Comparative study on gene set and pathway topology-based enrichment methods.
Bayerlová, Michaela; Jung, Klaus; Kramer, Frank; Klemm, Florian; Bleckmann, Annalen; Beißbarth, Tim
2015-10-22
Enrichment analysis is a popular approach to identify pathways or sets of genes which are significantly enriched in the context of differentially expressed genes. The traditional gene set enrichment approach considers a pathway as a simple gene list disregarding any knowledge of gene or protein interactions. In contrast, the new group of so called pathway topology-based methods integrates the topological structure of a pathway into the analysis. We comparatively investigated gene set and pathway topology-based enrichment approaches, considering three gene set and four topological methods. These methods were compared in two extensive simulation studies and on a benchmark of 36 real datasets, providing the same pathway input data for all methods. In the benchmark data analysis both types of methods showed a comparable ability to detect enriched pathways. The first simulation study was conducted with KEGG pathways, which showed considerable gene overlaps between each other. In this study with original KEGG pathways, none of the topology-based methods outperformed the gene set approach. Therefore, a second simulation study was performed on non-overlapping pathways created by unique gene IDs. Here, methods accounting for pathway topology reached higher accuracy than the gene set methods, however their sensitivity was lower. We conducted one of the first comprehensive comparative works on evaluating gene set against pathway topology-based enrichment methods. The topological methods showed better performance in the simulation scenarios with non-overlapping pathways, however, they were not conclusively better in the other scenarios. This suggests that simple gene set approach might be sufficient to detect an enriched pathway under realistic circumstances. Nevertheless, more extensive studies and further benchmark data are needed to systematically evaluate these methods and to assess what gain and cost pathway topology information introduces into enrichment analysis. Both types of methods for enrichment analysis require further improvements in order to deal with the problem of pathway overlaps.
Pathway Analysis in Attention Deficit Hyperactivity Disorder: An Ensemble Approach
Mooney, Michael A.; McWeeney, Shannon K.; Faraone, Stephen V.; Hinney, Anke; Hebebrand, Johannes; Nigg, Joel T.; Wilmot, Beth
2016-01-01
Despite a wealth of evidence for the role of genetics in attention deficit hyperactivity disorder (ADHD), specific and definitive genetic mechanisms have not been identified. Pathway analyses, a subset of gene-set analyses, extend the knowledge gained from genome-wide association studies (GWAS) by providing functional context for genetic associations. However, there are numerous methods for association testing of gene sets and no real consensus regarding the best approach. The present study applied six pathway analysis methods to identify pathways associated with ADHD in two GWAS datasets from the Psychiatric Genomics Consortium. Methods that utilize genotypes to model pathway-level effects identified more replicable pathway associations than methods using summary statistics. In addition, pathways implicated by more than one method were significantly more likely to replicate. A number of brain-relevant pathways, such as RhoA signaling, glycosaminoglycan biosynthesis, fibroblast growth factor receptor activity, and pathways containing potassium channel genes, were nominally significant by multiple methods in both datasets. These results support previous hypotheses about the role of regulation of neurotransmitter release, neurite outgrowth and axon guidance in contributing to the ADHD phenotype and suggest the value of cross-method convergence in evaluating pathway analysis results. PMID:27004716
Ozerov, Ivan V; Lezhnina, Ksenia V; Izumchenko, Evgeny; Artemov, Artem V; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N; Labat, Ivan; West, Michael D; Buzdin, Anton; Cantor, Charles R; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex
2016-11-16
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy.
Ozerov, Ivan V.; Lezhnina, Ksenia V.; Izumchenko, Evgeny; Artemov, Artem V.; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N.; Labat, Ivan; West, Michael D.; Buzdin, Anton; Cantor, Charles R.; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex
2016-01-01
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy. PMID:27848968
PathFinder: reconstruction and dynamic visualization of metabolic pathways.
Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert
2002-01-01
Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.
ESEA: Discovering the Dysregulated Pathways based on Edge Set Enrichment Analysis
Han, Junwei; Shi, Xinrui; Zhang, Yunpeng; Xu, Yanjun; Jiang, Ying; Zhang, Chunlong; Feng, Li; Yang, Haixiu; Shang, Desi; Sun, Zeguo; Su, Fei; Li, Chunquan; Li, Xia
2015-01-01
Pathway analyses are playing an increasingly important role in understanding biological mechanism, cellular function and disease states. Current pathway-identification methods generally focus on only the changes of gene expression levels; however, the biological relationships among genes are also the fundamental components of pathways, and the dysregulated relationships may also alter the pathway activities. We propose a powerful computational method, Edge Set Enrichment Analysis (ESEA), for the identification of dysregulated pathways. This provides a novel way of pathway analysis by investigating the changes of biological relationships of pathways in the context of gene expression data. Simulation studies illustrate the power and performance of ESEA under various simulated conditions. Using real datasets from p53 mutation, Type 2 diabetes and lung cancer, we validate effectiveness of ESEA in identifying dysregulated pathways. We further compare our results with five other pathway enrichment analysis methods. With these analyses, we show that ESEA is able to help uncover dysregulated biological pathways underlying complex traits and human diseases via specific use of the dysregulated biological relationships. We develop a freely available R-based tool of ESEA. Currently, ESEA can support pathway analysis of the seven public databases (KEGG; Reactome; Biocarta; NCI; SPIKE; HumanCyc; Panther). PMID:26267116
Methods and approaches in the topology-based analysis of biological pathways
Mitrea, Cristina; Taghavi, Zeinab; Bokanizad, Behzad; Hanoudi, Samer; Tagett, Rebecca; Donato, Michele; Voichiţa, Călin; Drăghici, Sorin
2013-01-01
The goal of pathway analysis is to identify the pathways significantly impacted in a given phenotype. Many current methods are based on algorithms that consider pathways as simple gene lists, dramatically under-utilizing the knowledge that such pathways are meant to capture. During the past few years, a plethora of methods claiming to incorporate various aspects of the pathway topology have been proposed. These topology-based methods, sometimes referred to as “third generation,” have the potential to better model the phenomena described by pathways. Although there is now a large variety of approaches used for this purpose, no review is currently available to offer guidance for potential users and developers. This review covers 22 such topology-based pathway analysis methods published in the last decade. We compare these methods based on: type of pathways analyzed (e.g., signaling or metabolic), input (subset of genes, all genes, fold changes, gene p-values, etc.), mathematical models, pathway scoring approaches, output (one or more pathway scores, p-values, etc.) and implementation (web-based, standalone, etc.). We identify and discuss challenges, arising both in methodology and in pathway representation, including inconsistent terminology, different data formats, lack of meaningful benchmarks, and the lack of tissue and condition specificity. PMID:24133454
Chen, Xiao-Min; Feng, Ming-Jun; Shen, Cai-Jie; He, Bin; Du, Xian-Feng; Yu, Yi-Bo; Liu, Jing; Chu, Hui-Min
2017-07-01
The present study was designed to develop a novel method for identifying significant pathways associated with human hypertrophic cardiomyopathy (HCM), based on gene co‑expression analysis. The microarray dataset associated with HCM (E‑GEOD‑36961) was obtained from the European Molecular Biology Laboratory‑European Bioinformatics Institute database. Informative pathways were selected based on the Reactome pathway database and screening treatments. An empirical Bayes method was utilized to construct co‑expression networks for informative pathways, and a weight value was assigned to each pathway. Differential pathways were extracted based on weight threshold, which was calculated using a random model. In order to assess whether the co‑expression method was feasible, it was compared with traditional pathway enrichment analysis of differentially expressed genes, which were identified using the significance analysis of microarrays package. A total of 1,074 informative pathways were screened out for subsequent investigations and their weight values were also obtained. According to the threshold of weight value of 0.01057, 447 differential pathways, including folding of actin by chaperonin containing T‑complex protein 1 (CCT)/T‑complex protein 1 ring complex (TRiC), purine ribonucleoside monophosphate biosynthesis and ubiquinol biosynthesis, were obtained. Compared with traditional pathway enrichment analysis, the number of pathways obtained from the co‑expression approach was increased. The results of the present study demonstrated that this method may be useful to predict marker pathways for HCM. The pathways of folding of actin by CCT/TRiC and purine ribonucleoside monophosphate biosynthesis may provide evidence of the underlying molecular mechanisms of HCM, and offer novel therapeutic directions for HCM.
Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.
Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying
2017-06-01
Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RP<0.01 were defined as critical pathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RP<0.01, and the top 10 pathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing diagnosis and therapy of neonatal sepsis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Han, Junwei; Li, Chunquan; Yang, Haixiu; Xu, Yanjun; Zhang, Chunlong; Ma, Jiquan; Shi, Xinrui; Liu, Wei; Shang, Desi; Yao, Qianlan; Zhang, Yunpeng; Su, Fei; Feng, Li; Li, Xia
2015-01-01
Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI). PMID:25551156
Jo, Kyuri; Jung, Inuk; Moon, Ji Hwan; Kim, Sun
2016-01-01
Motivation: To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension. Results: In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in TF-Pathway map in time clock. TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway. Availability and Implementation: TimeTP is implemented in Python and available at http://biohealth.snu.ac.kr/software/TimeTP/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: sunkim.bioinfo@snu.ac.kr PMID:27307609
A strategy for evaluating pathway analysis methods.
Yu, Chenggang; Woo, Hyung Jun; Yu, Xueping; Oyama, Tatsuya; Wallqvist, Anders; Reifman, Jaques
2017-10-13
Researchers have previously developed a multitude of methods designed to identify biological pathways associated with specific clinical or experimental conditions of interest, with the aim of facilitating biological interpretation of high-throughput data. Before practically applying such pathway analysis (PA) methods, we must first evaluate their performance and reliability, using datasets where the pathways perturbed by the conditions of interest have been well characterized in advance. However, such 'ground truths' (or gold standards) are often unavailable. Furthermore, previous evaluation strategies that have focused on defining 'true answers' are unable to systematically and objectively assess PA methods under a wide range of conditions. In this work, we propose a novel strategy for evaluating PA methods independently of any gold standard, either established or assumed. The strategy involves the use of two mutually complementary metrics, recall and discrimination. Recall measures the consistency of the perturbed pathways identified by applying a particular analysis method to an original large dataset and those identified by the same method to a sub-dataset of the original dataset. In contrast, discrimination measures specificity-the degree to which the perturbed pathways identified by a particular method to a dataset from one experiment differ from those identifying by the same method to a dataset from a different experiment. We used these metrics and 24 datasets to evaluate six widely used PA methods. The results highlighted the common challenge in reliably identifying significant pathways from small datasets. Importantly, we confirmed the effectiveness of our proposed dual-metric strategy by showing that previous comparative studies corroborate the performance evaluations of the six methods obtained by our strategy. Unlike any previously proposed strategy for evaluating the performance of PA methods, our dual-metric strategy does not rely on any ground truth, either established or assumed, of the pathways perturbed by a specific clinical or experimental condition. As such, our strategy allows researchers to systematically and objectively evaluate pathway analysis methods by employing any number of datasets for a variety of conditions.
Li, Qike; Schissler, A Grant; Gardeux, Vincent; Achour, Ikbel; Kenost, Colleen; Berghout, Joanne; Li, Haiquan; Zhang, Hao Helen; Lussier, Yves A
2017-05-24
Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.
Fan, Wufeng; Zhou, Yuhan; Li, Hao
2017-01-01
In our study, we aimed to extract dysregulated pathways in human monocytes infected by Listeria monocytogenes (LM) based on pathway interaction network (PIN) which presented the functional dependency between pathways. After genes were aligned to the pathways, principal component analysis (PCA) was used to calculate the pathway activity for each pathway, followed by detecting seed pathway. A PIN was constructed based on gene expression profile, protein-protein interactions (PPIs), and cellular pathways. Identifying dysregulated pathways from the PIN was performed relying on seed pathway and classification accuracy. To evaluate whether the PIN method was feasible or not, we compared the introduced method with standard network centrality measures. The pathway of RNA polymerase II pretranscription events was selected as the seed pathway. Taking this seed pathway as start, one pathway set (9 dysregulated pathways) with AUC score of 1.00 was identified. Among the 5 hub pathways obtained using standard network centrality measures, 4 pathways were the common ones between the two methods. RNA polymerase II transcription and DNA replication owned a higher number of pathway genes and DEGs. These dysregulated pathways work together to influence the progression of LM infection, and they will be available as biomarkers to diagnose LM infection.
Wei, Shi-Tong; Sun, Yong-Hua; Zong, Shi-Hua
2017-09-01
The aim of the current study was to identify hub pathways of rheumatoid arthritis (RA) using a novel method based on differential pathway network (DPN) analysis. The present study proposed a DPN where protein‑protein interaction (PPI) network was integrated with pathway‑pathway interactions. Pathway data was obtained from background PPI network and the Reactome pathway database. Subsequently, pathway interactions were extracted from the pathway data by building randomized gene‑gene interactions and a weight value was assigned to each pathway interaction using Spearman correlation coefficient (SCC) to identify differential pathway interactions. Differential pathway interactions were visualized using Cytoscape to construct a DPN. Topological analysis was conducted to identify hub pathways that possessed the top 5% degree distribution of DPN. Modules of DPN were mined according to ClusterONE. A total of 855 pathways were selected to build pathway interactions. By filtrating pathway interactions of weight values >0.7, a DPN with 312 nodes and 791 edges was obtained. Topological degree analysis revealed 15 hub pathways, such as heparan sulfate/heparin‑glycosaminoglycan (HS‑GAG) degradation, HS‑GAG metabolism and keratan sulfate degradation for RA based on DPN. Furthermore, hub pathways were also important in modules, which validated the significance of hub pathways. In conclusion, the proposed method is a computationally efficient way to identify hub pathways of RA, which identified 15 hub pathways that may be potential biomarkers and provide insight to future investigation and treatment of RA.
Yi, Ming; Stephens, Robert M.
2008-01-01
Analysis of microarray and other high throughput data often involves identification of genes consistently up or down-regulated across samples as the first step in extraction of biological meaning. This gene-level paradigm can be limited as a result of valid sample fluctuations and biological complexities. In this report, we describe a novel method, SLEPR, which eliminates this limitation by relying on pathway-level consistencies. Our method first selects the sample-level differentiated genes from each individual sample, capturing genes missed by other analysis methods, ascertains the enrichment levels of associated pathways from each of those lists, and then ranks annotated pathways based on the consistency of enrichment levels of individual samples from both sample classes. As a proof of concept, we have used this method to analyze three public microarray datasets with a direct comparison with the GSEA method, one of the most popular pathway-level analysis methods in the field. We found that our method was able to reproduce the earlier observations with significant improvements in depth of coverage for validated or expected biological themes, but also produced additional insights that make biological sense. This new method extends existing analyses approaches and facilitates integration of different types of HTP data. PMID:18818771
Pathway Distiller - multisource biological pathway consolidation
2012-01-01
Background One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. Methods After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. Results We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. Conclusions By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments. PMID:23134636
Pathway analysis with next-generation sequencing data.
Zhao, Jinying; Zhu, Yun; Boerwinkle, Eric; Xiong, Momiao
2015-04-01
Although pathway analysis methods have been developed and successfully applied to association studies of common variants, the statistical methods for pathway-based association analysis of rare variants have not been well developed. Many investigators observed highly inflated false-positive rates and low power in pathway-based tests of association of rare variants. The inflated false-positive rates and low true-positive rates of the current methods are mainly due to their lack of ability to account for gametic phase disequilibrium. To overcome these serious limitations, we develop a novel statistic that is based on the smoothed functional principal component analysis (SFPCA) for pathway association tests with next-generation sequencing data. The developed statistic has the ability to capture position-level variant information and account for gametic phase disequilibrium. By intensive simulations, we demonstrate that the SFPCA-based statistic for testing pathway association with either rare or common or both rare and common variants has the correct type 1 error rates. Also the power of the SFPCA-based statistic and 22 additional existing statistics are evaluated. We found that the SFPCA-based statistic has a much higher power than other existing statistics in all the scenarios considered. To further evaluate its performance, the SFPCA-based statistic is applied to pathway analysis of exome sequencing data in the early-onset myocardial infarction (EOMI) project. We identify three pathways significantly associated with EOMI after the Bonferroni correction. In addition, our preliminary results show that the SFPCA-based statistic has much smaller P-values to identify pathway association than other existing methods.
Pathway Distiller - multisource biological pathway consolidation.
Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong
2012-01-01
One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments.
Pathway analysis of high-throughput biological data within a Bayesian network framework.
Isci, Senol; Ozturk, Cengizhan; Jones, Jon; Otu, Hasan H
2011-06-15
Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Proposed method takes into account the connectivity and relatedness between nodes of the pathway through factoring pathway topology in its model. Our simulations using synthetic data demonstrated robustness of our approach. We tested proposed method, Bayesian Pathway Analysis (BPA), on human microarray data regarding renal cell carcinoma (RCC) and compared our results with gene set enrichment analysis. BPA was able to find broader and more specific pathways related to RCC. Accompanying BPA software (BPAS) package is freely available for academic use at http://bumil.boun.edu.tr/bpa.
Prioritizing biological pathways by recognizing context in time-series gene expression data.
Lee, Jusang; Jo, Kyuri; Lee, Sunwon; Kang, Jaewoo; Kim, Sun
2016-12-23
The primary goal of pathway analysis using transcriptome data is to find significantly perturbed pathways. However, pathway analysis is not always successful in identifying pathways that are truly relevant to the context under study. A major reason for this difficulty is that a single gene is involved in multiple pathways. In the KEGG pathway database, there are 146 genes, each of which is involved in more than 20 pathways. Thus activation of even a single gene will result in activation of many pathways. This complex relationship often makes the pathway analysis very difficult. While we need much more powerful pathway analysis methods, a readily available alternative way is to incorporate the literature information. In this study, we propose a novel approach for prioritizing pathways by combining results from both pathway analysis tools and literature information. The basic idea is as follows. Whenever there are enough articles that provide evidence on which pathways are relevant to the context, we can be assured that the pathways are indeed related to the context, which is termed as relevance in this paper. However, if there are few or no articles reported, then we should rely on the results from the pathway analysis tools, which is termed as significance in this paper. We realized this concept as an algorithm by introducing Context Score and Impact Score and then combining the two into a single score. Our method ranked truly relevant pathways significantly higher than existing pathway analysis tools in experiments with two data sets. Our novel framework was implemented as ContextTRAP by utilizing two existing tools, TRAP and BEST. ContextTRAP will be a useful tool for the pathway based analysis of gene expression data since the user can specify the context of the biological experiment in a set of keywords. The web version of ContextTRAP is available at http://biohealth.snu.ac.kr/software/contextTRAP .
Meta-analysis of pathway enrichment: combining independent and dependent omics data sets.
Kaever, Alexander; Landesfeind, Manuel; Feussner, Kirstin; Morgenstern, Burkhard; Feussner, Ivo; Meinicke, Peter
2014-01-01
A major challenge in current systems biology is the combination and integrative analysis of large data sets obtained from different high-throughput omics platforms, such as mass spectrometry based Metabolomics and Proteomics or DNA microarray or RNA-seq-based Transcriptomics. Especially in the case of non-targeted Metabolomics experiments, where it is often impossible to unambiguously map ion features from mass spectrometry analysis to metabolites, the integration of more reliable omics technologies is highly desirable. A popular method for the knowledge-based interpretation of single data sets is the (Gene) Set Enrichment Analysis. In order to combine the results from different analyses, we introduce a methodical framework for the meta-analysis of p-values obtained from Pathway Enrichment Analysis (Set Enrichment Analysis based on pathways) of multiple dependent or independent data sets from different omics platforms. For dependent data sets, e.g. obtained from the same biological samples, the framework utilizes a covariance estimation procedure based on the nonsignificant pathways in single data set enrichment analysis. The framework is evaluated and applied in the joint analysis of Metabolomics mass spectrometry and Transcriptomics DNA microarray data in the context of plant wounding. In extensive studies of simulated data set dependence, the introduced correlation could be fully reconstructed by means of the covariance estimation based on pathway enrichment. By restricting the range of p-values of pathways considered in the estimation, the overestimation of correlation, which is introduced by the significant pathways, could be reduced. When applying the proposed methods to the real data sets, the meta-analysis was shown not only to be a powerful tool to investigate the correlation between different data sets and summarize the results of multiple analyses but also to distinguish experiment-specific key pathways.
Dai, Hongying; Wu, Guodong; Wu, Michael; Zhi, Degui
2016-01-01
Next-generation sequencing data pose a severe curse of dimensionality, complicating traditional "single marker-single trait" analysis. We propose a two-stage combined p-value method for pathway analysis. The first stage is at the gene level, where we integrate effects within a gene using the Sequence Kernel Association Test (SKAT). The second stage is at the pathway level, where we perform a correlated Lancaster procedure to detect joint effects from multiple genes within a pathway. We show that the Lancaster procedure is optimal in Bahadur efficiency among all combined p-value methods. The Bahadur efficiency,[Formula: see text], compares sample sizes among different statistical tests when signals become sparse in sequencing data, i.e. ε →0. The optimal Bahadur efficiency ensures that the Lancaster procedure asymptotically requires a minimal sample size to detect sparse signals ([Formula: see text]). The Lancaster procedure can also be applied to meta-analysis. Extensive empirical assessments of exome sequencing data show that the proposed method outperforms Gene Set Enrichment Analysis (GSEA). We applied the competitive Lancaster procedure to meta-analysis data generated by the Global Lipids Genetics Consortium to identify pathways significantly associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.
Wilson, Paul; Larminie, Christopher; Smith, Rona
2016-01-01
To use literature mining to catalogue Behçet's associated genes, and advanced computational methods to improve the understanding of the pathways and signalling mechanisms that lead to the typical clinical characteristics of Behçet's patients. To extend this technique to identify potential treatment targets for further experimental validation. Text mining methods combined with gene enrichment tools, pathway analysis and causal analysis algorithms. This approach identified 247 human genes associated with Behçet's disease and the resulting disease map, comprising 644 nodes and 19220 edges, captured important details of the relationships between these genes and their associated pathways, as described in diverse data repositories. Pathway analysis has identified how Behçet's associated genes are likely to participate in innate and adaptive immune responses. Causal analysis algorithms have identified a number of potential therapeutic strategies for further investigation. Computational methods have captured pertinent features of the prominent disease characteristics presented in Behçet's disease and have highlighted NOD2, ICOS and IL18 signalling as potential therapeutic strategies.
Barnes, Stephen; Benton, H. Paul; Casazza, Krista; Cooper, Sara; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H.; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K.; Renfrow, Matthew B.; Tiwari, Hemant K.
2017-01-01
Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites, and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. This second part of a comprehensive description of the methods of metabolomics focuses on data analysis, emerging methods in metabolomics and the future of this discipline. PMID:28239968
Jo, Kyuri; Kwon, Hawk-Bin; Kim, Sun
2014-06-01
Measuring expression levels of genes at the whole genome level can be useful for many purposes, especially for revealing biological pathways underlying specific phenotype conditions. When gene expression is measured over a time period, we have opportunities to understand how organisms react to stress conditions over time. Thus many biologists routinely measure whole genome level gene expressions at multiple time points. However, there are several technical difficulties for analyzing such whole genome expression data. In addition, these days gene expression data is often measured by using RNA-sequencing rather than microarray technologies and then analysis of expression data is much more complicated since the analysis process should start with mapping short reads and produce differentially activated pathways and also possibly interactions among pathways. In addition, many useful tools for analyzing microarray gene expression data are not applicable for the RNA-seq data. Thus a comprehensive package for analyzing time series transcriptome data is much needed. In this article, we present a comprehensive package, Time-series RNA-seq Analysis Package (TRAP), integrating all necessary tasks such as mapping short reads, measuring gene expression levels, finding differentially expressed genes (DEGs), clustering and pathway analysis for time-series data in a single environment. In addition to implementing useful algorithms that are not available for RNA-seq data, we extended existing pathway analysis methods, ORA and SPIA, for time series analysis and estimates statistical values for combined dataset by an advanced metric. TRAP also produces visual summary of pathway interactions. Gene expression change labeling, a practical clustering method used in TRAP, enables more accurate interpretation of the data when combined with pathway analysis. We applied our methods on a real dataset for the analysis of rice (Oryza sativa L. Japonica nipponbare) upon drought stress. The result showed that TRAP was able to detect pathways more accurately than several existing methods. TRAP is available at http://biohealth.snu.ac.kr/software/TRAP/. Copyright © 2014 Elsevier Inc. All rights reserved.
Techno-economic analysis of biofuel production considering logistic configurations.
Li, Qi; Hu, Guiping
2016-04-01
In the study, a techno-economic analysis method considering logistic configurations is proposed. The economic feasibility of a low temperature biomass gasification pathway and an integrated pathway with fast pyrolysis and bio-oil gasification are evaluated and compared with the proposed method in Iowa. The results show that both pathways are profitable, biomass gasification pathway could achieve an Internal Rate of Return (IRR) of 10.00% by building a single biorefinery and integrated bio-oil gasification pathway could achieve an IRR of 3.32% by applying decentralized supply chain structure. A Monte-Carlo simulation considering interactions among parameters is also proposed and conducted, which indicates that both pathways are at high risk currently. Copyright © 2016 Elsevier Ltd. All rights reserved.
RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG
2015-01-01
The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425
Jaegle, Benjamin; Uroic, Miran Kalle; Holtkotte, Xu; Lucas, Christina; Termath, Andreas Ole; Schmalz, Hans-Günther; Bucher, Marcel; Hoecker, Ute; Hülskamp, Martin; Schrader, Andrea
2016-09-01
(Pro)anthocyanidins are synthesized by the flavonoid biosynthesis pathway with multi-layered regulatory control. Methods for the analysis of the flavonoid composition in plants are well established for different purposes. However, they typically compromise either on speed or on depth of analysis. In this work we combined and optimized different protocols to enable the analysis of the flavonoid biosynthesis pathway with as little as possible biological material. We chose core substances of this metabolic pathway that serve as a fingerprint to recognize alterations in the main branches of the pathway. We used a simplified sample preparation, two deuterated internal standards, a short and efficient LC separation, highly sensitive detection with tandem MS in multiple reaction monitoring (MRM) mode and hydrolytic release of the core substances to reduce complexity. The method was optimized for Arabidopsis thaliana seeds and seedlings. We demonstrate that one Col-0 seed/seedling is sufficient to obtain a fingerprint of the core substances of the flavonoid biosynthesis pathway. For comparative analysis of different genotypes, we suggest the use of 10 seed(lings). The analysis of Arabidopsis thaliana mutants affecting steps in the pathway revealed foreseen and unexpected alterations of the pathway. For example, HY5 was found to differentially regulate kaempferol in seeds vs. seedlings. Furthermore, our results suggest that COP1 is a master regulator of flavonoid biosynthesis in seedlings but not of flavonoid deposition in seeds. When sample numbers are high and the plant material is limited, this method effectively facilitates metabolic fingerprinting with one seed(ling), revealing shifts and differences in the pathway. Moreover the combination of extracted non-hydrolysed, extracted hydrolysed and non-extracted hydrolysed samples proved useful to deduce the class of derivative from which the individual flavonoids have been released.
Barnes, Stephen; Benton, H Paul; Casazza, Krista; Cooper, Sara J; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K; Renfrow, Matthew B; Tiwari, Hemant K
2016-08-01
Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. This second part of a comprehensive description of the methods of metabolomics focuses on data analysis, emerging methods in metabolomics and the future of this discipline. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.
Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas
2017-01-21
We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.
Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei
2017-08-16
Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard
2015-03-09
Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. Copyright © 2015 Brown et al.
Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard
2015-01-01
Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824
Centler, Florian; Heße, Falk; Thullner, Martin
2013-09-01
At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.
2013-01-01
Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/. PMID:23822816
Li, Chunquan; Han, Junwei; Yao, Qianlan; Zou, Chendan; Xu, Yanjun; Zhang, Chunlong; Shang, Desi; Zhou, Lingyun; Zou, Chaoxia; Sun, Zeguo; Li, Jing; Zhang, Yunpeng; Yang, Haixiu; Gao, Xu; Li, Xia
2013-05-01
Various 'omics' technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways.
Managing patient pathways to achieve lung cancer waiting time targets: mixed methods study
Ip, Hugh; Amer, Tarik; Dangoor, Michael; Zamir, Affan; Gibbings-Isaac, Darryl; Kochhar, Ranjeev; Heymann, Timothy
2012-01-01
Objectives England's National Health Service (NHS) introduced a 62-day target, from referral to treatment, to make lung cancer patient pathways more efficient. This study aims to understand pathway delays that lead to breaches of the target when patients need care in both secondary and tertiary setting, so more than one institution is involved. Design Mixed methods cross case analysis. Setting Two tertiary referral hospitals in London. Participants Database records of 53 patients were analysed. Nineteen sets of patient notes were used for pathway mapping. Seventeen doctors, four nurses, eight managers and administrators were interviewed. Main outcome measures Qualitative methods include pathway mapping and semi-structured interviews. Quantitative analysis of patient pathway times from cancer services records. Results The majority of the patient pathway (68.4%) is spent in secondary centres. There is more variability in the processes of secondary centres but tertiary centres do not have perfect processes either. Three themes emerged from discussions: information flows, pathway performance and the role of the multidisciplinary approach. Conclusions The actions of secondary centres have a greater influence on whether a patient breaches the 62-day target, compared with tertiary centres. Nevertheless variability exists in both, with potential for improvement. PMID:23162682
Foroushani, Amir B.K.; Brinkman, Fiona S.L.
2013-01-01
Motivation. Predominant pathway analysis approaches treat pathways as collections of individual genes and consider all pathway members as equally informative. As a result, at times spurious and misleading pathways are inappropriately identified as statistically significant, solely due to components that they share with the more relevant pathways. Results. We introduce the concept of Pathway Gene-Pair Signatures (Pathway-GPS) as pairs of genes that, as a combination, are specific to a single pathway. We devised and implemented a novel approach to pathway analysis, Signature Over-representation Analysis (SIGORA), which focuses on the statistically significant enrichment of Pathway-GPS in a user-specified gene list of interest. In a comparative evaluation of several published datasets, SIGORA outperformed traditional methods by delivering biologically more plausible and relevant results. Availability. An efficient implementation of SIGORA, as an R package with precompiled GPS data for several human and mouse pathway repositories is available for download from http://sigora.googlecode.com/svn/. PMID:24432194
Heading in the right direction: thermodynamics-based network analysis and pathway engineering.
Ataman, Meric; Hatzimanikatis, Vassily
2015-12-01
Thermodynamics-based network analysis through the introduction of thermodynamic constraints in metabolic models allows a deeper analysis of metabolism and guides pathway engineering. The number and the areas of applications of thermodynamics-based network analysis methods have been increasing in the last ten years. We review recent applications of these methods and we identify the areas that such analysis can contribute significantly, and the needs for future developments. We find that organisms with multiple compartments and extremophiles present challenges for modeling and thermodynamics-based flux analysis. The evolution of current and new methods must also address the issues of the multiple alternatives in flux directionalities and the uncertainties and partial information from analytical methods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Inter-species pathway perturbation prediction via data-driven detection of functional homology.
Hafemeister, Christoph; Romero, Roberto; Bilal, Erhan; Meyer, Pablo; Norel, Raquel; Rhrissorrakrai, Kahn; Bonneau, Richard; Tarca, Adi L
2015-02-15
Experiments in animal models are often conducted to infer how humans will respond to stimuli by assuming that the same biological pathways will be affected in both organisms. The limitations of this assumption were tested in the IMPROVER Species Translation Challenge, where 52 stimuli were applied to both human and rat cells and perturbed pathways were identified. In the Inter-species Pathway Perturbation Prediction sub-challenge, multiple teams proposed methods to use rat transcription data from 26 stimuli to predict human gene set and pathway activity under the same perturbations. Submissions were evaluated using three performance metrics on data from the remaining 26 stimuli. We present two approaches, ranked second in this challenge, that do not rely on sequence-based orthology between rat and human genes to translate pathway perturbation state but instead identify transcriptional response orthologs across a set of training conditions. The translation from rat to human accomplished by these so-called direct methods is not dependent on the particular analysis method used to identify perturbed gene sets. In contrast, machine learning-based methods require performing a pathway analysis initially and then mapping the pathway activity between organisms. Unlike most machine learning approaches, direct methods can be used to predict the activation of a human pathway for a new (test) stimuli, even when that pathway was never activated by a training stimuli. Gene expression data are available from ArrayExpress (accession E-MTAB-2091), while software implementations are available from http://bioinformaticsprb.med.wayne.edu?p=50 and http://goo.gl/hJny3h. christoph.hafemeister@nyu.edu or atarca@med.wayne.edu. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
Exploring metabolic pathways in genome-scale networks via generating flux modes.
Rezola, A; de Figueiredo, L F; Brock, M; Pey, J; Podhorski, A; Wittmann, C; Schuster, S; Bockmayr, A; Planes, F J
2011-02-15
The reconstruction of metabolic networks at the genome scale has allowed the analysis of metabolic pathways at an unprecedented level of complexity. Elementary flux modes (EFMs) are an appropriate concept for such analysis. However, their number grows in a combinatorial fashion as the size of the metabolic network increases, which renders the application of EFMs approach to large metabolic networks difficult. Novel methods are expected to deal with such complexity. In this article, we present a novel optimization-based method for determining a minimal generating set of EFMs, i.e. a convex basis. We show that a subset of elements of this convex basis can be effectively computed even in large metabolic networks. Our method was applied to examine the structure of pathways producing lysine in Escherichia coli. We obtained a more varied and informative set of pathways in comparison with existing methods. In addition, an alternative pathway to produce lysine was identified using a detour via propionyl-CoA, which shows the predictive power of our novel approach. The source code in C++ is available upon request.
Pathway-Based Genome-Wide Association Studies for Two Meat Production Traits in Simmental Cattle.
Fan, Huizhong; Wu, Yang; Zhou, Xiaojing; Xia, Jiangwei; Zhang, Wengang; Song, Yuxin; Liu, Fei; Chen, Yan; Zhang, Lupei; Gao, Xue; Gao, Huijiang; Li, Junya
2015-12-17
Most single nucleotide polymorphisms (SNPs) detected by genome-wide association studies (GWAS), explain only a small fraction of phenotypic variation. Pathway-based GWAS were proposed to improve the proportion of genes for some human complex traits that could be explained by enriching a mass of SNPs within genetic groups. However, few attempts have been made to describe the quantitative traits in domestic animals. In this study, we used a dataset with approximately 7,700,000 SNPs from 807 Simmental cattle and analyzed live weight and longissimus muscle area using a modified pathway-based GWAS method to orthogonalise the highly linked SNPs within each gene using principal component analysis (PCA). As a result, of the 262 biological pathways of cattle collected from the KEGG database, the gamma aminobutyric acid (GABA)ergic synapse pathway and the non-alcoholic fatty liver disease (NAFLD) pathway were significantly associated with the two traits analyzed. The GABAergic synapse pathway was biologically applicable to the traits analyzed because of its roles in feed intake and weight gain. The proposed method had high statistical power and a low false discovery rate, compared to those of the smallest P-value and SNP set enrichment analysis methods.
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-01
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher’s exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO’s usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher. PMID:26750448
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-11
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher's exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO's usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher.
Li, Chunquan; Han, Junwei; Yao, Qianlan; Zou, Chendan; Xu, Yanjun; Zhang, Chunlong; Shang, Desi; Zhou, Lingyun; Zou, Chaoxia; Sun, Zeguo; Li, Jing; Zhang, Yunpeng; Yang, Haixiu; Gao, Xu; Li, Xia
2013-01-01
Various ‘omics’ technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways. PMID:23482392
De, Rajat K; Tomar, Namrata
2012-12-01
Metabolism is a complex process for energy production for cellular activity. It consists of a cascade of reactions that form a highly branched network in which the product of one reaction is the reactant of the next reaction. Metabolic pathways efficiently produce maximal amount of biomass while maintaining a steady-state behavior. The steady-state activity of such biochemical pathways necessarily incorporates feedback inhibition of the enzymes. This observation motivates us to incorporate feedback inhibition for modeling the optimal activity of metabolic pathways using flux balance analysis (FBA). We demonstrate the effectiveness of the methodology on a synthetic pathway with and without feedback inhibition. Similarly, for the first time, the Central Carbon Metabolic (CCM) pathways of Saccharomyces cerevisiae and Homo sapiens have been modeled and compared based on the above understanding. The optimal pathway, which maximizes the amount of the target product(s), is selected from all those obtained by the proposed method. For this, we have observed the concentration of the product inhibited enzymes of CCM pathway and its influence on its corresponding metabolite/substrate. We have also studied the concentration of the enzymes which are responsible for the synthesis of target products. We further hypothesize that an optimal pathway would opt for higher flux rate reactions. In light of these observations, we can say that an optimal pathway should have lower enzyme concentration and higher flux rates. Finally, we demonstrate the superiority of the proposed method by comparing it with the extreme pathway analysis.
Qiu, Wei-Hai; Chen, Gui-Yan; Cui, Lu; Zhang, Ting-Ming; Wei, Feng; Yang, Yong
2016-01-01
To identify differential pathways between papillary thyroid carcinoma (PTC) patients and normal controls utilizing a novel method which combined pathway with co-expression network. The proposed method included three steps. In the first step, we conducted pretreatments for background pathways and gained representative pathways in PTC. Subsequently, a co-expression network for representative pathways was constructed using empirical Bayes (EB) approach to assign a weight value for each pathway. Finally, random model was extracted to set the thresholds of identifying differential pathways. We obtained 1267 representative pathways and their weight values based on the co-expressed pathway network, and then by meeting the criterion (Weight > 0.0296), 87 differential pathways in total across PTC patients and normal controls were identified. The top three ranked differential pathways were CREB phosphorylation, attachment of GPI anchor to urokinase plasminogen activator receptor (uPAR) and loss of function of SMAD2/3 in cancer. In conclusion, we successfully identified differential pathways (such as CREB phosphorylation, attachment of GPI anchor to uPAR and post-translational modification: synthesis of GPI-anchored proteins) for PTC using the proposed pathway co-expression method, and these pathways might be potential biomarkers for target therapy and detection of PTC.
Predicting miRNA targets for head and neck squamous cell carcinoma using an ensemble method.
Gao, Hong; Jin, Hui; Li, Guijun
2018-01-01
This study aimed to uncover potential microRNA (miRNA) targets in head and neck squamous cell carcinoma (HNSCC) using an ensemble method which combined 3 different methods: Pearson's correlation coefficient (PCC), Lasso and a causal inference method (i.e., intervention calculus when the directed acyclic graph (DAG) is absent [IDA]), based on Borda count election. The Borda count election method was used to integrate the top 100 predicted targets of each miRNA generated by individual methods. Afterwards, to validate the performance ability of our method, we checked the TarBase v6.0, miRecords v2013, miRWalk v2.0 and miRTarBase v4.5 databases to validate predictions for miRNAs. Pathway enrichment analysis of target genes in the top 1,000 miRNA-messenger RNA (mRNA) interactions was conducted to focus on significant KEGG pathways. Finally, we extracted target genes based on occurrence frequency ≥3. Based on an absolute value of PCC >0.7, we found 33 miRNAs and 288 mRNAs for further analysis. We extracted 10 target genes with predicted frequencies not less than 3. The target gene MYO5C possessed the highest frequency, which was predicted by 7 different miRNAs. Significantly, a total of 8 pathways were identified; the pathways of cytokine-cytokine receptor interaction and chemokine signaling pathway were the most significant. We successfully predicted target genes and pathways for HNSCC relying on miRNA expression data, mRNA expression profile, an ensemble method and pathway information. Our results may offer new information for the diagnosis and estimation of the prognosis of HNSCC.
Kent, Jack W
2016-02-03
New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.
Kong, Wei; Mou, Xiaoyang; Di, Benteng; Deng, Jin; Zhong, Ruxing; Wang, Shuaiqun
2017-11-20
Dysregulated pathway identification is an important task which can gain insight into the underlying biological processes of disease. Current pathway-identification methods focus on a set of co-expression genes and single pathways and ignore the correlation between genes and pathways. The method proposed in this study, takes into account the internal correlations not only between genes but also pathways to identifying dysregulated pathways related to Alzheimer's disease (AD), the most common form of dementia. In order to find the significantly differential genes for AD, mutual information (MI) is used to measure interdependencies between genes other than expression valves. Then, by integrating the topology information from KEGG, the significant pathways involved in the feature genes are identified. Next, the distance correlation (DC) is applied to measure the pairwise pathway crosstalks since DC has the advantage of detecting nonlinear correlations when compared to Pearson correlation. Finally, the pathway pairs with significantly different correlations between normal and AD samples are known as dysregulated pathways. The molecular biology analysis demonstrated that many dysregulated pathways related to AD pathogenesis have been discovered successfully by the internal correlation detection. Furthermore, the insights of the dysregulated pathways in the development and deterioration of AD will help to find new effective target genes and provide important theoretical guidance for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application
Cantor, Rita M.; Lange, Kenneth; Sinsheimer, Janet S.
2010-01-01
Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. A substantial number of recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. This review is written from the viewpoint that findings from the GWAS provide preliminary genetic information that is available for additional analysis by statistical procedures that accumulate evidence, and that these secondary analyses are very likely to provide valuable information that will help prioritize the strongest constellations of results. We review and discuss three analytic methods to combine preliminary GWAS statistics to identify genes, alleles, and pathways for deeper investigations. Meta-analysis seeks to pool information from multiple GWAS to increase the chances of finding true positives among the false positives and provides a way to combine associations across GWAS, even when the original data are unavailable. Testing for epistasis within a single GWAS study can identify the stronger results that are revealed when genes interact. Pathway analysis of GWAS results is used to prioritize genes and pathways within a biological context. Following a GWAS, association results can be assigned to pathways and tested in aggregate with computational tools and pathway databases. Reviews of published methods with recommendations for their application are provided within the framework for each approach. PMID:20074509
Convergent evidence from systematic analysis of GWAS revealed genetic basis of esophageal cancer.
Gao, Xue-Xin; Gao, Lei; Wang, Jiu-Qiang; Qu, Su-Su; Qu, Yue; Sun, Hong-Lei; Liu, Si-Dang; Shang, Ying-Li
2016-07-12
Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with risk of esophageal cancer (EC). However, investigation of genetic basis from the perspective of systematic biology and integrative genomics remains scarce.In this study, we explored genetic basis of EC based on GWAS data and implemented a series of bioinformatics methods including functional annotation, expression quantitative trait loci (eQTL) analysis, pathway enrichment analysis and pathway grouped network analysis.Two hundred and thirteen risk SNPs were identified, in which 44 SNPs were found to have significantly differential gene expression in esophageal tissues by eQTL analysis. By pathway enrichment analysis, 170 risk genes mapped by risk SNPs were enriched into 38 significant GO terms and 17 significant KEGG pathways, which were significantly grouped into 9 sub-networks by pathway grouped network analysis. The 9 groups of interconnected pathways were mainly involved with muscle cell proliferation, cellular response to interleukin-6, cell adhesion molecules, and ethanol oxidation, which might participate in the development of EC.Our findings provide genetic evidence and new insight for exploring the molecular mechanisms of EC.
Evangelou, Marina; Smyth, Deborah J; Fortune, Mary D; Burren, Oliver S; Walker, Neil M; Guo, Hui; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick; Rich, Stephen S; Todd, John A; Wallace, Chris
2014-01-01
Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed () with 12 of the 22 SNPs showing . Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, ), NRP1 (rs722988, ), BAD (rs694739, ), CTSB (rs1296023, ), FYN (rs11964650, ), UBE2G1 (rs9906760, ), MAP3K14 (rs17759555, ), ITGB1 (rs1557150, ), and IL7R (rs1445898, ). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available. PMID:25371288
A novel bi-level meta-analysis approach: applied to biological pathway analysis.
Nguyen, Tin; Tagett, Rebecca; Donato, Michele; Mitrea, Cristina; Draghici, Sorin
2016-02-01
The accumulation of high-throughput data in public repositories creates a pressing need for integrative analysis of multiple datasets from independent experiments. However, study heterogeneity, study bias, outliers and the lack of power of available methods present real challenge in integrating genomic data. One practical drawback of many P-value-based meta-analysis methods, including Fisher's, Stouffer's, minP and maxP, is that they are sensitive to outliers. Another drawback is that, because they perform just one statistical test for each individual experiment, they may not fully exploit the potentially large number of samples within each study. We propose a novel bi-level meta-analysis approach that employs the additive method and the Central Limit Theorem within each individual experiment and also across multiple experiments. We prove that the bi-level framework is robust against bias, less sensitive to outliers than other methods, and more sensitive to small changes in signal. For comparative analysis, we demonstrate that the intra-experiment analysis has more power than the equivalent statistical test performed on a single large experiment. For pathway analysis, we compare the proposed framework versus classical meta-analysis approaches (Fisher's, Stouffer's and the additive method) as well as against a dedicated pathway meta-analysis package (MetaPath), using 1252 samples from 21 datasets related to three human diseases, acute myeloid leukemia (9 datasets), type II diabetes (5 datasets) and Alzheimer's disease (7 datasets). Our framework outperforms its competitors to correctly identify pathways relevant to the phenotypes. The framework is sufficiently general to be applied to any type of statistical meta-analysis. The R scripts are available on demand from the authors. sorin@wayne.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cheung, C Y Maurice; Ratcliffe, R George; Sweetlove, Lee J
2015-11-01
Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture. © 2015 American Society of Plant Biologists. All Rights Reserved.
Exploring pathway interactions in insulin resistant mouse liver
2011-01-01
Background Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset. Results We developed an analysis approach to study interactions between pathways by integrating gene and protein interaction networks, biological pathway information and high-throughput data. This approach was applied to a transcriptomics dataset to investigate pathway interactions in insulin resistant mouse liver in response to a glucose challenge. We identified regulated pathway interactions at different time points following the glucose challenge and also studied the underlying protein interactions to find possible mechanisms and key proteins involved in pathway cross-talk. A large number of pathway interactions were found for the comparison between the two diet groups at t = 0. The initial response to the glucose challenge (t = 0.6) was typed by an acute stress response and pathway interactions showed large overlap between the two diet groups, while the pathway interaction networks for the late response were more dissimilar. Conclusions Studying pathway interactions provides a new perspective on the data that complements established pathway analysis methods such as enrichment analysis. This study provided new insights in how interactions between pathways may be affected by insulin resistance. In addition, the analysis approach described here can be generally applied to different types of high-throughput data and will therefore be useful for analysis of other complex datasets as well. PMID:21843341
Liu, Guiyou; Zhang, Fang; Jiang, Yongshuai; Hu, Yang; Gong, Zhongying; Liu, Shoufeng; Chen, Xiuju; Jiang, Qinghua; Hao, Junwei
2017-02-01
Much effort has been expended on identifying the genetic determinants of multiple sclerosis (MS). Existing large-scale genome-wide association study (GWAS) datasets provide strong support for using pathway and network-based analysis methods to investigate the mechanisms underlying MS. However, no shared genetic pathways have been identified to date. We hypothesize that shared genetic pathways may indeed exist in different MS-GWAS datasets. Here, we report results from a three-stage analysis of GWAS and expression datasets. In stage 1, we conducted multiple pathway analyses of two MS-GWAS datasets. In stage 2, we performed a candidate pathway analysis of the large-scale MS-GWAS dataset. In stage 3, we performed a pathway analysis using the dysregulated MS gene list from seven human MS case-control expression datasets. In stage 1, we identified 15 shared pathways. In stage 2, we successfully replicated 14 of these 15 significant pathways. In stage 3, we found that dysregulated MS genes were significantly enriched in 10 of 15 MS risk pathways identified in stages 1 and 2. We report shared genetic pathways in different MS-GWAS datasets and highlight some new MS risk pathways. Our findings provide new insights on the genetic determinants of MS.
Parameterizing the Transport Pathways for Cell Invasion in Complex Scaffold Architectures
Ashworth, Jennifer C.; Mehr, Marco; Buxton, Paul G.; Best, Serena M.
2016-01-01
Interconnecting pathways through porous tissue engineering scaffolds play a vital role in determining nutrient supply, cell invasion, and tissue ingrowth. However, the global use of the term “interconnectivity” often fails to describe the transport characteristics of these pathways, giving no clear indication of their potential to support tissue synthesis. This article uses new experimental data to provide a critical analysis of reported methods for the description of scaffold transport pathways, ranging from qualitative image analysis to thorough structural parameterization using X-ray Micro-Computed Tomography. In the collagen scaffolds tested in this study, it was found that the proportion of pore space perceived to be accessible dramatically changed depending on the chosen method of analysis. Measurements of % interconnectivity as defined in this manner varied as a function of direction and connection size, and also showed a dependence on measurement length scale. As an alternative, a method for transport pathway parameterization was investigated, using percolation theory to calculate the diameter of the largest sphere that can travel to infinite distance through a scaffold in a specified direction. As proof of principle, this approach was used to investigate the invasion behavior of primary fibroblasts in response to independent changes in pore wall alignment and pore space accessibility, parameterized using the percolation diameter. The result was that both properties played a distinct role in determining fibroblast invasion efficiency. This example therefore demonstrates the potential of the percolation diameter as a method of transport pathway parameterization, to provide key structural criteria for application-based scaffold design. PMID:26888449
TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.
Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C
2014-01-01
The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (<2.8 × 10(-5)), including the PTEN pathway (7.8 × 10(-7)), the gene set up-regulated under heat shock (3.6 × 10(-6)), the gene sets involved in the immune profile for rejection of kidney transplantation (9.2 × 10(-6)) and for transcriptional control of leukocytes (2.2 × 10(-5)), and the ganglioside biosynthesis pathway (2.7 × 10(-5)). In conclusion, we present a new method for pathway analyses of copy number data, and causal mechanisms of the five pathways require further study.
Detecting Disease Specific Pathway Substructures through an Integrated Systems Biology Approach
Alaimo, Salvatore; Marceca, Gioacchino Paolo; Ferro, Alfredo; Pulvirenti, Alfredo
2017-01-01
In the era of network medicine, pathway analysis methods play a central role in the prediction of phenotype from high throughput experiments. In this paper, we present a network-based systems biology approach capable of extracting disease-perturbed subpathways within pathway networks in connection with expression data taken from The Cancer Genome Atlas (TCGA). Our system extends pathways with missing regulatory elements, such as microRNAs, and their interactions with genes. The framework enables the extraction, visualization, and analysis of statistically significant disease-specific subpathways through an easy to use web interface. Our analysis shows that the methodology is able to fill the gap in current techniques, allowing a more comprehensive analysis of the phenomena underlying disease states. PMID:29657291
Song, Xian-Dong; Song, Xian-Xu; Liu, Gui-Bo; Ren, Chun-Hui; Sun, Yuan-Bo; Liu, Ke-Xin; Liu, Bo; Liang, Shuang; Zhu, Zhu
2018-03-01
The traditional methods of identifying biomarkers in rheumatoid arthritis (RA) have focussed on the differentially expressed pathways or individual pathways, which however, neglect the interactions between pathways. To better understand the pathogenesis of RA, we aimed to identify dysregulated pathway sets using a pathway interaction network (PIN), which considered interactions among pathways. Firstly, RA-related gene expression profile data, protein-protein interactions (PPI) data and pathway data were taken up from the corresponding databases. Secondly, principal component analysis method was used to calculate the pathway activity of each of the pathway, and then a seed pathway was identified using data gleaned from the pathway activity. A PIN was then constructed based on the gene expression profile, pathway data, and PPI information. Finally, the dysregulated pathways were extracted from the PIN based on the seed pathway using the method of support vector machines and an area under the curve (AUC) index. The PIN comprised of a total of 854 pathways and 1064 pathway interactions. The greatest change in the activity score between RA and control samples was observed in the pathway of epigenetic regulation of gene expression, which was extracted and regarded as the seed pathway. Starting with this seed pathway, one maximum pathway set containing 10 dysregulated pathways was extracted from the PIN, having an AUC of 0.8249, and the result indicated that this pathway set could distinguish RA from the controls. These 10 dysregulated pathways might be potential biomarkers for RA diagnosis and treatment in the future.
Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni
2013-01-01
Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function. PMID:24278029
Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni
2013-11-01
Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function.
2012-01-01
Background Gene Set Analysis (GSA) has proven to be a useful approach to microarray analysis. However, most of the method development for GSA has focused on the statistical tests to be used rather than on the generation of sets that will be tested. Existing methods of set generation are often overly simplistic. The creation of sets from individual pathways (in isolation) is a poor reflection of the complexity of the underlying metabolic network. We have developed a novel approach to set generation via the use of Principal Component Analysis of the Laplacian matrix of a metabolic network. We have analysed a relatively simple data set to show the difference in results between our method and the current state-of-the-art pathway-based sets. Results The sets generated with this method are semi-exhaustive and capture much of the topological complexity of the metabolic network. The semi-exhaustive nature of this method has also allowed us to design a hypergeometric enrichment test to determine which genes are likely responsible for set significance. We show that our method finds significant aspects of biology that would be missed (i.e. false negatives) and addresses the false positive rates found with the use of simple pathway-based sets. Conclusions The set generation step for GSA is often neglected but is a crucial part of the analysis as it defines the full context for the analysis. As such, set generation methods should be robust and yield as complete a representation of the extant biological knowledge as possible. The method reported here achieves this goal and is demonstrably superior to previous set analysis methods. PMID:22876834
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch
2016-07-21
An analysis of the network defined by the potential energy minima of multi-atomic systems and their connectivity via reaction pathways that go through transition states allows us to understand important characteristics like thermodynamic, dynamic, and structural properties. Unfortunately computing the transition states and reaction pathways in addition to the significant energetically low-lying local minima is a computationally demanding task. We here introduce a computationally efficient method that is based on a combination of the minima hopping global optimization method and the insight that uphill barriers tend to increase with increasing structural distances of the educt and product states. This methodmore » allows us to replace the exact connectivity information and transition state energies with alternative and approximate concepts. Without adding any significant additional cost to the minima hopping global optimization approach, this method allows us to generate an approximate network of the minima, their connectivity, and a rough measure for the energy needed for their interconversion. This can be used to obtain a first qualitative idea on important physical and chemical properties by means of a disconnectivity graph analysis. Besides the physical insight obtained by such an analysis, the gained knowledge can be used to make a decision if it is worthwhile or not to invest computational resources for an exact computation of the transition states and the reaction pathways. Furthermore it is demonstrated that the here presented method can be used for finding physically reasonable interconversion pathways that are promising input pathways for methods like transition path sampling or discrete path sampling.« less
Protein Folding—How and Why: By Hydrogen Exchange, Fragment Separation, and Mass Spectrometry
Englander, S. Walter; Mayne, Leland; Kan, Zhong-Yuan; Hu, Wenbing
2017-01-01
Advanced hydrogen exchange (HX) methodology can now determine the structure of protein folding intermediates and their progression in folding pathways. Key developments over time include the HX pulse labeling method with nuclear magnetic resonance analysis, development of the fragment separation method, the addition to it of mass spectrometric (MS) analysis, and recent improvements in the HX MS technique and data analysis. Also, the discovery of protein foldons and their role supplies an essential interpretive link. Recent work using HX pulse labeling with HX MS analysis finds that a number of proteins fold by stepping through a reproducible sequence of native-like intermediates in an ordered pathway. The stepwise nature of the pathway is dictated by the cooperative foldon unit construction of the protein. The pathway order is determined by a sequential stabilization principle; prior native-like structure guides the formation of adjacent native-like structure. This view does not match the funneled energy landscape paradigm of a very large number of folding tracks, which was framed before foldons were known. PMID:27145881
PyPathway: Python Package for Biological Network Analysis and Visualization.
Xu, Yang; Luo, Xiao-Chun
2018-05-01
Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.
Sugimura, Natsuhiko; Igarashi, Yoko; Aoyama, Reiko; Shibue, Toshimichi
2017-02-01
Analysis of the fragmentation pathways of molecules in mass spectrometry gives a fundamental insight into gas-phase ion chemistry. However, the conventional intrinsic reaction coordinates method requires knowledge of the transition states of ion structures in the fragmentation pathways. Herein, we use the nudged elastic band method, using only the initial and final state ion structures in the fragmentation pathways, and report the advantages and limitations of the method. We found a minimum energy path of p-benzoquinone ion fragmentation with two saddle points and one intermediate structure. The primary energy barrier, which corresponded to the cleavage of the C-C bond adjacent to the CO group, was calculated to be 1.50 eV. An additional energy barrier, which corresponded to the cleavage of the CO group, was calculated to be 0.68 eV. We also found an energy barrier of 3.00 eV, which was the rate determining step of the keto-enol tautomerization in CO elimination from the molecular ion of phenol. The nudged elastic band method allowed the determination of a minimum energy path using only the initial and final state ion structures in the fragmentation pathways, and it provided faster than the conventional intrinsic reaction coordinates method. In addition, this method was found to be effective in the analysis of the charge structures of the molecules during the fragmentation in mass spectrometry.
Mathematical Justification of Expression-Based Pathway Activation Scoring (PAS).
Aliper, Alexander M; Korzinkin, Michael B; Kuzmina, Natalia B; Zenin, Alexander A; Venkova, Larisa S; Smirnov, Philip Yu; Zhavoronkov, Alex A; Buzdin, Anton A; Borisov, Nikolay M
2017-01-01
Although modeling of activation kinetics for various cell signaling pathways has reached a high grade of sophistication and thoroughness, most such kinetic models still remain of rather limited practical value for biomedicine. Nevertheless, recent advancements have been made in application of signaling pathway science for real needs of prescription of the most effective drugs for individual patients. The methods for such prescription evaluate the degree of pathological changes in the signaling machinery based on two types of data: first, on the results of high-throughput gene expression profiling, and second, on the molecular pathway graphs that reflect interactions between the pathway members. For example, our algorithm OncoFinder evaluates the activation of molecular pathways on the basis of gene/protein expression data in the objects of the interest.Yet, the question of assessment of the relative importance for each gene product in a molecular pathway remains unclear unless one call for the methods of parameter sensitivity /stiffness analysis in the interactomic kinetic models of signaling pathway activation in terms of total concentrations of each gene product.Here we show two principal points: 1. First, the importance coefficients for each gene in pathways that were obtained using the extremely time- and labor-consuming stiffness analysis of full-scaled kinetic models generally differ from much easier-to-calculate expression-based pathway activation score (PAS) not more than by 30%, so the concept of PAS is kinetically justified. 2. Second, the use of pathway-based approach instead of distinct gene analysis, due to the law of large numbers, allows restoring the correlation between the similar samples that were examined using different transcriptome investigation techniques.
Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.
Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A
2017-01-25
With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.
The Use of Gene Ontology Term and KEGG Pathway Enrichment for Analysis of Drug Half-Life
Chen, Lei; Lu, Jing; Kong, XiangYin; Huang, Tao; Li, HaiPeng
2016-01-01
A drug’s biological half-life is defined as the time required for the human body to metabolize or eliminate 50% of the initial drug dosage. Correctly measuring the half-life of a given drug is helpful for the safe and accurate usage of the drug. In this study, we investigated which gene ontology (GO) terms and biological pathways were highly related to the determination of drug half-life. The investigated drugs, with known half-lives, were analyzed based on their enrichment scores for associated GO terms and KEGG pathways. These scores indicate which GO terms or KEGG pathways the drug targets. The feature selection method, minimum redundancy maximum relevance, was used to analyze these GO terms and KEGG pathways and to identify important GO terms and pathways, such as sodium-independent organic anion transmembrane transporter activity (GO:0015347), monoamine transmembrane transporter activity (GO:0008504), negative regulation of synaptic transmission (GO:0050805), neuroactive ligand-receptor interaction (hsa04080), serotonergic synapse (hsa04726), and linoleic acid metabolism (hsa00591), among others. This analysis confirmed our results and may show evidence for a new method in studying drug half-lives and building effective computational methods for the prediction of drug half-lives. PMID:27780226
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Shirong; Davis, Michael J.; Skodje, Rex T.
