Sample records for pathway genetic analysis

  1. Integrating genome-wide association studies and gene expression data highlights dysregulated multiple sclerosis risk pathways.

    PubMed

    Liu, Guiyou; Zhang, Fang; Jiang, Yongshuai; Hu, Yang; Gong, Zhongying; Liu, Shoufeng; Chen, Xiuju; Jiang, Qinghua; Hao, Junwei

    2017-02-01

    Much effort has been expended on identifying the genetic determinants of multiple sclerosis (MS). Existing large-scale genome-wide association study (GWAS) datasets provide strong support for using pathway and network-based analysis methods to investigate the mechanisms underlying MS. However, no shared genetic pathways have been identified to date. We hypothesize that shared genetic pathways may indeed exist in different MS-GWAS datasets. Here, we report results from a three-stage analysis of GWAS and expression datasets. In stage 1, we conducted multiple pathway analyses of two MS-GWAS datasets. In stage 2, we performed a candidate pathway analysis of the large-scale MS-GWAS dataset. In stage 3, we performed a pathway analysis using the dysregulated MS gene list from seven human MS case-control expression datasets. In stage 1, we identified 15 shared pathways. In stage 2, we successfully replicated 14 of these 15 significant pathways. In stage 3, we found that dysregulated MS genes were significantly enriched in 10 of 15 MS risk pathways identified in stages 1 and 2. We report shared genetic pathways in different MS-GWAS datasets and highlight some new MS risk pathways. Our findings provide new insights on the genetic determinants of MS.

  2. Mining disease fingerprints from within genetic pathways.

    PubMed

    Nabhan, Ahmed Ragab; Sarkar, Indra Neil

    2012-01-01

    Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components ('fingerprints') of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ~77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways.

  3. Mining Disease Fingerprints From Within Genetic Pathways

    PubMed Central

    Nabhan, Ahmed Ragab; Sarkar, Indra Neil

    2012-01-01

    Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components (‘fingerprints’) of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ∼77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways. PMID:23304411

  4. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD.

    PubMed

    Bralten, Janita; Franke, Barbara; Waldman, Irwin; Rommelse, Nanda; Hartman, Catharina; Asherson, Philip; Banaschewski, Tobias; Ebstein, Richard P; Gill, Michael; Miranda, Ana; Oades, Robert D; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A; Oosterlaan, Jaap; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Faraone, Stephen V; Buitelaar, Jan K; Arias-Vásquez, Alejandro

    2013-11-01

    Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic studies. This study investigated whether pathway-based analysis could bring scientists closer to unraveling the biology of ADHD. The pathway was described as a predefined gene selection based on a well-established database or literature data. Common genetic variants in pathways involved in dopamine/norepinephrine and serotonin neurotransmission and genes involved in neuritic outgrowth were investigated in cases from the International Multicentre ADHD Genetics (IMAGE) study. Multivariable analysis was performed to combine the effects of single genetic variants within the pathway genes. Phenotypes were DSM-IV symptom counts for inattention and hyperactivity/impulsivity (n = 871) and symptom severity measured with the Conners Parent (n = 930) and Teacher (n = 916) Rating Scales. Summing genetic effects of common genetic variants within the pathways showed a significant association with hyperactive/impulsive symptoms ((p)empirical = .007) but not with inattentive symptoms ((p)empirical = .73). Analysis of parent-rated Conners hyperactive/impulsive symptom scores validated this result ((p)empirical = .0018). Teacher-rated Conners scores were not associated. Post hoc analyses showed a significant contribution of all pathways to the hyperactive/impulsive symptom domain (dopamine/norepinephrine, (p)empirical = .0004; serotonin, (p)empirical = .0149; neuritic outgrowth, (p)empirical = .0452). The present analysis shows an association between common variants in 3 genetic pathways and the hyperactive/impulsive component of ADHD. This study demonstrates that pathway-based association analyses, using quantitative measurements of ADHD symptom domains, can increase the power of genetic analyses to identify biological risk factors involved in this disorder. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Convergent evidence from systematic analysis of GWAS revealed genetic basis of esophageal cancer.

    PubMed

    Gao, Xue-Xin; Gao, Lei; Wang, Jiu-Qiang; Qu, Su-Su; Qu, Yue; Sun, Hong-Lei; Liu, Si-Dang; Shang, Ying-Li

    2016-07-12

    Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with risk of esophageal cancer (EC). However, investigation of genetic basis from the perspective of systematic biology and integrative genomics remains scarce.In this study, we explored genetic basis of EC based on GWAS data and implemented a series of bioinformatics methods including functional annotation, expression quantitative trait loci (eQTL) analysis, pathway enrichment analysis and pathway grouped network analysis.Two hundred and thirteen risk SNPs were identified, in which 44 SNPs were found to have significantly differential gene expression in esophageal tissues by eQTL analysis. By pathway enrichment analysis, 170 risk genes mapped by risk SNPs were enriched into 38 significant GO terms and 17 significant KEGG pathways, which were significantly grouped into 9 sub-networks by pathway grouped network analysis. The 9 groups of interconnected pathways were mainly involved with muscle cell proliferation, cellular response to interleukin-6, cell adhesion molecules, and ethanol oxidation, which might participate in the development of EC.Our findings provide genetic evidence and new insight for exploring the molecular mechanisms of EC.

  6. Pathway-based discovery of genetic interactions in breast cancer

    PubMed Central

    Xu, Zack Z.; Boone, Charles; Lange, Carol A.

    2017-01-01

    Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314

  7. Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks

    PubMed Central

    Ulitsky, Igor; Shamir, Ron

    2007-01-01

    The biological interpretation of genetic interactions is a major challenge. Recently, Kelley and Ideker proposed a method to analyze together genetic and physical networks, which explains many of the known genetic interactions as linking different pathways in the physical network. Here, we extend this method and devise novel analytic tools for interpreting genetic interactions in a physical context. Applying these tools on a large-scale Saccharomyces cerevisiae data set, our analysis reveals 140 between-pathway models that explain 3765 genetic interactions, roughly doubling those that were previously explained. Model genes tend to have short mRNA half-lives and many phosphorylation sites, suggesting that their stringent regulation is linked to pathway redundancy. We also identify ‘pivot' proteins that have many physical interactions with both pathways in our models, and show that pivots tend to be essential and highly conserved. Our analysis of models and pivots sheds light on the organization of the cellular machinery as well as on the roles of individual proteins. PMID:17437029

  8. Pathway analysis of genome-wide association datasets of personality traits.

    PubMed

    Kim, H-N; Kim, B-H; Cho, J; Ryu, S; Shin, H; Sung, J; Shin, C; Cho, N H; Sung, Y A; Choi, B-O; Kim, H-L

    2015-04-01

    Although several genome-wide association (GWA) studies of human personality have been recently published, genetic variants that are highly associated with certain personality traits remain unknown, due to difficulty reproducing results. To further investigate these genetic variants, we assessed biological pathways using GWA datasets. Pathway analysis using GWA data was performed on 1089 Korean women whose personality traits were measured with the Revised NEO Personality Inventory for the 5-factor model of personality. A total of 1042 pathways containing 8297 genes were included in our study. Of these, 14 pathways were highly enriched with association signals that were validated in 1490 independent samples. These pathways include association of: Neuroticism with axon guidance [L1 cell adhesion molecule (L1CAM) interactions]; Extraversion with neuronal system and voltage-gated potassium channels; Agreeableness with L1CAM interaction, neurotransmitter receptor binding and downstream transmission in postsynaptic cells; and Conscientiousness with the interferon-gamma and platelet-derived growth factor receptor beta polypeptide pathways. Several genes that contribute to top-ranked pathways in this study were previously identified in GWA studies or by pathway analysis in schizophrenia or other neuropsychiatric disorders. Here we report the first pathway analysis of all five personality traits. Importantly, our analysis identified novel pathways that contribute to understanding the etiology of personality traits. © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  9. Pathway Analysis in Attention Deficit Hyperactivity Disorder: An Ensemble Approach

    PubMed Central

    Mooney, Michael A.; McWeeney, Shannon K.; Faraone, Stephen V.; Hinney, Anke; Hebebrand, Johannes; Nigg, Joel T.; Wilmot, Beth

    2016-01-01

    Despite a wealth of evidence for the role of genetics in attention deficit hyperactivity disorder (ADHD), specific and definitive genetic mechanisms have not been identified. Pathway analyses, a subset of gene-set analyses, extend the knowledge gained from genome-wide association studies (GWAS) by providing functional context for genetic associations. However, there are numerous methods for association testing of gene sets and no real consensus regarding the best approach. The present study applied six pathway analysis methods to identify pathways associated with ADHD in two GWAS datasets from the Psychiatric Genomics Consortium. Methods that utilize genotypes to model pathway-level effects identified more replicable pathway associations than methods using summary statistics. In addition, pathways implicated by more than one method were significantly more likely to replicate. A number of brain-relevant pathways, such as RhoA signaling, glycosaminoglycan biosynthesis, fibroblast growth factor receptor activity, and pathways containing potassium channel genes, were nominally significant by multiple methods in both datasets. These results support previous hypotheses about the role of regulation of neurotransmitter release, neurite outgrowth and axon guidance in contributing to the ADHD phenotype and suggest the value of cross-method convergence in evaluating pathway analysis results. PMID:27004716

  10. A System-Level Pathway-Phenotype Association Analysis Using Synthetic Feature Random Forest

    PubMed Central

    Pan, Qinxin; Hu, Ting; Malley, James D.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.

    2015-01-01

    As the cost of genome-wide genotyping decreases, the number of genome-wide association studies (GWAS) has increased considerably. However, the transition from GWAS findings to the underlying biology of various phenotypes remains challenging. As a result, due to its system-level interpretability, pathway analysis has become a popular tool for gaining insights on the underlying biology from high-throughput genetic association data. In pathway analyses, gene sets representing particular biological processes are tested for significant associations with a given phenotype. Most existing pathway analysis approaches rely on single-marker statistics and assume that pathways are independent of each other. As biological systems are driven by complex biomolecular interactions, embracing the complex relationships between single-nucleotide polymorphisms (SNPs) and pathways needs to be addressed. To incorporate the complexity of gene-gene interactions and pathway-pathway relationships, we propose a system-level pathway analysis approach, synthetic feature random forest (SF-RF), which is designed to detect pathway-phenotype associations without making assumptions about the relationships among SNPs or pathways. In our approach, the genotypes of SNPs in a particular pathway are aggregated into a synthetic feature representing that pathway via Random Forest (RF). Multiple synthetic features are analyzed using RF simultaneously and the significance of a synthetic feature indicates the significance of the corresponding pathway. We further complement SF-RF with pathway-based Statistical Epistasis Network (SEN) analysis that evaluates interactions among pathways. By investigating the pathway SEN, we hope to gain additional insights into the genetic mechanisms contributing to the pathway-phenotype association. We apply SF-RF to a population-based genetic study of bladder cancer and further investigate the mechanisms that help explain the pathway-phenotype associations using SEN. The bladder cancer associated pathways we found are both consistent with existing biological knowledge and reveal novel and plausible hypotheses for future biological validations. PMID:24535726

  11. Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE) Cohorts.

    PubMed

    Shim, Unjin; Kim, Han-Na; Sung, Yeon-Ah; Kim, Hyung-Lae

    2014-12-01

    Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, 52.2 ± 8.9 years; body mass index, 24.6 ± 3.2 kg/m(2)). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < 5 × 10(-6)), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < 1.38 × 10(-7), Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.

  12. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies

    PubMed Central

    Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300

  13. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.

    PubMed

    Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.

  14. Systems Genetics Analysis of GWAS reveals Novel Associations between Key Biological Processes and Coronary Artery Disease

    PubMed Central

    Ghosh, Sujoy; Vivar, Juan; Nelson, Christopher P; Willenborg, Christina; Segrè, Ayellet V; Mäkinen, Ville-Petteri; Nikpay, Majid; Erdmann, Jeannette; Blankenberg, Stefan; O'Donnell, Christopher; März, Winfried; Laaksonen, Reijo; Stewart, Alexandre FR; Epstein, Stephen E; Shah, Svati H; Granger, Christopher B; Hazen, Stanley L; Kathiresan, Sekar; Reilly, Muredach P; Yang, Xia; Quertermous, Thomas; Samani, Nilesh J; Schunkert, Heribert; Assimes, Themistocles L; McPherson, Ruth

    2016-01-01

    Objective Genome-wide association (GWA) studies have identified multiple genetic variants affecting the risk of coronary artery disease (CAD). However, individually these explain only a small fraction of the heritability of CAD and for most, the causal biological mechanisms remain unclear. We sought to obtain further insights into potential causal processes of CAD by integrating large-scale GWA data with expertly curated databases of core human pathways and functional networks. Approaches and Results Employing pathways (gene sets) from Reactome, we carried out a two-stage gene set enrichment analysis strategy. From a meta-analyzed discovery cohort of 7 CADGWAS data sets (9,889 cases/11,089 controls), nominally significant gene-sets were tested for replication in a meta-analysis of 9 additional studies (15,502 cases/55,730 controls) from the CARDIoGRAM Consortium. A total of 32 of 639 Reactome pathways tested showed convincing association with CAD (replication p<0.05). These pathways resided in 9 of 21 core biological processes represented in Reactome, and included pathways relevant to extracellular matrix integrity, innate immunity, axon guidance, and signaling by PDRF, NOTCH, and the TGF-β/SMAD receptor complex. Many of these pathways had strengths of association comparable to those observed in lipid transport pathways. Network analysis of unique genes within the replicated pathways further revealed several interconnected functional and topologically interacting modules representing novel associations (e.g. semaphorin regulated axonal guidance pathway) besides confirming known processes (lipid metabolism). The connectivity in the observed networks was statistically significant compared to random networks (p<0.001). Network centrality analysis (‘degree’ and ‘betweenness’) further identified genes (e.g. NCAM1, FYN, FURIN etc.) likely to play critical roles in the maintenance and functioning of several of the replicated pathways. Conclusions These findings provide novel insights into how genetic variation, interpreted in the context of biological processes and functional interactions among genes, may help define the genetic architecture of CAD. PMID:25977570

  15. The complex genetics of gait speed: genome-wide meta-analysis approach

    PubMed Central

    Lunetta, Kathryn L.; Smith, Jennifer A.; Eicher, John D.; Vered, Rotem; Deelen, Joris; Arnold, Alice M.; Buchman, Aron S.; Tanaka, Toshiko; Faul, Jessica D.; Nethander, Maria; Fornage, Myriam; Adams, Hieab H.; Matteini, Amy M.; Callisaya, Michele L.; Smith, Albert V.; Yu, Lei; De Jager, Philip L.; Evans, Denis A.; Gudnason, Vilmundur; Hofman, Albert; Pattie, Alison; Corley, Janie; Launer, Lenore J.; Knopman, Davis S.; Parimi, Neeta; Turner, Stephen T.; Bandinelli, Stefania; Beekman, Marian; Gutman, Danielle; Sharvit, Lital; Mooijaart, Simon P.; Liewald, David C.; Houwing-Duistermaat, Jeanine J.; Ohlsson, Claes; Moed, Matthijs; Verlinden, Vincent J.; Mellström, Dan; van der Geest, Jos N.; Karlsson, Magnus; Hernandez, Dena; McWhirter, Rebekah; Liu, Yongmei; Thomson, Russell; Tranah, Gregory J.; Uitterlinden, Andre G.; Weir, David R.; Zhao, Wei; Starr, John M.; Johnson, Andrew D.; Ikram, M. Arfan; Bennett, David A.; Cummings, Steven R.; Deary, Ian J.; Harris, Tamara B.; Kardia, Sharon L. R.; Mosley, Thomas H.; Srikanth, Velandai K.; Windham, Beverly G.; Newman, Ann B.; Walston, Jeremy D.; Davies, Gail; Evans, Daniel S.; Slagboom, Eline P.; Ferrucci, Luigi; Kiel, Douglas P.; Murabito, Joanne M.; Atzmon, Gil

    2017-01-01

    Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging. PMID:28077804

  16. Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans.

