronal differentiation. Achieving a greater understanding of the impaired pathways of neuritogenesis would significantly help in uncovering detailed mechanisms of axonal regeneration. Among the several agents involved in neuritogenesis are the Rho and Rho kinases (ROCKs), which constitute key integral points in the Rho/ROCK pathway that is known to be disrupted in multiple neuropathologies such as spinal cord injury, traumatic brain injury, and Alzheimer's disease. This in turn renders ROCK inhibition as a promising candidate for therapeutic targets for treatment of neurodegenerative diseases. Among the novel tools to investigate the mechanisms involved in a specific disorder is the use of neuroproteomics/systems biology approach, a growing subfield of bioinformatics aiming to study and establishing a global assessment of the entire neuronal proteome, addressing the dynamic protein changes and interactions. This review aims to examine recent updates regarding how neuroproteomics aids in the understanding of molecular mechanisms of activation and inhibition in the area of neurogenesis and how Rho/ROCK pathway/ROCK inhibitors, primarily Y-27632 and Fasudil compounds, are applied in biological settings, promoting neuronal survival and neuroprotection that has direct future implications in neurotrauma. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lipidomics of oxidized polyunsaturated fatty acids
Massey, Karen A.; Nicolaou, Anna
2013-01-01
Lipid mediators are produced from the oxidation of polyunsaturated fatty acids through enzymatic and free radical-mediated reactions. When subject to oxygenation via cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases, polyunsaturated fatty acids give rise to an array of metabolites including eicosanoids, docosanoids, and octadecanoids. These potent bioactive lipids are involved in many biochemical and signaling pathways, with inflammation being of particular importance. Moreover, because they are produced by more than one pathway and substrate, and are present in a variety of biological milieus, their analysis is not always possible with conventional assays. Liquid chromatography coupled to electrospray mass spectrometry offers a versatile and sensitive approach for the analysis of bioactive lipids, allowing specific and accurate quantitation of multiple species present in the same sample. Here we explain the principles of this approach to mediator lipidomics and present detailed protocols for the assay of enzymatically produced oxygenated metabolites of polyunsaturated fatty acids that can be tailored to answer biological questions or facilitate assessment of nutritional and pharmacological interventions. PMID:22940496
Johnson, Michael R.; Rossetti, Tiziana; Speed, Doug; Srivastava, Prashant K.; Chadeau-Hyam, Marc; Hajji, Nabil; Dabrowska, Aleksandra; Rotival, Maxime; Razzaghi, Banafsheh; Kovac, Stjepana; Wanisch, Klaus; Grillo, Federico W.; Slaviero, Anna; Langley, Sarah R.; Shkura, Kirill; Roncon, Paolo; De, Tisham; Mattheisen, Manuel; Niehusmann, Pitt; O’Brien, Terence J.; Petrovski, Slave; von Lehe, Marec; Hoffmann, Per; Eriksson, Johan; Coffey, Alison J.; Cichon, Sven; Walker, Matthew; Simonato, Michele; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Schoch, Susanne; De Paola, Vincenzo; Kaminski, Rafal M.; Cunliffe, Vincent T.; Becker, Albert J.; Petretto, Enrico
2015-01-01
Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo. PMID:25615886
Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans.
He, Kan; Zhou, Tao; Shao, Jiaofang; Ren, Xiaoliang; Zhao, Zhongying; Liu, Dahai
2014-03-01
Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.
NASA Astrophysics Data System (ADS)
O'Brien, R. J.; Deakin, J.; Misstear, B.; Gill, L.; Flynn, R. M.
2012-12-01
An appreciation of the quantity of streamflow derived from the main hydrological groundwater and surface water pathways transporting diffuse pollutants is critical when addressing a wide range of water resource management issues. The Pathways Project, funded by the Irish EPA, is developing a Catchment Management Tool (CMT) as an aid to water resource decision makers. The pollutants investigated by the CMT include phosphorus, nitrogen, sediments, pesticides and pathogens. An important first step in this process is to provide reliable estimates of the slower responding groundwater pathways in conjunction with the quicker overland and interflow pathways. Four watersheds are being investigated, with continuous rainfall, discharge, temperature and conductivity data being collected at gauging points within each of the watersheds. These datasets are being used to populate the semi-distributed, lumped flow model, NAM and also the distributed, finite difference model, MODFLOW. One of the main challenges is to achieve credible separations of the hydrograph into the main pathways in relatively small catchments (sometimes less than 5km2) with short response times. To assist the numerical modelling, physical separation techniques have been used to constrain the separations within probable limits. Physical techniques include: Master Recession Analysis; a modified Lyne and Hollick one-parameter digital separation; an approach developed in Ireland involving the application of recharge coefficients to hydrologically effective rainfall estimates; and finally using the NAM and MODFLOW models themselves as means of investigating separations. The contribution from each of the pathways, combined with an understanding of the attenuation of the contaminants along those pathways, will inform the CMT. This understanding will lay the foundation for linking the parameters of the NAM model to watershed descriptors such as slope, drainage density, watershed area, soil type, etc., in order to predict the response of a watershed to rainfall. This is an important deliverable of this research and will be fundamental for initial investigations in ungauged watersheds. This approach to quantifying hydrological pathways will therefore have wider applicability across Ireland and in hydrological settings elsewhere internationally. The research is being carried out for the Environmental Protection Agency by a consortium involving Queen's University Belfast, University College Dublin and Trinity College Dublin. Pathway separations in a karst watershed. Observed discharge (Black) with separated pathways: quick diffuse flow (Blue); slow diffuse flow (Green); interflow (Light Blue) and overland flow (Red).
Systems Biology Approach Reveals a Calcium-Dependent Mechanism for Basal Toxicity in Daphnia magna.
Antczak, Philipp; White, Thomas A; Giri, Anirudha; Michelangeli, Francesco; Viant, Mark R; Cronin, Mark T D; Vulpe, Chris; Falciani, Francesco
2015-09-15
The expanding diversity and ever increasing amounts of man-made chemicals discharged to the environment pose largely unknown hazards to ecosystem and human health. The concept of adverse outcome pathways (AOPs) emerged as a comprehensive framework for risk assessment. However, the limited mechanistic information available for most chemicals and a lack of biological pathway annotation in many species represent significant challenges to effective implementation of this approach. Here, a systems level, multistep modeling strategy demonstrates how to integrate information on chemical structure with mechanistic insight from genomic studies, and phenotypic effects to define a putative adverse outcome pathway. Results indicated that transcriptional changes indicative of intracellular calcium mobilization were significantly overrepresented in Daphnia magna (DM) exposed to sublethal doses of presumed narcotic chemicals with log Kow ≥ 1.8. Treatment of DM with a calcium ATPase pump inhibitor substantially recapitulated the common transcriptional changes. We hypothesize that calcium mobilization is a potential key molecular initiating event in DM basal (narcosis) toxicity. Heart beat rate analysis and metabolome analysis indicated sublethal effects consistent with perturbations of calcium preceding overt acute toxicity. Together, the results indicate that altered calcium homeostasis may be a key early event in basal toxicity or narcosis induced by lipophilic compounds.
NASA Astrophysics Data System (ADS)
Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia
2016-04-01
Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.
Nanosystem self-assembly pathways discovered via all-atom multiscale analysis.
Pankavich, Stephen D; Ortoleva, Peter J
2012-07-26
We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final aggregates are also derived. It is shown that the definition of an assembly type is a self-consistency criterion that must strike a balance between precision and the need for population levels to be slowly varying relative to the time scale of atomic motion. The deductive multiscale approach is complemented by a qualitative notion of multicomponent association and the ensemble of exact atomic-level configurations consistent with them. In processes such as viral self-assembly from proteins and RNA or DNA, there are many possible intermediates, so that it is usually difficult to predict the most efficient assembly pathway. However, in the current study, rates of assembly of each possible intermediate can be predicted. This avoids the need, as in a phenomenological approach, for recalibration with each new application. The method accounts for the feedback across scales in space and time that is fundamental to nanosystem self-assembly. The theory has applications to bionanostructures, geomaterials, engineered composites, and nanocapsule therapeutic delivery systems.
"Which Pathway Am I?" Using a Game Approach to Teach Students about Biochemical Pathways
ERIC Educational Resources Information Center
Ooi, Beng Guat; Sanger, Michael J.
2009-01-01
This game was designed to provide students with an alternative way to learn biochemical pathways through an interactive approach. In this game, students worked in pairs to help each other identify pathways taped to each other's backs by asking simple "yes or no" questions related to these pathways. This exercise was conducted after the traditional…
Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping
NASA Astrophysics Data System (ADS)
Rajendran, Ranjith; May, Ali; Sherry, Leighann; Kean, Ryan; Williams, Craig; Jones, Brian L.; Burgess, Karl V.; Heringa, Jaap; Abeln, Sanne; Brandt, Bernd W.; Munro, Carol A.; Ramage, Gordon
2016-10-01
Candida albicans biofilm formation is an important virulence factor in the pathogenesis of disease, a characteristic which has been shown to be heterogeneous in clinical isolates. Using an unbiased computational approach we investigated the central metabolic pathways driving biofilm heterogeneity. Transcripts from high (HBF) and low (LBF) biofilm forming isolates were analysed by RNA sequencing, with 6312 genes identified to be expressed in these two phenotypes. With a dedicated computational approach we identified and validated a significantly differentially expressed subnetwork of genes associated with these biofilm phenotypes. Our analysis revealed amino acid metabolism, such as arginine, proline, aspartate and glutamate metabolism, were predominantly upregulated in the HBF phenotype. On the contrary, purine, starch and sucrose metabolism was generally upregulated in the LBF phenotype. The aspartate aminotransferase gene AAT1 was found to be a common member of these amino acid pathways and significantly upregulated in the HBF phenotype. Pharmacological inhibition of AAT1 enzyme activity significantly reduced biofilm formation in a dose-dependent manner. Collectively, these findings provide evidence that biofilm phenotype is associated with differential regulation of metabolic pathways. Understanding and targeting such pathways, such as amino acid metabolism, is potentially useful for developing diagnostics and new antifungals to treat biofilm-based infections.
An integrated analysis of genes and functional pathways for aggression in human and rodent models.
Zhang-James, Yanli; Fernàndez-Castillo, Noèlia; Hess, Jonathan L; Malki, Karim; Glatt, Stephen J; Cormand, Bru; Faraone, Stephen V
2018-06-01
Human genome-wide association studies (GWAS), transcriptome analyses of animal models, and candidate gene studies have advanced our understanding of the genetic architecture of aggressive behaviors. However, each of these methods presents unique limitations. To generate a more confident and comprehensive view of the complex genetics underlying aggression, we undertook an integrated, cross-species approach. We focused on human and rodent models to derive eight gene lists from three main categories of genetic evidence: two sets of genes identified in GWAS studies, four sets implicated by transcriptome-wide studies of rodent models, and two sets of genes with causal evidence from online Mendelian inheritance in man (OMIM) and knockout (KO) mice reports. These gene sets were evaluated for overlap and pathway enrichment to extract their similarities and differences. We identified enriched common pathways such as the G-protein coupled receptor (GPCR) signaling pathway, axon guidance, reelin signaling in neurons, and ERK/MAPK signaling. Also, individual genes were ranked based on their cumulative weights to quantify their importance as risk factors for aggressive behavior, which resulted in 40 top-ranked and highly interconnected genes. The results of our cross-species and integrated approach provide insights into the genetic etiology of aggression.
Wu, Junjun; Zhang, Xia; Zhu, Yingjie; Tan, Qinyu; He, Jiacheng; Dong, Mingsheng
2017-05-03
Efficient biosynthesis of the plant polyphenol pinosylvin, which has numerous applications in nutraceuticals and pharmaceuticals, is necessary to make biological production economically viable. To this end, an efficient Escherichia coli platform for pinosylvin production was developed via a rational modular design approach. Initially, different candidate pathway enzymes were screened to construct de novo pinosylvin pathway directly from D-glucose. A comparative analysis of pathway intermediate pools identified that this initial construct led to the intermediate cinnamic acid accumulation. The pinosylvin synthetic pathway was then divided into two new modules separated at cinnamic acid. Combinatorial optimization of transcriptional and translational levels of these two modules resulted in a 16-fold increase in pinosylvin titer. To further improve the concentration of the limiting precursor malonyl-CoA, the malonyl-CoA synthesis module based on clustered regularly interspaced short palindromic repeats interference was assembled and optimized with other two modules. The final pinosylvin titer was improved to 281 mg/L, which was the highest pinosylvin titer even directly from D-glucose without any additional precursor supplementation. The rational modular design approach described here could bolster our capabilities in synthetic biology for value-added chemical production.
Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata.
Escandón, Mónica; Meijón, Mónica; Valledor, Luis; Pascual, Jesús; Pinto, Gloria; Cañal, María Jesús
2018-01-01
The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata , identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata , with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata , as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.
Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata
Escandón, Mónica; Meijón, Mónica; Valledor, Luis; Pascual, Jesús; Pinto, Gloria; Cañal, María Jesús
2018-01-01
The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature. PMID:29719546
Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J
2017-05-01
Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.
A reproducible approach to high-throughput biological data acquisition and integration
Rahnavard, Gholamali; Waldron, Levi; McIver, Lauren; Shafquat, Afrah; Franzosa, Eric A.; Miropolsky, Larissa; Sweeney, Christopher
2015-01-01
Modern biological research requires rapid, complex, and reproducible integration of multiple experimental results generated both internally and externally (e.g., from public repositories). Although large systematic meta-analyses are among the most effective approaches both for clinical biomarker discovery and for computational inference of biomolecular mechanisms, identifying, acquiring, and integrating relevant experimental results from multiple sources for a given study can be time-consuming and error-prone. To enable efficient and reproducible integration of diverse experimental results, we developed a novel approach for standardized acquisition and analysis of high-throughput and heterogeneous biological data. This allowed, first, novel biomolecular network reconstruction in human prostate cancer, which correctly recovered and extended the NFκB signaling pathway. Next, we investigated host-microbiome interactions. In less than an hour of analysis time, the system retrieved data and integrated six germ-free murine intestinal gene expression datasets to identify the genes most influenced by the gut microbiota, which comprised a set of immune-response and carbohydrate metabolism processes. Finally, we constructed integrated functional interaction networks to compare connectivity of peptide secretion pathways in the model organisms Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa. PMID:26157642
Mechanisms and mediation in survival analysis: towards an integrated analytical framework.
Pratschke, Jonathan; Haase, Trutz; Comber, Harry; Sharp, Linda; de Camargo Cancela, Marianna; Johnson, Howard
2016-02-29
A wide-ranging debate has taken place in recent years on mediation analysis and causal modelling, raising profound theoretical, philosophical and methodological questions. The authors build on the results of these discussions to work towards an integrated approach to the analysis of research questions that situate survival outcomes in relation to complex causal pathways with multiple mediators. The background to this contribution is the increasingly urgent need for policy-relevant research on the nature of inequalities in health and healthcare. The authors begin by summarising debates on causal inference, mediated effects and statistical models, showing that these three strands of research have powerful synergies. They review a range of approaches which seek to extend existing survival models to obtain valid estimates of mediation effects. They then argue for an alternative strategy, which involves integrating survival outcomes within Structural Equation Models via the discrete-time survival model. This approach can provide an integrated framework for studying mediation effects in relation to survival outcomes, an issue of great relevance in applied health research. The authors provide an example of how these techniques can be used to explore whether the social class position of patients has a significant indirect effect on the hazard of death from colon cancer. The results suggest that the indirect effects of social class on survival are substantial and negative (-0.23 overall). In addition to the substantial direct effect of this variable (-0.60), its indirect effects account for more than one quarter of the total effect. The two main pathways for this indirect effect, via emergency admission (-0.12), on the one hand, and hospital caseload, on the other, (-0.10) are of similar size. The discrete-time survival model provides an attractive way of integrating time-to-event data within the field of Structural Equation Modelling. The authors demonstrate the efficacy of this approach in identifying complex causal pathways that mediate the effects of a socio-economic baseline covariate on the hazard of death from colon cancer. The results show that this approach has the potential to shed light on a class of research questions which is of particular relevance in health research.
Qian, David C.; Byun, Jinyoung; Han, Younghun; Greene, Casey S.; Field, John K.; Hung, Rayjean J.; Brhane, Yonathan; Mclaughlin, John R.; Fehringer, Gordon; Landi, Maria Teresa; Rosenberger, Albert; Bickeböller, Heike; Malhotra, Jyoti; Risch, Angela; Heinrich, Joachim; Hunter, David J.; Henderson, Brian E.; Haiman, Christopher A.; Schumacher, Fredrick R.; Eeles, Rosalind A.; Easton, Douglas F.; Seminara, Daniela; Amos, Christopher I.
2015-01-01
Results from genome-wide association studies (GWAS) have indicated that strong single-gene effects are the exception, not the rule, for most diseases. We assessed the joint effects of germline genetic variations through a pathway-based approach that considers the tissue-specific contexts of GWAS findings. From GWAS meta-analyses of lung cancer (12 160 cases/16 838 controls), breast cancer (15 748 cases/18 084 controls) and prostate cancer (14 160 cases/12 724 controls) in individuals of European ancestry, we determined the tissue-specific interaction networks of proteins expressed from genes that are likely to be affected by disease-associated variants. Reactome pathways exhibiting enrichment of proteins from each network were compared across the cancers. Our results show that pathways associated with all three cancers tend to be broad cellular processes required for growth and survival. Significant examples include the nerve growth factor (P = 7.86 × 10−33), epidermal growth factor (P = 1.18 × 10−31) and fibroblast growth factor (P = 2.47 × 10−31) signaling pathways. However, within these shared pathways, the genes that influence risk largely differ by cancer. Pathways found to be unique for a single cancer focus on more specific cellular functions, such as interleukin signaling in lung cancer (P = 1.69 × 10−15), apoptosis initiation by Bad in breast cancer (P = 3.14 × 10−9) and cellular responses to hypoxia in prostate cancer (P = 2.14 × 10−9). We present the largest comparative cross-cancer pathway analysis of GWAS to date. Our approach can also be applied to the study of inherited mechanisms underlying risk across multiple diseases in general. PMID:26483192
Collins, Susan E; Jones, Connor B; Hoffmann, Gail; Nelson, Lonnie A; Hawes, Starlyn M; Grazioli, Véronique S; Mackelprang, Jessica L; Holttum, Jessica; Kaese, Greta; Lenert, James; Herndon, Patrick; Clifasefi, Seema L
2016-01-01
Alcohol use disorders (AUDs) are more prevalent among homeless individuals than in the general population, and homeless individuals are disproportionately affected by alcohol-related morbidity and mortality. Unfortunately, abstinence-based approaches are neither desirable to nor highly effective for most members of this population. Recent research has indicated that homeless people aspire to clinically significant recovery goals beyond alcohol abstinence, including alcohol harm reduction and quality-of-life improvement. However, no research has documented this population's preferred pathways toward self-defined recovery. Considering principles of patient-centred care, a richer understanding of this population's desired pathways to recovery may help providers better engage and support them. Participants (N=50) had lived experience of homelessness and AUDs and participated in semi-structured interviews regarding histories of homelessness, alcohol use, and abstinence-based treatment as well as suggestions for improving alcohol treatment. Conventional content analysis was used to ascertain participants' perceptions of abstinence-based treatment and mutual-help modalities, while it additionally revealed alternative pathways to recovery. Most participants reported involvement in abstinence-based modalities for reasons other than the goal of achieving long-term abstinence from alcohol (e.g., having shelter in winter months, "taking a break" from alcohol use, being among "like-minded people"). In contrast, most participants preferred alternative pathways to recovery, including fulfilling basic needs (e.g., obtaining housing), using harm reduction approaches (e.g., switching from higher to lower alcohol content beverages), engaging in meaningful activities (e.g., art, outings, spiritual/cultural activities), and making positive social connections. Most people with the lived experience of homelessness and AUDs we interviewed were uninterested in abstinence-based modalities as a means of attaining long-term alcohol abstinence. These individuals do, however, have creative ideas about alternative pathways to recovery that treatment providers may support to reduce alcohol-related harm and enhance quality of life. Copyright © 2015 Elsevier B.V. All rights reserved.
Collins, Susan E.; Jones, Connor B.; Hoffmann, Gail; Nelson, Lonnie A.; Hawes, Starlyn M.; Grazioli, Véronique S.; Mackelprang, Jessica L.; Holttum, Jessica; Kaese, Greta; Lenert, James; Herndon, Patrick; Clifasefi, Seema L.
2015-01-01
Background Alcohol use disorders (AUDs) are more prevalent among homeless individuals than in the general population, and homeless individuals are disproportionately affected by alcohol-related morbidity and mortality. Unfortunately, abstinence-based approaches are neither desirable to nor highly effective for most members of this population. Recent research has indicated that homeless people aspire to clinically significant recovery goals beyond alcohol abstinence, including alcohol harm reduction and quality-of-life improvement. However, no research has documented this population’s preferred pathways toward self-defined recovery. Considering principles of patient-centred care, a richer understanding of this population’s desired pathways to recovery may help providers better engage and support them. Methods Participants (N = 50) had lived experience of homelessness and AUDs and participated in semi-structured interviews regarding histories of homelessness, alcohol use, and abstinence-based treatment as well as suggestions for improving alcohol treatment. Conventional content analysis was used to ascertain participants’ perceptions of abstinence-based treatment and mutual-help modalities, while it additionally revealed alternative pathways to recovery. Results Most participants reported involvement in abstinence-based modalities for reasons other than the goal of achieving long-term abstinence from alcohol (e.g., having shelter in winter months, “taking a break” from alcohol use, being among “like-minded people”). In contrast, most participants preferred alternative pathways to recovery, including fulfilling basic needs (e.g., obtaining housing), using harm reduction approaches (e.g., switching from higher to lower alcohol content beverages), engaging in meaningful activities (e.g., art, outings, spiritual/cultural activities), and making positive social connections. Conclusions Most people with the lived experience of homelessness and AUDs we interviewed were uninterested in abstinence-based modalities as a means of attaining long-term alcohol abstinence. These individuals do, however, have creative ideas about alternative pathways to recovery that treatment providers may support to reduce alcohol-related harm and enhance quality of life. PMID:26364078
In addressing the complexity and toxicity of chemical contaminants in Great Lakes ecosystems, we describe an approach to link chemically induced alterations in molecular and biochemical endpoints to adverse outcomes in whole organisms and populations. Analysis of population impac...
Transcriptomics provides unique solutions for understanding the impact of complex mixtures and their components on aquatic systems. Here we describe the application of transcriptomics analysis of in situ fathead minnow exposures for assessing biological impacts of wastewater trea...
Mixed methods in gerontological research: Do the qualitative and quantitative data “touch”?
Happ, Mary Beth
2010-01-01
This paper distinguishes between parallel and integrated mixed methods research approaches. Barriers to integrated mixed methods approaches in gerontological research are discussed and critiqued. The author presents examples of mixed methods gerontological research to illustrate approaches to data integration at the levels of data analysis, interpretation, and research reporting. As a summary of the methodological literature, four basic levels of mixed methods data combination are proposed. Opportunities for mixing qualitative and quantitative data are explored using contemporary examples from published studies. Data transformation and visual display, judiciously applied, are proposed as pathways to fuller mixed methods data integration and analysis. Finally, practical strategies for mixing qualitative and quantitative data types are explicated as gerontological research moves beyond parallel mixed methods approaches to achieve data integration. PMID:20077973
Parameterizing the Transport Pathways for Cell Invasion in Complex Scaffold Architectures
Ashworth, Jennifer C.; Mehr, Marco; Buxton, Paul G.; Best, Serena M.
2016-01-01
Interconnecting pathways through porous tissue engineering scaffolds play a vital role in determining nutrient supply, cell invasion, and tissue ingrowth. However, the global use of the term “interconnectivity” often fails to describe the transport characteristics of these pathways, giving no clear indication of their potential to support tissue synthesis. This article uses new experimental data to provide a critical analysis of reported methods for the description of scaffold transport pathways, ranging from qualitative image analysis to thorough structural parameterization using X-ray Micro-Computed Tomography. In the collagen scaffolds tested in this study, it was found that the proportion of pore space perceived to be accessible dramatically changed depending on the chosen method of analysis. Measurements of % interconnectivity as defined in this manner varied as a function of direction and connection size, and also showed a dependence on measurement length scale. As an alternative, a method for transport pathway parameterization was investigated, using percolation theory to calculate the diameter of the largest sphere that can travel to infinite distance through a scaffold in a specified direction. As proof of principle, this approach was used to investigate the invasion behavior of primary fibroblasts in response to independent changes in pore wall alignment and pore space accessibility, parameterized using the percolation diameter. The result was that both properties played a distinct role in determining fibroblast invasion efficiency. This example therefore demonstrates the potential of the percolation diameter as a method of transport pathway parameterization, to provide key structural criteria for application-based scaffold design. PMID:26888449
Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock.
Braga, D; Barcella, M; D'Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, M H; DeLano, F A; Baselli, G; Schmid-Schönbein, G W; Kistler, E B; Aletti, F; Barlassina, C
2017-08-01
Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger's shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients.
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-01
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher’s exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO’s usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher. PMID:26750448
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-11
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher's exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO's usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher.
Jones, D L; Petty, J; Hoyle, D C; Hayes, A; Ragni, E; Popolo, L; Oliver, S G; Stateva, L I
2003-12-16
Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Delta mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of approximately 11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.
2011-01-01
Background The quantification of experimentally-induced alterations in biological pathways remains a major challenge in systems biology. One example of this is the quantitative characterization of alterations in defined, established metabolic pathways from complex metabolomic data. At present, the disruption of a given metabolic pathway is inferred from metabolomic data by observing an alteration in the level of one or more individual metabolites present within that pathway. Not only is this approach open to subjectivity, as metabolites participate in multiple pathways, but it also ignores useful information available through the pairwise correlations between metabolites. This extra information may be incorporated using a higher-level approach that looks for alterations between a pair of correlation networks. In this way experimentally-induced alterations in metabolic pathways can be quantitatively defined by characterizing group differences in metabolite clustering. Taking this approach increases the objectivity of interpreting alterations in metabolic pathways from metabolomic data. Results We present and justify a new technique for comparing pairs of networks--in our case these networks are based on the same set of nodes and there are two distinct types of weighted edges. The algorithm is based on the Generalized Singular Value Decomposition (GSVD), which may be regarded as an extension of Principle Components Analysis to the case of two data sets. We show how the GSVD can be interpreted as a technique for reordering the two networks in order to reveal clusters that are exclusive to only one. Here we apply this algorithm to a new set of metabolomic data from the prefrontal cortex (PFC) of a translational model relevant to schizophrenia, rats treated subchronically with the N-methyl-D-Aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). This provides us with a means to quantify which predefined metabolic pathways (Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolite pathway database) were altered in the PFC of PCP-treated rats. Several significant changes were discovered, notably: 1) neuroactive ligands active at glutamate and GABA receptors are disrupted in the PFC of PCP-treated animals, 2) glutamate dysfunction in these animals was not limited to compromised glutamatergic neurotransmission but also involves the disruption of metabolic pathways linked to glutamate; and 3) a specific series of purine reactions Xanthine ← Hypoxyanthine ↔ Inosine ← IMP → adenylosuccinate is also disrupted in the PFC of PCP-treated animals. Conclusions Network reordering via the GSVD provides a means to discover statistically validated differences in clustering between a pair of networks. In practice this analytical approach, when applied to metabolomic data, allows us to quantify the alterations in metabolic pathways between two experimental groups. With this new computational technique we identified metabolic pathway alterations that are consistent with known results. Furthermore, we discovered disruption in a novel series of purine reactions that may contribute to the PFC dysfunction and cognitive deficits seen in schizophrenia. PMID:21575198
Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy
Juan, Wen Chun; Hong, Wanjin
2016-01-01
The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy. PMID:27589805
Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy.
Juan, Wen Chun; Hong, Wanjin
2016-08-30
The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy.
Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.
Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim
2014-10-01
To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network
Qin, Tingting; Matmati, Nabil; Tsoi, Lam C.; Mohanty, Bidyut K.; Gao, Nan; Tang, Jijun; Lawson, Andrew B.; Hannun, Yusuf A.; Zheng, W. Jim
2014-01-01
To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes’ Ontology Fingerprints—a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms’ corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. PMID:25063300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lin-Mao; University of Chinese Academy of Sciences, Beijing; Lü, Shi-You
Abstracts: The Cytosolic Protein Response (CPR) in the cytosol and the Unfolded Protein Response (UPR) and ER-associated degradation (ERAD) in the endoplasmic reticulum are major pathways of the cellular proteostasis network. However, despite years of effort, how these protein quality control systems coordinated in vivo remains largely unknown, particularly in plants. In this study, the roles of two evolutionarily conserved ERAD pathways (DOA10 and HRD1) in heat stress response were investigated through reverse genetic approaches in Arabidopsis. Phenotypic analysis of the mutants showed that the two ERAD pathways additively play negative roles in heat tolerance, which was demonstrated by higher survivalmore » rate and lower electrolyte leakage in the loss of function mutants compared to the wild type plants. Importantly, gene expression analysis revealed that the mutant plants showed elevated transcriptional regulation of several downstream genes, including those encoding CPR and UPR marker genes, under both basal and heat stress conditions. Finally, multiple components of ERAD genes exhibited rapid response to increasing temperature. Taken together, our data not only unravels key insights into the crosstalk between different protein quality control processes, but also provides candidate genes to genetically improve plant heat tolerance in the future. - Highlights: • ERAD pathways cooperatively regulate plant thermotolerance. • ERAD pathways cooperatively regulate UPR and CPR. • ERAD components gene expression are upregulated by heat stress.« less
Woldesemayat, Adugna Abdi; Van Heusden, Peter; Ndimba, Bongani K; Christoffels, Alan
2017-12-22
Drought is the most disastrous abiotic stress that severely affects agricultural productivity worldwide. Understanding the biological basis of drought-regulated traits, requires identification and an in-depth characterization of genetic determinants using model organisms and high-throughput technologies. However, studies on drought tolerance have generally been limited to traditional candidate gene approach that targets only a single gene in a pathway that is related to a trait. In this study, we used sorghum, one of the model crops that is well adapted to arid regions, to mine genes and define determinants for drought tolerance using drought expression libraries and RNA-seq data. We provide an integrated and comparative in silico candidate gene identification, characterization and annotation approach, with an emphasis on genes playing a prominent role in conferring drought tolerance in sorghum. A total of 470 non-redundant functionally annotated drought responsive genes (DRGs) were identified using experimental data from drought responses by employing pairwise sequence similarity searches, pathway and interpro-domain analysis, expression profiling and orthology relation. Comparison of the genomic locations between these genes and sorghum quantitative trait loci (QTLs) showed that 40% of these genes were co-localized with QTLs known for drought tolerance. The genome reannotation conducted using the Program to Assemble Spliced Alignment (PASA), resulted in 9.6% of existing single gene models being updated. In addition, 210 putative novel genes were identified using AUGUSTUS and PASA based analysis on expression dataset. Among these, 50% were single exonic, 69.5% represented drought responsive and 5.7% were complete gene structure models. Analysis of biochemical metabolism revealed 14 metabolic pathways that are related to drought tolerance and also had a strong biological network, among categories of genes involved. Identification of these pathways, signifies the interplay of biochemical reactions that make up the metabolic network, constituting fundamental interface for sorghum defence mechanism against drought stress. This study suggests untapped natural variability in sorghum that could be used for developing drought tolerance. The data presented here, may be regarded as an initial reference point in functional and comparative genomics in the Gramineae family.
Jenkins, Paul J; McDonald, David A; Van Der Meer, Robert; Morton, Alec; Nugent, Margaret; Rymaszewski, Lech A
2017-01-01
Objective Healthcare faces the continual challenge of improving outcome while aiming to reduce cost. The aim of this study was to determine the micro cost differences of the Glasgow non-operative trauma virtual pathway in comparison to a traditional pathway. Design Discrete event simulation was used to model and analyse cost and resource utilisation with an activity-based costing approach. Data for a full comparison before the process change was unavailable so we used a modelling approach, comparing a virtual fracture clinic (VFC) with a simulated traditional fracture clinic (TFC). Setting The orthopaedic unit VFC pathway pioneered at Glasgow Royal Infirmary has attracted significant attention and interest and is the focus of this cost study. Outcome measures Our study focused exclusively on patients with non-operative trauma attending emergency department or the minor injuries unit and the subsequent step in the patient pathway. Retrospective studies of patient outcomes as a result of the protocol introductions for specific injuries are presented in association with activity costs from the models. Results Patients are satisfied with the new pathway, the information provided and the outcome of their injuries (Evidence Level IV). There was a 65% reduction in the number of first outpatient face-to-face (f2f) attendances in orthopaedics. In the VFC pathway, the resources required per day were significantly lower for all staff groups (p≤0.001). The overall cost per patient of the VFC pathway was £22.84 (95% CI 21.74 to 23.92) per patient compared with £36.81 (95% CI 35.65 to 37.97) for the TFC pathway. Conclusions Our results give a clearer picture of the cost comparison of the virtual pathway over a wholly traditional f2f clinic system. The use of simulation-based stochastic costings in healthcare economic analysis has been limited to date, but this study provides evidence for adoption of this method as a basis for its application in other healthcare settings. PMID:28882905
Palau, Jordi; Jamin, Pierre; Badin, Alice; Vanhecke, Nicolas; Haerens, Bruno; Brouyère, Serge; Hunkeler, Daniel
2016-04-01
Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ(13)C/Δδ(37)Cl) previously determined in the laboratory for dehydrohalogenation/hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r(2) = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spinal sensory circuits in motion.
Böhm, Urs Lucas; Wyart, Claire
2016-12-01
The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this view: GABAergic sensory neurons located within the spinal cord have been shown to relay mechanical and chemical information from the cerebrospinal fluid to motor circuits. Innovative approaches combining genetics, quantitative analysis of behavior and optogenetics now allow probing the contribution of these sensory feedback pathways to locomotion and recovery following spinal cord injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of population impacts of chemical stressors through the use of modeling provides a linkage between endpoints observed in the individual and ecological risk to the population as a whole. In this presentation, we describe the evolution of an approach developed in our labor...
Rosa, Rafael D; Capelli-Peixoto, Janaína; Mesquita, Rafael D; Kalil, Sandra P; Pohl, Paula C; Braz, Glória R; Fogaça, Andrea C; Daffre, Sirlei
2016-06-01
In dipteran insects, invading pathogens are selectively recognized by four major pathways, namely Toll, IMD, JNK, and JAK/STAT, and trigger the activation of several immune effectors. Although substantial advances have been made in understanding the immunity of model insects such as Drosophila melanogaster, knowledge on the activation of immune responses in other arthropods such as ticks remains limited. Herein, we have deepened our understanding of the intracellular signalling pathways likely to be involved in tick immunity by combining a large-scale in silico approach with high-throughput gene expression analysis. Data from in silico analysis revealed that although both the Toll and JAK/STAT signalling pathways are evolutionarily conserved across arthropods, ticks lack central components of the D. melanogaster IMD pathway. Moreover, we show that tick immune signalling-associated genes are constitutively transcribed in BME26 cells (a cell lineage derived from embryos of the cattle tick Rhipicephalus microplus) and exhibit different transcriptional patterns in response to microbial challenge. Interestingly, Anaplasma marginale, a pathogen that is naturally transmitted by R. microplus, causes downregulation of immune-related genes, suggesting that this pathogen may manipulate the tick immune system, favouring its survival and vector colonization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael; ...
2016-09-27
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
Eleftherohorinou, Hariklia; Hoggart, Clive J; Wright, Victoria J; Levin, Michael; Coin, Lachlan J M
2011-09-01
Rheumatoid arthritis (RA) is the commonest chronic, systemic, inflammatory disorder affecting ∼1% of the world population. It has a strong genetic component and a growing number of associated genes have been discovered in genome-wide association studies (GWAS), which nevertheless only account for 23% of the total genetic risk. We aimed to identify additional susceptibility loci through the analysis of GWAS in the context of biological function. We bridge the gap between pathway and gene-oriented analyses of GWAS, by introducing a pathway-driven gene stability-selection methodology that identifies potential causal genes in the top-associated disease pathways that may be driving the pathway association signals. We analysed the WTCCC and the NARAC studies of ∼5000 and ∼2000 subjects, respectively. We examined 700 pathways comprising ∼8000 genes. Ranking pathways by significance revealed that the NARAC top-ranked ∼6% laid within the top 10% of WTCCC. Gene selection on those pathways identified 58 genes in WTCCC and 61 in NARAC; 21 of those were common (P(overlap)< 10(-21)), of which 16 were novel discoveries. Among the identified genes, we validated 10 known RA associations in WTCCC and 13 in NARAC, not discovered using single-SNP approaches on the same data. Gene ontology functional enrichment analysis on the identified genes showed significant over-representation of signalling activity (P< 10(-29)) in both studies. Our findings suggest a novel model of RA genetic predisposition, which involves cell-membrane receptors and genes in second messenger signalling systems, in addition to genes that regulate immune responses, which have been the focus of interest previously.
Das, Sankha Subhra; Saha, Pritam
2018-01-01
Abstract MicroRNAs (miRNAs) are well-known as key regulators of diverse biological pathways. A series of experimental evidences have shown that abnormal miRNA expression profiles are responsible for various pathophysiological conditions by modulating genes in disease associated pathways. In spite of the rapid increase in research data confirming such associations, scientists still do not have access to a consolidated database offering these miRNA-pathway association details for critical diseases. We have developed miRwayDB, a database providing comprehensive information of experimentally validated miRNA-pathway associations in various pathophysiological conditions utilizing data collected from published literature. To the best of our knowledge, it is the first database that provides information about experimentally validated miRNA mediated pathway dysregulation as seen specifically in critical human diseases and hence indicative of a cause-and-effect relationship in most cases. The current version of miRwayDB collects an exhaustive list of miRNA-pathway association entries for 76 critical disease conditions by reviewing 663 published articles. Each database entry contains complete information on the name of the pathophysiological condition, associated miRNA(s), experimental sample type(s), regulation pattern (up/down) of miRNA, pathway association(s), targeted member of dysregulated pathway(s) and a brief description. In addition, miRwayDB provides miRNA, gene and pathway score to evaluate the role of a miRNA regulated pathways in various pathophysiological conditions. The database can also be used for other biomedical approaches such as validation of computational analysis, integrated analysis and prediction of computational model. It also offers a submission page to submit novel data from recently published studies. We believe that miRwayDB will be a useful tool for miRNA research community. Database URL: http://www.mirway.iitkgp.ac.in PMID:29688364
McLeish, Tom C.B.; Cann, Martin J.; Rodgers, Thomas L.
2015-01-01
We examine the contrast between mechanisms for allosteric signaling that involve structural change, and those that do not, from the perspective of allosteric pathways. In particular we treat in detail the case of fluctuation-allostery by which amplitude modulation of the thermal fluctuations of the elastic normal modes conveys the allosteric signal, and address the question of what an allosteric pathway means in this case. We find that a perturbation theory of thermal elastic solids and nonperturbative approach (by super-coarse-graining elasticity into internal bending modes) have opposite signatures in their structure of correlated pathways. We illustrate the effect from analysis of previous results from GlxR of Corynebacterium glutamicum, an example of the CRP/FNR transcription family of allosteric homodimers. We find that the visibility of both correlated pathways and disconnected sites of correlated motion in this protein suggests that mechanisms of local elastic stretch and bend are recruited for the purpose of creating and controlling allosteric cooperativity. PMID:26338443
A pathway-based view of human diseases and disease relationships.
Li, Yong; Agarwal, Pankaj
2009-01-01
It is increasingly evident that human diseases are not isolated from each other. Understanding how different diseases are related to each other based on the underlying biology could provide new insights into disease etiology, classification, and shared biological mechanisms. We have taken a computational approach to studying disease relationships through 1) systematic identification of disease associated genes by literature mining, 2) associating diseases to biological pathways where disease genes are enriched, and 3) linking diseases together based on shared pathways. We identified 4,195 candidate disease associated genes for 1028 diseases. On average, about 50% of disease associated genes of a disease are statistically mapped to pathways. We generated a disease network which consists of 591 diseases and 6,931 disease relationships. We examined properties of this network and provided examples of novel disease relationships which cannot be readily captured through simple literature search or gene overlap analysis. Our results could potentially provide insights into the design of novel, pathway-guided therapeutic interventions for diseases.
Insights into the origin and evolution of the plant hormone signaling machinery.
Wang, Chunyang; Liu, Yang; Li, Si-Shen; Han, Guan-Zhu
2015-03-01
Plant hormones modulate plant growth, development, and defense. However, many aspects of the origin and evolution of plant hormone signaling pathways remain obscure. Here, we use a comparative genomic and phylogenetic approach to investigate the origin and evolution of nine major plant hormone (abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonate, salicylic acid, and strigolactone) signaling pathways. Our multispecies genome-wide analysis reveals that: (1) auxin, cytokinin, and strigolactone signaling pathways originated in charophyte lineages; (2) abscisic acid, jasmonate, and salicylic acid signaling pathways arose in the last common ancestor of land plants; (3) gibberellin signaling evolved after the divergence of bryophytes from land plants; (4) the canonical brassinosteroid signaling originated before the emergence of angiosperms but likely after the split of gymnosperms and angiosperms; and (5) the origin of the canonical ethylene signaling pathway postdates shortly the emergence of angiosperms. Our findings might have important implications in understanding the molecular mechanisms underlying the emergence of land plants. © 2015 American Society of Plant Biologists. All Rights Reserved.
Dahlin, Paul; Srivastava, Vaibhav; Ekengren, Sophia; McKee, Lauren S.; Bulone, Vincent
2017-01-01
The oomycete class includes pathogens of animals and plants which are responsible for some of the most significant global losses in agriculture and aquaculture. There is a need to replace traditional chemical means of controlling oomycete growth with more targeted approaches, and the inhibition of sterol synthesis is one promising area. To better direct these efforts, we have studied sterol acquisition in two model organisms: the sterol-autotrophic Saprolegnia parasitica, and the sterol-heterotrophic Phytophthora infestans. We first present a comprehensive reconstruction of a likely sterol synthesis pathway for S. parasitica, causative agent of the disease saprolegniasis in fish. This pathway shows multiple potential routes of sterol synthesis, and draws on several avenues of new evidence: bioinformatic mining for genes with sterol-related functions, expression analysis of these genes, and analysis of the sterol profiles in mycelium grown in different media. Additionally, we explore the extent to which P. infestans, which causes the late blight in potato, can modify exogenously provided sterols. We consider whether the two very different approaches to sterol acquisition taken by these pathogens represent any specific survival advantages or potential drug targets. PMID:28152045
Pei, Tianli; Zheng, Chunli; Huang, Chao; Chen, Xuetong; Guo, Zihu; Fu, Yingxue; Liu, Jianling; Wang, Yonghua
2016-08-22
Vitiligo is a depigmentation disorder, which results in substantial cosmetic disfigurement and poses a detriment to patients' physical as well as mental. Now the molecular pathogenesis of vitiligo still remains unclear, which leads to a daunting challenge for vitiligo therapy in modern medicine. Herbal medicines, characterized by multi-compound and multi-target, have long been shown effective in treating vitiligo, but their molecular mechanisms of action also remain ambiguous. Here we proposed a systems pharmacology approach using a clinically effective herb formula as a tool to detect the molecular pathogenesis of vitiligo. This study provided an integrative analysis of active chemicals, drug targets and interacting pathways of the Uygur medicine Qubaibabuqi formula for curing Vitiligo. The results show that 56 active ingredients of Qubaibabuqi interacting with 83 therapeutic proteins were identified. And Qubaibabuqi probably participate in immunomodulation, neuromodulation and keratinocytes apoptosis inhibition in treatment of vitiligo by a synergistic/cooperative way. The drug-target network-based analysis and pathway-based analysis can provide a new approach for understanding the pathogenesis of vitiligo and uncovering the molecular mechanisms of Qubaibabuqi, which will also facilitate the application of traditional Chinese herbs in modern medicine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Movahedi, Kiavash; Wiegmann, Robert; De Vlaminck, Karen; Van Ginderachter, Jo A; Nikolaev, Viacheslav O
2018-07-01
Functional mosaic analysis allows for the direct comparison of mutant cells with differentially marked control cells in the same organism. While this offers a powerful approach for elucidating the role of specific genes or signalling pathways in cell populations of interest, genetic strategies for generating functional mosaicism remain challenging. We describe a novel and streamlined approach for functional mosaic analysis, which combines stochastic Cre/lox recombination with gene targeting in the ROSA26 locus. With the RoMo strategy a cell population of interest is randomly split into a cyan fluorescent and red fluorescent subset, of which the latter overexpresses a chosen transgene. To integrate this approach into high-throughput gene targeting initiatives, we developed a procedure that utilizes Gateway cloning for the generation of new targeting vectors. RoMo can be used for gain-of-function experiments or for altering signaling pathways in a mosaic fashion. To demonstrate this, we developed RoMo-dnGs mice, in which Cre-recombined red fluorescent cells co-express a dominant-negative Gs protein. RoMo-dnGs mice allowed us to inhibit G protein-coupled receptor activation in a fraction of cells, which could then be directly compared to differentially marked control cells in the same animal. We demonstrate how RoMo-dnGs mice can be used to obtain mosaicism in the brain and in peripheral organs for various cell types. RoMo offers an efficient new approach for functional mosaic analysis that extends the current toolbox and may reveal important new insights into in vivo gene function. © 2018 Wiley Periodicals, Inc.
MIDAS: Mining differentially activated subpaths of KEGG pathways from multi-class RNA-seq data.
Lee, Sangseon; Park, Youngjune; Kim, Sun
2017-07-15
Pathway based analysis of high throughput transcriptome data is a widely used approach to investigate biological mechanisms. Since a pathway consists of multiple functions, the recent approach is to determine condition specific sub-pathways or subpaths. However, there are several challenges. First, few existing methods utilize explicit gene expression information from RNA-seq. More importantly, subpath activity is usually an average of statistical scores, e.g., correlations, of edges in a candidate subpath, which fails to reflect gene expression quantity information. In addition, none of existing methods can handle multiple phenotypes. To address these technical problems, we designed and implemented an algorithm, MIDAS, that determines condition specific subpaths, each of which has different activities across multiple phenotypes. MIDAS utilizes gene expression quantity information fully and the network centrality information to determine condition specific subpaths. To test performance of our tool, we used TCGA breast cancer RNA-seq gene expression profiles with five molecular subtypes. 36 differentially activate subpaths were determined. The utility of our method, MIDAS, was demonstrated in four ways. All 36 subpaths are well supported by the literature information. Subsequently, we showed that these subpaths had a good discriminant power for five cancer subtype classification and also had a prognostic power in terms of survival analysis. Finally, in a performance comparison of MIDAS to a recent subpath prediction method, PATHOME, our method identified more subpaths and much more genes that are well supported by the literature information. http://biohealth.snu.ac.kr/software/MIDAS/. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lau, Shun
The dissertation presents two analytic approaches, a variable-centered and person-centered approach, to investigating holistic patterns of the cognitive, motivational, and affective correlates of science achievement and engagement in a sample of 491 10th and 11th grade high-school students. Building on Snow's (1989) idea of two pathways to achievement outcomes, Study 1 adopted a variable-centered approach to examining how cognitive and motivational factors associated with the performance and commitment pathways, respectively, contributed to the prediction of achievement outcomes in science. Results of hierarchical regression analyses showed that (a) students' cognitive abilities were the strongest predictors of their performance in science as measured by standardized test scores; (b) motivational processes enhanced the predictive validity for science test scores and grades beyond the variance accounted for by ability and demography; (c) motivational processes were the strongest predictors of students' commitment to science in the form of situational engagement and anticipated choices of science-related college majors and careers; and (d) competence beliefs served as a point of contact between the performance and commitment pathways. These results are consistent with Snow's (1989) conjecture that both performance and commitment pathway-related factors are necessary for understanding the full range of person-level inputs to achievement outcomes. Study 2 adopted a person-centered approach to examining holistic organizations of psychological factors within individuals and their relations to science achievement and engagement. Four types of students characterized by unique configurations of cognitive, motivational, and affective attributes were identified in both the male and female subsamples using inverse factor analysis. Type membership was found to distinguish students in various indicators of science achievement and engagement. Two of the four types were also found to generalize across gender groups. These two generalizable types resembled the mastery-oriented and helpless patterns identified in motivational research and the resilient and overcontrolled patterns identified in personality research. Study 2 provides empirical evidence for the replicability, generalizability, and validity of the identified types in the domain of science. It also demonstrates the importance of examining holistic patterns of individuals' psychological profiles and the utility of inverse factor analysis in person-centered research.
Analysis of microRNA profile of Anopheles sinensis by deep sequencing and bioinformatic approaches.
Feng, Xinyu; Zhou, Xiaojian; Zhou, Shuisen; Wang, Jingwen; Hu, Wei
2018-03-12
microRNAs (miRNAs) are small non-coding RNAs widely identified in many mosquitoes. They are reported to play important roles in development, differentiation and innate immunity. However, miRNAs in Anopheles sinensis, one of the Chinese malaria mosquitoes, remain largely unknown. We investigated the global miRNA expression profile of An. sinensis using Illumina Hiseq 2000 sequencing. Meanwhile, we applied a bioinformatic approach to identify potential miRNAs in An. sinensis. The identified miRNA profiles were compared and analyzed by two approaches. The selected miRNAs from the sequencing result and the bioinformatic approach were confirmed with qRT-PCR. Moreover, target prediction, GO annotation and pathway analysis were carried out to understand the role of miRNAs in An. sinensis. We identified 49 conserved miRNAs and 12 novel miRNAs by next-generation high-throughput sequencing technology. In contrast, 43 miRNAs were predicted by the bioinformatic approach, of which two were assigned as novel. Comparative analysis of miRNA profiles by two approaches showed that 21 miRNAs were shared between them. Twelve novel miRNAs did not match any known miRNAs of any organism, indicating that they are possibly species-specific. Forty miRNAs were found in many mosquito species, indicating that these miRNAs are evolutionally conserved and may have critical roles in the process of life. Both the selected known and novel miRNAs (asi-miR-281, asi-miR-184, asi-miR-14, asi-miR-nov5, asi-miR-nov4, asi-miR-9383, and asi-miR-2a) could be detected by quantitative real-time PCR (qRT-PCR) in the sequenced sample, and the expression patterns of these miRNAs measured by qRT-PCR were in concordance with the original miRNA sequencing data. The predicted targets for the known and the novel miRNAs covered many important biological roles and pathways indicating the diversity of miRNA functions. We also found 21 conserved miRNAs and eight counterparts of target immune pathway genes in An. sinensis based on the analysis of An. gambiae. Our results provide the first lead to the elucidation of the miRNA profile in An. sinensis. Unveiling the roles of mosquito miRNAs will undoubtedly lead to a better understanding of mosquito biology and mosquito-pathogen interactions. This work lays the foundation for the further functional study of An. sinensis miRNAs and will facilitate their application in vector control.
Tube Maps for Effective Geoscience Career Planning and Development
NASA Astrophysics Data System (ADS)
Keane, C. M.; Wilson, C. E.; Houlton, H. R.
2013-12-01
One of the greatest challenges faced by students and new graduates is the advice that they must take charge of their own career planning. This is ironic as new graduates are least prepared to understand the full spectrum of options and the potential pathways to meeting their personal goals. We will examine the rationale, tools, and utility of an approach aimed at assisting individuals in career planning nicknamed a "tube map." In particular, this approach has been used in support of geoscientist recruitment and career planning in major European energy companies. By utilizing information on the occupational sequences of geoscience professionals within an organization or a community, a student or new hire can quickly understand the proven pathways towards their eventual career goals. The tube map visualizes the career pathways of individuals in the form of a subway map, with specific occupations represented as "stations" and pathway interconnections represented as "transfers." The major application of this approach in the energy sector was to demonstrate both the logical career pathways to either senior management or senior technical positions, as well as present the reality that time must be invested in "lower level" jobs, thereby nullifying a persistent overinflated sense of the speed of upward mobility. To this end, we have run a similar occupational analysis on several geoscience employers, including one with somewhat non-traditional geoscience positions and another that would be considered a very traditional employer. We will examine the similarities and differences between the resulting 'tube maps,' critique the tools used to create the maps, and assess the utility of the product in career development planning for geoscience students and new hires.
Ji, Zhiwei; Wang, Bing; Yan, Ke; Dong, Ligang; Meng, Guanmin; Shi, Lei
2017-12-21
In recent years, the integration of 'omics' technologies, high performance computation, and mathematical modeling of biological processes marks that the systems biology has started to fundamentally impact the way of approaching drug discovery. The LINCS public data warehouse provides detailed information about cell responses with various genetic and environmental stressors. It can be greatly helpful in developing new drugs and therapeutics, as well as improving the situations of lacking effective drugs, drug resistance and relapse in cancer therapies, etc. In this study, we developed a Ternary status based Integer Linear Programming (TILP) method to infer cell-specific signaling pathway network and predict compounds' treatment efficacy. The novelty of our study is that phosphor-proteomic data and prior knowledge are combined for modeling and optimizing the signaling network. To test the power of our approach, a generic pathway network was constructed for a human breast cancer cell line MCF7; and the TILP model was used to infer MCF7-specific pathways with a set of phosphor-proteomic data collected from ten representative small molecule chemical compounds (most of them were studied in breast cancer treatment). Cross-validation indicated that the MCF7-specific pathway network inferred by TILP were reliable predicting a compound's efficacy. Finally, we applied TILP to re-optimize the inferred cell-specific pathways and predict the outcomes of five small compounds (carmustine, doxorubicin, GW-8510, daunorubicin, and verapamil), which were rarely used in clinic for breast cancer. In the simulation, the proposed approach facilitates us to identify a compound's treatment efficacy qualitatively and quantitatively, and the cross validation analysis indicated good accuracy in predicting effects of five compounds. In summary, the TILP model is useful for discovering new drugs for clinic use, and also elucidating the potential mechanisms of a compound to targets.
ERIC Educational Resources Information Center
Devapriam, John; Alexander, Regi; Gumber, Rohit; Pither, Judith; Gangadharan, Satheesh
2014-01-01
Specialist intellectual disability inpatient units have come under increased scrutiny, leading to questions about the quality of service provision in this sector. A care pathway-based approach was implemented in such a unit and its impact on outcome variables was measured. The care pathway-based approach resulted in the turnover of more patients,…
Network based transcription factor analysis of regenerating axolotl limbs
2011-01-01
Background Studies on amphibian limb regeneration began in the early 1700's but we still do not completely understand the cellular and molecular events of this unique process. Understanding a complex biological process such as limb regeneration is more complicated than the knowledge of the individual genes or proteins involved. Here we followed a systems biology approach in an effort to construct the networks and pathways of protein interactions involved in formation of the accumulation blastema in regenerating axolotl limbs. Results We used the human orthologs of proteins previously identified by our research team as bait to identify the transcription factor (TF) pathways and networks that regulate blastema formation in amputated axolotl limbs. The five most connected factors, c-Myc, SP1, HNF4A, ESR1 and p53 regulate ~50% of the proteins in our data. Among these, c-Myc and SP1 regulate 36.2% of the proteins. c-Myc was the most highly connected TF (71 targets). Network analysis showed that TGF-β1 and fibronectin (FN) lead to the activation of these TFs. We found that other TFs known to be involved in epigenetic reprogramming, such as Klf4, Oct4, and Lin28 are also connected to c-Myc and SP1. Conclusions Our study provides a systems biology approach to how different molecular entities inter-connect with each other during the formation of an accumulation blastema in regenerating axolotl limbs. This approach provides an in silico methodology to identify proteins that are not detected by experimental methods such as proteomics but are potentially important to blastema formation. We found that the TFs, c-Myc and SP1 and their target genes could potentially play a central role in limb regeneration. Systems biology has the potential to map out numerous other pathways that are crucial to blastema formation in regeneration-competent limbs, to compare these to the pathways that characterize regeneration-deficient limbs and finally, to identify stem cell markers in regeneration. PMID:21418574
Mentzel, Caroline M Junker; Cardoso, Tainã Figueiredo; Pipper, Christian Bressen; Jacobsen, Mette Juul; Jørgensen, Claus Bøttcher; Cirera, Susanna; Fredholm, Merete
2018-02-01
The aim of this study was to elucidate the relative impact of three phenotypes often used to characterize obesity on perturbation of molecular pathways involved in obesity. The three obesity-related phenotypes are (1) body mass index (BMI), (2) amount of subcutaneous adipose tissue (SATa), and (3) amount of retroperitoneal adipose tissue (RPATa). Although it is generally accepted that increasing amount of RPATa is 'unhealthy', a direct comparison of the relative impact of the three obesity-related phenotypes on gene expression has, to our knowledge, not been performed previously. We have used multiple linear models to analyze altered gene expression of selected obesity-related genes in tissues collected from 19 female pigs phenotypically characterized with respect to the obesity-related phenotypes. Gene expression was assessed by high-throughput qPCR in RNA from liver, skeletal muscle and abdominal adipose tissue. The stringent statistical approach used in the study has increased the power of the analysis compared to the classical approach of analysis in divergent groups of individuals. Our approach led to the identification of key components of cellular pathways that are modulated in the three tissues in association with changes in the three obesity-relevant phenotypes (BMI, SATa and RPATa). The deregulated pathways are involved in biosynthesis and transcript regulation in adipocytes, in lipid transport, lipolysis and metabolism, and in inflammatory responses. Deregulation seemed more comprehensive in liver (23 genes) compared to abdominal adipose tissue (10 genes) and muscle (3 genes). Notably, the study supports the notion that excess amount of intra-abdominal adipose tissue is associated with a greater metabolic disease risk. Our results provide molecular support for this notion by demonstrating that increasing amount of RPATa has a higher impact on perturbation of cellular pathways influencing obesity and obesity-related metabolic traits compared to increase in BMI and amount of SATa.
Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis.
Baranzini, Sergio E; Srinivasan, Radhika; Khankhanian, Pouya; Okuda, Darin T; Nelson, Sarah J; Matthews, Paul M; Hauser, Stephen L; Oksenberg, Jorge R; Pelletier, Daniel
2010-09-01
Glutamate is the main excitatory neurotransmitter in the mammalian brain. Appropriate transmission of nerve impulses through glutamatergic synapses is required throughout the brain and forms the basis of many processes including learning and memory. However, abnormally high levels of extracellular brain glutamate can lead to neuroaxonal cell death. We have previously reported elevated glutamate levels in the brains of patients suffering from multiple sclerosis. Here two complementary analyses to assess the extent of genomic control over glutamate levels were used. First, a genome-wide association analysis in 382 patients with multiple sclerosis using brain glutamate concentration as a quantitative trait was conducted. In a second approach, a protein interaction network was used to find associated genes within the same pathway. The top associated marker was rs794185 (P < 6.44 x 10(-7)), a non-coding single nucleotide polymorphism within the gene sulphatase modifying factor 1. Our pathway approach identified a module composed of 70 genes with high relevance to glutamate biology. Individuals carrying a higher number of associated alleles from genes in this module showed the highest levels of glutamate. These individuals also showed greater decreases in N-acetylaspartate and in brain volume over 1 year of follow-up. Patients were then stratified by the amount of annual brain volume loss and the same approach was performed in the 'high' (n = 250) and 'low' (n = 132) neurodegeneration groups. The association with rs794185 was highly significant in the group with high neurodegeneration. Further, results from the network-based pathway analysis remained largely unchanged even after stratification. Results from these analyses indicated that variance in the activity of neurochemical pathways implicated in neurodegeneration is explained, at least in part, by the inheritance of common genetic polymorphisms. Spectroscopy-based imaging provides a novel quantitative endophenotype for genetic association studies directed towards identifying new factors that contribute to the heterogeneity of clinical expression of multiple sclerosis.
Existence of Inverted Profile in Chemically Responsive Molecular Pathways in the Zebrafish Liver
Zhang, Xun; Li, Hu; Ma, Jing; Zhang, Louxin; Li, Baowen; Gong, Zhiyuan
2011-01-01
How a living organism maintains its healthy equilibrium in response to endless exposure of potentially harmful chemicals is an important question in current biology. By transcriptomic analysis of zebrafish livers treated by various chemicals, we defined hubs as molecular pathways that are frequently perturbed by chemicals and have high degree of functional connectivity to other pathways. Our network analysis revealed that these hubs were organized into two groups showing inverted functionality with each other. Intriguingly, the inverted activity profiles in these two groups of hubs were observed to associate only with toxicopathological states but not with physiological changes. Furthermore, these inverted profiles were also present in rat, mouse, and human under certain toxicopathological conditions. Thus, toxicopathological-associated anti-correlated profiles in hubs not only indicate their potential use in diagnosis but also development of systems-based therapeutics to modulate gene expression by chemical approach in order to rewire the deregulated activities of hubs back to normal physiology. PMID:22140468
Sanchita; Singh, Swati; Sharma, Ashok
2014-11-01
Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-D-xylulose-5-phosphate synthase, 1-Deoxy-D-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.
Joint Identification of Genetic Variants for Physical Activity in Korean Population
Kim, Jayoun; Kim, Jaehee; Min, Haesook; Oh, Sohee; Kim, Yeonjung; Lee, Andy H.; Park, Taesung
2014-01-01
There has been limited research on genome-wide association with physical activity (PA). This study ascertained genetic associations between PA and 344,893 single nucleotide polymorphism (SNP) markers in 8842 Korean samples. PA data were obtained from a validated questionnaire that included information on PA intensity and duration. Metabolic equivalent of tasks were calculated to estimate the total daily PA level for each individual. In addition to single- and multiple-SNP association tests, a pathway enrichment analysis was performed to identify the biological significance of SNP markers. Although no significant SNP was found at genome-wide significance level via single-SNP association tests, 59 genetic variants mapped to 76 genes were identified via a multiple SNP approach using a bootstrap selection stability measure. Pathway analysis for these 59 variants showed that maturity onset diabetes of the young (MODY) was enriched. Joint identification of SNPs could enable the identification of multiple SNPs with good predictive power for PA and a pathway enriched for PA. PMID:25026172
Systems analysis of the single photon response in invertebrate photoreceptors.
Pumir, Alain; Graves, Jennifer; Ranganathan, Rama; Shraiman, Boris I
2008-07-29
Photoreceptors of Drosophila compound eye employ a G protein-mediated signaling pathway that transduces single photons into transient electrical responses called "quantum bumps" (QB). Although most of the molecular components of this pathway are already known, the system-level understanding of the mechanism of QB generation has remained elusive. Here, we present a quantitative model explaining how QBs emerge from stochastic nonlinear dynamics of the signaling cascade. The model shows that the cascade acts as an "integrate and fire" device and explains how photoreceptors achieve reliable responses to light although keeping low background in the dark. The model predicts the nontrivial behavior of mutants that enhance or suppress signaling and explains the dependence on external calcium, which controls feedback regulation. The results provide insight into physiological questions such as single-photon response efficiency and the adaptation of response to high incident-light level. The system-level analysis enabled by modeling phototransduction provides a foundation for understanding G protein signaling pathways less amenable to quantitative approaches.
Genetic and environmental pathways to complex diseases.
Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J
2009-05-05
Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.
New insights into liquid chromatography for more eco-friendly analysis of pharmaceuticals.
Shaaban, Heba
2016-10-01
Greening the analytical methods used for analysis of pharmaceuticals has been receiving great interest aimed at eliminating or minimizing the amount of organic solvents consumed daily worldwide without loss in chromatographic performance. Traditional analytical LC techniques employed in pharmaceutical analysis consume tremendous amounts of hazardous solvents and consequently generate large amounts of waste. The monetary and ecological impact of using large amounts of solvents and waste disposal motivated the analytical community to search for alternatives to replace polluting analytical methodologies with clean ones. In this context, implementing the principles of green analytical chemistry (GAC) in analytical laboratories is highly desired. This review gives a comprehensive overview on different green LC pathways for implementing GAC principles in analytical laboratories and focuses on evaluating the greenness of LC analytical procedures. This review presents green LC approaches for eco-friendly analysis of pharmaceuticals in industrial, biological, and environmental matrices. Graphical Abstract Green pathways of liquid chromatography for more eco-friendly analysis of pharmaceuticals.
Allowable residual contamination levels of radionuclides in soil from pathway analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyquist, J.E.; Baes, C.F. III
1987-01-01
The uncertainty regarding radionuclide distributions among Remedial Action Program (RAP) sites and long-term decommissioning and closure options for these sites requires a flexible approach capable of handling different levels of contamination, dose limits, and closure scenarios. We identified a commercially available pathway analysis model, DECOM, which had been used previously in support of remedial activities involving contaminated soil at the Savannah River Plant. The DECOM computer code, which estimates concentrations of radionuclides uniformly distributed in soil that correspond to an annual effective dose equivalent, is written in BASIC and runs on an IBM PC or compatible microcomputer. We obtained themore » latest version of DECOM and modified it to make it more user friendly and applicable to the Oak Ridge National Laboratory (ORNL) RAP. Some modifications involved changes in default parameters or changes in models based on approaches used by the EPA in regulating remedial actions for hazardous substances. We created a version of DECOM as a LOTUS spreadsheet, using the same models as the BASIC version of DECOM. We discuss the specific modeling approaches taken, the regulatory framework that guided our efforts, the strengths and limitations of each approach, and areas for improvement. We also demonstrate how the LOTUS version of DECOM can be applied to specific problems that may be encountered during ORNL RAP activities. 18 refs., 2 figs., 3 tabs.« less
2013-01-01
Background Decades of research strongly suggest that the genetic etiology of autism spectrum disorders (ASDs) is heterogeneous. However, most published studies focus on group differences between cases and controls. In contrast, we hypothesized that the heterogeneity of the disorder could be characterized by identifying pathways for which individuals are outliers rather than pathways representative of shared group differences of the ASD diagnosis. Methods Two previously published blood gene expression data sets – the Translational Genetics Research Institute (TGen) dataset (70 cases and 60 unrelated controls) and the Simons Simplex Consortium (Simons) dataset (221 probands and 191 unaffected family members) – were analyzed. All individuals of each dataset were projected to biological pathways, and each sample’s Mahalanobis distance from a pooled centroid was calculated to compare the number of case and control outliers for each pathway. Results Analysis of a set of blood gene expression profiles from 70 ASD and 60 unrelated controls revealed three pathways whose outliers were significantly overrepresented in the ASD cases: neuron development including axonogenesis and neurite development (29% of ASD, 3% of control), nitric oxide signaling (29%, 3%), and skeletal development (27%, 3%). Overall, 50% of cases and 8% of controls were outliers in one of these three pathways, which could not be identified using group comparison or gene-level outlier methods. In an independently collected data set consisting of 221 ASD and 191 unaffected family members, outliers in the neurogenesis pathway were heavily biased towards cases (20.8% of ASD, 12.0% of control). Interestingly, neurogenesis outliers were more common among unaffected family members (Simons) than unrelated controls (TGen), but the statistical significance of this effect was marginal (Chi squared P < 0.09). Conclusions Unlike group difference approaches, our analysis identified the samples within the case and control groups that manifested each expression signal, and showed that outlier groups were distinct for each implicated pathway. Moreover, our results suggest that by seeking heterogeneity, pathway-based outlier analysis can reveal expression signals that are not apparent when considering only shared group differences. PMID:24063311
Lee, A Yeong; Park, Won; Kang, Tae-Wook; Cha, Min Ho; Chun, Jin Mi
2018-07-15
Yijin-Tang (YJT) is a traditional prescription for the treatment of hyperlipidaemia, atherosclerosis and other ailments related to dampness phlegm, a typical pathological symptom of abnormal body fluid metabolism in Traditional Korean Medicine. However, a holistic network pharmacology approach to understanding the therapeutic mechanisms underlying hyperlipidaemia and atherosclerosis has not been pursued. To examine the network pharmacological potential effects of YJT on hyperlipidaemia and atherosclerosis, we analysed components, performed target prediction and network analysis, and investigated interacting pathways using a network pharmacology approach. Information on compounds in herbal medicines was obtained from public databases, and oral bioavailability and drug-likeness was screened using absorption, distribution, metabolism, and excretion (ADME) criteria. Correlations between compounds and genes were linked using the STITCH database, and genes related to hyperlipidaemia and atherosclerosis were gathered using the GeneCards database. Human genes were identified and subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Network analysis identified 447 compounds in five herbal medicines that were subjected to ADME screening, and 21 compounds and 57 genes formed the main pathways linked to hyperlipidaemia and atherosclerosis. Among them, 10 compounds (naringenin, nobiletin, hesperidin, galangin, glycyrrhizin, homogentisic acid, stigmasterol, 6-gingerol, quercetin and glabridin) were linked to more than four genes, and are bioactive compounds and key chemicals. Core genes in this network were CASP3, CYP1A1, CYP1A2, MMP2 and MMP9. The compound-target gene network revealed close interactions between multiple components and multiple targets, and facilitates a better understanding of the potential therapeutic effects of YJT. Pharmacological network analysis can help to explain the potential effects of YJT for treating dampness phlegm-related diseases such as hyperlipidaemia and atherosclerosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Discriminating response groups in metabolic and regulatory pathway networks.
Van Hemert, John L; Dickerson, Julie A
2012-04-01
Analysis of omics experiments generates lists of entities (genes, metabolites, etc.) selected based on specific behavior, such as changes in response to stress or other signals. Functional interpretation of these lists often uses category enrichment tests using functional annotations like Gene Ontology terms and pathway membership. This approach does not consider the connected structure of biochemical pathways or the causal directionality of events. The Omics Response Group (ORG) method, described in this work, interprets omics lists in the context of metabolic pathway and regulatory networks using a statistical model for flow within the networks. Statistical results for all response groups are visualized in a novel Pathway Flow plot. The statistical tests are based on the Erlang distribution model under the assumption of independent and identically Exponential-distributed random walk flows through pathways. As a proof of concept, we applied our method to an Escherichia coli transcriptomics dataset where we confirmed common knowledge of the E.coli transcriptional response to Lipid A deprivation. The main response is related to osmotic stress, and we were also able to detect novel responses that are supported by the literature. We also applied our method to an Arabidopsis thaliana expression dataset from an abscisic acid study. In both cases, conventional pathway enrichment tests detected nothing, while our approach discovered biological processes beyond the original studies. We created a prototype for an interactive ORG web tool at http://ecoserver.vrac.iastate.edu/pathwayflow (source code is available from https://subversion.vrac.iastate.edu/Subversion/jlv/public/jlv/pathwayflow). The prototype is described along with additional figures and tables in Supplementary Material. julied@iastate.edu Supplementary data are available at Bioinformatics online.
Li, Haixia; Wang, Jingtao; Wang, Pengqian; Zhang, Yingying; Liu, Jun; Yu, Yanan; Li, Bing; Wang, Zhong
2018-01-01
Recent evidence demonstrates that a double dose of Jasminoidin (2·JA) is more effective than Jasminoidin (JA) in cerebral ischemia therapy, but its dosage-effect mechanisms are unclear. In this study, the software GeneGo MetaCore was used to perform pathway analysis of the differentially expressed genes obtained in microarrays of mice belonging to four groups (Sham, Vehicle, JA, and 2·JA), aiming to elucidate differences in JA and 2·JA's dose-dependent pharmacological mechanism from a system's perspective. The top 10 enriched pathways in the 2·JA condition were mainly involved in neuroprotection (70% of the pathways), apoptosis and survival (40%), and anti-inflammation (20%), while JA induced pathways were mainly involved in apoptosis and survival (60%), anti-inflammation (20%), and lipid metabolism (20%). Regarding shared pathways and processes, 3, 1, and 3 pathways overlapped between the Vehicle and JA, Vehicle and 2·JA, and JA and 2·JA conditions, respectively; for the top ten overlapped processes these numbers were 3, 0, and 4, respectively. The common pathways and processes in the 2·JA condition included differentially expressed genes significantly different from those in JA. Seven representative pathways were only activated by 2·JA, such as Gamma-Secretase regulation of neuronal cell development. Process network comparison indicated that significant nodes, such as alpha-MSH , ACTH , PKR1 , and WNT , were involved in the pharmacological mechanism of 2·JA. Function distribution was different between JA and 2·JA groups, indicating a dosage additive mechanism in cerebral ischemia treatment. Such systemic approach based on whole-genome multiple pathways and networks may provide an effective and alternative approach to identify alterations underlining dosage-dependent therapeutic benefits of pharmacological compounds on complex disease processes.
Grace, Peter M.; Hurley, Daniel; Barratt, Daniel T.; Tsykin, Anna; Watkins, Linda R.; Rolan, Paul E.; Hutchinson, Mark R.
2017-01-01
A quantitative, peripherally accessible biomarker for neuropathic pain has great potential to improve clinical outcomes. Based on the premise that peripheral and central immunity contribute to neuropathic pain mechanisms, we hypothesized that biomarkers could be identified from the whole blood of adult male rats, by integrating graded chronic constriction injury (CCI), ipsilateral lumbar dorsal quadrant (iLDQ) and whole blood transcriptomes, and pathway analysis with pain behavior. Correlational bioinformatics identified a range of putative biomarker genes for allodynia intensity, many encoding for proteins with a recognized role in immune/nociceptive mechanisms. A selection of these genes was validated in a separate replication study. Pathway analysis of the iLDQ transcriptome identified Fcγ and Fcε signaling pathways, among others. This study is the first to employ the whole blood transcriptome to identify pain biomarker panels. The novel correlational bioinformatics, developed here, selected such putative biomarkers based on a correlation with pain behavior and formation of signaling pathways with iLDQ genes. Future studies may demonstrate the predictive ability of these biomarker genes across other models and additional variables. PMID:22697386
NFκB pathway analysis: An approach to analyze gene co-expression networks employing feedback cycles.
Dillenburg, Fabiane Cristine; Zanotto-Filho, Alfeu; Fonseca Moreira, José Cláudio; Ribeiro, Leila; Carro, Luigi
2018-02-01
The genes of the NFκB pathway are involved in the control of a plethora of biological processes ranking from inhibition of apoptosis to metastasis in cancer. It has been described that Gliobastoma multiforme (GBM) patients carry aberrant NFκB activation, but the molecular mechanisms are not completely understood. Here, we present a NFκB pathway analysis in tumor specimens of GBM compared to non-neoplasic brain tissues, based on the different kind of cycles found among genes of a gene co-expression network constructed using quantized data obtained from the microarrays. A cycle is a closed walk with all vertices distinct (except the first and last). Thanks to this way of finding relations among genes, a more robust interpretation of gene correlations is possible, because the cycles are associated with feedback mechanisms that are very common in biological networks. In GBM samples, we could conclude that the stoichiometric relationship between genes involved in NFκB pathway regulation is unbalanced. This can be measured and explained by the identification of a cycle. This conclusion helps to understand more about the biology of this type of tumor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yue, Rongcai; Li, Xia; Chen, Bingyang; Zhao, Jing; He, Weiwei; Yuan, Hu; Yuan, Xing; Gao, Na; Wu, Guozhen; Jin, Huizi; Shan, Lei; Zhang, Weidong
2015-01-01
Astragaloside IV (AGS-IV) is a main active ingredient of Astragalus membranaceus Bunge, a medicinal herb prescribed as an immunostimulant, hepatoprotective, antiperspirant, a diuretic or a tonic as documented in Chinese Materia Medica. In the present study, we employed a high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS to investigate the possible mechanism of action involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. Differential proteins were identified, among which 13 proteins survived the stringent filter criteria and were further included for functional discussion. Two proteins (vimentin and Gap43) were randomly selected, and their expression levels were further confirmed by western blots analysis. The results matched well with those of proteomics. Furthermore, network analysis of protein-protein interactions (PPI) and pathways enrichment with AGS-IV associated proteins were carried out to illustrate its underlying molecular mechanism. Proteins associated with signal transduction, immune system, signaling molecules and interaction, and energy metabolism play important roles in neuroprotective effect of AGS-IV and Raf-MEK-ERK pathway was involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. This study demonstrates that comparative proteomics based on shotgun approach is a valuable tool for molecular mechanism studies, since it allows the simultaneously evaluate the global proteins alterations.
NASA Astrophysics Data System (ADS)
Yue, Shi-Jun; Xin, Lan-Ting; Fan, Ya-Chu; Li, Shu-Jiao; Tang, Yu-Ping; Duan, Jin-Ao; Guan, Hua-Shi; Wang, Chang-Yun
2017-01-01
Herb pair Danggui-Honghua has been frequently used for treatment of blood stasis syndrome (BSS) in China, one of the most common clinical pathological syndromes in traditional Chinese medicine (TCM). However, its therapeutic mechanism has not been clearly elucidated. In the present study, a feasible system pharmacology model based on chemical, pharmacokinetic and pharmacological data was developed via network construction approach to clarify the mechanisms of this herb pair. Thirty-one active ingredients of Danggui-Honghua possessing favorable pharmacokinetic profiles and biological activities were selected, interacting with 42 BSS-related targets to provide potential synergistic therapeutic actions. Systematic analysis of the constructed networks revealed that these targets such as HMOX1, NOS2, NOS3, HIF1A and PTGS2 were mainly involved in TNF signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway and neurotrophin signaling pathway. The contribution index of every active ingredient also indicated six compounds, including hydroxysafflor yellow A, safflor yellow A, safflor yellow B, Z-ligustilide, ferulic acid, and Z-butylidenephthalide, as the principal components of this herb pair. These results successfully explained the polypharmcological mechanisms underlying the efficiency of Danggui-Honghua for BSS treatment, and also probed into the potential novel therapeutic strategies for BSS in TCM.
Rofiee, M S; Yusof, M I M; Abdul Hisam, E E; Bannur, Z; Zakaria, Z A; Somchit, M N; Teh, L K; Salleh, M Z
2015-05-26
Muntingia calabura L. has been used in Southeast Asia and tropical America as antipyretic, antiseptic, analgesic, antispasmodic and liver tonic. This study aims to determine the acute toxicity and the metabolic pathways involved in the hepatoprotective mechanism of M. calabura. CCl4-induced hepatotoxic rat model was developed and a dose dependent effect of M. calabura was conducted. Body weight, food and water consumption were measured every day and rats were sacrificed to collect the serum samples at the end of the 10-days treatment. Liquid chromatography-mass spectrometry quadrapole time of flight (LC/MS-QTOF) combined with principal component analysis (PCA) were used to determine differentially expressed metabolites due to treatment with CCl4 and M. calabura extracts. Metabolomics Pathway Analysis (MetPA) was used for analysis and visualization of pathways involved. Body weight, food and water consumption were significantly decreased and histopathological study revealed steatosis in CCl4-induced rats. PCA score plots show distinct separation in the metabolite profiles of the normal group, CCl4-treated group and extract of M. calabura (MCME) pre-treated groups. Biomarkers network reconstruction using MetPA had identified 2 major pathways which were involved in the protective mechanism of MCME. These include the (i) biosynthesis of the primary bile acid, (ii) metabolism of arachidonic acid. This study has successfully isolated 2 major pathways involved in the hepatoprotecive effect of MCME against CCl4-induced liver injury using the LC/MS Q-TOF metabolomics approach. The involvement of archidonic acid and purine metabolism in hepatoprotection has not been reported previously and may provide new therapeutic targets and/or options for the treatment of liver injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhang, Aihua; Zhou, Xiaohang; Zhao, Hongwei; Zou, Shiyu; Ma, Chung Wah; Liu, Qi; Sun, Hui; Liu, Liang; Wang, Xijun
2017-01-31
An integrative metabolomics and proteomics approach can provide novel insights in the understanding of biological systems. We have integrated proteome and metabolome data sets for a holistic view of the molecular mechanisms in disease. Using quantitative iTRAQ-LC-MS/MS proteomics coupled with UPLC-Q-TOF-HDMS based metabolomics, we determined the protein and metabolite expression changes in the kidney-yang deficiency syndrome (KYDS) rat model and further investigated the intervention effects of the Jinkui Shenqi Pill (JSP). The VIP-plot of the orthogonal PLS-DA (OPLS-DA) was used for discovering the potential biomarkers to clarify the therapeutic mechanisms of JSP in treating KYDS. The results showed that JSP can alleviate the kidney impairment induced by KYDS. Sixty potential biomarkers, including 5-l-glutamyl-taurine, phenylacetaldehyde, 4,6-dihydroxyquinoline, and xanthurenic acid etc., were definitely up- or down-regulated. The regulatory effect of JSP on the disturbed metabolic pathways was proved by the established metabonomic method. Using pathway analyses, we identified the disturbed metabolic pathways such as taurine and hypotaurine metabolism, pyrimidine metabolism, tyrosine metabolism, tryptophan metabolism, histidine metabolism, steroid hormone biosynthesis, etc. Furthermore, using iTRAQ-based quantitative proteomics analysis, seventeen differential proteins were identified and significantly altered by the JSP treatment. These proteins appear to be involved in Wnt, chemokine, PPAR, and MAPK signaling pathways, etc. Functional pathway analysis revealed that most of the proteins were found to play a key role in the regulation of metabolism pathways. Bioinformatics analysis with the IPA software found that these differentially-expressed moleculars had a strong correlation with the α-adrenergic signaling, FGF signaling, etc. Our data indicate that high-throughput metabolomics and proteomics can provide an insight on the herbal preparations affecting the metabolic disorders using high resolution mass spectrometry.
Gundogdu, Aycan; Nalbantoglu, Ufuk
2017-04-01
A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome-human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis.
Nalbantoglu, Ufuk
2017-01-01
A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome–human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis. PMID:28785422
Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro
2015-01-01
Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. PMID:25761715
Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro
2015-05-01
Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. © 2015 American Society of Plant Biologists. All Rights Reserved.
Developing students’ ideas about lens imaging: teaching experiments with an image-based approach
NASA Astrophysics Data System (ADS)
Grusche, Sascha
2017-07-01
Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists’ analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students’ ideas, teaching experiments are performed and evaluated using qualitative content analysis. Some of the students’ ideas have not been reported before, namely those related to blurry lens images, and those developed by the proposed teaching approach. To describe learning pathways systematically, a conception-versus-time coordinate system is introduced, specifying how teaching actions help students advance toward a scientific understanding.
Molecular profiles to biology and pathways: a systems biology approach.
Van Laere, Steven; Dirix, Luc; Vermeulen, Peter
2016-06-16
Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.
Shin, Dong M.; Zhang, Hongzheng; Saba, Nabil; Chen, Amy; Nannapaneni, Sreenivas; Amin, A.R.M. Ruhul; Müller, Susan; Lewis, Melinda; Sica, Gabriel; Kono, Scott; Brandes, Johann C.; Grist, William; Moreno-Williams, Rachel; Beitler, Jonathan J.; Thomas, Sufi M.; Chen, Zhengjia; Shin, Hyung Ju C.; Grandis, Jennifer R.; Khuri, Fadlo R.; Chen, Zhuo Georgia
2013-01-01
Purpose We investigated the efficacy and underlying molecular mechanism of a novel chemopreventive strategy combining epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with cyclooxygenase-2 inhibitor (COX-2I). Experimental Design We examined the inhibition of tumor cell growth by combined EGFR-TKI (erlotinib) and COX-2I (celecoxib) treatment using head and neck cancer (HNC) cell lines and a preventive xenograft model. We studied the antiangiogenic activity of these agents and examined the affected signaling pathways by immunoblotting analysis in tumor cell lysates and immunohistochemistry (IHC) and enzyme immunoassay (EIA) analyses on the mouse xenograft tissues and blood, respectively. Biomarkers in these signaling pathways were studied by IHC, EIA, and an antibody array analysis in samples collected from participants in a phase I chemoprevention trial of erlotinib and celecoxib. Results The combined treatment inhibited HNC cell growth significantly more potently than either single agent alone in cell line and xenograft models, and resulted in greater inhibition of cell cycle progression at G1 phase than either single drug. The combined treatment modulated the EGFR and mTOR signaling pathways. A phase I chemoprevention trial of combined erlotinib and celecoxib revealed an overall pathologic response rate of 71% at time of data analysis. Analysis of tissue samples from participants consistently showed downregulation of EGFR, pERK and pS6 levels after treatment, which correlated with clinical response. Conclusion Treatment with erlotinib combined with celecoxib offers an effective chemopreventive approach through inhibition of EGFR and mTOR pathways, which may serve as potential biomarkers to monitor the intervention of this combination in the clinic. PMID:23422093
Pachankis, John E.
2015-01-01
Developing and deploying separate treatments for separate conditions seems ill-suited to intervening upon the co-occurring, and possibly functionally similar, psychosocial conditions facing gay and bisexual men. This article argues for the need to create transdiagnostic interventions that reduce multiple syndemic conditions facing gay and bisexual men at the level of their shared source in minority stress pathways. This article first reviews psychosocial syndemic conditions affecting gay and bisexual men, then suggests pathways that might link minority stress to psychosocial syndemics based on recent advancements in emotion science, psychiatric nosology, and cognitive-affective neuroscience, and finally suggests cross-cutting psychosocial treatment principles to reduce minority stress–syndemic pathways among gay and bisexual men. Because minority stress serves as a common basis of all psychosocial syndemic conditions reviewed here, locating the pathways through which minority stress generates psychosocial syndemics and employing overarching treatment principles capable of simultaneously alleviating these pathways will ultimately create a transdiagnostic approach to improving gay and bisexual men’s health. Clinical research and training approaches are suggested to further validate the pathways suggested here, establish the efficacy of treatment approaches tied to those pathways, and generate effective methods for disseminating a transdiagnostic minority stress treatment approach for gay and bisexual men’s psychosocial syndemic health. PMID:26123065
The standard framework of Ecological Risk Assessment (ERA) uses organism-level assessment endpoints to qualitatively determine the risk to populations. While organism-level toxicity data provide the pathway by which a species may be affected by a chemical stressor, they neither i...