2015-11-12
The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of howmore » that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H-2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux« less
Ulitsky, Igor; Shamir, Ron
2007-01-01
The biological interpretation of genetic interactions is a major challenge. Recently, Kelley and Ideker proposed a method to analyze together genetic and physical networks, which explains many of the known genetic interactions as linking different pathways in the physical network. Here, we extend this method and devise novel analytic tools for interpreting genetic interactions in a physical context. Applying these tools on a large-scale Saccharomyces cerevisiae data set, our analysis reveals 140 between-pathway models that explain 3765 genetic interactions, roughly doubling those that were previously explained. Model genes tend to have short mRNA half-lives and many phosphorylation sites, suggesting that their stringent regulation is linked to pathway redundancy. We also identify ‘pivot' proteins that have many physical interactions with both pathways in our models, and show that pivots tend to be essential and highly conserved. Our analysis of models and pivots sheds light on the organization of the cellular machinery as well as on the roles of individual proteins. PMID:17437029
Prediction of enzymatic pathways by integrative pathway mapping
Wichelecki, Daniel J; San Francisco, Brian; Zhao, Suwen; Rodionov, Dmitry A; Vetting, Matthew W; Al-Obaidi, Nawar F; Lin, Henry; O'Meara, Matthew J; Scott, David A; Morris, John H; Russel, Daniel; Almo, Steven C; Osterman, Andrei L
2018-01-01
The functions of most proteins are yet to be determined. The function of an enzyme is often defined by its interacting partners, including its substrate and product, and its role in larger metabolic networks. Here, we describe a computational method that predicts the functions of orphan enzymes by organizing them into a linear metabolic pathway. Given candidate enzyme and metabolite pathway members, this aim is achieved by finding those pathways that satisfy structural and network restraints implied by varied input information, including that from virtual screening, chemoinformatics, genomic context analysis, and ligand -binding experiments. We demonstrate this integrative pathway mapping method by predicting the L-gulonate catabolic pathway in Haemophilus influenzae Rd KW20. The prediction was subsequently validated experimentally by enzymology, crystallography, and metabolomics. Integrative pathway mapping by satisfaction of structural and network restraints is extensible to molecular networks in general and thus formally bridges the gap between structural biology and systems biology. PMID:29377793
Li, Chaoxing; Liu, Li; Dinu, Valentin
2018-01-01
Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway's topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher's exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov-Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes of HCC are HCC subtype-associated specifically. In conclusion, PoTRA is a new approach to explore and discover pathways involved in cancer. PoTRA can be used as a complement to other existing methods to broaden our understanding of the biological mechanisms behind cancer at the system-level.
Bioinformatics analysis on molecular mechanism of rheum officinale in treatment of jaundice
NASA Astrophysics Data System (ADS)
Shan, Si; Tu, Jun; Nie, Peng; Yan, Xiaojun
2017-01-01
Objective: To study the molecular mechanism of Rheum officinale in the treatment of Jaundice by building molecular networks and comparing canonical pathways. Methods: Target proteins of Rheum officinale and related genes of Jaundice were searched from Pubchem and Gene databases online respectively. Molecular networks and canonical pathways comparison analyses were performed by Ingenuity Pathway Analysis (IPA). Results: The molecular networks of Rheum officinale and Jaundice were complex and multifunctional. The 40 target proteins of Rheum officinale and 33 Homo sapiens genes of Jaundice were found in databases. There were 19 common pathways both related networks. Rheum officinale could regulate endothelial differentiation, Interleukin-1B (IL-1B) and Tumor Necrosis Factor (TNF) in these pathways. Conclusions: Rheum officinale treat Jaundice by regulating many effective nodes of Apoptotic pathway and cellular immunity related pathways.
Graphite Web: web tool for gene set analysis exploiting pathway topology
Sales, Gabriele; Calura, Enrica; Martini, Paolo; Romualdi, Chiara
2013-01-01
Graphite web is a novel web tool for pathway analyses and network visualization for gene expression data of both microarray and RNA-seq experiments. Several pathway analyses have been proposed either in the univariate or in the global and multivariate context to tackle the complexity and the interpretation of expression results. These methods can be further divided into ‘topological’ and ‘non-topological’ methods according to their ability to gain power from pathway topology. Biological pathways are, in fact, not only gene lists but can be represented through a network where genes and connections are, respectively, nodes and edges. To this day, the most used approaches are non-topological and univariate although they miss the relationship among genes. On the contrary, topological and multivariate approaches are more powerful, but difficult to be used by researchers without bioinformatic skills. Here we present Graphite web, the first public web server for pathway analysis on gene expression data that combines topological and multivariate pathway analyses with an efficient system of interactive network visualizations for easy results interpretation. Specifically, Graphite web implements five different gene set analyses on three model organisms and two pathway databases. Graphite Web is freely available at http://graphiteweb.bio.unipd.it/. PMID:23666626
Liu, Li; Dinu, Valentin
2018-01-01
Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway’s topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher’s exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov–Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes of HCC are HCC subtype-associated specifically. In conclusion, PoTRA is a new approach to explore and discover pathways involved in cancer. PoTRA can be used as a complement to other existing methods to broaden our understanding of the biological mechanisms behind cancer at the system-level. PMID:29666752
Duell, Eric J.; Yu, Kai; Risch, Harvey A.; Olson, Sara H.; Kooperberg, Charles; Wolpin, Brian M.; Jiao, Li; Dong, Xiaoqun; Wheeler, Bill; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Fuchs, Charles S.; Gallinger, Steven; Gross, Myron; Hartge, Patricia; Hoover, Robert N.; Holly, Elizabeth A.; Jacobs, Eric J.; Klein, Alison P.; LaCroix, Andrea; Mandelson, Margaret T.; Petersen, Gloria; Zheng, Wei; Agalliu, Ilir; Albanes, Demetrius; Boutron-Ruault, Marie-Christine; Bracci, Paige M.; Buring, Julie E.; Canzian, Federico; Chang, Kenneth; Chanock, Stephen J.; Cotterchio, Michelle; Gaziano, J.Michael; Giovannucci, Edward L.; Goggins, Michael; Hallmans, Göran; Hankinson, Susan E.; Hoffman Bolton, Judith A.; Hunter, David J.; Hutchinson, Amy; Jacobs, Kevin B.; Jenab, Mazda; Khaw, Kay-Tee; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; McWilliams, Robert R.; Mendelsohn, Julie B.; Patel, Alpa V.; Rabe, Kari G.; Riboli, Elio; Shu, Xiao-Ou; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Virtamo, Jarmo; Visvanathan, Kala; Watters, Joanne; Yu, Herbert; Zeleniuch-Jacquotte, Anne; Stolzenberg-Solomon, Rachael Z.
2012-01-01
Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case–control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10−6, 1.6 × 10−5, 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10−5), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H. pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer. PMID:22523087
Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.
Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui
2017-01-01
The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.
Yi, Ming; Mudunuri, Uma; Che, Anney; Stephens, Robert M
2009-06-29
One of the challenges in the analysis of microarray data is to integrate and compare the selected (e.g., differential) gene lists from multiple experiments for common or unique underlying biological themes. A common way to approach this problem is to extract common genes from these gene lists and then subject these genes to enrichment analysis to reveal the underlying biology. However, the capacity of this approach is largely restricted by the limited number of common genes shared by datasets from multiple experiments, which could be caused by the complexity of the biological system itself. We now introduce a new Pathway Pattern Extraction Pipeline (PPEP), which extends the existing WPS application by providing a new pathway-level comparative analysis scheme. To facilitate comparing and correlating results from different studies and sources, PPEP contains new interfaces that allow evaluation of the pathway-level enrichment patterns across multiple gene lists. As an exploratory tool, this analysis pipeline may help reveal the underlying biological themes at both the pathway and gene levels. The analysis scheme provided by PPEP begins with multiple gene lists, which may be derived from different studies in terms of the biological contexts, applied technologies, or methodologies. These lists are then subjected to pathway-level comparative analysis for extraction of pathway-level patterns. This analysis pipeline helps to explore the commonality or uniqueness of these lists at the level of pathways or biological processes from different but relevant biological systems using a combination of statistical enrichment measurements, pathway-level pattern extraction, and graphical display of the relationships of genes and their associated pathways as Gene-Term Association Networks (GTANs) within the WPS platform. As a proof of concept, we have used the new method to analyze many datasets from our collaborators as well as some public microarray datasets. This tool provides a new pathway-level analysis scheme for integrative and comparative analysis of data derived from different but relevant systems. The tool is freely available as a Pathway Pattern Extraction Pipeline implemented in our existing software package WPS, which can be obtained at http://www.abcc.ncifcrf.gov/wps/wps_index.php.
CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis.
Vrahatis, Aristidis G; Dimitrakopoulou, Konstantina; Balomenos, Panos; Tsakalidis, Athanasios K; Bezerianos, Anastasios
2016-03-15
In the era of network medicine and the rapid growth of paired time series mRNA/microRNA expression experiments, there is an urgent need for pathway enrichment analysis methods able to capture the time- and condition-specific 'active parts' of the biological circuitry as well as the microRNA impact. Current methods ignore the multiple dynamical 'themes'-in the form of enriched biologically relevant microRNA-mediated subpathways-that determine the functionality of signaling networks across time. To address these challenges, we developed time-vaRying enriCHment integrOmics Subpathway aNalysis tOol (CHRONOS) by integrating time series mRNA/microRNA expression data with KEGG pathway maps and microRNA-target interactions. Specifically, microRNA-mediated subpathway topologies are extracted and evaluated based on the temporal transition and the fold change activity of the linked genes/microRNAs. Further, we provide measures that capture the structural and functional features of subpathways in relation to the complete organism pathway atlas. Our application to synthetic and real data shows that CHRONOS outperforms current subpathway-based methods into unraveling the inherent dynamic properties of pathways. CHRONOS is freely available at http://biosignal.med.upatras.gr/chronos/ tassos.bezerianos@nus.edu.sg Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A
2014-01-01
Gene set enrichment analysis (GSEA) is an important approach to the analysis of coordinate expression changes at a pathway level. Although many statistical and computational methods have been proposed for GSEA, the issue of a concordant integrative GSEA of multiple expression data sets has not been well addressed. Among different related data sets collected for the same or similar study purposes, it is important to identify pathways or gene sets with concordant enrichment. We categorize the underlying true states of differential expression into three representative categories: no change, positive change and negative change. Due to data noise, what we observe from experiments may not indicate the underlying truth. Although these categories are not observed in practice, they can be considered in a mixture model framework. Then, we define the mathematical concept of concordant gene set enrichment and calculate its related probability based on a three-component multivariate normal mixture model. The related false discovery rate can be calculated and used to rank different gene sets. We used three published lung cancer microarray gene expression data sets to illustrate our proposed method. One analysis based on the first two data sets was conducted to compare our result with a previous published result based on a GSEA conducted separately for each individual data set. This comparison illustrates the advantage of our proposed concordant integrative gene set enrichment analysis. Then, with a relatively new and larger pathway collection, we used our method to conduct an integrative analysis of the first two data sets and also all three data sets. Both results showed that many gene sets could be identified with low false discovery rates. A consistency between both results was also observed. A further exploration based on the KEGG cancer pathway collection showed that a majority of these pathways could be identified by our proposed method. This study illustrates that we can improve detection power and discovery consistency through a concordant integrative analysis of multiple large-scale two-sample gene expression data sets.
One step DNA assembly for combinatorial metabolic engineering.
Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan
2014-05-01
The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Carbonetto, Peter; Stephens, Matthew
2013-01-01
Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn's disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and “Measles” pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14, and FYN) constitute novel putative T1D loci for further study. PMID:24098138
Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach.
Zhen, Cheng; Zhu, Caizhong; Chen, Haoyang; Xiong, Yiru; Tan, Junyuan; Chen, Dong; Li, Jin
2017-02-21
To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.
On the deduction of chemical reaction pathways from measurements of time series of concentrations.
Samoilov, Michael; Arkin, Adam; Ross, John
2001-03-01
We discuss the deduction of reaction pathways in complex chemical systems from measurements of time series of chemical concentrations of reacting species. First we review a technique called correlation metric construction (CMC) and show the construction of a reaction pathway from measurements on a part of glycolysis. Then we present two new improved methods for the analysis of time series of concentrations, entropy metric construction (EMC), and entropy reduction method (ERM), and illustrate (EMC) with calculations on a model reaction system. (c) 2001 American Institute of Physics.
2013-01-01
Background Decades of research strongly suggest that the genetic etiology of autism spectrum disorders (ASDs) is heterogeneous. However, most published studies focus on group differences between cases and controls. In contrast, we hypothesized that the heterogeneity of the disorder could be characterized by identifying pathways for which individuals are outliers rather than pathways representative of shared group differences of the ASD diagnosis. Methods Two previously published blood gene expression data sets – the Translational Genetics Research Institute (TGen) dataset (70 cases and 60 unrelated controls) and the Simons Simplex Consortium (Simons) dataset (221 probands and 191 unaffected family members) – were analyzed. All individuals of each dataset were projected to biological pathways, and each sample’s Mahalanobis distance from a pooled centroid was calculated to compare the number of case and control outliers for each pathway. Results Analysis of a set of blood gene expression profiles from 70 ASD and 60 unrelated controls revealed three pathways whose outliers were significantly overrepresented in the ASD cases: neuron development including axonogenesis and neurite development (29% of ASD, 3% of control), nitric oxide signaling (29%, 3%), and skeletal development (27%, 3%). Overall, 50% of cases and 8% of controls were outliers in one of these three pathways, which could not be identified using group comparison or gene-level outlier methods. In an independently collected data set consisting of 221 ASD and 191 unaffected family members, outliers in the neurogenesis pathway were heavily biased towards cases (20.8% of ASD, 12.0% of control). Interestingly, neurogenesis outliers were more common among unaffected family members (Simons) than unrelated controls (TGen), but the statistical significance of this effect was marginal (Chi squared P < 0.09). Conclusions Unlike group difference approaches, our analysis identified the samples within the case and control groups that manifested each expression signal, and showed that outlier groups were distinct for each implicated pathway. Moreover, our results suggest that by seeking heterogeneity, pathway-based outlier analysis can reveal expression signals that are not apparent when considering only shared group differences. PMID:24063311
Zwawi, Mohammed A; Moslehy, Faissal A; Rose, Christopher; Huayamave, Victor; Kassab, Alain J; Divo, Eduardo; Jones, Brendan J; Price, Charles T
2017-08-01
This study utilized a computational biomechanical model and applied the least energy path principle to investigate two pathways for closed reduction of high grade infantile hip dislocation. The principle of least energy when applied to moving the femoral head from an initial to a final position considers all possible paths that connect them and identifies the path of least resistance. Clinical reports of severe hip dysplasia have concluded that reduction of the femoral head into the acetabulum may occur by a direct pathway over the posterior rim of the acetabulum when using the Pavlik harness, or by an indirect pathway with reduction through the acetabular notch when using the modified Hoffman-Daimler method. This computational study also compared the energy requirements for both pathways. The anatomical and muscular aspects of the model were derived using a combination of MRI and OpenSim data. Results of this study indicate that the path of least energy closely approximates the indirect pathway of the modified Hoffman-Daimler method. The direct pathway over the posterior rim of the acetabulum required more energy for reduction. This biomechanical analysis confirms the clinical observations of the two pathways for closed reduction of severe hip dysplasia. The path of least energy closely approximated the modified Hoffman-Daimler method. Further study of the modified Hoffman-Daimler method for reduction of severe hip dysplasia may be warranted based on this computational biomechanical analysis. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1799-1805, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.
Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks
Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui
2017-01-01
The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295
Pathway and network analysis of cancer genomes.
Creixell, Pau; Reimand, Jüri; Haider, Syed; Wu, Guanming; Shibata, Tatsuhiro; Vazquez, Miguel; Mustonen, Ville; Gonzalez-Perez, Abel; Pearson, John; Sander, Chris; Raphael, Benjamin J; Marks, Debora S; Ouellette, B F Francis; Valencia, Alfonso; Bader, Gary D; Boutros, Paul C; Stuart, Joshua M; Linding, Rune; Lopez-Bigas, Nuria; Stein, Lincoln D
2015-07-01
Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations.
Liu, Yanqing; Wang, Yueqiu; Zhang, Yanxia; Liu, Zhiyong; Xiang, Hongfei; Peng, Xianbo
2017-01-01
Objectives. We aimed to find the key pathways associated with the development of osteoporosis. Methods. We downloaded expression profile data of GSE35959 and analyzed the differentially expressed genes (DEGs) in 3 comparison groups (old_op versus middle, old_op versus old, and old_op versus senescent). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses were carried out. Besides, Venn diagram analysis and gene functional interaction (FI) network analysis were performed. Results. Totally 520 DEGs, 966 DEGs, and 709 DEGs were obtained in old_op versus middle, old_op versus old, and old_op versus senescent groups, respectively. Lysosome pathway was the significantly enriched pathways enriched by intersection genes. The pathways enriched by subnetwork modules suggested that mitotic metaphase and anaphase and signaling by Rho GTPases in module 1 had more proteins from module. Conclusions. Lysosome pathway, mitotic metaphase and anaphase, and signaling by Rho GTPases may be involved in the development of osteoporosis. Furthermore, Rho GTPases may regulate the balance of bone resorption and bone formation via controlling osteoclast and osteoblast. These 3 pathways may be regarded as the treatment targets for osteoporosis. PMID:28466021
Using pathway modules as targets for assay development in xenobiotic screening
Toxicology and pharmaceutical research is increasingly making use of high throughout-screening (HTS) methods to assess the effects of chemicals on molecular pathways, cells and tissues. Whole-genome microarray analysis provides broad information on the response of biological syst...
Application of Petri net based analysis techniques to signal transduction pathways
Sackmann, Andrea; Heiner, Monika; Koch, Ina
2006-01-01
Background Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. Methods We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. Results We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. Conclusion The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules. PMID:17081284
Wang, Wei Bu; Liang, Yu; Zhang, Jing; Wu, Yi Dong; Du, Jian Jun; Li, Qi Ming; Zhu, Jian Zhuo; Su, Ji Guo
2018-06-22
Intra-molecular energy transport between distant functional sites plays important roles in allosterically regulating the biochemical activity of proteins. How to identify the specific intra-molecular signaling pathway from protein tertiary structure remains a challenging problem. In the present work, a non-equilibrium dynamics method based on the elastic network model (ENM) was proposed to simulate the energy propagation process and identify the specific signaling pathways within proteins. In this method, a given residue was perturbed and the propagation of energy was simulated by non-equilibrium dynamics in the normal modes space of ENM. After that, the simulation results were transformed from the normal modes space to the Cartesian coordinate space to identify the intra-protein energy transduction pathways. The proposed method was applied to myosin and the third PDZ domain (PDZ3) of PSD-95 as case studies. For myosin, two signaling pathways were identified, which mediate the energy transductions form the nucleotide binding site to the 50 kDa cleft and the converter subdomain, respectively. For PDZ3, one specific signaling pathway was identified, through which the intra-protein energy was transduced from ligand binding site to the distant opposite side of the protein. It is also found that comparing with the commonly used cross-correlation analysis method, the proposed method can identify the anisotropic energy transduction pathways more effectively.
Huan, Jinliang; Wang, Lishan; Xing, Li; Qin, Xianju; Feng, Lingbin; Pan, Xiaofeng; Zhu, Ling
2014-01-01
Estrogens are known to regulate the proliferation of breast cancer cells and to alter their cytoarchitectural and phenotypic properties, but the gene networks and pathways by which estrogenic hormones regulate these events are only partially understood. We used global gene expression profiling by Affymetrix GeneChip microarray analysis, with KEGG pathway enrichment, PPI network construction, module analysis and text mining methods to identify patterns and time courses of genes that are either stimulated or inhibited by estradiol (E2) in estrogen receptor (ER)-positive MCF-7 human breast cancer cells. Of the genes queried on the Affymetrix Human Genome U133 plus 2.0 microarray, we identified 628 (12h), 852 (24h) and 880 (48 h) differentially expressed genes (DEGs) that showed a robust pattern of regulation by E2. From pathway enrichment analysis, we found out the changes of metabolic pathways of E2 treated samples at each time point. At 12h time point, the changes of metabolic pathways were mainly focused on pathways in cancer, focal adhesion, and chemokine signaling pathway. At 24h time point, the changes were mainly enriched in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction and calcium signaling pathway. At 48 h time point, the significant pathways were pathways in cancer, regulation of actin cytoskeleton, cell adhesion molecules (CAMs), axon guidance and ErbB signaling pathway. Of interest, our PPI network analysis and module analysis found that E2 treatment induced enhancement of PRSS23 at the three time points and PRSS23 was in the central position of each module. Text mining results showed that the important genes of DEGs have relationship with signal pathways, such as ERbB pathway (AREG), Wnt pathway (NDP), MAPK pathway (NTRK3, TH), IP3 pathway (TRA@) and some transcript factors (TCF4, MAF). Our studies highlight the diverse gene networks and metabolic and cell regulatory pathways through which E2 operates to achieve its widespread effects on breast cancer cells. © 2013 Elsevier B.V. All rights reserved.
Nurse Leaders’ Experiences of Implementing Career Advancement Programs for Nurses in Iran
Sheikhi, Mohammad Reza; Khoshknab, Masoud Fallahi; Mohammadi, Farahnaz; Oskouie, Fatemeh
2015-01-01
Background and purpose: Career advancement programs are currently implemented in many countries. In Iran, the first career advancement program was Nurses’ Career Advancement Pathway. The purpose of this study was to explore nurse leaders’ experiences about implementing the Nurses’ Career Advancement Pathway program in Iran. Methods: This exploratory qualitative study was conducted in 2013. Sixteen nurse managers were recruited from the teaching hospitals affiliated to Shahid Behesthi, Qazvin, and Iran Universities of Medical Sciences in Iran. Participants were recruited using purposive sampling method. Study data were collected through in-depth semi-structured interviews. The conventional content analysis approach was used for data analysis. Results: participants’ experiences about implementing the Nurses’ Career Advancement Pathway fell into three main categories including: a) the shortcomings of performance evaluation, b) greater emphasis on point accumulation, c) the advancement-latitude mismatch. Conclusion: The Nurses’ Career Advancement pathway has several shortcomings regarding both its content and its implementation. Therefore, it is recommended to revise the program. PMID:26156907
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies
Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike
2017-01-01
The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.
Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin
2017-01-01
The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Eric S.; Brown, Houston J.; Helm, Monte L.
2016-01-20
The hydrogen production electrocatalyst Ni(PPh2NPh2)22+ (1) is capable of traversing multiple electrocatalytic pathways. When using dimethylformamidium, DMF(H)+, the mechanism of formation of H2 catalyzed by 1 changes from an ECEC to an EECC mechanism as the potential approaches the Ni(I/0) couple. Two recent electrochemical methods, current-potential analysis and foot-of-the-wave analysis (FOWA), were performed on 1 to measure the detailed chemical kinetics of the competing ECEC and EECC pathways. A sensitivity analysis was performed on the electrochemical methods using digital simulations to gain a better understanding of their strengths and limitations. Notably, chemical rate constants were significantly underestimated when not accountingmore » for electron transfer kinetics, even when electron transfer was fast enough to afford a reversible non-catalytic wave. The EECC pathway of 1 was found to be faster than the ECEC pathway under all conditions studied. Using buffered DMF: DMF(H)+ mixtures led to an increase in the catalytic rate constant (kobs) of the EECC pathway, but kobs for the ECEC pathway did not change when using buffered acid. Further kinetic analysis of the ECEC path revealed that added base increases the rate of isomerization of the exo-protonated Ni(0) isomers to the catalytically active endo-isomers, but decreases the net rate of protonation of Ni(I). FOWA on 1 did not provide accurate rate constants due to incomplete reduction of the exo-protonated Ni(I) intermediate at the foot of the wave, but FOWA could be used to estimate the reduction potential of this previously undetected intermediate. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
Evangelou, Marina; Smyth, Deborah J; Fortune, Mary D; Burren, Oliver S; Walker, Neil M; Guo, Hui; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick; Rich, Stephen S; Todd, John A; Wallace, Chris
2014-12-01
Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed (P=9.85×10-11) with 12 of the 22 SNPs showing P<0.05. Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, P=7.86×10-9), NRP1 (rs722988, 4.88×10-8), BAD (rs694739, 2.37×10-7), CTSB (rs1296023, 2.79×10-7), FYN (rs11964650, P=5.60×10-7), UBE2G1 (rs9906760, 5.08×10-7), MAP3K14 (rs17759555, 9.67×10-7), ITGB1 (rs1557150, 1.93×10-6), and IL7R (rs1445898, 2.76×10-6). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available. © 2014 The Authors. ** Genetic Epidemiology published by Wiley Periodicals, Inc.
Application of the critical pathway and integrated case teaching method to nursing orientation.
Goodman, D
1997-01-01
Nursing staff development programs must be responsive to current changes in healthcare. New nursing staff must be prepared to manage continuous change and to function competently in clinical practice. The orientation pathway, based on a case management model, is used as a structure for the orientation phase of staff development. The integrated case is incorporated as a teaching strategy in orientation. The integrated case method is based on discussion and analysis of patient situations with emphasis on role modeling and integration of theory and skill. The orientation pathway and integrated case teaching method provide a useful framework for orientation of new staff. Educators, preceptors and orientees find the structure provided by the orientation pathway very useful. Orientation that is developed, implemented and evaluated based on a case management model with the use of an orientation pathway and incorporation of an integrated case teaching method provides a standardized structure for orientation of new staff. This approach is designed for the adult learner, promotes conceptual reasoning, and encourages the social and contextual basis for continued learning.
Deriving pathway maps from automated text analysis using a grammar-based approach.
Olsson, Björn; Gawronska, Barbara; Erlendsson, Björn
2006-04-01
We demonstrate how automated text analysis can be used to support the large-scale analysis of metabolic and regulatory pathways by deriving pathway maps from textual descriptions found in the scientific literature. The main assumption is that correct syntactic analysis combined with domain-specific heuristics provides a good basis for relation extraction. Our method uses an algorithm that searches through the syntactic trees produced by a parser based on a Referent Grammar formalism, identifies relations mentioned in the sentence, and classifies them with respect to their semantic class and epistemic status (facts, counterfactuals, hypotheses). The semantic categories used in the classification are based on the relation set used in KEGG (Kyoto Encyclopedia of Genes and Genomes), so that pathway maps using KEGG notation can be automatically generated. We present the current version of the relation extraction algorithm and an evaluation based on a corpus of abstracts obtained from PubMed. The results indicate that the method is able to combine a reasonable coverage with high accuracy. We found that 61% of all sentences were parsed, and 97% of the parse trees were judged to be correct. The extraction algorithm was tested on a sample of 300 parse trees and was found to produce correct extractions in 90.5% of the cases.
Metabolic network visualization eliminating node redundance and preserving metabolic pathways
Bourqui, Romain; Cottret, Ludovic; Lacroix, Vincent; Auber, David; Mary, Patrick; Sagot, Marie-France; Jourdan, Fabien
2007-01-01
Background The tools that are available to draw and to manipulate the representations of metabolism are usually restricted to metabolic pathways. This limitation becomes problematic when studying processes that span several pathways. The various attempts that have been made to draw genome-scale metabolic networks are confronted with two shortcomings: 1- they do not use contextual information which leads to dense, hard to interpret drawings, 2- they impose to fit to very constrained standards, which implies, in particular, duplicating nodes making topological analysis considerably more difficult. Results We propose a method, called MetaViz, which enables to draw a genome-scale metabolic network and that also takes into account its structuration into pathways. This method consists in two steps: a clustering step which addresses the pathway overlapping problem and a drawing step which consists in drawing the clustered graph and each cluster. Conclusion The method we propose is original and addresses new drawing issues arising from the no-duplication constraint. We do not propose a single drawing but rather several alternative ways of presenting metabolism depending on the pathway on which one wishes to focus. We believe that this provides a valuable tool to explore the pathway structure of metabolism. PMID:17608928
Principles for circadian orchestration of metabolic pathways.
Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim; Westermark, Pål O
2017-02-14
Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo.
Principles for circadian orchestration of metabolic pathways
Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim
2017-01-01
Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo. PMID:28159888
Construction and engineering of large biochemical pathways via DNA assembler
Shao, Zengyi; Zhao, Huimin
2015-01-01
Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442
Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.
Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø
2003-10-07
The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell metabolism under various physiological, non-optimal conditions.
2018-01-01
Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181
Predicting the points of interaction of small molecules in the NF-κB pathway
2011-01-01
Background The similarity property principle has been used extensively in drug discovery to identify small compounds that interact with specific drug targets. Here we show it can be applied to identify the interactions of small molecules within the NF-κB signalling pathway. Results Clusters that contain compounds with a predominant interaction within the pathway were created, which were then used to predict the interaction of compounds not included in the clustering analysis. Conclusions The technique successfully predicted the points of interactions of compounds that are known to interact with the NF-κB pathway. The method was also shown to be successful when compounds for which the interaction points were unknown were included in the clustering analysis. PMID:21342508
Wang, Yin-Yin; Li, Jie; Wu, Zeng-Rui; Zhang, Bo; Yang, Hong-Bin; Wang, Qin; Cai, Ying-Chun; Liu, Gui-Xia; Li, Wei-Hua; Tang, Yun
2017-05-01
An increasing number of cases of herb-induced liver injury (HILI) have been reported, presenting new clinical challenges. In this study, taking Polygonum multiflorum Thunb (PmT) as an example, we proposed a computational systems toxicology approach to explore the molecular mechanisms of HILI. First, the chemical components of PmT were extracted from 3 main TCM databases as well as the literature related to natural products. Then, the known targets were collected through data integration, and the potential compound-target interactions (CTIs) were predicted using our substructure-drug-target network-based inference (SDTNBI) method. After screening for hepatotoxicity-related genes by assessing the symptoms of HILI, a compound-target interaction network was constructed. A scoring function, namely, Ascore, was developed to estimate the toxicity of chemicals in the liver. We conducted network analysis to determine the possible mechanisms of the biphasic effects using the analysis tools, including BiNGO, pathway enrichment, organ distribution analysis and predictions of interactions with CYP450 enzymes. Among the chemical components of PmT, 54 components with good intestinal absorption were used for analysis, and 2939 CTIs were obtained. After analyzing the mRNA expression data in the BioGPS database, 1599 CTIs and 125 targets related to liver diseases were identified. In the top 15 compounds, seven with Ascore values >3000 (emodin, quercetin, apigenin, resveratrol, gallic acid, kaempferol and luteolin) were obviously associated with hepatotoxicity. The results from the pathway enrichment analysis suggest that multiple interactions between apoptosis and metabolism may underlie PmT-induced liver injury. Many of the pathways have been verified in specific compounds, such as glutathione metabolism, cytochrome P450 metabolism, and the p53 pathway, among others. Hepatitis symptoms, the perturbation of nine bile acids and yellow or tawny urine also had corresponding pathways, justifying our method. In conclusion, this computational systems toxicology method reveals possible toxic components and could be very helpful for understanding the mechanisms of HILI. In this way, the method might also facilitate the identification of novel hepatotoxic herbs.
Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J
2017-05-01
Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.
Aghdam, Rosa; Baghfalaki, Taban; Khosravi, Pegah; Saberi Ansari, Elnaz
2017-12-01
Deciphering important genes and pathways from incomplete gene expression data could facilitate a better understanding of cancer. Different imputation methods can be applied to estimate the missing values. In our study, we evaluated various imputation methods for their performance in preserving significant genes and pathways. In the first step, 5% genes are considered in random for two types of ignorable and non-ignorable missingness mechanisms with various missing rates. Next, 10 well-known imputation methods were applied to the complete datasets. The significance analysis of microarrays (SAM) method was applied to detect the significant genes in rectal and lung cancers to showcase the utility of imputation approaches in preserving significant genes. To determine the impact of different imputation methods on the identification of important genes, the chi-squared test was used to compare the proportions of overlaps between significant genes detected from original data and those detected from the imputed datasets. Additionally, the significant genes are tested for their enrichment in important pathways, using the ConsensusPathDB. Our results showed that almost all the significant genes and pathways of the original dataset can be detected in all imputed datasets, indicating that there is no significant difference in the performance of various imputation methods tested. The source code and selected datasets are available on http://profiles.bs.ipm.ir/softwares/imputation_methods/. Copyright © 2017. Production and hosting by Elsevier B.V.
New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages.
Yu, Mingli; Liu, Fengzhen; Zhu, Weiwei; Sun, Meihong; Liu, Jiang; Li, Xinzheng
2015-11-01
The peanut (Arachis hypogaea L.) is one of the three most important oil crops in the world due to its high average oil content (50 %). To reveal the biosynthetic pathways of seed oil in the early developmental stages of peanut pods with the goal of improving the oil quality, we presented a method combining deep sequencing analysis of the peanut pod transcriptome and quantitative real-time PCR (RT-PCR) verification of seed oil-related genes. From the sequencing data, approximately 1500 lipid metabolism-associated Unigenes were identified. The RT-PCR results quantified the different expression patterns of these triacylglycerol (TAG) synthesis-related genes in the early developmental stages of peanut pods. Based on these results and analysis, we proposed a novel construct of the metabolic pathways involved in the biosynthesis of TAG, including the Kennedy pathway, acyl-CoA-independent pathway and proposed monoacylglycerol pathway. It showed that the biosynthetic pathways of TAG in the early developmental stages of peanut pods were much more complicated than a simple, unidirectional, linear pathway.
Jiang, Zhiquan; Gui, Songbo; Zhang, Yazhuo
2010-09-01
Growth-hormone-secreting pituitary adenomas (GHomas) account for approximately 20% of all pituitary neoplasms. However, the pathogenesis of GHomas remains to be elucidated. To explore the possible pathogenesis of GHomas, we used bead-based fiber-optic arrays to examine the gene expression in five GHomas and compared them to three healthy pituitaries. Four differentially expressed genes were chosen randomly for validation by quantitative real-time reverse transcription-polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 353 genes and 206 expressed sequence tags (ESTs) and decreases in 565 genes and 29 ESTs. Bioinformatic analysis showed that the genes HIGD1B, HOXB2, ANGPT2, HPGD and BTG2 may play an important role in the tumorigenesis and progression of GHomas. Pathway analysis showed that the wingless-type signaling pathway and extracellular-matrix receptor interactions may play a key role in the tumorigenesis and progression of GHomas. Our data suggested that there are numerous aberrantly expressed genes and pathways involved in the pathogenesis of GHomas. Bead-based fiber-optic arrays combined with pathway analysis of differentially expressed genes appear to be a valid method for investigating the pathogenesis of tumors.
JIANG, ZHIQUAN; GUI, SONGBO; ZHANG, YAZHUO
2010-01-01
Growth-hormone-secreting pituitary adenomas (GHomas) account for approximately 20% of all pituitary neoplasms. However, the pathogenesis of GHomas remains to be elucidated. To explore the possible pathogenesis of GHomas, we used bead-based fiber-optic arrays to examine the gene expression in five GHomas and compared them to three healthy pituitaries. Four differentially expressed genes were chosen randomly for validation by quantitative real-time reverse transcription-polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 353 genes and 206 expressed sequence tags (ESTs) and decreases in 565 genes and 29 ESTs. Bioinformatic analysis showed that the genes HIGD1B, HOXB2, ANGPT2, HPGD and BTG2 may play an important role in the tumorigenesis and progression of GHomas. Pathway analysis showed that the wingless-type signaling pathway and extracellular-matrix receptor interactions may play a key role in the tumorigenesis and progression of GHomas. Our data suggested that there are numerous aberrantly expressed genes and pathways involved in the pathogenesis of GHomas. Bead-based fiber-optic arrays combined with pathway analysis of differentially expressed genes appear to be a valid method for investigating the pathogenesis of tumors. PMID:22993617
Shuai, Wang; Yongrui, Bao; Shanshan, Guan; Bo, Liu; Lu, Chen; Lei, Wang; Xiaorong, Ran
2014-01-01
Metabolomics, the systematic analysis of potential metabolites in a biological specimen, has been increasingly applied to discovering biomarkers, identifying perturbed pathways, measuring therapeutic targets, and discovering new drugs. By analyzing and verifying the significant difference in metabolic profiles and changes of metabolite biomarkers, metabolomics enables us to better understand substance metabolic pathways which can clarify the mechanism of Traditional Chinese Medicines (TCM). Corydalis yanhusuo alkaloid (CA) is a major component of Qizhiweitong (QZWT) prescription which has been used for treating gastric ulcer for centuries and its mechanism remains unclear completely. Metabolite profiling was performed by high-performance liquid chromatography combined with time-of-flight mass spectrometry (HPLC/ESI-TOF-MS) and in conjunction with multivariate data analysis and pathway analysis. The statistic software Mass Profiller Prossional (MPP) and statistic method including ANOVA and principal component analysis (PCA) were used for discovering novel potential biomarkers to clarify mechanism of CA in treating acid injected rats with gastric ulcer. The changes in metabolic profiling were restored to their base-line values after CA treatment according to the PCA score plots. Ten different potential biomarkers and seven key metabolic pathways contributing to the treatment of gastric ulcer were discovered and identified. Among the pathways, sphingophospholipid metabolism and fatty acid metabolism related network were acutely perturbed. Quantitative real time polymerase chain reaction (RT-PCR) analysis were performed to evaluate the expression of genes related to the two pathways for verifying the above results. The results show that changed biomarkers and pathways may provide evidence to insight into drug action mechanisms and enable us to increase research productivity toward metabolomics drug discovery. PMID:24454691
Feng, Yinling; Wang, Xuefeng
2017-03-01
In order to investigate commonly disturbed genes and pathways in various brain regions of patients with Parkinson's disease (PD), microarray datasets from previous studies were collected and systematically analyzed. Different normalization methods were applied to microarray datasets from different platforms. A strategy combining gene co‑expression networks and clinical information was adopted, using weighted gene co‑expression network analysis (WGCNA) to screen for commonly disturbed genes in different brain regions of patients with PD. Functional enrichment analysis of commonly disturbed genes was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Co‑pathway relationships were identified with Pearson's correlation coefficient tests and a hypergeometric distribution‑based test. Common genes in pathway pairs were selected out and regarded as risk genes. A total of 17 microarray datasets from 7 platforms were retained for further analysis. Five gene coexpression modules were identified, containing 9,745, 736, 233, 101 and 93 genes, respectively. One module was significantly correlated with PD samples and thus the 736 genes it contained were considered to be candidate PD‑associated genes. Functional enrichment analysis demonstrated that these genes were implicated in oxidative phosphorylation and PD. A total of 44 pathway pairs and 52 risk genes were revealed, and a risk gene pathway relationship network was constructed. Eight modules were identified and were revealed to be associated with PD, cancers and metabolism. A number of disturbed pathways and risk genes were unveiled in PD, and these findings may help advance understanding of PD pathogenesis.
Li, Xiaofang; Tian, Run; Gao, Hugh; Yan, Feng; Ying, Le; Yang, Yongkang; Yang, Pei
2018-01-01
Cervical cancer is the leading cause of death with gynecological malignancies. We aimed to explore the molecular mechanism of carcinogenesis and biomarkers for cervical cancer by integrated bioinformatic analysis. We employed RNA-sequencing details of 254 cervical squamous cell carcinomas and 3 normal samples from The Cancer Genome Atlas. To explore the distinct pathways, messenger RNA expression was submitted to a Gene Set Enrichment Analysis. Kyoto Encyclopedia of Genes and Genomes and protein–protein interaction network analysis of differentially expressed genes were performed. Then, we conducted pathway enrichment analysis for modules acquired in protein–protein interaction analysis and obtained a list of pathways in every module. After intersecting the results from the 3 approaches, we evaluated the survival rates of both mutual pathways and genes in the pathway, and 5 survival-related genes were obtained. Finally, Cox hazards ratio analysis of these 5 genes was performed. DNA replication pathway (P < .001; 12 genes included) was suggested to have the strongest association with the prognosis of cervical squamous cancer. In total, 5 of the 12 genes, namely, minichromosome maintenance 2, minichromosome maintenance 4, minichromosome maintenance 5, proliferating cell nuclear antigen, and ribonuclease H2 subunit A were significantly correlated with survival. Minichromosome maintenance 5 was shown as an independent prognostic biomarker for patients with cervical cancer. This study identified a distinct pathway (DNA replication). Five genes which may be prognostic biomarkers and minichromosome maintenance 5 were identified as independent prognostic biomarkers for patients with cervical cancer. PMID:29642758
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgans, D. L.; Lindberg, S. L.
The purpose of this technical approach document (TAD) is to document the assumptions, equations, and methods used to perform the groundwater pathway radiological dose calculations for the revised Hanford Site Composite Analysis (CA). DOE M 435.1-1, states, “The composite analysis results shall be used for planning, radiation protection activities, and future use commitments to minimize the likelihood that current low-level waste disposal activities will result in the need for future corrective or remedial actions to adequately protect the public and the environment.”
Pathway analysis from lists of microRNAs: common pitfalls and alternative strategy
Godard, Patrice; van Eyll, Jonathan
2015-01-01
MicroRNAs (miRNAs) are involved in the regulation of gene expression at a post-transcriptional level. As such, monitoring miRNA expression has been increasingly used to assess their role in regulatory mechanisms of biological processes. In large scale studies, once miRNAs of interest have been identified, the target genes they regulate are often inferred using algorithms or databases. A pathway analysis is then often performed in order to generate hypotheses about the relevant biological functions controlled by the miRNA signature. Here we show that the method widely used in scientific literature to identify these pathways is biased and leads to inaccurate results. In addition to describing the bias and its origin we present an alternative strategy to identify potential biological functions specifically impacted by a miRNA signature. More generally, our study exemplifies the crucial need of relevant negative controls when developing, and using, bioinformatics methods. PMID:25800743
Biomarkers of the Hedgehog/Smoothened pathway in healthy volunteers
Kadam, Sunil K; Patel, Bharvin K R; Jones, Emma; Nguyen, Tuan S; Verma, Lalit K; Landschulz, Katherine T; Stepaniants, Sergey; Li, Bin; Brandt, John T; Brail, Leslie H
2012-01-01
The Hedgehog (Hh) pathway is involved in oncogenic transformation and tumor maintenance. The primary objective of this study was to select surrogate tissue to measure messenger ribonucleic acid (mRNA) levels of Hh pathway genes for measurement of pharmacodynamic effect. Expression of Hh pathway specific genes was measured by quantitative real time polymerase chain reaction (qRT-PCR) and global gene expression using Affymetrix U133 microarrays. Correlations were made between the expression of specific genes determined by qRT-PCR and normalized microarray data. Gene ontology analysis using microarray data for a broader set of Hh pathway genes was performed to identify additional Hh pathway-related markers in the surrogate tissue. RNA extracted from blood, hair follicle, and skin obtained from healthy subjects was analyzed by qRT-PCR for 31 genes, whereas 8 samples were analyzed for a 7-gene subset. Twelve sample sets, each with ≤500 ng total RNA derived from hair, skin, and blood, were analyzed using Affymetrix U133 microarrays. Transcripts for several Hh pathway genes were undetectable in blood using qRT-PCR. Skin was the most desirable matrix, followed by hair follicle. Whether processed by robust multiarray average or microarray suite 5 (MAS5), expression patterns of individual samples showed co-clustered signals; both normalization methods were equally effective for unsupervised analysis. The MAS5- normalized probe sets appeared better suited for supervised analysis. This work provides the basis for selection of a surrogate tissue and an expression analysis-based approach to evaluate pathway-related genes as markers of pharmacodynamic effect with novel inhibitors of the Hh pathway. PMID:22611475
Reconstructing biochemical pathways from time course data.
Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago
2007-03-01
Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.
Multivariate inference of pathway activity in host immunity and response to therapeutics
Goel, Gautam; Conway, Kara L.; Jaeger, Martin; Netea, Mihai G.; Xavier, Ramnik J.
2014-01-01
Developing a quantitative view of how biological pathways are regulated in response to environmental factors is central for understanding of disease phenotypes. We present a computational framework, named Multivariate Inference of Pathway Activity (MIPA), which quantifies degree of activity induced in a biological pathway by computing five distinct measures from transcriptomic profiles of its member genes. Statistical significance of inferred activity is examined using multiple independent self-contained tests followed by a competitive analysis. The method incorporates a new algorithm to identify a subset of genes that may regulate the extent of activity induced in a pathway. We present an in-depth evaluation of specificity, robustness, and reproducibility of our method. We benchmarked MIPA's false positive rate at less than 1%. Using transcriptomic profiles representing distinct physiological and disease states, we illustrate applicability of our method in (i) identifying gene–gene interactions in autophagy-dependent response to Salmonella infection, (ii) uncovering gene–environment interactions in host response to bacterial and viral pathogens and (iii) identifying driver genes and processes that contribute to wound healing and response to anti-TNFα therapy. We provide relevant experimental validation that corroborates the accuracy and advantage of our method. PMID:25147207
Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R
2016-09-02
Drugs and other interventions for high impact hepatic diseases often target biochemical pathways such as gluconeogenesis, lipogenesis, or the metabolic response to oxidative stress. However, traditional liver function tests do not provide quantitative data about these pathways. In this study, we developed a simple method to evaluate these processes by NMR analysis of plasma metabolites. Healthy subjects ingested [U-(13)C3]glycerol, and blood was drawn at multiple times. Each subject completed three visits under differing nutritional states. High resolution (13)C NMR spectra of plasma triacylglycerols and glucose provided new insights into a number of hepatic processes including fatty acid esterification, the pentose phosphate pathway, and gluconeogenesis through the tricarboxylic acid cycle. Fasting stimulated pentose phosphate pathway activity and metabolism of [U-(13)C3]glycerol in the tricarboxylic acid cycle prior to gluconeogenesis or glyceroneogenesis. Fatty acid esterification was transient in the fasted state but continuous under fed conditions. We conclude that a simple NMR analysis of blood metabolites provides an important biomarker of pentose phosphate pathway activity, triacylglycerol synthesis, and flux through anaplerotic pathways in mitochondria of human liver. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Quiñones, Karin D; Su, Hua; Marshall, Byron; Eggers, Shauna; Chen, Hsinchun
2007-09-01
Explosive growth in biomedical research has made automated information extraction, knowledge integration, and visualization increasingly important and critically needed. The Arizona BioPathway (ABP) system extracts and displays biological regulatory pathway information from the abstracts of journal articles. This study uses relations extracted from more than 200 PubMed abstracts presented in a tabular and graphical user interface with built-in search and aggregation functionality. This paper presents a task-centered assessment of the usefulness and usability of the ABP system focusing on its relation aggregation and visualization functionalities. Results suggest that our graph-based visualization is more efficient in supporting pathway analysis tasks and is perceived as more useful and easier to use as compared to a text-based literature-viewing method. Relation aggregation significantly contributes to knowledge-acquisition efficiency. Together, the graphic and tabular views in the ABP Visualizer provide a flexible and effective interface for pathway relation browsing and analysis. Our study contributes to pathway-related research and biological information extraction by assessing the value of a multiview, relation-based interface that supports user-controlled exploration of pathway information across multiple granularities.
Mohammadi Majd, Tahereh; Kalantari, Shiva; Raeisi Shahraki, Hadi; Nafar, Mohsen; Almasi, Afshin; Samavat, Shiva; Parvin, Mahmoud; Hashemian, Amirhossein
2018-03-10
IgA nephropathy (IgAN) is the most common primary glomerulonephritis diagnosed based on renal biopsy. Mesangial IgA deposits along with the proliferation of mesangial cells are the histologic hallmark of IgAN. Non-invasive diagnostic tools may help to prompt diagnosis and therapy. The discovery of potential and reliable urinary biomarkers for diagnosis of IgAN depends on applying robust and suitable models. Applying two multivariate modeling methods on a urine proteomic dataset obtained from IgAN patients, and comparison of the results of these methods were the purpose of this study. Two models were constructed for urinary protein profiles of 13 patients and 8 healthy individuals, based on sparse linear discriminant analysis (SLDA) and elastic net regression methods. A panel of selected biomarkers with the best coefficients were proposed and further analyzed for biological relevance using functional annotation and pathway analysis. Transferrin, α1-antitrypsin, and albumin fragments were the most important up-regulated biomarkers, while fibulin-5, YIP1 family member 3, prasoposin, and osteopontin were the most important down-regulated biomarkers. Pathway analysis revealed that complement and coagulation cascades and extracellular matrix-receptor interaction pathways impaired in the pathogenesis of IgAN. SLDA and elastic net had an equal importance for diagnosis of IgAN and were useful methods for exploring and processing proteomic data. In addition, the suggested biomarkers are reliable candidates for further validation to non-invasive diagnose of IgAN based on urine examination.
Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang
2018-06-15
Investigating the potential biological function of differential changed genes through integrating multiple omics data including miRNA and mRNA expression profiles, is always hot topic. However, how to evaluate the repression effect on target genes integrating miRNA and mRNA expression profiles are not fully solved. In this study, we provide an analyzing method by integrating both miRNAs and mRNAs expression data simultaneously. Difference analysis was adopted based on the repression score, then significantly repressed mRNAs were screened out by DEGseq. Pathway analysis for the significantly repressed mRNAs shows that multiple pathways such as MAPK signaling pathway, TGF-beta signaling pathway and so on, may correlated to the colorectal cancer(CRC). Focusing on the MAPK signaling pathway, a miRNA-mRNA network that centering the cell fate genes was constructed. Finally, the miRNA-mRNAs that potentially important in the CRC carcinogenesis were screened out and scored by impact index. Copyright © 2018 Elsevier B.V. All rights reserved.
Voyle, Nicola; Keohane, Aoife; Newhouse, Stephen; Lunnon, Katie; Johnston, Caroline; Soininen, Hilkka; Kloszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon; Hodges, Angela; Kiddle, Steven; Dobson, Richard Jb
2016-01-01
Recent studies indicate that gene expression levels in blood may be able to differentiate subjects with Alzheimer's disease (AD) from normal elderly controls and mild cognitively impaired (MCI) subjects. However, there is limited replicability at the single marker level. A pathway-based interpretation of gene expression may prove more robust. This study aimed to investigate whether a case/control classification model built on pathway level data was more robust than a gene level model and may consequently perform better in test data. The study used two batches of gene expression data from the AddNeuroMed (ANM) and Dementia Case Registry (DCR) cohorts. Our study used Illumina Human HT-12 Expression BeadChips to collect gene expression from blood samples. Random forest modeling with recursive feature elimination was used to predict case/control status. Age and APOE ɛ4 status were used as covariates for all analysis. Gene and pathway level models performed similarly to each other and to a model based on demographic information only. Any potential increase in concordance from the novel pathway level approach used here has not lead to a greater predictive ability in these datasets. However, we have only tested one method for creating pathway level scores. Further, we have been able to benchmark pathways against genes in datasets that had been extensively harmonized. Further work should focus on the use of alternative methods for creating pathway level scores, in particular those that incorporate pathway topology, and the use of an endophenotype based approach.
Whole-Genome Analysis of the SHORT-ROOT Developmental Pathway in Arabidopsis
Busch, Wolfgang; Cui, Hongchang; Wang, Jean Y; Blilou, Ikram; Hassan, Hala; Nakajima, Keiji; Matsumoto, Noritaka; Lohmann, Jan U; Scheres, Ben
2006-01-01
Stem cell function during organogenesis is a key issue in developmental biology. The transcription factor SHORT-ROOT (SHR) is a critical component in a developmental pathway regulating both the specification of the root stem cell niche and the differentiation potential of a subset of stem cells in the Arabidopsis root. To obtain a comprehensive view of the SHR pathway, we used a statistical method called meta-analysis to combine the results of several microarray experiments measuring the changes in global expression profiles after modulating SHR activity. Meta-analysis was first used to identify the direct targets of SHR by combining results from an inducible form of SHR driven by its endogenous promoter, ectopic expression, followed by cell sorting and comparisons of mutant to wild-type roots. Eight putative direct targets of SHR were identified, all with expression patterns encompassing subsets of the native SHR expression domain. Further evidence for direct regulation by SHR came from binding of SHR in vivo to the promoter regions of four of the eight putative targets. A new role for SHR in the vascular cylinder was predicted from the expression pattern of several direct targets and confirmed with independent markers. The meta-analysis approach was then used to perform a global survey of the SHR indirect targets. Our analysis suggests that the SHR pathway regulates root development not only through a large transcription regulatory network but also through hormonal pathways and signaling pathways using receptor-like kinases. Taken together, our results not only identify the first nodes in the SHR pathway and a new function for SHR in the development of the vascular tissue but also reveal the global architecture of this developmental pathway. PMID:16640459
Gao, Haiyan; Yang, Mei; Zhang, Xiaolan
2018-04-01
The present study aimed to investigate potential recurrence-risk biomarkers based on significant pathways for Luminal A breast cancer through gene expression profile analysis. Initially, the gene expression profiles of Luminal A breast cancer patients were downloaded from The Cancer Genome Atlas database. The differentially expressed genes (DEGs) were identified using a Limma package and the hierarchical clustering analysis was conducted for the DEGs. In addition, the functional pathways were screened using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and rank ratio calculation. The multigene prognostic assay was exploited based on the statistically significant pathways and its prognostic function was tested using train set and verified using the gene expression data and survival data of Luminal A breast cancer patients downloaded from the Gene Expression Omnibus. A total of 300 DEGs were identified between good and poor outcome groups, including 176 upregulated genes and 124 downregulated genes. The DEGs may be used to effectively distinguish Luminal A samples with different prognoses verified by hierarchical clustering analysis. There were 9 pathways screened as significant pathways and a total of 18 DEGs involved in these 9 pathways were identified as prognostic biomarkers. According to the survival analysis and receiver operating characteristic curve, the obtained 18-gene prognostic assay exhibited good prognostic function with high sensitivity and specificity to both the train and test samples. In conclusion the 18-gene prognostic assay including the key genes, transcription factor 7-like 2, anterior parietal cortex and lymphocyte enhancer factor-1 may provide a new method for predicting outcomes and may be conducive to the promotion of precision medicine for Luminal A breast cancer.
Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.
Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim
2014-10-01
To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network
Qin, Tingting; Matmati, Nabil; Tsoi, Lam C.; Mohanty, Bidyut K.; Gao, Nan; Tang, Jijun; Lawson, Andrew B.; Hannun, Yusuf A.; Zheng, W. Jim
2014-01-01
To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes’ Ontology Fingerprints—a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms’ corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. PMID:25063300
Normal mode-guided transition pathway generation in proteins
Lee, Byung Ho; Seo, Sangjae; Kim, Min Hyeok; Kim, Youngjin; Jo, Soojin; Choi, Moon-ki; Lee, Hoomin; Choi, Jae Boong
2017-01-01
The biological function of proteins is closely related to its structural motion. For instance, structurally misfolded proteins do not function properly. Although we are able to experimentally obtain structural information on proteins, it is still challenging to capture their dynamics, such as transition processes. Therefore, we need a simulation method to predict the transition pathways of a protein in order to understand and study large functional deformations. Here, we present a new simulation method called normal mode-guided elastic network interpolation (NGENI) that performs normal modes analysis iteratively to predict transition pathways of proteins. To be more specific, NGENI obtains displacement vectors that determine intermediate structures by interpolating the distance between two end-point conformations, similar to a morphing method called elastic network interpolation. However, the displacement vector is regarded as a linear combination of the normal mode vectors of each intermediate structure, in order to enhance the physical sense of the proposed pathways. As a result, we can generate more reasonable transition pathways geometrically and thermodynamically. By using not only all normal modes, but also in part using only the lowest normal modes, NGENI can still generate reasonable pathways for large deformations in proteins. This study shows that global protein transitions are dominated by collective motion, which means that a few lowest normal modes play an important role in this process. NGENI has considerable merit in terms of computational cost because it is possible to generate transition pathways by partial degrees of freedom, while conventional methods are not capable of this. PMID:29020017
Lu, Mingbo; Zhang, Yang'e; Zhao, Chunfang; Zhou, Pengpeng; Yu, Longjiang
2010-01-01
This study presents an HPLC method for simultaneous analysis of astaxanthin and its carotenoid precursors from Xanthophyllomyces dendrorhous. The HPLC method is accomplished by employing a C18 column and the mobile phase methanol/water/acetonitrile/ dichloromethane (70:4:13:13, v/v/v/v). Astaxanthin is quantified by detection at 480 nm. The carotenoid precursors are identified by LC-APCI-MS and UV-vis absorption spectra. Peaks showed in the HPLC chromatogram are identified as carotenoids in the monocyclic biosynthetic pathway or their derivatives. In the monocyclic carotenoid pathway, 3,3'-dihydroxy-beta,psi-carotene-4,4'-dione (DCD) is produced through gamma-carotene and torulene.
Zeng, Yanni; Navarro, Pau; Fernandez-Pujals, Ana M; Hall, Lynsey S; Clarke, Toni-Kim; Thomson, Pippa A; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; MacIntyre, Donald J; Wray, Naomi R; Deary, Ian J; Porteous, David J; Haley, Chris S; McIntosh, Andrew M
2017-02-15
Genome-wide association studies (GWASs) of major depressive disorder (MDD) have identified few significant associations. Testing the aggregation of genetic variants, in particular biological pathways, may be more powerful. Regional heritability analysis can be used to detect genomic regions that contribute to disease risk. We integrated pathway analysis and multilevel regional heritability analyses in a pipeline designed to identify MDD-associated pathways. The pipeline was applied to two independent GWAS samples [Generation Scotland: The Scottish Family Health Study (GS:SFHS, N = 6455) and Psychiatric Genomics Consortium (PGC:MDD) (N = 18,759)]. A polygenic risk score (PRS) composed of single nucleotide polymorphisms from the pathway most consistently associated with MDD was created, and its accuracy to predict MDD, using area under the curve, logistic regression, and linear mixed model analyses, was tested. In GS:SFHS, four pathways were significantly associated with MDD, and two of these explained a significant amount of pathway-level regional heritability. In PGC:MDD, one pathway was significantly associated with MDD. Pathway-level regional heritability was significant in this pathway in one subset of PGC:MDD. For both samples the regional heritabilities were further localized to the gene and subregion levels. The NETRIN1 signaling pathway showed the most consistent association with MDD across the two samples. PRSs from this pathway showed competitive predictive accuracy compared with the whole-genome PRSs when using area under the curve statistics, logistic regression, and linear mixed model. These post-GWAS analyses highlight the value of combining multiple methods on multiple GWAS data for the identification of risk pathways for MDD. The NETRIN1 signaling pathway is identified as a candidate pathway for MDD and should be explored in further large population studies. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Shih, Wei-Liang; Kao, Chung-Feng; Chuang, Li-Chung; Kuo, Po-Hsiu
2012-01-01
MicroRNAs (miRNAs) are known to be important post-transcriptional regulators that are involved in the etiology of complex psychiatric traits. The present study aimed to incorporate miRNAs information into pathway analysis using a genome-wide association dataset to identify relevant biological pathways for bipolar disorder (BPD). We selected psychiatric- and neurological-associated miRNAs (N = 157) from PhenomiR database. The miRNA target genes (miTG) predictions were obtained from microRNA.org. Canonical pathways (N = 4,051) were downloaded from the Molecule Signature Database. We employed a novel weighting scheme for miTGs in pathway analysis using methods of gene set enrichment analysis and sum-statistic. Under four statistical scenarios, 38 significantly enriched pathways (P-value < 0.01 after multiple testing correction) were identified for the risk of developing BPD, including pathways of ion channels associated (e.g., gated channel activity, ion transmembrane transporter activity, and ion channel activity) and nervous related biological processes (e.g., nervous system development, cytoskeleton, and neuroactive ligand receptor interaction). Among them, 19 were identified only when the weighting scheme was applied. Many miRNA-targeted genes were functionally related to ion channels, collagen, and axonal growth and guidance that have been suggested to be associated with BPD previously. Some of these genes are linked to the regulation of miRNA machinery in the literature. Our findings provide support for the potential involvement of miRNAs in the psychopathology of BPD. Further investigations to elucidate the functions and mechanisms of identified candidate pathways are needed. PMID:23264780
Mendel, Peter; Chen, Emily K; Green, Harold D; Armstrong, Courtney; Timbie, Justin W; Kress, Amii M; Friedberg, Mark W; Kahn, Katherine L
2017-12-15
To understand the process of practice transformation by identifying pathways for attaining patient-centered medical home (PCMH) recognition. The CMS Federally Qualified Health Center (FQHC) Advanced Primary Care Practice Demonstration was designed to help FQHCs achieve NCQA Level 3 PCMH recognition and improve patient outcomes. We used a stratified random sample of 20 (out of 503) participating sites for this analysis. We developed a conceptual model of structural, cultural, and implementation factors affecting PCMH transformation based on literature and initial qualitative interview themes. We then used conventional cross-case analysis, followed by qualitative comparative analysis (QCA), a cross-case method based on Boolean logic algorithms, to systematically identify pathways (i.e., combinations of factors) associated with attaining-or not attaining-Level 3 recognition. Site-level indicators were derived from semistructured interviews with site leaders at two points in time (mid- and late-implementation) and administrative data collected prior to and during the demonstration period. The QCA results identified five distinct pathways to attaining PCMH recognition and four distinct pathways to not attaining recognition by the end of the demonstration. Across these pathways, one condition (change leader capacity) was common to all pathways for attaining recognition, and another (previous improvement or recognition experience) was absent in all pathways for not attaining recognition. In general, sites could compensate for deficiencies in one factor with capacity in others, but they needed a threshold of strengths in cultural and implementation factors to attain PCMH recognition. Future efforts at primary care transformation should take into account multiple pathways sites may pursue. Sites should be assessed on key cultural and implementation factors, in addition to structural components, in order to differentiate interventions and technical assistance. © Health Research and Educational Trust.