    PubMed

    He, Kan; Zhou, Tao; Shao, Jiaofang; Ren, Xiaoliang; Zhao, Zhongying; Liu, Dahai

    2014-03-01

    Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.

  17. Systems Genetics Analysis of Genome-Wide Association Study Reveals Novel Associations Between Key Biological Processes and Coronary Artery Disease.

    PubMed

    Ghosh, Sujoy; Vivar, Juan; Nelson, Christopher P; Willenborg, Christina; Segrè, Ayellet V; Mäkinen, Ville-Petteri; Nikpay, Majid; Erdmann, Jeannette; Blankenberg, Stefan; O'Donnell, Christopher; März, Winfried; Laaksonen, Reijo; Stewart, Alexandre F R; Epstein, Stephen E; Shah, Svati H; Granger, Christopher B; Hazen, Stanley L; Kathiresan, Sekar; Reilly, Muredach P; Yang, Xia; Quertermous, Thomas; Samani, Nilesh J; Schunkert, Heribert; Assimes, Themistocles L; McPherson, Ruth

    2015-07-01

    Genome-wide association studies have identified multiple genetic variants affecting the risk of coronary artery disease (CAD). However, individually these explain only a small fraction of the heritability of CAD and for most, the causal biological mechanisms remain unclear. We sought to obtain further insights into potential causal processes of CAD by integrating large-scale GWA data with expertly curated databases of core human pathways and functional networks. Using pathways (gene sets) from Reactome, we carried out a 2-stage gene set enrichment analysis strategy. From a meta-analyzed discovery cohort of 7 CAD genome-wide association study data sets (9889 cases/11 089 controls), nominally significant gene sets were tested for replication in a meta-analysis of 9 additional studies (15 502 cases/55 730 controls) from the Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) Consortium. A total of 32 of 639 Reactome pathways tested showed convincing association with CAD (replication P<0.05). These pathways resided in 9 of 21 core biological processes represented in Reactome, and included pathways relevant to extracellular matrix (ECM) integrity, innate immunity, axon guidance, and signaling by PDRF (platelet-derived growth factor), NOTCH, and the transforming growth factor-β/SMAD receptor complex. Many of these pathways had strengths of association comparable to those observed in lipid transport pathways. Network analysis of unique genes within the replicated pathways further revealed several interconnected functional and topologically interacting modules representing novel associations (eg, semaphoring-regulated axonal guidance pathway) besides confirming known processes (lipid metabolism). The connectivity in the observed networks was statistically significant compared with random networks (P<0.001). Network centrality analysis (degree and betweenness) further identified genes (eg, NCAM1, FYN, FURIN, etc) likely to play critical roles in the maintenance and functioning of several of the replicated pathways. These findings provide novel insights into how genetic variation, interpreted in the context of biological processes and functional interactions among genes, may help define the genetic architecture of CAD. © 2015 American Heart Association, Inc.

  18. Pathway-based variant enrichment analysis on the example of dilated cardiomyopathy.

    PubMed

    Backes, Christina; Meder, Benjamin; Lai, Alan; Stoll, Monika; Rühle, Frank; Katus, Hugo A; Keller, Andreas

    2016-01-01

    Genome-wide association (GWA) studies have significantly contributed to the understanding of human genetic variation and its impact on clinical traits. Frequently only a limited number of highly significant associations were considered as biologically relevant. Increasingly, network analysis of affected genes is used to explore the potential role of the genetic background on disease mechanisms. Instead of first determining affected genes or calculating scores for genes and performing pathway analysis on the gene level, we integrated both steps and directly calculated enrichment on the genetic variant level. The respective approach has been tested on dilated cardiomyopathy (DCM) GWA data as showcase. To compute significance values, 5000 permutation tests were carried out and p values were adjusted for multiple testing. For 282 KEGG pathways, we computed variant enrichment scores and significance values. Of these, 65 were significant. Surprisingly, we discovered the "nucleotide excision repair" and "tuberculosis" pathways to be most significantly associated with DCM (p = 10(-9)). The latter pathway is driven by genes of the HLA-D antigen group, a finding that closely resembles previous discoveries made by expression quantitative trait locus analysis in the context of DCM-GWA. Next, we implemented a sub-network-based analysis, which searches for affected parts of KEGG, however, independent on the pre-defined pathways. Here, proteins of the contractile apparatus of cardiac cells as well as the FAS sub-network were found to be affected by common polymorphisms in DCM. In this work, we performed enrichment analysis directly on variants, leveraging the potential to discover biological information in thousands of published GWA studies. The applied approach is cutoff free and considers a ranked list of genetic variants as input.

  19. Application of Monte Carlo cross-validation to identify pathway cross-talk in neonatal sepsis.

    PubMed

    Zhang, Yuxia; Liu, Cui; Wang, Jingna; Li, Xingxia

    2018-03-01

    To explore genetic pathway cross-talk in neonates with sepsis, an integrated approach was used in this paper. To explore the potential relationships between differently expressed genes between normal uninfected neonates and neonates with sepsis and pathways, genetic profiling and biologic signaling pathway were first integrated. For different pathways, the score was obtained based upon the genetic expression by quantitatively analyzing the pathway cross-talk. The paired pathways with high cross-talk were identified by random forest classification. The purpose of the work was to find the best pairs of pathways able to discriminate sepsis samples versus normal samples. The results found 10 pairs of pathways, which were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways were identified according to analysis of extensive literature. Impact statement To find the best pairs of pathways able to discriminate sepsis samples versus normal samples, an RF classifier, the DS obtained by DEGs of paired pathways significantly associated, and Monte Carlo cross-validation were applied in this paper. Ten pairs of pathways were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways ((7) IL-6 Signaling and Phospholipase C Signaling (PLC); (8) Glucocorticoid Receptor (GR) Signaling and Dendritic Cell Maturation) were identified according to analysis of extensive literature.

  20. Genome-wide pathway analysis of memory impairment in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks.

    PubMed

    Ramanan, Vijay K; Kim, Sungeun; Holohan, Kelly; Shen, Li; Nho, Kwangsik; Risacher, Shannon L; Foroud, Tatiana M; Mukherjee, Shubhabrata; Crane, Paul K; Aisen, Paul S; Petersen, Ronald C; Weiner, Michael W; Saykin, Andrew J

    2012-12-01

    Memory deficits are prominent features of mild cognitive impairment (MCI) and Alzheimer's disease (AD). The genetic architecture underlying these memory deficits likely involves the combined effects of multiple genetic variants operative within numerous biological pathways. In order to identify functional pathways associated with memory impairment, we performed a pathway enrichment analysis on genome-wide association data from 742 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. A composite measure of memory was generated as the phenotype for this analysis by applying modern psychometric theory to item-level data from the ADNI neuropsychological test battery. Using the GSA-SNP software tool, we identified 27 canonical, expertly-curated pathways with enrichment (FDR-corrected p-value < 0.05) against this composite memory score. Processes classically understood to be involved in memory consolidation, such as neurotransmitter receptor-mediated calcium signaling and long-term potentiation, were highly represented among the enriched pathways. In addition, pathways related to cell adhesion, neuronal differentiation and guided outgrowth, and glucose- and inflammation-related signaling were also enriched. Among genes that were highly-represented in these enriched pathways, we found indications of coordinated relationships, including one large gene set that is subject to regulation by the SP1 transcription factor, and another set that displays co-localized expression in normal brain tissue along with known AD risk genes. These results 1) demonstrate that psychometrically-derived composite memory scores are an effective phenotype for genetic investigations of memory impairment and 2) highlight the promise of pathway analysis in elucidating key mechanistic targets for future studies and for therapeutic interventions.

  1. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    PubMed

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Pathway-based analyses.

    PubMed

    Kent, Jack W

    2016-02-03

    New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.

  3. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses

    PubMed Central

    Kogelman, Lisette J. A.; Pant, Sameer D.; Fredholm, Merete; Kadarmideen, Haja N.

    2014-01-01

    Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie it. PMID:25071839

  4. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.

    PubMed

    Jones, Siân; Zhang, Xiaosong; Parsons, D Williams; Lin, Jimmy Cheng-Ho; Leary, Rebecca J; Angenendt, Philipp; Mankoo, Parminder; Carter, Hannah; Kamiyama, Hirohiko; Jimeno, Antonio; Hong, Seung-Mo; Fu, Baojin; Lin, Ming-Tseh; Calhoun, Eric S; Kamiyama, Mihoko; Walter, Kimberly; Nikolskaya, Tatiana; Nikolsky, Yuri; Hartigan, James; Smith, Douglas R; Hidalgo, Manuel; Leach, Steven D; Klein, Alison P; Jaffee, Elizabeth M; Goggins, Michael; Maitra, Anirban; Iacobuzio-Donahue, Christine; Eshleman, James R; Kern, Scott E; Hruban, Ralph H; Karchin, Rachel; Papadopoulos, Nickolas; Parmigiani, Giovanni; Vogelstein, Bert; Velculescu, Victor E; Kinzler, Kenneth W

    2008-09-26

    There are currently few therapeutic options for patients with pancreatic cancer, and new insights into the pathogenesis of this lethal disease are urgently needed. Toward this end, we performed a comprehensive genetic analysis of 24 pancreatic cancers. We first determined the sequences of 23,219 transcripts, representing 20,661 protein-coding genes, in these samples. Then, we searched for homozygous deletions and amplifications in the tumor DNA by using microarrays containing probes for approximately 10(6) single-nucleotide polymorphisms. We found that pancreatic cancers contain an average of 63 genetic alterations, the majority of which are point mutations. These alterations defined a core set of 12 cellular signaling pathways and processes that were each genetically altered in 67 to 100% of the tumors. Analysis of these tumors' transcriptomes with next-generation sequencing-by-synthesis technologies provided independent evidence for the importance of these pathways and processes. Our data indicate that genetically altered core pathways and regulatory processes only become evident once the coding regions of the genome are analyzed in depth. Dysregulation of these core pathways and processes through mutation can explain the major features of pancreatic tumorigenesis.

  5. Racial disparity in pathophysiologic pathways of preterm birth based on genetic variants

    PubMed Central

    Menon, Ramkumar; Pearce, Brad; Velez, Digna R; Merialdi, Mario; Williams, Scott M; Fortunato, Stephen J; Thorsen, Poul

    2009-01-01

    Objective To study pathophysiologic pathways in spontaneous preterm birth and possibly the racial disparity associating with maternal and fetal genetic variations, using bioinformatics tools. Methods A large scale candidate gene association study was performed on 1442 SNPs in 130 genes in a case (preterm birth < 36 weeks) control study (term birth > 37 weeks). Both maternal and fetal DNA from Caucasians (172 cases and 198 controls) and 279 African-Americans (82 cases and 197 controls) were used. A single locus association (genotypic) analysis followed by hierarchical clustering was performed, where clustering was based on p values for significant associations within each race. Using Ingenuity Pathway Analysis (IPA) software, known pathophysiologic pathways in both races were determined. Results From all SNPs entered into the analysis, the IPA mapped genes to specific disease functions. Gene variants in Caucasians were implicated in disease functions shared with other known disorders; specifically, dermatopathy, inflammation, and hematological disorders. This may reflect abnormal cervical ripening and decidual hemorrhage. In African-Americans inflammatory pathways were the most prevalent. In Caucasians, maternal gene variants showed the most prominent role in disease functions, whereas in African Americans it was fetal variants. The IPA software was used to generate molecular interaction maps that differed between races and also between maternal and fetal genetic variants. Conclusion Differences at the genetic level revealed distinct disease functions and operational pathways in African Americans and Caucasians in spontaneous preterm birth. Differences in maternal and fetal contributions in pregnancy outcome are also different between African Americans and Caucasians. These results present a set of explicit testable hypotheses regarding genetic associations with preterm birth in African Americans and Caucasians PMID:19527514

  6. Comprehensive detection of genes causing a phenotype using phenotype sequencing and pathway analysis.

    PubMed

    Harper, Marc; Gronenberg, Luisa; Liao, James; Lee, Christopher

    2014-01-01

    Discovering all the genetic causes of a phenotype is an important goal in functional genomics. We combine an experimental design for detecting independent genetic causes of a phenotype with a high-throughput sequencing analysis that maximizes sensitivity for comprehensively identifying them. Testing this approach on a set of 24 mutant strains generated for a metabolic phenotype with many known genetic causes, we show that this pathway-based phenotype sequencing analysis greatly improves sensitivity of detection compared with previous methods, and reveals a wide range of pathways that can cause this phenotype. We demonstrate our approach on a metabolic re-engineering phenotype, the PEP/OAA metabolic node in E. coli, which is crucial to a substantial number of metabolic pathways and under renewed interest for biofuel research. Out of 2157 mutations in these strains, pathway-phenoseq discriminated just five gene groups (12 genes) as statistically significant causes of the phenotype. Experimentally, these five gene groups, and the next two high-scoring pathway-phenoseq groups, either have a clear connection to the PEP metabolite level or offer an alternative path of producing oxaloacetate (OAA), and thus clearly explain the phenotype. These high-scoring gene groups also show strong evidence of positive selection pressure, compared with strictly neutral selection in the rest of the genome.

  7. Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster

    PubMed Central

    Vonesch, Sibylle Chantal; Lamparter, David; Mackay, Trudy F. C.; Bergmann, Sven; Hafen, Ernst

    2016-01-01

    Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity. PMID:26751788

  8. Gene network analysis shows immune-signaling and ERK1/2 as novel genetic markers for multiple addiction phenotypes: alcohol, smoking and opioid addiction.

    PubMed

    Reyes-Gibby, Cielito C; Yuan, Christine; Wang, Jian; Yeung, Sai-Ching J; Shete, Sanjay

    2015-06-05

    Addictions to alcohol and tobacco, known risk factors for cancer, are complex heritable disorders. Addictive behaviors have a bidirectional relationship with pain. We hypothesize that the associations between alcohol, smoking, and opioid addiction observed in cancer patients have a genetic basis. Therefore, using bioinformatics tools, we explored the underlying genetic basis and identified new candidate genes and common biological pathways for smoking, alcohol, and opioid addiction. Literature search showed 56 genes associated with alcohol, smoking and opioid addiction. Using Core Analysis function in Ingenuity Pathway Analysis software, we found that ERK1/2 was strongly interconnected across all three addiction networks. Genes involved in immune signaling pathways were shown across all three networks. Connect function from IPA My Pathway toolbox showed that DRD2 is the gene common to both the list of genetic variations associated with all three addiction phenotypes and the components of the brain neuronal signaling network involved in substance addiction. The top canonical pathways associated with the 56 genes were: 1) calcium signaling, 2) GPCR signaling, 3) cAMP-mediated signaling, 4) GABA receptor signaling, and 5) G-alpha i signaling. Cancer patients are often prescribed opioids for cancer pain thus increasing their risk for opioid abuse and addiction. Our findings provide candidate genes and biological pathways underlying addiction phenotypes, which may be future targets for treatment of addiction. Further study of the variations of the candidate genes could allow physicians to make more informed decisions when treating cancer pain with opioid analgesics.