USDA-ARS?s Scientific Manuscript database
Numerical modeling is an economical and feasible approach for quantifying the effects of best management practices on phosphorus (P) loadings from agricultural fields. However, tools that simulate both surface and subsurface P pathways are limited and have not been robustly evaluated in tile-drained...
A broken krebs cycle in macrophages.
O'Neill, Luke A J
2015-03-17
Macrophages undergo metabolic rewiring during polarization but details of this process are unclear. In this issue of Immunity, Jha et al. (2015) report a systems approach for unbiased analysis of cellular metabolism that reveals key metabolites and metabolic pathways required for distinct macrophage polarization states. Copyright © 2015 Elsevier Inc. All rights reserved.
Pejchinovski, Martin; Siwy, Justyna; Metzger, Jochen; Dakna, Mohammed; Mischak, Harald; Klein, Julie; Jankowski, Vera; Bae, Kyongtae T; Chapman, Arlene B; Kistler, Andreas D
2017-03-01
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by slowly progressive bilateral renal cyst growth ultimately resulting in loss of kidney function and end-stage renal disease (ESRD). Disease progression rate and age at ESRD are highly variable. Therapeutic interventions therefore require early risk stratification of patients and monitoring of disease progression in response to treatment. We used a urine peptidomic approach based on capillary electrophoresis-mass-spectrometry (CE-MS) to identify potential biomarkers reflecting the risk for early progression to ESRD in the Consortium of Radiologic Imaging in Polycystic Kidney Disease (CRISP) cohort. A biomarker-based classifier consisting of 20 urinary peptides allowed the prediction of ESRD within 10-13 years of follow-up in patients 24-46 years of age at baseline. The performance of the biomarker score approached that of height-adjusted total kidney volume (htTKV) and the combination of the biomarker panel with htTKV improved prediction over either one alone. In young patients (<24 years at baseline), the same biomarker model predicted a 30 mL/min/1.73 m 2 glomerular filtration rate decline over 8 years. Sequence analysis of the altered urinary peptides and the prediction of the involved proteases by in silico analysis revealed alterations in distinct proteolytic pathways, in particular matrix metalloproteinases and cathepsins. We developed a urinary test that accurately predicts relevant clinical outcomes in ADPKD patients and suggests altered proteolytic pathways involved in disease progression. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Nfonsam, Landry E.; Cano, Carlos; Mudge, Joann; Schilkey, Faye D.; Curtiss, Jennifer
2012-01-01
Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans. PMID:22952997
Global analysis of bacterial transcription factors to predict cellular target processes.
Doerks, Tobias; Andrade, Miguel A; Lathe, Warren; von Mering, Christian; Bork, Peer
2004-03-01
Whole-genome sequences are now available for >100 bacterial species, giving unprecedented power to comparative genomics approaches. We have applied genome-context methods to predict target processes that are regulated by transcription factors (TFs). Of 128 orthologous groups of proteins annotated as TFs, to date, 36 are functionally uncharacterized; in our analysis we predict a probable cellular target process or biochemical pathway for half of these functionally uncharacterized TFs.
Silverwood, Richard J; Williamson, Lee; Grundy, Emily M; De Stavola, Bianca L
2016-01-01
Socioeconomically disadvantaged children are more likely to be of shorter stature and overweight, leading to greater risk of obesity in adulthood. Disentangling the mediatory pathways between socioeconomic disadvantage and childhood size may help in the development of appropriate policies aimed at reducing these health inequalities. We aimed to elucidate the putative mediatory role of birth weight using a representative sample of the Scottish population born 1991-2001 (n = 16,628). Estimated height and overweight/obesity at age 4.5 years were related to three measures of socioeconomic disadvantage (mother's education, Scottish Index of Multiple Deprivation, synthetic weekly income). Mediation was examined using two approaches: a 'traditional' mediation analysis and a counterfactual-based mediation analysis. Both analyses identified a negative effect of each measure of socioeconomic disadvantage on height, mediated to some extent by birth weight, and a positive 'direct effect' of mother's education and Scottish Index of Multiple Deprivation on overweight/obesity, which was partly counterbalanced by a negative 'indirect effect'. The extent of mediation estimated when adopting the traditional approach was greater than when adopting the counterfactual-based approach because of inappropriate handling of intermediate confounding in the former. Our findings suggest that higher birth weight in more disadvantaged groups is associated with reduced social inequalities in height but also with increased inequalities in overweight/obesity.
Pereira, Thaís Dos Santos Fontes; Brito, João Artur Ricieri; Guimarães, André Luiz Sena; Gomes, Carolina Cavaliéri; de Lacerda, Júlio Cesar Tanos; de Castro, Wagner Henriques; Coimbra, Roney Santos; Diniz, Marina Gonçalves; Gomez, Ricardo Santiago
2018-01-01
Cemento-ossifying fibroma (COF) is a benign fibro-osseous neoplasm of uncertain pathogenesis, and its treatment results in morbidity. MicroRNAs (miRNA) are small non-coding RNAs that regulate gene expression and may represent therapeutic targets. The purpose of the study was to generate a comprehensive miRNA profile of COF compared to normal bone. Additionally, the most relevant pathways and target genes of differentially expressed miRNA were investigated by in silico analysis. Nine COF and ten normal bone samples were included in the study. miRNA profiling was carried out by using TaqMan® OpenArray® Human microRNA panel containing 754 validated human miRNAs. We identified the most relevant miRNAs target genes through the leader gene approach, using STRING and Cytoscape software. Pathways enrichment analysis was performed using DIANA-miRPath. Eleven miRNAs were downregulated (hsa-miR-95-3p, hsa-miR-141-3p, hsa-miR-205-5p, hsa-miR-223-3p, hsa-miR-31-5p, hsa-miR-944, hsa-miR-200b-3p, hsa-miR-135b-5p, hsa-miR-31-3p, hsa-miR-223-5p and hsa-miR-200c-3p), and five were upregulated (hsa-miR-181a-5p, hsa-miR-181c-5p, hsa-miR-149-5p, hsa-miR-138-5p and hsa-miR-199a-3p) in COF compared to normal bone. Eighteen common target genes were predicted, and the leader genes approach identified the following genes involved in human COF: EZH2, XIAP, MET and TGFBR1. According to the biology of bone and COF, the most relevant KEGG pathways revealed by enrichment analysis were proteoglycans in cancer, miRNAs in cancer, pathways in cancer, p53-, PI3K-Akt-, FoxO- and TGF-beta signalling pathways, which were previously found to be differentially regulated in bone neoplasms, odontogenic tumours and osteogenesis. miRNA dysregulation occurs in COF, and EZH2, XIAP, MET and TGFBR1 are potential targets for functional analysis validation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bioinformatics approach reveals systematic mechanism underlying lung adenocarcinoma.
Wu, Xiya; Zhang, Wei; Hu, Yunhua; Yi, Xianghua
2015-01-01
The purpose of this work was to explore the systematic molecular mechanism of lung adenocarcinoma and gain a deeper insight into it. Comprehensive bioinformatics methods were applied. Initially, significant differentially expressed genes (DEGs) were analyzed from the Affymetrix microarray data (GSE27262) deposited in the Gene Expression Omnibus (GEO). Subsequently, gene ontology (GO) analysis was performed using online Database for Annotation, Visualization and Integration Discovery (DAVID) software. Finally, significant pathway crosstalk was investigated based on the information derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. According to our results, the N-terminal globular domain of the type X collagen (COL10A1) gene and transmembrane protein 100 (TMEM100) gene were identified to be the most significant DEGs in tumor tissue compared with the adjacent normal tissues. The main GO categories were biological process, cellular component and molecular function. In addition, the crosstalk was significantly different between non-small cell lung cancer pathways and inositol phosphate metabolism pathway, focal adhesion signal pathway, vascular smooth muscle contraction signal pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway and calcium signaling pathway in tumor. Dysfunctional genes and pathways may play key roles in the progression and development of lung adenocarcinoma. Our data provide a systematic perspective for understanding this mechanism and may be helpful in discovering an effective treatment for lung adenocarcinoma.
Wu, Chia-Chou; Lin, Chih-Lung; Chen, Ting-Shou
2015-01-01
Hepatocellular carcinoma (HCC) is a major liver tumor (~80%), besides hepatoblastomas, angiosarcomas, and cholangiocarcinomas. In this study, we used a systems biology approach to construct protein-protein interaction networks (PPINs) for early-stage and late-stage liver cancer. By comparing the networks of these two stages, we found that the two networks showed some common mechanisms and some significantly different mechanisms. To obtain differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two stages of liver cancer by systems biology method using NGS data from cancer cells and adjacent noncancer cells. Using carcinogenesis relevance values (CRVs), we identified 43 and 80 significant proteins and their PPINs (network markers) for early-stage and late-stage liver cancer. To investigate the evolution of network biomarkers in the carcinogenesis process, a primary pathway analysis showed that common pathways of the early and late stages were those related to ordinary cancer mechanisms. A pathway specific to the early stage was the mismatch repair pathway, while pathways specific to the late stage were the spliceosome pathway, lysine degradation pathway, and progesterone-mediated oocyte maturation pathway. This study provides a new direction for cancer-targeted therapies at different stages. PMID:26366411
Ahmed, Aqeel; Rippmann, Friedrich; Barnickel, Gerhard; Gohlke, Holger
2011-07-25
A three-step approach for multiscale modeling of protein conformational changes is presented that incorporates information about preferred directions of protein motions into a geometric simulation algorithm. The first two steps are based on a rigid cluster normal-mode analysis (RCNMA). Low-frequency normal modes are used in the third step (NMSim) to extend the recently introduced idea of constrained geometric simulations of diffusive motions in proteins by biasing backbone motions of the protein, whereas side-chain motions are biased toward favorable rotamer states. The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. When applied to a data set of proteins with experimentally observed conformational changes, conformational variabilities are reproduced very well for 4 out of 5 proteins that show domain motions, with correlation coefficients r > 0.70 and as high as r = 0.92 in the case of adenylate kinase. In 7 out of 8 cases, NMSim simulations starting from unbound structures are able to sample conformations that are similar (root-mean-square deviation = 1.0-3.1 Å) to ligand bound conformations. An NMSim generated pathway of conformational change of adenylate kinase correctly describes the sequence of domain closing. The NMSim approach is a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or as starting points for more sophisticated sampling techniques.
Yue, Zongliang; Zheng, Qi; Neylon, Michael T; Yoo, Minjae; Shin, Jimin; Zhao, Zhiying; Tan, Aik Choon
2018-01-01
Abstract Integrative Gene-set, Network and Pathway Analysis (GNPA) is a powerful data analysis approach developed to help interpret high-throughput omics data. In PAGER 1.0, we demonstrated that researchers can gain unbiased and reproducible biological insights with the introduction of PAGs (Pathways, Annotated-lists and Gene-signatures) as the basic data representation elements. In PAGER 2.0, we improve the utility of integrative GNPA by significantly expanding the coverage of PAGs and PAG-to-PAG relationships in the database, defining a new metric to quantify PAG data qualities, and developing new software features to simplify online integrative GNPA. Specifically, we included 84 282 PAGs spanning 24 different data sources that cover human diseases, published gene-expression signatures, drug–gene, miRNA–gene interactions, pathways and tissue-specific gene expressions. We introduced a new normalized Cohesion Coefficient (nCoCo) score to assess the biological relevance of genes inside a PAG, and RP-score to rank genes and assign gene-specific weights inside a PAG. The companion web interface contains numerous features to help users query and navigate the database content. The database content can be freely downloaded and is compatible with third-party Gene Set Enrichment Analysis tools. We expect PAGER 2.0 to become a major resource in integrative GNPA. PAGER 2.0 is available at http://discovery.informatics.uab.edu/PAGER/. PMID:29126216
Vrahatis, Aristidis G; Rapti, Angeliki; Sioutas, Spyros; Tsakalidis, Athanasios
2017-01-01
In the era of Systems Biology and growing flow of omics experimental data from high throughput techniques, experimentalists are in need of more precise pathway-based tools to unravel the inherent complexity of diseases and biological processes. Subpathway-based approaches are the emerging generation of pathway-based analysis elucidating the biological mechanisms under the perspective of local topologies onto a complex pathway network. Towards this orientation, we developed PerSub, a graph-based algorithm which detects subpathways perturbed by a complex disease. The perturbations are imprinted through differentially expressed and co-expressed subpathways as recorded by RNA-seq experiments. Our novel algorithm is applied on data obtained from a real experimental study and the identified subpathways provide biological evidence for the brain aging.
Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery.
Bosl, William J
2007-02-15
Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer.
Integrative analysis of environmental sequences using MEGAN4.
Huson, Daniel H; Mitra, Suparna; Ruscheweyh, Hans-Joachim; Weber, Nico; Schuster, Stephan C
2011-09-01
A major challenge in the analysis of environmental sequences is data integration. The question is how to analyze different types of data in a unified approach, addressing both the taxonomic and functional aspects. To facilitate such analyses, we have substantially extended MEGAN, a widely used taxonomic analysis program. The new program, MEGAN4, provides an integrated approach to the taxonomic and functional analysis of metagenomic, metatranscriptomic, metaproteomic, and rRNA data. While taxonomic analysis is performed based on the NCBI taxonomy, functional analysis is performed using the SEED classification of subsystems and functional roles or the KEGG classification of pathways and enzymes. A number of examples illustrate how such analyses can be performed, and show that one can also import and compare classification results obtained using others' tools. MEGAN4 is freely available for academic purposes, and installers for all three major operating systems can be downloaded from www-ab.informatik.uni-tuebingen.de/software/megan.
Protein expression profiling in head fragments during planarian regeneration after amputation.
Chen, Xiaoguang; Xu, Cunshuan
2015-04-01
Following amputation, a planarian tail fragment can regrow into a complete organism including a well-organized brain within about 2-3 weeks, thus restoring the structure and function to presurgical levels. Despite the enormous potential of these animals for regenerative medicine, our understanding of the exact mechanism of planarian regeneration is incomplete. To better understand the molecular nature of planarian head regeneration, we applied two-dimensional electrophoresis (2-DE)/matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)/time-of-flight mass spectrometry (TOF MS) technique to analyze the dynamic proteomic expression profiles over the course of 6 to 168 h post-decapitation. This approach identified a total of 141 differentially expressed proteins, 47 of which exhibited exceptionally high fold changes (≥3-fold change). Of these, Rx protein, an important regulator of head and brain development, was considered to be closely related to planarian head regeneration because of its exceptional high expression almost throughout the time course of regeneration process. Functional annotation analysis classified the 141 proteins into eight categories: (1) signaling, (2) Ca(2+) binding and translocation, (3) transcription and translation, (4) cytoskeleton, (5) metabolism, (6) cell protection, (7) tissue differentiation, and (8) cell cycle. Signaling pathway analysis indicated that Wnt1/Ca(2+) signaling pathway was activated during head regeneration. Integrating the analyses of proteome expression profiling, functional annotation, and signaling pathway, amputation-induced head reformation requires some mechanisms to promote cell proliferation and differentiation, including differential regulation of proapoptotic and antiapoptotic proteins, and the regulation of proliferation and differentiation-related proteins. Importantly, Wnt1/Ca(2+) signaling pathway upregulates Rx expression, finally facilitating the differentiation of neoblasts into various cell types. Taken together, our study demonstrated that proteomic analysis approach used by us is a powerful tool in understanding molecular process related to head regeneration of planarian.
A Peptidomics Strategy to Elucidate the Proteolytic Pathways that Inactivate Peptide Hormones
Tinoco, Arthur D.; Kim, Yun-Gon; Tagore, Debarati M.; Wiwczar, Jessica; Lane, William S.; Danial, Nika N.; Saghatelian, Alan
2011-01-01
Proteolysis plays a key role in regulating the levels and activity of peptide hormones. Characterization of the proteolytic pathways that cleave peptide hormones is of basic interest and can, in some cases, spur the development of novel therapeutics. The lack, however, of an efficient approach to identify endogenous fragments of peptide hormones has hindered the elucidation of these proteolytic pathways. Here, we apply a mass spectrometry (MS)-based peptidomics approach to characterize the intestinal fragments of peptide histidine isoleucine (PHI), a hormone that promotes glucose-stimulated insulin secretion (GSIS). Our approach reveals a proteolytic pathway in the intestine that truncates PHI at its C-terminus to produce a PHI fragment that is inactive in a GSIS assay—a result that provides a potential mechanism of PHI regulation in vivo. Differences between these in vivo peptidomics studies and in vitro lysate experiments, which showed N- and C-terminal processing of PHI, underscore the effectiveness of this approach to discover physiologically relevant proteolytic pathways. Moreover, integrating this peptidomics approach with bioassays (i.e. GSIS) provides a general strategy to reveal proteolytic pathways that may regulate the activity of peptide hormones. PMID:21299233
Design principles and operating principles: the yin and yang of optimal functioning.
Voit, Eberhard O
2003-03-01
Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.
Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules.
Ishii, Satoshi; Song, Yanjun; Rathnayake, Lashitha; Tumendelger, Azzaya; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi
2014-10-01
The identification of the key nitrous oxide (N2O) production pathways is important to establish a strategy to mitigate N2O emission. In this study, we combined real-time gas-monitoring analysis, (15)N stable isotope analysis, denitrification functional gene transcriptome analysis and microscale N2O concentration measurements to identify the main N2O producers in a partial nitrification (PN) aerobic granule reactor, which was fed with ammonium and acetate. Our results suggest that heterotrophic denitrification was the main contributor to N2O production in our PN aerobic granule reactor. The heterotrophic denitrifiers were probably related to Rhodocyclales bacteria, although different types of bacteria were active in the initial and latter stages of the PN reaction cycles, most likely in response to the presence of acetate. Hydroxylamine oxidation and nitrifier denitrification occurred, but their contribution to N2O emission was relatively small (20-30%) compared with heterotrophic denitrification. Our approach can be useful to quantitatively examine the relative contributions of the three pathways (hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification) to N2O emission in mixed microbial populations. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.
Sridharan, Gautham Vivek; Bruinsma, Bote Gosse; Bale, Shyam Sundhar; Swaminathan, Anandh; Saeidi, Nima; Yarmush, Martin L; Uygun, Korkut
2017-11-13
Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.
Metabolomics Analysis of the Toxic Effects of the Production of Lycopene and Its Precursors.
Miguez, April M; McNerney, Monica P; Styczynski, Mark P
2018-01-01
Using cells as microbial factories enables highly specific production of chemicals with many advantages over chemical syntheses. A number of exciting new applications of this approach are in the area of precision metabolic engineering, which focuses on improving the specificity of target production. In recent work, we have used precision metabolic engineering to design lycopene-producing Escherichia coli for use as a low-cost diagnostic biosensor. To increase precursor availability and thus the rate of lycopene production, we heterologously expressed the mevalonate pathway. We found that simultaneous induction of these pathways increases lycopene production, but induction of the mevalonate pathway before induction of the lycopene pathway decreases both lycopene production and growth rate. Here, we aim to characterize the metabolic changes the cells may be undergoing during expression of either or both of these heterologous pathways. After establishing an improved method for quenching E. coli for metabolomics analysis, we used two-dimensional gas chromatography coupled to mass spectrometry (GCxGC-MS) to characterize the metabolomic profile of our lycopene-producing strains in growth conditions characteristic of our biosensor application. We found that the metabolic impacts of producing low, non-toxic levels of lycopene are of much smaller magnitude than the typical metabolic changes inherent to batch growth. We then used metabolomics to study differences in metabolism caused by the time of mevalonate pathway induction and the presence of the lycopene biosynthesis genes. We found that overnight induction of the mevalonate pathway was toxic to cells, but that the cells could recover if the lycopene pathway was not also heterologously expressed. The two pathways appeared to have an antagonistic metabolic effect that was clearly reflected in the cells' metabolic profiles. The metabolites homocysteine and homoserine exhibited particularly interesting behaviors and may be linked to the growth inhibition seen when the mevalonate pathway is induced overnight, suggesting potential future work that may be useful in engineering increased lycopene biosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch
2016-07-21
An analysis of the network defined by the potential energy minima of multi-atomic systems and their connectivity via reaction pathways that go through transition states allows us to understand important characteristics like thermodynamic, dynamic, and structural properties. Unfortunately computing the transition states and reaction pathways in addition to the significant energetically low-lying local minima is a computationally demanding task. We here introduce a computationally efficient method that is based on a combination of the minima hopping global optimization method and the insight that uphill barriers tend to increase with increasing structural distances of the educt and product states. This methodmore » allows us to replace the exact connectivity information and transition state energies with alternative and approximate concepts. Without adding any significant additional cost to the minima hopping global optimization approach, this method allows us to generate an approximate network of the minima, their connectivity, and a rough measure for the energy needed for their interconversion. This can be used to obtain a first qualitative idea on important physical and chemical properties by means of a disconnectivity graph analysis. Besides the physical insight obtained by such an analysis, the gained knowledge can be used to make a decision if it is worthwhile or not to invest computational resources for an exact computation of the transition states and the reaction pathways. Furthermore it is demonstrated that the here presented method can be used for finding physically reasonable interconversion pathways that are promising input pathways for methods like transition path sampling or discrete path sampling.« less
Li, Chaoxing; Liu, Li; Dinu, Valentin
2018-01-01
Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway's topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher's exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov-Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes of HCC are HCC subtype-associated specifically. In conclusion, PoTRA is a new approach to explore and discover pathways involved in cancer. PoTRA can be used as a complement to other existing methods to broaden our understanding of the biological mechanisms behind cancer at the system-level.
Pynn, Christopher J.; Henderson, Neil G.; Clark, Howard; Koster, Grielof; Bernhard, Wolfgang; Postle, Anthony D.
2011-01-01
Phosphatidylcholine (PC) synthesis by the direct cytidine diphosphate choline (CDP-choline) pathway in rat liver generates predominantly mono- and di-unsaturated molecular species, while polyunsaturated PC species are synthesized largely by the phosphatidylethanolamine-N-methyltransferase (PEMT) pathway. Although altered PC synthesis has been suggested to contribute to development of hepatocarcinoma and nonalcoholic steatohepatitis, analysis of the specificity of hepatic PC metabolism in human patients has been limited by the lack of sensitive and safe methodologies. Here we incorporated a deuterated methyl-d9-labled choline chloride, to quantify biosynthesis fluxes through both of the PC synthetic pathways in vivo in human volunteers and compared these fluxes with those in mice. Rates and molecular specificities of label incorporated into mouse liver and plasma PC were very similar and strongly suggest that label incorporation into human plasma PC can provide a direct measure of hepatic PC synthesis in human subjects. Importantly, we demonstrate for the first time that the PEMT pathway in human liver is selective for polyunsaturated PC species, especially those containing docosahexaenoic acid. Finally, we present a multiple isotopomer distribution analysis approach, based on transfer of deuterated methyl groups to S-adenosylmethionine and subsequent sequential methylations of PE, to quantify absolute flux rates through the PEMT pathway that are applicable to studies of liver dysfunction in clinical studies. PMID:21068006
Sofia, Valentina Maria; Da Sacco, Letizia; Surace, Cecilia; Tomaiuolo, Anna Cristina; Genovese, Silvia; Grotta, Simona; Gnazzo, Maria; Petrocchi, Stefano; Ciocca, Laura; Alghisi, Federico; Montemitro, Enza; Martemucci, Luigi; Elce, Ausilia; Lucidi, Vincenzina; Castaldo, Giuseppe; Angioni, Adriano
2016-05-26
Genetic features of Chronic Pancreatitis (CP) have been extensively investigated mainly testing genes associated to the trypsinogen activation pathway. However, different molecular pathways involving other genes may be implicated in CP pathogenesis. 80 patients with Idiopathic CP were investigated using Next Generation Sequencing approach with a panel of 70 genes related to six different pancreatic pathways: premature activation of trypsinogen; modifier genes of Cystic Fibrosis phenotype; pancreatic secretion and ion homeostasis; Calcium signalling and zymogen granules exocytosis; autophagy; autoimmune pancreatitis related genes. We detected mutations in 34 out of 70 genes examined; 64/80 patients (80.0%) were positive for mutations in one or more genes, 16/80 patients (20.0%) had no mutations. Mutations in CFTR were detected in 32/80 patients (40.0%) and 22 of them exhibited at least one mutation in genes of other pancreatic pathways. Of the remaining 48 patients, 13/80 (16.3%) had mutations in genes involved in premature activation of trypsinogen and 19/80 (23.8%) had mutations only in genes of the other pathways: 38/64 patients positive for mutations showed variants in two or more genes (59.3%). Our data, although to be extended with functional analysis of novel mutations, suggest a high rate of genetic heterogeneity in chronic pancreatitis and that trans-heterozygosity may predispose to the idiopathic CP phenotype.
Cost-effectiveness of different strategies to manage patients with sciatica.
Fitzsimmons, Deborah; Phillips, Ceri J; Bennett, Hayley; Jones, Mari; Williams, Nefyn; Lewis, Ruth; Sutton, Alex; Matar, Hosam E; Din, Nafees; Burton, Kim; Nafees, Sadia; Hendry, Maggie; Rickard, Ian; Wilkinson, Claire
2014-07-01
The aim of this paper is to estimate the relative cost-effectiveness of treatment regimens for managing patients with sciatica. A deterministic model structure was constructed based on information from the findings from a systematic review of clinical effectiveness and cost-effectiveness, published sources of unit costs, and expert opinion. The assumption was that patients presenting with sciatica would be managed through one of 3 pathways (primary care, stepped approach, immediate referral to surgery). Results were expressed as incremental cost per patient with symptoms successfully resolved. Analysis also included incremental cost per utility gained over a 12-month period. One-way sensitivity analyses were used to address uncertainty. The model demonstrated that none of the strategies resulted in 100% success. For initial treatments, the most successful regime in the first pathway was nonopioids, with a probability of success of 0.613. In the second pathway, the most successful strategy was nonopioids, followed by biological agents, followed by epidural/nerve block and disk surgery, with a probability of success of 0.996. Pathway 3 (immediate surgery) was not cost-effective. Sensitivity analyses identified that the use of the highest cost estimates results in a similar overall picture. While the estimates of cost per quality-adjusted life year are higher, the economic model demonstrated that stepped approaches based on initial treatment with nonopioids are likely to represent the most cost-effective regimens for the treatment of sciatica. However, development of alternative economic modelling approaches is required. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Cavallini, Annalisa; Brewerton, Suzanne; Bell, Amanda; Sargent, Samantha; Glover, Sarah; Hardy, Clare; Moore, Roger; Calley, John; Ramachandran, Devaki; Poidinger, Michael; Karran, Eric; Davies, Peter; Hutton, Michael; Szekeres, Philip; Bose, Suchira
2013-01-01
Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies. PMID:23798682
Characterizability of metabolic pathway systems from time series data.
Voit, Eberhard O
2013-12-01
Over the past decade, the biomathematical community has devoted substantial effort to the complicated challenge of estimating parameter values for biological systems models. An even more difficult issue is the characterization of functional forms for the processes that govern these systems. Most parameter estimation approaches tacitly assume that these forms are known or can be assumed with some validity. However, this assumption is not always true. The recently proposed method of Dynamic Flux Estimation (DFE) addresses this problem in a genuinely novel fashion for metabolic pathway systems. Specifically, DFE allows the characterization of fluxes within such systems through an analysis of metabolic time series data. Its main drawback is the fact that DFE can only directly be applied if the pathway system contains as many metabolites as unknown fluxes. This situation is unfortunately rare. To overcome this roadblock, earlier work in this field had proposed strategies for augmenting the set of unknown fluxes with independent kinetic information, which however is not always available. Employing Moore-Penrose pseudo-inverse methods of linear algebra, the present article discusses an approach for characterizing fluxes from metabolic time series data that is applicable even if the pathway system is underdetermined and contains more fluxes than metabolites. Intriguingly, this approach is independent of a specific modeling framework and unaffected by noise in the experimental time series data. The results reveal whether any fluxes may be characterized and, if so, which subset is characterizable. They also help with the identification of fluxes that, if they could be determined independently, would allow the application of DFE. Copyright © 2013 Elsevier Inc. All rights reserved.
Characterizability of Metabolic Pathway Systems from Time Series Data
Voit, Eberhard O.