Morine, Melissa J; McMonagle, Jolene; Toomey, Sinead; Reynolds, Clare M; Moloney, Aidan P; Gormley, Isobel C; Gaora, Peadar O; Roche, Helen M
2010-10-07
Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways--selenoamino acid metabolism and steroid biosynthesis--illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.
2010-01-01
Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease. PMID:20929581
Discovering novel subsystems using comparative genomics
Ferrer, Luciana; Shearer, Alexander G.; Karp, Peter D.
2011-01-01
Motivation: Key problems for computational genomics include discovering novel pathways in genome data, and discovering functional interaction partners for genes to define new members of partially elucidated pathways. Results: We propose a novel method for the discovery of subsystems from annotated genomes. For each gene pair, a score measuring the likelihood that the two genes belong to a same subsystem is computed using genome context methods. Genes are then grouped based on these scores, and the resulting groups are filtered to keep only high-confidence groups. Since the method is based on genome context analysis, it relies solely on structural annotation of the genomes. The method can be used to discover new pathways, find missing genes from a known pathway, find new protein complexes or other kinds of functional groups and assign function to genes. We tested the accuracy of our method in Escherichia coli K-12. In one configuration of the system, we find that 31.6% of the candidate groups generated by our method match a known pathway or protein complex closely, and that we rediscover 31.2% of all known pathways and protein complexes of at least 4 genes. We believe that a significant proportion of the candidates that do not match any known group in E.coli K-12 corresponds to novel subsystems that may represent promising leads for future laboratory research. We discuss in-depth examples of these findings. Availability: Predicted subsystems are available at http://brg.ai.sri.com/pwy-discovery/journal.html. Contact: lferrer@ai.sri.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21775308
Changes in plasma protein levels as an early indication of a bloodstream infection
Joenväärä, Sakari; Kaartinen, Johanna; Järvinen, Asko; Renkonen, Risto
2017-01-01
Blood culture is the primary diagnostic test performed in a suspicion of bloodstream infection to detect the presence of microorganisms and direct the treatment. However, blood culture is slow and time consuming method to detect blood stream infections or separate septic and/or bacteremic patients from others with less serious febrile disease. Plasma proteomics, despite its challenges, remains an important source for early biomarkers for systemic diseases and might show changes before direct evidence from bacteria can be obtained. We have performed a plasma proteomic analysis, simultaneously at the time of blood culture sampling from ten blood culture positive and ten blood culture negative patients, and quantified 172 proteins with two or more unique peptides. Principal components analysis, Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and ROC curve analysis were performed to select protein(s) features which can classify the two groups of samples. We propose a number of candidates which qualify as potential biomarkers to select the blood culture positive cases from negative ones. Pathway analysis by two methods revealed complement activation, phagocytosis pathway and alterations in lipid metabolism as enriched pathways which are relevant for the condition. Data are available via ProteomeXchange with identifier PXD005022. PMID:28235076
A Novel Method to Identify Differential Pathways in Hippocampus Alzheimer's Disease.
Liu, Chun-Han; Liu, Lian
2017-05-08
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The objective of this paper is to propose a novel method to identify differential pathways in hippocampus AD. MATERIAL AND METHODS We proposed a combined method by merging existed methods. Firstly, pathways were identified by four known methods (DAVID, the neaGUI package, the pathway-based co-expressed method, and the pathway network approach), and differential pathways were evaluated through setting weight thresholds. Subsequently, we combined all pathways by a rank-based algorithm and called the method the combined method. Finally, common differential pathways across two or more of five methods were selected. RESULTS Pathways obtained from different methods were also different. The combined method obtained 1639 pathways and 596 differential pathways, which included all pathways gained from the four existing methods; hence, the novel method solved the problem of inconsistent results. Besides, a total of 13 common pathways were identified, such as metabolism, immune system, and cell cycle. CONCLUSIONS We have proposed a novel method by combining four existing methods based on a rank product algorithm, and identified 13 significant differential pathways based on it. These differential pathways might provide insight into treatment and diagnosis of hippocampus AD.
MacLean, Adam L; Harrington, Heather A; Stumpf, Michael P H; Byrne, Helen M
2016-01-01
The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.
Structure and Dynamics Analysis on Plexin-B1 Rho GTPase Binding Domain as a Monomer and Dimer
2015-01-01
Plexin-B1 is a single-pass transmembrane receptor. Its Rho GTPase binding domain (RBD) can associate with small Rho GTPases and can also self-bind to form a dimer. In total, more than 400 ns of NAMD molecular dynamics simulations were performed on RBD monomer and dimer. Different analysis methods, such as root mean squared fluctuation (RMSF), order parameters (S2), dihedral angle correlation, transfer entropy, principal component analysis, and dynamical network analysis, were carried out to characterize the motions seen in the trajectories. RMSF results show that after binding, the L4 loop becomes more rigid, but the L2 loop and a number of residues in other regions become slightly more flexible. Calculating order parameters (S2) for CH, NH, and CO bonds on both backbone and side chain shows that the L4 loop becomes essentially rigid after binding, but part of the L1 loop becomes slightly more flexible. Backbone dihedral angle cross-correlation results show that loop regions such as the L1 loop including residues Q25 and G26, the L2 loop including residue R61, and the L4 loop including residues L89–R91, are highly correlated compared to other regions in the monomer form. Analysis of the correlated motions at these residues, such as Q25 and R61, indicate two signal pathways. Transfer entropy calculations on the RBD monomer and dimer forms suggest that the binding process should be driven by the L4 loop and C-terminal. However, after binding, the L4 loop functions as the motion responder. The signal pathways in RBD were predicted based on a dynamical network analysis method using the pathways predicted from the dihedral angle cross-correlation calculations as input. It is found that the shortest pathways predicted from both inputs can overlap, but signal pathway 2 (from F90 to R61) is more dominant and overlaps all of the routes of pathway 1 (from F90 to P111). This project confirms the allosteric mechanism in signal transmission inside the RBD network, which was in part proposed in the previous experimental study. PMID:24901636
Parallelization of Nullspace Algorithm for the computation of metabolic pathways
Jevremović, Dimitrije; Trinh, Cong T.; Srienc, Friedrich; Sosa, Carlos P.; Boley, Daniel
2011-01-01
Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome- scale metabolic network with 100–1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. PMID:22058581
On-line metabolic pathway analysis based on metabolic signal flow diagram.
Shi, H; Shimizu, K
In this work, an integrated modeling approach based on a metabolic signal flow diagram and cellular energetics was used to model the metabolic pathway analysis for the cultivation of yeast on glucose. This approach enables us to make a clear analysis of the flow direction of the carbon fluxes in the metabolic pathways as well as of the degree of activation of a particular pathway for the synthesis of biomaterials for cell growth. The analyses demonstrate that the main metabolic pathways of Saccharomyces cerevisiae change significantly during batch culture. Carbon flow direction is toward glycolysis to satisfy the increase of requirement for precursors and energy. The enzymatic activation of TCA cycle seems to always be at normal level, which may result in the overflow of ethanol due to its limited capacity. The advantage of this approach is that it adopts both virtues of the metabolic signal flow diagram and the simple network analysis method, focusing on the investigation of the flow directions of carbon fluxes and the degree of activation of a particular pathway or reaction loop. All of the variables used in the model equations were determined on-line; the information obtained from the calculated metabolic coefficients may result in a better understanding of cell physiology and help to evaluate the state of the cell culture process. Copyright 1998 John Wiley & Sons, Inc.
Li, Xihong; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen; Shi, Guohui
2013-01-01
Background The Chinese mitten crab Eriocheir sinensis is an important economic crustacean and has been seriously attacked by various diseases, which requires more and more information for immune relevant genes on genome background. Recently, high-throughput RNA sequencing (RNA-seq) technology provides a powerful and efficient method for transcript analysis and immune gene discovery. Methods/Principal Findings A cDNA library from hepatopancreas of E. sinensis challenged by a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 108 cfu·mL−1) was constructed and randomly sequenced using Illumina technique. Totally 39.76 million clean reads were assembled to 70,300 unigenes. After ruling out short-length and low-quality sequences, 52,074 non-redundant unigenes were compared to public databases for homology searching and 17,617 of them showed high similarity to sequences in NCBI non-redundant protein (Nr) database. For function classification and pathway assignment, 18,734 (36.00%) unigenes were categorized to three Gene Ontology (GO) categories, 12,243 (23.51%) were classified to 25 Clusters of Orthologous Groups (COG), and 8,983 (17.25%) were assigned to six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Potentially, 24, 14, 47 and 132 unigenes were characterized to be involved in Toll, IMD, JAK-STAT and MAPK pathways, respectively. Conclusions/Significance This is the first systematical transcriptome analysis of components relating to innate immune pathways in E. sinensis. Functional genes and putative pathways identified here will contribute to better understand immune system and prevent various diseases in crab. PMID:23874555
Application of Petri net based analysis techniques to signal transduction pathways.
Sackmann, Andrea; Heiner, Monika; Koch, Ina
2006-11-02
Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules.
MIDAS: Mining differentially activated subpaths of KEGG pathways from multi-class RNA-seq data.
Lee, Sangseon; Park, Youngjune; Kim, Sun
2017-07-15
Pathway based analysis of high throughput transcriptome data is a widely used approach to investigate biological mechanisms. Since a pathway consists of multiple functions, the recent approach is to determine condition specific sub-pathways or subpaths. However, there are several challenges. First, few existing methods utilize explicit gene expression information from RNA-seq. More importantly, subpath activity is usually an average of statistical scores, e.g., correlations, of edges in a candidate subpath, which fails to reflect gene expression quantity information. In addition, none of existing methods can handle multiple phenotypes. To address these technical problems, we designed and implemented an algorithm, MIDAS, that determines condition specific subpaths, each of which has different activities across multiple phenotypes. MIDAS utilizes gene expression quantity information fully and the network centrality information to determine condition specific subpaths. To test performance of our tool, we used TCGA breast cancer RNA-seq gene expression profiles with five molecular subtypes. 36 differentially activate subpaths were determined. The utility of our method, MIDAS, was demonstrated in four ways. All 36 subpaths are well supported by the literature information. Subsequently, we showed that these subpaths had a good discriminant power for five cancer subtype classification and also had a prognostic power in terms of survival analysis. Finally, in a performance comparison of MIDAS to a recent subpath prediction method, PATHOME, our method identified more subpaths and much more genes that are well supported by the literature information. http://biohealth.snu.ac.kr/software/MIDAS/. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.
Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak
2006-06-06
To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.
Analysis of Membrane Protein Topology in the Plant Secretory Pathway.
Guo, Jinya; Miao, Yansong; Cai, Yi
2017-01-01
Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.
van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B
2015-01-01
Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.
Balatsoukas, Panos; Williams, Richard; Davies, Colin; Ainsworth, John; Buchan, Iain
2015-11-01
Integrated care pathways (ICPs) define a chronological sequence of steps, most commonly diagnostic or treatment, to be followed in providing care for patients. Care pathways help to ensure quality standards are met and to reduce variation in practice. Although research on the computerisation of ICP progresses, there is still little knowledge on what are the requirements for designing user-friendly and usable electronic care pathways, or how users (normally health care professionals) interact with interfaces that support design, analysis and visualisation of ICPs. The purpose of the study reported in this paper was to address this gap by evaluating the usability of a novel web-based tool called COCPIT (Collaborative Online Care Pathway Investigation Tool). COCPIT supports the design, analysis and visualisation of ICPs at the population level. In order to address the aim of this study, an evaluation methodology was designed based on heuristic evaluations and a mixed method usability test. The results showed that modular visualisation and direct manipulation of information related to the design and analysis of ICPs is useful for engaging and stimulating users. However, designers should pay attention to issues related to the visibility of the system status and the match between the system and the real world, especially in relation to the display of statistical information about care pathways and the editing of clinical information within a care pathway. The paper concludes with recommendations for interface design.
An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants.
Peng, Qing-Zhong; Zhu, Yue; Liu, Zhong; Du, Ci; Li, Ke-Gang; Xie, De-Yu
2012-09-01
Proanthocyanidins (PAs) are oligomers or polymers of plant flavan-3-ols and are important to plant adaptation in extreme environmental conditions. The characterization of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) has demonstrated the different biogenesis of four stereo-configurations of flavan-3-ols. It is important to understand whether ANR and the ANR pathway widely occur in the plant kingdom. Here, we report an integrated approach to demonstrate the ANR pathway in plants. This includes different methods to extract native ANR from different tissues of eight angiosperm plants (Lotus corniculatus, Desmodium uncinatum, Medicago sativa, Hordeum vulgare, Vitis vinifera, Vitis bellula, Parthenocissus heterophylla, and Cerasus serrulata) and one fern plant (Dryopteris pycnopteroides), a general enzymatic analysis approach to demonstrate the ANR activity, high-performance liquid chromatography-based fingerprinting to demonstrate (-)-epicatechin and other flavan-3-ol molecules, and phytochemical analysis of PAs. Results demonstrate that in addition to leaves of M. sativa, tissues of other eight plants contain an active ANR pathway. Particularly, the leaves, flowers and pods of D. uncinatum, which is a model plant to study LAR and the LAR pathways, are demonstrated to express an active ANR pathway. This finding suggests that the ANR pathway involves PA biosynthesis in D. uncinatum. In addition, a sequence BLAST analysis reveals that ANR homologs have been sequenced in plants from both gymnosperms and angiosperms. These data show that the ANR pathway to PA biosynthesis occurs in both seed and seedless vascular plants.
Harper, Marc; Gronenberg, Luisa; Liao, James; Lee, Christopher
2014-01-01
Discovering all the genetic causes of a phenotype is an important goal in functional genomics. We combine an experimental design for detecting independent genetic causes of a phenotype with a high-throughput sequencing analysis that maximizes sensitivity for comprehensively identifying them. Testing this approach on a set of 24 mutant strains generated for a metabolic phenotype with many known genetic causes, we show that this pathway-based phenotype sequencing analysis greatly improves sensitivity of detection compared with previous methods, and reveals a wide range of pathways that can cause this phenotype. We demonstrate our approach on a metabolic re-engineering phenotype, the PEP/OAA metabolic node in E. coli, which is crucial to a substantial number of metabolic pathways and under renewed interest for biofuel research. Out of 2157 mutations in these strains, pathway-phenoseq discriminated just five gene groups (12 genes) as statistically significant causes of the phenotype. Experimentally, these five gene groups, and the next two high-scoring pathway-phenoseq groups, either have a clear connection to the PEP metabolite level or offer an alternative path of producing oxaloacetate (OAA), and thus clearly explain the phenotype. These high-scoring gene groups also show strong evidence of positive selection pressure, compared with strictly neutral selection in the rest of the genome.
Liu, Y T; Li, S R; Wang, Z; Xiao, J Z
2016-09-13
Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.
Yanashima, Ryoji; Kitagawa, Noriyuki; Matsubara, Yoshiya; Weatheritt, Robert; Oka, Kotaro; Kikuchi, Shinichi; Tomita, Masaru; Ishizaki, Shun
2009-01-01
The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path.
Peifer, Susanne; Schneider, Konstantin; Nürenberg, Gudrun; Volmer, Dietrich A; Heinzle, Elmar
2012-11-01
Intermediates of the purine biosynthesis pathway play key roles in cellular metabolism including nucleic acid synthesis and signal mediation. In addition, they are also of major interest to the biotechnological industry as several intermediates either possess flavor-enhancing characteristics or are applied in medical therapy. In this study, we have developed an analytical method for quantitation of 12 intermediates from the purine biosynthesis pathway including important nucleotides and their corresponding nucleosides and nucleobases. The approach comprised a single-step acidic extraction/quenching procedure, followed by quantitative electrospray LC-MS/MS analysis. The assay was validated in terms of accuracy, precision, reproducibility, and applicability for complex biological matrices. The method was subsequently applied for determination of free intracellular pool sizes of purine biosynthetic pathway intermediates in the two Gram-positive bacteria Corynebacterium glutamicum and Corynebacterium ammoniagenes. Importantly, no ion pair reagents were applied in this approach as usually required for liquid chromatography analysis of large classes of diverse metabolites.
van Wieringen, Wessel N; van de Wiel, Mark A
2011-05-01
Realizing that genes often operate together, studies into the molecular biology of cancer shift focus from individual genes to pathways. In order to understand the regulatory mechanisms of a pathway, one must study its genes at all molecular levels. To facilitate such study at the genomic level, we developed exploratory factor analysis for the characterization of the variability of a pathway's copy number data. A latent variable model that describes the call probability data of a pathway is introduced and fitted with an EM algorithm. In two breast cancer data sets, it is shown that the first two latent variables of GO nodes, which inherit a clear interpretation from the call probabilities, are often related to the proportion of aberrations and a contrast of the probabilities of a loss and of a gain. Linking the latent variables to the node's gene expression data suggests that they capture the "global" effect of genomic aberrations on these transcript levels. In all, the proposed method provides an possibly insightful characterization of pathway copy number data, which may be fruitfully exploited to study the interaction between the pathway's DNA copy number aberrations and data from other molecular levels like gene expression.
Analysis of Hippo and TGFβ signaling in polarizing epithelial cells and mouse embryos.
Narimatsu, Masahiro; Labibi, Batool; Wrana, Jeffrey L; Attisano, Liliana
2016-01-01
The Hippo signaling pathway is involved in numerous biological events ranging from early development to organogenesis and when disrupted, impacts various human diseases including cancer. The Hippo pathway also interacts with and controls the activity of other signaling pathways such as the TGFβ/Smad pathway, in which Hippo pathway activity influences the subcellular localization of Smad transcription factors. Here, we describe techniques for examining crosstalk between Hippo and TGFβ signaling in polarizing mammary epithelial cells. In addition, we provide detailed methods for analyzing the subcellular localization of the Hippo pathway effectors, Taz and Yap using both in vitro cultured epithelial cells and in vivo in pregastrulation mouse embryos. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Pathways Involved in Sasang Constitution from Genome-Wide Analysis in a Korean Population
Yu, Sung-Gon; Kim, Jong-Yeol; Song, Kwang Hoon
2012-01-01
Abstract Objective Sasang constitution (SC) medicine, a branch of Korean traditional medicine, classifies the individual into one of four constitutional types (Taeum, TE; Soeum, SE; Soyang, SY; and Taeyang, TY) based on physiologic characteristics. The authors of the current article recently reported individual genetic elements associated with SC types via genome-wide association (GWA) analysis. However, to understand the biologic mechanisms underlying constitution, a comprehensive approach that combines individual genetic effects was applied. Design Genotypes of 1222 subjects of defined constitution types were measured for 341,998 genetic loci across the entire genome. The biologic pathways associated with SC types were identified via GWA analysis using three different algorithms—namely, the Z-static method, a restandardized gene set assay, and a gene set enrichment assay. Results Distinct pathways were associated (p<0.05) with each constitution type. The TE type was significantly associated with cytoskeleton-related pathways. The SE type was significantly associated with cardio- and amino-acid metabolism–related pathways. The SY type was associated with enriched melanoma-related pathways. TY subjects were excluded because of the small size of that sample. Among these functionally related pathways, core-node genes regulating multiple pathways were identified. TJP1, PTK2, and SRC were selected as core-nodes for TE; RHOA, and MAOA/MAOB for SE; and GNAO1 for SY (p<0.05), respectively. Conclusions The current authors systematically identified the biologic pathways and core-node genes associated with SC types from the GWA study; this information should provide insights regarding the molecular mechanisms inherent in constitutional pathophysiology. PMID:22889377
Vivar, Juan C.; Sarzynski, Mark A.; Sung, Yun Ju; Timmons, James A.; Bouchard, Claude; Rankinen, Tuomo
2013-01-01
We previously reported the findings from a genome-wide association study of the response of maximal oxygen uptake (V̇o2max) to an exercise program. Here we follow up on these results to generate hypotheses on genes, pathways, and systems involved in the ability to respond to exercise training. A systems biology approach can help us better establish a comprehensive physiological description of what underlies V̇o2maxtrainability. The primary material for this exploration was the individual single-nucleotide polymorphism (SNP), SNP-gene mapping, and statistical significance levels. We aimed to generate novel hypotheses through analyses that go beyond statistical association of single-locus markers. This was accomplished through three complementary approaches: 1) building de novo evidence of gene candidacy through informatics-driven literature mining; 2) aggregating evidence from statistical associations to link variant enrichment in biological pathways to V̇o2max trainability; and 3) predicting possible consequences of variants residing in the pathways of interest. We started with candidate gene prioritization followed by pathway analysis focused on overrepresentation analysis and gene set enrichment analysis. Subsequently, leads were followed using in silico analysis of predicted SNP functions. Pathways related to cellular energetics (pantothenate and CoA biosynthesis; PPAR signaling) and immune functions (complement and coagulation cascades) had the highest levels of SNP burden. In particular, long-chain fatty acid transport and fatty acid oxidation genes and sequence variants were found to influence differences in V̇o2max trainability. Together, these methods allow for the hypothesis-driven ranking and prioritization of genes and pathways for future experimental testing and validation. PMID:23990238
Linking microarray reporters with protein functions.
Gaj, Stan; van Erk, Arie; van Haaften, Rachel I M; Evelo, Chris T A
2007-09-26
The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways. This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways. Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/.
Metabolic Pathways and Networks Associated with Tobacco Use in Military Personnel
Jones, Dean P.; Walker, Douglas I.; Uppal, Karan; Rohrbeck, Patricia; Mallon, Timothy M.; Go, Young-Mi
2016-01-01
Objective Use high-resolution metabolomics (HRM) to identify metabolic pathways and networks associated with tobacco use in military personnel. Methods Four hundred de-identified samples obtained from the Department of Defense Serum Repository were classified as tobacco users or non-users according to cotinine content. HRM and bioinformatic methods were used to determine pathways and networks associated with classification. Results Eighty individuals were classified as tobacco users compared to 320 non-users based on cotinine levels ≥10 ng/mL. Alterations in lipid and xenobiotic metabolism, and diverse effects on amino acid, sialic acid and purine and pyrimidine metabolism were observed. Importantly, network analysis showed broad effects on metabolic associations not simply linked to well-defined pathways. Conclusions Tobacco use has complex metabolic effects which must be considered in evaluation of deployment-associated environmental exposures in military personnel. PMID:27501098
Cai, Yu-Dong; Chou, Kuo-Chen
2011-01-01
Given a regulatory pathway system consisting of a set of proteins, can we predict which pathway class it belongs to? Such a problem is closely related to the biological function of the pathway in cells and hence is quite fundamental and essential in systems biology and proteomics. This is also an extremely difficult and challenging problem due to its complexity. To address this problem, a novel approach was developed that can be used to predict query pathways among the following six functional categories: (i) “Metabolism”, (ii) “Genetic Information Processing”, (iii) “Environmental Information Processing”, (iv) “Cellular Processes”, (v) “Organismal Systems”, and (vi) “Human Diseases”. The prediction method was established trough the following procedures: (i) according to the general form of pseudo amino acid composition (PseAAC), each of the pathways concerned is formulated as a 5570-D (dimensional) vector; (ii) each of components in the 5570-D vector was derived by a series of feature extractions from the pathway system according to its graphic property, biochemical and physicochemical property, as well as functional property; (iii) the minimum redundancy maximum relevance (mRMR) method was adopted to operate the prediction. A cross-validation by the jackknife test on a benchmark dataset consisting of 146 regulatory pathways indicated that an overall success rate of 78.8% was achieved by our method in identifying query pathways among the above six classes, indicating the outcome is quite promising and encouraging. To the best of our knowledge, the current study represents the first effort in attempting to identity the type of a pathway system or its biological function. It is anticipated that our report may stimulate a series of follow-up investigations in this new and challenging area. PMID:21980418
Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis
Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng
2016-01-01
Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid. PMID:28101509
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, M; Craft, D
Purpose: To develop an efficient, pathway-based classification system using network biology statistics to assist in patient-specific response predictions to radiation and drug therapies across multiple cancer types. Methods: We developed PICS (Pathway Informed Classification System), a novel two-step cancer classification algorithm. In PICS, a matrix m of mRNA expression values for a patient cohort is collapsed into a matrix p of biological pathways. The entries of p, which we term pathway scores, are obtained from either principal component analysis (PCA), normal tissue centroid (NTC), or gene expression deviation (GED). The pathway score matrix is clustered using both k-means and hierarchicalmore » clustering, and a clustering is judged by how well it groups patients into distinct survival classes. The most effective pathway scoring/clustering combination, per clustering p-value, thus generates various ‘signatures’ for conventional and functional cancer classification. Results: PICS successfully regularized large dimension gene data, separated normal and cancerous tissues, and clustered a large patient cohort spanning six cancer types. Furthermore, PICS clustered patient cohorts into distinct, statistically-significant survival groups. For a suboptimally-debulked ovarian cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00127) showed significant improvement over that of a prior gene expression-classified study (p = .0179). For a pancreatic cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00141) showed significant improvement over that of a prior gene expression-classified study (p = .04). Pathway-based classification confirmed biomarkers for the pyrimidine, WNT-signaling, glycerophosphoglycerol, beta-alanine, and panthothenic acid pathways for ovarian cancer. Despite its robust nature, PICS requires significantly less run time than current pathway scoring methods. Conclusion: This work validates the PICS method to improve cancer classification using biological pathways. Patients are classified with greater specificity and physiological relevance as compared to current gene-specific approaches. Focus now moves to utilizing PICS for pan-cancer patient-specific treatment response prediction.« less
Nurse Leaders' Experiences of Implementing Career Advancement Programs for Nurses in Iran.
Sheikhi, Mohammad Reza; Fallahi Khoshknab, Masoud; Mohammadi, Farahnaz; Oskouie, Fatemeh
2015-02-24
Career advancement programs are currently implemented in many countries. In Iran, the first career advancement program was Nurses' Career Advancement Pathway. The purpose of this study was to explore nurse leaders' experiences about implementing the Nurses' Career Advancement Pathway program in Iran. This exploratory qualitative study was conducted in 2013. Sixteen nurse managers were recruited from the teaching hospitals affiliated to Shahid Behesthi, Qazvin, and Iran Universities of Medical Sciences in Iran. Participants were recruited using purposive sampling method. Study data were collected through in-depth semi-structured interviews. The conventional content analysis approach was used for data analysis. participants' experiences about implementing the Nurses' Career Advancement Pathway fell into three main categories including: a) the shortcomings of performance evaluation, b) greater emphasis on point accumulation, c) the advancement-latitude mismatch. The Nurses' Career Advancement pathway has several shortcomings regarding both its content and its implementation. Therefore, it is recommended to revise the program.
Analysis of cancer-related lncRNAs using gene ontology and KEGG pathways.
Chen, Lei; Zhang, Yu-Hang; Lu, Guohui; Huang, Tao; Cai, Yu-Dong
2017-02-01
Cancer is a disease that involves abnormal cell growth and can invade or metastasize to other tissues. It is known that several factors are related to its initiation, proliferation, and invasiveness. Recently, it has been reported that long non-coding RNAs (lncRNAs) can participate in specific functional pathways and further regulate the biological function of cancer cells. Studies on lncRNAs are therefore helpful for uncovering the underlying mechanisms of cancer biological processes. We investigated cancer-related lncRNAs using gene ontology (GO) terms and KEGG pathway enrichment scores of neighboring genes that are co-expressed with the lncRNAs by extracting important GO terms and KEGG pathways that can help us identify cancer-related lncRNAs. The enrichment theory of GO terms and KEGG pathways was adopted to encode each lncRNA. Then, feature selection methods were employed to analyze these features and obtain the key GO terms and KEGG pathways. The analysis indicated that the extracted GO terms and KEGG pathways are closely related to several cancer associated processes, such as hormone associated pathways, energy associated pathways, and ribosome associated pathways. And they can accurately predict cancer-related lncRNAs. This study provided novel insight of how lncRNAs may affect tumorigenesis and which pathways may play important roles during it. These results could help understanding the biological mechanisms of lncRNAs and treating cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Possible pathways used to predict different stages of lung adenocarcinoma.
Chen, Xiaodong; Duan, Qiongyu; Xuan, Ying; Sun, Yunan; Wu, Rong
2017-04-01
We aimed to find some specific pathways that can be used to predict the stage of lung adenocarcinoma.RNA-Seq expression profile data and clinical data of lung adenocarcinoma (stage I [37], stage II 161], stage III [75], and stage IV [45]) were obtained from the TCGA dataset. The differentially expressed genes were merged, correlation coefficient matrix between genes was constructed with correlation analysis, and unsupervised clustering was carried out with hierarchical clustering method. The specific coexpression network in every stage was constructed with cytoscape software. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed with KOBAS database and Fisher exact test. Euclidean distance algorithm was used to calculate total deviation score. The diagnostic model was constructed with SVM algorithm.Eighteen specific genes were obtained by getting intersection of 4 group differentially expressed genes. Ten significantly enriched pathways were obtained. In the distribution map of 10 pathways score in different groups, degrees that sample groups deviated from the normal level were as follows: stage I < stage II < stage III < stage IV. The pathway score of 4 stages exhibited linear change in some pathways, and the score of 1 or 2 stages were significantly different from the rest stages in some pathways. There was significant difference between dead and alive for these pathways except thyroid hormone signaling pathway.Those 10 pathways are associated with the development of lung adenocarcinoma and may be able to predict different stages of it. Furthermore, these pathways except thyroid hormone signaling pathway may be able to predict the prognosis.
Chang, Tzu-Hao; Chen, Mien-Cheng; Chang, Jen-Ping; Huang, Hsien-Da; Ho, Wan-Chun; Lin, Yu-Sheng; Pan, Kuo-Li; Huang, Yao-Kuang; Liu, Wen-Hao; Wu, Chia-Chen
2016-01-01
Background Left atrial enlargement in mitral regurgitation (MR) predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown. Methods and Results This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD), and 6 purchased samples from normal subjects (NC). We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that “NFAT in cardiac hypertrophy” pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated) through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1) were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC. Conclusions Differentially expressed genes in the “NFAT in cardiac hypertrophy” pathway may play a critical role in the atrial myocyte hypertrophy of MR patients. PMID:27907007
Dehne, T.; Lindahl, A.; Brittberg, M.; Pruss, A.; Ringe, J.; Sittinger, M.; Karlsson, C.
2012-01-01
Objective: It is well known that expression of markers for WNT signaling is dysregulated in osteoarthritic (OA) bone. However, it is still not fully known if the expression of these markers also is affected in OA cartilage. The aim of this study was therefore to examine this issue. Methods: Human cartilage biopsies from OA and control donors were subjected to genome-wide oligonucleotide microarrays. Genes involved in WNT signaling were selected using the BioRetis database, KEGG pathway analysis was searched using DAVID software tools, and cluster analysis was performed using Genesis software. Results from the microarray analysis were verified using quantitative real-time PCR and immunohistochemistry. In order to study the impact of cytokines for the dysregulated WNT signaling, OA and control chondrocytes were stimulated with interleukin-1 and analyzed with real-time PCR for their expression of WNT-related genes. Results: Several WNT markers displayed a significantly altered expression in OA compared to normal cartilage. Interestingly, inhibitors of the canonical and planar cell polarity WNT signaling pathways displayed significantly increased expression in OA cartilage, while the Ca2+/WNT signaling pathway was activated. Both real-time PCR and immunohistochemistry verified the microarray results. Real-time PCR analysis demonstrated that interleukin-1 upregulated expression of important WNT markers. Conclusions: WNT signaling is significantly affected in OA cartilage. The result suggests that both the canonical and planar cell polarity WNT signaling pathways were partly inhibited while the Ca2+/WNT pathway was activated in OA cartilage. PMID:26069618
Pathways to Lean Software Development: An Analysis of Effective Methods of Change
ERIC Educational Resources Information Center
Hanson, Richard D.
2014-01-01
This qualitative Delphi study explored the challenges that exist in delivering software on time, within budget, and with the original scope identified. The literature review identified many attempts over the past several decades to reform the methods used to develop software. These attempts found that the classical waterfall method, which is…
Gene- and pathway-based association tests for multiple traits with GWAS summary statistics.
Kwak, Il-Youp; Pan, Wei
2017-01-01
To identify novel genetic variants associated with complex traits and to shed new insights on underlying biology, in addition to the most popular single SNP-single trait association analysis, it would be useful to explore multiple correlated (intermediate) traits at the gene- or pathway-level by mining existing single GWAS or meta-analyzed GWAS data. For this purpose, we present an adaptive gene-based test and a pathway-based test for association analysis of multiple traits with GWAS summary statistics. The proposed tests are adaptive at both the SNP- and trait-levels; that is, they account for possibly varying association patterns (e.g. signal sparsity levels) across SNPs and traits, thus maintaining high power across a wide range of situations. Furthermore, the proposed methods are general: they can be applied to mixed types of traits, and to Z-statistics or P-values as summary statistics obtained from either a single GWAS or a meta-analysis of multiple GWAS. Our numerical studies with simulated and real data demonstrated the promising performance of the proposed methods. The methods are implemented in R package aSPU, freely and publicly available at: https://cran.r-project.org/web/packages/aSPU/ CONTACT: weip@biostat.umn.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Verma, Mansi; Lal, Devi; Saxena, Anjali; Anand, Shailly; Kaur, Jasvinder; Kaur, Jaspreet; Lal, Rup
2013-12-01
Actinobacteria are known for their diverse metabolism and physiology. Some are dreadful human pathogens whereas some constitute the natural flora for human gut. Therefore, the understanding of metabolic pathways is a key feature for targeting the pathogenic bacteria without disturbing the symbiotic ones. A big challenge faced today is multiple drug resistance by Mycobacterium and other pathogens that utilize alternative fluxes/effluxes. With the availability of genome sequence, it is now feasible to conduct the comparative in silico analysis. Here we present a simplified approach to compare metabolic pathways so that the species specific enzyme may be traced and engineered for future therapeutics. The analyses of four key carbohydrate metabolic pathways, i.e., glycolysis, pyruvate metabolism, tri carboxylic acid cycle and pentose phosphate pathway suggest the presence of alternative fluxes. It was found that the upper pathway of glycolysis was highly variable in the actinobacterial genomes whereas lower glycolytic pathway was highly conserved. Likewise, pentose phosphate pathway was well conserved in contradiction to TCA cycle, which was found to be incomplete in majority of actinobacteria. The clustering based on presence and absence of genes of these metabolic pathways clearly revealed that members of different genera shared identical pathways and, therefore, provided an easy method to identify the metabolic similarities/differences between pathogenic and symbiotic organisms. The analyses could identify isoenzymes and some key enzymes that were found to be missing in some pathogenic actinobacteria. The present work defines a simple approach to explore the effluxes in four metabolic pathways within the phylum actinobacteria. The analysis clearly reflects that actinobacteria exhibit diverse routes for metabolizing substrates. The pathway comparison can help in finding the enzymes that can be used as drug targets for pathogens without effecting symbiotic organisms within the same host. This may help to prevail over the multiple drug resistance, for designing broad spectrum drugs, in food industries and other clinical research areas. © 2013.
Down-weighting overlapping genes improves gene set analysis
2012-01-01
Background The identification of gene sets that are significantly impacted in a given condition based on microarray data is a crucial step in current life science research. Most gene set analysis methods treat genes equally, regardless how specific they are to a given gene set. Results In this work we propose a new gene set analysis method that computes a gene set score as the mean of absolute values of weighted moderated gene t-scores. The gene weights are designed to emphasize the genes appearing in few gene sets, versus genes that appear in many gene sets. We demonstrate the usefulness of the method when analyzing gene sets that correspond to the KEGG pathways, and hence we called our method Pathway Analysis with Down-weighting of Overlapping Genes (PADOG). Unlike most gene set analysis methods which are validated through the analysis of 2-3 data sets followed by a human interpretation of the results, the validation employed here uses 24 different data sets and a completely objective assessment scheme that makes minimal assumptions and eliminates the need for possibly biased human assessments of the analysis results. Conclusions PADOG significantly improves gene set ranking and boosts sensitivity of analysis using information already available in the gene expression profiles and the collection of gene sets to be analyzed. The advantages of PADOG over other existing approaches are shown to be stable to changes in the database of gene sets to be analyzed. PADOG was implemented as an R package available at: http://bioinformaticsprb.med.wayne.edu/PADOG/or http://www.bioconductor.org. PMID:22713124
Kao, Chi H.J.; Bishop, Karen S.; Xu, Yuanye; Han, Dug Yeo; Murray, Pamela M.; Marlow, Gareth J.; Ferguson, Lynnette R.
2016-01-01
Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis. PMID:27006591
Academic Provenance: Mapping Geoscience Students' Academic Pathways to their Career Trajectories
NASA Astrophysics Data System (ADS)
Houlton, H. R.; Gonzales, L. M.; Keane, C. M.
2011-12-01
Targeted recruitment and retention efforts for the geosciences have become increasingly important with the growing concerns about program visibility on campuses, and given that geoscience degree production remains low relative to the demand for new geoscience graduates. Furthermore, understanding the career trajectories of geoscience degree recipients is essential for proper occupational placement. A theoretical framework was developed by Houlton (2010) to focus recruitment and retention efforts. This "pathway model" explicitly maps undergraduate students' geoscience career trajectories, which can be used to refine existing methods for recruiting students into particular occupations. Houlton's (2010) framework identified three main student population groups: Natives, Immigrants or Refugees. Each student followed a unique pathway, which consisted of six pathway steps. Each pathway step was comprised of critical incidents that influenced students' overall career trajectories. An aggregate analysis of students' pathways (Academic Provenance Analysis) showed that different populations' pathways exhibited a deviation in career direction: Natives indicated intentions to pursue industry or government sectors, while Immigrants intended to pursue academic or research-based careers. We expanded on Houlton's (2010) research by conducting a follow-up study to determine if the original participants followed the career trajectories they initially indicated in the 2010 study. A voluntary, 5-question, short-answer survey was administered via email. We investigated students' current pathway steps, pathway deviations, students' goals for the near future and their ultimate career ambitions. This information may help refine Houlton's (2010) "pathway model" and may aid geoscience employers in recruiting the new generation of professionals for their respective sectors.
Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.
Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin
2018-02-10
A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui
2017-07-01
Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.
Linking microarray reporters with protein functions
Gaj, Stan; van Erk, Arie; van Haaften, Rachel IM; Evelo, Chris TA
2007-01-01
Background The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways. Results This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways. Conclusion Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/. PMID:17897448
Ma, Danjun; Wang, Jiarui; Zhao, Yingchun; Lee, Wai-Nang Paul; Xiao, Jing; Go, Vay Liang W.; Wang, Qi; Recker, Robert; Xiao, Gary Guishan
2011-01-01
Objectives Novel quantitative proteomic approaches were used to study the effects of inhibition of glycogen phosphorylase on proteome and signaling pathways in MIA PaCa-2 pancreatic cancer cells. Methods We performed quantitative proteomic analysis in MIA PaCa-2 cancer cells treated with a stratified dose of CP-320626 (25 μM, 50 μM and 100 μM). The effect of metabolic inhibition on cellular protein turnover dynamics was also studied using the modified SILAC method (mSILAC). Results A total of twenty-two protein spots and four phosphoprotein spots were quantitatively analyzed. We found that dynamic expression of total proteins and phosphoproteins was significantly changed in MIA PaCa-2 cells treated with an incremental dose of CP-320626. Functional analyses suggested that most of the proteins differentially expressed were in the pathways of MAPK/ERK and TNF-α/NF-κB. Conclusions Signaling pathways and metabolic pathways share many common cofactors and substrates forming an extended metabolic network. The restriction of substrate through one pathway such as inhibition of glycogen phosphorylation induces pervasive metabolomic and proteomic changes manifested in protein synthesis, breakdown and post-translational modification of signaling molecules. Our results suggest that quantitative proteomic is an important approach to understand the interaction between metabolism and signaling pathways. PMID:22158071
Network design and analysis for multi-enzyme biocatalysis.
Blaß, Lisa Katharina; Weyler, Christian; Heinzle, Elmar
2017-08-10
As more and more biological reaction data become available, the full exploration of the enzymatic potential for the synthesis of valuable products opens up exciting new opportunities but is becoming increasingly complex. The manual design of multi-step biosynthesis routes involving enzymes from different organisms is very challenging. To harness the full enzymatic potential, we developed a computational tool for the directed design of biosynthetic production pathways for multi-step catalysis with in vitro enzyme cascades, cell hydrolysates and permeabilized cells. We present a method which encompasses the reconstruction of a genome-scale pan-organism metabolic network, path-finding and the ranking of the resulting pathway candidates for proposing suitable synthesis pathways. The network is based on reaction and reaction pair data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the thermodynamics calculator eQuilibrator. The pan-organism network is especially useful for finding the most suitable pathway to a target metabolite from a thermodynamic or economic standpoint. However, our method can be used with any network reconstruction, e.g. for a specific organism. We implemented a path-finding algorithm based on a mixed-integer linear program (MILP) which takes into account both topology and stoichiometry of the underlying network. Unlike other methods we do not specify a single starting metabolite, but our algorithm searches for pathways starting from arbitrary start metabolites to a target product of interest. Using a set of biochemical ranking criteria including pathway length, thermodynamics and other biological characteristics such as number of heterologous enzymes or cofactor requirement, it is possible to obtain well-designed meaningful pathway alternatives. In addition, a thermodynamic profile, the overall reactant balance and potential side reactions as well as an SBML file for visualization are generated for each pathway alternative. We present an in silico tool for the design of multi-enzyme biosynthetic production pathways starting from a pan-organism network. The method is highly customizable and each module can be adapted to the focus of the project at hand. This method is directly applicable for (i) in vitro enzyme cascades, (ii) cell hydrolysates and (iii) permeabilized cells.
Pathway results from the chicken data set using GOTM, Pathway Studio and Ingenuity softwares
Bonnet, Agnès; Lagarrigue, Sandrine; Liaubet, Laurence; Robert-Granié, Christèle; SanCristobal, Magali; Tosser-Klopp, Gwenola
2009-01-01
Background As presented in the introduction paper, three sets of differentially regulated genes were found after the analysis of the chicken infection data set from EADGENE. Different methods were used to interpret these results. Results GOTM, Pathway Studio and Ingenuity softwares were used to investigate the three lists of genes. The three softwares allowed the analysis of the data and highlighted different networks. However, only one set of genes, showing a differential expression between primary and secondary response gave significant biological interpretation. Conclusion Combining these databases that were developed independently on different annotation sources supplies a useful tool for a global biological interpretation of microarray data, even if they may contain some imperfections (e.g. gene not or not well annotated). PMID:19615111
Modeling of Dolichol Mass Spectra Isotopic Envelopes as a Tool to Monitor Isoprenoid Biosynthesis.
Jozwiak, Adam; Lipko, Agata; Kania, Magdalena; Danikiewicz, Witold; Surmacz, Liliana; Witek, Agnieszka; Wojcik, Jacek; Zdanowski, Konrad; Pączkowski, Cezary; Chojnacki, Tadeusz; Poznanski, Jaroslaw; Swiezewska, Ewa
2017-06-01
The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, based on numerical modeling of mass spectra of metabolically labeled dolichols (Dols), designed to quantitatively follow the cooperation of MVA and MEP reprogrammed upon osmotic stress (sorbitol treatment) in Arabidopsis ( Arabidopsis thaliana ). The contribution of the MEP pathway increased significantly (reaching 100%) exclusively for the dominating Dols, while for long-chain Dols, the relative input of the MEP and MVA pathways remained unchanged, suggesting divergent sites of synthesis for dominating and long-chain Dols. The analysis of numerically modeled Dol mass spectra is a novel method to follow modulation of the concomitant activity of isoprenoid-generating pathways in plant cells; additionally, it suggests an exchange of isoprenoid intermediates between plastids and peroxisomes. © 2017 American Society of Plant Biologists. All Rights Reserved.
Kania, Magdalena; Witek, Agnieszka; Wojcik, Jacek; Zdanowski, Konrad; Pączkowski, Cezary; Chojnacki, Tadeusz; Poznanski, Jaroslaw
2017-01-01
The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, based on numerical modeling of mass spectra of metabolically labeled dolichols (Dols), designed to quantitatively follow the cooperation of MVA and MEP reprogrammed upon osmotic stress (sorbitol treatment) in Arabidopsis (Arabidopsis thaliana). The contribution of the MEP pathway increased significantly (reaching 100%) exclusively for the dominating Dols, while for long-chain Dols, the relative input of the MEP and MVA pathways remained unchanged, suggesting divergent sites of synthesis for dominating and long-chain Dols. The analysis of numerically modeled Dol mass spectra is a novel method to follow modulation of the concomitant activity of isoprenoid-generating pathways in plant cells; additionally, it suggests an exchange of isoprenoid intermediates between plastids and peroxisomes. PMID:28385729
Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online
Forsberg, Erica M; Huan, Tao; Rinehart, Duane; Benton, H Paul; Warth, Benedikt; Hilmers, Brian; Siuzdak, Gary
2018-01-01
Systems biology is the study of complex living organisms, and as such, analysis on a systems-wide scale involves the collection of information-dense data sets that are representative of an entire phenotype. To uncover dynamic biological mechanisms, bioinformatics tools have become essential to facilitating data interpretation in large-scale analyses. Global metabolomics is one such method for performing systems biology, as metabolites represent the downstream functional products of ongoing biological processes. We have developed XCMS Online, a platform that enables online metabolomics data processing and interpretation. A systems biology workflow recently implemented within XCMS Online enables rapid metabolic pathway mapping using raw metabolomics data for investigating dysregulated metabolic processes. In addition, this platform supports integration of multi-omic (such as genomic and proteomic) data to garner further systems-wide mechanistic insight. Here, we provide an in-depth procedure showing how to effectively navigate and use the systems biology workflow within XCMS Online without a priori knowledge of the platform, including uploading liquid chromatography (LCLC)–mass spectrometry (MS) data from metabolite-extracted biological samples, defining the job parameters to identify features, correcting for retention time deviations, conducting statistical analysis of features between sample classes and performing predictive metabolic pathway analysis. Additional multi-omics data can be uploaded and overlaid with previously identified pathways to enhance systems-wide analysis of the observed dysregulations. We also describe unique visualization tools to assist in elucidation of statistically significant dysregulated metabolic pathways. Parameter input takes 5–10 min, depending on user experience; data processing typically takes 1–3 h, and data analysis takes ~30 min. PMID:29494574
Bacterial molecular networks: bridging the gap between functional genomics and dynamical modelling.
van Helden, Jacques; Toussaint, Ariane; Thieffry, Denis
2012-01-01
This introductory review synthesizes the contents of the volume Bacterial Molecular Networks of the series Methods in Molecular Biology. This volume gathers 9 reviews and 16 method chapters describing computational protocols for the analysis of metabolic pathways, protein interaction networks, and regulatory networks. Each protocol is documented by concrete case studies dedicated to model bacteria or interacting populations. Altogether, the chapters provide a representative overview of state-of-the-art methods for data integration and retrieval, network visualization, graph analysis, and dynamical modelling.
Personalized identification of differentially expressed pathways in pediatric sepsis.
Li, Binjie; Zeng, Qiyi
2017-10-01
Sepsis is a leading killer of children worldwide with numerous differentially expressed genes reported to be associated with sepsis. Identifying core pathways in an individual is important for understanding septic mechanisms and for the future application of custom therapeutic decisions. Samples used in the study were from a control group (n=18) and pediatric sepsis group (n=52). Based on Kauffman's attractor theory, differentially expressed pathways associated with pediatric sepsis were detected as attractors. When the distribution results of attractors are consistent with the distribution of total data assessed using support vector machine, the individualized pathway aberrance score (iPAS) was calculated to distinguish differences. Through attractor and Kyoto Encyclopedia of Genes and Genomes functional analysis, 277 enriched pathways were identified as attractors. There were 81 pathways with P<0.05 and 59 pathways with P<0.01. Distribution outcomes of screened attractors were mostly consistent with the total data demonstrated by the six classifying parameters, which suggested the efficiency of attractors. Cluster analysis of pediatric sepsis using the iPAS method identified seven pathway clusters and four sample clusters. Thus, in the majority pediatric sepsis samples, core pathways can be detected as different from accumulated normal samples. In conclusion, a novel procedure that identified the dysregulated attractors in individuals with pediatric sepsis was constructed. Attractors can be markers to identify pathways involved in pediatric sepsis. iPAS may provide a correlation score for each of the signaling pathways present in an individual patient. This process may improve the personalized interpretation of disease mechanisms and may be useful in the forthcoming era of personalized medicine.
Yang, Jinfeng; Wang, Nan; Chen, Deying; Yu, Jiong; Pan, Qiaoling; Wang, Dan; Liu, Jingqi; Shi, Xiaowei; Dong, Xiaotian; Cao, Hongcui; Li, Liang; Li, Lanjuan
2017-01-01
Green fluorescent protein (GFP) is widely used as a reporter gene in regenerative medicine research to label and track stem cells. Here, we examined whether expressing GFP gene may impact the metabolism of human placental mesenchymal stem cells (hPMSCs). The GFP gene was transduced into hPMSCs using lentiviral-based infection to establish GFP + hPMSCs. A sensitive 13 C/ 12 C-dansyl labeling LC-MS method targeting the amine/phenol submetabolome was used for in-depth cell metabolome profiling. A total of 1151 peak pairs or metabolites were detected from 12 LC-MS runs. Principal component analysis and partial least squares discriminant analysis showed poor separation, and the volcano plots demonstrated that most of the metabolites were not significantly changed when hPMSCs were tagged with GFP. Overall, 739 metabolites were positively or putatively identified. Only 11 metabolites showed significant changes. Metabolic pathway analyses indicated that three of the identified metabolites were involved in nine pathways. However, these metabolites are unlikely to have a large impact on the metabolic pathways due to their nonessential roles and limited hits in pathway analysis. This study indicated that the expression of ectopic GFP reporter gene did not significantly alter the metabolomics pathways covered by the amine/phenol submetabolome.
Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes
Sliva, Anna; Kuang, Zheng; Meluh, Pamela B.; Boeke, Jef D.
2016-01-01
The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating. PMID:26837954
Héron, F; Mialet, G; Schuller, C; Breton, D; Perrin, J; Degeorges, M
1979-01-01
Signals of the electrical activity of the specific atrioventricular conduction pathways were recorded with an unipolar lead to obtain an exact time reference. The amplifier used had special characteristics: high gain settings (up to 300,000), very low noise levels, and wide filter range (2 Hz - 1,600 Hz). The low amplitude of the signals under study, of the order of a microvolt, and the wide filter range of the amplifier necessitated placing the patient in a Faraday cage. The signals recorded on magnetic tape were treated by a system of analysis for signal treatment. The method of averaging was used to extract the signal from background noise especially that arising from somatic muscle. The amplitude of the Hisian signal was much larger than that usually obtained with other methods. The intervals were determined with precision of the order of 1 millisecond. Frequential analysis of the signals gave another representation of the information contained in the time signals. This new representation seems to give better discrimination of the different zones of activation of the specific atrioventricular conduction pathways.
Computation of elementary modes: a unifying framework and the new binary approach
Gagneur, Julien; Klamt, Steffen
2004-01-01
Background Metabolic pathway analysis has been recognized as a central approach to the structural analysis of metabolic networks. The concept of elementary (flux) modes provides a rigorous formalism to describe and assess pathways and has proven to be valuable for many applications. However, computing elementary modes is a hard computational task. In recent years we assisted in a multiplication of algorithms dedicated to it. We require a summarizing point of view and a continued improvement of the current methods. Results We show that computing the set of elementary modes is equivalent to computing the set of extreme rays of a convex cone. This standard mathematical representation provides a unified framework that encompasses the most prominent algorithmic methods that compute elementary modes and allows a clear comparison between them. Taking lessons from this benchmark, we here introduce a new method, the binary approach, which computes the elementary modes as binary patterns of participating reactions from which the respective stoichiometric coefficients can be computed in a post-processing step. We implemented the binary approach in FluxAnalyzer 5.1, a software that is free for academics. The binary approach decreases the memory demand up to 96% without loss of speed giving the most efficient method available for computing elementary modes to date. Conclusions The equivalence between elementary modes and extreme ray computations offers opportunities for employing tools from polyhedral computation for metabolic pathway analysis. The new binary approach introduced herein was derived from this general theoretical framework and facilitates the computation of elementary modes in considerably larger networks. PMID:15527509
Decomposing the Apoptosis Pathway Into Biologically Interpretable Principal Components
Wang, Min; Kornblau, Steven M; Coombes, Kevin R
2018-01-01
Principal component analysis (PCA) is one of the most common techniques in the analysis of biological data sets, but applying PCA raises 2 challenges. First, one must determine the number of significant principal components (PCs). Second, because each PC is a linear combination of genes, it rarely has a biological interpretation. Existing methods to determine the number of PCs are either subjective or computationally extensive. We review several methods and describe a new R package, PCDimension, that implements additional methods, the most important being an algorithm that extends and automates a graphical Bayesian method. Using simulations, we compared the methods. Our newly automated procedure is competitive with the best methods when considering both accuracy and speed and is the most accurate when the number of objects is small compared with the number of attributes. We applied the method to a proteomics data set from patients with acute myeloid leukemia. Proteins in the apoptosis pathway could be explained using 6 PCs. By clustering the proteins in PC space, we were able to replace the PCs by 6 “biological components,” 3 of which could be immediately interpreted from the current literature. We expect this approach combining PCA with clustering to be widely applicable. PMID:29881252
Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways.
Wang, Q; Shi, C-J; Lv, S-H
2017-03-30
Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC) based on the functional dependency among pathways. Protein-protein interaction (PPI) information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA) method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN), where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.
Leisman, Gerald; Ashkenazi, Maureen
1979-01-01
Objective psychophysical techniques for investigating visual fields are described. The paper concerns methods for the collection and analysis of evoked potentials using a small laboratory computer and provides efficient methods for obtaining information about the conduction pathways of the visual system.
Ozyurt, A Sinem; Selby, Thomas L
2008-07-01
This study describes a method to computationally assess the function of homologous enzymes through small molecule binding interaction energy. Three experimentally determined X-ray structures and four enzyme models from ornithine cyclo-deaminase, alanine dehydrogenase, and mu-crystallin were used in combination with nine small molecules to derive a function score (FS) for each enzyme-model combination. While energy values varied for a single molecule-enzyme combination due to differences in the active sites, we observe that the binding energies for the entire pathway were proportional for each set of small molecules investigated. This proportionality of energies for a reaction pathway appears to be dependent on the amino acids in the active site and their direct interactions with the small molecules, which allows a function score (FS) to be calculated to assess the specificity of each enzyme. Potential of mean force (PMF) calculations were used to obtain the energies, and the resulting FS values demonstrate that a measurement of function may be obtained using differences between these PMF values. Additionally, limitations of this method are discussed based on: (a) larger substrates with significant conformational flexibility; (b) low homology enzymes; and (c) open active sites. This method should be useful in accurately predicting specificity for single enzymes that have multiple steps in their reactions and in high throughput computational methods to accurately annotate uncharacterized proteins based on active site interaction analysis. 2008 Wiley-Liss, Inc.
Weniger, Markus; Engelmann, Julia C; Schultz, Jörg
2007-01-01
Background Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. Results We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at . Conclusion GEPAT is a modular, scalable and professional-grade software integrating analysis and interpretation of microarray gene expression data. An installation available for academic users can be found at . PMID:17543125
Enriched pathways for major depressive disorder identified from a genome-wide association study.
Kao, Chung-Feng; Jia, Peilin; Zhao, Zhongming; Kuo, Po-Hsiu
2012-11-01
Major depressive disorder (MDD) has caused a substantial burden of disease worldwide with moderate heritability. Despite efforts through conducting numerous association studies and now, genome-wide association (GWA) studies, the success of identifying susceptibility loci for MDD has been limited, which is partially attributed to the complex nature of depression pathogenesis. A pathway-based analytic strategy to investigate the joint effects of various genes within specific biological pathways has emerged as a powerful tool for complex traits. The present study aimed to identify enriched pathways for depression using a GWA dataset for MDD. For each gene, we estimated its gene-wise p value using combined and minimum p value, separately. Canonical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCarta were used. We employed four pathway-based analytic approaches (gene set enrichment analysis, hypergeometric test, sum-square statistic, sum-statistic). We adjusted for multiple testing using Benjamini & Hochberg's method to report significant pathways. We found 17 significantly enriched pathways for depression, which presented low-to-intermediate crosstalk. The top four pathways were long-term depression (p⩽1×10-5), calcium signalling (p⩽6×10-5), arrhythmogenic right ventricular cardiomyopathy (p⩽1.6×10-4) and cell adhesion molecules (p⩽2.2×10-4). In conclusion, our comprehensive pathway analyses identified promising pathways for depression that are related to neurotransmitter and neuronal systems, immune system and inflammatory response, which may be involved in the pathophysiological mechanisms underlying depression. We demonstrated that pathway enrichment analysis is promising to facilitate our understanding of complex traits through a deeper interpretation of GWA data. Application of this comprehensive analytic strategy in upcoming GWA data for depression could validate the findings reported in this study.
Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis.