  9. Pathways Involved in Sasang Constitution from Genome-Wide Analysis in a Korean Population

    PubMed Central

    Yu, Sung-Gon; Kim, Jong-Yeol; Song, Kwang Hoon

    2012-01-01

    Abstract Objective Sasang constitution (SC) medicine, a branch of Korean traditional medicine, classifies the individual into one of four constitutional types (Taeum, TE; Soeum, SE; Soyang, SY; and Taeyang, TY) based on physiologic characteristics. The authors of the current article recently reported individual genetic elements associated with SC types via genome-wide association (GWA) analysis. However, to understand the biologic mechanisms underlying constitution, a comprehensive approach that combines individual genetic effects was applied. Design Genotypes of 1222 subjects of defined constitution types were measured for 341,998 genetic loci across the entire genome. The biologic pathways associated with SC types were identified via GWA analysis using three different algorithms—namely, the Z-static method, a restandardized gene set assay, and a gene set enrichment assay. Results Distinct pathways were associated (p<0.05) with each constitution type. The TE type was significantly associated with cytoskeleton-related pathways. The SE type was significantly associated with cardio- and amino-acid metabolism–related pathways. The SY type was associated with enriched melanoma-related pathways. TY subjects were excluded because of the small size of that sample. Among these functionally related pathways, core-node genes regulating multiple pathways were identified. TJP1, PTK2, and SRC were selected as core-nodes for TE; RHOA, and MAOA/MAOB for SE; and GNAO1 for SY (p<0.05), respectively. Conclusions The current authors systematically identified the biologic pathways and core-node genes associated with SC types from the GWA study; this information should provide insights regarding the molecular mechanisms inherent in constitutional pathophysiology. PMID:22889377

  10. Genetic Analysis of Pathways to Parkinson Disease

    PubMed Central

    Hardy, John

    2010-01-01

    In this review I outline the arguments as to whether we should consider Parkinson disease one or more than one entity and discuss genetic findings from Mendelian and whole-genome association analysis in that context. I discuss what the demonstration of disease spread implies for our analysis of the genetic and epidemiologic risk factors for disease and outline the surprising fact that we now have genetically identified on the order of half our risk for developing the disease. PMID:20955928

  11. Genetic and environmental pathways to complex diseases.

    PubMed

    Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J

    2009-05-05

    Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.

  12. Genetic variants in IL-6/JAK/STAT3 pathway and the risk of CRC.

    PubMed

    Wang, Shuwei; Zhang, Weidong

    2016-05-01

    Interleukin (IL)-6 and the downstream Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway have previously been reported to be important in the development of colorectal cancer (CRC), and several studies have shown the relationship between the polymorphisms of related genes in this pathway with the risk of CRC. However, the findings of these related studies are inconsistent. Moreover, there has no systematic review and meta-analysis to evaluate the relationship between genetic variants in IL-6/JAK/STAT3 pathway and CRC susceptibility. Hence, we conducted a meta-analysis to explore the relationship between polymorphisms in IL-6/JAK/STAT3 pathway genes and CRC risk. Eighteen eligible studies with a total of 13,795 CRC cases and 18,043 controls were identified by searching PubMed, Web of Science, Embase, and the Cochrane Library databases for the period up to September 15, 2015. Odds ratios (ORs) and their 95 % confidence intervals (CIs) were used to calculate the strength of the association. Our results indicated that IL-6 genetic variants in allele additive model (OR = 1.05, 95 % CI = 1.00, 1.09) and JAK2 genetic variants (OR = 1.40, 95 % CI = 1.15, 1.65) in genotype recessive model were significantly associated with CRC risk. Moreover, the pooled data revealed that IL-6 rs1800795 polymorphism significantly increased the risk of CRC in allele additive model in Europe (OR = 1.07, 95 % CI = 1.01, 1.14). In conclusion, the present findings indicate that IL-6 and JAK2 genetic variants are associated with the increased risk of CRC while STAT3 genetic variants not. We need more well-designed clinical studies covering more countries and population to definitively establish the association between genetic variants in IL-6/JAK/STAT3 pathway and CRC susceptibility.

  13. Meta-Analysis of Genome-Wide Association Studies and Network Analysis-Based Integration with Gene Expression Data Identify New Suggestive Loci and Unravel a Wnt-Centric Network Associated with Dupuytren’s Disease

    PubMed Central

    Becker, Kerstin; Siegert, Sabine; Toliat, Mohammad Reza; Du, Juanjiangmeng; Casper, Ramona; Dolmans, Guido H.; Werker, Paul M.; Tinschert, Sigrid; Franke, Andre; Gieger, Christian; Strauch, Konstantin; Nothnagel, Michael; Nürnberg, Peter; Hennies, Hans Christian

    2016-01-01

    Dupuytren´s disease, a fibromatosis of the connective tissue in the palm, is a common complex disease with a strong genetic component. Up to date nine genetic loci have been found to be associated with the disease. Six of these loci contain genes that code for Wnt signalling proteins. In spite of this striking first insight into the genetic factors in Dupuytren´s disease, much of the inherited risk in Dupuytren´s disease still needs to be discovered. The already identified loci jointly explain ~1% of the heritability in this disease. To further elucidate the genetic basis of Dupuytren´s disease, we performed a genome-wide meta-analysis combining three genome-wide association study (GWAS) data sets, comprising 1,580 cases and 4,480 controls. We corroborated all nine previously identified loci, six of these with genome-wide significance (p-value < 5x10-8). In addition, we identified 14 new suggestive loci (p-value < 10−5). Intriguingly, several of these new loci contain genes associated with Wnt signalling and therefore represent excellent candidates for replication. Next, we compared whole-transcriptome data between patient- and control-derived tissue samples and found the Wnt/β-catenin pathway to be the top deregulated pathway in patient samples. We then conducted network and pathway analyses in order to identify protein networks that are enriched for genes highlighted in the GWAS meta-analysis and expression data sets. We found further evidence that the Wnt signalling pathways in conjunction with other pathways may play a critical role in Dupuytren´s disease. PMID:27467239

  14. A Canonical Correlation Analysis of AIDS Restriction Genes and Metabolic Pathways Identifies Purine Metabolism as a Key Cooperator.

    PubMed

    Ye, Hanhui; Yuan, Jinjin; Wang, Zhengwu; Huang, Aiqiong; Liu, Xiaolong; Han, Xiao; Chen, Yahong

    2016-01-01

    Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS.

  15. Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in RASopathies.

    PubMed

    Cannistraci, Carlo V; Ogorevc, Jernej; Zorc, Minja; Ravasi, Timothy; Dovc, Peter; Kunej, Tanja

    2013-02-14

    Cryptorchidism is the most frequent congenital disorder in male children; however the genetic causes of cryptorchidism remain poorly investigated. Comparative integratomics combined with systems biology approach was employed to elucidate genetic factors and molecular pathways underlying testis descent. Literature mining was performed to collect genomic loci associated with cryptorchidism in seven mammalian species. Information regarding the collected candidate genes was stored in MySQL relational database. Genomic view of the loci was presented using Flash GViewer web tool (http://gmod.org/wiki/Flashgviewer/). DAVID Bioinformatics Resources 6.7 was used for pathway enrichment analysis. Cytoscape plug-in PiNGO 1.11 was employed for protein-network-based prediction of novel candidate genes. Relevant protein-protein interactions were confirmed and visualized using the STRING database (version 9.0). The developed cryptorchidism gene atlas includes 217 candidate loci (genes, regions involved in chromosomal mutations, and copy number variations) identified at the genomic, transcriptomic, and proteomic level. Human orthologs of the collected candidate loci were presented using a genomic map viewer. The cryptorchidism gene atlas is freely available online: http://www.integratomics-time.com/cryptorchidism/. Pathway analysis suggested the presence of twelve enriched pathways associated with the list of 179 literature-derived candidate genes. Additionally, a list of 43 network-predicted novel candidate genes was significantly associated with four enriched pathways. Joint pathway analysis of the collected and predicted candidate genes revealed the pivotal importance of the muscle-contraction pathway in cryptorchidism and evidence for genomic associations with cardiomyopathy pathways in RASopathies. The developed gene atlas represents an important resource for the scientific community researching genetics of cryptorchidism. The collected data will further facilitate development of novel genetic markers and could be of interest for functional studies in animals and human. The proposed network-based systems biology approach elucidates molecular mechanisms underlying co-presence of cryptorchidism and cardiomyopathy in RASopathies. Such approach could also aid in molecular explanation of co-presence of diverse and apparently unrelated clinical manifestations in other syndromes.

  16. Genes associated to lactose metabolism illustrate the high diversity of Carnobacterium maltaromaticum.

    PubMed

    Iskandar, Christelle F; Cailliez-Grimal, Catherine; Rahman, Abdur; Rondags, Emmanuel; Remenant, Benoît; Zagorec, Monique; Leisner, Jorgen J; Borges, Frédéric; Revol-Junelles, Anne-Marie

    2016-09-01

    The dairy population of Carnobacterium maltaromaticum is characterized by a high diversity suggesting a high diversity of the genetic traits linked to the dairy process. As lactose is the main carbon source in milk, the genetics of lactose metabolism was investigated in this LAB. Comparative genomic analysis revealed that the species C. maltaromaticum exhibits genes related to the Leloir and the tagatose-6-phosphate (Tagatose-6P) pathways. More precisely, strains can bear genes related to one or both pathways and several strains apparently do not contain homologs related to these pathways. Analysis at the population scale revealed that the Tagatose-6P and the Leloir encoding genes are disseminated in multiple phylogenetic lineages of C. maltaromaticum: genes of the Tagatose-6P pathway are present in the lineages I, II and III, and genes of the Leloir pathway are present in the lineages I, III and IV. These data suggest that these genes evolved thanks to horizontal transfer, genetic duplication and translocation. We hypothesize that the lac and gal genes evolved in C. maltaromaticum according to a complex scenario that mirrors the high population diversity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem1[OPEN

    PubMed Central

    Street, Ian H.; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N.; Kieber, Joseph J.; Schaller, G. Eric

    2015-01-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  18. Genetic variations and patient-reported quality of life among patients with lung cancer.

    PubMed

    Sloan, Jeff A; de Andrade, Mariza; Decker, Paul; Wampfler, Jason; Oswold, Curtis; Clark, Matthew; Yang, Ping

    2012-05-10

    Recent evidence has suggested a relationship between the baseline quality of life (QOL) self-reported by patients with cancer and genetic disposition. We report an analysis exploring relationships among baseline QOL assessments and candidate genetic variations in a large cohort of patients with lung cancer. QOL data were provided by 1,299 patients with non-small-cell lung cancer observed at the Mayo Clinic between 1997 and 2007. Overall QOL and subdomains were assessed by either Lung Cancer Symptom Scale or Linear Analog Self Assessment measures; scores were transformed to a scale of 0 to 10, with higher scores representing better status. Baseline QOL scores assessed within 1 year of diagnosis were dichotomized as clinically deficient (CD) or not. A total of 470 single nucleotide polymorphisms (SNPs) in 56 genes of three biologic pathways were assessed for association with QOL measures. Logistic regression with training/validation samples was used to test the association of SNPs with CD QOL. Six SNPs on four genes were replicated using our split schemes. Three SNPs in the MGMT gene (adjusted analysis, rs3858300; unadjusted analysis, rs10741191 and rs3852507) from DNA repair pathway were associated with overall QOL. Two SNPs (rs2287396 [GSTZ1] and rs9524885 [ABCC4]) from glutathione metabolic pathway were associated with fatigue in unadjusted analysis. In adjusted analysis, two SNPs (rs2756109 [ABCC2] and rs9524885 [ABCC4]) from glutathione metabolic pathway were associated with pain. We identified three SNPs in three glutathione metabolic pathway genes and three SNPs in two DNA repair pathway genes associated with QOL measures in patients with non-small-cell lung cancer.

  19. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer.

    PubMed

    Scarbrough, Peter M; Weber, Rachel Palmieri; Iversen, Edwin S; Brhane, Yonathan; Amos, Christopher I; Kraft, Peter; Hung, Rayjean J; Sellers, Thomas A; Witte, John S; Pharoah, Paul; Henderson, Brian E; Gruber, Stephen B; Hunter, David J; Garber, Judy E; Joshi, Amit D; McDonnell, Kevin; Easton, Doug F; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A; Schildkraut, Joellen M

    2016-01-01

    DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. We identified three susceptibility DNA repair genes, RAD51B (P < 5.09 × 10(-6)), MSH5 (P < 5.09 × 10(-6)), and BRCA2 (P = 5.70 × 10(-6)). Hierarchical modeling identified several pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. ©2015 American Association for Cancer Research.

  20. Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila.

    PubMed Central

    Riesgo-Escovar, J; Raha, D; Carlson, J R

    1995-01-01

    A central problem in sensory system biology is the identification of the signal transduction pathways used in different sensory modalities. Genetic analysis of transduction mutants provides a means of studying in vivo the contributions of different pathways. This report shows that odorant response in one olfactory organ of Drosophila melanogaster depends on the norpA phospholipase C (EC 3.1.4.3) gene, providing evidence for use of the inositol 1,4,5-trisphosphate (IP3) signal transduction pathway. Since the norpA gene is also essential to phototransduction, this work demonstrates overlap in the genetic and molecular underpinnings of vision and olfaction. Genetic and molecular data also indicate that some olfactory information flows through a pathway which does not depend on norpA. Images Fig. 1 Fig. 5 PMID:7708738

  1. Genetic Alterations in Glioma

    PubMed Central

    Bralten, Linda B. C.; French, Pim J.

    2011-01-01

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes. PMID:24212656

  2. Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data.

    PubMed

    Lee, Hyeonjeong; Shin, Miyoung

    2017-01-01

    The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into distinctive associations between pathway activities in case and control samples.

  3. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections

    PubMed Central

    Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573

  4. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    PubMed

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.

  5. Pharmacogenetic study focused on fluoxetine pharmacodynamics in children and adolescent patients: impact of the serotonin pathway.

    PubMed

    Mas, Sergi; Blázquez, Ana; Rodríguez, Natalia; Boloc, Daniel; Lafuente, Amalia; Arnaiz, Joan A; Lázaro, Luisa; Gassó, Patricia

    2016-11-01

    Pharmacogenetic studies of fluoxetine in children and adolescents are scarce. After reporting the effect of genetic variants in genes related to the fluoxetine pharmacokinetics on clinical response in a pediatric population, we now evaluate the impact of genetic markers involved in its pharmacodynamics. The assessment was performed in 83 patients after 12 weeks of fluoxetine treatment. The genetic association analysis included a total of 316 validated single nucleotide polymorphisms in 45 candidate genes involved in six different pathways. Clinical improvement after treatment with fluoxetine in our pediatric population was associated significantly with two polymorphisms located in genes related to the serotonergic system: the 5-hydroxytryptamine receptor 1B (HTR1B) and the tryptophan 5-hydroxylase 2 (TPH2). Although a wide range of candidate genes related to different pathways were assessed, the results show that genetic markers directly related to serotonin have an important effect on fluoxetine response.

  6. Note of the methodological flaws in the paper entitled "Polymorphisms in IL-4/IL-13 pathway genes and glioma risk: an updated meta-analysis".

    PubMed

    Wang, Ting-Ting; Li, Jin-Mei; Zhou, Dong

    2016-01-01

    With great interest, we read the paper "Polymorphisms in IL-4/IL-13 pathway genes and glioma risk: an updated meta-analysis" (by Chen PQ et al.) [1], which has reached important conclusions about the relationship between polymorphisms in interleukin (IL)-4/IL-13 pathway genes and glioma risk. Through quantitative analysis, the meta-analysis found no association between IL-4/IL-13 pathway genetic polymorphisms and glioma risk (Chen et al. in Tumor Biol 36:121-127, 2015). The meta-analysis is the most comprehensive study of polymorphisms in the IL-4/IL-13 pathway and glioma risk. Nevertheless, some deficiencies still exist in this meta-analysis that we would like to raise.