2013-01-01
Over the past decade, the biomathematical community has devoted substantial effort to the complicated challenge of estimating parameter values for biological systems models. An even more difficult issue is the characterization of functional forms for the processes that govern these systems. Most parameter estimation approaches tacitly assume that these forms are known or can be assumed with some validity. However, this assumption is not always true. The recently proposed method of Dynamic Flux Estimation (DFE) addresses this problem in a genuinely novel fashion for metabolic pathway systems. Specifically, DFE allows the characterization of fluxes within such systems through an analysis of metabolic time series data. Its main drawback is the fact that DFE can only directly be applied if the pathway system contains as many metabolites as unknown fluxes. This situation is unfortunately rare. To overcome this roadblock, earlier work in this field had proposed strategies for augmenting the set of unknown fluxes with independent kinetic information, which however is not always available. Employing Moore-Penrose pseudo-inverse methods of linear algebra, the present article discusses an approach for characterizing fluxes from metabolic time series data that is applicable even if the pathway system is underdetermined and contains more fluxes than metabolites. Intriguingly, this approach is independent of a specific modeling framework and unaffected by noise in the experimental time series data. The results reveal whether any fluxes may be characterized and, if so, which subset is characterizable. They also help with the identification of fluxes that, if they could be determined independently, would allow the application of DFE. PMID:23391489
NASA Astrophysics Data System (ADS)
Jeuken, Ad; Mendoza, Guillermo; Matthews, John; Ray, Patrick; Haasnoot, Marjolijn; Gilroy, Kristin; Olsen, Rolf; Kucharski, John; Stakhiv, Gene; Cushing, Janet; Brown, Casey
2016-04-01
Engineers and water managers have always incorporated uncertainty in water resources operations, design and planning. In recent years, concern has been growing concern that many of the fundamental principles to address uncertainty in planning and design are insufficient for coping with unprecedented shifts in climate, especially given the long lifetimes of water investments - spanning decades, even centuries. Can we design and operate new flood risk management, energy, water supply and sanitation, and agricultural projects that are robust to shifts over 20, 50, or more years? Since about 2009, better approaches to planning and designing under climate uncertainty have been gaining ground worldwide. The main challenge is to operationalize these approaches and bring them from science to practice, embed them within the existing decision-making processes of particular institutions, and shift from highly specialized "boutique" applications to methods that result in consistent, replicable outcomes accessible to water managers worldwide. With CRIDA a serious step is taken to achieve these goals. CRIDA is built on two innovative but complementary approaches that have developed in isolation across the Atlantic over the past seven years: diagnosing and assessing risk (decision scaling), and developing sequential decision steps to compensate for uncertainty within regulatory / performance standards (adaptation pathways). First, the decision scaling or "bottom up" framework to climate change adaptation was first conceptualized during the US/Canada Great Lakes regulation study and has recently been placed in a decision-making context for water-related investments published by the World Bank Second, the adaptation pathways approach was developed in the Netherlands to cope with the level of climate uncertainty we now face. Adaptation pathways is a tool for maintaining options and flexibility while meeting operational goals by envisioning how sequences of decisions can be navigated over time. They are part of the Dutch adaptive planning approach Adaptive Delta Management, executed and develop by the Dutch Delta program. Both decision scaling and adaptation pathways have been piloted in studies worldwide. The objective of CRIDA is to mainstream effective climate adaptation for professional water managers. The CRIDA publication, due in april 2016, follows the generic water design planning design cycle. At each step, CRIDA describes stepwise guidance for incorporating climate robustness: problem definition, stress test, alternatives formulation and recommendation, evaluation and selection. In the presentation the origin, goal, steps and practical tools available at each step of CRIDA will be explained. In two other abstracts ("Climate Risk Informed Decision Analysis: A Hypothetical Application to the Waas Region" by Gilroy et al., "The Application of Climate Risk Informed Decision Analysis to the Ioland Water Treatment Plant in Lusaka, Zambia, by Kucharski et al.), the application of CRIDA to cases is explained
Genome-Wide Methylation Analyses in Glioblastoma Multiforme
Lai, Rose K.; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E.; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M.; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill
2014-01-01
Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal. PMID:24586730
Work and family transitions and the self-rated health of young women in South Africa.
Bennett, Rachel; Waterhouse, Philippa
2018-04-01
Understanding the transition to adulthood has important implications for supporting young adults and understanding the roots of diversity in wellbeing later in life. In South Africa, the end of Apartheid means today's youth are experiencing their transition to adulthood in a changed social and political context which offers opportunities compared to the past but also threats. This paper presents the first national level analysis of the patterning of key transitions (completion of education, entry into the labour force, motherhood and marriage or cohabitation), and the association between the different pathways and health amongst young women. With the use of longitudinal data from the South African National Income Dynamics Study (2008-2015), this paper employs sequence analysis to identify common pathways to adulthood amongst women aged 15-17 years at baseline (n = 429) and logistic regression modelling to examine the association between these pathways and self-rated health. The sequence analysis identified five pathways: 1. 'Non-activity commonly followed by motherhood', 2. 'Pathway from school, motherhood then work', 3. 'Motherhood combined with schooling', 4. 'Motherhood after schooling', and 5. 'Schooling to non-activity'. After controlling for baseline socio-economic and demographic characteristics and health, the regression results show young women who followed pathways characterised by early motherhood and economic inactivity (1, 3 and 4) had poorer self-rated health compared to women whose pathways were characterised by combining motherhood and economic activity (2) and young women who were yet to become economically active or mothers (5). Therefore, policies should seek to prevent adolescent childbearing, support young mothers to continue their educational careers and enable mothers in work and seeking work to balance their work and care responsibilities. Further, the findings highlight the value of taking a holistic approach to health and provide further evidence for the need to consider work-family balance in the development agenda. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pathway enrichment based on text mining and its validation on carotenoid and vitamin A metabolism.
Waagmeester, Andra; Pezik, Piotr; Coort, Susan; Tourniaire, Franck; Evelo, Chris; Rebholz-Schuhmann, Dietrich
2009-10-01
Carotenoid metabolism is relevant to the prevention of various diseases. Although the main actors in this metabolic pathway are known, our understanding of the pathway is still incomplete. The information on the carotenoids is scattered in the large and growing body of scientific literature. We designed a text-mining work flow to enrich existing pathways. It has been validated on the vitamin A pathway, which is a well-studied part of the carotenoid metabolism. In this study we used the vitamin A metabolism pathway as it has been described by an expert team on carotenoid metabolism from the European network of excellence in Nutrigenomics (NuGO). This work flow uses an initial set of publications cited in a review paper (1,191 publications), enlarges this corpus with Medline abstracts (13,579 documents), and then extracts the key terminology from all relevant publications. Domain experts validated the intermediate and final results of our text-mining work flow. With our approach we were able to enrich the pathway representing vitamin A metabolism. We found 37 new and relevant terms from a total of 89,086 terms, which have been qualified for inclusion in the analyzed pathway. These 37 terms have been assessed manually and as a result 13 new terms were then added as entities to the pathway. Another 14 entities belonged to other pathways, which could form the link of these pathways with the vitamin A pathway. The remaining 10 terms were classified as biomarkers or nutrients. Automatic literature analysis improves the enrichment of pathways with entities already described in the scientific literature.
A systems biology-led insight into the role of the proteome in neurodegenerative diseases.
Fasano, Mauro; Monti, Chiara; Alberio, Tiziana
2016-09-01
Multifactorial disorders are the result of nonlinear interactions of several factors; therefore, a reductionist approach does not appear to be appropriate. Proteomics is a global approach that can be efficiently used to investigate pathogenetic mechanisms of neurodegenerative diseases. Here, we report a general introduction about the systems biology approach and mechanistic insights recently obtained by over-representation analysis of proteomics data of cellular and animal models of Alzheimer's disease, Parkinson's disease and other neurodegenerative disorders, as well as of affected human tissues. Expert commentary: As an inductive method, proteomics is based on unbiased observations that further require validation of generated hypotheses. Pathway databases and over-representation analysis tools allow researchers to assign an expectation value to pathogenetic mechanisms linked to neurodegenerative diseases. The systems biology approach based on omics data may be the key to unravel the complex mechanisms underlying neurodegeneration.
Kasahara, Kota; Fukuda, Ikuo; Nakamura, Haruki
2014-01-01
The dynamic cross correlation (DCC) analysis is a popular method for analyzing the trajectories of molecular dynamics (MD) simulations. However, it is difficult to detect correlative motions that appear transiently in only a part of the trajectory, such as atomic contacts between the side-chains of amino acids, which may rapidly flip. In order to capture these multi-modal behaviors of atoms, which often play essential roles, particularly at the interfaces of macromolecules, we have developed the "multi-modal DCC (mDCC)" analysis. The mDCC is an extension of the DCC and it takes advantage of a Bayesian-based pattern recognition technique. We performed MD simulations for molecular systems modeled from the (Ets1)2-DNA complex and analyzed their results with the mDCC method. Ets1 is an essential transcription factor for a variety of physiological processes, such as immunity and cancer development. Although many structural and biochemical studies have so far been performed, its DNA binding properties are still not well characterized. In particular, it is not straightforward to understand the molecular mechanisms how the cooperative binding of two Ets1 molecules facilitates their recognition of Stromelysin-1 gene regulatory elements. A correlation network was constructed among the essential atomic contacts, and the two major pathways by which the two Ets1 molecules communicate were identified. One is a pathway via direct protein-protein interactions and the other is that via the bound DNA intervening two recognition helices. These two pathways intersected at the particular cytosine bases (C110/C11), interacting with the H1, H2, and H3 helices. Furthermore, the mDCC analysis showed that both pathways included the transient interactions at their intermolecular interfaces of Tyr396-C11 and Ala327-Asn380 in multi-modal motions of the amino acid side chains and the nucleotide backbone. Thus, the current mDCC approach is a powerful tool to reveal these complicated behaviors and scrutinize intermolecular communications in a molecular system.
Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.
He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming
2018-02-28
Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.
Liu, Li; Dinu, Valentin
2018-01-01
Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway’s topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher’s exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov–Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes of HCC are HCC subtype-associated specifically. In conclusion, PoTRA is a new approach to explore and discover pathways involved in cancer. PoTRA can be used as a complement to other existing methods to broaden our understanding of the biological mechanisms behind cancer at the system-level. PMID:29666752
Jha, Prabhash Kumar; Vijay, Aatira; Sahu, Anita; Ashraf, Mohammad Zahid
2016-01-01
Thrombosis is a leading cause of morbidity and mortality in patients with myeloproliferative disorders (MPDs), particularly polycythemia vera (PV) and essential thrombocythemia (ET). Despite the attempts to establish a link between them, the shared biological mechanisms are yet to be characterized. An integrated gene expression meta-analysis of five independent publicly available microarray data of the three diseases was conducted to identify shared gene expression signatures and overlapping biological processes. Using INMEX bioinformatic tool, based on combined Effect Size (ES) approaches, we identified a total of 1,157 differentially expressed genes (DEGs) (697 overexpressed and 460 underexpressed genes) shared between the three diseases. EnrichR tool’s rich library was used for comprehensive functional enrichment and pathway analysis which revealed “mRNA Splicing” and “SUMO E3 ligases SUMOylate target proteins” among the most enriched terms. Network based meta-analysis identified MYC and FN1 to be the most highly ranked hub genes. Our results reveal that the alterations in biomarkers of the coagulation cascade like F2R, PROS1, SELPLG and ITGB2 were common between the three diseases. Interestingly, the study has generated a novel database of candidate genetic markers, pathways and transcription factors shared between thrombosis and MPDs, which might aid in the development of prognostic therapeutic biomarkers. PMID:27892526
Anderson, Gillian H; Jenkins, Paul J; McDonald, David A; Van Der Meer, Robert; Morton, Alec; Nugent, Margaret; Rymaszewski, Lech A
2017-09-07
Healthcare faces the continual challenge of improving outcome while aiming to reduce cost. The aim of this study was to determine the micro cost differences of the Glasgow non-operative trauma virtual pathway in comparison to a traditional pathway. Discrete event simulation was used to model and analyse cost and resource utilisation with an activity-based costing approach. Data for a full comparison before the process change was unavailable so we used a modelling approach, comparing a virtual fracture clinic (VFC) with a simulated traditional fracture clinic (TFC). The orthopaedic unit VFC pathway pioneered at Glasgow Royal Infirmary has attracted significant attention and interest and is the focus of this cost study. Our study focused exclusively on patients with non-operative trauma attending emergency department or the minor injuries unit and the subsequent step in the patient pathway. Retrospective studies of patient outcomes as a result of the protocol introductions for specific injuries are presented in association with activity costs from the models. Patients are satisfied with the new pathway, the information provided and the outcome of their injuries (Evidence Level IV). There was a 65% reduction in the number of first outpatient face-to-face (f2f) attendances in orthopaedics. In the VFC pathway, the resources required per day were significantly lower for all staff groups (p≤0.001). The overall cost per patient of the VFC pathway was £22.84 (95% CI 21.74 to 23.92) per patient compared with £36.81 (95% CI 35.65 to 37.97) for the TFC pathway. Our results give a clearer picture of the cost comparison of the virtual pathway over a wholly traditional f2f clinic system. The use of simulation-based stochastic costings in healthcare economic analysis has been limited to date, but this study provides evidence for adoption of this method as a basis for its application in other healthcare settings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Interpreter of maladies: redescription mining applied to biomedical data analysis.
Waltman, Peter; Pearlman, Alex; Mishra, Bud
2006-04-01
Comprehensive, systematic and integrated data-centric statistical approaches to disease modeling can provide powerful frameworks for understanding disease etiology. Here, one such computational framework based on redescription mining in both its incarnations, static and dynamic, is discussed. The static framework provides bioinformatic tools applicable to multifaceted datasets, containing genetic, transcriptomic, proteomic, and clinical data for diseased patients and normal subjects. The dynamic redescription framework provides systems biology tools to model complex sets of regulatory, metabolic and signaling pathways in the initiation and progression of a disease. As an example, the case of chronic fatigue syndrome (CFS) is considered, which has so far remained intractable and unpredictable in its etiology and nosology. The redescription mining approaches can be applied to the Centers for Disease Control and Prevention's Wichita (KS, USA) dataset, integrating transcriptomic, epidemiological and clinical data, and can also be used to study how pathways in the hypothalamic-pituitary-adrenal axis affect CFS patients.
Disentangling the multigenic and pleiotropic nature of molecular function
2015-01-01
Background Biological processes at the molecular level are usually represented by molecular interaction networks. Function is organised and modularity identified based on network topology, however, this approach often fails to account for the dynamic and multifunctional nature of molecular components. For example, a molecule engaging in spatially or temporally independent functions may be inappropriately clustered into a single functional module. To capture biologically meaningful sets of interacting molecules, we use experimentally defined pathways as spatial/temporal units of molecular activity. Results We defined functional profiles of Saccharomyces cerevisiae based on a minimal set of Gene Ontology terms sufficient to represent each pathway's genes. The Gene Ontology terms were used to annotate 271 pathways, accounting for pathway multi-functionality and gene pleiotropy. Pathways were then arranged into a network, linked by shared functionality. Of the genes in our data set, 44% appeared in multiple pathways performing a diverse set of functions. Linking pathways by overlapping functionality revealed a modular network with energy metabolism forming a sparse centre, surrounded by several denser clusters comprised of regulatory and metabolic pathways. Signalling pathways formed a relatively discrete cluster connected to the centre of the network. Genetic interactions were enriched within the clusters of pathways by a factor of 5.5, confirming the organisation of our pathway network is biologically significant. Conclusions Our representation of molecular function according to pathway relationships enables analysis of gene/protein activity in the context of specific functional roles, as an alternative to typical molecule-centric graph-based methods. The pathway network demonstrates the cooperation of multiple pathways to perform biological processes and organises pathways into functionally related clusters with interdependent outcomes. PMID:26678917
ERIC Educational Resources Information Center
Ormsmith, Michael Isaac
2014-01-01
This explanatory mixed-methods policy analysis describes how school counselors' thoughts and attitudes contribute to the implementation fidelity of the Academic and Career Plan (ACP) policy in a suburban Virginia school division. A quantitative survey investigated counselor thoughts about the policy, implementation behaviors, and counselor ideas…
ERIC Educational Resources Information Center
Miller, Peggy J.; Fung, Heidi; Lin, Shumin; Chen, Eva Chian-Hui; Boldt, Benjamin R.
2012-01-01
This monograph builds upon our cumulative efforts to investigate personal storytelling as a medium of socialization in two disparate cultural worlds. Drawing upon interdisciplinary fields of study that take a discourse-centered approach to socialization, we combined ethnography, longitudinal home observations, and microlevel analysis of everyday…
ERIC Educational Resources Information Center
Urias, Marissa Vasquez; Falcon, Vannessa; Harris, Frank, III; Wood, J. Luke
2016-01-01
With the use of a narrative approach to inquiry, this chapter seeks to reframe deficit-oriented research on men of color, which often focuses on patterns of failure and underachievement, by exploring the pathways of community college men of color who successfully transferred to 4-year institutions.
As part of a multi-endpoint systems approach to develop comprehensive methods for assessing endocrine stressors in vertebrates, differential protein profiling was used to investigate expression profiles in the brain of an amphibian model (Xenopus laevis) following in vivo exposur...
Application of the critical pathway and integrated case teaching method to nursing orientation.
Goodman, D
1997-01-01
Nursing staff development programs must be responsive to current changes in healthcare. New nursing staff must be prepared to manage continuous change and to function competently in clinical practice. The orientation pathway, based on a case management model, is used as a structure for the orientation phase of staff development. The integrated case is incorporated as a teaching strategy in orientation. The integrated case method is based on discussion and analysis of patient situations with emphasis on role modeling and integration of theory and skill. The orientation pathway and integrated case teaching method provide a useful framework for orientation of new staff. Educators, preceptors and orientees find the structure provided by the orientation pathway very useful. Orientation that is developed, implemented and evaluated based on a case management model with the use of an orientation pathway and incorporation of an integrated case teaching method provides a standardized structure for orientation of new staff. This approach is designed for the adult learner, promotes conceptual reasoning, and encourages the social and contextual basis for continued learning.
Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways.
Zhang, Aihua; Yan, Guangli; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun
2016-02-16
Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at 'Zusanli' acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation.
NASA Astrophysics Data System (ADS)
Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui
2017-07-01
Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.
Gene expression profiling in whole blood of patients with coronary artery disease
Taurino, Chiara; Miller, William H.; McBride, Martin W.; McClure, John D.; Khanin, Raya; Moreno, María U.; Dymott, Jane A.; Delles, Christian; Dominiczak, Anna F.
2010-01-01
Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2×10−16). In conclusion, using whole blood as a ‘surrogate tissue’ in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease. PMID:20528768
McGuire, Mary F; Sriram Iyengar, M; Mercer, David W
2012-04-01
Although trauma is the leading cause of death for those below 45years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. In the node/molecular analysis of the first 24h from trauma, PSA uncovered seven molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which three molecules had not been previously associated with any shock/trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships--activation, expression, inhibition, and transcription--and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on molecular interaction mechanisms may be most effective within a certain time period and for a specific functional relationship. Copyright © 2011 Elsevier Inc. All rights reserved.
McGuire, Mary F.; Iyengar, M. Sriram; Mercer, David W.
2012-01-01
Motivation Although trauma is the leading cause of death for those below 45 years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. Results In the node/molecular analysis of the first 24 hours from trauma, PSA uncovered 7 molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which 3 molecules had not been previously associated with any shock / trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships – activation, expression, inhibition, and transcription – and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on molecular interaction mechanisms may be most effective within a certain time period and for a specific functional relationship. PMID:22200681
MetaMapR: pathway independent metabolomic network analysis incorporating unknowns.
Grapov, Dmitry; Wanichthanarak, Kwanjeera; Fiehn, Oliver
2015-08-15
Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between >200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. ofiehn@ucdavis.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalra, Rajkumar S., E-mail: renu-wadhwa@aist.go.jp; Wadhwa, Renu, E-mail: renu-wadhwa@aist.go.jp
2015-02-27
Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylationmore » target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing and transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein.« less
Dhanasekaran, A Ranjitha; Pearson, Jon L; Ganesan, Balasubramanian; Weimer, Bart C
2015-02-25
Mass spectrometric analysis of microbial metabolism provides a long list of possible compounds. Restricting the identification of the possible compounds to those produced by the specific organism would benefit the identification process. Currently, identification of mass spectrometry (MS) data is commonly done using empirically derived compound databases. Unfortunately, most databases contain relatively few compounds, leaving long lists of unidentified molecules. Incorporating genome-encoded metabolism enables MS output identification that may not be included in databases. Using an organism's genome as a database restricts metabolite identification to only those compounds that the organism can produce. To address the challenge of metabolomic analysis from MS data, a web-based application to directly search genome-constructed metabolic databases was developed. The user query returns a genome-restricted list of possible compound identifications along with the putative metabolic pathways based on the name, formula, SMILES structure, and the compound mass as defined by the user. Multiple queries can be done simultaneously by submitting a text file created by the user or obtained from the MS analysis software. The user can also provide parameters specific to the experiment's MS analysis conditions, such as mass deviation, adducts, and detection mode during the query so as to provide additional levels of evidence to produce the tentative identification. The query results are provided as an HTML page and downloadable text file of possible compounds that are restricted to a specific genome. Hyperlinks provided in the HTML file connect the user to the curated metabolic databases housed in ProCyc, a Pathway Tools platform, as well as the KEGG Pathway database for visualization and metabolic pathway analysis. Metabolome Searcher, a web-based tool, facilitates putative compound identification of MS output based on genome-restricted metabolic capability. This enables researchers to rapidly extend the possible identifications of large data sets for metabolites that are not in compound databases. Putative compound names with their associated metabolic pathways from metabolomics data sets are returned to the user for additional biological interpretation and visualization. This novel approach enables compound identification by restricting the possible masses to those encoded in the genome.
NASA Astrophysics Data System (ADS)
Tran, Diem-Trang T.; Le, Ly T.; Truong, Thanh N.
2013-08-01
Drug binding and unbinding are transient processes which are hardly observed by experiment and difficult to analyze by computational techniques. In this paper, we employed a cost-effective method called "pathway docking" in which molecular docking was used to screen ligand-receptor binding free energy surface to reveal possible paths of ligand approaching protein binding pocket. A case study was applied on oseltamivir, the key drug against influenza a virus. The equilibrium pathways identified by this method are found to be similar to those identified in prior studies using highly expensive computational approaches.
Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N
2015-10-20
Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. To our knowledge, this is the first study to perform an integrated genomics and transcriptomics (eQTL) study using, and modeling, genomic and subcutaneous adipose tissue RNA sequencing data on obesity in a porcine model. We detected several pathways and potential causal genes for obesity. Further validation and investigation may reveal their exact function and association with obesity.
Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock
Braga, D; Barcella, M; D’Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, MH; DeLano, FA; Baselli, G; Schmid-Schönbein, GW; Kistler, EB; Aletti, F
2017-01-01
Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger’s shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients. PMID:28661205
LENS: web-based lens for enrichment and network studies of human proteins
2015-01-01
Background Network analysis is a common approach for the study of genetic view of diseases and biological pathways. Typically, when a set of genes are identified to be of interest in relation to a disease, say through a genome wide association study (GWAS) or a different gene expression study, these genes are typically analyzed in the context of their protein-protein interaction (PPI) networks. Further analysis is carried out to compute the enrichment of known pathways and disease-associations in the network. Having tools for such analysis at the fingertips of biologists without the requirement for computer programming or curation of data would accelerate the characterization of genes of interest. Currently available tools do not integrate network and enrichment analysis and their visualizations, and most of them present results in formats not most conducive to human cognition. Results We developed the tool Lens for Enrichment and Network Studies of human proteins (LENS) that performs network and pathway and diseases enrichment analyses on genes of interest to users. The tool creates a visualization of the network, provides easy to read statistics on network connectivity, and displays Venn diagrams with statistical significance values of the network's association with drugs, diseases, pathways, and GWASs. We used the tool to analyze gene sets related to craniofacial development, autism, and schizophrenia. Conclusion LENS is a web-based tool that does not require and download or plugins to use. The tool is free and does not require login for use, and is available at http://severus.dbmi.pitt.edu/LENS. PMID:26680011
3D Simulation of External Flooding Events for the RISMC Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, Steven; Mandelli, Diego; Sampath, Ramprasad
2015-09-01
Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to themore » design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.« less
Bhattacharjee, Biplab; Simon, Rose Mary; Gangadharaiah, Chaithra; Karunakar, Prashantha
2013-06-28
Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. The availability of ligand libraries has facilitated the search for novel drug targets using chemogenomics approaches, compared with the traditional method of drug discovery, which is time consuming and yields few leads with little intracellular information for guiding target selection. Recent subtractive genomics studies have revealed the putative drug targets in peptidoglycan biosynthesis pathways in Leptospira interrogans. Aligand library for the murD ligase enzyme in the peptidoglycan pathway has also been identified. Our approach in this research involves screening of the pre-existing ligand library of murD with related protein family members in the putative drug target assembly in the peptidoglycan biosynthesis pathway. A chemogenomics approach has been implemented here, which involves screening of known ligands of a protein family having analogous domain architecture for identification of leads for existing druggable protein family members. By means of this approach, one murC and one murF inhibitor were identified, providing a platform for developing an antileptospirosis drug targeting the peptidoglycan biosynthesis pathway. Given that the peptidoglycan biosynthesis pathway is exclusive to bacteria, the in silico identified mur ligase inhibitors are expected to be broad-spectrum Gram-negative inhibitors if synthesized and tested in in vitro and in vivo assays.
Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.
2013-01-01
Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166
Wink, Steven; Hiemstra, Steven W; Huppelschoten, Suzanne; Klip, Janna E; van de Water, Bob
2018-05-01
Drug-induced liver injury remains a concern during drug treatment and development. There is an urgent need for improved mechanistic understanding and prediction of DILI liabilities using in vitro approaches. We have established and characterized a panel of liver cell models containing mechanism-based fluorescent protein toxicity pathway reporters to quantitatively assess the dynamics of cellular stress response pathway activation at the single cell level using automated live cell imaging. We have systematically evaluated the application of four key adaptive stress pathway reporters for the prediction of DILI liability: SRXN1-GFP (oxidative stress), CHOP-GFP (ER stress/UPR response), p21 (p53-mediated DNA damage-related response) and ICAM1 (NF-κB-mediated inflammatory signaling). 118 FDA-labeled drugs in five human exposure relevant concentrations were evaluated for reporter activation using live cell confocal imaging. Quantitative data analysis revealed activation of single or multiple reporters by most drugs in a concentration and time dependent manner. Hierarchical clustering of time course dynamics and refined single cell analysis allowed the allusion of key events in DILI liability. Concentration response modeling was performed to calculate benchmark concentrations (BMCs). Extracted temporal dynamic parameters and BMCs were used to assess the predictive power of sub-lethal adaptive stress pathway activation. Although cellular adaptive responses were activated by non-DILI and severe-DILI compounds alike, dynamic behavior and lower BMCs of pathway activation were sufficiently distinct between these compound classes. The high-level detailed temporal- and concentration-dependent evaluation of the dynamics of adaptive stress pathway activation adds to the overall understanding and prediction of drug-induced liver liabilities.
Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A
2014-01-01
Gene set enrichment analysis (GSEA) is an important approach to the analysis of coordinate expression changes at a pathway level. Although many statistical and computational methods have been proposed for GSEA, the issue of a concordant integrative GSEA of multiple expression data sets has not been well addressed. Among different related data sets collected for the same or similar study purposes, it is important to identify pathways or gene sets with concordant enrichment. We categorize the underlying true states of differential expression into three representative categories: no change, positive change and negative change. Due to data noise, what we observe from experiments may not indicate the underlying truth. Although these categories are not observed in practice, they can be considered in a mixture model framework. Then, we define the mathematical concept of concordant gene set enrichment and calculate its related probability based on a three-component multivariate normal mixture model. The related false discovery rate can be calculated and used to rank different gene sets. We used three published lung cancer microarray gene expression data sets to illustrate our proposed method. One analysis based on the first two data sets was conducted to compare our result with a previous published result based on a GSEA conducted separately for each individual data set. This comparison illustrates the advantage of our proposed concordant integrative gene set enrichment analysis. Then, with a relatively new and larger pathway collection, we used our method to conduct an integrative analysis of the first two data sets and also all three data sets. Both results showed that many gene sets could be identified with low false discovery rates. A consistency between both results was also observed. A further exploration based on the KEGG cancer pathway collection showed that a majority of these pathways could be identified by our proposed method. This study illustrates that we can improve detection power and discovery consistency through a concordant integrative analysis of multiple large-scale two-sample gene expression data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegallapati, Ambica K.; Frank, Edward D.
In one approach to algal biofuel production, lipids are extracted and converted to renewable diesel and non-lipid remnants are converted to biogas, which is used for renewable heat and power to support the process. Since biofuel economics benefit from increased fuel yield, the National Renewable Energy Laboratory analyzed an alternative pathway that extracts lipids and also makes ethanol from carbohydrates in the biomass. In this paper, we examine the environmental sustainability of this "fractionation pathway" through life-cycle analysis (LCA) of greenhouse gas emissions and energy use. When the feedstock productivity was 30 (18) g/m(2)/d, this pathway emitted 31 (36) gCO(2)e/MJmore » of total fuel, which is less than the emissions associated with conventional low sulfur petroleum diesel (96 gCO(2)e/MJ). The fractionation pathway performed well in this model despite the diversion of carbon to the ethanol fuel.« less
Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow
Brunk, Elizabeth; George, Kevin W.; Alonso-Gutierrez, Jorge; ...