Wei, Xi; Gilevska, Tetyana; Wetzig, Felix; Dorer, Conrad; Richnow, Hans-Hermann; Vogt, Carsten
2016-03-01
Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Convergent genetic and expression data implicate immunity in Alzheimer's disease
Jones, Lesley; Lambert, Jean-Charles; Wang, Li-San; Choi, Seung-Hoan; Harold, Denise; Vedernikov, Alexey; Escott-Price, Valentina; Stone, Timothy; Richards, Alexander; Bellenguez, Céline; Ibrahim-Verbaas, Carla A; Naj, Adam C; Sims, Rebecca; Gerrish, Amy; Jun, Gyungah; DeStefano, Anita L; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Jones, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letteneur, Luc; Kornhuber, Johanes; Tárraga, Lluís; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Emilsson, Valur; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Kehoe, Pat; Rogaeva, Ekaterina; Gallacher, John; George-Hyslop, Peter St; Clarimon, Jordi; Lleὀ, Alberti; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petra; Collinge, John; Sorbi, Sandro; Garcia, Florentino Sanchez; Fox, Nick; Hardy, John; Naranjo, Maria Candida Deniz; Razquin, Cristina; Bosco, Paola; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Mancuso, Michelangelo; Moebus, Susanne; Mecocci, Patrizia; del Zompo, Maria; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Bullido, Maria; Panza, Francesco; Caffarra, Paolo; Nacmias, Benedetta; Gilbert, John R; Mayhaus, Manuel; Jessen, Frank; Dichgans, Martin; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alavarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O'Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee FAG; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John SK; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Pastor, Pau; Schmidt, Reinhold; Rujescu, Dan; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Haines, Jonathan L; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Farrer, Lindsay A; van Duijn, Cornelia M; Van Broekhoven, Christine; Ramirez, Alfredo; Schellenberg, Gerard D; Seshadri, Sudha; Amouyel, Philippe; Holmans, Peter A
2015-01-01
Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics. PMID:25533204
Kakati, Tulika; Kashyap, Hirak; Bhattacharyya, Dhruba K
2016-11-30
There exist many tools and methods for construction of co-expression network from gene expression data and for extraction of densely connected gene modules. In this paper, a method is introduced to construct co-expression network and to extract co-expressed modules having high biological significance. The proposed method has been validated on several well known microarray datasets extracted from a diverse set of species, using statistical measures, such as p and q values. The modules obtained in these studies are found to be biologically significant based on Gene Ontology enrichment analysis, pathway analysis, and KEGG enrichment analysis. Further, the method was applied on an Alzheimer's disease dataset and some interesting genes are found, which have high semantic similarity among them, but are not significantly correlated in terms of expression similarity. Some of these interesting genes, such as MAPT, CASP2, and PSEN2, are linked with important aspects of Alzheimer's disease, such as dementia, increase cell death, and deposition of amyloid-beta proteins in Alzheimer's disease brains. The biological pathways associated with Alzheimer's disease, such as, Wnt signaling, Apoptosis, p53 signaling, and Notch signaling, incorporate these interesting genes. The proposed method is evaluated in regard to existing literature.
Kakati, Tulika; Kashyap, Hirak; Bhattacharyya, Dhruba K.
2016-01-01
There exist many tools and methods for construction of co-expression network from gene expression data and for extraction of densely connected gene modules. In this paper, a method is introduced to construct co-expression network and to extract co-expressed modules having high biological significance. The proposed method has been validated on several well known microarray datasets extracted from a diverse set of species, using statistical measures, such as p and q values. The modules obtained in these studies are found to be biologically significant based on Gene Ontology enrichment analysis, pathway analysis, and KEGG enrichment analysis. Further, the method was applied on an Alzheimer’s disease dataset and some interesting genes are found, which have high semantic similarity among them, but are not significantly correlated in terms of expression similarity. Some of these interesting genes, such as MAPT, CASP2, and PSEN2, are linked with important aspects of Alzheimer’s disease, such as dementia, increase cell death, and deposition of amyloid-beta proteins in Alzheimer’s disease brains. The biological pathways associated with Alzheimer’s disease, such as, Wnt signaling, Apoptosis, p53 signaling, and Notch signaling, incorporate these interesting genes. The proposed method is evaluated in regard to existing literature. PMID:27901073
Durand-Hulak, Marie; Dugrand, Audray; Duval, Thibault; Bidel, Luc P. R.; Jay-Allemand, Christian; Froelicher, Yann; Bourgaud, Frédéric; Fanciullino, Anne-Laure
2015-01-01
Background and Aims Phenolic compounds contribute to food quality and have potential health benefits. Consequently, they are an important target of selection for Citrus species. Numerous studies on this subject have revealed new molecules, potential biosynthetic pathways and linkage between species. Although polyphenol profiles are correlated with gene expression, which is responsive to developmental and environmental cues, these factors are not monitored in most studies. A better understanding of the biosynthetic pathway and its regulation requires more information about environmental conditions, tissue specificity and connections between competing sub-pathways. This study proposes a rapid method, from sampling to analysis, that allows the quantitation of multiclass phenolic compounds across contrasting tissues and cultivars. Methods Leaves and fruits of 11 cultivated citrus of commercial interest were collected from adult trees grown in an experimental orchard. Sixty-four phenolic compounds were simultaneously quantified by ultra-high-performance liquid chromatography coupled with mass spectrometry. Key Results Combining data from vegetative tissues with data from fruit tissues improved cultivar classification based on polyphenols. The analysis of metabolite distribution highlighted the massive accumulation of specific phenolic compounds in leaves and the external part of the fruit pericarp, which reflects their involvement in plant defence. The overview of the biosynthetic pathway obtained confirmed some regulatory steps, for example those catalysed by rhamnosyltransferases. The results suggest that three other steps are responsible for the different metabolite profiles in ‘Clementine’ and ‘Star Ruby’ grapefruit. Conclusions The method described provides a high-throughput method to study the distribution of phenolic compounds across contrasting tissues and cultivars in Citrus, and offers the opportunity to investigate their regulation and physiological roles. The method was validated in four different tissues and allowed the identification and quantitation of 64 phenolic compounds in 20 min, which represents an improvement over existing methods of analysing multiclass polyphenols. PMID:25757470
Hamaneh, Mehdi Bagheri; Yu, Yi-Kuo
2014-01-01
Identifying similar diseases could potentially provide deeper understanding of their underlying causes, and may even hint at possible treatments. For this purpose, it is necessary to have a similarity measure that reflects the underpinning molecular interactions and biological pathways. We have thus devised a network-based measure that can partially fulfill this goal. Our method assigns weights to all proteins (and consequently their encoding genes) by using information flow from a disease to the protein interaction network and back. Similarity between two diseases is then defined as the cosine of the angle between their corresponding weight vectors. The proposed method also provides a way to suggest disease-pathway associations by using the weights assigned to the genes to perform enrichment analysis for each disease. By calculating pairwise similarities between 2534 diseases, we show that our disease similarity measure is strongly correlated with the probability of finding the diseases in the same disease family and, more importantly, sharing biological pathways. We have also compared our results to those of MimMiner, a text-mining method that assigns pairwise similarity scores to diseases. We find the results of the two methods to be complementary. It is also shown that clustering diseases based on their similarities and performing enrichment analysis for the cluster centers significantly increases the term association rate, suggesting that the cluster centers are better representatives for biological pathways than the diseases themselves. This lends support to the view that our similarity measure is a good indicator of relatedness of biological processes involved in causing the diseases. Although not needed for understanding this paper, the raw results are available for download for further study at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/DiseaseRelations/. PMID:25360770
Karbalaei, Reza; Allahyari, Marzieh; Rezaei-Tavirani, Mostafa; Asadzadeh-Aghdaei, Hamid; Zali, Mohammad Reza
2018-01-01
Analysis reconstruction networks from two diseases, NAFLD and Alzheimer`s diseases and their relationship based on systems biology methods. NAFLD and Alzheimer`s diseases are two complex diseases, with progressive prevalence and high cost for countries. There are some reports on relation and same spreading pathways of these two diseases. In addition, they have some similar risk factors, exclusively lifestyle such as feeding, exercises and so on. Therefore, systems biology approach can help to discover their relationship. DisGeNET and STRING databases were sources of disease genes and constructing networks. Three plugins of Cytoscape software, including ClusterONE, ClueGO and CluePedia, were used to analyze and cluster networks and enrichment of pathways. An R package used to define best centrality method. Finally, based on degree and Betweenness, hubs and bottleneck nodes were defined. Common genes between NAFLD and Alzheimer`s disease were 190 genes that used construct a network with STRING database. The resulting network contained 182 nodes and 2591 edges and comprises from four clusters. Enrichment of these clusters separately lead to carbohydrate metabolism, long chain fatty acid and regulation of JAK-STAT and IL-17 signaling pathways, respectively. Also seven genes selected as hub-bottleneck include: IL6, AKT1, TP53, TNF, JUN, VEGFA and PPARG. Enrichment of these proteins and their first neighbors in network by OMIM database lead to diabetes and obesity as ancestors of NAFLD and AD. Systems biology methods, specifically PPI networks, can be useful for analyzing complicated related diseases. Finding Hub and bottleneck proteins should be the goal of drug designing and introducing disease markers.
Hamaneh, Mehdi Bagheri; Yu, Yi-Kuo
2014-01-01
Identifying similar diseases could potentially provide deeper understanding of their underlying causes, and may even hint at possible treatments. For this purpose, it is necessary to have a similarity measure that reflects the underpinning molecular interactions and biological pathways. We have thus devised a network-based measure that can partially fulfill this goal. Our method assigns weights to all proteins (and consequently their encoding genes) by using information flow from a disease to the protein interaction network and back. Similarity between two diseases is then defined as the cosine of the angle between their corresponding weight vectors. The proposed method also provides a way to suggest disease-pathway associations by using the weights assigned to the genes to perform enrichment analysis for each disease. By calculating pairwise similarities between 2534 diseases, we show that our disease similarity measure is strongly correlated with the probability of finding the diseases in the same disease family and, more importantly, sharing biological pathways. We have also compared our results to those of MimMiner, a text-mining method that assigns pairwise similarity scores to diseases. We find the results of the two methods to be complementary. It is also shown that clustering diseases based on their similarities and performing enrichment analysis for the cluster centers significantly increases the term association rate, suggesting that the cluster centers are better representatives for biological pathways than the diseases themselves. This lends support to the view that our similarity measure is a good indicator of relatedness of biological processes involved in causing the diseases. Although not needed for understanding this paper, the raw results are available for download for further study at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/DiseaseRelations/.
Exploring oxidative ageing behaviour of hydrocarbons using ab initio molecular dynamics analysis
NASA Astrophysics Data System (ADS)
Pan, Tongyan; Cheng, Cheng
2016-06-01
With a proper approximate solution to the Schrödinger Equation of a multi-electron system, the method of ab initio molecular dynamics (AIMD) performs first-principles molecular dynamics analysis without pre-defining interatomic potentials as are mandatory in traditional molecular dynamics analyses. The objective of this study is to determine the oxidative-ageing pathway of petroleum asphalt as a typical hydrocarbon system, using the AIMD method. This objective was accomplished in three steps, including (1) identifying a group of representative asphalt molecules to model, (2) determining an atomistic modelling method that can effectively simulate the production of critical functional groups in oxidative ageing of hydrocarbons and (3) evaluating the oxidative-ageing pathway of a hydrocarbon system. The determination of oxidative-ageing pathway of hydrocarbons was done by tracking the generations of critical functional groups in the course of oxidative ageing. The chemical elements of carbon, nitrogen and sulphur all experience oxidative reactions, producing polarised functional groups such as ketones, aldehydes or carboxylic acids, pyrrolic groups and sulphoxides. The electrostatic forces of the polarised groups generated in oxidation are responsible for the behaviour of aged hydrocarbons. The developed AIMD model can be used for modelling the ageing of generic hydrocarbon polymers and developing antioxidants without running expensive experiments.
Pathway Activity Profiling (PAPi): from the metabolite profile to the metabolic pathway activity.
Aggio, Raphael B M; Ruggiero, Katya; Villas-Bôas, Silas Granato
2010-12-01
Metabolomics is one of the most recent omics-technologies and uses robust analytical techniques to screen low molecular mass metabolites in biological samples. It has evolved very quickly during the last decade. However, metabolomics datasets are considered highly complex when used to relate metabolite levels to metabolic pathway activity. Despite recent developments in bioinformatics, which have improved the quality of metabolomics data, there is still no straightforward method capable of correlating metabolite level to the activity of different metabolic pathways operating within the cells. Thus, this kind of analysis still depends on extremely laborious and time-consuming processes. Here, we present a new algorithm Pathway Activity Profiling (PAPi) with which we are able to compare metabolic pathway activities from metabolite profiles. The applicability and potential of PAPi was demonstrated using a previously published data from the yeast Saccharomyces cerevisiae. PAPi was able to support the biological interpretations of the previously published observations and, in addition, generated new hypotheses in a straightforward manner. However, PAPi is time consuming to perform manually. Thus, we also present here a new R-software package (PAPi) which implements the PAPi algorithm and facilitates its usage to quickly compare metabolic pathways activities between different experimental conditions. Using the identified metabolites and their respective abundances as input, the PAPi package calculates pathways' Activity Scores, which represents the potential metabolic pathways activities and allows their comparison between conditions. PAPi also performs principal components analysis and analysis of variance or t-test to investigate differences in activity level between experimental conditions. In addition, PAPi generates comparative graphs highlighting up- and down-regulated pathway activity. These datasets are available in http://www.4shared.com/file/hTWyndYU/extra.html and http://www.4shared.com/file/VbQIIDeu/intra.html. PAPi package is available in: http://www.4shared.com/file/s0uIYWIg/PAPi_10.html s.villas-boas@auckland.ac.nz Supplementary data are available at Bioinformatics online.
Mrabet, Yassine; Semmar, Nabil
2010-05-01
Complexity of metabolic systems can be undertaken at different scales (metabolites, metabolic pathways, metabolic network map, biological population) and under different aspects (structural, functional, evolutive). To analyse such a complexity, metabolic systems need to be decomposed into different components according to different concepts. Four concepts are presented here consisting in considering metabolic systems as sets of metabolites, chemical reactions, metabolic pathways or successive processes. From a metabolomic dataset, such decompositions are performed using different mathematical methods including correlation, stiochiometric, ordination, classification, combinatorial and kinetic analyses. Correlation analysis detects and quantifies affinities/oppositions between metabolites. Stoichiometric analysis aims to identify the organisation of a metabolic network into different metabolic pathways on the hand, and to quantify/optimize the metabolic flux distribution through the different chemical reactions of the system. Ordination and classification analyses help to identify different metabolic trends and their associated metabolites in order to highlight chemical polymorphism representing different variability poles of the metabolic system. Then, metabolic processes/correlations responsible for such a polymorphism can be extracted in silico by combining metabolic profiles representative of different metabolic trends according to a weighting bootstrap approach. Finally evolution of metabolic processes in time can be analysed by different kinetic/dynamic modelling approaches.
Bruno, C; Patin, F; Bocca, C; Nadal-Desbarats, L; Bonnier, F; Reynier, P; Emond, P; Vourc'h, P; Joseph-Delafont, K; Corcia, P; Andres, C R; Blasco, H
2018-01-30
Metabolomics is an emerging science based on diverse high throughput methods that are rapidly evolving to improve metabolic coverage of biological fluids and tissues. Technical progress has led researchers to combine several analytical methods without reporting the impact on metabolic coverage of such a strategy. The objective of our study was to develop and validate several analytical techniques (mass spectrometry coupled to gas or liquid chromatography and nuclear magnetic resonance) for the metabolomic analysis of small muscle samples and evaluate the impact of combining methods for more exhaustive metabolite covering. We evaluated the muscle metabolome from the same pool of mouse muscle samples after 2 metabolite extraction protocols. Four analytical methods were used: targeted flow injection analysis coupled with mass spectrometry (FIA-MS/MS), gas chromatography coupled with mass spectrometry (GC-MS), liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR) analysis. We evaluated the global variability of each compound i.e., analytical (from quality controls) and extraction variability (from muscle extracts). We determined the best extraction method and we reported the common and distinct metabolites identified based on the number and identity of the compounds detected with low analytical variability (variation coefficient<30%) for each method. Finally, we assessed the coverage of muscle metabolic pathways obtained. Methanol/chloroform/water and water/methanol were the best extraction solvent for muscle metabolome analysis by NMR and MS, respectively. We identified 38 metabolites by nuclear magnetic resonance, 37 by FIA-MS/MS, 18 by GC-MS, and 80 by LC-HRMS. The combination led us to identify a total of 132 metabolites with low variability partitioned into 58 metabolic pathways, such as amino acid, nitrogen, purine, and pyrimidine metabolism, and the citric acid cycle. This combination also showed that the contribution of GC-MS was low when used in combination with other mass spectrometry methods and nuclear magnetic resonance to explore muscle samples. This study reports the validation of several analytical methods, based on nuclear magnetic resonance and several mass spectrometry methods, to explore the muscle metabolome from a small amount of tissue, comparable to that obtained during a clinical trial. The combination of several techniques may be relevant for the exploration of muscle metabolism, with acceptable analytical variability and overlap between methods However, the difficult and time-consuming data pre-processing, processing, and statistical analysis steps do not justify systematically combining analytical methods. Copyright © 2017 Elsevier B.V. All rights reserved.
On an Additive Semigraphoid Model for Statistical Networks With Application to Pathway Analysis.
Li, Bing; Chun, Hyonho; Zhao, Hongyu
2014-09-01
We introduce a nonparametric method for estimating non-gaussian graphical models based on a new statistical relation called additive conditional independence, which is a three-way relation among random vectors that resembles the logical structure of conditional independence. Additive conditional independence allows us to use one-dimensional kernel regardless of the dimension of the graph, which not only avoids the curse of dimensionality but also simplifies computation. It also gives rise to a parallel structure to the gaussian graphical model that replaces the precision matrix by an additive precision operator. The estimators derived from additive conditional independence cover the recently introduced nonparanormal graphical model as a special case, but outperform it when the gaussian copula assumption is violated. We compare the new method with existing ones by simulations and in genetic pathway analysis.
Nam, Seungyoon
2017-04-01
Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.
Ranking metrics in gene set enrichment analysis: do they matter?
Zyla, Joanna; Marczyk, Michal; Weiner, January; Polanska, Joanna
2017-05-12
There exist many methods for describing the complex relation between changes of gene expression in molecular pathways or gene ontologies under different experimental conditions. Among them, Gene Set Enrichment Analysis seems to be one of the most commonly used (over 10,000 citations). An important parameter, which could affect the final result, is the choice of a metric for the ranking of genes. Applying a default ranking metric may lead to poor results. In this work 28 benchmark data sets were used to evaluate the sensitivity and false positive rate of gene set analysis for 16 different ranking metrics including new proposals. Furthermore, the robustness of the chosen methods to sample size was tested. Using k-means clustering algorithm a group of four metrics with the highest performance in terms of overall sensitivity, overall false positive rate and computational load was established i.e. absolute value of Moderated Welch Test statistic, Minimum Significant Difference, absolute value of Signal-To-Noise ratio and Baumgartner-Weiss-Schindler test statistic. In case of false positive rate estimation, all selected ranking metrics were robust with respect to sample size. In case of sensitivity, the absolute value of Moderated Welch Test statistic and absolute value of Signal-To-Noise ratio gave stable results, while Baumgartner-Weiss-Schindler and Minimum Significant Difference showed better results for larger sample size. Finally, the Gene Set Enrichment Analysis method with all tested ranking metrics was parallelised and implemented in MATLAB, and is available at https://github.com/ZAEDPolSl/MrGSEA . Choosing a ranking metric in Gene Set Enrichment Analysis has critical impact on results of pathway enrichment analysis. The absolute value of Moderated Welch Test has the best overall sensitivity and Minimum Significant Difference has the best overall specificity of gene set analysis. When the number of non-normally distributed genes is high, using Baumgartner-Weiss-Schindler test statistic gives better outcomes. Also, it finds more enriched pathways than other tested metrics, which may induce new biological discoveries.
Text Mining in Cancer Gene and Pathway Prioritization
Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter
2014-01-01
Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes. PMID:25392685
Text mining in cancer gene and pathway prioritization.
Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter
2014-01-01
Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes.
Intrinsic noise analysis and stochastic simulation on transforming growth factor beta signal pathway
NASA Astrophysics Data System (ADS)
Wang, Lu; Ouyang, Qi
2010-10-01
A typical biological cell lives in a small volume at room temperature; the noise effect on the cell signal transduction pathway may play an important role in its dynamics. Here, using the transforming growth factor-β signal transduction pathway as an example, we report our stochastic simulations of the dynamics of the pathway and introduce a linear noise approximation method to calculate the transient intrinsic noise of pathway components. We compare the numerical solutions of the linear noise approximation with the statistic results of chemical Langevin equations, and find that they are quantitatively in agreement with the other. When transforming growth factor-β dose decreases to a low level, the time evolution of noise fluctuation of nuclear Smad2—Smad4 complex indicates the abnormal enhancement in the transient signal activation process.
Aghdasi, Nava; Whipple, Mark; Humphreys, Ian M; Moe, Kris S; Hannaford, Blake; Bly, Randall A
2018-06-01
Successful multidisciplinary treatment of skull base pathology requires precise preoperative planning. Current surgical approach (pathway) selection for these complex procedures depends on an individual surgeon's experiences and background training. Because of anatomical variation in both normal tissue and pathology (eg, tumor), a successful surgical pathway used on one patient is not necessarily the best approach on another patient. The question is how to define and obtain optimized patient-specific surgical approach pathways? In this article, we demonstrate that the surgeon's knowledge and decision making in preoperative planning can be modeled by a multiobjective cost function in a retrospective analysis of actual complex skull base cases. Two different approaches- weighted-sum approach and Pareto optimality-were used with a defined cost function to derive optimized surgical pathways based on preoperative computed tomography (CT) scans and manually designated pathology. With the first method, surgeon's preferences were input as a set of weights for each objective before the search. In the second approach, the surgeon's preferences were used to select a surgical pathway from the computed Pareto optimal set. Using preoperative CT and magnetic resonance imaging, the patient-specific surgical pathways derived by these methods were similar (85% agreement) to the actual approaches performed on patients. In one case where the actual surgical approach was different, revision surgery was required and was performed utilizing the computationally derived approach pathway.
Yang, Chun-Feng; Gou, Wei-Hui; Dai, Xin-Lun; Li, Yu-Mei
2018-06-01
Staphylococcus aureus (S. aureus) is a versatile pathogen found in many environments and can cause nosocomial infections in the community and hospitals. S. aureus infection is an increasingly serious threat to global public health that requires action across many government bodies, medical and health sectors, and scientific research institutions. In the present study, S. aureus N315 genes that have been shown in the literature to be pathogenic were extracted using a bibliometric method for functional enrichment analysis of pathways and operons to statistically discover novel pathogenic genes associated with S. aureus N315. A total of 383 pathogenic genes were mined from the literature using bibliometrics, and subsequently a few new pathogenic genes of S. aureus N315 were identified by functional enrichment analysis of pathways and operons. The discovery of these novel S. aureus N315 pathogenic genes is of great significance to treat S. aureus induced diseases and identify potential diagnostic markers, thus providing theoretical fundamentals for epidemiological prevention.
Electronic Implementation of Integrated End-of-life Care: A Local Approach
Schlieper, Daniel; Altreuther, Christiane; Schallenburger, Manuela; Neukirchen, Martin; Schmitz, Andrea
2017-01-01
Introduction: The Liverpool Care Pathway for the Dying Patient is an instrument to deliver integrated care for patients in their last hours of life. Originally a paper-based system, this study investigates the feasibility of an electronic version. Methods: An electronic Liverpool Care Pathway was implemented in a specialized palliative care unit of a German university hospital. Its use is exemplified by means of auditing and analysis of the proportion of recorded items. Results: In the years 2013 and 2014 the electronic Liverpool Care Pathway was used for the care of 159 patients. The uptake of the instrument was high (67%). Most items were recorded. Apart from a high usability, the fast data retrieval allows fast analysis for auditing and research. Conclusions and discussion: The electronic instrument is feasible in a computerized ward and has strong advantages for retrospective analysis. Trial registration: Internal Clinical Trial Register of the Medical Faculty, Heinrich Heine University Düsseldorf, No. 2015124683 (7 December 2015). PMID:28970746
Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways.
Hardy, Simon; Robillard, Pierre N
2008-01-15
Cellular signaling networks are dynamic systems that propagate and process information, and, ultimately, cause phenotypical responses. Understanding the circuitry of the information flow in cells is one of the keys to understanding complex cellular processes. The development of computational quantitative models is a promising avenue for attaining this goal. Not only does the analysis of the simulation data based on the concentration variations of biological compounds yields information about systemic state changes, but it is also very helpful for obtaining information about the dynamics of signal propagation. This article introduces a new method for analyzing the dynamics of signal propagation in signaling pathways using Petri net theory. The method is demonstrated with the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulation network. The results constitute temporal information about signal propagation in the network, a simplified graphical representation of the network and of the signal propagation dynamics and a characterization of some signaling routes as regulation motifs.
Automatic variance analysis of multistage care pathways.
Li, Xiang; Liu, Haifeng; Zhang, Shilei; Mei, Jing; Xie, Guotong; Yu, Yiqin; Li, Jing; Lakshmanan, Geetika T
2014-01-01
A care pathway (CP) is a standardized process that consists of multiple care stages, clinical activities and their relations, aimed at ensuring and enhancing the quality of care. However, actual care may deviate from the planned CP, and analysis of these deviations can help clinicians refine the CP and reduce medical errors. In this paper, we propose a CP variance analysis method to automatically identify the deviations between actual patient traces in electronic medical records (EMR) and a multistage CP. As the care stage information is usually unavailable in EMR, we first align every trace with the CP using a hidden Markov model. From the aligned traces, we report three types of deviations for every care stage: additional activities, absent activities and violated constraints, which are identified by using the techniques of temporal logic and binomial tests. The method has been applied to a CP for the management of congestive heart failure and real world EMR, providing meaningful evidence for the further improvement of care quality.
Hilton, Gillean; Unsworth, Carolyn A; Stuckey, Ruth; Murphy, Gregory C
2018-01-01
Vocational potential in people with spinal cord injury (SCI) are unrealised with rates of employment substantially lower than in the labour force participation of the general population and the pre-injury employment rates. To understand the experience and pathway of people achieving employment outcome after traumatic spinal cord injury by; classifying participants into employment outcome groups of stable, unstable and without employment; identifying pre and post-injury pathways for participants in each group and, exploring the experiences of people of seeking, gaining and maintaining employment. Thirty-one participants were interviewed. Mixed methods approach including interpretive phenomenological analysis and vocational pathway mapping of quantitative data. The most common pathway identified was from study and work pre-injury to stable employment post-injury. Four super-ordinate themes were identified from the interpretive phenomenological analysis; expectations of work, system impacts, worker identity and social supports. Implications for clinical practice include fostering cultural change, strategies for system navigation, promotion of worker identity and optimal use of social supports. The findings increase insight and understanding of the complex experience of employment after spinal cord injury. There is opportunity to guide experimental research, policy development and education concerning the complexity of the return to work experience and factors that influence pathways.
Characterization of biomarkers in stroke based on ego-networks and pathways.
Li, Haixia; Guo, Qianqian
2017-12-01
To explore potential biomarkers in stroke based on ego-networks and pathways. EgoNet method was applied to search for the underlying biomarkers in stroke using transcription profiling of E-GEOD-58294 and protein-protein interaction (PPI) data. Eight ego-genes were identified from PPI network according to the degree characteristics at the criteria of top 5% ranked z-sore and degree >1. Eight candidate ego-networks with classification accuracy ≥0.9 were selected. After performed randomization test, seven significant ego-networks with adjusted p value < 0.05 were identified. Pathway enrichment analysis was then conducted with these ego-networks to search for the significant pathways. Finally, two significant pathways were identified, and six of seven ego-networks were enriched to "3'-UTR-mediated translational regulation" pathway, indicating that this pathway performs an important role in the development of stroke. Seven ego-networks were constructed using EgoNet and two significant enriched by pathways were identified. These may provide new insights into the potential biomarkers for the development of stroke.
Madhunapantula, SubbaRao V; Mosca, Paul J
2011-01-01
Studies using cultured melanoma cells and patient tumor biopsies have demonstrated deregulated PI3 kinase-Akt3 pathway activity in ∼70% of melanomas. Furthermore, targeting Akt3 and downstream PRAS40 has been shown to inhibit melanoma tumor development in mice. Although these preclinical studies and several other reports using small interfering RNAs and pharmacological agents targeting key members of this pathway have been shown to retard melanoma development, analysis of early Phase I and Phase II clinical trials using pharmacological agents to target this pathway demonstrate the need for (1) selection of patients whose tumors have PI3 kinase-Akt pathway deregulation, (2) further optimization of therapeutic agents for increased potency and reduced toxicity, (3) the identification of additional targets in the same pathway or in other signaling cascades that synergistically inhibit the growth and progression of melanoma, and (4) better methods for targeted delivery of pharmaceutical agents inhibiting this pathway. In this review we discuss key potential targets in PI3K-Akt3 signaling, the status of pharmacological agents targeting these proteins, drugs under clinical development, and strategies to improve the efficacy of therapeutic agents targeting this pathway. PMID:22157148
The US EPA’s ToxCastTM program seeks to combine advances in high-throughput screening technology with methodologies from statistics and computer science to develop high-throughput decision support tools for assessing chemical hazard and risk. To develop new methods of analysis of...
Quantitative Profiling of DNA Damage and Apoptotic Pathways in UV Damaged Cells Using PTMScan Direct
Stokes, Matthew P.; Silva, Jeffrey C.; Jia, Xiaoying; Lee, Kimberly A.; Polakiewicz, Roberto D.; Comb, Michael J.
2013-01-01
Traditional methods for analysis of peptides using liquid chromatography and tandem mass spectrometry (LC-MS/MS) lack the specificity to comprehensively monitor specific biological processes due to the inherent duty cycle limitations of the MS instrument and the stochastic nature of the analytical platform. PTMScan Direct is a novel, antibody-based method that allows quantitative LC-MS/MS profiling of specific peptides from proteins that reside in the same signaling pathway. New PTMScan Direct reagents have been produced that target peptides from proteins involved in DNA Damage/Cell Cycle and Apoptosis/Autophagy pathways. Together, the reagents provide access to 438 sites on 237 proteins in these signaling cascades. These reagents have been used to profile the response to UV damage of DNA in human cell lines. UV damage was shown to activate canonical DNA damage response pathways through ATM/ATR-dependent signaling, stress response pathways and induce the initiation of apoptosis, as assessed by an increase in the abundance of peptides corresponding to cleaved, activated caspases. These data demonstrate the utility of PTMScan Direct as a multiplexed assay for profiling specific cellular responses to various stimuli, such as UV damage of DNA. PMID:23344034
Sharma, Vishal; Sundar, Sudha S; Breheny, Katie; Monahan, Mark; Sutton, Andrew John
2016-06-01
There are multiple tests available that can help diagnose ovarian cancer, and the cost-effective analysis of these diagnostic interventions is essential for making well-informed decisions regarding resource allocation. There are multiple factors that can impact on the conclusions drawn from economic evaluations including test accuracy, the impact of the testing pathway on patient costs and outcomes, and delays along the ovarian cancer test-treat pathway. The objective of this study was to evaluate how test accuracy, the choice of perspective, and delays along the testing and diagnostic pathway have been incorporated in economic evaluations of testing for ovarian cancer. A systematic review of published literature was undertaken to identify economic evaluations (eg, cost-effectiveness, cost-utility analysis) focused on testing and diagnosis for ovarian cancer. Seven studies met the inclusion criteria. Six studies incorporated test accuracy and its impact on patients to some extent. Four studies adopted a societal perspective, but only one considered the costs incurred by patients on the testing and diagnosis pathway. Where delays on the testing pathway were incorporated into the analysis, these were frequently due to false-negative test results leading to delays in patients accessing treatment. Any anxiety that patients might experience as a result of a positive test was not considered in these studies. The impact on patients of receiving a positive test in terms of anxiety and the costs incurred by patients having to attend for testing and diagnosis are rarely considered. Delays along the testing and diagnosis pathway can have a major effect on patient outcomes, and it is important that these are acknowledged in economic evaluations focused on testing. Future economic analysis should incorporate these key determinants in order that diagnostic tests for ovarian cancer can be robustly evaluated.
Li, Fangwei; Shi, Wenhua; Wan, Yixin; Wang, Qingting; Feng, Wei; Yan, Xin; Wang, Jian; Chai, Limin; Zhang, Qianqian; Li, Manxiang
2017-12-01
The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro .
Malhotra, Jyoti; Sartori, Samantha; Brennan, Paul; Zaridze, David; Szeszenia-Dabrowska, Neonila; Świątkowska, Beata; Rudnai, Peter; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Gaborieau, Valerie; Stücker, Isabelle; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo
2015-03-01
Occupational exposures are known risk factors for lung cancer. Role of genetically determined host factors in occupational exposure-related lung cancer is unclear. We used genome-wide association (GWA) data from a case-control study conducted in 6 European countries from 1998 to 2002 to identify gene-occupation interactions and related pathways for lung cancer risk. GWA analysis was performed for each exposure using logistic regression and interaction term for genotypes, and exposure was included in this model. Both SNP-based and gene-based interaction P values were calculated. Pathway analysis was performed using three complementary methods, and analyses were adjusted for multiple comparisons. We analyzed 312,605 SNPs and occupational exposure to 70 agents from 1,802 lung cancer cases and 1,725 cancer-free controls. Mean age of study participants was 60.1 ± 9.1 years and 75% were male. Largest number of significant associations (P ≤ 1 × 10(-5)) at SNP level was demonstrated for nickel, brick dust, concrete dust, and cement dust, and for brick dust and cement dust at the gene-level (P ≤ 1 × 10(-4)). Approximately 14 occupational exposures showed significant gene-occupation interactions with pathways related to response to environmental information processing via signal transduction (P < 0.001 and FDR < 0.05). Other pathways that showed significant enrichment were related to immune processes and xenobiotic metabolism. Our findings suggest that pathways related to signal transduction, immune process, and xenobiotic metabolism may be involved in occupational exposure-related lung carcinogenesis. Our study exemplifies an integrative approach using pathway-based analysis to demonstrate the role of genetic variants in occupational exposure-related lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 24(3); 570-9. ©2015 AACR. ©2015 American Association for Cancer Research.
Chiral pathways in DNA dinucleotides using gradient optimized refinement along metastable borders
NASA Astrophysics Data System (ADS)
Romano, Pablo; Guenza, Marina
We present a study of DNA breathing fluctuations using Markov state models (MSM) with our novel refinement procedure. MSM have become a favored method of building kinetic models, however their accuracy has always depended on using a significant number of microstates, making the method costly. We present a method which optimizes macrostates by refining borders with respect to the gradient along the free energy surface. As the separation between macrostates contains highest discretization errors, this method corrects for any errors produced by limited microstate sampling. Using our refined MSM methods, we investigate DNA breathing fluctuations, thermally induced conformational changes in native B-form DNA. Running several microsecond MD simulations of DNA dinucleotides of varying sequences, to include sequence and polarity effects, we've analyzed using our refined MSM to investigate conformational pathways inherent in the unstacking of DNA bases. Our kinetic analysis has shown preferential chirality in unstacking pathways that may be critical in how proteins interact with single stranded regions of DNA. These breathing dynamics can help elucidate the connection between conformational changes and key mechanisms within protein-DNA recognition. NSF Chemistry Division (Theoretical Chemistry), the Division of Physics (Condensed Matter: Material Theory), XSEDE.
Climate Risk Informed Decision Analysis: A Hypothetical Application to the Waas Region
NASA Astrophysics Data System (ADS)
Gilroy, Kristin; Mens, Marjolein; Haasnoot, Marjolijn; Jeuken, Ad
2016-04-01
More frequent and intense hydrologic events under climate change are expected to enhance water security and flood risk management challenges worldwide. Traditional planning approaches must be adapted to address climate change and develop solutions with an appropriate level of robustness and flexibility. The Climate Risk Informed Decision Analysis (CRIDA) method is a novel planning approach embodying a suite of complementary methods, including decision scaling and adaptation pathways. Decision scaling offers a bottom-up approach to assess risk and tailors the complexity of the analysis to the problem at hand and the available capacity. Through adaptation pathway,s an array of future strategies towards climate robustness are developed, ranging in flexibility and immediacy of investments. Flexible pathways include transfer points to other strategies to ensure that the system can be adapted if future conditions vary from those expected. CRIDA combines these two approaches in a stakeholder driven process which guides decision makers through the planning and decision process, taking into account how the confidence in the available science, the consequences in the system, and the capacity of institutions should influence strategy selection. In this presentation, we will explain the CRIDA method and compare it to existing planning processes, such as the US Army Corps of Engineers Principles and Guidelines as well as Integrated Water Resources Management Planning. Then, we will apply the approach to a hypothetical case study for the Waas Region, a large downstream river basin facing rapid development threatened by increased flood risks. Through the case study, we will demonstrate how a stakeholder driven process can be used to evaluate system robustness to climate change; develop adaptation pathways for multiple objectives and criteria; and illustrate how varying levels of confidence, consequences, and capacity would play a role in the decision making process, specifically in regards to the level of robustness and flexibility in the selected strategy. This work will equip practitioners and decision makers with an example of a structured process for decision making under climate uncertainty that can be scaled as needed to the problem at hand. This presentation builds further on another submitted abstract "Climate Risk Informed Decision Analysis (CRIDA): A novel practical guidance for Climate Resilient Investments and Planning" by Jeuken et al.
Selinsky, B S; Perlman, M E; London, R E
1988-05-01
Methoxyflurane (2,2-dichloro-1,1-difluoro-ethyl methyl ether) is believed to be metabolized via two convergent metabolic pathways. The relative flux through these two metabolic pathways has been investigated using a combination of in vivo surface coil NMR techniques and in vitro analyses of urinary metabolites. Analysis of the measured concentrations of inorganic fluoride, oxalate, and methoxydifluoroacetate in the urine of methoxyflurane-treated rats for 4 days after anesthesia indicates that the anesthetic is metabolized primarily via dechlorination to yield methoxydifluoroacetate. The methoxydifluoroacetate is largely excreted without further metabolism, although a small percentage of this metabolite is broken down to yield fluoride and oxalate, as determined by urine analysis of rats dosed with synthetic methoxydifluoroacetate. At early times after methoxyflurane exposure, the relative concentrations of methoxyflurane metabolites indicate that a significant fraction of the metabolic flux occurs via a different pathway, presumably demethylation, to yield dichloroacetate as an intermediate. Direct analysis of dichloroacetate in the urine using water-suppressed proton NMR indicates that the level of this metabolite is below the detection threshold of the method. Measurements made on the urine of rats dosed directly with dichloroacetate indicate that this compound is quickly metabolized, and dichloroacetate levels in urine are again found to be below the detection threshold. These results demonstrate the quantitative importance of the dechlorination pathway in the metabolism of methoxyflurane in rats.
Discriminating response groups in metabolic and regulatory pathway networks.
Van Hemert, John L; Dickerson, Julie A
2012-04-01
Analysis of omics experiments generates lists of entities (genes, metabolites, etc.) selected based on specific behavior, such as changes in response to stress or other signals. Functional interpretation of these lists often uses category enrichment tests using functional annotations like Gene Ontology terms and pathway membership. This approach does not consider the connected structure of biochemical pathways or the causal directionality of events. The Omics Response Group (ORG) method, described in this work, interprets omics lists in the context of metabolic pathway and regulatory networks using a statistical model for flow within the networks. Statistical results for all response groups are visualized in a novel Pathway Flow plot. The statistical tests are based on the Erlang distribution model under the assumption of independent and identically Exponential-distributed random walk flows through pathways. As a proof of concept, we applied our method to an Escherichia coli transcriptomics dataset where we confirmed common knowledge of the E.coli transcriptional response to Lipid A deprivation. The main response is related to osmotic stress, and we were also able to detect novel responses that are supported by the literature. We also applied our method to an Arabidopsis thaliana expression dataset from an abscisic acid study. In both cases, conventional pathway enrichment tests detected nothing, while our approach discovered biological processes beyond the original studies. We created a prototype for an interactive ORG web tool at http://ecoserver.vrac.iastate.edu/pathwayflow (source code is available from https://subversion.vrac.iastate.edu/Subversion/jlv/public/jlv/pathwayflow). The prototype is described along with additional figures and tables in Supplementary Material. julied@iastate.edu Supplementary data are available at Bioinformatics online.
Zhou, Wei; Song, Xiang-gang; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang
2015-08-01
Action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis were discussed based on gene expression profile and molecular fingerprint in this paper. First, gene expression profiles of atherosclerotic carotid artery tissues and histologically normal tissues in human body were collected, and were screened using significance analysis of microarray (SAM) to screen out differential gene expressions; then differential genes were analyzed by Gene Ontology (GO) analysis and KEGG pathway analysis; to avoid some genes with non-outstanding differential expression but biologically importance, Gene Set Enrichment Analysis (GSEA) were performed, and 7 chemical ingredients with higher negative enrichment score were obtained by Cmap method, implying that they could reversely regulate the gene expression profiles of pathological tissues; and last, based on the hypotheses that similar structures have similar activities, 336 ingredients of compound Danshen dripping pills were compared with 7 drug molecules in 2D molecular fingerprints method. The results showed that 147 differential genes including 60 up-regulated genes and 87 down regulated genes were screened out by SAM. And in GO analysis, Biological Process ( BP) is mainly concerned with biological adhesion, response to wounding and inflammatory response; Cellular Component (CC) is mainly concerned with extracellular region, extracellular space and plasma membrane; while Molecular Function (MF) is mainly concerned with antigen binding, metalloendopeptidase activity and peptide binding. KEGG pathway analysis is mainly concerned with JAK-STAT, RIG-I like receptor and PPAR signaling pathway. There were 10 compounds, such as hexadecane, with Tanimoto coefficients greater than 0.85, which implied that they may be the active ingredients (AIs) of compound Danshen dripping pills in treatment of carotid atherosclerosis (CAs). The present method can be applied to the research on material base and molecular action mechanism of TCM.
Glycolytic strategy as a tradeoff between energy yield and protein cost
Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Liebermeister, Wolfram; Milo, Ron
2013-01-01
Contrary to the textbook portrayal of glycolysis as a single pathway conserved across all domains of life, not all sugar-consuming organisms use the canonical Embden–Meyerhoff–Parnass (EMP) glycolytic pathway. Prokaryotic glucose metabolism is particularly diverse, including several alternative glycolytic pathways, the most common of which is the Entner–Doudoroff (ED) pathway. The prevalence of the ED pathway is puzzling as it produces only one ATP per glucose—half as much as the EMP pathway. We argue that the diversity of prokaryotic glucose metabolism may reflect a tradeoff between a pathway’s energy (ATP) yield and the amount of enzymatic protein required to catalyze pathway flux. We introduce methods for analyzing pathways in terms of thermodynamics and kinetics and show that the ED pathway is expected to require several-fold less enzymatic protein to achieve the same glucose conversion rate as the EMP pathway. Through genomic analysis, we further show that prokaryotes use different glycolytic pathways depending on their energy supply. Specifically, energy-deprived anaerobes overwhelmingly rely upon the higher ATP yield of the EMP pathway, whereas the ED pathway is common among facultative anaerobes and even more common among aerobes. In addition to demonstrating how protein costs can explain the use of alternative metabolic strategies, this study illustrates a direct connection between an organism’s environment and the thermodynamic and biochemical properties of the metabolic pathways it employs. PMID:23630264
Sun, Mingqian; Liu, Jianxun; Lin, Chengren; Miao, Lan; Lin, Li
2014-01-01
Since alkaloids are the major active constituents of Rhizoma corydalis (RC), a convenient and accurate analytical method is needed for their identification and characterization. Here we report a method to profile the alkaloids in RC based on liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (LC–Q-TOF-MS/MS). A total of 16 alkaloids belonging to four different classes were identified by comparison with authentic standards. The fragmentation pathway of each class of alkaloid was clarified and their differences were elucidated. Furthermore, based on an analysis of fragmentation pathways and alkaloid profiling, a rapid and accurate method for the identification of unknown alkaloids in RC is proposed. The method could also be useful for the quality control of RC. PMID:26579385
Transcriptomics of cortical gray matter thickness decline during normal aging
Kochunov, P; Charlesworth, J; Winkler, A; Hong, LE; Nichols, T; Curran, JE; Sprooten, E; Jahanshad, N; Thompson, PM; Johnson, MP; Kent, JW; Landman, BA; Mitchell, B; Cole, SA; Dyer, TD; Moses, EK; Goring, HHH; Almasy, L; Duggirala, R; Olvera, RL; Glahn, DC; Blangero, J
2013-01-01
Introduction We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathways analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging Methods Transcriptome and GMT data were availabe for 379 individuals (age range=28–85) community-dwelling members of large extended Mexican-American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800µm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Results Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10−6) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Conclusion Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. PMID:23707588
Zhou, Wei; Zhang, Yan; Li, Yue-Hua; Wang, Shuang; Zhang, Jing-Jing; Zhang, Cui-Xia; Zhang, Zhi-Sheng
2017-02-01
This work aimed to identify dysregulated pathways for Staphylococcus aureus (SA) exposed macrophages based on pathway interaction network (PIN). The inference of dysregulated pathways was comprised of four steps: preparing gene expression data, protein-protein interaction (PPI) data and pathway data; constructing a PIN dependent on the data and Pearson correlation coefficient (PCC); selecting seed pathway from PIN by computing activity score for each pathway according to principal component analysis (PCA) method; and investigating dysregulated pathways in a minimum set of pathways (MSP) utilizing seed pathway and the area under the receiver operating characteristics curve (AUC) index implemented in support vector machines (SVM) model. A total of 20,545 genes, 449,833 interactions and 1189 pathways were obtained in the gene expression data, PPI data and pathway data, respectively. The PIN was consisted of 8388 interactions and 1189 nodes, and Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins was identified as the seed pathway. Finally, 15 dysregulated pathways in MSP (AUC=0.999) were obtained for SA infected samples, such as Respiratory electron transport and DNA Replication. We have identified 15 dysregulated pathways for SA infected macrophages based on PIN. The findings might provide potential biomarkers for early detection and therapy of SA infection, and give insights to reveal the molecular mechanism underlying SA infections. However, how these dysregulated pathways worked together still needs to be studied. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baya, P. A.; Point, D.; Amouroux, D. P.; Lebreton, B.; Guillou, G.
2015-12-01
Methylmercury (CH3Hg) is a potent neurotoxin which is readily assimilated by organisms and bio-accumulates in aquatic food webs. In humans, consumption of CH3Hg contaminated marine fish is the major route of mercury exposure. However, our understanding of CH3Hg transformation pathways is still incomplete. To close this knowledge gap, we propose to explore the stable carbon isotopic composition (δ13C) of the methyl group of CH3Hg for a better understanding of its sources and transformation mechanisms. The method developed for the determination of the δ13C value of CH3Hg in biological samples involves (i) CH3Hg selective extraction, (ii) derivatization, and (iii) separation by gas chromatography (GC) prior to analysis by combustion isotope ratio mass spectrometry (C-IRMS). We present the figures of merit of this novel method and the first δ13C signatures for certified materials (ERM-CE464, BCR414) and biological samples at different marine trophic levels (i.e., tuna fish, zooplankton). The implications of this new approach to trace the pathways associated with Hg methylation and the mechanisms involved will be discussed.
George, Daniel R
2011-09-01
This article reports on a mixed methods evaluation of a randomized control trial in Cleveland, Ohio, USA, that assessed whether an intergenerational volunteering intervention could enhance quality of life (QOL) for persons with mild to moderate dementia. Fifteen participants were randomized into intervention and control groups. The intervention group participated in hour-long volunteer sessions with a kindergarten class and an older elementary class in alternating weeks over a 5-month interval. Psychometric data on cognitive functioning, stress, depression, sense of purpose, and sense of usefulness were collected at baseline and at the close of the intervention, and change scores were computed and analyzed for all variables. Ethnography was carried out through the duration of the study, and narrative interviews were held with participants and caregivers. A modified grounded theory approach was used for qualitative analysis. Quantitative analysis demonstrated a significant decrease in stress for the intervention group. Qualitative analysis identified three main pathways through which intergenerational volunteering affected QOL: perceived health benefits, sense of purpose and sense of usefulness, and relationships. Mixed methods evaluation demonstrated that intergenerational volunteering might enhance quality of life through several key pathways, most significantly reduced stress.
Bohler, Anwesha; Eijssen, Lars M T; van Iersel, Martijn P; Leemans, Christ; Willighagen, Egon L; Kutmon, Martina; Jaillard, Magali; Evelo, Chris T
2015-08-23
Biological pathways are descriptive diagrams of biological processes widely used for functional analysis of differentially expressed genes or proteins. Primary data analysis, such as quality control, normalisation, and statistical analysis, is often performed in scripting languages like R, Perl, and Python. Subsequent pathway analysis is usually performed using dedicated external applications. Workflows involving manual use of multiple environments are time consuming and error prone. Therefore, tools are needed that enable pathway analysis directly within the same scripting languages used for primary data analyses. Existing tools have limited capability in terms of available pathway content, pathway editing and visualisation options, and export file formats. Consequently, making the full-fledged pathway analysis tool PathVisio available from various scripting languages will benefit researchers. We developed PathVisioRPC, an XMLRPC interface for the pathway analysis software PathVisio. PathVisioRPC enables creating and editing biological pathways, visualising data on pathways, performing pathway statistics, and exporting results in several image formats in multiple programming environments. We demonstrate PathVisioRPC functionalities using examples in Python. Subsequently, we analyse a publicly available NCBI GEO gene expression dataset studying tumour bearing mice treated with cyclophosphamide in R. The R scripts demonstrate how calls to existing R packages for data processing and calls to PathVisioRPC can directly work together. To further support R users, we have created RPathVisio simplifying the use of PathVisioRPC in this environment. We have also created a pathway module for the microarray data analysis portal ArrayAnalysis.org that calls the PathVisioRPC interface to perform pathway analysis. This module allows users to use PathVisio functionality online without having to download and install the software and exemplifies how the PathVisioRPC interface can be used by data analysis pipelines for functional analysis of processed genomics data. PathVisioRPC enables data visualisation and pathway analysis directly from within various analytical environments used for preliminary analyses. It supports the use of existing pathways from WikiPathways or pathways created using the RPC itself. It also enables automation of tasks performed using PathVisio, making it useful to PathVisio users performing repeated visualisation and analysis tasks. PathVisioRPC is freely available for academic and commercial use at http://projects.bigcat.unimaas.nl/pathvisiorpc.
Dynamics Sampling in Transition Pathway Space.
Zhou, Hongyu; Tao, Peng
2018-01-09
The minimum energy pathway contains important information describing the transition between two states on a potential energy surface (PES). Chain-of-states methods were developed to efficiently calculate minimum energy pathways connecting two stable states. In the chain-of-states framework, a series of structures are generated and optimized to represent the minimum energy pathway connecting two states. However, multiple pathways may exist connecting two existing states and should be identified to obtain a full view of the transitions. Therefore, we developed an enhanced sampling method, named as the direct pathway dynamics sampling (DPDS) method, to facilitate exploration of a PES for multiple pathways connecting two stable states as well as addition minima and their associated transition pathways. In the DPDS method, molecular dynamics simulations are carried out on the targeting PES within a chain-of-states framework to directly sample the transition pathway space. The simulations of DPDS could be regulated by two parameters controlling distance among states along the pathway and smoothness of the pathway. One advantage of the chain-of-states framework is that no specific reaction coordinates are necessary to generate the reaction pathway, because such information is implicitly represented by the structures along the pathway. The chain-of-states setup in a DPDS method greatly enhances the sufficient sampling in high-energy space between two end states, such as transition states. By removing the constraint on the end states of the pathway, DPDS will also sample pathways connecting minima on a PES in addition to the end points of the starting pathway. This feature makes DPDS an ideal method to directly explore transition pathway space. Three examples demonstrate the efficiency of DPDS methods in sampling the high-energy area important for reactions on the PES.
OH-initiated transformation and hydrolysis of aspirin in AOPs system: DFT and experimental studies.
He, Lin; Sun, Xiaomin; Zhu, Fanping; Ren, Shaojie; Wang, Shuguang
2017-08-15
Advanced oxidation processes (AOPs) are widely used in wastewater treatment of pharmaceutical and personal care products (PPCPs). In this work, the OH-initiated transformation as well as the hydrolysis of a typical PPCPs, aspirin, was investigated using density functional theory (DFT) calculations and laboratory experiments. For DFT calculations, the frontier electron densities and bond dissociation energies were analyzed. Profiles of the potential energy surface were constructed, and all the possible pathways were discussed. Additionally, rate constants for each pathway were calculated with transition state theory (TST) method. UV/H 2 O 2 experiments of aspirin were performed and degradation intermediates were identified by UPLC-MS-MS analysis. Different findings from previous experimental works were reported that the H-abstraction pathways at methyl position were dominated and OH-addition pathways on benzene ring were also favored. Meantime, hydroxyl ASA was confirmed as the main stable intermediate. Moreover, it was the first time to use DFT method to investigate the hydrolysis mechanisms of organic ester compound. Copyright © 2017 Elsevier B.V. All rights reserved.
Tissue-Specific Analysis of Pharmacological Pathways.
Hao, Yun; Quinnies, Kayla; Realubit, Ronald; Karan, Charles; Tatonetti, Nicholas P
2018-06-19
Understanding the downstream consequences of pharmacologically targeted proteins is essential to drug design. Current approaches investigate molecular effects under tissue-naïve assumptions. Many target proteins, however, have tissue-specific expression. A systematic study connecting drugs to target pathways in in vivo human tissues is needed. We introduced a data-driven method that integrates drug-target relationships with gene expression, protein-protein interaction, and pathway annotation data. We applied our method to four independent genomewide expression datasets and built 467,396 connections between 1,034 drugs and 954 pathways in 259 human tissues or cell lines. We validated our results using data from L1000 and Pharmacogenomics Knowledgebase (PharmGKB), and observed high precision and recall. We predicted and tested anticoagulant effects of 22 compounds experimentally that were previously unknown, and used clinical data to validate these effects retrospectively. Our systematic study provides a better understanding of the cellular response to drugs and can be applied to many research topics in systems pharmacology. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
ERIC Educational Resources Information Center
Ormsmith, Michael Isaac
2014-01-01
This explanatory mixed-methods policy analysis describes how school counselors' thoughts and attitudes contribute to the implementation fidelity of the Academic and Career Plan (ACP) policy in a suburban Virginia school division. A quantitative survey investigated counselor thoughts about the policy, implementation behaviors, and counselor ideas…
OVCAR-3 Spheroid-Derived Cells Display Distinct Metabolic Profiles
Vermeersch, Kathleen A.; Wang, Lijuan; Mezencev, Roman; McDonald, John F.; Styczynski, Mark P.
2015-01-01
Introduction Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells. Methods To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines. Results These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines. Conclusions Overall, we demonstrate for the first time that metabolism in an ovarian cancer stem cell line is distinct from that of more differentiated isogenic cancer cells, supporting the potential importance of metabolism in the differences between cancer cells and cancer stem cells. PMID:25688563
USDA-ARS?s Scientific Manuscript database
Large-scale, gene expression methods allow for high throughput analysis of physiological pathways at a fraction of the cost of individual gene expression analysis. Systems, such as the Fluidigm quantitative PCR array described here, can provide powerful assessments of the effects of diet, environme...
Stevens, David Cole; Conway, Kyle R.; Pearce, Nelson; Villegas-Peñaranda, Luis Roberto; Garza, Anthony G.; Boddy, Christopher N.
2013-01-01
Background Heterologous expression of bacterial biosynthetic gene clusters is currently an indispensable tool for characterizing biosynthetic pathways. Development of an effective, general heterologous expression system that can be applied to bioprospecting from metagenomic DNA will enable the discovery of a wealth of new natural products. Methodology We have developed a new Escherichia coli-based heterologous expression system for polyketide biosynthetic gene clusters. We have demonstrated the over-expression of the alternative sigma factor σ54 directly and positively regulates heterologous expression of the oxytetracycline biosynthetic gene cluster in E. coli. Bioinformatics analysis indicates that σ54 promoters are present in nearly 70% of polyketide and non-ribosomal peptide biosynthetic pathways. Conclusions We have demonstrated a new mechanism for heterologous expression of the oxytetracycline polyketide biosynthetic pathway, where high-level pleiotropic sigma factors from the heterologous host directly and positively regulate transcription of the non-native biosynthetic gene cluster. Our bioinformatics analysis is consistent with the hypothesis that heterologous expression mediated by the alternative sigma factor σ54 may be a viable method for the production of additional polyketide products. PMID:23724102
Analysis of Self-Associating Proteins by Singular Value Decomposition of Solution Scattering Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, Tim E.; Craig, Bruce A.; Kondrashkina, Elena
2008-07-08
We describe a method by which a single experiment can reveal both association model (pathway and constants) and low-resolution structures of a self-associating system. Small-angle scattering data are collected from solutions at a range of concentrations. These scattering data curves are mass-weighted linear combinations of the scattering from each oligomer. Singular value decomposition of the data yields a set of basis vectors from which the scattering curve for each oligomer is reconstructed using coefficients that depend on the association model. A search identifies the association pathway and constants that provide the best agreement between reconstructed and observed data. Using simulatedmore » data with realistic noise, our method finds the correct pathway and association constants. Depending on the simulation parameters, reconstructed curves for each oligomer differ from the ideal by 0.050.99% in median absolute relative deviation. The reconstructed scattering curves are fundamental to further analysis, including interatomic distance distribution calculation and low-resolution ab initio shape reconstruction of each oligomer in solution. This method can be applied to x-ray or neutron scattering data from small angles to moderate (or higher) resolution. Data can be taken under physiological conditions, or particular conditions (e.g., temperature) can be varied to extract fundamental association parameters ({Delta}H{sub ass}, S{sub ass}).« less
Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis.
Kammen, Alexandra; Law, Meng; Tjan, Bosco S; Toga, Arthur W; Shi, Yonggang
2016-01-15
Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic organization of the optic radiation including a successful reconstruction of Meyer's loop. Then, using the reconstructed optic radiation bundle from the HCP cohort, we construct a probabilistic atlas and demonstrate its consistency with a post-mortem atlas. Finally, we generate a shape-based representation of the optic radiation for morphometry analysis. Copyright © 2015 Elsevier Inc. All rights reserved.
A Method for Finding Metabolic Pathways Using Atomic Group Tracking.
Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi
2017-01-01
A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.
A Method for Finding Metabolic Pathways Using Atomic Group Tracking
Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi
2017-01-01
A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354
Dependence of prevalence of contiguous pathways in proteins on structural complexity.
Thayer, Kelly M; Galganov, Jesse C; Stein, Avram J
2017-01-01
Allostery is a regulatory mechanism in proteins where an effector molecule binds distal from an active site to modulate its activity. Allosteric signaling may occur via a continuous path of residues linking the active and allosteric sites, which has been suggested by large conformational changes evident in crystal structures. An alternate possibility is that the signal occurs in the realm of ensemble dynamics via an energy landscape change. While the latter was first proposed on theoretical grounds, increasing evidence suggests that such a control mechanism is plausible. A major difficulty for testing the two methods is the ability to definitively determine that a residue is directly involved in allosteric signal transduction. Statistical Coupling Analysis (SCA) is a method that has been successful at predicting pathways, and experimental tests involving mutagenesis or domain substitution provide the best available evidence of signaling pathways. However, ascertaining energetic pathways which need not be contiguous is far more difficult. To date, simple estimates of the statistical significance of a pathway in a protein remain to be established. The focus of this work is to estimate such benchmarks for the statistical significance of contiguous pathways for the null model of selecting residues at random. We found that when 20% of residues in proteins are randomly selected, contiguous pathways at the 6 Å cutoff level were found with success rates of 51% in PDZ, 30% in p53, and 3% in MutS. The results suggest that the significance of pathways may have system specific factors involved. Furthermore, the possible existence of false positives for contiguous pathways implies that signaling could be occurring via alternate routes including those consistent with the energetic landscape model.