  7. Genetic Variants in the Wnt/β-Catenin Signaling Pathway as Indicators of Bladder Cancer Risk.

    PubMed

    Pierzynski, Jeanne A; Hildebrandt, Michelle A; Kamat, Ashish M; Lin, Jie; Ye, Yuanqing; Dinney, Colin P N; Wu, Xifeng

    2015-12-01

    Genetic factors that influence bladder cancer risk remain largely unknown. Previous research has suggested that there is a strong genetic component underlying the risk of bladder cancer. The Wnt/β-catenin signaling pathway is a key modulator of cellular proliferation through its regulation of stem cell homeostasis. Furthermore, variants in the Wnt/β-catenin signaling pathway have been implicated in the development of other cancers, leading us to believe that this pathway may have a vital role in bladder cancer development. A total of 230 single nucleotide polymorphisms in 40 genes in the Wnt/β-catenin signaling pathway were genotyped in 803 bladder cancer cases and 803 healthy controls. A total of 20 single nucleotide polymorphisms were nominally significant for risk. Individuals with 2 variants of LRP6: rs10743980 were associated with a decreased risk of bladder cancer in the recessive model in the initial analysis (OR 0.76, 95% CI 0.58-0.99, p=0.039). This was validated using the bladder genome-wide association study chip (OR 0.51, 95% CI 0.27-1.00, p=0.049 and for combined analysis p=0.007). Together these findings implicate variants in the Wnt/β-catenin stem cell pathway as having a role in bladder cancer etiology. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Joint Identification of Genetic Variants for Physical Activity in Korean Population

    PubMed Central

    Kim, Jayoun; Kim, Jaehee; Min, Haesook; Oh, Sohee; Kim, Yeonjung; Lee, Andy H.; Park, Taesung

    2014-01-01

    There has been limited research on genome-wide association with physical activity (PA). This study ascertained genetic associations between PA and 344,893 single nucleotide polymorphism (SNP) markers in 8842 Korean samples. PA data were obtained from a validated questionnaire that included information on PA intensity and duration. Metabolic equivalent of tasks were calculated to estimate the total daily PA level for each individual. In addition to single- and multiple-SNP association tests, a pathway enrichment analysis was performed to identify the biological significance of SNP markers. Although no significant SNP was found at genome-wide significance level via single-SNP association tests, 59 genetic variants mapped to 76 genes were identified via a multiple SNP approach using a bootstrap selection stability measure. Pathway analysis for these 59 variants showed that maturity onset diabetes of the young (MODY) was enriched. Joint identification of SNPs could enable the identification of multiple SNPs with good predictive power for PA and a pathway enriched for PA. PMID:25026172

  9. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus

    PubMed Central

    Johnson, Michael R.; Rossetti, Tiziana; Speed, Doug; Srivastava, Prashant K.; Chadeau-Hyam, Marc; Hajji, Nabil; Dabrowska, Aleksandra; Rotival, Maxime; Razzaghi, Banafsheh; Kovac, Stjepana; Wanisch, Klaus; Grillo, Federico W.; Slaviero, Anna; Langley, Sarah R.; Shkura, Kirill; Roncon, Paolo; De, Tisham; Mattheisen, Manuel; Niehusmann, Pitt; O’Brien, Terence J.; Petrovski, Slave; von Lehe, Marec; Hoffmann, Per; Eriksson, Johan; Coffey, Alison J.; Cichon, Sven; Walker, Matthew; Simonato, Michele; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Schoch, Susanne; De Paola, Vincenzo; Kaminski, Rafal M.; Cunliffe, Vincent T.; Becker, Albert J.; Petretto, Enrico

    2015-01-01

    Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo. PMID:25615886

  10. The association of environmental, individual factors, and dopamine pathway gene variation with smoking cessation.

    PubMed

    Li, Suyun; Wang, Qiang; Pan, Lulu; Yang, Xiaorong; Li, Huijie; Jiang, Fan; Zhang, Nan; Han, Mingkui; Jia, Chongqi

    2017-09-01

    This study aimed to examine whether dopamine (DA) pathway gene variation were associated with smoking cessation, and compare the relative importance of infulence factors on smoking cessation. Participants were recruited from 17 villages of Shandong Province, China. Twenty-five single nucleotide polymorphisms in 8 DA pathway genes were genotyped. Weighted gene score of each gene was used to analyze the whole gene effect. Logistic regression was used to calculate odds ratios (OR) of the total gene score for smoking cessation. Dominance analysis was employed to compare the relative importance of individual, heaviness of smoking, psychological and genetic factors on smoking cessation. 415 successful spontaneous smoking quitters served as the cases, and 404 unsuccessful quitters served as the controls. A significant negative association of total DA pathway gene score and smoking cessation was observed (p < 0.001, OR: 0.25, 95% CI 0.16-0.38). Dominance analysis showed that the most important predictor for smoking cessation was heaviness of smoking score (42%), following by individual (40%), genetic (10%) and psychological score (8%). In conclusion, although the DA pathway gene variation was significantly associated with successful smoking cessation, heaviness of smoking and individual factors had bigger effect than genetic factors on smoking cessation.

  11. Genome-wide pleiotropy and shared biological pathways for resistance to bovine pathogens

    PubMed Central

    Zeng, Y.; Yin, T.; Brügemann, K.

    2018-01-01

    Host genetic architecture is a major factor in resistance to pathogens and parasites. The collection and analysis of sufficient data on both disease resistance and host genetics has, however, been a major obstacle to dissection the genetics of resistance to single or multiple pathogens. A severe challenge in the estimation of heritabilities and genetic correlations from pedigree-based studies has been the confounding effects of the common environment shared among relatives which are difficult to model in pedigree analyses, especially for health traits with low incidence rates. To circumvent this problem we used genome-wide single-nucleotide polymorphism data and implemented the Genomic-Restricted Maximum Likelihood (G-REML) method to estimate the heritabilities and genetic correlations for resistance to 23 different infectious pathogens in calves and cows in populations undergoing natural pathogen challenge. Furthermore, we conducted gene-based analysis and generalized gene-set analysis to understand the biological background of resistance to infectious diseases. The results showed relatively higher heritabilities of resistance in calves than in cows and significant pleiotropy (both positive and negative) among some calf and cow resistance traits. We also found significant pleiotropy between resistance and performance in both calves and cows. Finally, we confirmed the role of the B-lymphocyte pathway as one of the most important biological pathways associated with resistance to all pathogens. These results both illustrate the potential power of these approaches to illuminate the genetics of pathogen resistance in cattle and provide foundational information for future genomic selection aimed at improving the overall production fitness of cattle. PMID:29608619

  12. Multivariate modelling of endophenotypes associated with the metabolic syndrome in Chinese twins.

    PubMed

    Pang, Z; Zhang, D; Li, S; Duan, H; Hjelmborg, J; Kruse, T A; Kyvik, K O; Christensen, K; Tan, Q

    2010-12-01

    The common genetic and environmental effects on endophenotypes related to the metabolic syndrome have been investigated using bivariate and multivariate twin models. This paper extends the pairwise analysis approach by introducing independent and common pathway models to Chinese twin data. The aim was to explore the common genetic architecture in the development of these phenotypes in the Chinese population. Three multivariate models including the full saturated Cholesky decomposition model, the common factor independent pathway model and the common factor common pathway model were fitted to 695 pairs of Chinese twins representing six phenotypes including BMI, total cholesterol, total triacylglycerol, fasting glucose, HDL and LDL. Performances of the nested models were compared with that of the full Cholesky model. Cross-phenotype correlation coefficients gave clear indication of common genetic or environmental backgrounds in the phenotypes. Decomposition of phenotypic correlation by the Cholesky model revealed that the observed phenotypic correlation among lipid phenotypes had genetic and unique environmental backgrounds. Both pathway models suggest a common genetic architecture for lipid phenotypes, which is distinct from that of the non-lipid phenotypes. The declining performance with model restriction indicates biological heterogeneity in development among some of these phenotypes. Our multivariate analyses revealed common genetic and environmental backgrounds for the studied lipid phenotypes in Chinese twins. Model performance showed that physiologically distinct endophenotypes may follow different genetic regulations.

  13. Population genetic analysis infers mMigration pathways of Phytophthora ramorum in US nurseries

    Treesearch

    Erica M. Goss; Meg Larsen; Gary A. Chastagner; Donald R. Givens; Niklaus J. Grünwald; Barbara Jane Howlett

    2009-01-01

    Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in...

  14. Diet and Colorectal Cancer: Analysis of a Candidate Pathway Using SNPS, Haplotypes, and Multi-Gene Assessment

    PubMed Central

    Slattery, Martha L.; Lundgreen, Abbie; Herrick, Jennifer S.; Caan, Bette J.; Potter, John D.; Wolff, Roger K.

    2012-01-01

    There is considerable biologic plausibility to the hypothesis that genetic variability in pathways involved in insulin signaling and energy homeostasis may modulate dietary risk associated with colorectal cancer. We utilized data from 2 population-based case-control studies of colon (n = 1,574 cases, 1,970 controls) and rectal (n = 791 cases, 999 controls) cancer to evaluate genetic variation in candidate SNPs identified from 9 genes in a candidate pathway: PDK1, RP6KA1, RPS6KA2, RPS6KB1, RPS6KB2, PTEN, FRAP1 (mTOR), TSC1, TSC2, Akt1, PIK3CA, and PRKAG2 with dietary intake of total energy, carbohydrates, fat, and fiber. We employed SNP, haplotype, and multiple-gene analysis to evaluate associations. PDK1 interacted with dietary fat for both colon and rectal cancer and with dietary carbohydrates for colon cancer. Statistically significant interaction with dietary carbohydrates and rectal cancer was detected by haplotype analysis of PDK1. Evaluation of dietary interactions with multiple genes in this candidate pathway showed several interactions with pairs of genes: Akt1 and PDK1, PDK1 and PTEN, PDK1 and TSC1, and PRKAG2 and PTEN. Analyses show that genetic variation influences risk of colorectal cancer associated with diet and illustrate the importance of evaluating dietary interactions beyond the level of single SNPs or haplotypes when a biologically relevant candidate pathway is examined. PMID:21999454

  15. Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development.

    PubMed

    Fukami, Maki; Homma, Keiko; Hasegawa, Tomonobu; Ogata, Tsutomu

    2013-04-01

    We review the current knowledge about the "backdoor" pathway for the biosynthesis of dihydrotestosterone (DHT). While DHT is produced from cholesterol through the conventional "frontdoor" pathway via testosterone, recent studies have provided compelling evidence for the presence of an alternative "backdoor" pathway to DHT without testosterone intermediacy. This backdoor pathway is known to exist in the tammar wallaby pouch young testis and the immature mouse testis, and has been suggested to be present in the human as well. Indeed, molecular analysis has identified pathologic mutations of genes involved in the backdoor pathway in genetic male patients with undermasculinized external genitalia, and urine steroid profile analysis has argued for the relevance of the activated backdoor pathway to abnormal virilization in genetic females with cytochrome P450 oxidoreductase deficiency and 21-hydroxylase deficiency. It is likely that the backdoor pathway is primarily operating in the fetal testis in a physiological condition to produce a sufficient amount of DHT for male sex development, and that the backdoor pathway is driven with a possible interaction between fetal and permanent adrenals in pathologic conditions with increased 17-hydroxyprogesterone levels. These findings provide novel insights into androgen biosynthesis in both physiological and pathological conditions. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  16. Correlation of genetic risk and messenger RNA expression in a Th17/IL23 pathway analysis in inflammatory bowel disease.

    PubMed

    Fransen, Karin; van Sommeren, Suzanne; Westra, Harm-Jan; Veenstra, Monique; Lamberts, Letitia E; Modderman, Rutger; Dijkstra, Gerard; Fu, Jingyuan; Wijmenga, Cisca; Franke, Lude; Weersma, Rinse K; van Diemen, Cleo C

    2014-05-01

    The Th17/IL23 pathway has both genetically and biologically been implicated in the pathogenesis of the inflammatory bowel diseases (IBD), Crohn's disease, and ulcerative colitis. So far, it is unknown whether and how associated risk variants affect expression of the genes encoding for Th17/IL23 pathway proteins. Ten IBD-associated SNPs residing near Th17/IL23 genes were used to construct a genetic risk model in 753 Dutch IBD cases and 1045 controls. In an independent cohort of 40 Crohn's disease, 40 ulcerative colitis, and 40 controls, the genetic risk load and presence of IBD were correlated to quantitative PCR-generated messenger RNA (mRNA) expression of 9 representative Th17/IL23 genes in both unstimulated and PMA/CaLo stimulated peripheral blood mononuclear cells. In 1240 individuals with various immunological diseases with whole genome genotype and mRNA-expression data, we also assessed correlation between genetic risk load and differential mRNA expression and sought for SNPs affecting expression of all currently known Th17/IL23 pathway genes (cis-expression quantitative trait locus). The presence of IBD, but not the genetic risk load, was correlated to differential mRNA expression for IL6 in unstimulated peripheral blood mononuclear cells and to IL23A and RORC in response to stimulation. The cis-expression quantitative trait locus analysis showed little evidence for correlation between genetic risk load and mRNA expression of Th17/IL23 genes, because we identified for only 2 of 22 Th17/IL23 genes a cis-expression quantitative trait locus single nucleotide polymorphism that is also associated to IBD (STAT3 and CCR6). Our results suggest that only the presence of IBD and not the genetic risk load alters mRNA expression levels of IBD-associated Th17/IL23 genes.

  17. A meta-analysis of Th2 pathway genetic variants and risk for allergic rhinitis.

    PubMed

    Bunyavanich, Supinda; Shargorodsky, Josef; Celedón, Juan C

    2011-06-01

    There is a significant genetic contribution to allergic rhinitis (AR). Genetic association studies for AR have been performed, but varying results make it challenging to decipher the overall potential effect of specific variants. The Th2 pathway plays an important role in the immunological development of AR. We performed meta-analyses of genetic association studies of variants in Th2 pathway genes and AR. PubMed and Phenopedia were searched by double extraction for original studies on Th2 pathway-related genetic polymorphisms and their associations with AR. A meta-analysis was conducted on each genetic polymorphism with data meeting our predetermined selection criteria. Analyses were performed using both fixed and random effects models, with stratification by age group, ethnicity, and AR definition where appropriate. Heterogeneity and publication bias were assessed. Six independent studies analyzing three candidate polymorphisms and involving a total of 1596 cases and 2892 controls met our inclusion criteria. Overall, the A allele of IL13 single nucleotide polymorphism (SNP) rs20541 was associated with increased odds of AR (estimated OR=1.2; 95% CI 1.1-1.3, p-value 0.004 in fixed effects model, 95% CI 1.0-1.5, p-value 0.056 in random effects model). The A allele of rs20541 was associated with increased odds of AR in mixed age groups using both fixed effects and random effects modeling. IL13 SNP rs1800925 and IL4R SNP 1801275 did not demonstrate overall associations with AR. We conclude that there is evidence for an overall association between IL13 SNP rs20541 and increased risk of AR, especially in mixed-age populations. © 2011 John Wiley & Sons A/S.

  18. Pathway-driven gene stability selection of two rheumatoid arthritis GWAS identifies and validates new susceptibility genes in receptor mediated signalling pathways.

    PubMed

    Eleftherohorinou, Hariklia; Hoggart, Clive J; Wright, Victoria J; Levin, Michael; Coin, Lachlan J M

    2011-09-01

    Rheumatoid arthritis (RA) is the commonest chronic, systemic, inflammatory disorder affecting ∼1% of the world population. It has a strong genetic component and a growing number of associated genes have been discovered in genome-wide association studies (GWAS), which nevertheless only account for 23% of the total genetic risk. We aimed to identify additional susceptibility loci through the analysis of GWAS in the context of biological function. We bridge the gap between pathway and gene-oriented analyses of GWAS, by introducing a pathway-driven gene stability-selection methodology that identifies potential causal genes in the top-associated disease pathways that may be driving the pathway association signals. We analysed the WTCCC and the NARAC studies of ∼5000 and ∼2000 subjects, respectively. We examined 700 pathways comprising ∼8000 genes. Ranking pathways by significance revealed that the NARAC top-ranked ∼6% laid within the top 10% of WTCCC. Gene selection on those pathways identified 58 genes in WTCCC and 61 in NARAC; 21 of those were common (P(overlap)< 10(-21)), of which 16 were novel discoveries. Among the identified genes, we validated 10 known RA associations in WTCCC and 13 in NARAC, not discovered using single-SNP approaches on the same data. Gene ontology functional enrichment analysis on the identified genes showed significant over-representation of signalling activity (P< 10(-29)) in both studies. Our findings suggest a novel model of RA genetic predisposition, which involves cell-membrane receptors and genes in second messenger signalling systems, in addition to genes that regulate immune responses, which have been the focus of interest previously.