2016-05-19
Understanding the complex interactions that occur between heterologous and native biochemical pathways represents a major challenge in metabolic engineering and synthetic biology. We present a workflow that integrates metabolomics, proteomics, and genome-scale models of Escherichia coli metabolism to study the effects of introducing a heterologous pathway into a microbial host. This workflow incorporates complementary approaches from computational systems biology, metabolic engineering, and synthetic biology; provides molecular insight into how the host organism microenvironment changes due to pathway engineering; and demonstrates how biological mechanisms underlying strain variation can be exploited as an engineering strategy to increase product yield. As a proofmore » of concept, we present the analysis of eight engineered strains producing three biofuels: isopentenol, limonene, and bisabolene. Application of this workflow identified the roles of candidate genes, pathways, and biochemical reactions in observed experimental phenomena and facilitated the construction of a mutant strain with improved productivity. The contributed workflow is available as an open-source tool in the form of iPython notebooks.« less
Bralten, Linda B. C.; French, Pim J.
2011-01-01
Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes. PMID:24212656
Functional Interaction Network Construction and Analysis for Disease Discovery.
Wu, Guanming; Haw, Robin
2017-01-01
Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1)more » mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M.
2011-01-01
We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, Transition Path Theory (TPT) for constructing folding pathways and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270K and 566K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the Weighted-Histogram-Analysis Method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (Pfold) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding “tubes”, a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways. PMID:21254767
Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M
2011-02-17
We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, transition path theory (TPT) for constructing folding pathways, and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270 and 566 K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the weighted-histogram-analysis method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (P(fold)) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding "tubes", a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network, and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways.
Chiasserini, Davide; Davidescu, Magdalena; Orvietani, Pier Luigi; Susta, Federica; Macchioni, Lara; Petricciuolo, Maya; Castigli, Emilia; Roberti, Rita; Binaglia, Luciano; Corazzi, Lanfranco
2017-01-30
Glioblastoma (GBM) is the most common and aggressive brain tumour of adults. The metabolic phenotype of GBM cells is highly dependent on glycolysis; therefore, therapeutic strategies aimed at interfering with glycolytic pathways are under consideration. 3-Bromopyruvate (3BP) is a potent antiglycolytic agent, with a variety of targets and possible effects on global cell metabolism. Here we analyzed the changes in protein expression on a GBM cell line (GL15 cells) caused by 3BP treatment using a global proteomic approach. Validation of differential protein expression was performed with immunoblotting and enzyme activity assays in GL15 and U251 cell lines. The results show that treatment of GL15 cells with 3BP leads to extensive changes in the expression of glycolytic enzymes and stress related proteins. Importantly, other metabolisms were also affected, including pentose phosphate pathway, aminoacid synthesis, and glucose derivatives production. 3BP elicited the activation of stress response proteins, as shown by the phosphorylation of HSPB1 at serine 82, caused by the concomitant activation of the p38 pathway. Our results show that inhibition of glycolysis in GL15 cells by 3BP influences different but interconnected pathways. Proteome analysis may help in the molecular characterization of the glioblastoma response induced by pharmacological treatment with antiglycolytic agents. Alteration of the glycolytic pathway characterizes glioblastoma (GBM), one of the most common brain tumours. Metabolic reprogramming with agents able to inhibit carbohydrate metabolism might be a viable strategy to complement the treatment of these tumours. The antiglycolytic agent 3-bromopyruvate (3BP) is able to strongly inhibit glycolysis but it may affect also other cellular pathways and its precise cellular targets are currently unknown. To understand the protein expression changes induced by 3BP, we performed a global proteomic analysis of a GBM cell line (GL15) treated with 3BP. We found that 3BP affected not only the glycolytic pathway, but also pathways sharing metabolic intermediates with glycolysis, such as the pentose phosphate pathway and aminoacid metabolism. Furthermore, changes in the expression of proteins linked to resistance to cell death and stress response were found. Our work is the first analysis on a global scale of the proteome changes induced by 3BP in a GBM model and may contribute to clarifying the anticancer potential of this drug. Copyright © 2016 Elsevier B.V. All rights reserved.
Modulation of intestinal sulfur assimilation metabolism regulates iron homeostasis
Hudson, Benjamin H.; Hale, Andrew T.; Irving, Ryan P.; Li, Shenglan; York, John D.
2018-01-01
Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis. PMID:29507250
Gene-Based Mapping and Pathway Analysis of Metabolic Traits in Dairy Cows
Ha, Ngoc-Thuy; Gross, Josef Johann; van Dorland, Annette; Tetens, Jens; Thaller, Georg; Schlather, Martin; Bruckmaier, Rupert; Simianer, Henner
2015-01-01
The metabolic adaptation of dairy cows during the transition period has been studied intensively in the last decades. However, until now, only few studies have paid attention to the genetic aspects of this process. Here, we present the results of a gene-based mapping and pathway analysis with the measurements of three key metabolites, (1) non-esterified fatty acids (NEFA), (2) beta-hydroxybutyrate (BHBA) and (3) glucose, characterizing the metabolic adaptability of dairy cows before and after calving. In contrast to the conventional single-marker approach, we identify 99 significant and biologically sensible genes associated with at least one of the considered phenotypes and thus giving evidence for a genetic basis of the metabolic adaptability. Moreover, our results strongly suggest three pathways involved in the metabolism of steroids and lipids are potential candidates for the adaptive regulation of dairy cows in their early lactation. From our perspective, a closer investigation of our findings will lead to a step forward in understanding the variability in the metabolic adaptability of dairy cows in their early lactation. PMID:25789767
NASA Astrophysics Data System (ADS)
Feng, Ruopei; Chemla, Yann; Gruebele, Martin
Larval zebrafish is a popular organism in the search for the correlation between locomotion behavior and neural pathways because of their highly stereotyped and temporally episodic swimming motion. This correlation is usually investigated using electrophysiological recordings of neural activities in partially immobilized fish. Seeking for a way to study animal behavior without constraints or intruding electrodes, which can in turn modify their behavior, our lab has introduced a parameter-free approach which allows automated classification of the locomotion behaviors of freely swimming fish. We looked into several types of swimming bouts including free swimming and two modes of escape responses and established a new classification of these behaviors. Combined with a neurokinematic model, our analysis showed the capability to probe intrinsic properties of the underlying neural pathways of freely swimming larval zebrafish by inspecting swimming movies only.
Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens.
Doublet, Vincent; Poeschl, Yvonne; Gogol-Döring, Andreas; Alaux, Cédric; Annoscia, Desiderato; Aurori, Christian; Barribeau, Seth M; Bedoya-Reina, Oscar C; Brown, Mark J F; Bull, James C; Flenniken, Michelle L; Galbraith, David A; Genersch, Elke; Gisder, Sebastian; Grosse, Ivo; Holt, Holly L; Hultmark, Dan; Lattorff, H Michael G; Le Conte, Yves; Manfredini, Fabio; McMahon, Dino P; Moritz, Robin F A; Nazzi, Francesco; Niño, Elina L; Nowick, Katja; van Rij, Ronald P; Paxton, Robert J; Grozinger, Christina M
2017-03-02
Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
... which mode- of-action and toxicity pathways approaches may contribute to interpretation of cumulative... NAAQS Review Process. One of the sessions focused on using mode-of-action and toxicity pathways... possible ways by which mode-of-action and toxicity pathways approaches may contribute to interpretation of...
Wei, Shizhang; Niu, Ming; Wang, Jian; Wang, Jiabo; Su, Haibin; Luo, Shengqiang; Zhang, Xiaomei; Guo, Yanlei; Liu, Liping; Liu, Fengqun; Zhao, Qingguo; Chen, Hongge; Xiao, Xiaohe; Zhao, Pan; Zhao, Yanling
2016-01-01
Ethnopharmacological relevance San-Cao Granule (SCG) has been used in patients with liver fibrosis for many years and has shown good effect. However, its mechanism of therapeutic action is not clear because of its complex chemical system. The purpose of our study is to establish a comprehensive and systemic method that can predict the mechanism of action of SCG in antihepatic fibrosis. Materials and methods In this study, a “compound–target–disease” network was constructed by combining the SCG-specific and liver fibrosis–specific target proteins with protein–protein interactions, and network pharmacology was used to screen out the underlying targets and mechanisms of SCG for treatment of liver fibrosis. Then, some key molecules of the enriched pathway were chosen to verify the effects of SCG on liver fibrosis induced by thioacetamide (TAA). Results This systematic approach had successfully revealed that 16 targets related to 11 SCG compounds were closely associated with liver fibrosis therapy. The pathway-enrichment analysis of them showed that the TGF-β1/Smad signaling pathway is relatively important. Animal experiments also proved that SCG could significantly ameliorate liver fibrosis by inhibiting the TGF-β1/Smad pathway. Conclusion SCG could alleviate liver fibrosis through the molecular mechanisms predicted by network pharmacology. Furthermore, network pharmacology could provide deep insight into the pharmacological mechanisms of Chinese herbal formulas. PMID:26929602
Wei, Shizhang; Niu, Ming; Wang, Jian; Wang, Jiabo; Su, Haibin; Luo, Shengqiang; Zhang, Xiaomei; Guo, Yanlei; Liu, Liping; Liu, Fengqun; Zhao, Qingguo; Chen, Hongge; Xiao, Xiaohe; Zhao, Pan; Zhao, Yanling
2016-01-01
San-Cao Granule (SCG) has been used in patients with liver fibrosis for many years and has shown good effect. However, its mechanism of therapeutic action is not clear because of its complex chemical system. The purpose of our study is to establish a comprehensive and systemic method that can predict the mechanism of action of SCG in antihepatic fibrosis. In this study, a "compound-target-disease" network was constructed by combining the SCG-specific and liver fibrosis-specific target proteins with protein-protein interactions, and network pharmacology was used to screen out the underlying targets and mechanisms of SCG for treatment of liver fibrosis. Then, some key molecules of the enriched pathway were chosen to verify the effects of SCG on liver fibrosis induced by thioacetamide (TAA). This systematic approach had successfully revealed that 16 targets related to 11 SCG compounds were closely associated with liver fibrosis therapy. The pathway-enrichment analysis of them showed that the TGF-β1/Smad signaling pathway is relatively important. Animal experiments also proved that SCG could significantly ameliorate liver fibrosis by inhibiting the TGF-β1/Smad pathway. SCG could alleviate liver fibrosis through the molecular mechanisms predicted by network pharmacology. Furthermore, network pharmacology could provide deep insight into the pharmacological mechanisms of Chinese herbal formulas.
NASA Astrophysics Data System (ADS)
Jin, Biao; Rolle, Massimo
2016-04-01
Organic compounds are produced in vast quantities for industrial and agricultural use, as well as for human and animal healthcare [1]. These chemicals and their metabolites are frequently detected at trace levels in fresh water environments where they undergo degradation via different reaction pathways. Compound specific stable isotope analysis (CSIA) is a valuable tool to identify such degradation pathways in different environmental systems. Recent advances in analytical techniques have promoted the fast development and implementation of multi-element CSIA. However, quantitative frameworks to evaluate multi-element stable isotope data and incorporating mechanistic information on the degradation processes [2,3] are still lacking. In this study we propose a mechanism-based modeling approach to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. We validate the proposed approach with the concentration and multi-element isotope data of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model precisely captures the dual element isotope trends characteristic of different reaction pathways and their range of variation consistent with observed multi-element (C, N) bulk isotope fractionation. The proposed approach can also be used as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. [1] Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., Wehrli, B., 2010. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. doi:10.1146/annurev-environ-100809-125342. [2] Jin, B., Haderlein, S.B., Rolle, M., 2013. Integrated carbon and chlorine isotope modeling: Applications to chlorinated aliphatic hydrocarbons dechlorination. Environ. Sci. Technol. 47, 1443-1451. doi:10.1021/es304053h. [3] Jin, B., Rolle, M., 2014. Mechanistic approach to multi-element isotope modeling of organic contaminant degradation. Chemosphere 95, 131-139. doi:10.1016/j.chemosphere.2013.08.050.
Grace, Peter M; Hurley, Daniel; Barratt, Daniel T; Tsykin, Anna; Watkins, Linda R; Rolan, Paul E; Hutchinson, Mark R
2012-09-01
A quantitative, peripherally accessible biomarker for neuropathic pain has great potential to improve clinical outcomes. Based on the premise that peripheral and central immunity contribute to neuropathic pain mechanisms, we hypothesized that biomarkers could be identified from the whole blood of adult male rats, by integrating graded chronic constriction injury (CCI), ipsilateral lumbar dorsal quadrant (iLDQ) and whole blood transcriptomes, and pathway analysis with pain behavior. Correlational bioinformatics identified a range of putative biomarker genes for allodynia intensity, many encoding for proteins with a recognized role in immune/nociceptive mechanisms. A selection of these genes was validated in a separate replication study. Pathway analysis of the iLDQ transcriptome identified Fcγ and Fcε signaling pathways, among others. This study is the first to employ the whole blood transcriptome to identify pain biomarker panels. The novel correlational bioinformatics, developed here, selected such putative biomarkers based on a correlation with pain behavior and formation of signaling pathways with iLDQ genes. Future studies may demonstrate the predictive ability of these biomarker genes across other models and additional variables. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
Hwang, Hwan-Su; Lee, Hyoshin; Choi, Yong Eui
2015-03-14
Eleutherococcus senticosus, Siberian ginseng, is a highly valued woody medicinal plant belonging to the family Araliaceae. E. senticosus produces a rich variety of saponins such as oleanane-type, noroleanane-type, 29-hydroxyoleanan-type, and lupane-type saponins. Genomic or transcriptomic approaches have not been used to investigate the saponin biosynthetic pathway in this plant. In this study, de novo sequencing was performed to select candidate genes involved in the saponin biosynthetic pathway. A half-plate 454 pyrosequencing run produced 627,923 high-quality reads with an average sequence length of 422 bases. De novo assembly generated 72,811 unique sequences, including 15,217 contigs and 57,594 singletons. Approximately 48,300 (66.3%) unique sequences were annotated using BLAST similarity searches. All of the mevalonate pathway genes for saponin biosynthesis starting from acetyl-CoA were isolated. Moreover, 206 reads of cytochrome P450 (CYP) and 145 reads of uridine diphosphate glycosyltransferase (UGT) sequences were isolated. Based on methyl jasmonate (MeJA) treatment and real-time PCR (qPCR) analysis, 3 CYPs and 3 UGTs were finally selected as candidate genes involved in the saponin biosynthetic pathway. The identified sequences associated with saponin biosynthesis will facilitate the study of the functional genomics of saponin biosynthesis and genetic engineering of E. senticosus.
Construction and analysis of circular RNA molecular regulatory networks in liver cancer.
Ren, Shuangchun; Xin, Zhuoyuan; Xu, Yinyan; Xu, Jianting; Wang, Guoqing
2017-01-01
Liver cancer is the sixth most prevalent cancer, and the third most frequent cause of cancer-related deaths. Circular RNAs (circRNAs), a kind of special endogenous ncRNAs, have been coming back to the forefront of cancer genomics research. In this study, we used a systems biology approach to construct and analyze the circRNA molecular regulatory networks in the context of liver cancer. We detected a total of 127 differentially expressed circRNAs and 3,235 differentially expressed mRNAs. We selected the top-5 upregulated circRNAs to construct a circRNA-miRNA-mRNA network. We enriched the pathways and gene ontology items and determined their participation in cancer-related pathways such as p53 signaling pathway and pathways involved in angiogenesis and cell cycle. Quantitative real-time PCR was performed to verify the top-five circRNAs. ROC analysis showed circZFR, circFUT8, circIPO11 could significantly distinguish the cancer samples, with an AUC of 0.7069, 0.7575, and 0.7103, respectively. Our results suggest the circRNA-miRNA-mRNA network may help us further understand the molecular mechanisms of tumor progression in liver cancer, and reveal novel biomarkers and therapeutic targets.
NASA Astrophysics Data System (ADS)
Marchamalo, Miguel; Hooke, Janet; Gonzalez-Rodrigo, Beatriz; Sandercock, Peter
2017-04-01
Soil erosion and land degradation are severe problems in headwaters of ephemeral streams in semiarid Mediterranean regions, particularly in marginal upland areas over erodible parent material. Field-based information is required about the main pathways of sediment movement, the identification of sources and sinks and the influence of relevant factors. The EU-funded project RECONDES approached this reality by monitoring connectivity pathways of water and sediment movement in the landscape with the aim of identifying hotspots that could then be strategically targeted to reduce soil erosion and off-site effects. A protocol including field work and GIS analysis was developed and applied to a set of microcatchments in Carcavo Basin (Spain). The philosophy of the protocol was based on the repeated mapping after rainfall events so that frequency of activity of pathways could be evaluated. Connectivity was evaluated for each site and event using specific metrics: maximum mapped connectivity (corresponding to the largest recorded event), density of connected pathway links (m/ha) and frequency of activity (times active/total). Repeated connectivity mapping allowed identifying hotspots of erosion. The effect of structural and functional factors on connectivity was investigated. Field data is also valuable for validating future connectivity models in semiarid landscapes under highly variable and unpredictable conditions.
Rupakula, Aamani; Kruse, Thomas; Boeren, Sjef; Holliger, Christof; Smidt, Hauke; Maillard, Julien
2013-01-01
Dehalobacter restrictus strain PER-K23 is an obligate organohalide respiring bacterium, which displays extremely narrow metabolic capabilities. It grows only via coupling energy conservation to anaerobic respiration of tetra- and trichloroethene with hydrogen as sole electron donor. Dehalobacter restrictus represents the paradigmatic member of the genus Dehalobacter, which in recent years has turned out to be a major player in the bioremediation of an increasing number of organohalides, both in situ and in laboratory studies. The recent elucidation of the D. restrictus genome revealed a rather elaborate genome with predicted pathways that were not suspected from its restricted metabolism, such as a complete corrinoid biosynthetic pathway, the Wood–Ljungdahl (WL) pathway for CO2 fixation, abundant transcriptional regulators and several types of hydrogenases. However, one important feature of the genome is the presence of 25 reductive dehalogenase genes, from which so far only one, pceA, has been characterized on genetic and biochemical levels. This study describes a multi-level functional genomics approach on D. restrictus across three different growth phases. A global proteomic analysis allowed consideration of general metabolic pathways relevant to organohalide respiration, whereas the dedicated genomic and transcriptomic analysis focused on the diversity, composition and expression of genes associated with reductive dehalogenases. PMID:23479754
Yu, Yao; Tu, Kang; Zheng, Siyuan; Li, Yun; Ding, Guohui; Ping, Jie; Hao, Pei; Li, Yixue
2009-08-25
In the post-genomic era, the development of high-throughput gene expression detection technology provides huge amounts of experimental data, which challenges the traditional pipelines for data processing and analyzing in scientific researches. In our work, we integrated gene expression information from Gene Expression Omnibus (GEO), biomedical ontology from Medical Subject Headings (MeSH) and signaling pathway knowledge from sigPathway entries to develop a context mining tool for gene expression analysis - GEOGLE. GEOGLE offers a rapid and convenient way for searching relevant experimental datasets, pathways and biological terms according to multiple types of queries: including biomedical vocabularies, GDS IDs, gene IDs, pathway names and signature list. Moreover, GEOGLE summarizes the signature genes from a subset of GDSes and estimates the correlation between gene expression and the phenotypic distinction with an integrated p value. This approach performing global searching of expression data may expand the traditional way of collecting heterogeneous gene expression experiment data. GEOGLE is a novel tool that provides researchers a quantitative way to understand the correlation between gene expression and phenotypic distinction through meta-analysis of gene expression datasets from different experiments, as well as the biological meaning behind. The web site and user guide of GEOGLE are available at: http://omics.biosino.org:14000/kweb/workflow.jsp?id=00020.
Gruel, Jérémy; LeBorgne, Michel; LeMeur, Nolwenn; Théret, Nathalie
2011-09-12
Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods. Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values. Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks.
2011-01-01
Background Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods. Results Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values. Conclusions Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks. PMID:21910886
Krüger, Dennis M; Ahmed, Aqeel; Gohlke, Holger
2012-07-01
The NMSim web server implements a three-step approach for multiscale modeling of protein conformational changes. First, the protein structure is coarse-grained using the FIRST software. Second, a rigid cluster normal-mode analysis provides low-frequency normal modes. Third, these modes are used to extend the recently introduced idea of constrained geometric simulations by biasing backbone motions of the protein, whereas side chain motions are biased toward favorable rotamer states (NMSim). The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. On a data set of proteins with experimentally observed conformational changes, the NMSim approach has been shown to be a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or more sophisticated sampling techniques. The web server output is a trajectory of generated conformations, Jmol representations of the coarse-graining and a subset of the trajectory and data plots of structural analyses. The NMSim webserver, accessible at http://www.nmsim.de, is free and open to all users with no login requirement.
Roca, Josep; Vargas, Claudia; Cano, Isaac; Selivanov, Vitaly; Barreiro, Esther; Maier, Dieter; Falciani, Francesco; Wagner, Peter; Cascante, Marta; Garcia-Aymerich, Judith; Kalko, Susana; De Mas, Igor; Tegnér, Jesper; Escarrabill, Joan; Agustí, Alvar; Gomez-Cabrero, David
2014-11-28
Heterogeneity in clinical manifestations and disease progression in Chronic Obstructive Pulmonary Disease (COPD) lead to consequences for patient health risk assessment, stratification and management. Implicit with the classical "spill over" hypothesis is that COPD heterogeneity is driven by the pulmonary events of the disease. Alternatively, we hypothesized that COPD heterogeneities result from the interplay of mechanisms governing three conceptually different phenomena: 1) pulmonary disease, 2) systemic effects of COPD and 3) co-morbidity clustering, each of them with their own dynamics. To explore the potential of a systems analysis of COPD heterogeneity focused on skeletal muscle dysfunction and on co-morbidity clustering aiming at generating predictive modeling with impact on patient management. To this end, strategies combining deterministic modeling and network medicine analyses of the Biobridge dataset were used to investigate the mechanisms of skeletal muscle dysfunction. An independent data driven analysis of co-morbidity clustering examining associated genes and pathways was performed using a large dataset (ICD9-CM data from Medicare, 13 million people). Finally, a targeted network analysis using the outcomes of the two approaches (skeletal muscle dysfunction and co-morbidity clustering) explored shared pathways between these phenomena. (1) Evidence of abnormal regulation of skeletal muscle bioenergetics and skeletal muscle remodeling showing a significant association with nitroso-redox disequilibrium was observed in COPD; (2) COPD patients presented higher risk for co-morbidity clustering than non-COPD patients increasing with ageing; and, (3) the on-going targeted network analyses suggests shared pathways between skeletal muscle dysfunction and co-morbidity clustering. The results indicate the high potential of a systems approach to address COPD heterogeneity. Significant knowledge gaps were identified that are relevant to shape strategies aiming at fostering 4P Medicine for patients with COPD.
Altered protein networks and cellular pathways in severe west nile disease in mice.
Fraisier, Christophe; Camoin, Luc; Lim, Stephanie M; Lim, Stéphanie; Bakli, Mahfoud; Belghazi, Maya; Fourquet, Patrick; Granjeaud, Samuel; Osterhaus, Ab D M E; Koraka, Penelope; Martina, Byron; Almeras, Lionel
2013-01-01
The recent West Nile virus (WNV) outbreaks in developed countries, including Europe and the United States, have been associated with significantly higher neuropathology incidence and mortality rate than previously documented. The changing epidemiology, the constant risk of (re-)emergence of more virulent WNV strains, and the lack of effective human antiviral therapy or vaccines makes understanding the pathogenesis of severe disease a priority. Thus, to gain insight into the pathophysiological processes in severe WNV infection, a kinetic analysis of protein expression profiles in the brain of WNV-infected mice was conducted using samples prior to and after the onset of clinical symptoms. To this end, 2D-DIGE and gel-free iTRAQ labeling approaches were combined, followed by protein identification by mass spectrometry. Using these quantitative proteomic approaches, a set of 148 proteins with modified abundance was identified. The bioinformatics analysis (Ingenuity Pathway Analysis) of each protein dataset originating from the different time-point comparisons revealed that four major functions were altered during the course of WNV-infection in mouse brain tissue: i) modification of cytoskeleton maintenance associated with virus circulation; ii) deregulation of the protein ubiquitination pathway; iii) modulation of the inflammatory response; and iv) alteration of neurological development and neuronal cell death. The differential regulation of selected host protein candidates as being representative of these biological processes were validated by western blotting using an original fluorescence-based method. This study provides novel insights into the in vivo kinetic host reactions against WNV infection and the pathophysiologic processes involved, according to clinical symptoms. This work offers useful clues for anti-viral research and further evaluation of early biomarkers for the diagnosis and prevention of severe neurological disease caused by WNV.
2012-01-01
High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in order to elucidate molecular mechanisms of complex diseases like breast or prostate cancer. However, this is not only strongly dependent on the sample size and the correlation structure of a data set, but also on the statistical hypotheses tested. Many different approaches have been developed over the years to analyze gene expression data to (I) identify changes in single genes, (II) identify changes in gene sets or pathways, and (III) identify changes in the correlation structure in pathways. In this paper, we review statistical methods for all three types of approaches, including subtypes, in the context of cancer data and provide links to software implementations and tools and address also the general problem of multiple hypotheses testing. Further, we provide recommendations for the selection of such analysis methods. Reviewers This article was reviewed by Arcady Mushegian, Byung-Soo Kim and Joel Bader. PMID:23227854
Bioinformatics of cardiovascular miRNA biology.
Kunz, Meik; Xiao, Ke; Liang, Chunguang; Viereck, Janika; Pachel, Christina; Frantz, Stefan; Thum, Thomas; Dandekar, Thomas
2015-12-01
MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs and are highly conserved among species. Moreover, miRNAs regulate gene expression of a large number of genes associated with important biological functions and signaling pathways. Recently, several miRNAs have been found to be associated with cardiovascular diseases. Thus, investigating the complex regulatory effect of miRNAs may lead to a better understanding of their functional role in the heart. To achieve this, bioinformatics approaches have to be coupled with validation and screening experiments to understand the complex interactions of miRNAs with the genome. This will boost the subsequent development of diagnostic markers and our understanding of the physiological and therapeutic role of miRNAs in cardiac remodeling. In this review, we focus on and explain different bioinformatics strategies and algorithms for the identification and analysis of miRNAs and their regulatory elements to better understand cardiac miRNA biology. Starting with the biogenesis of miRNAs, we present approaches such as LocARNA and miRBase for combining sequence and structure analysis including phylogenetic comparisons as well as detailed analysis of RNA folding patterns, functional target prediction, signaling pathway as well as functional analysis. We also show how far bioinformatics helps to tackle the unprecedented level of complexity and systemic effects by miRNA, underlining the strong therapeutic potential of miRNA and miRNA target structures in cardiovascular disease. In addition, we discuss drawbacks and limitations of bioinformatics algorithms and the necessity of experimental approaches for miRNA target identification. This article is part of a Special Issue entitled 'Non-coding RNAs'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sinha, Indu; Karagoz, Kubra; Fogle, Rachel L; Hollenbeak, Christopher S; Zea, Arnold H; Arga, Kazim Y; Stanley, Anne E; Hawkes, Wayne C; Sinha, Raghu
2016-04-01
Low selenium levels have been linked to a higher incidence of cancer and other diseases, including Keshan, Chagas, and Kashin-Beck, and insulin resistance. Additionally, muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders, and endocrine function have been associated with mutations in genes encoding for selenoproteins. Selenium biology is complex, and a systems biology approach to study global metabolomics, genomics, and/or proteomics may provide important clues to examining selenium-responsive markers in circulation. In the current investigation, we applied a global proteomics approach on plasma samples collected from a previously conducted, double-blinded placebo controlled clinical study, where men were supplemented with selenized-yeast (Se-Yeast; 300 μg/day, 3.8 μmol/day) or placebo-yeast for 48 weeks. Proteomic analysis was performed by iTRAQ on 8 plasma samples from each arm at baseline and 48 weeks. A total of 161 plasma proteins were identified in both arms. Twenty-two proteins were significantly altered following Se-Yeast supplementation and thirteen proteins were significantly changed after placebo-yeast supplementation in healthy men. The differentially expressed proteins were involved in complement and coagulation pathways, immune functions, lipid metabolism, and insulin resistance. Reconstruction and analysis of protein-protein interaction network around selected proteins revealed several hub proteins. One of the interactions suggested by our analysis, PHLD-APOA4, which is involved in insulin resistance, was subsequently validated by Western blot analysis. Our systems approach illustrates a viable platform for investigating responsive proteomic profile in 'before and after' condition following Se-Yeast supplementation. The nature of proteins identified suggests that selenium may play an important role in complement and coagulation pathways, and insulin resistance.