Poot-Hernandez, Augusto Cesar; Rodriguez-Vazquez, Katya; Perez-Rueda, Ernesto
2015-11-17
It is generally accepted that gene duplication followed by functional divergence is one of the main sources of metabolic diversity. In this regard, there is an increasing interest in the development of methods that allow the systematic identification of these evolutionary events in metabolism. Here, we used a method not based on biomolecular sequence analysis to compare and identify common and variable routes in the metabolism of 40 Gammaproteobacteria species. The metabolic maps deposited in the KEGG database were transformed into linear Enzymatic Step Sequences (ESS) by using the breadth-first search algorithm. These ESS represent subsequent enzymes linked to each other, where their catalytic activities are encoded in the Enzyme Commission numbers. The ESS were compared in an all-against-all (pairwise comparisons) approach by using a dynamic programming algorithm, leaving only a set of significant pairs. From these comparisons, we identified a set of functionally conserved enzymatic steps in different metabolic maps, in which cell wall components and fatty acid and lysine biosynthesis were included. In addition, we found that pathways associated with biosynthesis share a higher proportion of similar ESS than degradation pathways and secondary metabolism pathways. Also, maps associated with the metabolism of similar compounds contain a high proportion of similar ESS, such as those maps from nucleotide metabolism pathways, in particular the inosine monophosphate pathway. Furthermore, diverse ESS associated with the low part of the glycolysis pathway were identified as functionally similar to multiple metabolic pathways. In summary, our comparisons may help to identify similar reactions in different metabolic pathways and could reinforce the patchwork model in the evolution of metabolism in Gammaproteobacteria.
Campbell, Katarzyna Anna; Bowker, Katharine Anna; Naughton, Felix; Sloan, Melanie; Cooper, Sue; Coleman, Tim
2016-01-01
Introduction: UK guidance recommends routine exhaled carbon monoxide (CO) screening for pregnant women and “opt-out” referrals to stop smoking services (SSS) of those with CO ≥ 4 ppm. We explored staff views on this referral pathway when implemented in one UK hospital Trust. Methods: Seventeen semi-structured interviews with staff involved in the implementation of the new referral pathway: six antenatal clinic staff (before and after implementation); five SSS staff (after). Data were analyzed using framework analysis. Results: Two themes were identified: (1) views on implementation of the pathway and (2) impact of the pathway on the women. Generally, staff felt that following training, referrals were less arduous to implement and better received than expected. The majority believed this pathway helped engage women motivated to quit and offered a unique chance to impart smoking cessation knowledge to hard-to-reach women, who might not otherwise contact SSS. An unexpected issue arose during implementation—dealing with non-smokers with high CO readings. Conclusions: According to staff, the “opt-out” referral pathway is an acceptable addition to routine antenatal care. It can help engage hard-to-reach women and educate them about the dangers of smoking in pregnancy. Incorporating advice on dealing with non-smokers with high CO into routine staff training could help future implementations. PMID:27754352
Blasco, H; Błaszczyński, J; Billaut, J C; Nadal-Desbarats, L; Pradat, P F; Devos, D; Moreau, C; Andres, C R; Emond, P; Corcia, P; Słowiński, R
2015-02-01
Metabolomics is an emerging field that includes ascertaining a metabolic profile from a combination of small molecules, and which has health applications. Metabolomic methods are currently applied to discover diagnostic biomarkers and to identify pathophysiological pathways involved in pathology. However, metabolomic data are complex and are usually analyzed by statistical methods. Although the methods have been widely described, most have not been either standardized or validated. Data analysis is the foundation of a robust methodology, so new mathematical methods need to be developed to assess and complement current methods. We therefore applied, for the first time, the dominance-based rough set approach (DRSA) to metabolomics data; we also assessed the complementarity of this method with standard statistical methods. Some attributes were transformed in a way allowing us to discover global and local monotonic relationships between condition and decision attributes. We used previously published metabolomics data (18 variables) for amyotrophic lateral sclerosis (ALS) and non-ALS patients. Principal Component Analysis (PCA) and Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA) allowed satisfactory discrimination (72.7%) between ALS and non-ALS patients. Some discriminant metabolites were identified: acetate, acetone, pyruvate and glutamine. The concentrations of acetate and pyruvate were also identified by univariate analysis as significantly different between ALS and non-ALS patients. DRSA correctly classified 68.7% of the cases and established rules involving some of the metabolites highlighted by OPLS-DA (acetate and acetone). Some rules identified potential biomarkers not revealed by OPLS-DA (beta-hydroxybutyrate). We also found a large number of common discriminating metabolites after Bayesian confirmation measures, particularly acetate, pyruvate, acetone and ascorbate, consistent with the pathophysiological pathways involved in ALS. DRSA provides a complementary method for improving the predictive performance of the multivariate data analysis usually used in metabolomics. This method could help in the identification of metabolites involved in disease pathogenesis. Interestingly, these different strategies mostly identified the same metabolites as being discriminant. The selection of strong decision rules with high value of Bayesian confirmation provides useful information about relevant condition-decision relationships not otherwise revealed in metabolomics data. Copyright © 2014 Elsevier Inc. All rights reserved.
Kawasaki, Regiane; Baraúna, Rafael A; Silva, Artur; Carepo, Marta S P; Oliveira, Rui; Marques, Rodolfo; Ramos, Rommel T J; Schneider, Maria P C
2016-01-01
Exiguobacterium antarcticum B7 is extremophile Gram-positive bacteria able to survive in cold environments. A key factor to understanding cold adaptation processes is related to the modification of fatty acids composing the cell membranes of psychrotrophic bacteria. In our study we show the in silico reconstruction of the fatty acid biosynthesis pathway of E. antarcticum B7. To build the stoichiometric model, a semiautomatic procedure was applied, which integrates genome information using KEGG and RAST/SEED. Constraint-based methods, namely, Flux Balance Analysis (FBA) and elementary modes (EM), were applied. FBA was implemented in the sense of hexadecenoic acid production maximization. To evaluate the influence of the gene expression in the fluxome analysis, FBA was also calculated using the log2FC values obtained in the transcriptome analysis at 0°C and 37°C. The fatty acid biosynthesis pathway showed a total of 13 elementary flux modes, four of which showed routes for the production of hexadecenoic acid. The reconstructed pathway demonstrated the capacity of E. antarcticum B7 to de novo produce fatty acid molecules. Under the influence of the transcriptome, the fluxome was altered, promoting the production of short-chain fatty acids. The calculated models contribute to better understanding of the bacterial adaptation at cold environments.
Hampel, Miriam; Alonso, Esteban; Aparicio, Irene; Bron, James E; Santos, Juan Luis; Taggart, John B; Leaver, Michael J
2010-05-01
Pharmaceuticals are emerging pollutants widely used in everyday urban activities which can be detected in surface, ground, and drinking waters. Their presence is derived from consumption of medicines, disposal of expired medications, release of treated and untreated urban effluents, and from the pharmaceutical industry. Their growing use has become an alarming environmental problem which potentially will become dangerous in the future. However, there is still a lack of knowledge about long-term effects in non-target organisms as well as for human health. Toxicity testing has indicated a relatively low acute toxicity to fish species, but no information is available on possible sublethal effects. This study provides data on the physiological pathways involved in the exposure of Atlantic salmon as representative test species to three pharmaceutical compounds found in ground, surface, and drinking waters based on the evaluation of the xenobiotic-induced impairment resulting in the activation and silencing of specific genes. Individuals of Atlantic salmon (Salmo salar) parr were exposed during 5 days to environmentally relevant concentrations of three representative pharmaceutical compounds with high consumption rates: the analgesic acetaminophen (54.77+/-34.67 microg L(-1)), the anticonvulsant carbamazepine (7.85+/-0.13 microg L(-1)), and the beta-blocker atenolol (11.08+/-7.98 microg L(-1)). Five immature males were selected for transcriptome analysis in brain tissues by means of a 17k salmon cDNA microarray. For this purpose, mRNA was isolated and reverse-transcribed into cDNA which was labeled with fluorescent dyes and hybridized against a common pool to the arrays. Lists of significantly up- and down-regulated candidate genes were submitted to KEGG (Kyoto Encyclopedia of Genes and Genomes) in order to analyze for induced pathways and to evaluate the usefulness of this method in cases of not completely annotated test organisms. Exposure during 5 days to environmentally relevant concentrations of the selected pharmaceutical compounds acetaminophen, carbamazepine, and atenolol produced differences in the expression of 659, 700, and 480 candidate genes, respectively. KEGG annotation numbers (KO annotations) were obtained for between 26.57% and 33.33% of these differently expressed genes per treatment in comparison to non-exposure conditions. Pathways that showed to be induced did not always follow previously reported targets or metabolic routes for the employed treatments; however, several other pathways have been found (four or more features) to be significantly induced. Energy-related pathways have been altered under exposure in all the selected treatments, indicating a possible energy budget leakage due to additional processes resulting from the exposure to environmental contaminants. Observed induction of pathways may indicate additional processes involved in the mode of action of the selected pharmaceuticals which may not have been detected with conventional methods like quantitative PCR in which only suspected features are analyzed punctually for effects. The employment of novel high-throughput screening techniques in combination with global pathway analysis methods, even if the organism is not completely annotated, allows the examination of a much broader range of candidates for potential effects of exposure at the gene level. The continuously growing number of annotations of representative species relevant for environmental quality testing is facilitating pathway analysis processes for not completely annotated organisms. KEGG has shown to be a useful tool for the analysis of induced pathways from data generated by microarray techniques with the selected pharmaceutical contaminants acetaminophen, carbamazepine, and atenolol, but further studies have to be carried out in order to determine if a similar expression pattern in terms of fold change quantity and pathways is observed after long-term exposure. Together with the information obtained in this study, it will then be possible to evaluate the potential risk that the continuous release of these compounds may have on the environment and ecosystem functioning.
2014-01-01
Background Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. Methods By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. Results The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal expression patterns. Conclusions We are the first to identify that SST regulates temporal gene expression by way of microRNA. MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation by microRNA would be critical for the elucidation of the molecular activities of SST. PMID:24410935
Schisler, Jonathan C.; Ronnebaum, Sarah M.; Madden, Michael; Channell, Meghan M.; Campen, Matthew J.; Willis, Monte S.
2016-01-01
Background Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology. Objectives Previously, we found that canonical inflammatory response transcripts were elevated in cultured endothelial cells treated with plasma obtained after exposure compared with pre-exposure samples or filtered air (sham) exposures. While the findings confirmed the presence of bioactive factor(s) in the plasma after diesel inhalation, we wanted to better examine the complete genomic response to investigate 1) major responsive transcripts and 2) collected response pathways and ontogeny that may help to refine this method and inform the pathogenesis. Methods We assayed endothelial RNA with gene expression microarrays, examining the responses of cultured endothelial cells to plasma obtained from 6 healthy human subjects exposed to 100 μg/m3 diesel exhaust or filtered air for 2 h on separate occasions. In addition to pre-exposure baseline samples, we investigated samples obtained immediately-post and 24h-post exposure. Results Microarray analysis of the coronary artery endothelial cells challenged with plasma identified 855 probes that changed over time following diesel exhaust exposure. Over-representation analysis identified inflammatory cytokine pathways were upregulated both at the 2 and 24 h condition. Novel pathways related to FOX transcription factors and secreted extracellular factors were also identified in the microarray analysis. Conclusions These outcomes are consistent with our recent findings that plasma contains bioactive and inflammatory factors following pollutant inhalation. The specific study design implicates a novel pathway related to inflammatory blood borne components that may drive the extrapulmonary toxicity of ambient air pollutants. PMID:25942053
Boozer, Christina; Kim, Gibum; Cong, Shuxin; Guan, Hannwen; Londergan, Timothy
2006-08-01
Surface plasmon resonance (SPR) biosensors have enabled a wide range of applications in which researchers can monitor biomolecular interactions in real time. Owing to the fact that SPR can provide affinity and kinetic data, unique features in applications ranging from protein-peptide interaction analysis to cellular ligation experiments have been demonstrated. Although SPR has historically been limited by its throughput, new methods are emerging that allow for the simultaneous analysis of many thousands of interactions. When coupled with new protein array technologies, high-throughput SPR methods give users new and improved methods to analyze pathways, screen drug candidates and monitor protein-protein interactions.
Exact dynamic properties of molecular motors
NASA Astrophysics Data System (ADS)
Boon, N. J.; Hoyle, R. B.
2012-08-01
Molecular motors play important roles within a biological cell, performing functions such as intracellular transport and gene transcription. Recent experimental work suggests that there are many plausible biochemical mechanisms that molecules such as myosin-V could use to achieve motion. To account for the abundance of possible discrete-stochastic frameworks that can arise when modeling molecular motor walks, a generalized and straightforward graphical method for calculating their dynamic properties is presented. It allows the calculation of the velocity, dispersion, and randomness ratio for any proposed system through analysis of its structure. This article extends work of King and Altman ["A schematic method of deriving the rate laws of enzyme-catalyzed reactions," J. Phys. Chem. 60, 1375-1378 (1956)], 10.1021/j150544a010 on networks of enzymatic reactions by calculating additional dynamic properties for spatially hopping systems. Results for n-state systems are presented: single chain, parallel pathway, divided pathway, and divided pathway with a chain. A novel technique for combining multiple system architectures coupled at a reference state is also demonstrated. Four-state examples illustrate the effectiveness and simplicity of these methods.
NASA Astrophysics Data System (ADS)
Kong, Xiangzhen; He, Wei; Qin, Ning; He, Qishuang; Yang, Bin; Ouyang, Huiling; Wang, Qingmei; Xu, Fuliu
2013-03-01
Trajectory cluster analysis, including the two-stage cluster method based on Euclidean metrics and the one-stage clustering method based on Mahalanobis metrics and self-organizing maps (SOM), was applied and compared to identify the transport pathways of PM10 for the cities of Chaohu and Hefei, both located near Lake Chaohu in China. The two-stage cluster method was modified to further investigate the long trajectories in the second stage in order to eliminate the observed disaggregation among them. Twelve trajectory clusters were identified for both cities. The one-stage clustering method based on Mahalanobis metrics gives the best performance regarding the variances within clusters. The results showed that local PM10 emission was one of the most important sources in both cities and that the local emission in Hefei was higher than in Chaohu. In addition, Chaohu suffered greater effects from the eastern region (Yangtze River Delta, YRD) than Hefei. On the other hand, the long-range transportation from the northwestern pathway had a higher influence on the PM10 level in Hefei. Receptor models, including potential source contribution function (PSCF) and residence time weighted concentrations (RTWC), were utilized to identify the potential source locations of PM10 for both cities. However, the combined PSCF and RTWC results for the two cities provided PM10 source locations that were more consistent with the results of transport pathways and the total anthropogenic PM10 emission inventory. This indicates that the combined method's ability to identify the source regions is superior to that of the individual PSCF or RTWC methods. Henan and Shanxi Provinces and the YRD were important PM10 source regions for the two cities, but the Henan and Shanxi area was more important for Hefei than for Chaohu, while the YRD region was less important. In addition, the PSCF, RTWC and the combined results all had higher correlation coefficients with PM10 emission from traffic than from industry, electricity generation or residential sources, suggesting the relatively higher contribution of traffic emissions to the PM10 pollution in Lake Chaohu.
GOSAP: Gene Ontology-Based Semantic Alignment of Biological Pathways.
Gamalielsson, Jonas; Olsson, Bjorn
2008-01-01
We present a new method for semantic comparison of biological pathways, aiming to discover evolutionary conservation of pathways between species. Our method uses all three sub-ontologies of Gene Ontology (GO) and a measure of semantic similarity to calculate match scores between gene products. These scores are used for finding local pairwise pathway alignments. This approach has the advantage of being applicable to all types of pathways where nodes are gene products, e.g., regulatory pathways, signalling pathways and metabolic enzyme-to-enzyme pathways. We demonstrate the usefulness of the method using regulatory and metabolic pathways from E. coli and S. cerevisiae as examples.
2012-01-01
Background Glutathione has a wide range of functions; it is an endogenous anti-oxidant and plays a key role in the maintenance of intracellular redox balance and detoxification of xenobiotics. Several studies have indicated that children with autism spectrum disorders may have altered glutathione metabolism which could play a key role in the condition. Methods A systematic literature review and meta-analysis was conducted of studies examining metabolites, interventions and/or genes of the glutathione metabolism pathways i.e. the γ-glutamyl cycle and trans-sulphuration pathway in autism spectrum disorders. Results Thirty nine studies were included in the review comprising an in vitro study, thirty two metabolite and/or co-factor studies, six intervention studies and six studies with genetic data as well as eight studies examining enzyme activity. Conclusions The review found evidence for the involvement of the γ-glutamyl cycle and trans-sulphuration pathway in autistic disorder is sufficiently consistent, particularly with respect to the glutathione redox ratio, to warrant further investigation to determine the significance in relation to clinical outcomes. Large, well designed intervention studies that link metabolites, cofactors and genes of the γ-glutamyl cycle and trans-sulphuration pathway with objective behavioural outcomes in children with autism spectrum disorders are required. Future risk factor analysis should include consideration of multiple nutritional status and metabolite biomarkers of pathways linked with the γ-glutamyl cycle and the interaction of genotype in relation to these factors. PMID:22524510
Yan, Guangli; Zhang, Aihua; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Zhang, Yingzhi; Xie, Ning; Wang, Xijun
2013-01-01
Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at "Zusanli" acupoint (ST-36) as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.
Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha
2015-01-01
Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, and consequently tractography and the ability to recover complex white-matter pathways, as well as differences between results due to choice of analysis method and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment “ball and stick” model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm2) common to clinical studies. We found the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most distinguishing characteristic between the methods, and a significant factor for complete recovery of tractography through complex white-matter pathways. For example, while all methods recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD (which had the highest fiber detection rate, especially for voxels containing three fibers) recovered the greatest number of fibers and largest fraction of correct tractography for a complex three-fiber crossing region. The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available on the NITRC website as the project “Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations” at http://www.nitrc.org/projects/sim_dwi_brain PMID:25555998
Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha
2015-04-01
Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most distinguishing characteristic between the methods, and a significant factor for complete recovery of tractography through complex white-matter pathways. For example, while all methods recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD (which had the highest fiber detection rate, especially for voxels containing three fibers) recovered the greatest number of fibers and largest fraction of correct tractography for complex three-fiber crossing regions. The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available on the NITRC website as the project "Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations" at http://www.nitrc.org/projects/sim_dwi_brain. Copyright © 2014 Elsevier Inc. All rights reserved.
2013-01-01
Background Metabolomics has become increasingly popular in the study of disease phenotypes and molecular pathophysiology. One branch of metabolomics that encompasses the high-throughput screening of cellular metabolism is metabolic profiling. In the present study, the metabolic profiles of different tumour cells from colorectal carcinoma and breast adenocarcinoma were exposed to hypoxic and normoxic conditions and these have been compared to reveal the potential metabolic effects of hypoxia on the biochemistry of the tumour cells; this may contribute to their survival in oxygen compromised environments. In an attempt to analyse the complex interactions between metabolites beyond routine univariate and multivariate data analysis methods, correlation analysis has been integrated with a human metabolic reconstruction to reveal connections between pathways that are associated with normoxic or hypoxic oxygen environments. Results Correlation analysis has revealed statistically significant connections between metabolites, where differences in correlations between cells exposed to different oxygen levels have been highlighted as markers of hypoxic metabolism in cancer. Network mapping onto reconstructed human metabolic models is a novel addition to correlation analysis. Correlated metabolites have been mapped onto the Edinburgh human metabolic network (EHMN) with the aim of interlinking metabolites found to be regulated in a similar fashion in response to oxygen. This revealed novel pathways within the metabolic network that may be key to tumour cell survival at low oxygen. Results show that the metabolic responses to lowering oxygen availability can be conserved or specific to a particular cell line. Network-based correlation analysis identified conserved metabolites including malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate. In this way, this method has revealed metabolites not previously linked, or less well recognised, with respect to hypoxia before. Lactate fermentation is one of the key themes discussed in the field of hypoxia; however, malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate, which are connected by a single pathway, may provide a more significant marker of hypoxia in cancer. Conclusions Metabolic networks generated for each cell line were compared to identify conserved metabolite pathway responses to low oxygen environments. Furthermore, we believe this methodology will have general application within metabolomics. PMID:24153255
Wen, Shi; Zhan, Bohan; Feng, Jianghua; Hu, Weize; Lin, Xianchao; Bai, Jianxi; Huang, Heguang
2017-11-02
The differentiation of pancreatic ductal adenocarcinoma (PDAC) could be associated with prognosis and may influence the choices of clinical management. No applicable methods could reliably predict the tumor differentiation preoperatively. Thus, the aim of this study was to compare the metabonomic profiling of pancreatic ductal adenocarcinoma with different differentiations and assess the feasibility of predicting tumor differentiations through metabonomic strategy based on nuclear magnetic resonance spectroscopy. By implanting pancreatic cancer cell strains Panc-1, Bxpc-3 and SW1990 in nude mice in situ, we successfully established the orthotopic xenograft models of PDAC with different differentiations. The metabonomic profiling of serum from different PDAC was achieved and analyzed by using 1 H nuclear magnetic resonance (NMR) spectroscopy combined with the multivariate statistical analysis. Then, the differential metabolites acquired were used for enrichment analysis of metabolic pathways to get a deep insight. An obvious metabonomic difference was demonstrated between all groups and the pattern recognition models were established successfully. The higher concentrations of amino acids, glycolytic and glutaminolytic participators in SW1990 and choline-contain metabolites in Panc-1 relative to other PDAC cells were demonstrated, which may be served as potential indicators for tumor differentiation. The metabolic pathways and differential metabolites identified in current study may be associated with specific pathways such as serine-glycine-one-carbon and glutaminolytic pathways, which can regulate tumorous proliferation and epigenetic regulation. The NMR-based metabonomic strategy may be served as a non-invasive detection method for predicting tumor differentiation preoperatively.
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
NASA Astrophysics Data System (ADS)
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
Rybakowska, I M; Slominska, E M; Romaszko, P; Olkowicz, M; Kaletha, K; Smolenski, R T
2015-06-01
AMP-regulated protein kinase (AMPK) is involved in regulation of energy-generating pathways in response to the metabolic needs in different organs including the heart. The activity of AMPK is mainly controlled by AMP concentration that in turn could be affected by nucleotide metabolic pathways. This study aimed to develop a procedure for measurement of AMPK activity together with nucleotide metabolic enzymes and its application for studies of mice treated with high-fat diet. The method developed was based on analysis of conversion of AMARA peptide to pAMARA by partially purified heart homogenate by liquid chromatography/mass spectrometry (LC/MS). Activities of the enzymes of nucleotide metabolism were evaluated by analysis of conversion of substrates into products by HPLC. The method was applied for analysis of hearts of mice fed 12 weeks with low- (LFD) or high-fat diet (HFD). The optimized method for AMPK activity analysis (measured in presence of AMP) revealed change of activity from 0.089 ± 0.035 pmol/min/mg protein in LFD to 0.024 ± 0.002 in HFD. This coincided with increase of adenosine deaminase (ADA) activity from 0.11 ± 0.02 to 0.19 ± 0.06 nmol/mg tissue/min and decrease of AMP-deaminase (AMPD) activity from 1.26 ± 0.35 to 0.56 ± 0.15 nmol/mg tissue/min for LFD and HFD, respectively. We have proven quality of our LC/MS method for analysis of AMPK activity. We observed decrease in AMPK activity in the heart of mice treated with high-fat diet. However, physiological consequences of this change could be modulated by decrease in AMPD activity.
Identification and Quantification of Alkaloid in KHR98 and Fragmentation Pathways in HPLC-Q-TOF-MS.
Long, Jiakun; Wang, Yang; Xu, Chen; Liu, Tingting; Duan, Gengli; Yu, Yingjia
2018-05-01
Uncaria rhynchophylla is woody climber plant distributed mainly in China and Japan, the stems and hooks of which can be collected as "Gou-Teng" for the treatment of hyperpyrexia, epilepsy and preeclampsia. Fudan University first manufactured KHR98, the extract of Uncaria rhynchophylla. In order to study the active components and structural information of KHR98, we established a HPLC coupled with quadrupole time-of-flight (Q-TOF)-MS method for rapid analysis of alkaloids. In qualitative analysis, a total of eight compounds, including four known alkaloids and four unknown components, were detected and identified. The fragmentation behaviors, such as the fragment ion information and the fragmentation pathways of the eight components were summarized simultaneously, and the concentration of the above components was determined by HPLC-MS method. The quantitative method was proved to be reproducible, precise and accurate. This study shed light on the standardization and quality control of the KHR98 and provided a foundation for the further research on pharmacology, follow-up clinical research and New Drug Applications.
Azuaje, Francisco; Zheng, Huiru; Camargo, Anyela; Wang, Haiying
2011-08-01
The discovery of novel disease biomarkers is a crucial challenge for translational bioinformatics. Demonstration of both their classification power and reproducibility across independent datasets are essential requirements to assess their potential clinical relevance. Small datasets and multiplicity of putative biomarker sets may explain lack of predictive reproducibility. Studies based on pathway-driven discovery approaches have suggested that, despite such discrepancies, the resulting putative biomarkers tend to be implicated in common biological processes. Investigations of this problem have been mainly focused on datasets derived from cancer research. We investigated the predictive and functional concordance of five methods for discovering putative biomarkers in four independently-generated datasets from the cardiovascular disease domain. A diversity of biosignatures was identified by the different methods. However, we found strong biological process concordance between them, especially in the case of methods based on gene set analysis. With a few exceptions, we observed lack of classification reproducibility using independent datasets. Partial overlaps between our putative sets of biomarkers and the primary studies exist. Despite the observed limitations, pathway-driven or gene set analysis can predict potentially novel biomarkers and can jointly point to biomedically-relevant underlying molecular mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.
Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.
Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X
2018-01-05
Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value <0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.
Xiang, Zheng; Sun, Hao; Cai, Xiaojun; Chen, Dahui
2016-04-01
Transmission of biological information is a biochemical process of multistep cascade from genes/proteins to metabolites. However, because most metabolites reflect the terminal information of the biochemical process, it is difficult to describe the transmission process of disease information in terms of the metabolomics strategy. In this paper, by incorporating network and metabolomics methods, an integrated approach was proposed to systematically investigate and explain the molecular mechanism of renal interstitial fibrosis. Through analysis of the network, the cascade transmission process of disease information starting from genes/proteins to metabolites was putatively identified and uncovered. The results indicated that renal fibrosis was involved in metabolic pathways of glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, riboflavin metabolism, tyrosine metabolism, and sphingolipid metabolism. These pathways involve kidney disease genes such as TGF-β1 and P2RX7. Our results showed that combining metabolomics and network analysis can provide new strategies and ideas for the interpretation of pathogenesis of disease with full consideration of "gene-protein-metabolite."
Zhao, Huiying; Nyholt, Dale R; Yang, Yuanhao; Wang, Jihua; Yang, Yuedong
2017-06-14
Genome-wide association studies (GWAS) have successfully identified single variants associated with diseases. To increase the power of GWAS, gene-based and pathway-based tests are commonly employed to detect more risk factors. However, the gene- and pathway-based association tests may be biased towards genes or pathways containing a large number of single-nucleotide polymorphisms (SNPs) with small P-values caused by high linkage disequilibrium (LD) correlations. To address such bias, numerous pathway-based methods have been developed. Here we propose a novel method, DGAT-path, to divide all SNPs assigned to genes in each pathway into LD blocks, and to sum the chi-square statistics of LD blocks for assessing the significance of the pathway by permutation tests. The method was proven robust with the type I error rate >1.6 times lower than other methods. Meanwhile, the method displays a higher power and is not biased by the pathway size. The applications to the GWAS summary statistics for schizophrenia and breast cancer indicate that the detected top pathways contain more genes close to associated SNPs than other methods. As a result, the method identified 17 and 12 significant pathways containing 20 and 21 novel associated genes, respectively for two diseases. The method is available online by http://sparks-lab.org/server/DGAT-path .
Network-based machine learning and graph theory algorithms for precision oncology.
Zhang, Wei; Chien, Jeremy; Yong, Jeongsik; Kuang, Rui
2017-01-01
Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based approaches for repositioning drugs in drug-disease-gene networks. In addition, we perform a comprehensive subnetwork/pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harry, T; Yaddanapudi, S; Mutic, S
Purpose: New techniques and materials have recently been developed to expedite the conventional Linac Acceptance Testing Procedure (ATP). The new ATP method uses the Electronic Portal Imaging Device (EPID) for data collection and is presented separately. This new procedure is meant to be more efficient then conventional methods. While not clinically implemented yet, a prospective risk assessment is warranted for any new techniques. The purpose of this work is to investigate the risks and establish the pros and cons between the conventional approach and the new ATP method. Methods: ATP tests that were modified and performed with the EPID weremore » analyzed. Five domain experts (Medical Physicists) comprised the core analysis team. Ranking scales were adopted from previous publications related to TG 100. The number of failure pathways for each ATP test procedure were compared as well as the number of risk priority numbers (RPN’s) greater than 100 were compared. Results: There were fewer failure pathways with the new ATP compared to the conventional, 262 and 556, respectively. There were fewer RPN’s > 100 in the new ATP compared to the conventional, 41 and 115. Failure pathways and RPN’s > 100 for individual ATP tests on average were 2 and 3.5 times higher in the conventional ATP compared to the new, respectively. The pixel sensitivity map of the EPID was identified as a key hazard to the new ATP procedure with an RPN of 288 for verifying beam parameters. Conclusion: The significant decrease in failure pathways and RPN’s >100 for the new ATP mitigates the possibilities of a catastrophic error occurring. The Pixel Sensitivity Map determining the response and inherent characteristics of the EPID is crucial as all data and hence results are dependent on that process. Grant from Varian Medical Systems Inc.« less
A sibling method for identifying vQTLs
Domingue, Ben; Dawes, Christopher; Boardman, Jason; Siegal, Mark
2018-01-01
The propensity of a trait to vary within a population may have evolutionary, ecological, or clinical significance. In the present study we deploy sibling models to offer a novel and unbiased way to ascertain loci associated with the extent to which phenotypes vary (variance-controlling quantitative trait loci, or vQTLs). Previous methods for vQTL-mapping either exclude genetically related individuals or treat genetic relatedness among individuals as a complicating factor addressed by adjusting estimates for non-independence in phenotypes. The present method uses genetic relatedness as a tool to obtain unbiased estimates of variance effects rather than as a nuisance. The family-based approach, which utilizes random variation between siblings in minor allele counts at a locus, also allows controls for parental genotype, mean effects, and non-linear (dominance) effects that may spuriously appear to generate variation. Simulations show that the approach performs equally well as two existing methods (squared Z-score and DGLM) in controlling type I error rates when there is no unobserved confounding, and performs significantly better than these methods in the presence of small degrees of confounding. Using height and BMI as empirical applications, we investigate SNPs that alter within-family variation in height and BMI, as well as pathways that appear to be enriched. One significant SNP for BMI variability, in the MAST4 gene, replicated. Pathway analysis revealed one gene set, encoding members of several signaling pathways related to gap junction function, which appears significantly enriched for associations with within-family height variation in both datasets (while not enriched in analysis of mean levels). We recommend approximating laboratory random assignment of genotype using family data and more careful attention to the possible conflation of mean and variance effects. PMID:29617452
Developing molecular tools for Chlamydomonas reinhardtii
NASA Astrophysics Data System (ADS)
Noor-Mohammadi, Samaneh
Microalgae have garnered increasing interest over the years for their ability to produce compounds ranging from biofuels to neutraceuticals. A main focus of researchers has been to use microalgae as a natural bioreactor for the production of valuable and complex compounds. Recombinant protein expression in the chloroplasts of green algae has recently become more routine; however, the heterologous expression of multiple proteins or complete biosynthetic pathways remains a significant challenge. To take full advantage of these organisms' natural abilities, sophisticated molecular tools are needed to be able to introduce and functionally express multiple gene biosynthetic pathways in its genome. To achieve the above objective, we have sought to establish a method to construct, integrate and express multigene operons in the chloroplast and nuclear genome of the model microalgae Chlamydomonas reinhardtii. Here we show that a modified DNA Assembler approach can be used to rapidly assemble multiple-gene biosynthetic pathways in yeast and then integrate these assembled pathways at a site-specific location in the chloroplast, or by random integration in the nuclear genome of C. reinhardtii. As a proof of concept, this method was used to successfully integrate and functionally express up to three reporter proteins (AphA6, AadA, and GFP) in the chloroplast of C. reinhardtii and up to three reporter proteins (Ble, AphVIII, and GFP) in its nuclear genome. An analysis of the relative gene expression of the engineered strains showed significant differences in the mRNA expression levels of the reporter genes and thus highlights the importance of proper promoter/untranslated-region selection when constructing a target pathway. In addition, this work focuses on expressing the cofactor regeneration enzyme phosphite dehydrogenase (PTDH) in the chloroplast and nuclear genomes of C. reinhardtii. The PTDH enzyme converts phosphite into phosphate and NAD(P)+ into NAD(P)H. The reduced nicotinamide cofactor NAD(P)H plays a pivotal role in many biochemical oxidation and reduction reactions, thus this enzyme would allow regeneration of NAD(P)H in a microalgae strain over-expressing a NAD(P)H-dependent oxidoreductase. A phosphite dehydrogenase gene was introduced into the chloroplast genome (codon optimized) and nuclear genome of C. reinhardtii by biolistic transformation and electroporation in separate events, respectively. Successful expression of the heterologous protein was confirmed by transcript analysis and protein analysis. In conclusion, this new method represents a useful genetic tool in the construction and integration of complex biochemical pathways into the chloroplast or nuclear genome of microalgae, and this should aid current efforts to engineer algae for recombinant protein expression, biofuels production and production of other desirable natural products.
MicroRNA meta-signature of oral cancer: evidence from a meta-analysis.
Zeljic, Katarina; Jovanovic, Ivan; Jovanovic, Jasmina; Magic, Zvonko; Stankovic, Aleksandra; Supic, Gordana
2018-03-01
It was the aim of the study to identify commonly deregulated miRNAs in oral cancer patients by performing a meta-analysis of previously published miRNA expression profiles in cancer and matched normal non-cancerous tissue in such patients. Meta-analysis included seven independent studies analyzed by a vote-counting method followed by bioinformatic enrichment analysis. Amongst seven independent studies included in the meta-analysis, 20 miRNAs were found to be deregulated in oral cancer when compared with non-cancerous tissue. Eleven miRNAs were consistently up-regulated in three or more studies (miR-21-5p, miR-31-5p, miR-135b-5p, miR-31-3p, miR-93-5p, miR-34b-5p, miR-424-5p, miR-18a-5p, miR-455-3p, miR-450a-5p, miR-21-3p), and nine were down-regulated (miR-139-5p, miR-30a-3p, miR-376c-3p, miR-885-5p, miR-375, miR-486-5p, miR-411-5p, miR-133a-3p, miR-30a-5p). The meta-signature of identified miRNAs was functionally characterized by KEGG enrichment analysis. Twenty-four KEGG pathways were significantly enriched, and TGF-beta signaling was the most enriched signaling pathway. The highest number of meta-signature miRNAs was involved in the sphingolipid signaling pathway. Natural killer cell-mediated cytotoxicity was the pathway with most genes regulated by identified miRNAs. The rest of the enriched pathways in our miRNA list describe different malignancies and signaling. The identified miRNA meta-signature might be considered as a potential battery of biomarkers when distinguishing oral cancer tissue from normal, non-cancerous tissue. Further mechanistic studies are warranted in order to confirm and fully elucidate the role of deregulated miRNAs in oral cancer.
PrePhyloPro: phylogenetic profile-based prediction of whole proteome linkages
Niu, Yulong; Liu, Chengcheng; Moghimyfiroozabad, Shayan; Yang, Yi
2017-01-01
Direct and indirect functional links between proteins as well as their interactions as part of larger protein complexes or common signaling pathways may be predicted by analyzing the correlation of their evolutionary patterns. Based on phylogenetic profiling, here we present a highly scalable and time-efficient computational framework for predicting linkages within the whole human proteome. We have validated this method through analysis of 3,697 human pathways and molecular complexes and a comparison of our results with the prediction outcomes of previously published co-occurrency model-based and normalization methods. Here we also introduce PrePhyloPro, a web-based software that uses our method for accurately predicting proteome-wide linkages. We present data on interactions of human mitochondrial proteins, verifying the performance of this software. PrePhyloPro is freely available at http://prephylopro.org/phyloprofile/. PMID:28875072
Extraction of intracellular protein from Glaciozyma antarctica for proteomics analysis
NASA Astrophysics Data System (ADS)
Faizura, S. Nor; Farahayu, K.; Faizal, A. B. Mohd; Asmahani, A. A. S.; Amir, R.; Nazalan, N.; Diba, A. B. Farah; Muhammad, M. Nor; Munir, A. M. Abdul
2013-11-01
Two preparation methods of crude extracts of psychrophilic yeast Glaciozyma antarctica were compared in order to obtain a good recovery of intracellular proteins. Extraction with mechanical procedures using sonication was found to be more effective for obtaining good yield compare to alkaline treatment method. The procedure is simple, rapid, and produce better yield. A total of 52 proteins were identified by combining both extraction methods. Most of the proteins identified in this study involves in the metabolic process including glycolysis pathway, pentose phosphate pathway, pyruyate decarboxylation and also urea cyle. Several chaperons were identified including probable cpr1-cyclophilin (peptidylprolyl isomerase), macrolide-binding protein fkbp12 and heat shock proteins which were postulate to accelerate proper protein folding. Characteristic of the fundamental cellular processes inferred from the expressed-proteome highlight the evolutionary and functional complexity existing in this domain of life.
Racial disparity in pathophysiologic pathways of preterm birth based on genetic variants
Menon, Ramkumar; Pearce, Brad; Velez, Digna R; Merialdi, Mario; Williams, Scott M; Fortunato, Stephen J; Thorsen, Poul
2009-01-01
Objective To study pathophysiologic pathways in spontaneous preterm birth and possibly the racial disparity associating with maternal and fetal genetic variations, using bioinformatics tools. Methods A large scale candidate gene association study was performed on 1442 SNPs in 130 genes in a case (preterm birth < 36 weeks) control study (term birth > 37 weeks). Both maternal and fetal DNA from Caucasians (172 cases and 198 controls) and 279 African-Americans (82 cases and 197 controls) were used. A single locus association (genotypic) analysis followed by hierarchical clustering was performed, where clustering was based on p values for significant associations within each race. Using Ingenuity Pathway Analysis (IPA) software, known pathophysiologic pathways in both races were determined. Results From all SNPs entered into the analysis, the IPA mapped genes to specific disease functions. Gene variants in Caucasians were implicated in disease functions shared with other known disorders; specifically, dermatopathy, inflammation, and hematological disorders. This may reflect abnormal cervical ripening and decidual hemorrhage. In African-Americans inflammatory pathways were the most prevalent. In Caucasians, maternal gene variants showed the most prominent role in disease functions, whereas in African Americans it was fetal variants. The IPA software was used to generate molecular interaction maps that differed between races and also between maternal and fetal genetic variants. Conclusion Differences at the genetic level revealed distinct disease functions and operational pathways in African Americans and Caucasians in spontaneous preterm birth. Differences in maternal and fetal contributions in pregnancy outcome are also different between African Americans and Caucasians. These results present a set of explicit testable hypotheses regarding genetic associations with preterm birth in African Americans and Caucasians PMID:19527514
Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø
2004-05-05
Constraint-based metabolic modeling has been used to capture the genome-scale, systems properties of an organism's metabolism. The first generation of these models has been built on annotated gene sequence. To further this field, we now need to develop methods to incorporate additional "omic" data types including transcriptomics, metabolomics, and fluxomics to further facilitate the construction, validation, and predictive capabilities of these models. The work herein combines metabolic flux data with an in silico model of central metabolism of Escherichia coli for model centric integration of the flux data. The extreme pathways for this network, which define the allowable solution space for all possible flux distributions, are analyzed using the alpha-spectrum. The alpha-spectrum determines which extreme pathways can and cannot contribute to the metabolic flux distribution for a given condition and gives the allowable range of weightings on each extreme pathway that can contribute. Since many extreme pathways cannot be used under certain conditions, the result is a "condition-specific" solution space that is a subset of the original solution space. The alpha-spectrum results are used to create a "condition-specific" extreme pathway matrix that can be analyzed using singular value decomposition (SVD). The first mode of the SVD analysis characterizes the solution space for a given condition. We show that SVD analysis of the alpha-spectrum extreme pathway matrix that incorporates measured uptake and byproduct secretion rates, can predict internal flux trends for different experimental conditions. These predicted internal flux trends are, in general, consistent with the flux trends measured using experimental metabolic flux analysis techniques. Copyright 2004 Wiley Periodicals, Inc.
Zhang, Aihua; Zhou, Xiaohang; Zhao, Hongwei; Zou, Shiyu; Ma, Chung Wah; Liu, Qi; Sun, Hui; Liu, Liang; Wang, Xijun
2017-01-31
An integrative metabolomics and proteomics approach can provide novel insights in the understanding of biological systems. We have integrated proteome and metabolome data sets for a holistic view of the molecular mechanisms in disease. Using quantitative iTRAQ-LC-MS/MS proteomics coupled with UPLC-Q-TOF-HDMS based metabolomics, we determined the protein and metabolite expression changes in the kidney-yang deficiency syndrome (KYDS) rat model and further investigated the intervention effects of the Jinkui Shenqi Pill (JSP). The VIP-plot of the orthogonal PLS-DA (OPLS-DA) was used for discovering the potential biomarkers to clarify the therapeutic mechanisms of JSP in treating KYDS. The results showed that JSP can alleviate the kidney impairment induced by KYDS. Sixty potential biomarkers, including 5-l-glutamyl-taurine, phenylacetaldehyde, 4,6-dihydroxyquinoline, and xanthurenic acid etc., were definitely up- or down-regulated. The regulatory effect of JSP on the disturbed metabolic pathways was proved by the established metabonomic method. Using pathway analyses, we identified the disturbed metabolic pathways such as taurine and hypotaurine metabolism, pyrimidine metabolism, tyrosine metabolism, tryptophan metabolism, histidine metabolism, steroid hormone biosynthesis, etc. Furthermore, using iTRAQ-based quantitative proteomics analysis, seventeen differential proteins were identified and significantly altered by the JSP treatment. These proteins appear to be involved in Wnt, chemokine, PPAR, and MAPK signaling pathways, etc. Functional pathway analysis revealed that most of the proteins were found to play a key role in the regulation of metabolism pathways. Bioinformatics analysis with the IPA software found that these differentially-expressed moleculars had a strong correlation with the α-adrenergic signaling, FGF signaling, etc. Our data indicate that high-throughput metabolomics and proteomics can provide an insight on the herbal preparations affecting the metabolic disorders using high resolution mass spectrometry.
Identification of genes and gene clusters involved in mycotoxin synthesis
USDA-ARS?s Scientific Manuscript database
Research methods to identify and characterize genes involved in mycotoxin biosynthetic pathways have evolved considerably over the years. Before whole genome sequences were available (e.g. pre-genomics), work focused primarily on chemistry, biosynthetic mutant strains and molecular analysis of sing...
Transcriptional and Chromatin Dynamics of Muscle Regeneration After Severe Trauma
2016-10-12
performed pathway analysis of the time-clustered RNA- Seq data16 and showed an initial burst of pro-inflammatory and immune-response transcripts in the...143 showed dynamic behavior (See Methods) and analysis of the dynamic miRNAs reinforced many of the results observed from the RNA-Seq datasets...excellent agreement was viewed. Hierarchical clustering of the datasets through time revealed 5 clusters, and gene ontology (GO) analysis of the
Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich
2010-01-01
Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845
Hu, Wei Qi; Wang, Wei; Fang, Di Long; Yin, Xue Feng
2018-05-24
BACKGROUND We screened the potential molecular targets and investigated the molecular mechanisms of hepatocellular carcinoma (HCC). MATERIAL AND METHODS Microarray data of GSE47786, including the 40 μM berberine-treated HepG2 human hepatoma cell line and 0.08% DMSO-treated as control cells samples, was downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed; the protein-protein interaction (PPI) networks were constructed using STRING database and Cytoscape; the genetic alteration, neighboring genes networks, and survival analysis of hub genes were explored by cBio portal; and the expression of mRNA level of hub genes was obtained from the Oncomine databases. RESULTS A total of 56 upregulated and 8 downregulated DEGs were identified. The GO analysis results were significantly enriched in cell-cycle arrest, regulation of transcription, DNA-dependent, protein amino acid phosphorylation, cell cycle, and apoptosis. The KEGG pathway analysis showed that DEGs were enriched in MAPK signaling pathway, ErbB signaling pathway, and p53 signaling pathway. JUN, EGR1, MYC, and CDKN1A were identified as hub genes in PPI networks. The genetic alteration of hub genes was mainly concentrated in amplification. TP53, NDRG1, and MAPK15 were found in neighboring genes networks. Altered genes had worse overall survival and disease-free survival than unaltered genes. The expressions of EGR1, MYC, and CDKN1A were significantly increased, but expression of JUN was not, in the Roessler Liver datasets. CONCLUSIONS We found that JUN, EGR1, MYC, and CDKN1A might be used as diagnostic and therapeutic molecular biomarkers and broaden our understanding of the molecular mechanisms of HCC.
2014-01-01
Background Due to the recent European legislations posing a ban of animal tests for safety assessment within the cosmetic industry, development of in vitro alternatives for assessment of skin sensitization is highly prioritized. To date, proposed in vitro assays are mainly based on single biomarkers, which so far have not been able to classify and stratify chemicals into subgroups, related to risk or potency. Methods Recently, we presented the Genomic Allergen Rapid Detection (GARD) assay for assessment of chemical sensitizers. In this paper, we show how the genome wide readout of GARD can be expanded and used to identify differentially regulated pathways relating to individual chemical sensitizers. In this study, we investigated the mechanisms of action of a range of skin sensitizers through pathway identification, pathway classification and transcription factor analysis and related this to the reactive mechanisms and potency of the sensitizing agents. Results By transcriptional profiling of chemically stimulated MUTZ-3 cells, 33 canonical pathways intimately involved in sensitization to chemical substances were identified. The results showed that metabolic processes, cell cycling and oxidative stress responses are the key events activated during skin sensitization, and that these functions are engaged differently depending on the reactivity mechanisms of the sensitizing agent. Furthermore, the results indicate that the chemical reactivity groups seem to gradually engage more pathways and more molecules in each pathway with increasing sensitizing potency of the chemical used for stimulation. Also, a switch in gene regulation from up to down regulation, with increasing potency, was seen both in genes involved in metabolic functions and cell cycling. These observed pathway patterns were clearly reflected in the regulatory elements identified to drive these processes, where 33 regulatory elements have been proposed for further analysis. Conclusions This study demonstrates that functional analysis of biomarkers identified from our genomics study of human MUTZ-3 cells can be used to assess sensitizing potency of chemicals in vitro, by the identification of key cellular events, such as metabolic and cell cycling pathways. PMID:24517095
2014-01-01
Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614
Du, Yiyang; He, Bosai; Li, Qing; He, Jiao; Wang, Di; Bi, Kaishun
2017-07-01
Suan-Zao-Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan-Zao-Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in-depth pharmacological research of Suan-Zao-Ren granule and provided a chemical basis for its rational. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon
2014-08-01
The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.
2013-01-01
Background While the majority of studies have focused on the association between sex hormones and dementia, emerging evidence supports the role of other hormone signals in increasing dementia risk. However, due to the lack of an integrated view on mechanistic interactions of hormone signaling pathways associated with dementia, molecular mechanisms through which hormones contribute to the increased risk of dementia has remained unclear and capacity of translating hormone signals to potential therapeutic and diagnostic applications in relation to dementia has been undervalued. Methods Using an integrative knowledge- and data-driven approach, a global hormone interaction network in the context of dementia was constructed, which was further filtered down to a model of convergent hormone signaling pathways. This model was evaluated for its biological and clinical relevance through pathway recovery test, evidence-based analysis, and biomarker-guided analysis. Translational validation of the model was performed using the proposed novel mechanism discovery approach based on ‘serendipitous off-target effects’. Results Our results reveal the existence of a well-connected hormone interaction network underlying dementia. Seven hormone signaling pathways converge at the core of the hormone interaction network, which are shown to be mechanistically linked to the risk of dementia. Amongst these pathways, estrogen signaling pathway takes the major part in the model and insulin signaling pathway is analyzed for its association to learning and memory functions. Validation of the model through serendipitous off-target effects suggests that hormone signaling pathways substantially contribute to the pathogenesis of dementia. Conclusions The integrated network model of hormone interactions underlying dementia may serve as an initial translational platform for identifying potential therapeutic targets and candidate biomarkers for dementia-spectrum disorders such as Alzheimer’s disease. PMID:23885764
Pathway-based discovery of genetic interactions in breast cancer
Xu, Zack Z.; Boone, Charles; Lange, Carol A.
2017-01-01
Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314
Blockade of the Programmed Death-1 Pathway Restores Sarcoidosis CD4+ T-Cell Proliferative Capacity
Braun, Nicole A.; Celada, Lindsay J.; Herazo-Maya, Jose D.; Abraham, Susamma; Shaginurova, Guzel; Sevin, Carla M.; Grutters, Jan; Culver, Daniel A.; Dworski, Ryszard; Sheller, James; Massion, Pierre P.; Polosukhin, Vasiliy V.; Johnson, Joyce E.; Kaminski, Naftali; Wilkes, David S.; Oswald-Richter, Kyra A.
2014-01-01
Rationale: Effective therapeutic interventions for chronic, idiopathic lung diseases remain elusive. Normalized T-cell function is an important contributor to spontaneous resolution of pulmonary sarcoidosis. Up-regulation of inhibitor receptors, such as programmed death-1 (PD-1) and its ligand, PD-L1, are important inhibitors of T-cell function. Objectives: To determine the effects of PD-1 pathway blockade on sarcoidosis CD4+ T-cell proliferative capacity. Methods: Gene expression profiles of sarcoidosis and healthy control peripheral blood mononuclear cells were analyzed at baseline and follow-up. Flow cytometry was used to measure ex vivo expression of PD-1 and PD-L1 on systemic and bronchoalveolar lavage–derived cells of subjects with sarcoidosis and control subjects, as well as the effects of PD-1 pathway blockade on cellular proliferation after T-cell receptor stimulation. Immunohistochemistry analysis for PD-1/PD-L1 expression was conducted on sarcoidosis, malignant, and healthy control lung specimens. Measurements and Main Results: Microarray analysis demonstrates longitudinal increase in PDCD1 gene expression in sarcoidosis peripheral blood mononuclear cells. Immunohistochemistry analysis revealed increased PD-L1 expression within sarcoidosis granulomas and lung malignancy, but this was absent in healthy lungs. Increased numbers of sarcoidosis PD-1+ CD4+ T cells are present systemically, compared with healthy control subjects (P < 0.0001). Lymphocytes with reduced proliferative capacity exhibited increased proliferation with PD-1 pathway blockade. Longitudinal analysis of subjects with sarcoidosis revealed reduced PD-1+ CD4+ T cells with spontaneous clinical resolution but not with disease progression. Conclusions: Analogous to the effects in other chronic lung diseases, these findings demonstrate that the PD-1 pathway is an important contributor to sarcoidosis CD4+ T-cell proliferative capacity and clinical outcome. Blockade of the PD-1 pathway may be a viable therapeutic target to optimize clinical outcomes. PMID:25073001
Scholarly Concentration Program Development: A Generalizable, Data-Driven Approach.
Burk-Rafel, Jesse; Mullan, Patricia B; Wagenschutz, Heather; Pulst-Korenberg, Alexandra; Skye, Eric; Davis, Matthew M
2016-11-01
Scholarly concentration programs-also known as scholarly projects, pathways, tracks, or pursuits-are increasingly common in U.S. medical schools. However, systematic, data-driven program development methods have not been described. The authors examined scholarly concentration programs at U.S. medical schools that U.S. News & World Report ranked as top 25 for research or primary care (n = 43 institutions), coding concentrations and mission statements. Subsequently, the authors conducted a targeted needs assessment via a student-led, institution-wide survey, eliciting learners' preferences for 10 "Pathways" (i.e., concentrations) and 30 "Topics" (i.e., potential content) augmenting core curricula at their institution. Exploratory factor analysis (EFA) and a capacity optimization algorithm characterized best institutional options for learner-focused Pathway development. The authors identified scholarly concentration programs at 32 of 43 medical schools (74%), comprising 199 distinct concentrations (mean concentrations per program: 6.2, mode: 5, range: 1-16). Thematic analysis identified 10 content domains; most common were "Global/Public Health" (30 institutions; 94%) and "Clinical/Translational Research" (26 institutions; 81%). The institutional needs assessment (n = 468 medical students; response rate 60% overall, 97% among first-year students) demonstrated myriad student preferences for Pathways and Topics. EFA of Topic preferences identified eight factors, systematically related to Pathway preferences, informing content development. Capacity modeling indicated that offering six Pathways could guarantee 95% of first-year students (162/171) their first- or second-choice Pathway. This study demonstrates a generalizable, data-driven approach to scholarly concentration program development that reflects student preferences and institutional strengths, while optimizing program diversity within capacity constraints.
Mixed methods in gerontological research: Do the qualitative and quantitative data “touch”?
Happ, Mary Beth
2010-01-01
This paper distinguishes between parallel and integrated mixed methods research approaches. Barriers to integrated mixed methods approaches in gerontological research are discussed and critiqued. The author presents examples of mixed methods gerontological research to illustrate approaches to data integration at the levels of data analysis, interpretation, and research reporting. As a summary of the methodological literature, four basic levels of mixed methods data combination are proposed. Opportunities for mixing qualitative and quantitative data are explored using contemporary examples from published studies. Data transformation and visual display, judiciously applied, are proposed as pathways to fuller mixed methods data integration and analysis. Finally, practical strategies for mixing qualitative and quantitative data types are explicated as gerontological research moves beyond parallel mixed methods approaches to achieve data integration. PMID:20077973
Saylor, Rachel A.; Reid, Erin A.; Lunte, Susan M.
2016-01-01
A method for the separation and detection of analytes in the dopamine metabolic pathway was developed using microchip electrophoresis with electrochemical detection. The microchip consisted of a 5 cm PDMS separation channel in a simple-t configuration. Analytes in the dopamine metabolic pathway were separated using a background electrolyte composed of 15 mM phosphate at pH 7.4, 15 mM SDS, and 2.5 mM boric acid. Two different microchip substrates using different electrode materials were compared for the analysis: a PDMS/PDMS device with a carbon fiber electrode and a PDMS/glass hybrid device with a pyrolyzed photoresist film carbon electrode. While the PDMS/PDMS device generated high separation efficiencies and good resolution, more reproducible migration times were obtained with the PDMS/glass hybrid device, making it a better choice for biological applications. Lastly, the optimized method was used to monitor L-DOPA metabolism in a rat brain slice. PMID:25958983
Swanton, Charles; Szallasi, Zoltan; Brenton, James D; Downward, Julian
2008-01-01
The widespread introduction of high throughput RNA interference screening technology has revealed tumour drug sensitivity pathways to common cytotoxics such as paclitaxel, doxorubicin and 5-fluorouracil, targeted agents such as trastuzumab and inhibitors of AKT and Poly(ADP-ribose) polymerase (PARP) as well as endocrine therapies such as tamoxifen. Given the limited power of microarray signatures to predict therapeutic response in associative studies of small clinical trial cohorts, the use of functional genomic data combined with expression or sequence analysis of genes and microRNAs implicated in drug response in human tumours may provide a more robust method to guide adjuvant treatment strategies in breast cancer that are transferable across different expression platforms and patient cohorts. PMID:18986507
Sucheston-Campbell, Lara E; Cannioto, Rikki; Clay, Alyssa I; Etter, John Lewis; Eng, Kevin H; Liu, Song; Battaglia, Sebastiano; Hu, Qiang; Szender, J Brian; Minlikeeva, Albina; Joseph, Janine M; Mayor, Paul; Abrams, Scott I; Segal, Brahm H; Wallace, Paul K; Soh, Kah Teong; Zsiros, Emese; Anton-Culver, Hoda; Bandera, Elisa V; Beckmann, Matthias W; Berchuck, Andrew; Bjorge, Line; Bruegl, Amanda; Campbell, Ian G; Campbell, Shawn Patrice; Chenevix-Trench, Georgia; Cramer, Daniel W; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Diergaarde, Brenda; Doerk, Thilo; Doherty, Jennifer A; du Bois, Andreas; Eccles, Diana; Engelholm, Svend Aage; Fasching, Peter A; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Glasspool, Rosalind M; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemmanns, Peter; Høgdall, Claus; Høgdall, Estrid V S; Huzarski, Tomasz; Jensen, Allan; Johnatty, Sharon E; Jung, Audrey; Karlan, Beth Y; Klapdor, Reudiger; Kluz, Tomasz; Konopka, Bożena; Kjær, Susanne Krüger; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lester, Jenny; Lubiński, Jan; Levine, Douglas A; Lundvall, Lene; McGuire, Valerie; McNeish, Iain A; Menon, Usha; Modugno, Francesmary; Ness, Roberta B; Orsulic, Sandra; Paul, James; Pearce, Celeste Leigh; Pejovic, Tanja; Pharoah, Paul; Ramus, Susan J; Rothstein, Joseph; Rossing, Mary Anne; Rübner, Matthias; Schildkraut, Joellen M; Schmalfeldt, Barbara; Schwaab, Ira; Siddiqui, Nadeem; Sieh, Weiva; Sobiczewski, Piotr; Song, Honglin; Terry, Kathryn L; Van Nieuwenhuysen, Els; Vanderstichele, Adriaan; Vergote, Ignace; Walsh, Christine S; Webb, Penelope M; Wentzensen, Nicolas; Whittemore, Alice S; Wu, Anna H; Ziogas, Argyrios; Odunsi, Kunle; Chang-Claude, Jenny; Goode, Ellen L; Moysich, Kirsten B
2017-03-01
Background: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immunosuppressive/protumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be a prominent mechanism contributing to immunologic tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. Methods: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype, attributable to SNPs in 24 genes relevant in the MDSC pathway in 10,751 women diagnosed with invasive EOC. Versatile Gene-based Association Study and the admixture likelihood method were used to test gene and pathway associations with survival. Results: We did not identify individual SNPs that were significantly associated with survival after correction for multiple testing ( P < 3.5 × 10 -5 ), nor did we identify significant associations between the MDSC pathway overall, or the 24 individual genes and EOC survival. Conclusions: In this well-powered analysis, we observed no evidence that inherited variations in MDSC-associated SNPs, individual genes, or the collective genetic pathway contributed to EOC survival outcomes. Impact: Common inherited variation in genes relevant to MDSCs was not associated with survival in women diagnosed with invasive EOC. Cancer Epidemiol Biomarkers Prev; 26(3); 420-4. ©2016 AACR . ©2016 American Association for Cancer Research.