  19. Genetic variants in two pathways influence serum urate levels and gout risk: a systematic pathway analysis.

    PubMed

    Dong, Zheng; Zhou, Jingru; Xu, Xia; Jiang, Shuai; Li, Yuan; Zhao, Dongbao; Yang, Chengde; Ma, Yanyun; Wang, Yi; He, Hongjun; Ji, Hengdong; Zhang, Juan; Yuan, Ziyu; Yang, Yajun; Wang, Xiaofeng; Pang, Yafei; Jin, Li; Zou, Hejian; Wang, Jiucun

    2018-03-01

    The aims of this study were to identify candidate pathways associated with serum urate and to explore the genetic effect of those pathways on the risk of gout. Pathway analysis of the loci identified in genome-wide association studies (GWASs) showed that the ion transmembrane transporter activity pathway (GO: 0015075) and the secondary active transmembrane transporter activity pathway (GO: 0015291) were both associated with serum urate concentrations, with P FDR values of 0.004 and 0.007, respectively. In a Chinese population of 4,332 individuals, the two pathways were also found to be associated with serum urate (P FDR  = 1.88E-05 and 3.44E-04, separately). In addition, these two pathways were further associated with the pathogenesis of gout (P FDR  = 1.08E-08 and 2.66E-03, respectively) in the Chinese population and a novel gout-associated gene, SLC17A2, was identified (OR = 0.83, P FDR  = 0.017). The mRNA expression of candidate genes also showed significant differences among different groups at pathway level. The present study identified two transmembrane transporter activity pathways (GO: 0015075 and GO: 0015291) were associations with serum urate concentrations and the risk of gout. SLC17A2 was identified as a novel gene that influenced the risk of gout.

  20. Genome-Wide Gene Set Analysis for Identification of Pathways Associated with Alcohol Dependence

    PubMed Central

    Biernacka, Joanna M.; Geske, Jennifer; Jenkins, Gregory D.; Colby, Colin; Rider, David N.; Karpyak, Victor M.; Choi, Doo-Sup; Fridley, Brooke L.

    2013-01-01

    It is believed that multiple genetic variants with small individual effects contribute to the risk of alcohol dependence. Such polygenic effects are difficult to detect in genome-wide association studies that test for association of the phenotype with each single nucleotide polymorphism (SNP) individually. To overcome this challenge, gene set analysis (GSA) methods that jointly test for the effects of pre-defined groups of genes have been proposed. Rather than testing for association between the phenotype and individual SNPs, these analyses evaluate the global evidence of association with a set of related genes enabling the identification of cellular or molecular pathways or biological processes that play a role in development of the disease. It is hoped that by aggregating the evidence of association for all available SNPs in a group of related genes, these approaches will have enhanced power to detect genetic associations with complex traits. We performed GSA using data from a genome-wide study of 1165 alcohol dependent cases and 1379 controls from the Study of Addiction: Genetics and Environment (SAGE), for all 200 pathways listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results demonstrated a potential role of the “Synthesis and Degradation of Ketone Bodies” pathway. Our results also support the potential involvement of the “Neuroactive Ligand Receptor Interaction” pathway, which has previously been implicated in addictive disorders. These findings demonstrate the utility of GSA in the study of complex disease, and suggest specific directions for further research into the genetic architecture of alcohol dependence. PMID:22717047

  1. Genes and gene networks implicated in aggression related behaviour.

    PubMed

    Malki, Karim; Pain, Oliver; Du Rietz, Ebba; Tosto, Maria Grazia; Paya-Cano, Jose; Sandnabba, Kenneth N; de Boer, Sietse; Schalkwyk, Leonard C; Sluyter, Frans

    2014-10-01

    Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour.

  2. Genetic overlap between type 2 diabetes and major depressive disorder identified by bioinformatics analysis.

    PubMed

    Ji, Hong-Fang; Zhuang, Qi-Shuai; Shen, Liang

    2016-04-05

    Our study investigated the shared genetic etiology underlying type 2 diabetes (T2D) and major depressive disorder (MDD) by analyzing large-scale genome wide association studies statistics. A total of 496 shared SNPs associated with both T2D and MDD were identified at p-value ≤ 1.0E-07. Functional enrichment analysis showed that the enriched pathways pertained to immune responses (Fc gamma R-mediated phagocytosis, T cell and B cell receptors signaling), cell signaling (MAPK, Wnt signaling), lipid metabolism, and cancer associated pathways. The findings will have potential implications for future interventional studies of the two diseases.

  3. GWAS-based pathway analysis differentiates between fluid and crystallized intelligence.

    PubMed

    Christoforou, A; Espeseth, T; Davies, G; Fernandes, C P D; Giddaluru, S; Mattheisen, M; Tenesa, A; Harris, S E; Liewald, D C; Payton, A; Ollier, W; Horan, M; Pendleton, N; Haggarty, P; Djurovic, S; Herms, S; Hoffman, P; Cichon, S; Starr, J M; Lundervold, A; Reinvang, I; Steen, V M; Deary, I J; Le Hellard, S

    2014-09-01

    Cognitive abilities vary among people. About 40-50% of this variability is due to general intelligence (g), which reflects the positive correlation among individuals' scores on diverse cognitive ability tests. g is positively correlated with many life outcomes, such as education, occupational status and health, motivating the investigation of its underlying biology. In psychometric research, a distinction is made between general fluid intelligence (gF) - the ability to reason in novel situations - and general crystallized intelligence (gC) - the ability to apply acquired knowledge. This distinction is supported by developmental and cognitive neuroscience studies. Classical epidemiological studies and recent genome-wide association studies (GWASs) have established that these cognitive traits have a large genetic component. However, no robust genetic associations have been published thus far due largely to the known polygenic nature of these traits and insufficient sample sizes. Here, using two GWAS datasets, in which the polygenicity of gF and gC traits was previously confirmed, a gene- and pathway-based approach was undertaken with the aim of characterizing and differentiating their genetic architecture. Pathway analysis, using genes selected on the basis of relaxed criteria, revealed notable differences between these two traits. gF appeared to be characterized by genes affecting the quantity and quality of neurons and therefore neuronal efficiency, whereas long-term depression (LTD) seemed to underlie gC. Thus, this study supports the gF-gC distinction at the genetic level and identifies functional annotations and pathways worthy of further investigation. © 2014 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  4. A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations.

    PubMed

    Zhang, Han; Wheeler, William; Hyland, Paula L; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai

    2016-06-01

    Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs.

  5. A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations

    PubMed Central

    Zhang, Han; Wheeler, William; Hyland, Paula L.; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai

    2016-01-01

    Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs. PMID:27362418

  6. Extensive molecular analysis suggested the strong genetic heterogeneity of idiopathic chronic pancreatitis.

    PubMed

    Sofia, Valentina Maria; Da Sacco, Letizia; Surace, Cecilia; Tomaiuolo, Anna Cristina; Genovese, Silvia; Grotta, Simona; Gnazzo, Maria; Petrocchi, Stefano; Ciocca, Laura; Alghisi, Federico; Montemitro, Enza; Martemucci, Luigi; Elce, Ausilia; Lucidi, Vincenzina; Castaldo, Giuseppe; Angioni, Adriano

    2016-05-26

    Genetic features of Chronic Pancreatitis (CP) have been extensively investigated mainly testing genes associated to the trypsinogen activation pathway. However, different molecular pathways involving other genes may be implicated in CP pathogenesis. 80 patients with Idiopathic CP were investigated using Next Generation Sequencing approach with a panel of 70 genes related to six different pancreatic pathways: premature activation of trypsinogen; modifier genes of Cystic Fibrosis phenotype; pancreatic secretion and ion homeostasis; Calcium signalling and zymogen granules exocytosis; autophagy; autoimmune pancreatitis related genes. We detected mutations in 34 out of 70 genes examined; 64/80 patients (80.0%) were positive for mutations in one or more genes, 16/80 patients (20.0%) had no mutations. Mutations in CFTR were detected in 32/80 patients (40.0%) and 22 of them exhibited at least one mutation in genes of other pancreatic pathways. Of the remaining 48 patients, 13/80 (16.3%) had mutations in genes involved in premature activation of trypsinogen and 19/80 (23.8%) had mutations only in genes of the other pathways: 38/64 patients positive for mutations showed variants in two or more genes (59.3%). Our data, although to be extended with functional analysis of novel mutations, suggest a high rate of genetic heterogeneity in chronic pancreatitis and that trans-heterozygosity may predispose to the idiopathic CP phenotype.

  7. Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease

    PubMed Central

    Poliquin, Pierre O.; Chen, Jingkui; Cloutier, Mathieu; Trudeau, Louis-Éric; Jolicoeur, Mario

    2013-01-01

    Parkinson’s disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a complex I blocker. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level. PMID:23935941

  8. Convergent genetic and expression data implicate immunity in Alzheimer's disease

    PubMed Central

    Jones, Lesley; Lambert, Jean-Charles; Wang, Li-San; Choi, Seung-Hoan; Harold, Denise; Vedernikov, Alexey; Escott-Price, Valentina; Stone, Timothy; Richards, Alexander; Bellenguez, Céline; Ibrahim-Verbaas, Carla A; Naj, Adam C; Sims, Rebecca; Gerrish, Amy; Jun, Gyungah; DeStefano, Anita L; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Jones, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letteneur, Luc; Kornhuber, Johanes; Tárraga, Lluís; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Emilsson, Valur; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Kehoe, Pat; Rogaeva, Ekaterina; Gallacher, John; George-Hyslop, Peter St; Clarimon, Jordi; Lleὀ, Alberti; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petra; Collinge, John; Sorbi, Sandro; Garcia, Florentino Sanchez; Fox, Nick; Hardy, John; Naranjo, Maria Candida Deniz; Razquin, Cristina; Bosco, Paola; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Mancuso, Michelangelo; Moebus, Susanne; Mecocci, Patrizia; del Zompo, Maria; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Bullido, Maria; Panza, Francesco; Caffarra, Paolo; Nacmias, Benedetta; Gilbert, John R; Mayhaus, Manuel; Jessen, Frank; Dichgans, Martin; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alavarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O'Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee FAG; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John SK; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Pastor, Pau; Schmidt, Reinhold; Rujescu, Dan; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Haines, Jonathan L; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Farrer, Lindsay A; van Duijn, Cornelia M; Van Broekhoven, Christine; Ramirez, Alfredo; Schellenberg, Gerard D; Seshadri, Sudha; Amouyel, Philippe; Holmans, Peter A

    2015-01-01

    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics. PMID:25533204

  9. Convergent genetic and expression data implicate immunity in Alzheimer's disease.

    PubMed

    2015-06-01

    Late-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis. The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 × 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 × 10(-11)), cholesterol transport (P = 2.96 × 10(-9)), and proteasome-ubiquitin activity (P = 1.34 × 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05). The immune response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics. Copyright © 2015. Published by Elsevier Inc.

  10. Genetic analysis of a bacterial genetic exchange element: The gene transfer agent of Rhodobacter capsulatus

    PubMed Central

    Lang, Andrew S.; Beatty, J. T.

    2000-01-01

    An unusual system of genetic exchange exists in the purple nonsulfur bacterium Rhodobacter capsulatus. DNA transmission is mediated by a small bacteriophage-like particle called the gene transfer agent (GTA) that transfers random 4.5-kb segments of the producing cell's genome to recipient cells, where allelic replacement occurs. This paper presents the results of gene cloning, analysis, and mutagenesis experiments that show that GTA resembles a defective prophage related to bacteriophages from diverse genera of bacteria, which has been adopted by R. capsulatus for genetic exchange. A pair of cellular proteins, CckA and CtrA, appear to constitute part of a sensor kinase/response regulator signaling pathway that is required for expression of GTA structural genes. This signaling pathway controls growth-phase-dependent regulation of GTA gene messages, yielding maximal gene expression in the stationary phase. We suggest that GTA is an ancient prophage remnant that has evolved in concert with the bacterial genome, resulting in a genetic exchange process controlled by the bacterial cell. PMID:10639170

  11. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans

    PubMed Central

    Chisholm, Andrew D.; Hutter, Harald; Jin, Yishi; Wadsworth, William G.

    2016-01-01

    The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment. PMID:28114100

  12. Meta-Analysis of Global Transcriptomics Suggests that Conserved Genetic Pathways are Responsible for Quercetin and Tannic Acid Mediated Longevity in C. elegans

    PubMed Central

    Pietsch, Kerstin; Saul, Nadine; Swain, Suresh C.; Menzel, Ralph; Steinberg, Christian E. W.; Stürzenbaum, Stephen R.

    2012-01-01

    Recent research has highlighted that the polyphenols Quercetin and Tannic acid are capable of extending the lifespan of Caenorhabditis elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to three concentrations of Quercetin or Tannic acid, respectively. By means of an intricate meta-analysis it was possible to compare the transcriptomes of polyphenol exposure to recently published datasets derived from (i) longevity mutants or (ii) infection. This detailed comparative in silico analysis facilitated the identification of compound specific and overlapping transcriptional profiles and allowed the prediction of putative mechanistic models of Quercetin and Tannic acid mediated longevity. Lifespan extension due to Quercetin was predominantly driven by the metabolome, TGF-beta signaling, Insulin-like signaling, and the p38 MAPK pathway and Tannic acid’s impact involved, in part, the amino acid metabolism and was modulated by the TGF-beta and the p38 MAPK pathways. DAF-12, which integrates TGF-beta and Insulin-like downstream signaling, and genetic players of the p38 MAPK pathway therefore seem to be crucial regulators for both polyphenols. Taken together, this study underlines how meta-analyses can provide an insight of molecular events that go beyond the traditional categorization into gene ontology-terms and Kyoto encyclopedia of genes and genomes-pathways. It also supports the call to expand the generation of comparative and integrative databases, an effort that is currently still in its infancy. PMID:22493606

  13. A Hypothesis for Using Pathway Genetic Load Analysis for Understanding Complex Outcomes in Bilirubin Encephalopathy

    PubMed Central

    Riordan, Sean M.; Bittel, Douglas C.; Le Pichon, Jean-Baptiste; Gazzin, Silvia; Tiribelli, Claudio; Watchko, Jon F.; Wennberg, Richard P.; Shapiro, Steven M.