Srivastava, Apurva; Mittal, Balraj; Prakash, Jai; Srivastava, Pranjal; Srivastava, Nimisha; Srivastava, Neena
2017-03-01
The aim of the study was to investigate the association of 55 SNPs in 28 genes with obesity risk in a North Indian population using a multianalytical approach. Overall, 480 subjects from the North Indian population were studied using strict inclusion/exclusion criteria. SNP Genotyping was carried out by Sequenom Mass ARRAY platform (Sequenom, San Diego, CA) and validated Taqman ® allelic discrimination (Applied Biosystems ® ). Statistical analyses were performed using SPSS software version 19.0, SNPStats, GMDR software (version 6) and GENEMANIA. Logistic regression analysis of 55 SNPs revealed significant associations (P < .05) of 49 SNPs with BMI linked obesity risk whereas the remaining 6 SNPs revealed no association (P > .05). The pathway-wise G-score revealed the significant role (P = .0001) of food intake-energy expenditure pathway genes. In CART analysis, the combined genotypes of FTO rs9939609 and TCF7L2 rs7903146 revealed the highest risk for BMI linked obesity. The analysis of the FTO-IRX3 locus revealed high LD and high order gene-gene interactions for BMI linked obesity. The interaction network of all of the associated genes in the present study generated by GENEMANIA revealed direct and indirect connections. In addition, the analysis with centralized obesity revealed that none of the SNPs except for FTO rs17818902 were significantly associated (P < .05). In this multi-analytical approach, FTO rs9939609 and IRX3 rs3751723, along with TCF7L2 rs7903146 and TMEM18 rs6548238, emerged as the major SNPs contributing to BMI linked obesity risk in the North Indian population. © 2016 Wiley Periodicals, Inc.
Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees
2018-06-07
The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.
Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iain; Scheuner, Carmen; Goker, Markus
2011-05-03
The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles weremore » isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.« less
Analysis of molecular pathways in pancreatic ductal adenocarcinomas with a bioinformatics approach.
Wang, Yan; Li, Yan
2015-01-01
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.
Gebhardt, Brian J; Heron, Dwight E; Beriwal, Sushil
Clinical pathways are patient management plans that standardize evidence-based practices to ensure high-quality and cost-effective medical care. Implementation of a pathway is a collaborative process in our network, requiring the active involvement of physicians. This approach promotes acceptance of pathway recommendations, although a peer review process is necessary to ensure compliance and to capture and approve off-pathway selections. We investigated the peer review process and factors associated with time to completion of peer review. Our cancer center implemented radiation oncology pathways for every disease site throughout a large, integrated network. Recommendations are written based upon national guidelines, published literature, and institutional experience with evidence evaluated hierarchically in order of efficacy, toxicity, and then cost. Physicians enter decisions into an online, menu-driven decision support tool that integrates with medical records. Data were collected from the support tool and included the rate of on- and off-pathway selections, peer review decisions performed by disease site directors, and time to complete peer review. A total of 6965 treatment decisions were entered in 2015, and 605 (8.7%) were made off-pathway and were subject to peer review. The median time to peer review decision was 2 days (interquartile range, 0.2-6.8). Factors associated with time to peer review decision >48 hours on univariate analysis include disease site (P < .0001) with a trend toward significance (P = .066) for radiation therapy modality. There was no difference between recurrent and non-recurrent disease (P = .267). Multivariable analysis revealed disease site was associated with time to peer review (P < .001), with lymphoma and skin/sarcoma most strongly influencing decision time >48 hours. Clinical pathways are an integral tool for standardizing evidence-based care throughout our large, integrated network, with 91.3% of all treatment decisions being made as per pathway. The peer review process was feasible, with <1% selections ultimately rejected, suggesting that awareness of peer review of treatment decisions encourages compliance with clinical pathway recommendations. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Murase, Ryuichi; Kawamura, Rumi; Singer, Eric; Pakdel, Arash; Sarma, Pranamee; Judkins, Jonathon; Elwakeel, Eiman; Dayal, Sonali; Martinez-Martinez, Esther; Amere, Mukkanti; Gujjar, Ramesh; Mahadevan, Anu; Desprez, Pierre-Yves; McAllister, Sean D
2014-01-01
Background and Purpose The psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabinoid cannabidiol (CBD) can both reduce cancer progression, each through distinct anti-tumour pathways. Our goal was to discover a compound that could efficiently target both cannabinoid anti-tumour pathways. Experimental Approach To measure breast cancer cell proliferation/viability and invasion, MTT and Boyden chamber assays were used. Modulation of reactive oxygen species (ROS) and apoptosis was measured using dichlorodihydrofluorescein and annexin/propidium iodide, respectively, in combination with cell flow cytometry. Changes in protein levels were evaluated using Western analysis. Orthotopic and i.v. mouse models of breast cancer metastasis were used to test the activity of cannabinoids in vivo. Key Results CBD reduced breast cancer metastasis in advanced stages of the disease as the direct result of down-regulating the transcriptional regulator Id1. However, this was associated with moderate increases in survival. We therefore screened for analogues that could co-target cannabinoid anti-tumour pathways (CBD- and THC-associated) and discovered the compound O-1663. This analogue inhibited Id1, produced a marked stimulation of ROS, up-regulated autophagy and induced apoptosis. Of all the compounds tested, it was the most potent at inhibiting breast cancer cell proliferation and invasion in culture and metastasis in vivo. Conclusions and Implications O-1663 prolonged survival in advanced stages of breast cancer metastasis. Developing compounds that can simultaneously target multiple cannabinoid anti-tumour pathways efficiently may provide a novel approach for the treatment of patients with metastatic breast cancer. PMID:24910342
A new approach to systematization of the management of paper-based clinical pathways.
Wakamiya, Shunji; Yamauchi, Kazunobu
2006-05-01
The present study was performed to explore a new approach to systematization of the management of paper-based clinical pathways by developing a new system requiring little capital investment. A new system was developed and incorporated into an existing network at a hospital with a paper-based clinical pathway management system. The effectiveness of this new system was examined by comparing the management efficiency of clinical pathways before and after its introduction, and by comparison of the new system with other such systems currently in place at other medical institutions with regard to efficiency. In addition, the acceptability of the system for other medical institutions was examined by providing free access to the software on the Internet. The development costs of the new system were low. Although the new system has been in place for more than 3 years, no problems have yet been encountered in either the existing network system or in the management system itself. The new system allows the processing of statistics and analysis of circulation or variance automatically, neither of which were possible in the original paper-based system. We provided open access to the system as free software on the Internet, and it has since been downloaded by many medical institutions and enterprises in Japan. This system is very useful for institutions where it is difficult to introduce expensive new systems for systematic management of clinical pathways, such as electronic medical records, because of problems regarding capital or system management, and it may also be useful in other countries.
Lawless, Nathan; Reinhardt, Timothy A; Bryan, Kenneth; Baker, Mike; Pesch, Bruce; Zimmerman, Duane; Zuelke, Kurt; Sonstegard, Tad; O'Farrelly, Cliona; Lippolis, John D; Lynn, David J
2014-01-27
Bovine mastitis is an inflammation-driven disease of the bovine mammary gland that costs the global dairy industry several billion dollars per year. Because disease susceptibility is a multifactorial complex phenotype, an integrative biology approach is required to dissect the molecular networks involved. Here, we report such an approach using next-generation sequencing combined with advanced network and pathway biology methods to simultaneously profile mRNA and miRNA expression at multiple time points (0, 12, 24, 36 and 48 hr) in milk and blood FACS-isolated CD14(+) monocytes from animals infected in vivo with Streptococcus uberis. More than 3700 differentially expressed (DE) genes were identified in milk-isolated monocytes (MIMs), a key immune cell recruited to the site of infection during mastitis. Upregulated genes were significantly enriched for inflammatory pathways, whereas downregulated genes were enriched for nonglycolytic metabolic pathways. Monocyte transcriptional changes in the blood, however, were more subtle but highlighted the impact of this infection systemically. Genes upregulated in blood-isolated monocytes (BIMs) showed a significant association with interferon and chemokine signaling. Furthermore, 26 miRNAs were DE in MIMs and three were DE in BIMs. Pathway analysis revealed that predicted targets of downregulated miRNAs were highly enriched for roles in innate immunity (FDR < 3.4E-8), particularly TLR signaling, whereas upregulated miRNAs preferentially targeted genes involved in metabolism. We conclude that during S. uberis infection miRNAs are key amplifiers of monocyte inflammatory response networks and repressors of several metabolic pathways. Copyright © 2014 Lawless et al.
Module Degradation Mechanisms Studied by a Multi-Scale Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steve; Al-Jassim, Mowafak; Hacke, Peter
2016-11-21
A key pathway to meeting the Department of Energy SunShot 2020 goals is to reduce financing costs by improving investor confidence through improved photovoltaic (PV) module reliability. A comprehensive approach to further understand and improve PV reliability includes characterization techniques and modeling from module to atomic scale. Imaging techniques, which include photoluminescence, electroluminescence, and lock-in thermography, are used to locate localized defects responsible for module degradation. Small area samples containing such defects are prepared using coring techniques and are then suitable and available for microscopic study and specific defect modeling and analysis.
Isotope Dilution-Based Targeted and Nontargeted Carbonyl Neurosteroid/Steroid Profiling.
Sharp, Sheila; Mitchell, Scott J; Vallée, Monique; Kuzmanova, Elena; Cooper, Michelle; Belelli, Delia; Lambert, Jeremy J; Huang, Jeffrey T-J
2018-04-17
Neurosteroids are brain-derived steroids, capable of rapidly modulating neuronal excitability in a nongenomic manner. Dysregulation of their synthesis or metabolism has been implicated in many pathological conditions. Here, we describe an isotope dilution based targeted and nontargeted (ID-TNT) profiling of carbonyl neurosteroids/steroids. The method combines stable isotope dilution, hydroxylamine derivatization, high-resolution MS scanning, and data-dependent MS/MS analysis, allowing absolute quantification of pregnenolone, progesterone, 5α-dihydroprogesterone, 3α,5α-tetrahydroprogesterone, and 3β,5α-tetrahydroprogesterone, and relative quantification of other carbonyl containing steroids. The utility and validity of this approach was tested in an acute stress mouse model and via pharmacological manipulation of the steroid metabolic pathway with finasteride. We report that brain levels of 3α,5α-tetrahydroprogesterone, a potent enhancer of GABA A receptor (GABA A R-mediated inhibitory function, from control mice is in the 5-40 pmol/g range, a value greater than previously reported. The approach allows the use of data from targeted analysis to guide the normalization strategy for nontargeted data. Furthermore, novel findings, including a striking increase of brain pregnenolone following finasteride administration were discovered in this study. Collectively, our results indicate that this approach has distinct advantages for examining targeted and nontargeted neurosteroid/steroid pathways in animal models and could facilitate a better understanding of the physiological and pathological roles of neurosteroids as modulators of brain excitability.
Camargo, Luiz Miguel; Zhang, Xiaohua Douglas; Loerch, Patrick; Caceres, Ramon Miguel; Marine, Shane D.; Uva, Paolo; Ferrer, Marc; de Rinaldis, Emanuele; Stone, David J.; Majercak, John; Ray, William J.; Yi-An, Chen; Shearman, Mark S.; Mizuguchi, Kenji
2015-01-01
The progressive aggregation of Amyloid-β (Aβ) in the brain is a major trait of Alzheimer's Disease (AD). Aβ is produced as a result of proteolytic processing of the β-amyloid precursor protein (APP). Processing of APP is mediated by multiple enzymes, resulting in the production of distinct peptide products: the non-amyloidogenic peptide sAPPα and the amyloidogenic peptides sAPPβ, Aβ40, and Aβ42. Using a pathway-based approach, we analyzed a large-scale siRNA screen that measured the production of different APP proteolytic products. Our analysis identified many of the biological processes/pathways that are known to regulate APP processing and have been implicated in AD pathogenesis, as well as revealing novel regulatory mechanisms. Furthermore, we also demonstrate that some of these processes differentially regulate APP processing, with some mechanisms favouring production of certain peptide species over others. For example, synaptic transmission having a bias towards regulating Aβ40 production over Aβ42 as well as processes involved in insulin and pancreatic biology having a bias for sAPPβ production over sAPPα. In addition, some of the pathways identified as regulators of APP processing contain genes (CLU, BIN1, CR1, PICALM, TREM2, SORL1, MEF2C, DSG2, EPH1A) recently implicated with AD through genome wide association studies (GWAS) and associated meta-analysis. In addition, we provide supporting evidence and a deeper mechanistic understanding of the role of diabetes in AD. The identification of these processes/pathways, their differential impact on APP processing, and their relationships to each other, provide a comprehensive systems biology view of the “regulatory landscape” of APP. PMID:25723573
Using a model comparison approach to describe the assembly pathway for histone H1
Contreras, Carlos; Villasana, Minaya; Hendzel, Michael J.
2018-01-01
Histones H1 or linker histones are highly dynamic proteins that diffuse throughout the cell nucleus and associate with chromatin (DNA and associated proteins). This binding interaction of histone H1 with the chromatin is thought to regulate chromatin organization and DNA accessibility to transcription factors and has been proven to involve a kinetic process characterized by a population that associates weakly with chromatin and rapidly dissociates and another population that resides at a binding site for up to several minutes before dissociating. When considering differences between these two classes of interactions in a mathematical model for the purpose of describing and quantifying the dynamics of histone H1, it becomes apparent that there could be several assembly pathways that explain the kinetic data obtained in living cells. In this work, we model these different pathways using systems of reaction-diffusion equations and carry out a model comparison analysis using FRAP (fluorescence recovery after photobleaching) experimental data from different histone H1 variants to determine the most feasible mechanism to explain histone H1 binding to chromatin. The analysis favors four different chromatin assembly pathways for histone H1 which share common features and provide meaningful biological information on histone H1 dynamics. We show, using perturbation analysis, that the explicit consideration of high- and low-affinity associations of histone H1 with chromatin in the favored assembly pathways improves the interpretation of histone H1 experimental FRAP data. To illustrate the results, we use one of the favored models to assess the kinetic changes of histone H1 after core histone hyperacetylation, and conclude that this post-transcriptional modification does not affect significantly the transition of histone H1 from a weakly bound state to a tightly bound state. PMID:29352283
Liu, Xi; Li, Zhaoxia; Song, Yue; Wang, Rui; Han, Lei; Wang, Qixue; Jiang, Kui; Kang, Chunsheng; Zhang, Qingyu
2016-01-01
Gastric cancer, a highly invasive and aggressive malignancy, is the third leading cause of death from cancer worldwide. Genetic association studies have successfully revealed several important genes consistently associated with gastric cancer to date. However, these robust gastric cancer-associated genes do not fully elucidate the mechanisms underlying the development and progression of the disease. In the present study, we performed an alternative approach, a gene expression-based genome-wide association study (eGWAS) across 13 independent microarray experiments (including 251 gastric cancer cases and 428 controls), to identify top candidates (p<0.00001). Additionally, we conducted gene ontology analysis, pathway analysis and network analysis and identified aurora kinase A (AURKA) as our candidate. We observed that MLN8237, which is a specific inhibitor of AURKA, decreased the β-catenin and the phosphorylation of Akt1 and GSK-3β, as well as blocked the Akt and Wnt signaling pathways. Furthermore, MLN8237 arrested the cells in the G2/M phase. The activity of Wnt and Akt signaling pathways affected the level of histone methylation significantly, and we supposed that MLN8237 affected the level of histone methylation through these two signaling pathways. Additionally, the treatment of MLN8237 influenced the level of H3K4 me1/2/3 and H3K27 me1/2/3. Chip data on cell lines suggested that MLN8237 increases the level of H3K27 me3 on the promoter of Twist and inhibits EMT (epithelial-mesenchymal transition). In summary, AURKA is a potential therapeutic target in gastric cancer and induces EMT through histone methylation. PMID:27121204
Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.
Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng
2014-01-01
Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.
Genetics pathway-based imaging approaches in Chinese Han population with Alzheimer's disease risk.
Bai, Feng; Liao, Wei; Yue, Chunxian; Pu, Mengjia; Shi, Yongmei; Yu, Hui; Yuan, Yonggui; Geng, Leiyu; Zhang, Zhijun
2016-01-01
The tau hypothesis has been raised with regard to the pathophysiology of Alzheimer's disease (AD). Mild cognitive impairment (MCI) is associated with a high risk for developing AD. However, no study has directly examined the brain topological alterations based on combined effects of tau protein pathway genes in MCI population. Forty-three patients with MCI and 30 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) in Chinese Han, and a tau protein pathway-based imaging approaches (7 candidate genes: 17 SNPs) were used to investigate changes in the topological organisation of brain activation associated with MCI. Impaired regional activation is related to tau protein pathway genes (5/7 candidate genes) in patients with MCI and likely in topologically convergent and divergent functional alterations patterns associated with genes, and combined effects of tau protein pathway genes disrupt the topological architecture of cortico-cerebellar loops. The associations between the loops and behaviours further suggest that tau protein pathway genes do play a significant role in non-episodic memory impairment. Tau pathway-based imaging approaches might strengthen the credibility in imaging genetic associations and generate pathway frameworks that might provide powerful new insights into the neural mechanisms that underlie MCI.
A proposed clinical research support career pathway for noninvestigators.
Smith, Sheree; Gullick, Janice; Ballard, Jacqueline; Perry, Lin
2018-06-01
To discuss the international experience of clinical research support for noninvestigator roles and to propose a new pathway for Australia, to promote a sustainable research support workforce capable of delivering high-quality clinical research. Noninvestigator research support roles are currently characterized by an ad hoc approach to training, with limited role delineation and perceived professional isolation with implications for study completion rates and participant safety. A focused approach to developing and implementing research support pathways has improved patient recruitment, study completion, job satisfaction, and research governance. The Queensland and New South Wales state-based Nurses' Awards, the Australian Qualifications Framework, and a University Professional (Research) Staff Award. Research nurses in the clinical environment improve study coordination, adherence to study protocol, patient safety, and clinical care. A career pathway that guides education and outlines position descriptions and skill sets would enhance development of the research support workforce. This pathway could contribute to changing the patient outcomes through coordination and study completion of high-quality research. A wide consultative approach is required to determine a cost-effective and feasible approach to implementation and evaluation of the proposed pathway. © 2018 John Wiley & Sons Australia, Ltd.
ERIC Educational Resources Information Center
Hodara, Michelle; Martinez-Wenzl, Mary; Stevens, David; Mazzeo, Christopher
2017-01-01
Objective: Problems with credit mobility, or the transfer of credits from a sending to a receiving institution, may be one reason why community college transfer students have low rates of bachelor's degree completion. This study investigates different policy approaches to credit mobility and how college staff and students experience transfer at…
An OMIC approach to elaborate the antibacterial mechanisms of different alkaloids.
Avci, Fatma Gizem; Sayar, Nihat Alpagu; Sariyar Akbulut, Berna
2018-05-01
Plant-derived substances have regained interest in the fight against antibiotic resistance owing to their distinct antimicrobial mechanisms and multi-target properties. With the recent advances in instrumentation and analysis techniques, OMIC approaches are extensively used for target identification and elucidation of the mechanism of phytochemicals in drug discovery. In the current study, RNA sequencing based transcriptional profiling together with global differential protein expression analysis was used to comparatively elaborate the activities and the effects of the plant alkaloids boldine, bulbocapnine, and roemerine along with the well-known antimicrobial alkaloid berberine in Bacillus subtilis cells. The transcriptomic findings were validated by qPCR. Images from scanning electron microscope were obtained to visualize the effects on the whole-cells. The results showed that among the three selected alkaloids, only roemerine possessed antibacterial activity. Unlike berberine, which is susceptible to efflux through multidrug resistance pumps, roemerine accumulated in the cells. This in turn resulted in oxidative stress and building up of reactive oxygen species, which eventually deregulated various pathways such as iron uptake. Treatment with boldine or bulbocapnine slightly affected various metabolic pathways but has not changed the growth patterns at all. Copyright © 2018 Elsevier Ltd. All rights reserved.
Systems Toxicology: Real World Applications and Opportunities.
Hartung, Thomas; FitzGerald, Rex E; Jennings, Paul; Mirams, Gary R; Peitsch, Manuel C; Rostami-Hodjegan, Amin; Shah, Imran; Wilks, Martin F; Sturla, Shana J
2017-04-17
Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data. Systems Toxicology involves the use of large-scale data streams ("big data"), such as those derived from omics measurements that require computational means for obtaining informative results. Thus, integrative analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology. In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to link observed network perturbations to phenotypic toxicity.
Systems Toxicology: Real World Applications and Opportunities
2017-01-01
Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data. Systems Toxicology involves the use of large-scale data streams (“big data”), such as those derived from omics measurements that require computational means for obtaining informative results. Thus, integrative analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology. In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to link observed network perturbations to phenotypic toxicity. PMID:28362102
Tao, Jin; Hou, Yuanyuan; Ma, Xiaoyao; Liu, Dan; Tong, Yongling; Zhou, Hong; Gao, Jie; Bai, Gang
2016-01-08
Traditional Chinese medicine (TCM) herbal formulae provide valuable therapeutic strategies. However, the active ingredients and mechanisms of action remain unclear for most of these formulae. Therefore, the identification of complex mechanisms is a major challenge in TCM research. This study used a network pharmacology approach to clarify the anti-inflammatory and cough suppressing mechanisms of the Chinese medicinal preparation Eriobotrya japonica - Fritillaria usuriensis dropping pills (ChuanbeiPipa dropping pills, CBPP). The chemical constituents of CBPP were identified by high-quality ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), and anti-inflammatory ingredients were selected and analyzed using the PharmMapper and Kyoto Encyclopedia of Genes and Genomes (KEGG) bioinformatics websites to predict the target proteins and related pathways, respectively. Then, an RNA-sequencing (RNA-Seq) analysis was carried out to investigate the different expression of genes in the lung tissue of rats with chronic bronchitis. Six main constituents affected 19 predicted pathways, including ursolic acid and oleanolic acid from Eriobotrya japonica (Thunb.) Lindl. (Eri), peiminine from Fritillaria usuriensis Maxim. (Fri), platycodigenin and polygalacic acid from Platycodon grandiflorum (Jacq.) A. DC. (Pla) and guanosine from Pinellia ternata (Thunb.) Makino. (Pin). Expression of 34 genes was significantly decreased after CBPP treatment, affecting four therapeutic functions: immunoregulation, anti-inflammation, collagen formation and muscle contraction. The active components acted on the mitogen activated protein kinase (MAPK) pathway, transforming growth factor (TGF)-beta pathway, focal adhesion, tight junctions and the action cytoskeleton to exert anti-inflammatory effects, resolve phlegm, and relieve cough. This novel approach of global chemomics-integrated systems biology represents an effective and accurate strategy for the study of TCM with multiple components and multiple target mechanisms.
Xie, Da-Fei; Xie, Yi; Liu, Xiao-Dan; Wang, Qi; Sui, Li; Song, Man; Zhang, Hong; Zhou, Jianhua; Zhou, Ping-Kun
2016-01-01
Radiotherapy with heavy ions is considered advantageous compared to irradiation with photons due to the characteristics of the Braggs peak and the high linear energy transfer (LET) value. To understand the mechanisms of cellular responses to different LET values and dosages of heavy ion radiation, we analyzed the proteomic profiles of mouse embryo fibroblast MEF cells exposed to two doses from different LET values of heavy ion 12C. Total proteins were extracted from these cells and examined by Q Exactive with Liquid Chromatography (LC)—Electrospray Ionization (ESI) Tandem MS (MS/MS). Using bioinformatics approaches, differentially expressed proteins with 1.5 or 2.0-fold changes between different dosages of exposure were compared. With the higher the dosage and/or LET of ion irradiation, the worse response the cells were in terms of protein expression. For instance, compared to the control (0 Gy), 771 (20.2%) proteins in cells irradiated at 0.2 Gy of carbon-ion radiation with 12.6 keV/μm, 313 proteins (8.2%) in cells irradiated at 2 Gy of carbon-ion radiation with 12.6 keV/μm, and 243 proteins (6.4%) in cells irradiated at 2 Gy of carbon-ion radiation with 31.5 keV/μm exhibited changes of 1.5-fold or greater. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Munich Information Center for Protein Sequences (MIPS) analysis, and BioCarta analysis all indicated that RNA metabolic processes (RNA splicing, destabilization and deadenylation) and proteasome pathways may play key roles in the cellular response to heavy-ion irradiation. Proteasome pathways ranked highest among all biological processes associated with heavy carbon-ion irradiation. In addition, network analysis revealed that cellular pathways involving proteins such as Col1a1 and Fn1 continued to respond to high dosages of heavy-ion irradiation, suggesting that these pathways still protect cells against damage. However, pathways such as those involving Ikbkg1 responded better at lower dosages than at higher dosages, implying that cell damage would occur when the networks involving these proteins stop responding. Our investigation provides valuable proteomic information for elucidating the mechanism of biological effects induced by carbon ions in general. PMID:27711237
NASA Astrophysics Data System (ADS)
Brewer, Jacob S.
It is well known that exposure to severe stress increases the risk for developing mood disorders. Currently, the neurobiological and genetic mechanisms underlying the functional effects of psychological stress are poorly understood. Presenting a major obstacle to the study of psychological stress is the inability of current animal models of stress to distinguish between physical and psychological stressors. A novel paradigm recently developed by Warren et al., is able to tease apart the effects of physical and psychological stress in adult mice by allowing these mice to "witness," the social defeat of another mouse thus removing confounding variables associated with physical stressors. Using this 'witness' model of stress and RNA-Seq technology, the current study aims to study the genetic effects of psychological stress. After, witnessing the social defeat of another mouse, VTA tissue was extracted, sequenced, and analyzed for differential expression. Since genes often work together in complex networks, a pathway and gene ontology (GO) analysis was performed using data from the differential expression analysis. The pathway and GO analyzes revealed a perturbation of the glutamatergic synapse pathway and an enrichment of positive excitatory post-synaptic potential regulation. This is consistent with the excitatory synapse theory of depression. Together these findings demonstrate a dysregulation of the mesolimbic reward pathway at the gene level as a result of psychological stress potentially contributing to depressive like behaviors.
Li, Qinghong; Freeman, Lisa M; Rush, John E; Huggins, Gordon S; Kennedy, Adam D; Labuda, Jeffrey A; Laflamme, Dorothy P; Hannah, Steven S
2015-08-01
Canine degenerative mitral valve disease (DMVD) is the most common form of heart disease in dogs. The objective of this study was to identify cellular and metabolic pathways that play a role in DMVD by performing metabolomics and transcriptomics analyses on serum and tissue (mitral valve and left ventricle) samples previously collected from dogs with DMVD or healthy hearts. Gas or liquid chromatography followed by mass spectrophotometry were used to identify metabolites in serum. Transcriptomics analysis of tissue samples was completed using RNA-seq, and selected targets were confirmed by RT-qPCR. Random Forest analysis was used to classify the metabolites that best predicted the presence of DMVD. Results identified 41 known and 13 unknown serum metabolites that were significantly different between healthy and DMVD dogs, representing alterations in fat and glucose energy metabolism, oxidative stress, and other pathways. The three metabolites with the greatest single effect in the Random Forest analysis were γ-glutamylmethionine, oxidized glutathione, and asymmetric dimethylarginine. Transcriptomics analysis identified 812 differentially expressed transcripts in left ventricle samples and 263 in mitral valve samples, representing changes in energy metabolism, antioxidant function, nitric oxide signaling, and extracellular matrix homeostasis pathways. Many of the identified alterations may benefit from nutritional or medical management. Our study provides evidence of the growing importance of integrative approaches in multi-omics research in veterinary and nutritional sciences.