Benson, Neil; van der Graaf, Piet H; Peletier, Lambertus A
2017-11-15
A key element of the drug discovery process is target selection. Although the topic is subject to much discussion and experimental effort, there are no defined quantitative rules around optimal selection. Often 'rules of thumb', that have not been subject to rigorous exploration, are used. In this paper we explore the 'rule of thumb' notion that the molecule that initiates a pathway signal is the optimal target. Given the multi-factorial and complex nature of this question, we have simplified an example pathway to its logical minimum of two steps and used a mathematical model of this to explore the different options in the context of typical small and large molecule drugs. In this paper, we report the conclusions of our analysis and describe the analysis tool and methods used. These provide a platform to enable a more extensive enquiry into this important topic. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Bo; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Wu, Ziyin; Zhang, Wenjuan; Yang, Xiaoyan; Gong, Fukai; Li, Yuerong; Chen, Xiaoyu; Gao, Shuo; Chen, Xuetong; Li, Yan; Lu, Aiping; Wang, Yonghua
2016-02-25
The development of modern omics technology has not significantly improved the efficiency of drug development. Rather precise and targeted drug discovery remains unsolved. Here a large-scale cross-species molecular network association (CSMNA) approach for targeted drug screening from natural sources is presented. The algorithm integrates molecular network omics data from humans and 267 plants and microbes, establishing the biological relationships between them and extracting evolutionarily convergent chemicals. This technique allows the researcher to assess targeted drugs for specific human diseases based on specific plant or microbe pathways. In a perspective validation, connections between the plant Halliwell-Asada (HA) cycle and the human Nrf2-ARE pathway were verified and the manner by which the HA cycle molecules act on the human Nrf2-ARE pathway as antioxidants was determined. This shows the potential applicability of this approach in drug discovery. The current method integrates disparate evolutionary species into chemico-biologically coherent circuits, suggesting a new cross-species omics analysis strategy for rational drug development.
Pedersen, Brian A; Wang, Weiwen; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Edwards, Robert A; Yazdi, Puya G; Wang, Ping H
2015-01-01
Objective The aim of this study was to identify liver proteome changes in a mouse model of severe insulin resistance and markedly decreased leptin levels. Methods Two-dimensional differential gel electrophoresis was utilized to identify liver proteome changes in AKT1+/-/AKT2-/- mice. Proteins with altered levels were identified with tandem mass spectrometry. Ingenuity Pathway analysis was performed for the interpretation of the biological significance of the observed proteomic changes. Results 11 proteins were identified from 2 biological replicates to be differentially expressed by a ratio of at least 1.3 between age-matched insulin resistant (Akt1+/-/Akt2-/-) and wild type mice. Albumin and mitochondrial ornithine aminotransferase were detected from multiple spots, which suggest post-translational modifications. Enzymes of the urea cycle were common members of top regulated pathways. Conclusion Our results help to unveil the regulation of the liver proteome underlying altered metabolism in an animal model of severe insulin resistance. PMID:26455965
Aligning Event Logs to Task-Time Matrix Clinical Pathways in BPMN for Variance Analysis.
Yan, Hui; Van Gorp, Pieter; Kaymak, Uzay; Lu, Xudong; Ji, Lei; Chiau, Choo Chiap; Korsten, Hendrikus H M; Duan, Huilong
2018-03-01
Clinical pathways (CPs) are popular healthcare management tools to standardize care and ensure quality. Analyzing CP compliance levels and variances is known to be useful for training and CP redesign purposes. Flexible semantics of the business process model and notation (BPMN) language has been shown to be useful for the modeling and analysis of complex protocols. However, in practical cases one may want to exploit that CPs often have the form of task-time matrices. This paper presents a new method parsing complex BPMN models and aligning traces to the models heuristically. A case study on variance analysis is undertaken, where a CP from the practice and two large sets of patients data from an electronic medical record (EMR) database are used. The results demonstrate that automated variance analysis between BPMN task-time models and real-life EMR data are feasible, whereas that was not the case for the existing analysis techniques. We also provide meaningful insights for further improvement.
New insights into liquid chromatography for more eco-friendly analysis of pharmaceuticals.
Shaaban, Heba
2016-10-01
Greening the analytical methods used for analysis of pharmaceuticals has been receiving great interest aimed at eliminating or minimizing the amount of organic solvents consumed daily worldwide without loss in chromatographic performance. Traditional analytical LC techniques employed in pharmaceutical analysis consume tremendous amounts of hazardous solvents and consequently generate large amounts of waste. The monetary and ecological impact of using large amounts of solvents and waste disposal motivated the analytical community to search for alternatives to replace polluting analytical methodologies with clean ones. In this context, implementing the principles of green analytical chemistry (GAC) in analytical laboratories is highly desired. This review gives a comprehensive overview on different green LC pathways for implementing GAC principles in analytical laboratories and focuses on evaluating the greenness of LC analytical procedures. This review presents green LC approaches for eco-friendly analysis of pharmaceuticals in industrial, biological, and environmental matrices. Graphical Abstract Green pathways of liquid chromatography for more eco-friendly analysis of pharmaceuticals.
Metabolomics Analysis of the Toxic Effects of the Production of Lycopene and Its Precursors.
Miguez, April M; McNerney, Monica P; Styczynski, Mark P
2018-01-01
Using cells as microbial factories enables highly specific production of chemicals with many advantages over chemical syntheses. A number of exciting new applications of this approach are in the area of precision metabolic engineering, which focuses on improving the specificity of target production. In recent work, we have used precision metabolic engineering to design lycopene-producing Escherichia coli for use as a low-cost diagnostic biosensor. To increase precursor availability and thus the rate of lycopene production, we heterologously expressed the mevalonate pathway. We found that simultaneous induction of these pathways increases lycopene production, but induction of the mevalonate pathway before induction of the lycopene pathway decreases both lycopene production and growth rate. Here, we aim to characterize the metabolic changes the cells may be undergoing during expression of either or both of these heterologous pathways. After establishing an improved method for quenching E. coli for metabolomics analysis, we used two-dimensional gas chromatography coupled to mass spectrometry (GCxGC-MS) to characterize the metabolomic profile of our lycopene-producing strains in growth conditions characteristic of our biosensor application. We found that the metabolic impacts of producing low, non-toxic levels of lycopene are of much smaller magnitude than the typical metabolic changes inherent to batch growth. We then used metabolomics to study differences in metabolism caused by the time of mevalonate pathway induction and the presence of the lycopene biosynthesis genes. We found that overnight induction of the mevalonate pathway was toxic to cells, but that the cells could recover if the lycopene pathway was not also heterologously expressed. The two pathways appeared to have an antagonistic metabolic effect that was clearly reflected in the cells' metabolic profiles. The metabolites homocysteine and homoserine exhibited particularly interesting behaviors and may be linked to the growth inhibition seen when the mevalonate pathway is induced overnight, suggesting potential future work that may be useful in engineering increased lycopene biosynthesis.
Resonance ionization for analytical spectroscopy
Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.
1976-01-01
This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano; Fontana, Paolo
2017-02-01
Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact:paolo.fontana@fmach.it
Transnational issue-specific expert networking: A pathway to local policy change.
O'Brien, Cheryl
2015-12-01
This article reports on key findings from a study of subnational governments in Mexico and Nigeria (O'Brien, 2013). With empirical richness of the case study method and small-n statistical analysis across the subnational units for each country, this study asks: How can we push the needle toward more progressive policy change on violence against women in developing and democratizing contexts? This study finds that issue-specific expert networking is a civic pathway to subnational policy responsiveness in Mexico and Nigeria. The dynamics of this pathway illuminate local-global political connections, and this study shows how issue-specific expert networking is important for the diffusion of an international norm and policies on violence against women. Copyright © 2015 Elsevier Ltd. All rights reserved.
Koch, Ina; Junker, Björn H; Heiner, Monika
2005-04-01
Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. The metabolism between sucrose and starch in the potato tuber is of great research interest. Even if the metabolism is one of the best studied in sink organs, it is not yet fully understood. We provide an approach for model validation of metabolic networks using Petri net theory, which we demonstrate for the sucrose breakdown pathway in the potato tuber. We start with hierarchical modelling of the metabolic network as a Petri net and continue with the analysis of qualitative properties of the network. The results characterize the net structure and give insights into the complex net behaviour.
Foster, Abby M; Worrall, Linda E; Rose, Miranda L; O'Halloran, Robyn
2016-09-01
While research has begun to explore the management of aphasia across the continuum of care, to date there is little in-depth, context specific knowledge relating to the speech pathology aphasia management pathway. This research aimed to provide an in-depth understanding of the current aphasia management pathway in the acute hospital setting, from the perspective of speech pathologists. Underpinned by a social constructivist paradigm, the researchers implemented an interpretive phenomenological method when conducting in-depth interviews with 14 Australian speech pathologists working in the acute hospital setting. Interview transcripts and interviewer field notes were subjected to a qualitative content analysis. Analysis identified a single guiding construct and five main categories to describe the management of aphasia in the acute hospital setting. The guiding construct, First contact with the profession, informed the entire management pathway. Five additional main categories were identified: Referral processes; Screening and assessment; Therapeutic intervention; Educational and affective counselling; and Advocacy. Findings suggest significant diversity in the pathways of care for people with aphasia and their families in the acute hospital setting. Additional support mechanisms are required in order to support speech pathologists to minimise the evidence-practice gap. Implications for Rehabilitation Significant diversity exists in the current aphasia management pathway for people with acute post-stroke aphasia and their families in the acute hospital setting. Mechanisms that support speech pathologists to minimise the evidence-practice gap, and consequently reduce their sense of professional dissonance, are required.
R-Based Software for the Integration of Pathway Data into Bioinformatic Algorithms
Kramer, Frank; Bayerlová, Michaela; Beißbarth, Tim
2014-01-01
Putting new findings into the context of available literature knowledge is one approach to deal with the surge of high-throughput data results. Furthermore, prior knowledge can increase the performance and stability of bioinformatic algorithms, for example, methods for network reconstruction. In this review, we examine software packages for the statistical computing framework R, which enable the integration of pathway data for further bioinformatic analyses. Different approaches to integrate and visualize pathway data are identified and packages are stratified concerning their features according to a number of different aspects: data import strategies, the extent of available data, dependencies on external tools, integration with further analysis steps and visualization options are considered. A total of 12 packages integrating pathway data are reviewed in this manuscript. These are supplemented by five R-specific packages for visualization and six connector packages, which provide access to external tools. PMID:24833336
Metabolic Pathways and Networks Associated With Tobacco Use in Military Personnel.
Jones, Dean P; Walker, Douglas I; Uppal, Karan; Rohrbeck, Patricia; Mallon, Col Timothy M; Go, Young-Mi
2016-08-01
The aim of this study is to use high-resolution metabolomics (HRM) to identify metabolic pathways and networks associated with tobacco use in military personnel. Four hundred deidentified samples obtained from the Department of Defense Serum Repository were classified as tobacco users or nonusers according to cotinine content. HRM and bioinformatic methods were used to determine pathways and networks associated with classification. Eighty individuals were classified as tobacco users compared with 320 nonusers on the basis of cotinine levels at least 10 ng/mL. Alterations in lipid and xenobiotic metabolism, and diverse effects on amino acid, sialic acid, and purine and pyrimidine metabolism were observed. Importantly, network analysis showed broad effects on metabolic associations not simply linked to well-defined pathways. Tobacco use has complex metabolic effects that must be considered in evaluation of deployment-associated environmental exposures in military personnel.
An optimization model for metabolic pathways.
Planes, F J; Beasley, J E
2009-10-15
Different mathematical methods have emerged in the post-genomic era to determine metabolic pathways. These methods can be divided into stoichiometric methods and path finding methods. In this paper we detail a novel optimization model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach. We test the ability of our model to determine 40 annotated Escherichia coli metabolic pathways. We show that our model is able to determine 36 of these 40 pathways in a computationally effective manner.
NASA Astrophysics Data System (ADS)
Ryabenko, Evgenia; Elsner, Martin; Bakkour, Rani; Hofstetter, Thomas; Torrento, Clara; Hunkeler, Daniel
2015-04-01
The frequent detection of organic micropollutants such as pesticides, consumer care products or pharmaceuticals in water is an increasing concern for human and ecosystem health. Degradation analysis of these compounds can be challenging in complex systems due to the fact that metabolites are not always found and mass balances frequently cannot be closed. Many abiotic and biotic degradation pathways cause, however, distinct isotope fractionation, where light isotopes are transferred preferentially from the reactant to the product pool (normal isotope fractionation). Compound-specific isotope analysis (CSIA) of multiple elements is a particularly powerful method to evaluate organic micropollutant transformation, because it can even give pathway-specific isotope fractionation (1,2). Available CSIA field studies, however, have focused almost exclusively on volatile petroleum and chlorinated hydrocarbons, which are present in high concentrations in the environment and can be extracted easily from water for GC-IRMS analysis. In the case of micropollutants, such as pesticides, CSIA in more challenging since it needs to be conducted at lower concentrations and requires pre-concentration, purification and high chromatographic performance (3). In this study we used lysimeters experiments to analyze transformation of atrazine, acetochlor, metolachlor and chloridazone by studying associated isotope fractionation. The project combines a) analytical method development for CSIA, b) identification of pathways of micropollutant degradation and c) quantification of transformation processes under field condition. The pesticides were applied both, at the soil surface and below the top soil under field-relevant concentrations in May 2014. After typical irrigation of the lysimeters, seepage water was collected in 50L bottles and stored for further SPE and CSIA. Here we present the very first result of a) analytical method development, b) improvement of SPE methods for complex pesticide mixtures and c) transformation of pesticides in lysimeters during the year 2014. 1 Elsner, M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J. Environ. Monit. 12, 2005-2031 (2010). 2 Hofstetter, T. B. & Berg, M. Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. TrAC Trends in Analytical Chemistry 30, 618-627 (2011). 3 Elsner, M. et al. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal. Bioanal. Chem. 403, 2471-2491, doi:10.1007/s00216-011-5683-y (2012).
A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data
Chen, Yi-Hau
2017-01-01
Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA. PMID:28622336
A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data.
Lai, En-Yu; Chen, Yi-Hau; Wu, Kun-Pin
2017-06-01
Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA.
Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer
Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria
2015-01-01
Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies. PMID:26540293
Construction and completion of flux balance models from pathway databases.
Latendresse, Mario; Krummenacker, Markus; Trupp, Miles; Karp, Peter D
2012-02-01
Flux balance analysis (FBA) is a well-known technique for genome-scale modeling of metabolic flux. Typically, an FBA formulation requires the accurate specification of four sets: biochemical reactions, biomass metabolites, nutrients and secreted metabolites. The development of FBA models can be time consuming and tedious because of the difficulty in assembling completely accurate descriptions of these sets, and in identifying errors in the composition of these sets. For example, the presence of a single non-producible metabolite in the biomass will make the entire model infeasible. Other difficulties in FBA modeling are that model distributions, and predicted fluxes, can be cryptic and difficult to understand. We present a multiple gap-filling method to accelerate the development of FBA models using a new tool, called MetaFlux, based on mixed integer linear programming (MILP). The method suggests corrections to the sets of reactions, biomass metabolites, nutrients and secretions. The method generates FBA models directly from Pathway/Genome Databases. Thus, FBA models developed in this framework are easily queried and visualized using the Pathway Tools software. Predicted fluxes are more easily comprehended by visualizing them on diagrams of individual metabolic pathways or of metabolic maps. MetaFlux can also remove redundant high-flux loops, solve FBA models once they are generated and model the effects of gene knockouts. MetaFlux has been validated through construction of FBA models for Escherichia coli and Homo sapiens. Pathway Tools with MetaFlux is freely available to academic users, and for a fee to commercial users. Download from: biocyc.org/download.shtml. mario.latendresse@sri.com Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.
Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significancemore » analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.« less
Wang, Xijun; Wang, Huiyu; Zhang, Aihua; Lu, Xin; Sun, Hui; Dong, Hui; Wang, Ping
2012-02-03
The mother and lateral root of Aconitum carmichaelii Debx, named "Chuanwu" (CW) and "Fuzi", respectively, has been used to relieve joint pain and treat rheumatic diseases for over 2000 years. However, it has a very narrow therapeutic range, and the toxicological risk of its usage remains very high. The traditional Chinese processing approach, Paozhi (detoxifying measure),can decompose poisonous Aconitum alkaloids into less or nontoxic derivatives and plays an important role in detoxification. The difference in metabolomic characters among the crude and processed preparations is still unclear, limited by the lack of sensitive and reliable biomarkers. Therefore, this paper was designed to investigate comprehensive metabolomic characters of the crude and its processed products by UPLC-Q-TOF-HDMS combined with pattern recognition methods and ingenuity pathway analysis (IPA). The significant difference in metabolic profiles and changes of metabolite biomarkers of interest between the crude and processed preparations were well observed. The underlying regulations of Paozhi-perturbed metabolic pathways are discussed according to the identified metabolites, and four metabolic pathways are identified using IPA. The present study demonstrates that metabolomic analysis could greatly facilitate and provide useful information to further comprehensively understand the pharmacological activity and potential toxicity of processed Aconite roots in the clinic.
Martínez-Lavanchy, P M; Chen, Z; Lünsmann, V; Marin-Cevada, V; Vilchez-Vargas, R; Pieper, D H; Reiche, N; Kappelmeyer, U; Imparato, V; Junca, H; Nijenhuis, I; Müller, J A; Kuschk, P; Heipieper, H J
2015-09-01
In the present study, microbial toluene degradation in controlled constructed wetland model systems, planted fixed-bed reactors (PFRs), was queried with DNA-based methods in combination with stable isotope fractionation analysis and characterization of toluene-degrading microbial isolates. Two PFR replicates were operated with toluene as the sole external carbon and electron source for 2 years. The bulk redox conditions in these systems were hypoxic to anoxic. The autochthonous bacterial communities, as analyzed by Illumina sequencing of 16S rRNA gene amplicons, were mainly comprised of the families Xanthomonadaceae, Comamonadaceae, and Burkholderiaceae, plus Rhodospirillaceae in one of the PFR replicates. DNA microarray analyses of the catabolic potentials for aromatic compound degradation suggested the presence of the ring monooxygenation pathway in both systems, as well as the anaerobic toluene pathway in the PFR replicate with a high abundance of Rhodospirillaceae. The presence of catabolic genes encoding the ring monooxygenation pathway was verified by quantitative PCR analysis, utilizing the obtained toluene-degrading isolates as references. Stable isotope fractionation analysis showed low-level of carbon fractionation and only minimal hydrogen fractionation in both PFRs, which matches the fractionation signatures of monooxygenation and dioxygenation. In combination with the results of the DNA-based analyses, this suggests that toluene degradation occurs predominantly via ring monooxygenation in the PFRs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Kawasaki, Regiane; Carepo, Marta S. P.; Oliveira, Rui; Marques, Rodolfo; Ramos, Rommel T. J.; Schneider, Maria P. C.
2016-01-01
Exiguobacterium antarcticum B7 is extremophile Gram-positive bacteria able to survive in cold environments. A key factor to understanding cold adaptation processes is related to the modification of fatty acids composing the cell membranes of psychrotrophic bacteria. In our study we show the in silico reconstruction of the fatty acid biosynthesis pathway of E. antarcticum B7. To build the stoichiometric model, a semiautomatic procedure was applied, which integrates genome information using KEGG and RAST/SEED. Constraint-based methods, namely, Flux Balance Analysis (FBA) and elementary modes (EM), were applied. FBA was implemented in the sense of hexadecenoic acid production maximization. To evaluate the influence of the gene expression in the fluxome analysis, FBA was also calculated using the log2FC values obtained in the transcriptome analysis at 0°C and 37°C. The fatty acid biosynthesis pathway showed a total of 13 elementary flux modes, four of which showed routes for the production of hexadecenoic acid. The reconstructed pathway demonstrated the capacity of E. antarcticum B7 to de novo produce fatty acid molecules. Under the influence of the transcriptome, the fluxome was altered, promoting the production of short-chain fatty acids. The calculated models contribute to better understanding of the bacterial adaptation at cold environments. PMID:27595107
Chaudhary, Neha; Tøndel, Kristin; Bhatnagar, Rakesh; dos Santos, Vítor A P Martins; Puchałka, Jacek
2016-03-01
Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them.
Identification of Preferential Groundwater Flow Pathways from Local Tracer Breakthrough Curves
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.; Dearden, R.; Wealthall, G.
2009-12-01
Characterizing preferential groundwater flow paths in the subsurface is a key factor in the design of in situ remediation technologies. When applying reaction-based remediation methods, such as enhanced bioremediation, preferential flow paths result in fast solute migration and potentially ineffective delivery of reactants, thereby adversely affecting treatment efficiency. The presence of such subsurface conduits was observed at the SABRe (Source Area Bioremediation) research site. Non-uniform migration of contaminants and electron donor during the field trials of enhanced bioremediation supported this observation. To better determine the spatial flow field of the heterogeneous aquifer, a conservative tracer test was conducted. Breakthrough curves were obtained at a reference plane perpendicular to the principal groundwater flow direction. The resulting dataset was analyzed using three different methods: peak arrival times, analytical solution fitting and moment analysis. Interpretation using the peak arrival time method indicated areas of fast plume migration. However, some of the high velocities are supported by single data points, thus adding considerable uncertainty to the estimated velocity distribution. Observation of complete breakthrough curves indicated different types of solute breakthrough, corresponding to different transport mechanisms. Sharp peaks corresponded to high conductivity preferential flow pathways, whereas more dispersed breakthrough curves with long tails were characteristic of significant dispersive mixing and dilution. While analytical solutions adequately quantified flow characteristics for the first type of curves, they failed to do so for the second type, in which case they gave unrealistic results. Therefore, a temporal moment analysis was performed to obtain complete spatial distributions of mass recovery, velocity and dispersivity. Though the results of moment analysis qualitatively agreed with the results of previous methods, more realistic estimates of velocities were obtained and the presence of one major preferential flow pathway was confirmed. However, low mass recovery and deviations from the 10% scaling rule for dispersivities indicate that insufficient spatial and temporal monitoring, as well as interpolation and truncation errors introduced uncertainty in the flow and transport parameters estimated by the method of moments. The results of the three analyses are valuable for enhancing the understanding of mass transport and remediation performance. Comparing the different interpretation methods, increasing the amount of concentration data considered in the analysis, the derived velocity fields were smoother and the estimated local velocities and dispersivities became more realistic. In conclusion, moment analysis is a method that represents a smoothed average of the velocity across the entire breakthrough curve, whereas the peak arrival time, which may be a less well constrained estimate, represents the physical peak arrival and typically yields a higher velocity than the moment analysis. This is an important distinction when applying the results of the tracer test to field sites.
Bioinformatics approach reveals systematic mechanism underlying lung adenocarcinoma.
Wu, Xiya; Zhang, Wei; Hu, Yunhua; Yi, Xianghua
2015-01-01
The purpose of this work was to explore the systematic molecular mechanism of lung adenocarcinoma and gain a deeper insight into it. Comprehensive bioinformatics methods were applied. Initially, significant differentially expressed genes (DEGs) were analyzed from the Affymetrix microarray data (GSE27262) deposited in the Gene Expression Omnibus (GEO). Subsequently, gene ontology (GO) analysis was performed using online Database for Annotation, Visualization and Integration Discovery (DAVID) software. Finally, significant pathway crosstalk was investigated based on the information derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. According to our results, the N-terminal globular domain of the type X collagen (COL10A1) gene and transmembrane protein 100 (TMEM100) gene were identified to be the most significant DEGs in tumor tissue compared with the adjacent normal tissues. The main GO categories were biological process, cellular component and molecular function. In addition, the crosstalk was significantly different between non-small cell lung cancer pathways and inositol phosphate metabolism pathway, focal adhesion signal pathway, vascular smooth muscle contraction signal pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway and calcium signaling pathway in tumor. Dysfunctional genes and pathways may play key roles in the progression and development of lung adenocarcinoma. Our data provide a systematic perspective for understanding this mechanism and may be helpful in discovering an effective treatment for lung adenocarcinoma.
Wu, Chia-Chou; Lin, Chih-Lung; Chen, Ting-Shou
2015-01-01
Hepatocellular carcinoma (HCC) is a major liver tumor (~80%), besides hepatoblastomas, angiosarcomas, and cholangiocarcinomas. In this study, we used a systems biology approach to construct protein-protein interaction networks (PPINs) for early-stage and late-stage liver cancer. By comparing the networks of these two stages, we found that the two networks showed some common mechanisms and some significantly different mechanisms. To obtain differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two stages of liver cancer by systems biology method using NGS data from cancer cells and adjacent noncancer cells. Using carcinogenesis relevance values (CRVs), we identified 43 and 80 significant proteins and their PPINs (network markers) for early-stage and late-stage liver cancer. To investigate the evolution of network biomarkers in the carcinogenesis process, a primary pathway analysis showed that common pathways of the early and late stages were those related to ordinary cancer mechanisms. A pathway specific to the early stage was the mismatch repair pathway, while pathways specific to the late stage were the spliceosome pathway, lysine degradation pathway, and progesterone-mediated oocyte maturation pathway. This study provides a new direction for cancer-targeted therapies at different stages. PMID:26366411
Separate enrichment analysis of pathways for up- and downregulated genes.
Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng
2014-03-06
Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.
Gao, Ji; Li, Hongyan; Liu, Lei; Song, Lide; Lv, Yanting; Han, Yuping
2017-12-01
The aim of the present study was to investigate risk-related microRNAs (miRs) for bladder urothelial carcinoma (BUC) prognosis. Clinical and microRNA expression data downloaded from the Cancer Genome Atlas were utilized for survival analysis. Risk factor estimation was performed using Cox's proportional regression analysis. A microRNA-regulated target gene network was constructed and presented using Cytoscape. In addition, the Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, followed by protein-protein interaction (PPI) network analysis. Finally, the K-clique method was applied to analyze sub-pathways. A total of 16 significant microRNAs, including hsa-miR-3622a and hsa-miR-29a, were identified (P<0.05). Following Cox's proportional regression analysis, hsa-miR-29a was screened as a prognostic marker of BUC risk (P=0.0449). A regulation network of hsa-miR-29a comprising 417 target genes was constructed. These target genes were primarily enriched in GO terms, including collagen fibril organization, extracellular matrix (ECM) organization and pathways, such as focal adhesion (P<0.05). A PPI network including 197 genes and 510 interactions, was constructed. The top 21 genes in the network module were enriched in GO terms, including collagen fibril organization and pathways, such as ECM receptor interaction (P<0.05). Finally, 4 sub-pathways of cysteine and methionine metabolism, including paths 00270_4, 00270_1, 00270_2 and 00270_5, were obtained (P<0.01) and identified to be enriched through DNA (cytosine-5)-methyltransferase ( DNMT)3A, DNMT3B , methionine adenosyltransferase 2α ( MAT2A ) and spermine synthase ( SMS ). The identified microRNAs, particularly hsa-miR-29a and its 4 associated target genes DNMT3A, DNMT3B, MAT2A and SMS , may participate in the prognostic risk mechanism of BUC.
McGuire, Mary F; Sriram Iyengar, M; Mercer, David W
2012-04-01
Although trauma is the leading cause of death for those below 45years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. In the node/molecular analysis of the first 24h from trauma, PSA uncovered seven molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which three molecules had not been previously associated with any shock/trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships--activation, expression, inhibition, and transcription--and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on molecular interaction mechanisms may be most effective within a certain time period and for a specific functional relationship. Copyright © 2011 Elsevier Inc. All rights reserved.
McGuire, Mary F.; Iyengar, M. Sriram; Mercer, David W.
2012-01-01
Motivation Although trauma is the leading cause of death for those below 45 years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. Results In the node/molecular analysis of the first 24 hours from trauma, PSA uncovered 7 molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which 3 molecules had not been previously associated with any shock / trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships – activation, expression, inhibition, and transcription – and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on molecular interaction mechanisms may be most effective within a certain time period and for a specific functional relationship. PMID:22200681
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano
2017-01-01
Abstract Summary: Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Availability and Implementation: Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact: paolo.fontana@fmach.it PMID:28158604
Identification of Major Signaling Pathways in Prion Disease Progression Using Network Analysis
Newaz, Khalique; Sriram, K.; Bera, Debajyoti
2015-01-01
Prion diseases are transmissible neurodegenerative diseases that arise due to conformational change of normal, cellular prion protein (PrPC) to protease-resistant isofrom (rPrPSc). Deposition of misfolded PrpSc proteins leads to an alteration of many signaling pathways that includes immunological and apoptotic pathways. As a result, this culminates in the dysfunction and death of neuronal cells. Earlier works on transcriptomic studies have revealed some affected pathways, but it is not clear which is (are) the prime network pathway(s) that change during the disease progression and how these pathways are involved in crosstalks with each other from the time of incubation to clinical death. We perform network analysis on large-scale transcriptomic data of differentially expressed genes obtained from whole brain in six different mouse strain-prion strain combination models to determine the pathways involved in prion diseases, and to understand the role of crosstalks in disease propagation. We employ a notion of differential network centrality measures on protein interaction networks to identify the potential biological pathways involved. We also propose a crosstalk ranking method based on dynamic protein interaction networks to identify the core network elements involved in crosstalk with different pathways. We identify 148 DEGs (differentially expressed genes) potentially related to the prion disease progression. Functional association of the identified genes implicates a strong involvement of immunological pathways. We extract a bow-tie structure that is potentially dysregulated in prion disease. We also propose an ODE model for the bow-tie network. Predictions related to diseased condition suggests the downregulation of the core signaling elements (PI3Ks and AKTs) of the bow-tie network. In this work, we show using transcriptomic data that the neuronal dysfunction in prion disease is strongly related to the immunological pathways. We conclude that these immunological pathways occupy influential positions in the PFNs (protein functional networks) that are related to prion disease. Importantly, this functional network involvement is prevalent in all the five different mouse strain-prion strain combinations that we studied. We also conclude that the dysregulation of the core elements of the bow-tie structure, which belongs to PI3K-Akt signaling pathway, leads to dysregulation of the downstream components corresponding to other biological pathways. PMID:26646948
Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying
2017-01-01
Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3ʹ5ʹH gene; the decreased expression of C4H, CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS, MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1/CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus. PMID:28885552
Ren, Yujun; Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying
2017-09-08
Chinese narcissus ( Narcissus tazetta var. chinensis ) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus "Jinzhanyintai" to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3'5'H gene; the decreased expression of C4H , CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS , MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1 / CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus.
2011-01-01
Background Sporadic amyotrophic lateral sclerosis (sALS) is a motor neuron disease with poorly understood etiology. Results of gene expression profiling studies of whole blood from ALS patients have not been validated and are difficult to relate to ALS pathogenesis because gene expression profiles depend on the relative abundance of the different cell types present in whole blood. We conducted microarray analyses using Agilent Human Whole Genome 4 × 44k Arrays on a more homogeneous cell population, namely purified peripheral blood lymphocytes (PBLs), from ALS patients and healthy controls to identify molecular signatures possibly relevant to ALS pathogenesis. Methods Differentially expressed genes were determined by LIMMA (Linear Models for MicroArray) and SAM (Significance Analysis of Microarrays) analyses. The SAFE (Significance Analysis of Function and Expression) procedure was used to identify molecular pathway perturbations. Proteasome inhibition assays were conducted on cultured peripheral blood mononuclear cells (PBMCs) from ALS patients to confirm alteration of the Ubiquitin/Proteasome System (UPS). Results For the first time, using SAFE in a global gene ontology analysis (gene set size 5-100), we show significant perturbation of the KEGG (Kyoto Encyclopedia of Genes and Genomes) ALS pathway of motor neuron degeneration in PBLs from ALS patients. This was the only KEGG disease pathway significantly upregulated among 25, and contributing genes, including SOD1, represented 54% of the encoded proteins or protein complexes of the KEGG ALS pathway. Further SAFE analysis, including gene set sizes >100, showed that only neurodegenerative diseases (4 out of 34 disease pathways) including ALS were significantly upregulated. Changes in UBR2 expression correlated inversely with time since onset of disease and directly with ALSFRS-R, implying that UBR2 was increased early in the course of ALS. Cultured PBMCs from ALS patients accumulated more ubiquitinated proteins than PBMCs from healthy controls in a serum-dependent manner confirming changes in this pathway. Conclusions Our study indicates that PBLs from sALS patients are strong responders to systemic signals or local signals acquired by cell trafficking, representing changes in gene expression similar to those present in brain and spinal cord of sALS patients. PBLs may provide a useful means to study ALS pathogenesis. PMID:22027401
RECOVERING FILTER-BASED MICROARRAY DATA FOR PATHWAYS ANALYSIS USING A MULTIPOINT ALIGNMENT STRATEGY
The use of commercial microarrays are rapidly becoming the method of choice for profiling gene expression and assessing various disease states. Research Genetics has provided a series of well defined biological and software tools to the research community for these analyses. Th...
A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and Pathways in Kidney Cancer.
Yang, Mary Qu; Li, Dan; Yang, William; Zhang, Yifan; Liu, Jun; Tong, Weida
2017-01-01
Clear cell renal cell carcinoma (ccRCC) is the most common and most aggressive form of renal cell cancer (RCC). The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology approach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method integrated multi-layer information to infer causative mutations and disease genes. First, we identified differential gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules consisted of interacting genes that were involved in similar biological processes and their combined expression alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1 and PBRM1 , as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential gene modules and their driver genes revealed by our study provided a new perspective for understanding the molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient datasets. Our study provided a new method for prioritizing disease genes and pathways.
Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations
Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan
2017-01-01
Abstract Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. PMID:28961727
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways
Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-01-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers’ exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes. PMID:27832067
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.
Koumakis, Lefteris; Kanterakis, Alexandros; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Tsiknakis, Manolis; Vassou, Despoina; Kafetzopoulos, Dimitris; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-11-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers' exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes.
Liu, Wenlan; Sun, Zhirong; Qu, Jixu; Yang, Chunning; Zhang, Xiaomin; Wei, Xinxin
2017-01-01
The aim of the present study was to investigate the correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis. Root respiration was determined using a biological oxygen analyzer. Respiration-related enzymes including glucose-6-phosphate dehydrogenase plus 6-phosphogluconate dehydrogenase, phosphohexose isomerase and succinate dehydrogenase, and respiratory pathways were evaluated. Biomass was determined by a drying-weighing method. In addition, the percentage of glycyrrhizic acid was detected using high-performance liquid chromatography. The association between root respiration and the levels of biomass and glycyrrhizic acid was investigated. The glycolysis pathway (EMP), tricarboxylic acid cycle (TCA) and pentose phosphate (PPP) pathway acted concurrently in the roots of G. uralensis. Grey correlation analysis showed that TCA had the strongest correlation (correlation coefficient, 0.8003) with biomass. Starch and acetyl coenzyme A had the closest association with above-ground biomass, while soluble sugar correlated less strongly with above-ground biomass. Grey correlation analysis between biochemical pathways and the intermediates showed that pyruvic acid had the strongest correlation with EMP, while acetyl coenzyme A correlated most strongly with TCA. Among the intermediates and pathways, pyruvic acid and EMP exhibited the greatest correlation with glycyrrhizic acid, while acetyl coenzyme A and TCA correlated with glycyrrhizic acid less closely. The results of this study may aid the cultivation of G. uralensis. However, these results require verification in further studies. PMID:28962162
Liu, Wenlan; Sun, Zhirong; Qu, Jixu; Yang, Chunning; Zhang, Xiaomin; Wei, Xinxin
2017-09-01
The aim of the present study was to investigate the correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis . Root respiration was determined using a biological oxygen analyzer. Respiration-related enzymes including glucose-6-phosphate dehydrogenase plus 6-phosphogluconate dehydrogenase, phosphohexose isomerase and succinate dehydrogenase, and respiratory pathways were evaluated. Biomass was determined by a drying-weighing method. In addition, the percentage of glycyrrhizic acid was detected using high-performance liquid chromatography. The association between root respiration and the levels of biomass and glycyrrhizic acid was investigated. The glycolysis pathway (EMP), tricarboxylic acid cycle (TCA) and pentose phosphate (PPP) pathway acted concurrently in the roots of G. uralensis . Grey correlation analysis showed that TCA had the strongest correlation (correlation coefficient, 0.8003) with biomass. Starch and acetyl coenzyme A had the closest association with above-ground biomass, while soluble sugar correlated less strongly with above-ground biomass. Grey correlation analysis between biochemical pathways and the intermediates showed that pyruvic acid had the strongest correlation with EMP, while acetyl coenzyme A correlated most strongly with TCA. Among the intermediates and pathways, pyruvic acid and EMP exhibited the greatest correlation with glycyrrhizic acid, while acetyl coenzyme A and TCA correlated with glycyrrhizic acid less closely. The results of this study may aid the cultivation of G. uralensis . However, these results require verification in further studies.
Effect of the absolute statistic on gene-sampling gene-set analysis methods.
Nam, Dougu
2017-06-01
Gene-set enrichment analysis and its modified versions have commonly been used for identifying altered functions or pathways in disease from microarray data. In particular, the simple gene-sampling gene-set analysis methods have been heavily used for datasets with only a few sample replicates. The biggest problem with this approach is the highly inflated false-positive rate. In this paper, the effect of absolute gene statistic on gene-sampling gene-set analysis methods is systematically investigated. Thus far, the absolute gene statistic has merely been regarded as a supplementary method for capturing the bidirectional changes in each gene set. Here, it is shown that incorporating the absolute gene statistic in gene-sampling gene-set analysis substantially reduces the false-positive rate and improves the overall discriminatory ability. Its effect was investigated by power, false-positive rate, and receiver operating curve for a number of simulated and real datasets. The performances of gene-set analysis methods in one-tailed (genome-wide association study) and two-tailed (gene expression data) tests were also compared and discussed.
2012-01-01
High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in order to elucidate molecular mechanisms of complex diseases like breast or prostate cancer. However, this is not only strongly dependent on the sample size and the correlation structure of a data set, but also on the statistical hypotheses tested. Many different approaches have been developed over the years to analyze gene expression data to (I) identify changes in single genes, (II) identify changes in gene sets or pathways, and (III) identify changes in the correlation structure in pathways. In this paper, we review statistical methods for all three types of approaches, including subtypes, in the context of cancer data and provide links to software implementations and tools and address also the general problem of multiple hypotheses testing. Further, we provide recommendations for the selection of such analysis methods. Reviewers This article was reviewed by Arcady Mushegian, Byung-Soo Kim and Joel Bader. PMID:23227854
A System-Level Pathway-Phenotype Association Analysis Using Synthetic Feature Random Forest
Pan, Qinxin; Hu, Ting; Malley, James D.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.
2015-01-01
As the cost of genome-wide genotyping decreases, the number of genome-wide association studies (GWAS) has increased considerably. However, the transition from GWAS findings to the underlying biology of various phenotypes remains challenging. As a result, due to its system-level interpretability, pathway analysis has become a popular tool for gaining insights on the underlying biology from high-throughput genetic association data. In pathway analyses, gene sets representing particular biological processes are tested for significant associations with a given phenotype. Most existing pathway analysis approaches rely on single-marker statistics and assume that pathways are independent of each other. As biological systems are driven by complex biomolecular interactions, embracing the complex relationships between single-nucleotide polymorphisms (SNPs) and pathways needs to be addressed. To incorporate the complexity of gene-gene interactions and pathway-pathway relationships, we propose a system-level pathway analysis approach, synthetic feature random forest (SF-RF), which is designed to detect pathway-phenotype associations without making assumptions about the relationships among SNPs or pathways. In our approach, the genotypes of SNPs in a particular pathway are aggregated into a synthetic feature representing that pathway via Random Forest (RF). Multiple synthetic features are analyzed using RF simultaneously and the significance of a synthetic feature indicates the significance of the corresponding pathway. We further complement SF-RF with pathway-based Statistical Epistasis Network (SEN) analysis that evaluates interactions among pathways. By investigating the pathway SEN, we hope to gain additional insights into the genetic mechanisms contributing to the pathway-phenotype association. We apply SF-RF to a population-based genetic study of bladder cancer and further investigate the mechanisms that help explain the pathway-phenotype associations using SEN. The bladder cancer associated pathways we found are both consistent with existing biological knowledge and reveal novel and plausible hypotheses for future biological validations. PMID:24535726
Disentangling the multigenic and pleiotropic nature of molecular function
2015-01-01
Background Biological processes at the molecular level are usually represented by molecular interaction networks. Function is organised and modularity identified based on network topology, however, this approach often fails to account for the dynamic and multifunctional nature of molecular components. For example, a molecule engaging in spatially or temporally independent functions may be inappropriately clustered into a single functional module. To capture biologically meaningful sets of interacting molecules, we use experimentally defined pathways as spatial/temporal units of molecular activity. Results We defined functional profiles of Saccharomyces cerevisiae based on a minimal set of Gene Ontology terms sufficient to represent each pathway's genes. The Gene Ontology terms were used to annotate 271 pathways, accounting for pathway multi-functionality and gene pleiotropy. Pathways were then arranged into a network, linked by shared functionality. Of the genes in our data set, 44% appeared in multiple pathways performing a diverse set of functions. Linking pathways by overlapping functionality revealed a modular network with energy metabolism forming a sparse centre, surrounded by several denser clusters comprised of regulatory and metabolic pathways. Signalling pathways formed a relatively discrete cluster connected to the centre of the network. Genetic interactions were enriched within the clusters of pathways by a factor of 5.5, confirming the organisation of our pathway network is biologically significant. Conclusions Our representation of molecular function according to pathway relationships enables analysis of gene/protein activity in the context of specific functional roles, as an alternative to typical molecule-centric graph-based methods. The pathway network demonstrates the cooperation of multiple pathways to perform biological processes and organises pathways into functionally related clusters with interdependent outcomes. PMID:26678917
Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun
2015-08-01
We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.
Taylor, Francesca; Taylor, Celia; Baharani, Jyoti; Nicholas, Johann; Combes, Gill
2016-08-02
As a result of difficulties related to their illness, diagnosis and treatment, patients with end-stage renal disease experience significant emotional and psychological problems, which untreated can have considerable negative impact on their health and wellbeing. Despite evidence that patients desire improved support, management of their psychosocial problems, particularly at the lower-level, remains sub-optimal. There is limited understanding of the specific support that patients need and want, from whom, and when, and also a lack of data on what helps and hinders renal staff in identifying and responding to their patients' support needs, and how barriers to doing so might be overcome. Through this research we therefore seek to determine what, when, and how, support for patients with lower-level emotional and psychological problems should be integrated into the end-stage renal disease pathway. The research will involve two linked, multicentre studies, designed to identify and consider the perspectives of patients at five different stages of the end-stage renal disease pathway (Study 1), and renal staff working with them (Study 2). A convergent, parallel mixed methods design will be employed for both studies, with quantitative and qualitative data collected separately. For each study, the data sets will be analysed separately and the results then compared or combined using interpretive analysis. A further stage of synthesis will employ data-driven thematic analysis to identify: triangulation and frequency of themes across pathway stages; patterns and plausible explanations of effects. There is an important need for this research given the high frequency of lower-level distress experienced by end-stage renal disease patients and lack of progress to date in integrating support for their lower-level psychosocial needs into the care pathway. Use of a mixed methods design across the two studies will generate a holistic patient and healthcare professional perspective that is more likely to identify viable solutions to enable implementation of timely and integrated care. Based on the research outputs, appropriate support interventions will be developed, implemented and evaluated in a linked follow-on study.
Design principles and operating principles: the yin and yang of optimal functioning.
Voit, Eberhard O
2003-03-01
Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.
Constructing biological pathway models with hybrid functional Petri nets.
Doi, Atsushi; Fujita, Sachie; Matsuno, Hiroshi; Nagasaki, Masao; Miyano, Satoru
2004-01-01
In many research projects on modeling and analyzing biological pathways, the Petri net has been recognized as a promising method for representing biological pathways. From the pioneering works by Reddy et al., 1993, and Hofestädt, 1994, that model metabolic pathways by traditional Petri net, several enhanced Petri nets such as colored Petri net, stochastic Petri net, and hybrid Petri net have been used for modeling biological phenomena. Recently, Matsuno et al., 2003b, introduced the hybrid functional Petri net (HFPN) in order to give a more intuitive and natural modeling method for biological pathways than these existing Petri nets. Although the paper demonstrates the effectiveness of HFPN with two examples of gene regulation mechanism for circadian rhythms and apoptosis signaling pathway, there has been no detailed explanation about the method of HFPN construction for these examples. The purpose of this paper is to describe method to construct biological pathways with the HFPN step-by-step. The method is demonstrated by the well-known glycolytic pathway controlled by the lac operon gene regulatory mechanism.
Constructing biological pathway models with hybrid functional petri nets.
Doi, Atsushi; Fujita, Sachie; Matsuno, Hiroshi; Nagasaki, Masao; Miyano, Satoru
2011-01-01
In many research projects on modeling and analyzing biological pathways, the Petri net has been recognized as a promising method for representing biological pathways. From the pioneering works by Reddy et al., 1993, and Hofestädt, 1994, that model metabolic pathways by traditional Petri net, several enhanced Petri nets such as colored Petri net, stochastic Petri net, and hybrid Petri net have been used for modeling biological phenomena. Recently, Matsuno et al., 2003b, introduced the hybrid functional Petri net (HFPN) in order to give a more intuitive and natural modeling method for biological pathways than these existing Petri nets. Although the paper demonstrates the effectiveness of HFPN with two examples of gene regulation mechanism for circadian rhythms and apoptosis signaling pathway, there has been no detailed explanation about the method of HFPN construction for these examples. The purpose of this paper is to describe method to construct biological pathways with the HFPN step-by-step. The method is demonstrated by the well-known glycolytic pathway controlled by the lac operon gene regulatory mechanism.
Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M.
2011-01-01
We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, Transition Path Theory (TPT) for constructing folding pathways and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270K and 566K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the Weighted-Histogram-Analysis Method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (Pfold) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding “tubes”, a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways. PMID:21254767
Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M
2011-02-17
We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, transition path theory (TPT) for constructing folding pathways, and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270 and 566 K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the weighted-histogram-analysis method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (P(fold)) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding "tubes", a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network, and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways.
2013-01-01
Background Care pathways are widely used in hospitals for a structured and detailed planning of the care process. There is a growing interest in extending care pathways into primary care to improve quality of care by increasing care coordination. Evidence is sparse about the relationship between care pathways and care coordination. The multi-level framework explores care coordination across organizations and states that (inter)organizational mechanisms have an effect on the relationships between healthcare professionals, resulting in quality and efficiency of care. The aim of this study was to assess the extent to which care pathways support or create elements of the multi-level framework necessary to improve care coordination across the primary - hospital care continuum. Methods This study is an in-depth analysis of five existing local community projects located in four different regions in Flanders (Belgium) to determine whether the available empirical evidence supported or refuted the theoretical expectations from the multi-level framework. Data were gathered using mixed methods, including structured face-to-face interviews, participant observations, documentation and a focus group. Multiple cases were analyzed performing a cross case synthesis to strengthen the results. Results The development of a care pathway across the primary-hospital care continuum, supported by a step-by-step scenario, led to the use of existing and newly constructed structures, data monitoring and the development of information tools. The construction and use of these inter-organizational mechanisms had a positive effect on exchanging information, formulating and sharing goals, defining and knowing each other’s roles, expectations and competences and building qualitative relationships. Conclusion Care pathways across the primary-hospital care continuum enhance the components of care coordination. PMID:23919518
Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh
2017-01-01
Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397
Mallik, Mrinmay Kumar
2018-02-07
Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that is indicative of their strong influence in the protein protein interaction network. Similarly the newly proposed GEADCA helped identify the transcription factors with high centrality values indicative of their key roles in transcriptional regulation. The enrichment studies provided a list of molecular functions, biological processes and biochemical pathways associated with the constructed network. The study shows how pathway based databases may be used to create and analyze a relevant protein interaction network in glioma cancer stem cells and identify the essential elements within it to gather insights into the molecular interactions that regulate the properties of glioma stem cells. How these insights may be utilized to help the development of future research towards formulation of new management strategies have been discussed from a theoretical standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.
Linkov, Pavel; Artemyev, Mikhail; Efimov, Anton E; Nabiev, Igor
2013-10-07
Fabrication of modern nanomaterials and nanostructures with specific functional properties is both scientifically promising and commercially profitable. The preparation and use of nanomaterials require adequate methods for the control and characterization of their size, shape, chemical composition, crystalline structure, energy levels, pathways and dynamics of physical and chemical processes during their fabrication and further use. In this review, we discuss different instrumental methods for the analysis and metrology of materials and evaluate their advantages and limitations at the nanolevel.
Zhou, Zhongkai; Wang, Yuyang; Jiang, Yumei; Diao, Yongjia; Strappe, Padraig; Prenzler, Paul; Ayton, Jamie; Blanchard, Chris
2016-04-28
Deep frying in oil is a popular cooking method around the world. However, the safety of deep-fried edible oil, which is ingested with fried food, is a concern, because the oil is exposed continuously to be re-used at a high temperature, leading to a number of well-known chemical reactions. Thus, this study investigates the changes in energy metabolism, colon histology and gut microbiota in rats following deep-fried oil consumption and explores the mechanisms involved in above alterations. Deep-fried oil was prepared following a published method. Adult male Wistar rats were randomly divided into three groups (n = 8/group). Group 1: basal diet without extra oil consumption (control group); Group 2: basal diet supplemented with non-heated canola oil (NEO group); Group 3: basal diet supplemented with deep-fried canola oil (DFEO group). One point five milliliters (1.5 mL) of non-heated or heated oil were fed by oral gavage using a feeding needle once daily for 6 consecutive weeks. Effect of DFEO on rats body weight, KEGG pathway regarding lipids metabolism, gut histology and gut microbiota were analyzed using techniques of RNA sequencing, HiSeq Illumina sequencing platform, etc. Among the three groups, DFEO diet resulted in a lowest rat body weight. Metabolic pathway analysis showed 13 significantly enriched KEGG pathways in Control versus NEO group, and the majority of these were linked to carbohydrate, lipid and amino acid metabolisms. Comparison of NEO group versus DFEO group, highlighted significantly enriched functional pathways were mainly associated with chronic diseases. Among them, only one metabolism pathway (i.e. glycerolipid metabolism pathway) was found to be significantly enriched, indicating that inhibition of this metabolism pathway (glycerolipid metabolism) may be a response to the reduction in energy metabolism in the rats of DFEO group. Related gene analysis indicated that the down-regulation of Lpin1 seems to be highly associated with the inhibition of glycerolipid metabolism pathway. Histological analysis of gastrointestinal tract demonstrated several changes induced by DFEO on intestinal mucosa with associated destruction of endocrine tissue and the evidence of inflammation. Microbiota data showed that rats in DFEO group had the lowest proportion of Prevotella and the highest proportion of Bacteroides among the three groups. In particular, rats in DFEO group were characterized with higher presence of Allobaculum (Firmicutes), but not in control and NEO groups. This study investigated the negative effect of DFEO on health, in which DFEO could impair glycerolipid metabolism, destroy gut histological structure and unbalance microbiota profile. More importantly, this is the first attempt to reveal the mechanism involved in these changes, which may provide the guideline for designing health diet.
Analyzing the differentially expressed genes and pathway cross-talk in aggressive breast cancer.
Chen, Wen-Yan; Wu, Fang; You, Zhen-Yu; Zhang, Zhan-Min; Guo, Yu-Ling; Zhong, Lu-Xing
2015-01-01
The aim of this study was to explore the genes and pathways involved in the aggressive breast cancer cells. The gene expression profiles of GSE40057, including four aggressive breast cell lines and six less aggressive cell lines, were downloaded from the Gene Expression Omnibus (GEO) database. The gene differential expression analysis was carried out with limma software with the method of Bayes for multiple tests. The gene ontology (GO) term enrichment and pathway cross-talk analysis were performed with the online tool of DAVID and Cytoscape software. A total of 401 differentially expressed genes (DEG), such as pentraxin 3 (PTX3), snail family zinc finger 2 (SNAI2), interleukin-8/6 (IL-8/6), osteonectin (SPARC), matrix metallopeptidase-1 (MMP-1) and Ras-related protein Rab-25 (Rab 25), were identified between aggressive and less aggressive cell lines. They were mainly enriched in the GO terms of response to wounding, negative regulation of cell proliferation and calcium binding. Pathways in cancer dysfunctionally interacted with glyoxylate and dicarboxylate metabolism (P < 0.0001), basal transcription factors (P < 0.0001), tyrosine metabolism (P < 0.0001), calcium signaling pathway (P = 0.0021), FcγR-mediated phagocytosis (P = 0.0022), metabolism of xenobiotics by cytochrome P450 (P = 0.0097) and phagosome (P = 0.0102). The screened aggressive cancer-associated DEG (PTX3, SNAI2, IL-8/6, SPARC, MMP-1 and Rab25) and significant pathways (calcium signaling pathway, tyrosine metabolism, alanine, aspartate and glutamate metabolism) give us new insights into the mechanism of aggressive breast cancer cells, and these DEG may become promising target genes in the treatment of metastatic breast cancer. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.
Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.
2013-01-01
Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166
Disrupting the Pipeline: Critical Analyses of Student Pathways through Postsecondary STEM Education
ERIC Educational Resources Information Center
Metcalf, Heather E.
2014-01-01
Critical mixed methods approaches allow us to reflect upon the ways in which we collect, measure, interpret, and analyze data, providing novel alternatives for quantitative analysis. For institutional researchers, whose work influences institutional policies, programs, and practices, the approach has the transformative ability to expose and create…
USDA-ARS?s Scientific Manuscript database
Increased temperatures in the Southwestern United States will impact future crop production via multiple pathways. We used four methods to provide an illustrative analysis of midcentury temperature impacts to eight field crops. By midcentury, cropland area thermally suitable for maize cultivation is...
Three key areas of scientific inquiry in the study of human exposure to environmental contaminants are 1) assessment of aggregate (i.e., multi-pathway, multi-route) exposures, 2) application of probabilistic methods to exposure prediction, and 3) the interpretation of biomarker m...
Principal elementary mode analysis (PEMA).
Folch-Fortuny, Abel; Marques, Rodolfo; Isidro, Inês A; Oliveira, Rui; Ferrer, Alberto
2016-03-01
Principal component analysis (PCA) has been widely applied in fluxomics to compress data into a few latent structures in order to simplify the identification of metabolic patterns. These latent structures lack a direct biological interpretation due to the intrinsic constraints associated with a PCA model. Here we introduce a new method that significantly improves the interpretability of the principal components with a direct link to metabolic pathways. This method, called principal elementary mode analysis (PEMA), establishes a bridge between a PCA-like model, aimed at explaining the maximum variance in flux data, and the set of elementary modes (EMs) of a metabolic network. It provides an easy way to identify metabolic patterns in large fluxomics datasets in terms of the simplest pathways of the organism metabolism. The results using a real metabolic model of Escherichia coli show the ability of PEMA to identify the EMs that generated the different simulated flux distributions. Actual flux data of E. coli and Pichia pastoris cultures confirm the results observed in the simulated study, providing a biologically meaningful model to explain flux data of both organisms in terms of the EM activation. The PEMA toolbox is freely available for non-commercial purposes on http://mseg.webs.upv.es.
Nguyen, Phuong H
2007-05-15
Principal component analysis is a powerful method for projecting multidimensional conformational space of peptides or proteins onto lower dimensional subspaces in which the main conformations are present, making it easier to reveal the structures of molecules from e.g. molecular dynamics simulation trajectories. However, the identification of all conformational states is still difficult if the subspaces consist of more than two dimensions. This is mainly due to the fact that the principal components are not independent with each other, and states in the subspaces cannot be visualized. In this work, we propose a simple and fast scheme that allows one to obtain all conformational states in the subspaces. The basic idea is that instead of directly identifying the states in the subspace spanned by principal components, we first transform this subspace into another subspace formed by components that are independent of one other. These independent components are obtained from the principal components by employing the independent component analysis method. Because of independence between components, all states in this new subspace are defined as all possible combinations of the states obtained from each single independent component. This makes the conformational analysis much simpler. We test the performance of the method by analyzing the conformations of the glycine tripeptide and the alanine hexapeptide. The analyses show that our method is simple and quickly reveal all conformational states in the subspaces. The folding pathways between the identified states of the alanine hexapeptide are analyzed and discussed in some detail. 2007 Wiley-Liss, Inc.
Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma
Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang
2017-01-01
Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578
Molecular profiles to biology and pathways: a systems biology approach.
Van Laere, Steven; Dirix, Luc; Vermeulen, Peter
2016-06-16
Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.
Pathway analysis of genome-wide association datasets of personality traits.
Kim, H-N; Kim, B-H; Cho, J; Ryu, S; Shin, H; Sung, J; Shin, C; Cho, N H; Sung, Y A; Choi, B-O; Kim, H-L
2015-04-01
Although several genome-wide association (GWA) studies of human personality have been recently published, genetic variants that are highly associated with certain personality traits remain unknown, due to difficulty reproducing results. To further investigate these genetic variants, we assessed biological pathways using GWA datasets. Pathway analysis using GWA data was performed on 1089 Korean women whose personality traits were measured with the Revised NEO Personality Inventory for the 5-factor model of personality. A total of 1042 pathways containing 8297 genes were included in our study. Of these, 14 pathways were highly enriched with association signals that were validated in 1490 independent samples. These pathways include association of: Neuroticism with axon guidance [L1 cell adhesion molecule (L1CAM) interactions]; Extraversion with neuronal system and voltage-gated potassium channels; Agreeableness with L1CAM interaction, neurotransmitter receptor binding and downstream transmission in postsynaptic cells; and Conscientiousness with the interferon-gamma and platelet-derived growth factor receptor beta polypeptide pathways. Several genes that contribute to top-ranked pathways in this study were previously identified in GWA studies or by pathway analysis in schizophrenia or other neuropsychiatric disorders. Here we report the first pathway analysis of all five personality traits. Importantly, our analysis identified novel pathways that contribute to understanding the etiology of personality traits. © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma
Zhang, Feng; Chen, Xia; Wei, Ke; Liu, Daoming; Xu, Xiaodong; Zhang, Xing; Shi, Hong
2017-01-01
Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways. PMID:28081052
Nonlinear analysis of saccade speed fluctuations during combined action and perception tasks
Stan, C.; Astefanoaei, C.; Pretegiani, E.; Optican, L.; Creanga, D.; Rufa, A.; Cristescu, C.P.
2014-01-01
Background: Saccades are rapid eye movements used to gather information about a scene which requires both action and perception. These are usually studied separately, so that how perception influences action is not well understood. In a dual task, where the subject looks at a target and reports a decision, subtle changes in the saccades might be caused by action-perception interactions. Studying saccades might provide insight into how brain pathways for action and for perception interact. New method: We applied two complementary methods, multifractal detrended fluctuation analysis and Lempel-Ziv complexity index to eye peak speed recorded in two experiments, a pure action task and a combined action-perception task. Results: Multifractality strength is significantly different in the two experiments, showing smaller values for dual decision task saccades compared to simple-task saccades. The normalized Lempel-Ziv complexity index behaves similarly i.e. is significantly smaller in the decision saccade task than in the simple task. Comparison with existing methods: Compared to the usual statistical and linear approaches, these analyses emphasize the character of the dynamics involved in the fluctuations and offer a sensitive tool for quantitative evaluation of the multifractal features and of the complexity measure in the saccades peak speeds when different brain circuits are involved. Conclusion: Our results prove that the peak speed fluctuations have multifractal characteristics with lower magnitude for the multifractality strength and for the complexity index when two neural pathways are simultaneously activated, demonstrating the nonlinear interaction in the brain pathways for action and perception. PMID:24854830
Serum Metabolomic Profiling in Acute Alcoholic Hepatitis Identifies Multiple Dysregulated Pathways
Rachakonda, Vikrant; Gabbert, Charles; Raina, Amit; Bell, Lauren N.; Cooper, Sara; Malik, Shahid; Behari, Jaideep
2014-01-01
Background and Objectives While animal studies have implicated derangements of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis (AAH), the relevance of these findings to the development of human AAH remains unclear. Using global, unbiased serum metabolomics analysis, we sought to characterize alterations in metabolic pathways associated with severe AAH and identify potential biomarkers for disease prognosis. Methods This prospective, case-control study design included 25 patients with severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples were collected within 24 hours of the index clinical encounter. Global, unbiased metabolomics profiling was performed. Patients were followed for 180 days after enrollment to determine survival. Results Levels of 234 biochemicals were altered in subjects with severe AAH. Random-forest analysis, principal component analysis, and integrated hierarchical clustering methods demonstrated that metabolomics profiles separated the two cohorts with 100% accuracy. Severe AAH was associated with enhanced triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and upregulated omega oxidation. Low levels of multiple lysolipids and related metabolites suggested decreased plasma membrane remodeling in severe AAH. While most measured bile acids were increased in severe AAH, low deoxycholate and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in substrate utilization for energy homeostasis were identified in severe AAH, including increased glucose consumption by the pentose phosphate pathway, altered tricarboxylic acid (TCA) cycle activity, and enhanced peptide catabolism. Finally, altered levels of small molecules related to glutathione metabolism and antioxidant vitamin depletion were observed in patients with severe AAH. Univariable logistic regression revealed 15 metabolites associated with 180-day survival in severe AAH. Conclusion Severe AAH is characterized by a distinct metabolic phenotype spanning multiple pathways. Metabolomics profiling revealed a panel of biomarkers for disease prognosis, and future studies are planned to validate these findings in larger cohorts of patients with severe AAH. PMID:25461442
NASA Astrophysics Data System (ADS)
Nassiri, Isar; Lombardo, Rosario; Lauria, Mario; Morine, Melissa J.; Moyseos, Petros; Varma, Vijayalakshmi; Nolen, Greg T.; Knox, Bridgett; Sloper, Daniel; Kaput, Jim; Priami, Corrado
2016-07-01
The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules.