    2016-01-01

    Genetic-based susceptibility to bilirubin neurotoxicity and chronic bilirubin encephalopathy (kernicterus) is still poorly understood. Neonatal jaundice affects 60–80% of newborns, and considerable effort goes into preventing this relatively benign condition from escalating into the development of kernicterus making the incidence of this potentially devastating condition very rare in more developed countries. The current understanding of the genetic background of kernicterus is largely comprised of mutations related to alterations of bilirubin production, elimination, or both. Less is known about mutations that may predispose or protect against CNS bilirubin neurotoxicity. The lack of a monogenetic source for this risk of bilirubin neurotoxicity suggests that disease progression is dependent upon an overall decrease in the functionality of one or more essential genetically controlled metabolic pathways. In other words, a “load” is placed on key pathways in the form of multiple genetic variants that combine to create a vulnerable phenotype. The idea of epistatic interactions creating a pathway genetic load (PGL) that affects the response to a specific insult has been previously reported as a PGL score. We hypothesize that the PGL score can be used to investigate whether increased susceptibility to bilirubin-induced CNS damage in neonates is due to a mutational load being placed on key genetic pathways important to the central nervous system's response to bilirubin neurotoxicity. We propose a modification of the PGL score method that replaces the use of a canonical pathway with custom gene lists organized into three tiers with descending levels of evidence combined with the utilization of single nucleotide polymorphism (SNP) causality prediction methods. The PGL score has the potential to explain the genetic background of complex bilirubin induced neurological disorders (BIND) such as kernicterus and could be the key to understanding ranges of outcome severity in complex diseases. We anticipate that this method could be useful for improving the care of jaundiced newborns through its use as an at-risk screen. Importantly, this method would also be useful in uncovering basic knowledge about this and other polygenetic diseases whose genetic source is difficult to discern through traditional means such as a genome-wide association study. PMID:27587993

  14. An integrated analysis of genes and functional pathways for aggression in human and rodent models.

    PubMed

    Zhang-James, Yanli; Fernàndez-Castillo, Noèlia; Hess, Jonathan L; Malki, Karim; Glatt, Stephen J; Cormand, Bru; Faraone, Stephen V

    2018-06-01

    Human genome-wide association studies (GWAS), transcriptome analyses of animal models, and candidate gene studies have advanced our understanding of the genetic architecture of aggressive behaviors. However, each of these methods presents unique limitations. To generate a more confident and comprehensive view of the complex genetics underlying aggression, we undertook an integrated, cross-species approach. We focused on human and rodent models to derive eight gene lists from three main categories of genetic evidence: two sets of genes identified in GWAS studies, four sets implicated by transcriptome-wide studies of rodent models, and two sets of genes with causal evidence from online Mendelian inheritance in man (OMIM) and knockout (KO) mice reports. These gene sets were evaluated for overlap and pathway enrichment to extract their similarities and differences. We identified enriched common pathways such as the G-protein coupled receptor (GPCR) signaling pathway, axon guidance, reelin signaling in neurons, and ERK/MAPK signaling. Also, individual genes were ranked based on their cumulative weights to quantify their importance as risk factors for aggressive behavior, which resulted in 40 top-ranked and highly interconnected genes. The results of our cross-species and integrated approach provide insights into the genetic etiology of aggression.

  15. Discovery of new candidate genes for rheumatoid arthritis through integration of genetic association data with expression pathway analysis.

    PubMed

    Shchetynsky, Klementy; Diaz-Gallo, Lina-Marcella; Folkersen, Lasse; Hensvold, Aase Haj; Catrina, Anca Irinel; Berg, Louise; Klareskog, Lars; Padyukov, Leonid

    2017-02-02

    Here we integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signaling networks, relevant for rheumatoid arthritis (RA). RNA-sequencing-(RNA-seq)-based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated patients with RA, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of "connector" genes derived from pathway analysis was tested for differential expression in the initial discovery cohort and validated in blood cells from 73 patients with RA and in 35 healthy controls. There were 11 qualifying genes selected for pathway analysis and these were grouped into two evidence-based functional networks, containing 29 and 27 additional connector molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. Differences in the expression of ERBB2, TP53 and THOP1 were similar in both treated and non-treated patients with RA and an additional nine genes were differentially expressed in at least one group of patients compared to healthy controls. The ERBB2, TP53. THOP1 expression profile was successfully replicated in RNA-seq data from peripheral blood mononuclear cells from healthy controls and non-treated patients with RA, in an independent collection of samples. Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes, ERBB2, TP53 and THOP1 in the pathogenesis of RA.

  16. Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses.

    PubMed

    Painter, Jodie N; O'Mara, Tracy A; Morris, Andrew P; Cheng, Timothy H T; Gorman, Maggie; Martin, Lynn; Hodson, Shirley; Jones, Angela; Martin, Nicholas G; Gordon, Scott; Henders, Anjali K; Attia, John; McEvoy, Mark; Holliday, Elizabeth G; Scott, Rodney J; Webb, Penelope M; Fasching, Peter A; Beckmann, Matthias W; Ekici, Arif B; Hein, Alexander; Rübner, Matthias; Hall, Per; Czene, Kamila; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Lambrechts, Diether; Amant, Frederic; Annibali, Daniela; Depreeuw, Jeroen; Vanderstichele, Adriaan; Goode, Ellen L; Cunningham, Julie M; Dowdy, Sean C; Winham, Stacey J; Trovik, Jone; Hoivik, Erling; Werner, Henrica M J; Krakstad, Camilla; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Tham, Emma; Mints, Miriam; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Pharoah, Paul D P; Dunning, Alison M; Dennis, Joe; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Zondervan, Krina T; Nyholt, Dale R; MacGregor, Stuart; Montgomery, Grant W; Tomlinson, Ian; Easton, Douglas F; Thompson, Deborah J; Spurdle, Amanda B

    2018-05-01

    Epidemiological, biological, and molecular data suggest links between endometriosis and endometrial cancer, with recent epidemiological studies providing evidence for an association between a previous diagnosis of endometriosis and risk of endometrial cancer. We used genetic data as an alternative approach to investigate shared biological etiology of these two diseases. Genetic correlation analysis of summary level statistics from genomewide association studies (GWAS) using LD Score regression revealed moderate but significant genetic correlation (r g  = 0.23, P = 9.3 × 10 -3 ), and SNP effect concordance analysis provided evidence for significant SNP pleiotropy (P = 6.0 × 10 -3 ) and concordance in effect direction (P = 2.0 × 10 -3 ) between the two diseases. Cross-disease GWAS meta-analysis highlighted 13 distinct loci associated at P ≤ 10 -5 with both endometriosis and endometrial cancer, with one locus (SNP rs2475335) located within PTPRD associated at a genomewide significant level (P = 4.9 × 10 -8 , OR = 1.11, 95% CI = 1.07-1.15). PTPRD acts in the STAT3 pathway, which has been implicated in both endometriosis and endometrial cancer. This study demonstrates the value of cross-disease genetic analysis to support epidemiological observations and to identify biological pathways of relevance to multiple diseases. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.

    PubMed

    Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico

    2017-01-01

    Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.

  18. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer

    PubMed Central

    Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies. PMID:26540293

  19. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    PubMed

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  20. Disentangling the Importance of Psychological Predispositions and Social Constructions in the Organization of American Political Ideology.

    PubMed

    Verhulst, Brad; Hatemi, Peter K; Eaves, Lindon J

    2012-06-01

    Ideological preferences within the American electorate are contingent on both the environmental conditions that provide the content of the contemporary political debate and internal predispositions that motivate people to hold liberal or conservative policy preferences. In this article we apply Jost, Federico, and Napier's (2009) top-down/bottom-up theory of political attitude formation to a genetically informative population sample. In doing so, we further develop the theory by operationalizing the top-down pathway to be a function of the social environment and the bottom-up pathway as a latent set of genetic factors. By merging insights from psychology, behavioral genetics, and political science, we find strong support for the top-down/bottom-up framework that segregates the two independent pathways in the formation of political attitudes and identifies a different pattern of relationships between political attitudes at each level of analysis.

  1. Ab initio genotype–phenotype association reveals intrinsic modularity in genetic networks

    PubMed Central

    Slonim, Noam; Elemento, Olivier; Tavazoie, Saeed

    2006-01-01

    Microbial species express an astonishing diversity of phenotypic traits, behaviors, and metabolic capacities. However, our molecular understanding of these phenotypes is based almost entirely on studies in a handful of model organisms that together represent only a small fraction of this phenotypic diversity. Furthermore, many microbial species are not amenable to traditional laboratory analysis because of their exotic lifestyles and/or lack of suitable molecular genetic techniques. As an adjunct to experimental analysis, we have developed a computational information-theoretic framework that produces high-confidence gene–phenotype predictions using cross-species distributions of genes and phenotypes across 202 fully sequenced archaea and eubacteria. In addition to identifying the genetic basis of complex traits, our approach reveals the organization of these genes into generic preferentially co-inherited modules, many of which correspond directly to known enzymatic pathways, molecular complexes, signaling pathways, and molecular machines. PMID:16732191

  2. Analysis of JAK-STAT signaling pathway genes and their microRNA in the intestinal mucosa of genetically disparate chicken lines induced with necrotic enteritis

    USDA-ARS?s Scientific Manuscript database

    The JAK-STAT signaling pathway plays a key role in cytokine and growth factor activation and is involved in several cellular functions and diseases. The main objective of this study was to investigate and evaluate the expression of candidate JAK-STAT pathway genes and their regulators and interactor...

  3. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.

    PubMed

    Feng, Quanzhou; Liu, Z Lewis; Weber, Scott A; Li, Shizhong

    2018-01-01

    Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production.

  4. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    PubMed Central

    Feng, Quanzhou; Weber, Scott A.; Li, Shizhong

    2018-01-01

    Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production. PMID:29621349

  5. Reverse Engineering a Signaling Network Using Alternative Inputs

    PubMed Central

    Tanaka, Hiromasa; Yi, Tau-Mu

    2009-01-01

    One of the goals of systems biology is to reverse engineer in a comprehensive fashion the arrow diagrams of signal transduction systems. An important tool for ordering pathway components is genetic epistasis analysis, and here we present a strategy termed Alternative Inputs (AIs) to perform systematic epistasis analysis. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. We introduced the concept of an “AIs-Deletions matrix” that summarizes the outputs of all combinations of alternative inputs and deletions. We developed the theory and algorithms to construct a pairwise relationship graph from the AIs-Deletions matrix capturing both functional ordering (upstream, downstream) and logical relationships (AND, OR), and then interpreting these relationships into a standard arrow diagram. As a proof-of-principle, we applied this methodology to a subset of genes involved in yeast mating signaling. This experimental pilot study highlights the robustness of the approach and important technical challenges. In summary, this research formalizes and extends classical epistasis analysis from linear pathways to more complex networks, facilitating computational analysis and reconstruction of signaling arrow diagrams. PMID:19898612

  6. High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism.

    PubMed

    Kelleher, Raymond J; Geigenmüller, Ute; Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David

    2012-01-01

    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.

  7. High-Throughput Sequencing of mGluR Signaling Pathway Genes Reveals Enrichment of Rare Variants in Autism

    PubMed Central

    Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David

    2012-01-01

    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism. PMID:22558107

  8. Transcriptomic analysis of differentially expressed genes in flower-buds of genetic male sterile and wild type cucumber by RNA sequencing.

    PubMed

    Han, Yike; Wang, Xianyun; Zhao, Fengyue; Gao, Shang; Wei, Aimin; Chen, Zhengwu; Liu, Nan; Zhang, Zhenxian; Du, Shengli

    2018-05-01

    Cucumber ( Cucumis sativus L. ) pollen development involves a diverse range of gene interactions between sporophytic and gametophytic tissues. Previous studies in our laboratory showed that male sterility was controlled by a single recessive nuclear gene, and occurred in pollen mother cell meiophase. To fully explore the global gene expression and identify genes related to male sterility, a RNA-seq analysis was adopted in this study. Young male flower-buds (1-2 mm in length) from genetic male sterility (GMS) mutant and homozygous fertile cucumber (WT) were collected for two sequencing libraries. Total 545 differentially expressed genes (DEGs), including 142 up-regulated DEGs and 403 down-regulated DEGs, were detected in two libraries (Fold Change ≥ 2, FDR < 0.01). These genes were involved in a variety of metabolic pathways, like ethylene-activated signaling pathway, sporopollenin biosynthetic pathway, cell cycle and DNA damage repair pathway. qRT-PCR analysis was performed and showed that the correlation between RNA-Seq and qRT-PCR was 0.876. These findings contribute to a better understanding of the mechanism that leads to GMS in cucumber.

  9. Radiogenomics: a systems biology approach to understanding genetic risk factors for radiotherapy toxicity ?

    PubMed Central

    Herskind, Carsten; Talbot, Christopher J.; Kerns, Sarah L.; Veldwijk, Marlon R.; Rosenstein, Barry S.; West, Catharine M. L.

    2016-01-01

    Adverse reactions in normal tissue after radiotherapy (RT) limit the dose that can be given to tumour cells. Since 80% of individual variation in clinical response is estimated to be caused by patient-related factors, identifying these factors might allow prediction of patients with increased risk of developing severe reactions. While inactivation of cell renewal is considered a major cause of toxicity in early-reacting normal tissues, complex interactions involving multiple cell types, cytokines, and hypoxia seem important for late reactions. Here, we review ‘omics’ approaches such as screening of genetic polymorphisms or gene expression analysis, and assess the potential of epigenetic factors, posttranslational modification, signal transduction, and metabolism. Furthermore, functional assays have suggested possible associations with clinical risk of adverse reaction. Pathway analysis incorporating different ‘omics’ approaches may be more efficient in identifying critical pathways than pathway analysis based on single ‘omics’ data sets. Integrating these pathways with functional assays may be powerful in identifying multiple subgroups of RT patients characterized by different mechanisms. Thus ‘omics’ and functional approaches may synergize if they are integrated into radiogenomics ‘systems biology’ to facilitate the goal of individualised radiotherapy. PMID:26944314

  10. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer.

    PubMed

    Xing, Mingzhao

    2010-07-01

    Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years. This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC. Genetic alterations are common in the PI3K/Akt pathway in thyroid cancer and play a fundamental role in the tumorigenesis and progression of this cancer. This provides a strong basis for the emerging development of novel genetic-based diagnostic, prognostic, and therapeutic strategies for thyroid cancer.

  11. The effect of quercetin on genetic expression of the commensal gut microbes Bifidobacterium catenulatum, Enterococcus caccae and Ruminococcus gauvreauii.

    PubMed

    Firrman, Jenni; Liu, LinShu; Zhang, Liqing; Arango Argoty, Gustavo; Wang, Minqian; Tomasula, Peggy; Kobori, Masuko; Pontious, Sherri; Xiao, Weidong

    2016-12-01

    Quercetin is one of the most abundant polyphenols found in fruits and vegetables. The ability of the gut microbiota to metabolize quercetin has been previously documented; however, the effect that quercetin may have on commensal gut microbes remains unclear. In the present study, the effects of quercetin on the commensal gut microbes Ruminococcus gauvreauii, Bifidobacterium catenulatum and Enterococcus caccae were determined through evaluation of growth patterns and cell morphology, and analysis of genetic expression profiles between quercetin treated and non-treated groups using Single Molecule RNA sequencing via Helicos technology. Results of this study revealed that phenotypically, quercetin did not prevent growth of Ruminococcus gauvreauii, mildly suppressed growth of Bifidobacterium catenulatum, and moderately inhibited growth of Enterococcus caccae. Genetic analysis revealed that in response to quercetin, Ruminococcus gauvreauii down regulated genes responsible for protein folding, purine synthesis and metabolism. Bifidobacterium catenulatum increased expression of the ABC transport pathway and decreased metabolic pathways and cell wall synthesis. Enterococcus caccae upregulated genes responsible for energy production and metabolism, and downregulated pathways of stress response, translation and sugar transport. For the first time, the effect of quercetin on the growth and genetic expression of three different commensal gut bacteria was documented. The data provides insight into the interactions between genetic regulation and growth. This is also a unique demonstration of how RNA single molecule sequencing can be used to study the gut microbiota. Published by Elsevier Ltd.

  12. Analysis of JAK-STAT signaling pathway genes and their microRNAs in the intestinal mucosa of genetically disparate chicken lines induced with necrotic enteritis.