Bohler, Anwesha; Eijssen, Lars M T; van Iersel, Martijn P; Leemans, Christ; Willighagen, Egon L; Kutmon, Martina; Jaillard, Magali; Evelo, Chris T
2015-08-23
Biological pathways are descriptive diagrams of biological processes widely used for functional analysis of differentially expressed genes or proteins. Primary data analysis, such as quality control, normalisation, and statistical analysis, is often performed in scripting languages like R, Perl, and Python. Subsequent pathway analysis is usually performed using dedicated external applications. Workflows involving manual use of multiple environments are time consuming and error prone. Therefore, tools are needed that enable pathway analysis directly within the same scripting languages used for primary data analyses. Existing tools have limited capability in terms of available pathway content, pathway editing and visualisation options, and export file formats. Consequently, making the full-fledged pathway analysis tool PathVisio available from various scripting languages will benefit researchers. We developed PathVisioRPC, an XMLRPC interface for the pathway analysis software PathVisio. PathVisioRPC enables creating and editing biological pathways, visualising data on pathways, performing pathway statistics, and exporting results in several image formats in multiple programming environments. We demonstrate PathVisioRPC functionalities using examples in Python. Subsequently, we analyse a publicly available NCBI GEO gene expression dataset studying tumour bearing mice treated with cyclophosphamide in R. The R scripts demonstrate how calls to existing R packages for data processing and calls to PathVisioRPC can directly work together. To further support R users, we have created RPathVisio simplifying the use of PathVisioRPC in this environment. We have also created a pathway module for the microarray data analysis portal ArrayAnalysis.org that calls the PathVisioRPC interface to perform pathway analysis. This module allows users to use PathVisio functionality online without having to download and install the software and exemplifies how the PathVisioRPC interface can be used by data analysis pipelines for functional analysis of processed genomics data. PathVisioRPC enables data visualisation and pathway analysis directly from within various analytical environments used for preliminary analyses. It supports the use of existing pathways from WikiPathways or pathways created using the RPC itself. It also enables automation of tasks performed using PathVisio, making it useful to PathVisio users performing repeated visualisation and analysis tasks. PathVisioRPC is freely available for academic and commercial use at http://projects.bigcat.unimaas.nl/pathvisiorpc.
Systems analysis of urban wastewater systems--two systematic approaches to analyse a complex system.
Benedetti, L; Blumensaat, F; Bönisch, G; Dirckx, G; Jardin, N; Krebs, P; Vanrolleghem, P A
2005-01-01
This work was aimed at performing an analysis of the integrated urban wastewater system (catchment area, sewer, WWTP, receiving water). It focused on analysing the substance fluxes going through the system to identify critical pathways of pollution, as well as assessing the effectiveness of energy consumption and operational/capital costs. Two different approaches were adopted in the study to analyse urban wastewater systems of diverse characteristics. In the first approach a wide ranged analysis of a system at river basin scale is applied. The Nete river basin in Belgium, a tributary of the Schelde, was analysed through the 29 sewer catchments constituting the basin. In the second approach a more detailed methodology was developed to separately analyse two urban wastewater systems situated within the Ruhr basin (Germany) on a river stretch scale. The paper mainly focuses on the description of the method applied. Only the most important results are presented. The main outcomes of these studies are: the identification of stressors on the receiving water bodies, an extensive benchmarking of wastewater systems, and the evidence of the scale dependency of results in such studies.
Xu, Jie; Hu, Feng-Lin; Wang, Wei; Wan, Xiao-Chun; Bao, Guan-Hu
2015-11-01
Fu brick tea (FBT) is a unique post-fermented tea product which is fermented with fungi during the manufacturing process. In this study, we investigated the biochemical compositional changes occurring during the microbial fermentation process (MFP) of FBT based on non-targeted LC-MS, which was a comprehensive and unbiased methodology. Our data analysis took a two-phase approach: (1) comparison of FBT with other tea products using PCA analysis to exhibit the characteristic effect of MFP on the formation of Fu brick tea and (2) comparison of tea samples throughout the MFP of FBT to elucidate the possible key metabolic pathways produced by the fungi. Non-targeted LC-MS analysis clearly distinguished FBT with other tea samples and highlighted some interesting metabolic pathways during the MFP including B ring fission catechin. Our study demonstrated that those fungi had a significant influence on the biochemical profiles in the FBT and consequently contributed to its unique quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reaction trajectory revealed by a joint analysis of protein data bank.
Ren, Zhong
2013-01-01
Structural motions along a reaction pathway hold the secret about how a biological macromolecule functions. If each static structure were considered as a snapshot of the protein molecule in action, a large collection of structures would constitute a multidimensional conformational space of an enormous size. Here I present a joint analysis of hundreds of known structures of human hemoglobin in the Protein Data Bank. By applying singular value decomposition to distance matrices of these structures, I demonstrate that this large collection of structural snapshots, derived under a wide range of experimental conditions, arrange orderly along a reaction pathway. The structural motions along this extensive trajectory, including several helical transformations, arrive at a reverse engineered mechanism of the cooperative machinery (Ren, companion article), and shed light on pathological properties of the abnormal homotetrameric hemoglobins from α-thalassemia. This method of meta-analysis provides a general approach to structural dynamics based on static protein structures in this post genomics era.
System-based strategies for p53 recovery.
Azam, Muhammad Rizwan; Fazal, Sahar; Ullah, Mukhtar; Bhatti, Aamer I
2018-06-01
The authors have proposed a systems theory-based novel drug design approach for the p53 pathway. The pathway is taken as a dynamic system represented by ordinary differential equations-based mathematical model. Using control engineering practices, the system analysis and subsequent controller design is performed for the re-activation of wild-type p53. p53 revival is discussed for both modes of operation, i.e. the sustained and oscillatory. To define the problem in control system paradigm, modification in the existing mathematical model is performed to incorporate the effect of Nutlin. Attractor point analysis is carried out to select the suitable domain of attraction. A two-loop negative feedback control strategy is devised to drag the system trajectories to the attractor point and to regulate cellular concentration of Nutlin, respectively. An integrated framework is constituted to incorporate the pharmacokinetic effects of Nutlin in the cancerous cells. Bifurcation analysis is also performed on the p53 model to see the conditions for p53 oscillation.
Reaction Trajectory Revealed by a Joint Analysis of Protein Data Bank
Ren, Zhong
2013-01-01
Structural motions along a reaction pathway hold the secret about how a biological macromolecule functions. If each static structure were considered as a snapshot of the protein molecule in action, a large collection of structures would constitute a multidimensional conformational space of an enormous size. Here I present a joint analysis of hundreds of known structures of human hemoglobin in the Protein Data Bank. By applying singular value decomposition to distance matrices of these structures, I demonstrate that this large collection of structural snapshots, derived under a wide range of experimental conditions, arrange orderly along a reaction pathway. The structural motions along this extensive trajectory, including several helical transformations, arrive at a reverse engineered mechanism of the cooperative machinery (Ren, companion article), and shed light on pathological properties of the abnormal homotetrameric hemoglobins from α-thalassemia. This method of meta-analysis provides a general approach to structural dynamics based on static protein structures in this post genomics era. PMID:24244274
Linking disease-associated genes to regulatory networks via promoter organization
Döhr, S.; Klingenhoff, A.; Maier, H.; de Angelis, M. Hrabé; Werner, T.; Schneider, R.
2005-01-01
Pathway- or disease-associated genes may participate in more than one transcriptional co-regulation network. Such gene groups can be readily obtained by literature analysis or by high-throughput techniques such as microarrays or protein-interaction mapping. We developed a strategy that defines regulatory networks by in silico promoter analysis, finding potentially co-regulated subgroups without a priori knowledge. Pairs of transcription factor binding sites conserved in orthologous genes (vertically) as well as in promoter sequences of co-regulated genes (horizontally) were used as seeds for the development of promoter models representing potential co-regulation. This approach was applied to a Maturity Onset Diabetes of the Young (MODY)-associated gene list, which yielded two models connecting functionally interacting genes within MODY-related insulin/glucose signaling pathways. Additional genes functionally connected to our initial gene list were identified by database searches with these promoter models. Thus, data-driven in silico promoter analysis allowed integrating molecular mechanisms with biological functions of the cell. PMID:15701758
Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.
Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying
2017-06-01
Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RP<0.01 were defined as critical pathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RP<0.01, and the top 10 pathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing diagnosis and therapy of neonatal sepsis. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, M.V., E-mail: evans.marina@epa.go; Caldwell, J.C.
Dichloromethane (DCM, methylene chloride) is a lipophilic volatile compound readily absorbed and then metabolized to several metabolites that may lead to chronic toxicity in different target organs. Physiologically based pharmacokinetic (PBPK) models are useful tools for calculation of internal and target organ doses of parent compound and metabolites. PBPK models, coupled with in vivo inhalation gas-uptake data, can be useful to estimate total metabolism. Previously, such an approach was used to make predictions regarding the metabolism and to make subsequent inferences of DCM's mode of action for toxicity. However, current evidence warrants re-examination of this approach. The goal of thismore » work was to examine two different hypotheses for DCM metabolism in mice. One hypothesis describes two metabolic pathways: one involving cytochrome P450 2E1 (CYP2E1) and a second glutathione (GSH). The second metabolic hypothesis describes only one pathway mediated by CYP2E1 that includes multiple binding sites. The results of our analysis show that the in vivo gas-uptake data fit both hypotheses well and the traditional analysis of the chamber concentration data is not sufficient to distinguish between them. Gas-uptake data were re-analyzed by construction of a velocity plot as a function of increasing DCM initial concentration. The velocity (slope) analysis revealed that there are two substantially different phases in velocity, one rate for lower exposures and a different rate for higher exposures. The concept of a 'metabolic switch,' namely that due to conformational changes in the enzyme after one site is occupied - a different metabolic rate is seen - is also consistent with the experimental data. Our analyses raise questions concerning the importance of GSH metabolism for DCM. Recent research results also question the importance of this pathway in the toxicity of DCM. GSH-related DNA adducts were not formed after in vivo DCM exposure in mice and DCM-induced DNA damage has been detected in human lung cultures without GSH metabolism. In summary, a revised/updated metabolic hypothesis for DCM has been examined using in vivo inhalation data in mice combined with PBPK modeling that is consistent with up-to-date models of the active site for CYP2E1 and suggests that this pathway is the major metabolizing pathway for DCM metabolism.« less
Aroca, Angeles; Benito, Juan M; Gotor, Cecilia; Romero, Luis C
2017-10-13
Hydrogen sulfide-mediated signaling pathways regulate many physiological and pathophysiological processes in mammalian and plant systems. The molecular mechanism by which hydrogen sulfide exerts its action involves the post-translational modification of cysteine residues to form a persulfidated thiol motif, a process called protein persulfidation. We have developed a comparative and quantitative proteomic analysis approach for the detection of endogenous persulfidated proteins in wild-type Arabidopsis and L-CYSTEINE DESULFHYDRASE 1 mutant leaves using the tag-switch method. The 2015 identified persulfidated proteins were isolated from plants grown under controlled conditions, and therefore, at least 5% of the entire Arabidopsis proteome may undergo persulfidation under baseline conditions. Bioinformatic analysis revealed that persulfidated cysteines participate in a wide range of biological functions, regulating important processes such as carbon metabolism, plant responses to abiotic and biotic stresses, plant growth and development, and RNA translation. Quantitative analysis in both genetic backgrounds reveals that protein persulfidation is mainly involved in primary metabolic pathways such as the tricarboxylic acid cycle, glycolysis, and the Calvin cycle, suggesting that this protein modification is a new regulatory component in these pathways. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K
2015-01-25
The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Genome-wide expression analyses of the stationary phase model of ageing in yeast.
Wanichthanarak, Kwanjeera; Wongtosrad, Nutvadee; Petranovic, Dina
2015-07-01
Ageing processes involved in replicative lifespan (RLS) and chronological lifespan (CLS) have been found to be conserved among many organisms, including in unicellular Eukarya such as yeast Saccharomyces cerevisiae. Here we performed an integrated approach of genome wide expression profiles of yeast at different time points, during growth and starvation. The aim of the study was to identify transcriptional changes in those conditions by using several different computational analyses in order to propose transcription factors, biological networks and metabolic pathways that seem to be relevant during the process of chronological ageing in yeast. Specifically, we performed differential gene expression analysis, gene-set enrichment analysis and network-based analysis, and we identified pathways affected in the stationary phase and specific transcription factors driving transcriptional adaptations. The results indicate signal propagation from G protein-coupled receptors through signaling pathway components and other stress and nutrient-induced transcription factors resulting in adaptation of yeast cells to the lack of nutrients by activating metabolism associated with aerobic metabolism of carbon sources such as ethanol, glycerol and fatty acids. In addition, we found STE12, XBP1 and TOS8 as highly connected nodes in the subnetworks of ageing yeast. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Approaches to Reflexivity: Navigating Educational and Career Pathways
ERIC Educational Resources Information Center
Dyke, Martin; Johnston, Brenda; Fuller, Alison
2012-01-01
This paper provides a critical appraisal of approaches to reflexivity in sociology. It uses data from social network research to argue that Archer's approach to reflexivity provides a valuable lens with which to understand how people navigate their education and career pathways. The paper is also critical of Archer's methodology and typology of…
A Guided Discovery Approach for Learning Metabolic Pathways
ERIC Educational Resources Information Center
Schultz, Emeric
2005-01-01
Learning the wealth of information in metabolic pathways is both challenging and overwhelming for students. A step-by-step guided discovery approach to the learning of the chemical steps in gluconeogenesis and the citric acid cycle is described. This approach starts from concepts the student already knows, develops these further in a logical…
Xtalk: a path-based approach for identifying crosstalk between signaling pathways
Tegge, Allison N.; Sharp, Nicholas; Murali, T. M.
2016-01-01
Motivation: Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. Results: We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. Availability and implementation: The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. Contact: ategge@vt.edu, murali@cs.vt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26400040
Vigre, Håkan; Domingues, Ana Rita Coutinho Calado; Pedersen, Ulrik Bo; Hald, Tine
2016-03-01
The aim of the project as the cluster analysis was to in part to develop a generic structured quantitative microbiological risk assessment (QMRA) model of human salmonellosis due to pork consumption in EU member states (MSs), and the objective of the cluster analysis was to group the EU MSs according to the relative contribution of different pathways of Salmonella in the farm-to-consumption chain of pork products. In the development of the model, by selecting a case study MS from each cluster the model was developed to represent different aspects of pig production, pork production, and consumption of pork products across EU states. The objective of the cluster analysis was to aggregate MSs into groups of countries with similar importance of different pathways of Salmonella in the farm-to-consumption chain using available, and where possible, universal register data related to the pork production and consumption in each country. Based on MS-specific information about distribution of (i) small and large farms, (ii) small and large slaughterhouses, (iii) amount of pork meat consumed, and (iv) amount of sausages consumed we used nonhierarchical and hierarchical cluster analysis to group the MSs. The cluster solutions were validated internally using statistic measures and externally by comparing the clustered MSs with an estimated human incidence of salmonellosis due to pork products in the MSs. Finally, each cluster was characterized qualitatively using the centroids of the clusters. © 2016 Society for Risk Analysis.
Han, Rongchun; Takahashi, Hiroki; Nakamura, Michimi; Bunsupa, Somnuk; Yoshimoto, Naoko; Yamamoto, Hirobumi; Suzuki, Hideyuki; Shibata, Daisuke; Yamazaki, Mami; Saito, Kazuki
2015-01-01
Sophora flavescens AITON (kurara) has long been used to treat various diseases. Although several research findings revealed the biosynthetic pathways of its characteristic chemical components as represented by matrine, insufficient analysis of transcriptome data hampered in-depth analysis of the underlying putative genes responsible for the biosynthesis of pharmaceutical chemical components. In this study, more than 200 million fastq format reads were generated by Illumina's next-generation sequencing approach using nine types of tissue from S. flavescens, followed by CLC de novo assembly, ultimately yielding 83,325 contigs in total. By mapping the reads back to the contigs, reads per kilobase of the transcript per million mapped reads values were calculated to demonstrate gene expression levels, and overrepresented gene ontology terms were evaluated using Fisher's exact test. In search of the putative genes relevant to essential metabolic pathways, all 1350 unique enzyme commission numbers were used to map pathways against the Kyoto Encyclopedia of Genes and Genomes. By analyzing expression patterns, we proposed some candidate genes involved in the biosynthesis of isoflavonoids and quinolizidine alkaloids. Adopting RNA-Seq analysis, we obtained substantially credible contigs for downstream work. The preferential expression of the gene for putative lysine/ornithine decarboxylase committed in the initial step of matrine biosynthesis in leaves and stems was confirmed in semi-quantitative polymerase chain reaction (PCR) analysis. The findings in this report may serve as a stepping-stone for further research into this promising medicinal plant.
Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola
2011-09-27
Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3β to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced by these pathways during growth or proliferation of cells that make up the ommatidia.
Qi, Quan; Li, Rui; Li, Hui-ying; Cao, Yu-bing; Bai, Ming; Fan, Xiao-jing; Wang, Shu-yan; Zhang, Bo; Li, Shao
2016-01-01
Aim: Nuciferine is an aporphine alkaloid extracted from lotus leaves, which is a raw material in Chinese medicinal herb for weight loss. In this study we used a network pharmacology approach to identify the anti-tumor activity of nuciferine and the underlying mechanisms. Methods: The pharmacological activities and mechanisms of nuciferine were identified through target profile prediction, clustering analysis and functional enrichment analysis using our traditional Chinese medicine (TCM) network pharmacology platform. The anti-tumor activity of nuciferine was validated by in vitro and in vivo experiments. The anti-tumor mechanisms of nuciferine were predicted through network target analysis and verified by in vitro experiments. Results: The nuciferine target profile was enriched with signaling pathways and biological functions, including “regulation of lipase activity”, “response to nicotine” and “regulation of cell proliferation”. Target profile clustering results suggested that nuciferine to exert anti-tumor effect. In experimental validation, nuciferine (0.8 mg/mL) markedly inhibited the viability of human neuroblastoma SY5Y cells and mouse colorectal cancer CT26 cells in vitro, and nuciferine (0.05 mg/mL) significantly suppressed the invasion of 6 cancer cell lines in vitro. Intraperitoneal injection of nuciferine (9.5 mg/mL, ip, 3 times a week for 3 weeks) significantly decreased the weight of SY5Y and CT26 tumor xenografts in nude mice. Network target analysis and experimental validation in SY5Y and CT26 cells showed that the anti-tumor effect of nuciferine was mediated through inhibiting the PI3K-AKT signaling pathway and IL-1 levels in SY5Y and CT26 cells. Conclusion: By using a TCM network pharmacology method, nuciferine is identified as an anti-tumor agent against human neuroblastoma and mouse colorectal cancer in vitro and in vivo, through inhibiting the PI3K-AKT signaling pathways and IL-1 levels. PMID:27180984
Johnstone, Daniel M.; Riveros, Carlos; Heidari, Moones; Graham, Ross M.; Trinder, Debbie; Berretta, Regina; Olynyk, John K.; Scott, Rodney J.; Moscato, Pablo; Milward, Elizabeth A.
2013-01-01
While Illumina microarrays can be used successfully for detecting small gene expression changes due to their high degree of technical replicability, there is little information on how different normalization and differential expression analysis strategies affect outcomes. To evaluate this, we assessed concordance across gene lists generated by applying different combinations of normalization strategy and analytical approach to two Illumina datasets with modest expression changes. In addition to using traditional statistical approaches, we also tested an approach based on combinatorial optimization. We found that the choice of both normalization strategy and analytical approach considerably affected outcomes, in some cases leading to substantial differences in gene lists and subsequent pathway analysis results. Our findings suggest that important biological phenomena may be overlooked when there is a routine practice of using only one approach to investigate all microarray datasets. Analytical artefacts of this kind are likely to be especially relevant for datasets involving small fold changes, where inherent technical variation—if not adequately minimized by effective normalization—may overshadow true biological variation. This report provides some basic guidelines for optimizing outcomes when working with Illumina datasets involving small expression changes. PMID:27605185
Rai, Richa; Chauhan, Sudhir Kumar; Singh, Vikas Vikram; Rai, Madhukar; Rai, Geeta
2016-01-01
Systemic lupus erythematosus (SLE) patients exhibit immense heterogeneity which is challenging from the diagnostic perspective. Emerging high throughput sequencing technologies have been proved to be a useful platform to understand the complex and dynamic disease processes. SLE patients categorised based on autoantibody specificities are reported to have differential immuno-regulatory mechanisms. Therefore, we performed RNA-seq analysis to identify transcriptomics of SLE patients with distinguished autoantibody specificities. The SLE patients were segregated into three subsets based on the type of autoantibodies present in their sera (anti-dsDNA+ group with anti-dsDNA autoantibody alone; anti-ENA+ group having autoantibodies against extractable nuclear antigens (ENA) only, and anti-dsDNA+ENA+ group having autoantibodies to both dsDNA and ENA). Global transcriptome profiling for each SLE patients subsets was performed using Illumina® Hiseq-2000 platform. The biological relevance of dysregulated transcripts in each SLE subsets was assessed by ingenuity pathway analysis (IPA) software. We observed that dysregulation in the transcriptome expression pattern was clearly distinct in each SLE patients subsets. IPA analysis of transcripts uniquely expressed in different SLE groups revealed specific biological pathways to be affected in each SLE subsets. Multiple cytokine signaling pathways were specifically dysregulated in anti-dsDNA+ patients whereas Interferon signaling was predominantly dysregulated in anti-ENA+ patients. In anti-dsDNA+ENA+ patients regulation of actin based motility by Rho pathway was significantly affected. The granulocyte gene signature was a common feature to all SLE subsets; however, anti-dsDNA+ group showed relatively predominant expression of these genes. Dysregulation of Plasma cell related transcripts were higher in anti-dsDNA+ and anti-ENA+ patients as compared to anti-dsDNA+ ENA+. Association of specific canonical pathways with the uniquely expressed transcripts in each SLE subgroup indicates that specific immunological disease mechanisms are operative in distinct SLE patients’ subsets. This ‘sub-grouping’ approach could further be useful for clinical evaluation of SLE patients and devising targeted therapeutics. PMID:27835693
Identification of Key Pathways and Genes in the Dynamic Progression of HCC Based on WGCNA.
Yin, Li; Cai, Zhihui; Zhu, Baoan; Xu, Cunshuan
2018-02-14
Hepatocellular carcinoma (HCC) is a devastating disease worldwide. Though many efforts have been made to elucidate the process of HCC, its molecular mechanisms of development remain elusive due to its complexity. To explore the stepwise carcinogenic process from pre-neoplastic lesions to the end stage of HCC, we employed weighted gene co-expression network analysis (WGCNA) which has been proved to be an effective method in many diseases to detect co-expressed modules and hub genes using eight pathological stages including normal, cirrhosis without HCC, cirrhosis, low-grade dysplastic, high-grade dysplastic, very early and early, advanced HCC and very advanced HCC. Among the eight consecutive pathological stages, five representative modules are selected to perform canonical pathway enrichment and upstream regulator analysis by using ingenuity pathway analysis (IPA) software. We found that cell cycle related biological processes were activated at four neoplastic stages, and the degree of activation of the cell cycle corresponded to the deterioration degree of HCC. The orange and yellow modules enriched in energy metabolism, especially oxidative metabolism, and the expression value of the genes decreased only at four neoplastic stages. The brown module, enriched in protein ubiquitination and ephrin receptor signaling pathways, correlated mainly with the very early stage of HCC. The darkred module, enriched in hepatic fibrosis/hepatic stellate cell activation, correlated with the cirrhotic stage only. The high degree hub genes were identified based on the protein-protein interaction (PPI) network and were verified by Kaplan-Meier survival analysis. The novel five high degree hub genes signature that was identified in our study may shed light on future prognostic and therapeutic approaches. Our study brings a new perspective to the understanding of the key pathways and genes in the dynamic changes of HCC progression. These findings shed light on further investigations.
2010-01-01
Background Osteosarcoma (OSA) spontaneously arises in the appendicular skeleton of large breed dogs and shares many physiological and molecular biological characteristics with human OSA. The standard treatment for OSA in both species is amputation or limb-sparing surgery, followed by chemotherapy. Unfortunately, OSA is an aggressive cancer with a high metastatic rate. Characterization of OSA with regard to its metastatic potential and chemotherapeutic resistance will improve both prognostic capabilities and treatment modalities. Methods We analyzed archived primary OSA tissue from dogs treated with limb amputation followed by doxorubicin or platinum-based drug chemotherapy. Samples were selected from two groups: dogs with disease free intervals (DFI) of less than 100 days (n = 8) and greater than 300 days (n = 7). Gene expression was assessed with Affymetrix Canine 2.0 microarrays and analyzed with a two-tailed t-test. A subset of genes was confirmed using qRT-PCR and used in classification analysis to predict prognosis. Systems-based gene ontology analysis was conducted on genes selected using a standard J5 metric. The genes identified using this approach were converted to their human homologues and assigned to functional pathways using the GeneGo MetaCore platform. Results Potential biomarkers were identified using gene expression microarray analysis and 11 differentially expressed (p < 0.05) genes were validated with qRT-PCR (n = 10/group). Statistical classification models using the qRT-PCR profiles predicted patient outcomes with 100% accuracy in the training set and up to 90% accuracy upon stratified cross validation. Pathway analysis revealed alterations in pathways associated with oxidative phosphorylation, hedgehog and parathyroid hormone signaling, cAMP/Protein Kinase A (PKA) signaling, immune responses, cytoskeletal remodeling and focal adhesion. Conclusions This profiling study has identified potential new biomarkers to predict patient outcome in OSA and new pathways that may be targeted for therapeutic intervention. PMID:20860831
Pendse, Salil N; Maertens, Alexandra; Rosenberg, Michael; Roy, Dipanwita; Fasani, Rick A; Vantangoli, Marguerite M; Madnick, Samantha J; Boekelheide, Kim; Fornace, Albert J; Odwin, Shelly-Ann; Yager, James D; Hartung, Thomas; Andersen, Melvin E; McMullen, Patrick D
2017-04-01
The twenty-first century vision for toxicology involves a transition away from high-dose animal studies to in vitro and computational models (NRC in Toxicity testing in the 21st century: a vision and a strategy, The National Academies Press, Washington, DC, 2007). This transition requires mapping pathways of toxicity by understanding how in vitro systems respond to chemical perturbation. Uncovering transcription factors/signaling networks responsible for gene expression patterns is essential for defining pathways of toxicity, and ultimately, for determining the chemical modes of action through which a toxicant acts. Traditionally, transcription factor identification is achieved via chromatin immunoprecipitation studies and summarized by calculating which transcription factors are statistically associated with up- and downregulated genes. These lists are commonly determined via statistical or fold-change cutoffs, a procedure that is sensitive to statistical power and may not be as useful for determining transcription factor associations. To move away from an arbitrary statistical or fold-change-based cutoff, we developed, in the context of the Mapping the Human Toxome project, an enrichment paradigm called information-dependent enrichment analysis (IDEA) to guide identification of the transcription factor network. We used a test case of activation in MCF-7 cells by 17β estradiol (E2). Using this new approach, we established a time course for transcriptional and functional responses to E2. ERα and ERβ were associated with short-term transcriptional changes in response to E2. Sustained exposure led to recruitment of additional transcription factors and alteration of cell cycle machinery. TFAP2C and SOX2 were the transcription factors most highly correlated with dose. E2F7, E2F1, and Foxm1, which are involved in cell proliferation, were enriched only at 24 h. IDEA should be useful for identifying candidate pathways of toxicity. IDEA outperforms gene set enrichment analysis (GSEA) and provides similar results to weighted gene correlation network analysis, a platform that helps to identify genes not annotated to pathways.
Statistical and methodological issues in the evaluation of case management studies.
Lesser, M L; Robertson, S; Kohn, N; Cooper, D J; Dlugacz, Y D
1996-01-01
For the past 3 years, the nursing case management team at North Shore University Hospital in Manhasset, NY, has been involved in a project to implement more than 50 clinical pathways, which provide a written "time line" for clinical events that should occur during a patient's hospital stay. A major objective of this project was to evaluate the efficacy of these pathways with respect to a number of important outcomes, such as length of stay, hospital costs, quality of patient care, and nursing and patient satisfaction. This article discusses several statistics-related issues in the design and evaluation of such case management studies. In particular, the role of a research approach in implementing and evaluating hospital programs, the choice of a comparison (control) group, the exclusion of selected patients from analysis, and the problems of equating pathways with diagnosis-related groups are addressed.
Interference of interchromophoric energy-transfer pathways in π-conjugated macrocycles
Alfonso Hernandez, Laura; Nelson, Tammie Renee; Gelin, Maxim F.; ...
2016-11-10
The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene–ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unitmore » but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Finally, simulation results are validated by modeling the fluorescence anisotropy decay.« less
Is Phosphoproteomics Ready for Clinical Research?
Iliuk, Anton B.; Tao, W. Andy
2012-01-01
Background For many diseases such as cancer where phosphorylation-dependent signaling is the foundation of disease onset and progression, single-gene testing and genomic profiling alone are not sufficient in providing most critical information. The reason for this is that in these activated pathways the signaling changes and drug resistance are often not directly correlated with changes in protein expression levels. In order to obtain the essential information needed to evaluate pathway activation or the effects of certain drugs and therapies on the molecular level, the analysis of changes in protein phosphorylation is critical. Methods Existing approaches do not differentiate clinical disease subtypes on the protein and signaling pathway level, and therefore hamper the predictive management of the disease and the selection of therapeutic targets. Conclusions The mini-review examines the impact of emerging systems biology tools and the possibility of applying phosphoproteomics to clinical research. PMID:23159844
Cloud computing approaches for prediction of ligand binding poses and pathways.
Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S
2015-01-22
We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.