Connectome imaging for mapping human brain pathways
Shi, Y; Toga, A W
2017-01-01
With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research. PMID:28461700
Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian
2017-01-01
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS. PMID:28949383
Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander
2016-01-01
Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894
A comparison between elastic network interpolation and MD simulation of 16S ribosomal RNA.
Kim, Moon K; Li, Wen; Shapiro, Bruce A; Chirikjian, Gregory S
2003-12-01
In this paper a coarse-grained method called elastic network interpolation (ENI) is used to generate feasible transition pathways between two given conformations of the core central domain of 16S Ribosomal RNA (16S rRNA). The two given conformations are the extremes generated by a molecular dynamics (MD) simulation, which differ from each other by 10A in root-mean-square deviation (RMSD). It takes only several hours to build an ENI pathway on a 1.5GHz Pentium with 512 MB memory, while the MD takes several weeks on high-performance multi-processor servers such as the SGI ORIGIN 2000/2100. It is shown that multiple ENI pathways capture the essential anharmonic motions of millions of timesteps in a particular MD simulation. A coarse-grained normal mode analysis (NMA) is performed on each intermediate ENI conformation, and the lowest 1% of the normal modes (representing about 40 degrees of freedom (DOF)) are used to parameterize fluctuations. This combined ENI/NMA method captures all intermediate conformations in the MD run with 1.5A RMSD on average. In addition, if we restrict attention to the time interval of the MD run between the two extreme conformations, the RMSD between the closest ENI/NMA pathway and the MD results is about 1A. These results may serve as a paradigm for reduced-DOF dynamic simulations of large biological macromolecules as well as a method for the reduced-parameter interpretation of massive amounts of MD data.
Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes.
Lanza, Ian R; Zhang, Shucha; Ward, Lawrence E; Karakelides, Helen; Raftery, Daniel; Nair, K Sreekumaran
2010-05-10
Insulin is as a major postprandial hormone with profound effects on carbohydrate, fat, and protein metabolism. In the absence of exogenous insulin, patients with type 1 diabetes exhibit a variety of metabolic abnormalities including hyperglycemia, glycosurea, accelerated ketogenesis, and muscle wasting due to increased proteolysis. We analyzed plasma from type 1 diabetic (T1D) humans during insulin treatment (I+) and acute insulin deprivation (I-) and non-diabetic participants (ND) by (1)H nuclear magnetic resonance spectroscopy and liquid chromatography-tandem mass spectrometry. The aim was to determine if this combination of analytical methods could provide information on metabolic pathways known to be altered by insulin deficiency. Multivariate statistics differentiated proton spectra from I- and I+ based on several derived plasma metabolites that were elevated during insulin deprivation (lactate, acetate, allantoin, ketones). Mass spectrometry revealed significant perturbations in levels of plasma amino acids and amino acid metabolites during insulin deprivation. Further analysis of metabolite levels measured by the two analytical techniques indicates several known metabolic pathways that are perturbed in T1D (I-) (protein synthesis and breakdown, gluconeogenesis, ketogenesis, amino acid oxidation, mitochondrial bioenergetics, and oxidative stress). This work demonstrates the promise of combining multiple analytical methods with advanced statistical methods in quantitative metabolomics research, which we have applied to the clinical situation of acute insulin deprivation in T1D to reflect the numerous metabolic pathways known to be affected by insulin deficiency.
2012-01-01
Background As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. Methods Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. Results The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. Conclusions The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells. PMID:23088614
Microarray analysis reveals key genes and pathways in Tetralogy of Fallot
He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai
2017-01-01
The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF. PMID:28713939
Fu, J; Su, Y; Liu, Y; Zhang, X Y
2018-04-09
Objective: To compare the methylation profiles in tissues of oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC) with healthy tissues of oral mucosa, in order to identify the role of DNA methylation played in tumorigenesis. Methods: DNA samples extracted from tissues of 4 healthy oral mucosa, 4 OSCC and 4 OLK collected from patients of the Department of Oral Medicine, Capital Medical University School of Stomatology were examined and compared using Methylation 450 Bead Chip. The genes associated with differentially methylated CpG sites were selected for gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment. Results: Multiple differentially methylated CpG sites were identified by using the above mentioned assay. Hypermethylation constitutes 86.18% (23 290/27 025) of methylation changes in OLK and hypomethylation accounts for 13.82% (3 734/27 025) of methylation changes. Both hypermethylated and hypomethylated CpG sites were markedly increased in OSCC tissue compared with OLK tissue. The majority of differentially methylated CpG sites were located outside CpG islands, with approximately one-fourth in CpG shores flanking the islands, which were considered highly important for gene regulation and tumorigenesis. Pathway analysis revealed that differentially methylated CpG sites in both OLK and OSCC patients shared the same pathway enrichments, most of which were correlated with carcinogenesis and cancer progression (e.g., DNA repair, cell cycle, and apoptosis). Conclusions: In the present study, methylation-associated alterations affect almost all pathways in the cellular network in both OLK and OSCC. OLK and OSCC shared similar methylation changes whether in pathways or genes, indicating that epigenetically they might have the same molecular basis for disease progression.
Free energy landscape and molecular pathways of gas hydrate nucleation.
Bi, Yuanfei; Porras, Anna; Li, Tianshu
2016-12-07
Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.
Free energy landscape and molecular pathways of gas hydrate nucleation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Yuanfei; Porras, Anna; Li, Tianshu, E-mail: tsli@gwu.edu
Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p{sub B} histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage ordermore » parameter (H-COP) which we developed for driving FFS, through conducting the p{sub B} histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.« less
Explore the Features of Brain-Derived Neurotrophic Factor in Mood Disorders
Yeh, Fan-Chi; Kao, Chung-Feng; Kuo, Po-Hsiu
2015-01-01
Objectives Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal survival and differentiation; however, the effects of BDNF on mood disorders remain unclear. We investigated BDNF from the perspective of various aspects of systems biology, including its molecular evolution, genomic studies, protein functions, and pathway analysis. Methods We conducted analyses examining sequences, multiple alignments, phylogenetic trees and positive selection across 12 species and several human populations. We summarized the results of previous genomic and functional studies of pro-BDNF and mature-BDNF (m-BDNF) found in a literature review. We identified proteins that interact with BDNF and performed pathway-based analysis using large genome-wide association (GWA) datasets obtained for mood disorders. Results BDNF is encoded by a highly conserved gene. The chordate BDNF genes exhibit an average of 75% identity with the human gene, while vertebrate orthologues are 85.9%-100% identical to human BDNF. No signs of recent positive selection were found. Associations between BDNF and mood disorders were not significant in most of the genomic studies (e.g., linkage, association, gene expression, GWA), while relationships between serum/plasma BDNF level and mood disorders were consistently reported. Pro-BDNF is important in the response to stress; the literature review suggests the necessity of studying both pro- and m-BDNF with regard to mood disorders. In addition to conventional pathway analysis, we further considered proteins that interact with BDNF (I-Genes) and identified several biological pathways involved with BDNF or I-Genes to be significantly associated with mood disorders. Conclusions Systematically examining the features and biological pathways of BDNF may provide opportunities to deepen our understanding of the mechanisms underlying mood disorders. PMID:26091093
Wang, Ting-Ting; Li, Jin-Mei; Zhou, Dong
2016-01-01
With great interest, we read the paper "Polymorphisms in IL-4/IL-13 pathway genes and glioma risk: an updated meta-analysis" (by Chen PQ et al.) [1], which has reached important conclusions about the relationship between polymorphisms in interleukin (IL)-4/IL-13 pathway genes and glioma risk. Through quantitative analysis, the meta-analysis found no association between IL-4/IL-13 pathway genetic polymorphisms and glioma risk (Chen et al. in Tumor Biol 36:121-127, 2015). The meta-analysis is the most comprehensive study of polymorphisms in the IL-4/IL-13 pathway and glioma risk. Nevertheless, some deficiencies still exist in this meta-analysis that we would like to raise.
Silver, Matt; Montana, Giovanni
2012-01-01
Where causal SNPs (single nucleotide polymorphisms) tend to accumulate within biological pathways, the incorporation of prior pathways information into a statistical model is expected to increase the power to detect true associations in a genetic association study. Most existing pathways-based methods rely on marginal SNP statistics and do not fully exploit the dependence patterns among SNPs within pathways. We use a sparse regression model, with SNPs grouped into pathways, to identify causal pathways associated with a quantitative trait. Notable features of our “pathways group lasso with adaptive weights” (P-GLAW) algorithm include the incorporation of all pathways in a single regression model, an adaptive pathway weighting procedure that accounts for factors biasing pathway selection, and the use of a bootstrap sampling procedure for the ranking of important pathways. P-GLAW takes account of the presence of overlapping pathways and uses a novel combination of techniques to optimise model estimation, making it fast to run, even on whole genome datasets. In a comparison study with an alternative pathways method based on univariate SNP statistics, our method demonstrates high sensitivity and specificity for the detection of important pathways, showing the greatest relative gains in performance where marginal SNP effect sizes are small. PMID:22499682
Tay, Wee Tek; Walsh, Thomas K.; Downes, Sharon; Anderson, Craig; Jermiin, Lars S.; Wong, Thomas K. F.; Piper, Melissa C.; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T.; Silvie, Pierre; Soria, Miguel F.; Frayssinet, Marie; Gordon, Karl H. J.
2017-01-01
The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports. PMID:28350004
Integrated omics analysis of specialized metabolism in medicinal plants.
Rai, Amit; Saito, Kazuki; Yamazaki, Mami
2017-05-01
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Formal reasoning about systems biology using theorem proving
Hasan, Osman; Siddique, Umair; Tahar, Sofiène
2017-01-01
System biology provides the basis to understand the behavioral properties of complex biological organisms at different levels of abstraction. Traditionally, analysing systems biology based models of various diseases have been carried out by paper-and-pencil based proofs and simulations. However, these methods cannot provide an accurate analysis, which is a serious drawback for the safety-critical domain of human medicine. In order to overcome these limitations, we propose a framework to formally analyze biological networks and pathways. In particular, we formalize the notion of reaction kinetics in higher-order logic and formally verify some of the commonly used reaction based models of biological networks using the HOL Light theorem prover. Furthermore, we have ported our earlier formalization of Zsyntax, i.e., a deductive language for reasoning about biological networks and pathways, from HOL4 to the HOL Light theorem prover to make it compatible with the above-mentioned formalization of reaction kinetics. To illustrate the usefulness of the proposed framework, we present the formal analysis of three case studies, i.e., the pathway leading to TP53 Phosphorylation, the pathway leading to the death of cancer stem cells and the tumor growth based on cancer stem cells, which is used for the prognosis and future drug designs to treat cancer patients. PMID:28671950
Tay, Wee Tek; Walsh, Thomas K; Downes, Sharon; Anderson, Craig; Jermiin, Lars S; Wong, Thomas K F; Piper, Melissa C; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T; Silvie, Pierre; Soria, Miguel F; Frayssinet, Marie; Gordon, Karl H J
2017-03-28
The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports.
NASA Astrophysics Data System (ADS)
Tay, Wee Tek; Walsh, Thomas K.; Downes, Sharon; Anderson, Craig; Jermiin, Lars S.; Wong, Thomas K. F.; Piper, Melissa C.; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T.; Silvie, Pierre; Soria, Miguel F.; Frayssinet, Marie; Gordon, Karl H. J.
2017-03-01
The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports.
Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees
2018-06-07
The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.
Riordan, Sean M.; Bittel, Douglas C.; Le Pichon, Jean-Baptiste; Gazzin, Silvia; Tiribelli, Claudio; Watchko, Jon F.; Wennberg, Richard P.; Shapiro, Steven M.
2016-01-01
Genetic-based susceptibility to bilirubin neurotoxicity and chronic bilirubin encephalopathy (kernicterus) is still poorly understood. Neonatal jaundice affects 60–80% of newborns, and considerable effort goes into preventing this relatively benign condition from escalating into the development of kernicterus making the incidence of this potentially devastating condition very rare in more developed countries. The current understanding of the genetic background of kernicterus is largely comprised of mutations related to alterations of bilirubin production, elimination, or both. Less is known about mutations that may predispose or protect against CNS bilirubin neurotoxicity. The lack of a monogenetic source for this risk of bilirubin neurotoxicity suggests that disease progression is dependent upon an overall decrease in the functionality of one or more essential genetically controlled metabolic pathways. In other words, a “load” is placed on key pathways in the form of multiple genetic variants that combine to create a vulnerable phenotype. The idea of epistatic interactions creating a pathway genetic load (PGL) that affects the response to a specific insult has been previously reported as a PGL score. We hypothesize that the PGL score can be used to investigate whether increased susceptibility to bilirubin-induced CNS damage in neonates is due to a mutational load being placed on key genetic pathways important to the central nervous system's response to bilirubin neurotoxicity. We propose a modification of the PGL score method that replaces the use of a canonical pathway with custom gene lists organized into three tiers with descending levels of evidence combined with the utilization of single nucleotide polymorphism (SNP) causality prediction methods. The PGL score has the potential to explain the genetic background of complex bilirubin induced neurological disorders (BIND) such as kernicterus and could be the key to understanding ranges of outcome severity in complex diseases. We anticipate that this method could be useful for improving the care of jaundiced newborns through its use as an at-risk screen. Importantly, this method would also be useful in uncovering basic knowledge about this and other polygenetic diseases whose genetic source is difficult to discern through traditional means such as a genome-wide association study. PMID:27587993
Salinas, Jorge L.; Monteiro, Wuelton M.; Val, Fernando; Cordy, Regina J.; Liu, Ken; Melo, Gisely C.; Siqueira, Andre M.; Magalhaes, Belisa; Galinski, Mary R.; Lacerda, Marcus V. G.; Jones, Dean P.
2017-01-01
Background Chloroquine (CQ) is the main anti-schizontocidal drug used in the treatment of uncomplicated malaria caused by Plasmodium vivax. Chloroquine resistant P. vivax (PvCR) malaria in the Western Pacific region, Asia and in the Americas indicates a need for biomarkers of resistance to improve therapy and enhance understanding of the mechanisms associated with PvCR. In this study, we compared plasma metabolic profiles of P. vivax malaria patients with PvCR and chloroquine sensitive parasites before treatment to identify potential molecular markers of chloroquine resistance. Methods An untargeted high-resolution metabolomics analysis was performed on plasma samples collected in a malaria clinic in Manaus, Brazil. Male and female patients with Plasmodium vivax were included (n = 46); samples were collected before CQ treatment and followed for 28 days to determine PvCR, defined as the recurrence of parasitemia with detectable plasma concentrations of CQ ≥100 ng/dL. Differentially expressed metabolic features between CQ-Resistant (CQ-R) and CQ-Sensitive (CQ-S) patients were identified using partial least squares discriminant analysis and linear regression after adjusting for covariates and multiple testing correction. Pathway enrichment analysis was performed using Mummichog. Results Linear regression and PLS-DA methods yielded 69 discriminatory features between CQ-R and CQ-S groups, with 10-fold cross-validation classification accuracy of 89.6% using a SVM classifier. Pathway enrichment analysis showed significant enrichment (p<0.05) of glycerophospholipid metabolism, glycosphingolipid metabolism, aspartate and asparagine metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Glycerophosphocholines levels were significantly lower in the CQ-R group as compared to CQ-S patients and also to independent control samples. Conclusions The results show differences in lipid, amino acids, and nucleotide metabolism pathways in the plasma of CQ-R versus CQ-S patients prior to antimalarial treatment. Metabolomics phenotyping of P. vivax samples from patients with well-defined clinical CQ-resistance is promising for the development of new tools to understand the biological process and to identify potential biomarkers of PvCR. PMID:28813452
Kasahara, Kota; Fukuda, Ikuo; Nakamura, Haruki
2014-01-01
The dynamic cross correlation (DCC) analysis is a popular method for analyzing the trajectories of molecular dynamics (MD) simulations. However, it is difficult to detect correlative motions that appear transiently in only a part of the trajectory, such as atomic contacts between the side-chains of amino acids, which may rapidly flip. In order to capture these multi-modal behaviors of atoms, which often play essential roles, particularly at the interfaces of macromolecules, we have developed the "multi-modal DCC (mDCC)" analysis. The mDCC is an extension of the DCC and it takes advantage of a Bayesian-based pattern recognition technique. We performed MD simulations for molecular systems modeled from the (Ets1)2-DNA complex and analyzed their results with the mDCC method. Ets1 is an essential transcription factor for a variety of physiological processes, such as immunity and cancer development. Although many structural and biochemical studies have so far been performed, its DNA binding properties are still not well characterized. In particular, it is not straightforward to understand the molecular mechanisms how the cooperative binding of two Ets1 molecules facilitates their recognition of Stromelysin-1 gene regulatory elements. A correlation network was constructed among the essential atomic contacts, and the two major pathways by which the two Ets1 molecules communicate were identified. One is a pathway via direct protein-protein interactions and the other is that via the bound DNA intervening two recognition helices. These two pathways intersected at the particular cytosine bases (C110/C11), interacting with the H1, H2, and H3 helices. Furthermore, the mDCC analysis showed that both pathways included the transient interactions at their intermolecular interfaces of Tyr396-C11 and Ala327-Asn380 in multi-modal motions of the amino acid side chains and the nucleotide backbone. Thus, the current mDCC approach is a powerful tool to reveal these complicated behaviors and scrutinize intermolecular communications in a molecular system.
Global analysis of bacterial transcription factors to predict cellular target processes.
Doerks, Tobias; Andrade, Miguel A; Lathe, Warren; von Mering, Christian; Bork, Peer
2004-03-01
Whole-genome sequences are now available for >100 bacterial species, giving unprecedented power to comparative genomics approaches. We have applied genome-context methods to predict target processes that are regulated by transcription factors (TFs). Of 128 orthologous groups of proteins annotated as TFs, to date, 36 are functionally uncharacterized; in our analysis we predict a probable cellular target process or biochemical pathway for half of these functionally uncharacterized TFs.
Identification of metabolic pathways using pathfinding approaches: a systematic review.
Abd Algfoor, Zeyad; Shahrizal Sunar, Mohd; Abdullah, Afnizanfaizal; Kolivand, Hoshang
2017-03-01
Metabolic pathways have become increasingly available for various microorganisms. Such pathways have spurred the development of a wide array of computational tools, in particular, mathematical pathfinding approaches. This article can facilitate the understanding of computational analysis of metabolic pathways in genomics. Moreover, stoichiometric and pathfinding approaches in metabolic pathway analysis are discussed. Three major types of studies are elaborated: stoichiometric identification models, pathway-based graph analysis and pathfinding approaches in cellular metabolism. Furthermore, evaluation of the outcomes of the pathways with mathematical benchmarking metrics is provided. This review would lead to better comprehension of metabolism behaviors in living cells, in terms of computed pathfinding approaches. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox).
Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang
2014-01-01
Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data provided a useful database for further research of wintersweet and other Calycanthaceae family plants.
Mahler, Simon A.; Riley, Robert F.; Russell, Gregory B.; Hiestand, Brian C.; Hoekstra, James W.; Lefebvre, Cedric W.; Nicks, Bret A.; Cline, David M.; Askew, Kim L.; Bringolf, John; Elliott, Stephanie B.; Herrington, David M.; Burke, Gregory L.; Miller, Chadwick D.
2015-01-01
Objectives Accelerated diagnostic protocols (ADP), such as the HEART Pathway, are gaining popularity in emergency departments (EDs) as tools used to risk-stratify patients with acute chest pain. However, provider non-adherence may threaten the safety and effectiveness of ADPs. The objective of this study was to determine the frequency and impact of ADP non-adherence. Methods A secondary analysis of participants enrolled in the HEART Pathway RCT was conducted. This trial enrolled 282 adult ED patients with symptoms concerning for acute coronary syndrome without ST-elevation on electrocardiogram. Patients randomized to the HEART Pathway (N = 141) were included in this analysis. Outcomes included index visit disposition, non-adherence, and major adverse cardiac events (MACE) at 30 days. MACE was defined as death, myocardial infarction, or revascularization. Non-adherence was defined as: 1) under-testing: discharging a high-risk patient from the ED without objective testing (stress testing or coronary angiography); or 2) over-testing: admitting or obtaining objective testing on a low-risk patient. Results Non-adherence to the HEART Pathway occurred in 28 out of 141 patients (20%, 95% CI = 14% to 27%). Over-testing occurred in 19 of 141 patients (13.5%, 95% CI = 8% to 19%) and under-testing in 9 of 141 patients (6%, 95% CI = 3% to 12%). None of these 28 patients suffered MACE. The net effect of non-adherence was ten additional admissions among patients identified as low-risk and appropriate for early discharge (absolute decrease in discharge rate of 7%, 95% CI = 3% to 13%). Conclusions Real-time use of the HEART Pathway resulted in a non-adherence rate of 20%, mostly due to over-testing. None of these patients had MACE within 30 days. Non-adherence decreased the discharge rate, attenuating the HEART Pathway’s impact on health care use. PMID:26720295
Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di
2015-01-01
Purpose: Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). Methods: In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. Results: The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. Conclusion: The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI. PMID:26823722
Transcriptomic Analysis of Flower Development in Wintersweet (Chimonanthus praecox)
Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang
2014-01-01
Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data provided a useful database for further research of wintersweet and other Calycanthaceae family plants. PMID:24489818
NASA Astrophysics Data System (ADS)
Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng
2016-04-01
Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition.
Toll like receptors gene expression of human keratinocytes cultured of severe burn injury.
Cornick, Sarita Mac; Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Cezillo, Marcus V B; Ferreira, Lydia Masako; Gragnani, Alfredo
2014-01-01
To evaluate the expression profile of genes related to Toll Like Receptors (TLR) pathways of human Primary Epidermal keratinocytes of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific TLR pathways PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 21% of these genes were differentially expressed, of which 100% were repressed or hyporegulated. Among these, the following genes (fold decrease): HSPA1A (-58), HRAS (-36), MAP2K3 (-23), TOLLIP (-23), RELA (-18), FOS (-16), and TLR1 (-6.0). This study contributes to the understanding of the molecular mechanisms related to TLR pathways and underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.
Mining gene link information for survival pathway hunting.
Jing, Gao-Jian; Zhang, Zirui; Wang, Hong-Qiang; Zheng, Hong-Mei
2015-08-01
This study proposes a gene link-based method for survival time-related pathway hunting. In this method, the authors incorporate gene link information to estimate how a pathway is associated with cancer patient's survival time. Specifically, a gene link-based Cox proportional hazard model (Link-Cox) is established, in which two linked genes are considered together to represent a link variable and the association of the link with survival time is assessed using Cox proportional hazard model. On the basis of the Link-Cox model, the authors formulate a new statistic for measuring the association of a pathway with survival time of cancer patients, referred to as pathway survival score (PSS), by summarising survival significance over all the gene links in the pathway, and devise a permutation test to test the significance of an observed PSS. To evaluate the proposed method, the authors applied it to simulation data and two publicly available real-world gene expression data sets. Extensive comparisons with previous methods show the effectiveness and efficiency of the proposed method for survival pathway hunting.
Tang, Caiming; Tan, Jianhua; Fan, Ruifang; Zhao, Bo; Tang, Caixing; Ou, Weihui; Jin, Jiabin; Peng, Xianzhi
2016-08-26
Metabolite identification is crucial for revealing metabolic pathways and comprehensive potential toxicities of polycyclic aromatic hydrocarbons (PAHs) in human body. In this work, a quasi-targeted analysis strategy was proposed for metabolite identification of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in human urine using liquid chromatography triple quadruple mass spectrometry (LC-QqQ-MS/MS) combined with liquid chromatography high resolution mass spectrometry (LC-HRMS). Potential metabolites of OH-PAHs were preliminarily screened out by LC-QqQ-MS/MS in association with filtering in a self-constructed information list of possible metabolites, followed by further identification and confirmation with LC-HRMS. The developed method can provide more reliable and systematic results compared with traditional untargeted analysis using LC-HRMS. In addition, data processing for LC-HRMS analysis were greatly simplified. This quasi-targeted analysis method was successfully applied to identifying phase I and phase II metabolites of OH-PAHs in human urine. Five metabolites of hydroxynaphthalene, seven of hydroxyfluorene, four of hydroxyphenanthrene, and three of hydroxypyrene were tentatively identified. Metabolic pathways of PAHs in human body were putatively revealed based on the identified metabolites. The experimental results will be valuable for investigating the metabolic processes of PAHs in human body, and the quasi-targeted analysis strategy can be expanded to the metabolite identification and profiling of other compounds in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Ahir, Bhavesh K.; Sanders, Alison P.; Rager, Julia E.
2013-01-01
Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. Objectives: First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibition of the identified pathway prevents developmental defects. Methods: Seven environmental metals were selected for inclusion in the computational analysis: arsenic, cadmium, chromium, lead, mercury, nickel, and selenium. We used an in silico strategy to predict genes and pathways associated with both metal exposure and developmental defects. The most significant pathway was identified and tested using an in ovo whole chick embryo culture assay. We further evaluated the role of the pathway as a mediator of metal-induced toxicity using the in vitro midbrain micromass culture assay. Results: The glucocorticoid receptor pathway was computationally predicted to be a key mediator of multiple metal-induced birth defects. In the chick embryo model, structural malformations induced by inorganic arsenic (iAs) were prevented when signaling of the glucocorticoid receptor pathway was inhibited. Further, glucocorticoid receptor inhibition demonstrated partial to complete protection from both iAs- and cadmium-induced neurodevelopmental toxicity in vitro. Conclusions: Our findings highlight a novel approach to computationally identify a targeted biological pathway for examining birth defects prevention. PMID:23458687
Huang, Ruili; Wallqvist, Anders; Covell, David G
2006-03-01
We have analyzed the level of gene coregulation, using gene expression patterns measured across the National Cancer Institute's 60 tumor cell panels (NCI(60)), in the context of predefined pathways or functional categories annotated by KEGG (Kyoto Encyclopedia of Genes and Genomes), BioCarta, and GO (Gene Ontology). Statistical methods were used to evaluate the level of gene expression coherence (coordinated expression) by comparing intra- and interpathway gene-gene correlations. Our results show that gene expression in pathways, or groups of functionally related genes, has a significantly higher level of coherence than that of a randomly selected set of genes. Transcriptional-level gene regulation appears to be on a "need to be" basis, such that pathways comprising genes encoding closely interacting proteins and pathways responsible for vital cellular processes or processes that are related to growth or proliferation, specifically in cancer cells, such as those engaged in genetic information processing, cell cycle, energy metabolism, and nucleotide metabolism, tend to be more modular (lower degree of gene sharing) and to have genes significantly more coherently expressed than most signaling and regular metabolic pathways. Hierarchical clustering of pathways based on their differential gene expression in the NCI(60) further revealed interesting interpathway communications or interactions indicative of a higher level of pathway regulation. The knowledge of the nature of gene expression regulation and biological pathways can be applied to understanding the mechanism by which small drug molecules interfere with biological systems.
Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.
Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen
2017-11-01
Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts
Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W
2011-01-01
Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's functions. PMID:21892412
Identification of Key Pathways and Genes in the Dynamic Progression of HCC Based on WGCNA.
Yin, Li; Cai, Zhihui; Zhu, Baoan; Xu, Cunshuan
2018-02-14
Hepatocellular carcinoma (HCC) is a devastating disease worldwide. Though many efforts have been made to elucidate the process of HCC, its molecular mechanisms of development remain elusive due to its complexity. To explore the stepwise carcinogenic process from pre-neoplastic lesions to the end stage of HCC, we employed weighted gene co-expression network analysis (WGCNA) which has been proved to be an effective method in many diseases to detect co-expressed modules and hub genes using eight pathological stages including normal, cirrhosis without HCC, cirrhosis, low-grade dysplastic, high-grade dysplastic, very early and early, advanced HCC and very advanced HCC. Among the eight consecutive pathological stages, five representative modules are selected to perform canonical pathway enrichment and upstream regulator analysis by using ingenuity pathway analysis (IPA) software. We found that cell cycle related biological processes were activated at four neoplastic stages, and the degree of activation of the cell cycle corresponded to the deterioration degree of HCC. The orange and yellow modules enriched in energy metabolism, especially oxidative metabolism, and the expression value of the genes decreased only at four neoplastic stages. The brown module, enriched in protein ubiquitination and ephrin receptor signaling pathways, correlated mainly with the very early stage of HCC. The darkred module, enriched in hepatic fibrosis/hepatic stellate cell activation, correlated with the cirrhotic stage only. The high degree hub genes were identified based on the protein-protein interaction (PPI) network and were verified by Kaplan-Meier survival analysis. The novel five high degree hub genes signature that was identified in our study may shed light on future prognostic and therapeutic approaches. Our study brings a new perspective to the understanding of the key pathways and genes in the dynamic changes of HCC progression. These findings shed light on further investigations.
2010-01-01
Background Osteosarcoma (OSA) spontaneously arises in the appendicular skeleton of large breed dogs and shares many physiological and molecular biological characteristics with human OSA. The standard treatment for OSA in both species is amputation or limb-sparing surgery, followed by chemotherapy. Unfortunately, OSA is an aggressive cancer with a high metastatic rate. Characterization of OSA with regard to its metastatic potential and chemotherapeutic resistance will improve both prognostic capabilities and treatment modalities. Methods We analyzed archived primary OSA tissue from dogs treated with limb amputation followed by doxorubicin or platinum-based drug chemotherapy. Samples were selected from two groups: dogs with disease free intervals (DFI) of less than 100 days (n = 8) and greater than 300 days (n = 7). Gene expression was assessed with Affymetrix Canine 2.0 microarrays and analyzed with a two-tailed t-test. A subset of genes was confirmed using qRT-PCR and used in classification analysis to predict prognosis. Systems-based gene ontology analysis was conducted on genes selected using a standard J5 metric. The genes identified using this approach were converted to their human homologues and assigned to functional pathways using the GeneGo MetaCore platform. Results Potential biomarkers were identified using gene expression microarray analysis and 11 differentially expressed (p < 0.05) genes were validated with qRT-PCR (n = 10/group). Statistical classification models using the qRT-PCR profiles predicted patient outcomes with 100% accuracy in the training set and up to 90% accuracy upon stratified cross validation. Pathway analysis revealed alterations in pathways associated with oxidative phosphorylation, hedgehog and parathyroid hormone signaling, cAMP/Protein Kinase A (PKA) signaling, immune responses, cytoskeletal remodeling and focal adhesion. Conclusions This profiling study has identified potential new biomarkers to predict patient outcome in OSA and new pathways that may be targeted for therapeutic intervention. PMID:20860831
Annotation-based inference of transporter function.
Lee, Thomas J; Paulsen, Ian; Karp, Peter
2008-07-01
We present a method for inferring and constructing transport reactions for transporter proteins based primarily on the analysis of the names of individual proteins in the genome annotation of an organism. Transport reactions are declarative descriptions of transporter activities, and thus can be manipulated computationally, unlike free-text protein names. Once transporter activities are encoded as transport reactions, a number of computational analyses are possible including database queries by transporter activity; inclusion of transporters into an automatically generated metabolic-map diagram that can be painted with omics data to aid in their interpretation; detection of anomalies in the metabolic and transport networks, such as substrates that are transported into the cell but are not inputs to any metabolic reaction or pathway; and comparative analyses of the transport capabilities of different organisms. On randomly selected organisms, the method achieves precision and recall rates of 0.93 and 0.90, respectively in identifying transporter proteins by name within the complete genome. The method obtains 67.5% accuracy in predicting complete transport reactions; if allowance is made for predictions that are overly general yet not incorrect, reaction prediction accuracy is 82.5%. The method is implemented as part of PathoLogic, the inference component of the Pathway Tools software. Pathway Tools is freely available to researchers at non-commercial institutions, including source code; a fee applies to commercial institutions. Supplementary data are available at Bioinformatics online.
2013-01-01
Background Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Methods Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Results Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Conclusions Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration. PMID:24138815
Bian, Zhong-Rui; Yin, Juan; Sun, Wen; Lin, Dian-Jie
2017-04-01
Diagnose of active tuberculosis (TB) is challenging and treatment response is also difficult to efficiently monitor. The aim of this study was to use an integrated analysis of microarray and network-based method to the samples from publically available datasets to obtain a diagnostic module set and pathways in active TB. Towards this goal, background protein-protein interactions (PPI) network was generated based on global PPI information and gene expression data, following by identification of differential expression network (DEN) from the background PPI network. Then, ego genes were extracted according to the degree features in DEN. Next, module collection was conducted by ego gene expansion based on EgoNet algorithm. After that, differential expression of modules between active TB and controls was evaluated using random permutation test. Finally, biological significance of differential modules was detected by pathways enrichment analysis based on Reactome database, and Fisher's exact test was implemented to extract differential pathways for active TB. Totally, 47 ego genes and 47 candidate modules were identified from the DEN. By setting the cutoff-criteria of gene size >5 and classification accuracy ≥0.9, 7 ego modules (Module 4, Module 7, Module 9, Module 19, Module 25, Module 38 and Module 43) were extracted, and all of them had the statistical significance between active TB and controls. Then, Fisher's exact test was conducted to capture differential pathways for active TB. Interestingly, genes in Module 4, Module 25, Module 38, and Module 43 were enriched in the same pathway, formation of a pool of free 40S subunits. Significant pathway for Module 7 and Module 9 was eukaryotic translation termination, and for Module 19 was nonsense mediated decay enhanced by the exon junction complex (EJC). Accordingly, differential modules and pathways might be potential biomarkers for treating active TB, and provide valuable clues for better understanding of molecular mechanism of active TB. Copyright © 2017 Elsevier Ltd. All rights reserved.
Identification of altered pathways in breast cancer based on individualized pathway aberrance score.
Shi, Sheng-Hong; Zhang, Wei; Jiang, Jing; Sun, Long
2017-08-01
The objective of the present study was to identify altered pathways in breast cancer based on the individualized pathway aberrance score (iPAS) method combined with the normal reference (nRef). There were 4 steps to identify altered pathways using the iPAS method: Data preprocessing conducted by the robust multi-array average (RMA) algorithm; gene-level statistics based on average Z ; pathway-level statistics according to iPAS; and a significance test dependent on 1 sample Wilcoxon test. The altered pathways were validated by calculating the changed percentage of each pathway in tumor samples and comparing them with pathways from differentially expressed genes (DEGs). A total of 688 altered pathways with P<0.01 were identified, including kinesin (KIF)- and polo-like kinase (PLK)-mediated events. When the percentage of change reached 50%, 310 pathways were involved in the total 688 altered pathways, which may validate the present results. In addition, there were 324 DEGs and 155 common genes between DEGs and pathway genes. DEGs and common genes were enriched in the same 9 significant terms, which also were members of altered pathways. The iPAS method was suitable for identifying altered pathways in breast cancer. Altered pathways (such as KIF and PLK mediated events) were important for understanding breast cancer mechanisms and for the future application of customized therapeutic decisions.
NASA Astrophysics Data System (ADS)
Nakayama, Akira; Arai, Gaku; Yamazaki, Shohei; Taketsugu, Tetsuya
2013-12-01
On-the-fly excited-state quantum mechanics/molecular mechanics molecular dynamics (QM/MM-MD) simulations of thymine in aqueous solution are performed to investigate the role of solvent water molecules on the nonradiative deactivation process. The complete active space second-order perturbation theory (CASPT2) method is employed for a thymine molecule as the QM part in order to provide a reliable description of the excited-state potential energies. It is found that, in addition to the previously reported deactivation pathway involving the twisting of the C-C double bond in the pyrimidine ring, another efficient deactivation pathway leading to conical intersections that accompanies the out-of-plane displacement of the carbonyl group is observed in aqueous solution. Decay through this pathway is not observed in the gas phase simulations, and our analysis indicates that the hydrogen bonds with solvent water molecules play a key role in stabilizing the potential energies of thymine in this additional decay pathway.
Ras-sensitive IMP modulation of the Raf/MEK/ERK cascade through KSR1.
Matheny, Sharon A; White, Michael A
2006-01-01
The E3 ubiquitin ligase IMP (impedes mitogenic signal propagation) was isolated as a novel Ras effector that negatively regulates ERK1/2 activation. Current evidence suggests that IMP limits the functional assembly of Raf/MEK complexes by inactivation of the KSR1 adaptor/scaffold protein. Interaction with Ras-GTP stimulates IMP autoubiquitination to relieve limitations on KSR function. The elevated sensitivity of IMP-depleted cells to ERK1/2 pathway activation suggests IMP acts as a signal threshold regulator by imposing reversible restrictions on the assembly of functional Raf/MEK/ERK kinase modules. These observations challenge commonly held concepts of signal transmission by Ras to the MAPK pathway and provide evidence for the role of amplitude modulation in tuning cellular responses to ERK1/2 pathway engagement. Here we describe details of the methods, including RNA interference, ubiquitin ligase assays, and protein complex analysis, that can be used to display the Ras-sensitive contribution of IMP to KSR-dependent modulation of the Raf/MEK/ERK pathway.
Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian
2017-11-01
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS.
The standard framework of Ecological Risk Assessment (ERA) uses organism-level assessment endpoints to qualitatively determine the risk to populations. While organism-level toxicity data provide the pathway by which a species may be affected by a chemical stressor, they neither i...
Pathways toward Peace: Negotiating National Unity and Ethnic Diversity through Education in Botswana
ERIC Educational Resources Information Center
Dryden-Peterson, Sarah; Mulimbi, Bethany
2017-01-01
This study examines how education can disrupt threats of conflict, specifically in the presence of ethnic diversity. We present a historical analysis of Botswana, using methods of process tracing drawing on documents, in-depth interviews, and Afrobarometer survey data. Postindependence Botswana engaged in redistribution of educational access…
Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin
2018-01-01
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccas e 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like ( Sil1 ), scavenger receptor class C ( Src ), and scavenger receptor class B ( Srb3 and Srb4 ) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean.
Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin
2018-01-01
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccase 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like (Sil1), scavenger receptor class C (Src), and scavenger receptor class B (Srb3 and Srb4) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean. PMID:29773992
[Investigation of metabolites of Triptergium wilfordii on liver toxicity by LC-MS].
Zhao, Xiao-mei; Liu, Xin-ying; Xu, Chang; Ye, Tao; Jin, Cheng; Zhao, Kui-jun; Ma, Zhi-jie; Xiao, Xiao-he
2015-10-01
In this paper, biomarkers of liver toxicity of Triptergium wilfordii based on metabolomics was screened, and mechanism of liver toxicity was explored to provide a reference for the clinical diagnosis for liver toxicity of Triptergium wilfordii. MS method was carried on the analysis to metabolic fingerprint spectrum between treatment group and control group. The potential biomarkers were compared and screened using the multivariate statistical methods. As well, metabolic pathway would be detailed description. Combined with PCA and OPLS-DA pattern recognition analysis, 20 metabolites were selected which showed large differences between model group and blank group (VIP > 1.0). Seven possible endogenous biomarkers were analyzed and identified. They were 6-phosphate glucosamine, lysophospholipid, tryptophan, guanidine acetic acid, 3-indole propionic acid, cortisone, and ubiquinone. The level changes of above metabolites indicated that the metabolism pathways of amino acid, glucose, phospholipid and hormone were disordered. It is speculated that liver damage of T. wilfordii may be associated with the abnormal energy metabolism in citric acid cycle, amino acid metabolism in urea cycle, and glucose metabolism. It will be helpful to further research liver toxicity ingredients of Triptergium wilfordii.
Hsu, Han-Hsiu; Araki, Michihiro; Mochizuki, Masao; Hori, Yoshimi; Murata, Masahiro; Kahar, Prihardi; Yoshida, Takanobu; Hasunuma, Tomohisa; Kondo, Akihiko
2017-03-02
Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture.
Shim, Unjin; Kim, Han-Na; Sung, Yeon-Ah; Kim, Hyung-Lae
2014-12-01
Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, 52.2 ± 8.9 years; body mass index, 24.6 ± 3.2 kg/m(2)). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < 5 × 10(-6)), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < 1.38 × 10(-7), Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.
Miwa, Yoshimasa; Li, Chen; Ge, Qi-Wei; Matsuno, Hiroshi; Miyano, Satoru
2010-01-01
Parameter determination is important in modeling and simulating biological pathways including signaling pathways. Parameters are determined according to biological facts obtained from biological experiments and scientific publications. However, such reliable data describing detailed reactions are not reported in most cases. This prompted us to develop a general methodology of determining the parameters of a model in the case of that no information of the underlying biological facts is provided. In this study, we use the Petri net approach for modeling signaling pathways, and propose a method to determine firing delay times of transitions for Petri net models of signaling pathways by introducing stochastic decision rules. Petri net technology provides a powerful approach to modeling and simulating various concurrent systems, and recently have been widely accepted as a description method for biological pathways. Our method enables to determine the range of firing delay time which realizes smooth token flows in the Petri net model of a signaling pathway. The availability of this method has been confirmed by the results of an application to the interleukin-1 induced signaling pathway.
Miwa, Yoshimasa; Li, Chen; Ge, Qi-Wei; Matsuno, Hiroshi; Miyano, Satoru
2011-01-01
Parameter determination is important in modeling and simulating biological pathways including signaling pathways. Parameters are determined according to biological facts obtained from biological experiments and scientific publications. However, such reliable data describing detailed reactions are not reported in most cases. This prompted us to develop a general methodology of determining the parameters of a model in the case of that no information of the underlying biological facts is provided. In this study, we use the Petri net approach for modeling signaling pathways, and propose a method to determine firing delay times of transitions for Petri net models of signaling pathways by introducing stochastic decision rules. Petri net technology provides a powerful approach to modeling and simulating various concurrent systems, and recently have been widely accepted as a description method for biological pathways. Our method enables to determine the range of firing delay time which realizes smooth token flows in the Petri net model of a signaling pathway. The availability of this method has been confirmed by the results of an application to the interleukin-1 induced signaling pathway.
Vivar, Juan C; Pemu, Priscilla; McPherson, Ruth; Ghosh, Sujoy
2013-08-01
Abstract Unparalleled technological advances have fueled an explosive growth in the scope and scale of biological data and have propelled life sciences into the realm of "Big Data" that cannot be managed or analyzed by conventional approaches. Big Data in the life sciences are driven primarily via a diverse collection of 'omics'-based technologies, including genomics, proteomics, metabolomics, transcriptomics, metagenomics, and lipidomics. Gene-set enrichment analysis is a powerful approach for interrogating large 'omics' datasets, leading to the identification of biological mechanisms associated with observed outcomes. While several factors influence the results from such analysis, the impact from the contents of pathway databases is often under-appreciated. Pathway databases often contain variously named pathways that overlap with one another to varying degrees. Ignoring such redundancies during pathway analysis can lead to the designation of several pathways as being significant due to high content-similarity, rather than truly independent biological mechanisms. Statistically, such dependencies also result in correlated p values and overdispersion, leading to biased results. We investigated the level of redundancies in multiple pathway databases and observed large discrepancies in the nature and extent of pathway overlap. This prompted us to develop the application, ReCiPa (Redundancy Control in Pathway Databases), to control redundancies in pathway databases based on user-defined thresholds. Analysis of genomic and genetic datasets, using ReCiPa-generated overlap-controlled versions of KEGG and Reactome pathways, led to a reduction in redundancy among the top-scoring gene-sets and allowed for the inclusion of additional gene-sets representing possibly novel biological mechanisms. Using obesity as an example, bioinformatic analysis further demonstrated that gene-sets identified from overlap-controlled pathway databases show stronger evidence of prior association to obesity compared to pathways identified from the original databases.
Boulet, Lysiane; Faure, Patrice; Flore, Patrice; Montérémal, Julien; Ducros, Véronique
2017-06-01
Tryptophan (Trp) is an essential amino-acid and the precursor of many biologically active substances such as kynurenine (KYN) and serotonin (5HT). Its metabolism is involved in different physiopathological states, such as cardiovascular diseases, cancer, immunomodulation or depression. Hence, the quantification of Trp catabolites, from both KYN and 5HT pathways, might be usefulfor the discovery of novel diagnostic and follow-up biomarkers. We have developed a simple method for quantification of Trp and 8 of its metabolites,involved in both KYN and 5HT pathways, using liquid chromatography coupled to tandem mass spectrometry. We also validated the methodin human plasma samples, according to NF EN ISO 15189 criteria. Our method shows acceptable intra- and inter-day coefficients of variation (CV) (<12% and <16% respectively). The linearity entirelycovers the human plasma range. Stabilities of whole blood and of residues weredetermined, as well as the use of 2 different types of collectiontube, enabling us to adapt our process. Matrix effects and reference values showed good agreement compared to the literature. We propose here a method allowing the simultaneous quantification of a panel of Trp catabolites, never used before to our knowledge. This method, witha quickchromatographic runtime (15min) and simple sample preparation, has beenvalidated according to NF EN ISO 15189 criteria. The method enables the detailed analysis of these metabolic pathways, which are thought to be involved in a number of pathological conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery.
Bosl, William J
2007-02-15
Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer.
Computation and measurement of cell decision making errors using single cell data
Habibi, Iman; Cheong, Raymond; Levchenko, Andre; Emamian, Effat S.; Abdi, Ali
2017-01-01
In this study a new computational method is developed to quantify decision making errors in cells, caused by noise and signaling failures. Analysis of tumor necrosis factor (TNF) signaling pathway which regulates the transcription factor Nuclear Factor κB (NF-κB) using this method identifies two types of incorrect cell decisions called false alarm and miss. These two events represent, respectively, declaring a signal which is not present and missing a signal that does exist. Using single cell experimental data and the developed method, we compute false alarm and miss error probabilities in wild-type cells and provide a formulation which shows how these metrics depend on the signal transduction noise level. We also show that in the presence of abnormalities in a cell, decision making processes can be significantly affected, compared to a wild-type cell, and the method is able to model and measure such effects. In the TNF—NF-κB pathway, the method computes and reveals changes in false alarm and miss probabilities in A20-deficient cells, caused by cell’s inability to inhibit TNF-induced NF-κB response. In biological terms, a higher false alarm metric in this abnormal TNF signaling system indicates perceiving more cytokine signals which in fact do not exist at the system input, whereas a higher miss metric indicates that it is highly likely to miss signals that actually exist. Overall, this study demonstrates the ability of the developed method for modeling cell decision making errors under normal and abnormal conditions, and in the presence of transduction noise uncertainty. Compared to the previously reported pathway capacity metric, our results suggest that the introduced decision error metrics characterize signaling failures more accurately. This is mainly because while capacity is a useful metric to study information transmission in signaling pathways, it does not capture the overlap between TNF-induced noisy response curves. PMID:28379950
Computation and measurement of cell decision making errors using single cell data.
Habibi, Iman; Cheong, Raymond; Lipniacki, Tomasz; Levchenko, Andre; Emamian, Effat S; Abdi, Ali
2017-04-01
In this study a new computational method is developed to quantify decision making errors in cells, caused by noise and signaling failures. Analysis of tumor necrosis factor (TNF) signaling pathway which regulates the transcription factor Nuclear Factor κB (NF-κB) using this method identifies two types of incorrect cell decisions called false alarm and miss. These two events represent, respectively, declaring a signal which is not present and missing a signal that does exist. Using single cell experimental data and the developed method, we compute false alarm and miss error probabilities in wild-type cells and provide a formulation which shows how these metrics depend on the signal transduction noise level. We also show that in the presence of abnormalities in a cell, decision making processes can be significantly affected, compared to a wild-type cell, and the method is able to model and measure such effects. In the TNF-NF-κB pathway, the method computes and reveals changes in false alarm and miss probabilities in A20-deficient cells, caused by cell's inability to inhibit TNF-induced NF-κB response. In biological terms, a higher false alarm metric in this abnormal TNF signaling system indicates perceiving more cytokine signals which in fact do not exist at the system input, whereas a higher miss metric indicates that it is highly likely to miss signals that actually exist. Overall, this study demonstrates the ability of the developed method for modeling cell decision making errors under normal and abnormal conditions, and in the presence of transduction noise uncertainty. Compared to the previously reported pathway capacity metric, our results suggest that the introduced decision error metrics characterize signaling failures more accurately. This is mainly because while capacity is a useful metric to study information transmission in signaling pathways, it does not capture the overlap between TNF-induced noisy response curves.
Mao, Longfei; Verwoerd, Wynand S
2013-10-01
Synechocystis sp. PCC 6803 has been considered as a promising biocatalyst for electricity generation in recent microbial fuel cell research. However, the innate maximum current production potential and underlying metabolic pathways supporting the high current output are still unknown. This is mainly due to the fact that the high-current production cell phenotype results from the interaction among hundreds of reactions in the metabolism and it is impossible for reductionist methods to characterize the pathway selection in such a metabolic state. In this study, we employed computational metabolic techniques, flux balance analysis, and flux variability analysis, to exploit the maximum current outputs of Synechocystis sp. PCC 6803, in five electron transfer cases, namely, ferredoxin- and plastoquinol-dependent electron transfers under photoautotrophic cultivation, and NADH-dependent mediated electron transfer under photoautotrophic, heterotrophic, and mixotrophic conditions. In these five modes, the maximum current outputs were computed as 0.198, 0.7918, 0.198, 0.4652, and 0.4424 A gDW⁻¹, respectively. Comparison of the five operational modes suggests that plastoquinol-/c-type cytochrome-targeted electricity generation had an advantage of liberating the highest current output achievable for Synechocystis sp. PCC 6803. On the other hand, the analysis indicates that the currency metabolite, NADH-, dependent electricity generation can rely on a number of reactions from different pathways, and is thus more robust against environmental perturbations.
Kleijn, Roelco J.; van Winden, Wouter A.; Ras, Cor; van Gulik, Walter M.; Schipper, Dick; Heijnen, Joseph J.
2006-01-01
In this study we developed a new method for accurately determining the pentose phosphate pathway (PPP) split ratio, an important metabolic parameter in the primary metabolism of a cell. This method is based on simultaneous feeding of unlabeled glucose and trace amounts of [U-13C]gluconate, followed by measurement of the mass isotopomers of the intracellular metabolites surrounding the 6-phosphogluconate node. The gluconate tracer method was used with a penicillin G-producing chemostat culture of the filamentous fungus Penicillium chrysogenum. For comparison, a 13C-labeling-based metabolic flux analysis (MFA) was performed for glycolysis and the PPP of P. chrysogenum. For the first time mass isotopomer measurements of 13C-labeled primary metabolites are reported for P. chrysogenum and used for a 13C-based MFA. Estimation of the PPP split ratio of P. chrysogenum at a growth rate of 0.02 h−1 yielded comparable values for the gluconate tracer method and the 13C-based MFA method, 51.8% and 51.1%, respectively. A sensitivity analysis of the estimated PPP split ratios showed that the 95% confidence interval was almost threefold smaller for the gluconate tracer method than for the 13C-based MFA method (40.0 to 63.5% and 46.0 to 56.5%, respectively). From these results we concluded that the gluconate tracer method permits accurate determination of the PPP split ratio but provides no information about the remaining cellular metabolism, while the 13C-based MFA method permits estimation of multiple fluxes but provides a less accurate estimate of the PPP split ratio. PMID:16820467
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovacik, Meric A.; Androulakis, Ioannis P., E-mail: yannis@rci.rutgers.edu; Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854
2013-09-15
Pathway-based information has become an important source of information for both establishing evolutionary relationships and understanding the mode of action of a chemical or pharmaceutical among species. Cross-species comparison of pathways can address two broad questions: comparison in order to inform evolutionary relationships and to extrapolate species differences used in a number of different applications including drug and toxicity testing. Cross-species comparison of metabolic pathways is complex as there are multiple features of a pathway that can be modeled and compared. Among the various methods that have been proposed, reaction alignment has emerged as the most successful at predicting phylogeneticmore » relationships based on NCBI taxonomy. We propose an improvement of the reaction alignment method by accounting for sequence similarity in addition to reaction alignment method. Using nine species, including human and some model organisms and test species, we evaluate the standard and improved comparison methods by analyzing glycolysis and citrate cycle pathways conservation. In addition, we demonstrate how organism comparison can be conducted by accounting for the cumulative information retrieved from nine pathways in central metabolism as well as a more complete study involving 36 pathways common in all nine species. Our results indicate that reaction alignment with enzyme sequence similarity results in a more accurate representation of pathway specific cross-species similarities and differences based on NCBI taxonomy.« less
NASA Astrophysics Data System (ADS)
Stock, Joachim W.; Blaszczak-Boxe, Christopher S.; Lehmann, Ralph; Grenfell, J. Lee; Patzer, A. Beate C.; Rauer, Heike; Yung, Yuk L.
2017-07-01
Atmospheric chemical composition is crucial in determining a planet's atmospheric structure, stability, and evolution. Attaining a quantitative understanding of the essential chemical mechanisms governing atmospheric composition is nontrivial due to complex interactions between chemical species. Trace species, for example, can participate in catalytic cycles - affecting the abundance of major and other trace gas species. Specifically, for Mars, such cycles dictate the abundance of its primary atmospheric constituent, carbon dioxide (CO2), but also for one of its trace gases, ozone (O3). The identification of chemical pathways/cycles by hand is extremely demanding; hence, the application of numerical methods, such as the Pathway Analysis Program (PAP), is crucial to analyze and quantitatively exemplify chemical reaction networks. Here, we carry out the first automated quantitative chemical pathway analysis of Mars' atmosphere with respect to O3. PAP was applied to JPL/Caltech's 1-D updated photochemical Mars model's output data. We determine all significant chemical pathways and their contribution to O3 production and consumption (up to 80 km) in order to investigate the mechanisms causing the characteristic shape of the O3 volume mixing ratio profile, i.e. a ground layer maximum and an ozone layer at ∼50 km. These pathways explain why an O3 layer is present, why it is located at that particular altitude and what the different processes forming the near-surface and middle atmosphere O3 maxima are. Furthermore, we show that the Martian atmosphere can be divided into two chemically distinct regions according to the O(3P):O3 ratio. In the lower region (below approximately 24 km altitude) O3 is the most abundant Ox (= O3 + O(3P)) species. In the upper region (above approximately 24 km altitude), where the O3 layer is located, O(3P) is the most abundant Ox species. Earlier results concerning the formation of O3 on Mars can now be explained with the help of chemical pathways leading to a better understanding of the vertical O3 profile.
Vrahatis, Aristidis G; Dimitrakopoulos, Georgios N; Tsakalidis, Athanasios K; Bezerianos, Anastasios
2015-01-01
In the road for network medicine the newly emerged systems-level subpathway-based analysis methods offer new disease genes, drug targets and network-based biomarkers. In parallel, paired miRNA/mRNA expression data enable simultaneously monitoring of the micronome effect upon the signaling pathways. Towards this orientation, we present a methodological pipeline for the identification of differentially expressed subpathways along with their miRNA regulators by using KEGG signaling pathway maps, miRNA-target interactions and expression profiles from paired miRNA/mRNA experiments. Our pipeline offered new biological insights on a real application of paired miRNA/mRNA expression profiles with respect to the dynamic changes from colostrum to mature milk whey; several literature supported genes and miRNAs were recontextualized through miRNA-mediated differentially expressed subpathways.
Identifying novel glioma associated pathways based on systems biology level meta-analysis.
Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong
2013-01-01
With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.
ADAGE signature analysis: differential expression analysis with data-defined gene sets.
Tan, Jie; Huyck, Matthew; Hu, Dongbo; Zelaya, René A; Hogan, Deborah A; Greene, Casey S
2017-11-22
Gene set enrichment analysis and overrepresentation analyses are commonly used methods to determine the biological processes affected by a differential expression experiment. This approach requires biologically relevant gene sets, which are currently curated manually, limiting their availability and accuracy in many organisms without extensively curated resources. New feature learning approaches can now be paired with existing data collections to directly extract functional gene sets from big data. Here we introduce a method to identify perturbed processes. In contrast with methods that use curated gene sets, this approach uses signatures extracted from public expression data. We first extract expression signatures from public data using ADAGE, a neural network-based feature extraction approach. We next identify signatures that are differentially active under a given treatment. Our results demonstrate that these signatures represent biological processes that are perturbed by the experiment. Because these signatures are directly learned from data without supervision, they can identify uncurated or novel biological processes. We implemented ADAGE signature analysis for the bacterial pathogen Pseudomonas aeruginosa. For the convenience of different user groups, we implemented both an R package (ADAGEpath) and a web server ( http://adage.greenelab.com ) to run these analyses. Both are open-source to allow easy expansion to other organisms or signature generation methods. We applied ADAGE signature analysis to an example dataset in which wild-type and ∆anr mutant cells were grown as biofilms on the Cystic Fibrosis genotype bronchial epithelial cells. We mapped active signatures in the dataset to KEGG pathways and compared with pathways identified using GSEA. The two approaches generally return consistent results; however, ADAGE signature analysis also identified a signature that revealed the molecularly supported link between the MexT regulon and Anr. We designed ADAGE signature analysis to perform gene set analysis using data-defined functional gene signatures. This approach addresses an important gap for biologists studying non-traditional model organisms and those without extensive curated resources available. We built both an R package and web server to provide ADAGE signature analysis to the community.
Application of stable isotope ratio analysis for biodegradation monitoring in groundwater
Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.
2013-01-01
Stable isotope ratio analysis is increasingly being applied as a tool to detect, understand, and quantify biodegradation of organic and inorganic contaminants in groundwater. An important feature of this approach is that it allows degradative losses of contaminants to be distinguished from those caused by non-destructive processes such as dilution, dispersion, and sorption. Recent advances in analytical techniques, and new approaches for interpreting stable isotope data, have expanded the utility of this method while also exposing complications and ambiguities that must be considered in data interpretations. Isotopic analyses of multiple elements in a compound, and multiple compounds in the environment, are being used to distinguish biodegradative pathways by their characteristic isotope effects. Numerical models of contaminant transport, degradation pathways, and isotopic composition are improving quantitative estimates of in situ contaminant degradation rates under realistic environmental conditions.