    PubMed

    Truong, Anh Duc; Rengaraj, Deivendran; Hong, Yeojin; Hoang, Cong Thanh; Hong, Yeong Ho; Lillehoj, Hyun S

    2017-05-01

    The JAK-STAT signaling pathway plays a key role in cytokine and growth factor activation and is involved in several cellular functions and diseases. The main objective of this study was to investigate the expression of candidate JAK-STAT pathway genes and their regulators and interactors in the intestinal mucosal layer of two genetically disparate chicken lines [Marek's disease (MD)-resistant line 6.3 and MD-susceptible line 7.2] induced with necrotic enteritis (NE). Through RNA-sequencing, we investigated 116 JAK-STAT signaling pathway-related genes that were significant and differentially expressed between the intestinal mucosa of the two lines compared with respective uninfected controls. About 15 JAK-STAT pathway genes were further verified by qRT-PCR, and the results were in agreement with our sequencing data. All the identified 116 genes were annotated through Gene Ontology and mapped to the KEGG chicken JAK-STAT signaling pathway. To the best of our knowledge, this is the first study to represent the transcriptional analysis of a large number of candidate genes, regulators, and potential interactors in the JAK-STAT pathway of the two chicken lines induced with NE. Several key genes of the interactome, namely, STAT1/3/4, STAT5B, JAK1-3, TYK2, AKT1/3, SOCS1-5, PIAS1/2/4, PTPN6/11, and PIK3, were determined to be differentially expressed in the two lines. Moreover, we detected 68 known miRNAs variably targeting JAK-STAT pathway genes and differentially expressed in the two lines induced with NE. The RNA-sequencing and bioinformatics analyses in this study provided an abundance of data that will be useful for future studies on JAK-STAT pathways associated with the functions of two genetically disparate chicken lines induced with NE. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

    PubMed

    Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D

    2016-02-01

    Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake

    PubMed Central

    Do, Duy N.; Strathe, Anders B.; Ostersen, Tage; Pant, Sameer D.; Kadarmideen, Haja N.

    2014-01-01

    Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and biological pathways involved in regulating RFI using Genome-wide association (GWA) and pathway analyses. A total of 596 Yorkshire boars with phenotypes for two different measures of RFI (RFI1 and 2) and 60k genotypic data was used. GWA analysis was performed using a univariate mixed model and 12 and 7 SNPs were found to be significantly associated with RFI1 and RFI2, respectively. Several genes such as xin actin-binding repeat-containing protein 2 (XIRP2),tetratricopeptide repeat domain 29 (TTC29),suppressor of glucose, autophagy associated 1 (SOGA1),MAS1,G-protein-coupled receptor (GPCR) kinase 5 (GRK5),prospero-homeobox protein 1 (PROX1),GPCR 155 (GPR155), and FYVE domain containing the 26 (ZFYVE26) were identified as putative candidates for RFI based on their genomic location in the vicinity of these SNPs. Genes located within 50 kbp of SNPs significantly associated with RFI and RFI2 (q-value ≤ 0.2) were subsequently used for pathway analyses. These analyses were performed by assigning genes to biological pathways and then testing the association of individual pathways with RFI using a Fisher’s exact test. Metabolic pathway was significantly associated with both RFIs. Other biological pathways regulating phagosome, tight junctions, olfactory transduction, and insulin secretion were significantly associated with both RFI traits when relaxed threshold for cut-off p-value was used (p ≤ 0.05). These results implied porcine RFI is regulated by multiple biological mechanisms, although the metabolic processes might be the most important. Olfactory transduction pathway controlling the perception of feed via smell, insulin pathway controlling food intake might be important pathways for RFI. Furthermore, our study revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs. PMID:25250046

  15. Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast

    PubMed Central

    Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S

    2005-01-01

    Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two pathways needed). PMID:16283923

  16. A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila.

    PubMed

    Pressman, Sigal; Reinke, Catherine A; Wang, Xiaohong; Carthew, Richard W

    2012-04-01

    A central goal of microRNA biology is to elucidate the genetic program of miRNA function and regulation. However, relatively few of the effectors that execute miRNA repression have been identified. Because such genes may function in many developmental processes, mutations in them are expected to be pleiotropic and thus are discarded in most standard genetic screens. Here, we describe a systematic screen designed to identify all Drosophila genes in ∼40% of the genome that function in the miRNA pathway. To identify potentially pleiotropic genes, the screen analyzed clones of homozygous mutant cells in heterozygous animals. We identified 45 mutations representing 24 genes, and we molecularly characterized 9 genes. These include 4 previously known genes that encode core components of the miRNA pathway, including Drosha, Pasha, Dicer-1, and Ago1. The rest are new genes that function through chromatin remodeling, signaling, and mRNA decapping. The results suggest genetic screens that use clonal analysis can elucidate the miRNA program and that ∼100 genes are required to execute the miRNA program.

  17. Genetic variation associated with cardiovascular risk in autoimmune diseases

    PubMed Central

    Perrotti, Pedro P.; Aterido, Adrià; Fernández-Nebro, Antonio; Cañete, Juan D.; Ferrándiz, Carlos; Tornero, Jesús; Gisbert, Javier P.; Domènech, Eugeni; Fernández-Gutiérrez, Benjamín; Gomollón, Fernando; García-Planella, Esther; Fernández, Emilia; Sanmartí, Raimon; Gratacós, Jordi; Martínez-Taboada, Víctor Manuel; Rodríguez-Rodríguez, Luís; Palau, Núria; Tortosa, Raül; Corbeto, Mireia L.; Lasanta, María L.; Marsal, Sara; Julià, Antonio

    2017-01-01

    Autoimmune diseases have a higher prevalence of cardiovascular events compared to the general population. The objective of this study was to investigate the genetic basis of cardiovascular disease (CVD) risk in autoimmunity. We analyzed genome-wide genotyping data from 6,485 patients from six autoimmune diseases that are associated with a high socio-economic impact. First, for each disease, we tested the association of established CVD risk loci. Second, we analyzed the association of autoimmune disease susceptibility loci with CVD. Finally, to identify genetic patterns associated with CVD risk, we applied the cross-phenotype meta-analysis approach (CPMA) on the genome-wide data. A total of 17 established CVD risk loci were significantly associated with CVD in the autoimmune patient cohorts. From these, four loci were found to have significantly different genetic effects across autoimmune diseases. Six autoimmune susceptibility loci were also found to be associated with CVD risk. Genome-wide CPMA analysis identified 10 genetic clusters strongly associated with CVD risk across all autoimmune diseases. Two of these clusters are highly enriched in pathways previously associated with autoimmune disease etiology (TNFα and IFNγ cytokine pathways). The results of this study support the presence of specific genetic variation associated with the increase of CVD risk observed in autoimmunity. PMID:28982122

  18. Spinal sensory circuits in motion.

    PubMed

    Böhm, Urs Lucas; Wyart, Claire

    2016-12-01

    The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this view: GABAergic sensory neurons located within the spinal cord have been shown to relay mechanical and chemical information from the cerebrospinal fluid to motor circuits. Innovative approaches combining genetics, quantitative analysis of behavior and optogenetics now allow probing the contribution of these sensory feedback pathways to locomotion and recovery following spinal cord injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evidence for possible non-canonical pathway(s) driven early-onset colorectal cancer in India

    PubMed Central

    Raman, Ratheesh; Kotapalli, Viswakalyan; Adduri, Raju; Gowrishankar, Swarnalata; Bashyam, Leena; Chaudhary, Ajay; Vamsy, Mohana; Patnaik, Sujith; Srinivasulu, Mukta; Sastry, Regulagadda; Rao, Subramanyeshwar; Vasala, Anjayneyulu; Kalidindi, NarasimhaRaju; Pollack, Jonathan; Murthy, Sudha; Bashyam, Murali

    2012-01-01

    Two genetic instability pathways viz. chromosomal instability, driven primarily by APC mutation induced deregulated Wnt signaling, and microsatellite instability (MSI) caused by mismatch repair (MMR) inactivation, together account for greater than 90% of late-onset colorectal cancer. Our understanding of early-onset sporadic CRC is however comparatively limited. In addition, most seminal studies have been performed in the western population and analyses of tumorigenesis pathway(s) causing CRC in developing nations have been rare. We performed a comparative analysis of early and late-onset CRC from India with respect to common genetic aberrations including Wnt, KRAS and p53 (constituting the classical CRC progression sequence) in addition to MSI. Our results revealed the absence of Wnt and MSI in a significant proportion of early-onset as against late-onset CRC in India. In addition, KRAS mutation frequency was significantly lower in early-onset CRC indicating that a significant proportion of CRC in India may follow tumorigenesis pathways distinct from the classical CRC progression sequence. Our study has therefore revealed the possible existence of non-canonical tumorigenesis pathways in early-onset CRC in India. PMID:23168910

  20. Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies.

    PubMed

    Mocellin, Simone; Tropea, Saveria; Benna, Clara; Rossi, Carlo Riccardo

    2018-02-19

    Dysfunction of the circadian clock and single polymorphisms of some circadian genes have been linked to cancer susceptibility, although data are scarce and findings inconsistent. We aimed to investigate the association between circadian pathway genetic variation and risk of developing common cancers based on the findings of genome-wide association studies (GWASs). Single nucleotide polymorphisms (SNPs) of 17 circadian genes reported by three GWAS meta-analyses dedicated to breast (Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Consortium; cases, n = 15,748; controls, n = 18,084), prostate (Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium; cases, n = 14,160; controls, n = 12,724) and lung carcinoma (Transdisciplinary Research In Cancer of the Lung (TRICL) Consortium; cases, n = 12,160; controls, n = 16,838) in patients of European ancestry were utilized to perform pathway analysis by means of the adaptive rank truncated product (ARTP) method. Data were also available for the following subgroups: estrogen receptor negative breast cancer, aggressive prostate cancer, squamous lung carcinoma and lung adenocarcinoma. We found a highly significant statistical association between circadian pathway genetic variation and the risk of breast (pathway P value = 1.9 × 10 -6 ; top gene RORA, gene P value = 0.0003), prostate (pathway P value = 4.1 × 10 -6 ; top gene ARNTL, gene P value = 0.0002) and lung cancer (pathway P value = 6.9 × 10 -7 ; top gene RORA, gene P value = 2.0 × 10 -6 ), as well as all their subgroups. Out of 17 genes investigated, 15 were found to be significantly associated with the risk of cancer: four genes were shared by all three malignancies (ARNTL, CLOCK, RORA and RORB), two by breast and lung cancer (CRY1 and CRY2) and three by prostate and lung cancer (NPAS2, NR1D1 and PER3), whereas four genes were specific for lung cancer (ARNTL2, CSNK1E, NR1D2 and PER2) and two for breast cancer (PER1, RORC). Our findings, based on the largest series ever utilized for ARTP-based gene and pathway analysis, support the hypothesis that circadian pathway genetic variation is involved in cancer predisposition.

  1. Genes-environment interactions in obesity- and diabetes-associated pancreatic cancer: a GWAS data analysis.

    PubMed

    Tang, Hongwei; Wei, Peng; Duell, Eric J; Risch, Harvey A; Olson, Sara H; Bueno-de-Mesquita, H Bas; Gallinger, Steven; Holly, Elizabeth A; Petersen, Gloria M; Bracci, Paige M; McWilliams, Robert R; Jenab, Mazda; Riboli, Elio; Tjønneland, Anne; Boutron-Ruault, Marie Christine; Kaaks, Rudolf; Trichopoulos, Dimitrios; Panico, Salvatore; Sund, Malin; Peeters, Petra H M; Khaw, Kay-Tee; Amos, Christopher I; Li, Donghui

    2014-01-01

    Obesity and diabetes are potentially alterable risk factors for pancreatic cancer. Genetic factors that modify the associations of obesity and diabetes with pancreatic cancer have previously not been examined at the genome-wide level. Using genome-wide association studies (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study of 2,028 cases and 2,109 controls to examine gene-obesity and gene-diabetes interactions in relation to pancreatic cancer risk by using the likelihood-ratio test nested in logistic regression models and Ingenuity Pathway Analysis (IPA). After adjusting for multiple comparisons, a significant interaction of the chemokine signaling pathway with obesity (P = 3.29 × 10(-6)) and a near significant interaction of calcium signaling pathway with diabetes (P = 1.57 × 10(-4)) in modifying the risk of pancreatic cancer were observed. These findings were supported by results from IPA analysis of the top genes with nominal interactions. The major contributing genes to the two top pathways include GNGT2, RELA, TIAM1, and GNAS. None of the individual genes or single-nucleotide polymorphism (SNP) except one SNP remained significant after adjusting for multiple testing. Notably, SNP rs10818684 of the PTGS1 gene showed an interaction with diabetes (P = 7.91 × 10(-7)) at a false discovery rate of 6%. Genetic variations in inflammatory response and insulin resistance may affect the risk of obesity- and diabetes-related pancreatic cancer. These observations should be replicated in additional large datasets. A gene-environment interaction analysis may provide new insights into the genetic susceptibility and molecular mechanisms of obesity- and diabetes-related pancreatic cancer.

  2. Melanocortin-4 receptor pathway dysfunction in obesity: Patient stratification aimed at MC4R agonist treatment.

    PubMed

    Ayers, Kristin L; Glicksberg, Benjamin S; Garfield, Alastair S; Longerich, Simonne; White, Joseph A; Yang, Pengwei; Du, Lei; Chittenden, Thomas W; Gulcher, Jeffery R; Roy, Sophie; Fiedorek, Fred; Gottesdiener, Keith; Cohen, Sarah; North, Kari E; Schadt, Eric E; Li, Shuyu D; Chen, Rong; Van der Ploeg, Lex H T

    2018-05-02

    The hypothalamic melanocortin 4 receptor (MC4R)-pathway serves a critical role in regulating bodyweight. Loss of function (LoF) mutations in the MC4R pathway including mutations in the POMC (1), PCSK1, LEPR (2) or the MC4R genes (3) have been shown to be causative of early-onset severe obesity. Through a comprehensive epidemiological analysis of known and predicted LoF variants in the POMC, PCSK1 and LEPR genes, we sought to estimate the number of US individuals with bi-allelic MC4R pathway LoF variants. We predict approximately 650 α-MSH/POMC, 8,500 PCSK1 and 3,600 LEPR homozygous and compound heterozygous individuals in the US, cumulatively enumerating over 12,800 MC4R pathway deficient obese patients. Very few of these have been genetically diagnosed to date. These estimates increase when we include a small subset of less rare variants: β-MSH/POMC, PCSK1 N221D, and a novel PCSK1 LoF variant (T640A). To further define the MC4R pathway and its potential impact on obesity we tested associations between body-mass index (BMI) and LoF mutation-burden in the POMC, PCSK1 and LEPR genes in various populations. We show that the cumulative allele burden in individuals with two or more LoF alleles in one or more genes in the MC4R pathway predisposes to a higher BMI than non-carriers or heterozygous LoF carriers with a defect in only one gene. Our analysis represents a genetically-rationalized study of the hypothalamic MC4R pathway aimed at genetic patient stratification to determine which obese sub-populations should be studied to understand MC4R agonist (e.g., setmelanotide) treatment responsiveness.

  3. Transforming Growth Factor-β Signaling Pathway in Patients with Kawasaki Disease

    PubMed Central

    Shimizu, Chisato; Jain, Sonia; Lin, Kevin O.; Molkara, Delaram; Frazer, Jeffrey R.; Sun, Shelly; Baker, Annette L.; Newburger, Jane W.; Rowley, Anne H.; Shulman, Stanford T.; Davila, Sonia; Hibberd, Martin L.; Burgner, David; Breunis, Willemijn B.; Kuijpers, Taco W.; Wright, Victoria J.; Levin, Michael; Eleftherohorinou, Hariklia; Coin, Lachlan; Popper, Stephen J.; Relman, David A.; Fury, Wen; Lin, Calvin; Mellis, Scott; Tremoulet, Adriana H.; Burns, Jane C.