Dong, Shu; Zhan, Zong-Ying; Cao, Hong-Yan; Wu, Chao; Bian, Yan-Qin; Li, Jian-Yuan; Cheng, Gen-Hong; Liu, Ping; Sun, Ming-Yu
2017-01-01
AIM To identify a panel of biomarkers that can distinguish between non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), and explore molecular mechanism involved in the process of developing NASH from NAFLD. METHODS Biomarkers may differ during stages of NAFLD. Urine and blood were obtained from non-diabetic subjects with NAFLD and steatosis, with normal liver function (n = 33), from patients with NASH, with abnormal liver function (n = 45), and from healthy age and sex-matched controls (n = 30). Samples were subjected to metabolomic analysis to identify potential non-invasive biomarkers. Differences in urinary metabolic profiles were analyzed using liquid chromatography tandem mass spectrometry with principal component analysis and partial least squares-discriminate analysis. RESULTS Compared with NAFLD patients, patients with NASH had abnormal liver function and high serum lipid concentrations. Urinary metabonomics found differences in 31 metabolites between these two groups, including differences in nucleic acids and amino acids. Pathway analysis based on overlapping metabolites showed that pathways of energy and amino acid metabolism, as well as the pentose phosphate pathway, were closely associated with pathological processes in NAFLD and NASH. CONCLUSION These findings suggested that a panel of biomarkers could distinguish between NAFLD and NASH, and could help to determine the molecular mechanism involved in the process of developing NASH from NAFLD. Urinary biomarkers may be diagnostic in these patients and could be used to assess responses to therapeutic interventions. PMID:28487615
Zhang, Mingming; Mu, Hongbo; Shang, Zhenwei; Kang, Kai; Lv, Hongchao; Duan, Lian; Li, Jin; Chen, Xinren; Teng, Yanbo; Jiang, Yongshuai; Zhang, Ruijie
2017-01-06
Parkinson's disease (PD) is the second most common neurodegenerative disease. It is generally believed that it is influenced by both genetic and environmental factors, but the precise pathogenesis of PD is unknown to date. In this study, we performed a pathway analysis based on genome-wide association study (GWAS) to detect risk pathways of PD in three GWAS datasets. We first mapped all SNP markers to autosomal genes in each GWAS dataset. Then, we evaluated gene risk values using the minimum P-value of the tagSNPs. We took a pathway as a unit to identify the risk pathways based on the cumulative risks of the genes in the pathway. Finally, we combine the analysis results of the three datasets to detect the high risk pathways associated with PD. We found there were five same pathways in the three datasets. Besides, we also found there were five pathways which were shared in two datasets. Most of these pathways are associated with nervoussystem. Five pathways had been reported to be PD-related pathways in the previous literature. Our findings also implied that there was a close association between immune response and PD. Continued investigation of these pathways will further help us explain the pathogenesis of PD. Copyright © 2016. Published by Elsevier Ltd.
Mapping the pathways of resistance to targeted therapies
Wood, Kris C.
2015-01-01
Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. Recently developed methods enable the direct and scalable identification of the signaling pathways capable of driving resistance in specific contexts. Using these methods, novel pathways of resistance to clinically approved drugs have been identified and validated. By combining systematic resistance pathway mapping methods with studies revealing biomarkers of specific resistance pathways and pharmacological approaches to block these pathways, it may be possible to rationally construct drug combinations that yield more penetrant and lasting responses in patients. PMID:26392071
Wang, Qiangjun; Zhao, Xiaowei; Zhang, Zijun; Zhao, Huiling; Huang, Dongwei; Cheng, Guanglong; Yang, Yongxin
2017-04-01
Lactation performance of dairy cattle is susceptible to heat stress. The liver is one of the most crucial organs affected by high temperature in dairy cows. However, the physiological adaption by the liver to hot summer conditions has not been well elucidated in lactating dairy cows. In the present study, proteomic analysis of the liver in dairy cows in spring and hot summer was performed using a label-free method. In total, 127 differentially expressed proteins were identified; most of the upregulated proteins were involved in protein metabolic processes and responses to stimuli, whereas most of the downregulated proteins were related to oxidation-reduction. Pathway analysis indicated that 3 upregulated heat stress proteins (HSP90α, HSP90β, and endoplasmin) were enriched in the NOD-like receptor signaling pathway, whereas several downregulated NADH dehydrogenase proteins were involved in the oxidative phosphorylation pathway. The protein-protein interaction network indicated that several upregulated HSPs (HSP90α, HSP90β, and GRP78) were involved in more interactions than other proteins and were thus considered as central hub nodes. Our findings provide novel insights into the physiological adaption of liver function in lactating dairy cows to natural high temperature. Copyright © 2017. Published by Elsevier Ltd.
Aroca, Angeles; Benito, Juan M; Gotor, Cecilia; Romero, Luis C
2017-10-13
Hydrogen sulfide-mediated signaling pathways regulate many physiological and pathophysiological processes in mammalian and plant systems. The molecular mechanism by which hydrogen sulfide exerts its action involves the post-translational modification of cysteine residues to form a persulfidated thiol motif, a process called protein persulfidation. We have developed a comparative and quantitative proteomic analysis approach for the detection of endogenous persulfidated proteins in wild-type Arabidopsis and L-CYSTEINE DESULFHYDRASE 1 mutant leaves using the tag-switch method. The 2015 identified persulfidated proteins were isolated from plants grown under controlled conditions, and therefore, at least 5% of the entire Arabidopsis proteome may undergo persulfidation under baseline conditions. Bioinformatic analysis revealed that persulfidated cysteines participate in a wide range of biological functions, regulating important processes such as carbon metabolism, plant responses to abiotic and biotic stresses, plant growth and development, and RNA translation. Quantitative analysis in both genetic backgrounds reveals that protein persulfidation is mainly involved in primary metabolic pathways such as the tricarboxylic acid cycle, glycolysis, and the Calvin cycle, suggesting that this protein modification is a new regulatory component in these pathways. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K
2015-01-25
The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, B. C.; Olson, H. H.; Schuit, G. C.A.
1983-08-22
A new method of structural analysis is applied to a group of hydroliquefied coal samples. The method uses elemental analysis and NMR data to estimate the concentrations of functional groups in the samples. The samples include oil and asphaltene fractions obtained in a series of hydroliquefaction experiments, and a set of 9 fractions separated from a coal-derived oil. The structural characterization of these samples demonstrates that estimates of functional group concentrations can be used to provide detailed structural profiles of complex mixtures and to obtain limited information about reaction pathways. 11 references, 1 figure, 7 tables.
Transforming Growth Factor-β Signaling Pathway in Patients with Kawasaki Disease
Shimizu, Chisato; Jain, Sonia; Lin, Kevin O.; Molkara, Delaram; Frazer, Jeffrey R.; Sun, Shelly; Baker, Annette L.; Newburger, Jane W.; Rowley, Anne H.; Shulman, Stanford T.; Davila, Sonia; Hibberd, Martin L.; Burgner, David; Breunis, Willemijn B.; Kuijpers, Taco W.; Wright, Victoria J.; Levin, Michael; Eleftherohorinou, Hariklia; Coin, Lachlan; Popper, Stephen J.; Relman, David A.; Fury, Wen; Lin, Calvin; Mellis, Scott; Tremoulet, Adriana H.; Burns, Jane C.
2011-01-01
Background Transforming growth factor (TGF)-β is a multifunctional peptide that is important in T-cell activation and cardiovascular remodeling, both of which are important features of Kawasaki disease (KD). We postulated that variation in TGF-β signaling might be important in KD susceptibility and disease outcome. Methods and Results We investigated genetic variation in 15 genes belonging to the TGF-β pathway in a total 771 KD subjects of mainly European descendent from the US, UK, Australia and the Netherlands. We analyzed transcript abundance patterns using microarray and RT-PCR for these same genes and measured TGF-β2 protein levels in plasma. Genetic variants in TGFB2, TGFBR2 and SMAD3 and their haplotypes were consistently and reproducibly associated with KD susceptibility, coronary artery aneurysm formation, aortic root dilatation, and intravenous immunoglobulin treatment response in different cohorts. A SMAD3 haplotype associated with KD susceptibility replicated in two independent cohorts and an intronic SNP in a separate haplotype block was also strongly associated (A/G, rs4776338) (p=0.000022, OR 1.50, 95% CI 1.25-1.81). Pathway analysis using all 15 genes further confirmed the importance of the TGF-β pathway in KD pathogenesis. Whole blood transcript abundance for these genes and TGF-β2 plasma protein levels changed dynamically over the course of the illness. Conclusions These studies suggest that genetic variation in the TGF-β pathway influences KD susceptibility, disease outcome, and response to therapy and that aortic root and coronary artery Z scores can be used for phenotype/genotype analyses. Analysis of transcript abundance and protein levels further support the importance of this pathway in KD pathogenesis. PMID:21127203
Brown, Samuel M.; Grissom, Colin K.; Rondina, Matthew T.; Hoidal, John R.; Scholand, Mary Beth; Wolff, Roger K.; Morris, Alan H.; Paine, Robert
2015-01-01
Purpose/Aim Acute Respiratory Distress Syndrome (ARDS) is an important clinical and public health problem. Why some at-risk individuals develop ARDS and others do not is unclear but may be related to differences in inflammatory and cell signaling systems. The Receptor for Advanced Glycation Endproducts (RAGE) and Granulocyte-Monocyte Stimulating Factor (GM-CSF) pathways have recently been implicated in pulmonary pathophysiology; whether genetic variation within these pathways contributes to ARDS risk or outcome is unknown. Materials and Methods We studied 842 patients from three centers in Utah and 14 non-Utah ARDS Network centers. We studied patients at risk for ARDS and patients with ARDS to determine whether Single Nucleotide Polymorphisms (SNPs) in the RAGE and GM-CSF pathways were associated with development of ARDS. We studied 29 SNPs in 5 genes within the two pathways and controlled for age, sepsis as ARDS risk factor, and severity of illness, while targeting a false discovery rate of ≤5%. In a secondary analysis we evaluated associations with mortality. Results Of 842 patients, 690 had ARDS, and 152 were at-risk. Sepsis was the risk factor for ARDS in 250 (30%) patients. When controlling for age, APACHE III score, sepsis as risk factor, and multiple comparisons, no SNPs were significantly associated with ARDS. In a secondary analysis, only rs743564 in CSF2 approached significance with regard to mortality (OR 2.17, unadjusted p = 0.005, adjusted p = 0.15). Conclusions Candidate SNPs within 5 genes in the RAGE and GM-CSF pathways were not significantly associated with development of ARDS in this multi-centric cohort. PMID:25513711
Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.
Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei
2015-05-09
A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.
The use of functional chemical-protein associations to identify multi-pathway renoprotectants.
Xu, Jia; Meng, Kexin; Zhang, Rui; Yang, He; Liao, Chang; Zhu, Wenliang; Jiao, Jundong
2014-01-01
Typically, most nephropathies can be categorized as complex human diseases in which the cumulative effect of multiple minor genes, combined with environmental and lifestyle factors, determines the disease phenotype. Thus, multi-target drugs would be more likely to facilitate comprehensive renoprotection than single-target agents. In this study, functional chemical-protein association analysis was performed to retrieve multi-target drugs of high pathway wideness from the STITCH 3.1 database. Pathway wideness of a drug evaluated the efficiency of regulation of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in quantity. We identified nine experimentally validated renoprotectants that exerted remarkable impact on KEGG pathways by targeting a limited number of proteins. We selected curcumin as an illustrative compound to display the advantage of multi-pathway drugs on renoprotection. We compared curcumin with hemin, an agonist of heme oxygenase-1 (HO-1), which significantly affects only one KEGG pathway, porphyrin and chlorophyll metabolism (adjusted p = 1.5×10-5). At the same concentration (10 µM), both curcumin and hemin equivalently mitigated oxidative stress in H2O2-treated glomerular mesangial cells. The benefit of using hemin was derived from its agonistic effect on HO-1, providing relief from oxidative stress. Selective inhibition of HO-1 completely blocked the action of hemin but not that of curcumin, suggesting simultaneous multi-pathway intervention by curcumin. Curcumin also increased cellular autophagy levels, enhancing its protective effect; however, hemin had no effects. Based on the fact that the dysregulation of multiple pathways is implicated in the etiology of complex diseases, we proposed a feasible method for identifying multi-pathway drugs from compounds with validated targets. Our efforts will help identify multi-pathway agents capable of providing comprehensive protection against renal injuries.
Maes, Michael; Nowak, Gabriel; Caso, Javier R; Leza, Juan Carlos; Song, Cai; Kubera, Marta; Klein, Hans; Galecki, Piotr; Noto, Cristiano; Glaab, Enrico; Balling, Rudi; Berk, Michael
2016-07-01
Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.
Multi-membership gene regulation in pathway based microarray analysis
2011-01-01
Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531
Multi-membership gene regulation in pathway based microarray analysis.
Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M
2011-09-22
Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.
Uimari, Outi; Rahmioglu, Nilufer; Nyholt, Dale R.; Vincent, Katy; Missmer, Stacey A.; Becker, Christian; Morris, Andrew P.; Montgomery, Grant W.
2017-01-01
Abstract STUDY QUESTION Do genome-wide association study (GWAS) data for endometriosis provide insight into novel biological pathways associated with its pathogenesis? SUMMARY ANSWER GWAS analysis uncovered multiple pathways that are statistically enriched for genetic association signals, analysis of Stage A disease highlighted a novel variant in MAP3K4, while top pathways significantly associated with all endometriosis and Stage A disease included several mitogen-activated protein kinase (MAPK)-related pathways. WHAT IS KNOWN ALREADY Endometriosis is a complex disease with an estimated heritability of 50%. To date, GWAS revealed 10 genomic regions associated with endometriosis, explaining <4% of heritability, while half of the heritability is estimated to be due to common risk variants. Pathway analyses combine the evidence of single variants into gene-based measures, leveraging the aggregate effect of variants in genes and uncovering biological pathways involved in disease pathogenesis. STUDY DESIGN, SIZE, DURATION Pathway analysis was conducted utilizing the International Endogene Consortium GWAS data, comprising 3194 surgically confirmed endometriosis cases and 7060 controls of European ancestry with genotype data imputed up to 1000 Genomes Phase three reference panel. GWAS was performed for all endometriosis cases and for Stage A (revised American Fertility Society (rAFS) I/II, n = 1686) and B (rAFS III/IV, n = 1364) cases separately. The identified significant pathways were compared with pathways previously investigated in the literature through candidate association studies. PARTICIPANTS/MATERIALS, SETTING, METHODS The most comprehensive biological pathway databases, MSigDB (including BioCarta, KEGG, PID, SA, SIG, ST and GO) and PANTHER were utilized to test for enrichment of genetic variants associated with endometriosis. Statistical enrichment analysis was performed using the MAGENTA (Meta-Analysis Gene-set Enrichment of variaNT Associations) software. MAIN RESULTS AND THE ROLE OF CHANCE The first genome-wide association analysis for Stage A endometriosis revealed a novel locus, rs144240142 (P = 6.45 × 10−8, OR = 1.71, 95% CI = 1.23–2.37), an intronic single-nucleotide polymorphism (SNP) within MAP3K4. This SNP was not associated with Stage B disease (P = 0.086). MAP3K4 was also shown to be differentially expressed in eutopic endometrium between Stage A endometriosis cases and controls (P = 3.8 × 10−4), but not with Stage B disease (P = 0.26). A total of 14 pathways enriched with genetic endometriosis associations were identified (false discovery rate (FDR)-P < 0.05). The pathways associated with any endometriosis were Grb2-Sos provides linkage to MAPK signaling for integrins pathway (P = 2.8 × 10−5, FDR-P = 3.0 × 10−3), Wnt signaling (P = 0.026, FDR-P = 0.026) and p130Cas linkage to MAPK signaling for integrins pathway (P = 6.0 × 10−4, FDR-P = 0.029); with Stage A endometriosis: extracellular signal-regulated kinase (ERK)1 ERK2 MAPK (P = 5.0 × 10−4, FDR-P = 5.0 × 10−4) and with Stage B endometriosis: two overlapping pathways that related to extracellular matrix biology—Core matrisome (P = 1.4 × 10−3, FDR-P = 0.013) and ECM glycoproteins (P = 1.8 × 10−3, FDR-P = 7.1 × 10−3). Genes arising from endometriosis candidate gene studies performed to date were enriched for Interleukin signaling pathway (P = 2.3 × 10−12), Apoptosis signaling pathway (P = 9.7 × 10−9) and Gonadotropin releasing hormone receptor pathway (P = 1.2 × 10−6); however, these pathways did not feature in the results based on GWAS data. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The analysis is restricted to (i) variants in/near genes that can be assigned to pathways, excluding intergenic variants; (ii) the gene-based pathway definition as registered in the databases; (iii) women of European ancestry. WIDER IMPLICATIONS OF THE FINDINGS The top ranked pathways associated with overall and Stage A endometriosis in particular involve integrin-mediated MAPK activation and intracellular ERK/MAPK acting downstream in the MAPK cascade, both acting in the control of cell division, gene expression, cell movement and survival. Other top enriched pathways in Stage B disease include ECM glycoprotein pathways important for extracellular structure and biochemical support. The results highlight the need for increased efforts to understand the functional role of these pathways in endometriosis pathogenesis, including the investigation of the biological effects of the genetic variants on downstream molecular processes in tissue relevant to endometriosis. Additionally, our results offer further support for the hypothesis of at least partially distinct causal pathophysiology for minimal/mild (rAFS I/II) vs. moderate/severe (rAFS III/IV) endometriosis. STUDY FUNDING/COMPETING INTEREST(S) The genome-wide association data and Wellcome Trust Case Control Consortium (WTCCC) were generated through funding from the Wellcome Trust (WT084766/Z/08/Z, 076113 and 085475) and the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485 and 552498). N.R. was funded by a grant from the Medical Research Council UK (MR/K011480/1). A.P.M. is a Wellcome Trust Senior Fellow in Basic Biomedical Science (grant WT098017). All authors declare there are no conflicts of interest. PMID:28333195
Markkanen, Pia; Galligan, Catherine; Laramie, Angela; Fisher, June; Sama, Susan; Quinn, Margaret
2015-04-11
Home healthcare is one of the fastest growing sectors in the United States. Percutaneous injuries from sharp medical devices (sharps) are a source of bloodborne pathogen infections among home healthcare workers and community members. Sharps use and disposal practices in the home are highly variable and there is no comprehensive analysis of the system of sharps procurement, use and disposal in home healthcare. This gap is a barrier to effective public health interventions. The objectives of this study were to i) identify the full range of pathways by which sharps enter and exit the home, stakeholders involved, and barriers for using sharps with injury prevention features; and ii) assess the leverage points for preventive interventions. This study employed qualitative research methods to develop two systems maps of the use of sharps and prevention of sharps injuries in home healthcare. Twenty-six in-depth interview sessions were conducted including home healthcare agency clinicians, public health practitioners, sharps device manufacturers, injury prevention advocates, pharmacists and others. Interview transcripts were audio-recorded and analyzed thematically using NVIVO qualitative research analysis software. Analysis of supporting archival material also was conducted. All findings guided development of the two maps. Sharps enter the home via multiple complex pathways involving home healthcare providers and home users. The providers reported using sharps with injury prevention features. However, home users' sharps seldom had injury prevention features and sharps were commonly re-used for convenience and cost-savings. Improperly discarded sharps present hazards to caregivers, waste handlers, and community members. The most effective intervention potential exists at the beginning of the sharps systems maps where interventions can eliminate or minimize sharps injuries, in particular with needleless treatment methods and sharps with injury prevention features. Manufacturers and insurance providers can improve safety with more affordable and accessible sharps with injury prevention features for home users. Sharps disposal campaigns, free-of-charge disposal containers, and convenient disposal options remain essential. Sharps injuries are preventable through public health actions that promote needleless treatment methods, sharps with injury prevention features, and safe disposal practices. Communication about hazards regarding sharps is needed for all home healthcare stakeholders.
2012-01-01
Background Optimization of the clinical care process by integration of evidence-based knowledge is one of the active components in care pathways. When studying the impact of a care pathway by using a cluster-randomized design, standardization of the care pathway intervention is crucial. This methodology paper describes the development of the clinical content of an evidence-based care pathway for in-hospital management of chronic obstructive pulmonary disease (COPD) exacerbation in the context of a cluster-randomized controlled trial (cRCT) on care pathway effectiveness. Methods The clinical content of a care pathway for COPD exacerbation was developed based on recognized process design and guideline development methods. Subsequently, based on the COPD case study, a generalized eight-step method was designed to support the development of the clinical content of an evidence-based care pathway. Results A set of 38 evidence-based key interventions and a set of 24 process and 15 outcome indicators were developed in eight different steps. Nine Belgian multidisciplinary teams piloted both the set of key interventions and indicators. The key intervention set was judged by the teams as being valid and clinically applicable. In addition, the pilot study showed that the indicators were feasible for the involved clinicians and patients. Conclusions The set of 38 key interventions and the set of process and outcome indicators were found to be appropriate for the development and standardization of the clinical content of the COPD care pathway in the context of a cRCT on pathway effectiveness. The developed eight-step method may facilitate multidisciplinary teams caring for other patient populations in designing the clinical content of their future care pathways. PMID:23190552
Yang, Wei; Fang, Dong-Mei; He, Hong-Ping; Hao, Xiao-Jiang; Wu, Zhi-Jun; Zhang, Guo-Lin
2013-06-15
Limonoids, a class of tetranortriterpenoids, exhibit various biological effects, including acting as potent antifeedants and insect growth-regulators against various pests. The analysis of phragmalin- and mexicanolide-type limonoids by collision-induced dissociation tandem mass spectrometry (CID-MS/MS) has not been reported. A high-performance liquid chromatography/electrospray ionization (HPLC/ESI)-MS/MS method was developed to investigate the fragmentation patterns of [M+NH4 ](+) ions for nine reference phragmalin- and mexicanolide-type limonoids. The method was also used in the identification of limonoid compounds in botanic extracts of Heynea trijuga. The losses of side chains and the furan part were the major fragmentation patterns. However, there was variation in the relative abundances of product ions resulting from the same fragmentation pathways. A total of 89 phragmalin- and mexicanolide-type limonoids in botanic extracts of Heynea trijuga were detected and 50 of these compounds were identified or tentatively characterized based on elemental constituents, fragmentation pathways, and the profile of the major product ions of reference compounds. In addition, the isomers could be tentatively distinguished. An HPLC/ESI-MS/MS method was developed and could be used to simultaneously identify and screen phragmalin- and mexicanolide-type limonoids in botanic extracts of Heynea trijuga. Copyright © 2013 John Wiley & Sons, Ltd.
Wang, Xijun; Zhang, Aihua; Han, Ying; Wang, Ping; Sun, Hui; Song, Gaochen; Dong, Tianwei; Yuan, Ye; Yuan, Xiaoxia; Zhang, Miao; Xie, Ning; Zhang, He; Dong, Hui; Dong, Wei
2012-01-01
Metabolomics is a powerful new technology that allows for the assessment of global metabolic profiles in easily accessible biofluids and biomarker discovery in order to distinguish between diseased and nondiseased status information. Deciphering the molecular networks that distinguish diseases may lead to the identification of critical biomarkers for disease aggressiveness. However, current diagnostic methods cannot predict typical Jaundice syndrome (JS) in patients with liver disease and little is known about the global metabolomic alterations that characterize JS progression. Emerging metabolomics provides a powerful platform for discovering novel biomarkers and biochemical pathways to improve diagnostic, prognostication, and therapy. Therefore, the aim of this study is to find the potential biomarkers from JS disease by using a nontarget metabolomics method, and test their usefulness in human JS diagnosis. Multivariate data analysis methods were utilized to identify the potential biomarkers. Interestingly, 44 marker metabolites contributing to the complete separation of JS from matched healthy controls were identified. Metabolic pathways (Impact-value≥0.10) including alanine, aspartate, and glutamate metabolism and synthesis and degradation of ketone bodies were found to be disturbed in JS patients. This study demonstrates the possibilities of metabolomics as a diagnostic tool in diseases and provides new insight into pathophysiologic mechanisms. PMID:22505723
Uddin, Reaz; Sufian, Muhammad
2016-01-01
Infections caused by Salmonella enterica, a Gram-negative facultative anaerobic bacteria belonging to the family of Enterobacteriaceae, are major threats to the health of humans and animals. The recent availability of complete genome data of pathogenic strains of the S. enterica gives new avenues for the identification of drug targets and drug candidates. We have used the genomic and metabolic pathway data to identify pathways and proteins essential to the pathogen and absent from the host. We took the whole proteome sequence data of 42 strains of S. enterica and Homo sapiens along with KEGG-annotated metabolic pathway data, clustered proteins sequences using CD-HIT, identified essential genes using DEG database and discarded S. enterica homologs of human proteins in unique metabolic pathways (UMPs) and characterized hypothetical proteins with SVM-prot and InterProScan. Through this core proteomic analysis we have identified enzymes essential to the pathogen. The identification of 73 enzymes common in 42 strains of S. enterica is the real strength of the current study. We proposed all 73 unexplored enzymes as potential drug targets against the infections caused by the S. enterica. The study is comprehensive around S. enterica and simultaneously considered every possible pathogenic strain of S. enterica. This comprehensiveness turned the current study significant since, to the best of our knowledge it is the first subtractive core proteomic analysis of the unique metabolic pathways applied to any pathogen for the identification of drug targets. We applied extensive computational methods to shortlist few potential drug targets considering the druggability criteria e.g. Non-homologous to the human host, essential to the pathogen and playing significant role in essential metabolic pathways of the pathogen (i.e. S. enterica). In the current study, the subtractive proteomics through a novel approach was applied i.e. by considering only proteins of the unique metabolic pathways of the pathogens and mining the proteomic data of all completely sequenced strains of the pathogen, thus improving the quality and application of the results. We believe that the sharing of the knowledge from this study would eventually lead to bring about novel and unique therapeutic regimens against the infections caused by the S. enterica.
Recreational music-making alters gene expression pathways in patients with coronary heart disease
Bittman, Barry; Croft, Daniel T.; Brinker, Jeannie; van Laar, Ryan; Vernalis, Marina N.; Ellsworth, Darrell L.
2013-01-01
Background Psychosocial stress profoundly impacts long-term cardiovascular health through adverse effects on sympathetic nervous system activity, endothelial dysfunction, and atherosclerotic development. Recreational Music Making (RMM) is a unique stress amelioration strategy encompassing group music-based activities that has great therapeutic potential for treating patients with stress-related cardiovascular disease. Material/Methods Participants (n=34) with a history of ischemic heart disease were subjected to an acute time-limited stressor, then randomized to RMM or quiet reading for one hour. Peripheral blood gene expression using GeneChip® Human Genome U133A 2.0 arrays was assessed at baseline, following stress, and after the relaxation session. Results Full gene set enrichment analysis identified 16 molecular pathways differentially regulated (P<0.005) during stress that function in immune response, cell mobility, and transcription. During relaxation, two pathways showed a significant change in expression in the control group, while 12 pathways governing immune function and gene expression were modulated among RMM participants. Only 13% (2/16) of pathways showed differential expression during stress and relaxation. Conclusions Human stress and relaxation responses may be controlled by different molecular pathways. Relaxation through active engagement in Recreational Music Making may be more effective than quiet reading at altering gene expression and thus more clinically useful for stress amelioration. PMID:23435350
Reaction trajectory revealed by a joint analysis of protein data bank.
Ren, Zhong
2013-01-01
Structural motions along a reaction pathway hold the secret about how a biological macromolecule functions. If each static structure were considered as a snapshot of the protein molecule in action, a large collection of structures would constitute a multidimensional conformational space of an enormous size. Here I present a joint analysis of hundreds of known structures of human hemoglobin in the Protein Data Bank. By applying singular value decomposition to distance matrices of these structures, I demonstrate that this large collection of structural snapshots, derived under a wide range of experimental conditions, arrange orderly along a reaction pathway. The structural motions along this extensive trajectory, including several helical transformations, arrive at a reverse engineered mechanism of the cooperative machinery (Ren, companion article), and shed light on pathological properties of the abnormal homotetrameric hemoglobins from α-thalassemia. This method of meta-analysis provides a general approach to structural dynamics based on static protein structures in this post genomics era.
Reaction Trajectory Revealed by a Joint Analysis of Protein Data Bank
Ren, Zhong
2013-01-01
Structural motions along a reaction pathway hold the secret about how a biological macromolecule functions. If each static structure were considered as a snapshot of the protein molecule in action, a large collection of structures would constitute a multidimensional conformational space of an enormous size. Here I present a joint analysis of hundreds of known structures of human hemoglobin in the Protein Data Bank. By applying singular value decomposition to distance matrices of these structures, I demonstrate that this large collection of structural snapshots, derived under a wide range of experimental conditions, arrange orderly along a reaction pathway. The structural motions along this extensive trajectory, including several helical transformations, arrive at a reverse engineered mechanism of the cooperative machinery (Ren, companion article), and shed light on pathological properties of the abnormal homotetrameric hemoglobins from α-thalassemia. This method of meta-analysis provides a general approach to structural dynamics based on static protein structures in this post genomics era. PMID:24244274
A new metabolomic assay to examine inflammation and redox pathways following LPS challenge
2012-01-01
Background Shifts in intracellular arginine (Arg) and sulfur amino acid (SAA) redox metabolism modulate macrophage activation, polarization and phenotype. Despite their importance in inflammation and redox regulatory pathways, comprehensive analysis of these metabolic networks was not previously possible with existing analytical methods. Methods The Arg/thiol redox LC-MS/MS metabolomics assay permits simultaneous assessment of amino acids and derivative products generated from Arg and SAA metabolism. Using this assay, LPS-induced changes in macrophage amino acid metabolism were monitored to identify pathway shifts during activation and their linkage to cellular redox regulation. Results Metabolite concentrations most significantly changed after treatment of a macrophage-like cell line (RAW) with LPS for 24 hrs were citrulline (Cit) (48-fold increase), ornithine (Orn) (8.5-fold increase), arginine (Arg) (66% decrease), and aspartic acid (Asp) (73% decrease). The ratio Cit + Orn/Arg + Asp (CO/AA) was more sensitive to LPS stimulation than other amino acid ratios commonly used to measure LPS-dependent inflammation (e.g., SAM/SAH, GSH/GSSG) and total media NOx. The CO/AA ratio was also the first ratio to change significantly after LPS treatment (4 hrs). Changes in the overall metabolomic profile over time indicated that metabolic pathways shifted from Arg catabolism to thiol oxidation. Conclusions Simultaneous quantification of Arg and SAA metabolic pathway shifts following LPS challenge of macrophage indicate that, in this system, the Arg-Citrulline/NO cycle and arginase pathways are the amino acid metabolic pathways most sensitive to LPS-challenge. The cellular (Cit + Orn)/(Arg + Asp) ratio, which summarizes this pathway, was more responsive to lower concentrations of LPS and responded earlier than other metabolic biomarkers of macrophage activation including GSH redox. It is suggested that the CO/AA ratio is a redox- independent early biomarker of macrophage activation. The ability to measure both the CO/AA and GSH-redox ratios simultaneously permits quantification of the relative effects of LPS challenge on macrophage inflammation and oxidative stress pathways. The use of this assay in humans is discussed, as are clinical implications. PMID:23036094
minepath.org: a free interactive pathway analysis web server.
Koumakis, Lefteris; Roussos, Panos; Potamias, George
2017-07-03
( www.minepath.org ) is a web-based platform that elaborates on, and radically extends the identification of differentially expressed sub-paths in molecular pathways. Besides the network topology, the underlying MinePath algorithmic processes exploit exact gene-gene molecular relationships (e.g. activation, inhibition) and are able to identify differentially expressed pathway parts. Each pathway is decomposed into all its constituent sub-paths, which in turn are matched with corresponding gene expression profiles. The highly ranked, and phenotype inclined sub-paths are kept. Apart from the pathway analysis algorithm, the fundamental innovation of the MinePath web-server concerns its advanced visualization and interactive capabilities. To our knowledge, this is the first pathway analysis server that introduces and offers visualization of the underlying and active pathway regulatory mechanisms instead of genes. Other features include live interaction, immediate visualization of functional sub-paths per phenotype and dynamic linked annotations for the engaged genes and molecular relations. The user can download not only the results but also the corresponding web viewer framework of the performed analysis. This feature provides the flexibility to immediately publish results without publishing source/expression data, and get all the functionality of a web based pathway analysis viewer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
Shao, Zengyi; Zhao, Hua; Zhao, Huimin
2009-01-01
The assembly of large recombinant DNA encoding a whole biochemical pathway or genome represents a significant challenge. Here, we report a new method, DNA assembler, which allows the assembly of an entire biochemical pathway in a single step via in vivo homologous recombination in Saccharomyces cerevisiae. We show that DNA assembler can rapidly assemble a functional d-xylose utilization pathway (∼9 kb DNA consisting of three genes), a functional zeaxanthin biosynthesis pathway (∼11 kb DNA consisting of five genes) and a functional combined d-xylose utilization and zeaxanthin biosynthesis pathway (∼19 kb consisting of eight genes) with high efficiencies (70–100%) either on a plasmid or on a yeast chromosome. As this new method only requires simple DNA preparation and one-step yeast transformation, it represents a powerful tool in the construction of biochemical pathways for synthetic biology, metabolic engineering and functional genomics studies. PMID:19074487
Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.
de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin
2017-01-01
The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.
A systematic analysis of a mi-RNA inter-pathway regulatory motif
2013-01-01
Background The continuing discovery of new types and functions of small non-coding RNAs is suggesting the presence of regulatory mechanisms far more complex than the ones currently used to study and design Gene Regulatory Networks. Just focusing on the roles of micro RNAs (miRNAs), they have been found to be part of several intra-pathway regulatory motifs. However, inter-pathway regulatory mechanisms have been often neglected and require further investigation. Results In this paper we present the result of a systems biology study aimed at analyzing a high-level inter-pathway regulatory motif called Pathway Protection Loop, not previously described, in which miRNAs seem to play a crucial role in the successful behavior and activation of a pathway. Through the automatic analysis of a large set of public available databases, we found statistical evidence that this inter-pathway regulatory motif is very common in several classes of KEGG Homo Sapiens pathways and concurs in creating a complex regulatory network involving several pathways connected by this specific motif. The role of this motif seems also confirmed by a deeper review of other research activities on selected representative pathways. Conclusions Although previous studies suggested transcriptional regulation mechanism at the pathway level such as the Pathway Protection Loop, a high-level analysis like the one proposed in this paper is still missing. The understanding of higher-level regulatory motifs could, as instance, lead to new approaches in the identification of therapeutic targets because it could unveil new and “indirect” paths to activate or silence a target pathway. However, a lot of work still needs to be done to better uncover this high-level inter-pathway regulation including enlarging the analysis to other small non-coding RNA molecules. PMID:24152805
As part of a multi-endpoint systems approach to develop comprehensive methods for assessing endocrine stressors in vertebrates, differential protein profiling was used to investigate expression profiles in the brain of an amphibian model (Xenopus laevis) following in vivo exposur...
Ugurlu, Devran; Firat, Zeynep; Türe, Uğur; Unal, Gozde
2018-05-01
Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles generally involves manual selection of regions of interest by an expert, which is subject to user bias and fatigue, hence an automation is desirable. To that end, we first present a novel anatomical representation based on Neighborhood Resolved Fiber Orientation Distributions (NRFOD) along the fibers. The resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. A fiber-to-fiber distance measure between the proposed fiber representations is then used in a density-based clustering framework to select the clusters corresponding to the major pathways of interest. In addition, neuroanatomical priors are utilized to constrain the set of candidate fibers before density-based clustering. The proposed fiber clustering approach is exemplified on automation of the reconstruction of the major fiber pathways in the brainstem: corticospinal tract (CST); medial lemniscus (ML); middle cerebellar peduncle (MCP); inferior cerebellar peduncle (ICP); superior cerebellar peduncle (SCP). Experimental results on Human Connectome Project (HCP)'s publicly available "WU-Minn 500 Subjects + MEG2 dataset" and expert evaluations demonstrate the potential of the proposed fiber clustering method in brainstem white matter structure analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Limbrick-Oldfield, Eve H.; Brooks, Jonathan C.W.; Wise, Richard J.S.; Padormo, Francesco; Hajnal, Jo V.; Beckmann, Christian F.; Ungless, Mark A.
2012-01-01
Localising activity in the human midbrain with conventional functional MRI (fMRI) is challenging because the midbrain nuclei are small and located in an area that is prone to physiological artefacts. Here we present a replicable and automated method to improve the detection and localisation of midbrain fMRI signals. We designed a visual fMRI task that was predicted would activate the superior colliculi (SC) bilaterally. A limited number of coronal slices were scanned, orientated along the long axis of the brainstem, whilst simultaneously recording cardiac and respiratory traces. A novel anatomical registration pathway was used to optimise the localisation of the small midbrain nuclei in stereotactic space. Two additional structural scans were used to improve registration between functional and structural T1-weighted images: an echo-planar image (EPI) that matched the functional data but had whole-brain coverage, and a whole-brain T2-weighted image. This pathway was compared to conventional registration pathways, and was shown to significantly improve midbrain registration. To reduce the physiological artefacts in the functional data, we estimated and removed structured noise using a modified version of a previously described physiological noise model (PNM). Whereas a conventional analysis revealed only unilateral SC activity, the PNM analysis revealed the predicted bilateral activity. We demonstrate that these methods improve the measurement of a biologically plausible fMRI signal. Moreover they could be used to investigate the function of other midbrain nuclei. PMID:21867762
Chen, Qi; Lu, Xueyan; Guo, Xiaorui; Guo, Qingxi; Li, Dewen
2017-06-17
Catharanthus roseus ( C. roseus ) and Vinca minor ( V. minor ) are two common important medical plants belonging to the family Apocynaceae. In this study, we used non-targeted GC-MS and targeted LC-MS metabolomics to dissect the metabolic profile of two plants with comparable phenotypic and metabolic differences. A total of 58 significantly different metabolites were present in different quantities according to PCA and PLS-DA score plots of the GC-MS analysis. The 58 identified compounds comprised 16 sugars, eight amino acids, nine alcohols and 18 organic acids. We subjected these metabolites into KEGG pathway enrichment analysis and highlighted 27 metabolic pathways, concentrated on the TCA cycle, glycometabolism, oligosaccharides, and polyol and lipid transporter (RFOS). Among the primary metabolites, trehalose, raffinose, digalacturonic acid and gallic acid were revealed to be the most significant marker compounds between the two plants, presumably contributing to species-specific phenotypic and metabolic discrepancy. The profiling of nine typical alkaloids in both plants using LC-MS method highlighted higher levels of crucial terpenoid indole alkaloid (TIA) intermediates of loganin, serpentine, and tabersonine in V. minor than in C. roseus . The possible underlying process of the metabolic flux from primary metabolism pathways to TIA synthesis was discussed and proposed. Generally speaking, this work provides a full-scale comparison of primary and secondary metabolites between two medical plants and a metabolic explanation of their TIA accumulation and phenotype differences.
Koster, Roelof; Mitra, Nandita; D'Andrea, Kurt; Vardhanabhuti, Saran; Chung, Charles C; Wang, Zhaoming; Loren Erickson, R; Vaughn, David J; Litchfield, Kevin; Rahman, Nazneen; Greene, Mark H; McGlynn, Katherine A; Turnbull, Clare; Chanock, Stephen J; Nathanson, Katherine L; Kanetsky, Peter A
2014-11-15
Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H
2017-11-01
Gene co-expression network analysis has been a research method widely used in systematically exploring gene function and interaction. Using the Weighted Gene Co-expression Network Analysis (WGCNA) approach to construct a gene co-expression network using data from a customized 44K microarray transcriptome of chicken epidermal embryogenesis, we have identified two distinct modules that are highly correlated with scale or feather development traits. Signaling pathways related to feather development were enriched in the traditional KEGG pathway analysis and functional terms relating specifically to embryonic epidermal development were also enriched in the Gene Ontology analysis. Significant enrichment annotations were discovered from customized enrichment tools such as Modular Single-Set Enrichment Test (MSET) and Medical Subject Headings (MeSH). Hub genes in both trait-correlated modules showed strong specific functional enrichment toward epidermal development. Also, regulatory elements, such as transcription factors and miRNAs, were targeted in the significant enrichment result. This work highlights the advantage of this methodology for functional prediction of genes not previously associated with scale- and feather trait-related modules.
Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato.
Wang, Yunxiang; Wang, Qing; Gao, Lipu; Zhu, Benzhong; Luo, Yunbo; Deng, Zhiping; Zuo, Jinhua
2017-11-01
Circular RNAs (circRNAs) are a large class of non-coding endogenous RNAs that could act as competing endogenous RNAs (ceRNAs) to terminate the mRNA targets' suppression of miRNAs. To elucidate the intricate regulatory roles of circRNAs in the ethylene pathway in tomato fruit, deep sequencing and bioinformatics methods were performed. After strict screening, a total of 318 circRNAs were identified. Among these circRNAs, 282 were significantly differentially expressed among wild-type and sense-/antisense-LeERF1 transgenic tomato fruits. Besides, 1254 target genes were identified and a large amount of them were found to be involved in ethylene pathway. In addition, a sophisticated regulatory model consisting of circRNAs, target genes and ethylene was set up. Importantly, 61 circRNAs were found to be potential ceRNAs to combine with miRNAs and some of the miRNAs had been revealed to participate in the ethylene signaling pathway. This research further raised the possibility that the ethylene pathway in tomato fruit may be under the regulation of various circRNAs and provided a new perspective of the roles of circRNAs. © 2017 Scandinavian Plant Physiology Society.
Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods.
Wang, Liming; Zhu, L; Luan, R; Wang, L; Fu, J; Wang, X; Sui, L
2016-10-10
Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus database, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs) were identified between normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed. Meanwhile, the potential transcription factors (TFs) and microRNAs (miRNAs) of these DEGs were predicted based on their binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of 4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway. Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as potential miRNAs (miR-9, miR-200 family, and miR-30 family). Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as well as potential miRNAs, might be involved in DCM.
Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods
Wang, Liming; Zhu, L.; Luan, R.; Wang, L.; Fu, J.; Wang, X.; Sui, L.
2016-01-01
Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus database, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs) were identified between normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed. Meanwhile, the potential transcription factors (TFs) and microRNAs (miRNAs) of these DEGs were predicted based on their binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of 4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway. Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as potential miRNAs (miR-9, miR-200 family, and miR-30 family). Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as well as potential miRNAs, might be involved in DCM. PMID:27737314
Wei, Shizhang; Niu, Ming; Wang, Jian; Wang, Jiabo; Su, Haibin; Luo, Shengqiang; Zhang, Xiaomei; Guo, Yanlei; Liu, Liping; Liu, Fengqun; Zhao, Qingguo; Chen, Hongge; Xiao, Xiaohe; Zhao, Pan; Zhao, Yanling
2016-01-01
Ethnopharmacological relevance San-Cao Granule (SCG) has been used in patients with liver fibrosis for many years and has shown good effect. However, its mechanism of therapeutic action is not clear because of its complex chemical system. The purpose of our study is to establish a comprehensive and systemic method that can predict the mechanism of action of SCG in antihepatic fibrosis. Materials and methods In this study, a “compound–target–disease” network was constructed by combining the SCG-specific and liver fibrosis–specific target proteins with protein–protein interactions, and network pharmacology was used to screen out the underlying targets and mechanisms of SCG for treatment of liver fibrosis. Then, some key molecules of the enriched pathway were chosen to verify the effects of SCG on liver fibrosis induced by thioacetamide (TAA). Results This systematic approach had successfully revealed that 16 targets related to 11 SCG compounds were closely associated with liver fibrosis therapy. The pathway-enrichment analysis of them showed that the TGF-β1/Smad signaling pathway is relatively important. Animal experiments also proved that SCG could significantly ameliorate liver fibrosis by inhibiting the TGF-β1/Smad pathway. Conclusion SCG could alleviate liver fibrosis through the molecular mechanisms predicted by network pharmacology. Furthermore, network pharmacology could provide deep insight into the pharmacological mechanisms of Chinese herbal formulas. PMID:26929602
Yendiki, Anastasia; Panneck, Patricia; Srinivasan, Priti; Stevens, Allison; Zöllei, Lilla; Augustinack, Jean; Wang, Ruopeng; Salat, David; Ehrlich, Stefan; Behrens, Tim; Jbabdi, Saad; Gollub, Randy; Fischl, Bruce
2011-01-01
We have developed a method for automated probabilistic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. Our method is called TRACULA (TRActs Constrained by UnderLying Anatomy) and utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual interaction with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. In this paper we illustrate the application of the method on data from a schizophrenia study and investigate whether the inclusion of both patients and healthy subjects in the training set affects our ability to reconstruct the pathways reliably. We show that, since our method does not constrain the exact spatial location or shape of the pathways but only their trajectory relative to the surrounding anatomical structures, a set a of healthy training subjects can be used to reconstruct the pathways accurately in patients as well as in controls. PMID:22016733
Evans, Joseph R; Zhao, Shuang G; Chang, S Laura; Tomlins, Scott A; Erho, Nicholas; Sboner, Andrea; Schiewer, Matthew J; Spratt, Daniel E; Kothari, Vishal; Klein, Eric A; Den, Robert B; Dicker, Adam P; Karnes, R Jeffrey; Yu, Xiaochun; Nguyen, Paul L; Rubin, Mark A; de Bono, Johann; Knudsen, Karen E; Davicioni, Elai; Feng, Felix Y
2016-04-01
A substantial number of patients diagnosed with high-risk prostate cancer are at risk for metastatic progression after primary treatment. Better biomarkers are needed to identify patients at the highest risk to guide therapy intensification. To create a DNA damage and repair (DDR) pathway profiling method for use as a prognostic signature biomarker in high-risk prostate cancer. A cohort of 1090 patients with high-risk prostate cancer who underwent prostatectomy and were treated at 3 different academic institutions were divided into a training cohort (n = 545) and 3 pooled validation cohorts (n = 232, 130, and 183) assembled for case-control or case-cohort studies. Profiling of 9 DDR pathways using 17 gene sets for GSEA (Gene Set Enrichment Analysis) of high-density microarray gene expression data from formalin-fixed paraffin-embedded prostatectomy samples with median 10.3 years follow-up was performed. Prognostic signature development from DDR pathway profiles was studied, and DDR pathway gene mutation in published cohorts was analyzed. Biochemical recurrence-free, metastasis-free, and overall survival. Across the training cohort and pooled validation cohorts, 1090 men were studied; mean (SD) age at diagnosis was 65.3 (6.4) years. We found that there are distinct clusters of DDR pathways within the cohort, and DDR pathway enrichment is only weakly correlated with clinical variables such as age (Spearman ρ [ρ], range, -0.07 to 0.24), Gleason score (ρ, range, 0.03 to 0.20), prostate-specific antigen level (ρ, range, -0.07 to 0.10), while 13 of 17 DDR gene sets are strongly correlated with androgen receptor pathway enrichment (ρ, range, 0.33 to 0.82). In published cohorts, DDR pathway genes are rarely mutated. A DDR pathway profile prognostic signature built in the training cohort was significantly associated with biochemical recurrence-free, metastasis-free, and overall survival in the pooled validation cohorts independent of standard clinicopathological variables. The prognostic performance of the signature for metastasis-free survival appears to be stronger in the younger patients (HR, 1.67; 95% CI, 1.12-2.50) than in the older patients (HR, 0.77; 95% CI, 0.29-2.07) on multivariate Cox analysis. DNA damage and repair pathway profiling revealed patient-level variations and the DDR pathways are rarely affected by mutation. A DDR pathway signature showed strong prognostic performance with the long-term outcomes of metastasis-free and overall survival that may be useful for risk stratification of high-risk prostate cancer patients.
Li, Yingfu
2017-01-01
The elucidation of the cellular processes involved in vitamin and cofactor biosynthesis is a challenging task. The conventional approaches to these investigations rely on the discovery and purification of the products (i.e proteins and metabolites) of a particular transport or biosynthetic pathway, prior to their subsequent analysis. However, the purification of low-abundance proteins or metabolites is a formidable undertaking that presents considerable technical challenges. As a solution, we present an alternative approach to such studies that circumvents the purification step. The proposed approach takes advantage of: (1) the molecular detection capabilities of a riboswitch-based sensor to detect the cellular levels of its cognate molecule, as a means to probe the integrity of the transport and biosynthetic pathways of the target molecule in cells, (2) the high-throughput screening ability of fluorescence-activated cell sorters to isolate cells in which only these specific pathways are disrupted, and (3) the ability of next-generation sequencing to quickly identify the genes of the FACS-sorted populations. This approach was named “RiboFACSeq”. Following their identification by RiboFACSeq, the role of these genes in the presumed pathway needs to be verified through appropriate functional assays. To demonstrate the utility of our approach, an adenosylcobalamin (AdoCbl)-responsive riboswitch-based sensor was used in this study to demonstrate that RiboFACSeq can be used to track and sort cells carrying genetic mutations in known AdoCbl transport and biosynthesis genes with desirable sensitivity and specificity. This method could potentially be used to elucidate any pathway of interest, as long as a suitable riboswitch-based sensor can be created. We believe that RiboFACSeq would be especially useful for the elucidation of biological pathways in which the proteins and/or their metabolites are present at very low physiological concentrations in cells, as is the case with vitamin and cofactor biosynthesis. PMID:29211762
Manteiga, Sara; Lee, Kyongbum
2016-01-01
Background: A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals’ effects on adult adipose tissue. Objectives: Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. Methods: We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Results: Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor’s activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Conclusions: Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ. Citation: Manteiga S, Lee K. 2017. Monoethylhexyl phthalate elicits an inflammatory response in adipocytes characterized by alterations in lipid and cytokine pathways. Environ Health Perspect 125:615–622; http://dx.doi.org/10.1289/EHP464 PMID:27384973
c-Kit modifies the inflammatory status of smooth muscle cells
Song, Lei; Martinez, Laisel; Zigmond, Zachary M.; Hernandez, Diana R.; Lassance-Soares, Roberta M.; Selman, Guillermo
2017-01-01
Background c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. Methods High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (KitW/W–v) and control (Kit+/+) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. Results The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Discussion Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation. PMID:28626608
Analysis of APC mutation in human ameloblastoma and clinical significance.
Li, Ning; Liu, Bing; Sui, Chengguang; Jiang, Youhong
2016-01-01
As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype.
CMPF: class-switching minimized pathfinding in metabolic networks.
Lim, Kevin; Wong, Limsoon
2012-01-01
The metabolic network is an aggregation of enzyme catalyzed reactions that converts one compound to another. Paths in a metabolic network are a sequence of enzymes that describe how a chemical compound of interest can be produced in a biological system. As the number of such paths is quite large, many methods have been developed to score paths so that the k-shortest paths represent the set of paths that are biologically meaningful or efficient. However, these approaches do not consider whether the sequence of enzymes can be manufactured in the same pathway/species/localization. As a result, a predicted sequence might consist of groups of enzymes that operate in distinct pathway/species/localization and may not truly reflect the events occurring within cell. We propose a path weighting method CMPF (Class-switching Minimized Pathfinder) to search for routes in a metabolic network which minimizes pathway switching. In biological terms, a pathway is a series of chemical reactions which define a specific function (e.g. glycolysis). We conjecture that routes that cross many pathways are inefficient since different pathways define different metabolic functions. In addition, native routes are also well characterized within pathways, suggesting that reasonable paths should not involve too many pathway switches. Our method can be generalized when reactions participate in a class set (e.g., pathways, species or cellular localization) so that the paths predicted have minimal class crossings. We show that our method generates k-paths that involve the least number of class switching. In addition, we also show that native paths are recoverable and alternative paths deviates less from native paths compared to other methods. This suggests that paths ranked by our method could be a way to predict paths that are likely to occur in biological systems.
Physical Activity Measurements: Lessons Learned from the Pathways Study
Going, Scott B.
2015-01-01
High obesity rates in American Indian children led to Pathways, a randomized school and community-based childhood prevention study. Seven tribes, five universities, the NIH/NHLBI, and four elementary schools partnered. Increasing physical activity (PA) was an important intervention target. PA assessment was based on study objectives, feasibility, and tribal acceptance. A time-segmented analysis was also desired. Two methods were developed during pilot testing, a new PA questionnaire and accelerometry. Together, the methods provided qualitative and quantitative information and showed 3 of 4 sites were able to increase average daily PA, although overall the control versus intervention difference was not significant. The main limitation was inability to distinguish PA among individuals. Accelerometer size and some community concerns led to a protocol based on a single day of wearing time. Newer model triaxial accelerometers which are much smaller and allow sampling of multiple days of activity are recommended for future studies. PMID:20689391
Martyniuk, Christopher J.; Prucha, Melinda S.; Doperalski, Nicholas J.; Antczak, Philipp; Kroll, Kevin J.; Falciani, Francesco; Barber, David S.; Denslow, Nancy D.
2013-01-01
Background Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Methods Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Results Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. Conclusions This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation. PMID:23527095
Teaniniuraitemoana, Vaihiti; Huvet, Arnaud; Levy, Peva; Gaertner-Mazouni, Nabila; Gueguen, Yannick; Le Moullac, Gilles
2015-01-01
The genomics of economically important marine bivalves is studied to provide better understanding of the molecular mechanisms underlying their different reproductive strategies. The recently available gonad transcriptome of the black-lip pearl oyster Pinctada margaritifera is a novel and powerful resource to study these mechanisms in marine mollusks displaying hermaphroditic features. In this study, RNAseq quantification data of the P. margaritifera gonad transcriptome were analyzed to identify candidate genes in histologically-characterized gonad samples to provide molecular signatures of the female and male sexual pathway in this pearl oyster. Based on the RNAseq data set, stringent expression analysis identified 1,937 contigs that were differentially expressed between the gonad histological categories. From the hierarchical clustering analysis, a new reproduction model is proposed, based on a dual histo-molecular analytical approach. Nine candidate genes were identified as markers of the sexual pathway: 7 for the female pathway and 2 for the male one. Their mRNA levels were assayed by real-time PCR on a new set of gonadic samples. A clustering method revealed four principal expression patterns based on the relative gene expression ratio. A multivariate regression tree realized on these new samples and validated on the previously analyzed RNAseq samples showed that the sexual pathway of P. margaritifera can be predicted by a 3-gene-pair expression ratio model of 4 different genes: pmarg-43476, pmarg-foxl2, pmarg-54338 and pmarg-fem1-like. This 3-gene-pair expression ratio model strongly suggests only the implication of pmarg-foxl2 and pmarg-fem1-like in the sex inversion of P. margaritifera. This work provides the first histo-molecular model of P. margaritifera reproduction and a gene expression signature of its sexual pathway discriminating the male and female pathways. These represent useful tools for understanding and studying sex inversion, sex differentiation and sex determinism in this species and other related species for aquaculture purposes such as genetic selection programs. PMID:25815473
Interference of interchromophoric energy-transfer pathways in π-conjugated macrocycles
Alfonso Hernandez, Laura; Nelson, Tammie Renee; Gelin, Maxim F.; ...
2016-11-10
The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene–ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unitmore » but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Finally, simulation results are validated by modeling the fluorescence anisotropy decay.« less
Is Phosphoproteomics Ready for Clinical Research?
Iliuk, Anton B.; Tao, W. Andy
2012-01-01
Background For many diseases such as cancer where phosphorylation-dependent signaling is the foundation of disease onset and progression, single-gene testing and genomic profiling alone are not sufficient in providing most critical information. The reason for this is that in these activated pathways the signaling changes and drug resistance are often not directly correlated with changes in protein expression levels. In order to obtain the essential information needed to evaluate pathway activation or the effects of certain drugs and therapies on the molecular level, the analysis of changes in protein phosphorylation is critical. Methods Existing approaches do not differentiate clinical disease subtypes on the protein and signaling pathway level, and therefore hamper the predictive management of the disease and the selection of therapeutic targets. Conclusions The mini-review examines the impact of emerging systems biology tools and the possibility of applying phosphoproteomics to clinical research. PMID:23159844
Banks, Jon; Wye, Lesley; Hall, Nicola; Rooney, James; Walter, Fiona M; Hamilton, Willie; Gjini, Ardiana; Rubin, Greg
2017-12-13
In examining an initiative to develop and implement new cancer diagnostic pathways in two English localities, this paper evaluates 'what works' and examines the role of researchers in facilitating knowledge translation amongst teams of local clinicians and policy-makers. Using realist evaluation with a mixed methods case study approach, we conducted documentary analysis of meeting minutes and pathway iterations to map pathway development. We interviewed 14 participants to identify the contexts, mechanisms and outcomes (CMOs) that led to successful pathway development and implementation. Interviews were analysed thematically and four CMO configurations were developed. One site produced three fully implemented pathways, while the other produced two that were partly implemented. In explaining the differences, we found that a respected, independent, well-connected leader modelling partnership working and who facilitates a local, stable group that agree about the legitimacy of the data and project (context) can empower local teams to become sufficiently autonomous (mechanism) to develop and implement research-based pathways (outcome). Although both teams designed relevant, research-based cancer pathways, in the site where the pathways were successfully implemented the research team merely assisted, while, in the other, the research team drove the initiative. Based on our study findings, local stakeholders can apply local and research knowledge to develop and implement research-based pathways. However, success will depend on how academics empower local teams to create autonomy. Crucially, after re-packaging and translating research for local circumstances, identifying fertile environments with the right elements for implementation and developing collaborative relationships with local leaders, academics must step back.
Genome-Wide Gene Set Analysis for Identification of Pathways Associated with Alcohol Dependence
Biernacka, Joanna M.; Geske, Jennifer; Jenkins, Gregory D.; Colby, Colin; Rider, David N.; Karpyak, Victor M.; Choi, Doo-Sup; Fridley, Brooke L.
2013-01-01
It is believed that multiple genetic variants with small individual effects contribute to the risk of alcohol dependence. Such polygenic effects are difficult to detect in genome-wide association studies that test for association of the phenotype with each single nucleotide polymorphism (SNP) individually. To overcome this challenge, gene set analysis (GSA) methods that jointly test for the effects of pre-defined groups of genes have been proposed. Rather than testing for association between the phenotype and individual SNPs, these analyses evaluate the global evidence of association with a set of related genes enabling the identification of cellular or molecular pathways or biological processes that play a role in development of the disease. It is hoped that by aggregating the evidence of association for all available SNPs in a group of related genes, these approaches will have enhanced power to detect genetic associations with complex traits. We performed GSA using data from a genome-wide study of 1165 alcohol dependent cases and 1379 controls from the Study of Addiction: Genetics and Environment (SAGE), for all 200 pathways listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results demonstrated a potential role of the “Synthesis and Degradation of Ketone Bodies” pathway. Our results also support the potential involvement of the “Neuroactive Ligand Receptor Interaction” pathway, which has previously been implicated in addictive disorders. These findings demonstrate the utility of GSA in the study of complex disease, and suggest specific directions for further research into the genetic architecture of alcohol dependence. PMID:22717047
Process characteristics for microwave assisted hydrothermal carbonization of cellulose.
Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming
2018-07-01
The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
PathwaySplice: An R package for unbiased pathway analysis of alternative splicing in RNA-Seq data.
Yan, Aimin; Ban, Yuguang; Gao, Zhen; Chen, Xi; Wang, Lily
2018-04-24
Pathway analysis of alternative splicing would be biased without accounting for the different number of exons or junctions associated with each gene, because genes with higher number of exons or junctions are more likely to be included in the "significant" gene list in alternative splicing. We present PathwaySplice, an R package that (1) Performs pathway analysis that explicitly adjusts for the number of exons or junctions associated with each gene; (2) Visualizes selection bias due to different number of exons or junctions for each gene and formally tests for presence of bias using logistic regression; (3) Supports gene sets based on the Gene Ontology terms, as well as more broadly defined gene sets (e.g. MSigDB) or user defined gene sets; (4) Identifies the significant genes driving pathway significance and (5) Organizes significant pathways with an enrichment map, where pathways with large number of overlapping genes are grouped together in a network graph. https://bioconductor.org/packages/release/bioc/html/PathwaySplice.html. lily.wangg@gmail.com, xi.steven.chen@gmail.com.