    2011-01-01

    Background Transforming growth factor (TGF)-β is a multifunctional peptide that is important in T-cell activation and cardiovascular remodeling, both of which are important features of Kawasaki disease (KD). We postulated that variation in TGF-β signaling might be important in KD susceptibility and disease outcome. Methods and Results We investigated genetic variation in 15 genes belonging to the TGF-β pathway in a total 771 KD subjects of mainly European descendent from the US, UK, Australia and the Netherlands. We analyzed transcript abundance patterns using microarray and RT-PCR for these same genes and measured TGF-β2 protein levels in plasma. Genetic variants in TGFB2, TGFBR2 and SMAD3 and their haplotypes were consistently and reproducibly associated with KD susceptibility, coronary artery aneurysm formation, aortic root dilatation, and intravenous immunoglobulin treatment response in different cohorts. A SMAD3 haplotype associated with KD susceptibility replicated in two independent cohorts and an intronic SNP in a separate haplotype block was also strongly associated (A/G, rs4776338) (p=0.000022, OR 1.50, 95% CI 1.25-1.81). Pathway analysis using all 15 genes further confirmed the importance of the TGF-β pathway in KD pathogenesis. Whole blood transcript abundance for these genes and TGF-β2 plasma protein levels changed dynamically over the course of the illness. Conclusions These studies suggest that genetic variation in the TGF-β pathway influences KD susceptibility, disease outcome, and response to therapy and that aortic root and coronary artery Z scores can be used for phenotype/genotype analyses. Analysis of transcript abundance and protein levels further support the importance of this pathway in KD pathogenesis. PMID:21127203

  4. Cluster Analysis Identifies Distinct Pathogenetic Patterns in C3 Glomerulopathies/Immune Complex-Mediated Membranoproliferative GN.

    PubMed

    Iatropoulos, Paraskevas; Daina, Erica; Curreri, Manuela; Piras, Rossella; Valoti, Elisabetta; Mele, Caterina; Bresin, Elena; Gamba, Sara; Alberti, Marta; Breno, Matteo; Perna, Annalisa; Bettoni, Serena; Sabadini, Ettore; Murer, Luisa; Vivarelli, Marina; Noris, Marina; Remuzzi, Giuseppe

    2018-01-01

    Membranoproliferative GN (MPGN) was recently reclassified as alternative pathway complement-mediated C3 glomerulopathy (C3G) and immune complex-mediated membranoproliferative GN (IC-MPGN). However, genetic and acquired alternative pathway abnormalities are also observed in IC-MPGN. Here, we explored the presence of distinct disease entities characterized by specific pathophysiologic mechanisms. We performed unsupervised hierarchical clustering, a data-driven statistical approach, on histologic, genetic, and clinical data and data regarding serum/plasma complement parameters from 173 patients with C3G/IC-MPGN. This approach divided patients into four clusters, indicating the existence of four different pathogenetic patterns. Specifically, this analysis separated patients with fluid-phase complement activation (clusters 1-3) who had low serum C3 levels and a high prevalence of genetic and acquired alternative pathway abnormalities from patients with solid-phase complement activation (cluster 4) who had normal or mildly altered serum C3, late disease onset, and poor renal survival. In patients with fluid-phase complement activation, those in clusters 1 and 2 had massive activation of the alternative pathway, including activation of the terminal pathway, and the highest prevalence of subendothelial deposits, but those in cluster 2 had additional activation of the classic pathway and the highest prevalence of nephrotic syndrome at disease onset. Patients in cluster 3 had prevalent activation of C3 convertase and highly electron-dense intramembranous deposits. In addition, we provide a simple algorithm to assign patients with C3G/IC-MPGN to specific clusters. These distinct clusters may facilitate clarification of disease etiology, improve risk assessment for ESRD, and pave the way for personalized treatment. Copyright © 2018 by the American Society of Nephrology.

  5. Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application

    PubMed Central

    Cantor, Rita M.; Lange, Kenneth; Sinsheimer, Janet S.

    2010-01-01

    Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. A substantial number of recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. This review is written from the viewpoint that findings from the GWAS provide preliminary genetic information that is available for additional analysis by statistical procedures that accumulate evidence, and that these secondary analyses are very likely to provide valuable information that will help prioritize the strongest constellations of results. We review and discuss three analytic methods to combine preliminary GWAS statistics to identify genes, alleles, and pathways for deeper investigations. Meta-analysis seeks to pool information from multiple GWAS to increase the chances of finding true positives among the false positives and provides a way to combine associations across GWAS, even when the original data are unavailable. Testing for epistasis within a single GWAS study can identify the stronger results that are revealed when genes interact. Pathway analysis of GWAS results is used to prioritize genes and pathways within a biological context. Following a GWAS, association results can be assigned to pathways and tested in aggregate with computational tools and pathway databases. Reviews of published methods with recommendations for their application are provided within the framework for each approach. PMID:20074509

  6. Barriers to the use of genetic information for the development of new epilepsy treatments.

    PubMed

    Ferraro, Thomas N

    2016-01-01

    Genetic analysis is providing new information on the biological basis of epilepsy at a rapid pace; this article identifies factors acting as major barriers to use of these data for therapy development. Disease heterogeneity is a primary obstacle since so many genes can cause or predispose to epilepsy and the clinical presentation of epilepsy is so diverse, thus making it difficult to define the most therapeutically relevant targets. Further, many epilepsy genes affect brain development, an observation that represents a barrier unto itself given the challenge of reversing or preventing genetically mediated alterations of brain pathway formation. Finally, the lack of appropriate models for testing new therapies is also recognized as a fundamental limitation. Overcoming these barriers will be aided by full characterization of the genetic landscape of epilepsy, elucidation of key pathway points for therapeutic intervention and creation of unique experimental models to validate results.

  7. Integrative genomic profiling reveals conserved genetic mechanisms for tumorigenesis in common entities of non-Hodgkin's lymphoma.

    PubMed

    Green, Michael R; Aya-Bonilla, Carlos; Gandhi, Maher K; Lea, Rod A; Wellwood, Jeremy; Wood, Peter; Marlton, Paula; Griffiths, Lyn R

    2011-05-01

    Recent developments in genomic technologies have resulted in increased understanding of pathogenic mechanisms and emphasized the importance of central survival pathways. Here, we use a novel bioinformatic based integrative genomic profiling approach to elucidate conserved mechanisms of lymphomagenesis in the three commonest non-Hodgkin's lymphoma (NHL) entities: diffuse large B-cell lymphoma, follicular lymphoma, and B-cell chronic lymphocytic leukemia. By integrating genome-wide DNA copy number analysis and transcriptome profiling of tumor cohorts, we identified genetic lesions present in each entity and highlighted their likely target genes. This revealed a significant enrichment of components of both the apoptosis pathway and the mitogen activated protein kinase pathway, including amplification of the MAP3K12 locus in all three entities, within the set of genes targeted by genetic alterations in these diseases. Furthermore, amplification of 12p13.33 was identified in all three entities and found to target the FOXM1 oncogene. Amplification of FOXM1 was subsequently found to be associated with an increased MYC oncogenic signaling signature, and siRNA-mediated knock-down of FOXM1 resulted in decreased MYC expression and induced G2 arrest. Together, these findings underscore genetic alteration of the MAPK and apoptosis pathways, and genetic amplification of FOXM1 as conserved mechanisms of lymphomagenesis in common NHL entities. Integrative genomic profiling identifies common central survival mechanisms and highlights them as attractive targets for directed therapy. 2011 Wiley-Liss, Inc.

  8. Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change.

    PubMed

    Johnson, Jeremy S; Gaddis, Keith D; Cairns, David M; Konganti, Kranti; Krutovsky, Konstantin V

    2017-03-01

    Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We address the question to what degree have microrefugial patches and long-distance dispersal been responsible for the colonization of mountain hemlock ( Tsuga mertensiana ) on the Alaskan Kenai Peninsula. We used double-digest restriction-associated DNA sequencing (ddRADseq) to identify genetic variants across eight mountain hemlock sample sites on the Kenai Peninsula, Alaska. We assessed genetic diversity and linkage disequilibrium using landscape and population genetics approaches. Alternative historic dispersal pathways were assessed using discriminant analysis of principle components and electrical circuit theory. A combination of decreasing diversity, high gene flow, and landscape connectivity indicates that mountain hemlock colonization on the Kenai Peninsula is the result of long-distance dispersal. We found that contemporary climate best explained gene flow patterns and that isolation by resistance was a better model explaining genetic variation than isolation by distance. Our findings support the conclusion that mountain hemlock colonization is the result of several long-distance dispersal events following Pleistocene glaciation. The high dispersal capability suggests that mountain hemlock may be able to respond to future climate change and expand its range as new habitat opens along its northern distribution. © 2017 Botanical Society of America.

  9. Frontiers of Knowledge: An Interview with 2017 Edward Novitski Prize Recipient Jonathan Hodgkin.

    PubMed

    Hodgkin, Jonathan

    2017-12-01

    The Genetics Society of America's Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity and intellectual ingenuity has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2017 winner, Jonathan Hodgkin, used elegant genetic studies to unravel the sex determination pathway in Caenorhabditis elegans He inferred the order of genes in the pathway and their modes of regulation using epistasis analyses-a powerful tool that was quickly adopted by other researchers. He expanded the number and use of informational suppressor mutants in C. elegans that are able to act on many genes. He also introduced the use of collections of wild C. elegans to study naturally occurring genetic variation, paving the way for SNP mapping and QTL analysis, as well as studies of hybrid incompatibilities between worm species. His current work focuses on nematode-bacterial interactions and innate immunity. Copyright © 2017 by the Genetics Society of America.

  10. Genetic specification of left-right asymmetry in the diaphragm muscles and their motor innervation.

    PubMed

    Charoy, Camille; Dinvaut, Sarah; Chaix, Yohan; Morlé, Laurette; Sanyas, Isabelle; Bozon, Muriel; Kindbeiter, Karine; Durand, Bénédicte; Skidmore, Jennifer M; De Groef, Lies; Seki, Motoaki; Moons, Lieve; Ruhrberg, Christiana; Martin, James F; Martin, Donna M; Falk, Julien; Castellani, Valerie

    2017-06-22

    The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left-right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L-R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry.

  11. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo.

    PubMed

    Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola

    2011-09-27

    Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3β to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced by these pathways during growth or proliferation of cells that make up the ommatidia.

  12. Transcriptional profiling of human femoral mesenchymal stem cells in osteoporosis and its association with adipogenesis.

    PubMed

    Choi, Yong Jun; Song, Insun; Jin, Yilan; Jin, Hyun-Seok; Ji, Hyung Min; Jeong, Seon-Yong; Won, Ye-Yeon; Chung, Yoon-Sok

    2017-10-20

    Genetic alterations are major contributing factors in the development of osteoporosis. Osteoblasts and adipocytes share a common origin, mesenchymal stem cells (MSCs), and their genetic determinants might be important in the relationship between osteoporosis and obesity. In the present study, we aimed to isolate differentially expressed genes (DEGs) in osteoporosis and normal controls using human MSCs, and elucidate the common pathways and genes related to osteoporosis and adipogenesis. Human MSCs were obtained from the bone marrow of femurs from postmenopausal women during orthopedic surgeries. RNA sequencing (RNA-seq) was carried out using next-generation sequencing (NGS) technology. DEGs were identified using RNA-seq data. Ingenuity pathway analysis (IPA) was used to elucidate the common pathway related to osteoporosis and adipogenesis. Candidate genes for the common pathway were validated with other independent osteoporosis and obese subjects using RT-PCR (reverse transcription-polymerase chain reaction) analysis. Fifty-three DEGs were identified between postmenopausal osteoporosis patients and normal bone mineral density (BMD) controls. Most of the genetic changes were related to the differentiation of cells. The nuclear receptor subfamily 4 group A (NR4A) family was identified as possible common genes related to osteogenesis and adipogenesis. The expression level of the mRNA of NR4A1 was significantly higher in osteoporosis patients than in controls (p=0.018). The expression level of the mRNA of NR4A2 was significantly higher in obese patients than in controls (p=0.041). Some genetic changes in MSCs are involved in the pathophysiology of osteoporosis. The NR4A family might comprise common genes related to osteoporosis and obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis.

    PubMed

    Uimari, Outi; Rahmioglu, Nilufer; Nyholt, Dale R; Vincent, Katy; Missmer, Stacey A; Becker, Christian; Morris, Andrew P; Montgomery, Grant W; Zondervan, Krina T

    2017-04-01

    Do genome-wide association study (GWAS) data for endometriosis provide insight into novel biological pathways associated with its pathogenesis? GWAS analysis uncovered multiple pathways that are statistically enriched for genetic association signals, analysis of Stage A disease highlighted a novel variant in MAP3K4, while top pathways significantly associated with all endometriosis and Stage A disease included several mitogen-activated protein kinase (MAPK)-related pathways. Endometriosis is a complex disease with an estimated heritability of 50%. To date, GWAS revealed 10 genomic regions associated with endometriosis, explaining <4% of heritability, while half of the heritability is estimated to be due to common risk variants. Pathway analyses combine the evidence of single variants into gene-based measures, leveraging the aggregate effect of variants in genes and uncovering biological pathways involved in disease pathogenesis. Pathway analysis was conducted utilizing the International Endogene Consortium GWAS data, comprising 3194 surgically confirmed endometriosis cases and 7060 controls of European ancestry with genotype data imputed up to 1000 Genomes Phase three reference panel. GWAS was performed for all endometriosis cases and for Stage A (revised American Fertility Society (rAFS) I/II, n = 1686) and B (rAFS III/IV, n = 1364) cases separately. The identified significant pathways were compared with pathways previously investigated in the literature through candidate association studies. The most comprehensive biological pathway databases, MSigDB (including BioCarta, KEGG, PID, SA, SIG, ST and GO) and PANTHER were utilized to test for enrichment of genetic variants associated with endometriosis. Statistical enrichment analysis was performed using the MAGENTA (Meta-Analysis Gene-set Enrichment of variaNT Associations) software. The first genome-wide association analysis for Stage A endometriosis revealed a novel locus, rs144240142 (P = 6.45 × 10-8, OR = 1.71, 95% CI = 1.23-2.37), an intronic single-nucleotide polymorphism (SNP) within MAP3K4. This SNP was not associated with Stage B disease (P = 0.086). MAP3K4 was also shown to be differentially expressed in eutopic endometrium between Stage A endometriosis cases and controls (P = 3.8 × 10-4), but not with Stage B disease (P = 0.26). A total of 14 pathways enriched with genetic endometriosis associations were identified (false discovery rate (FDR)-P < 0.05). The pathways associated with any endometriosis were Grb2-Sos provides linkage to MAPK signaling for integrins pathway (P = 2.8 × 10-5, FDR-P = 3.0 × 10-3), Wnt signaling (P = 0.026, FDR-P = 0.026) and p130Cas linkage to MAPK signaling for integrins pathway (P = 6.0 × 10-4, FDR-P = 0.029); with Stage A endometriosis: extracellular signal-regulated kinase (ERK)1 ERK2 MAPK (P = 5.0 × 10-4, FDR-P = 5.0 × 10-4) and with Stage B endometriosis: two overlapping pathways that related to extracellular matrix biology-Core matrisome (P = 1.4 × 10-3, FDR-P = 0.013) and ECM glycoproteins (P = 1.8 × 10-3, FDR-P = 7.1 × 10-3). Genes arising from endometriosis candidate gene studies performed to date were enriched for Interleukin signaling pathway (P = 2.3 × 10-12), Apoptosis signaling pathway (P = 9.7 × 10-9) and Gonadotropin releasing hormone receptor pathway (P = 1.2 × 10-6); however, these pathways did not feature in the results based on GWAS data. Not applicable. The analysis is restricted to (i) variants in/near genes that can be assigned to pathways, excluding intergenic variants; (ii) the gene-based pathway definition as registered in the databases; (iii) women of European ancestry. The top ranked pathways associated with overall and Stage A endometriosis in particular involve integrin-mediated MAPK activation and intracellular ERK/MAPK acting downstream in the MAPK cascade, both acting in the control of cell division, gene expression, cell movement and survival. Other top enriched pathways in Stage B disease include ECM glycoprotein pathways important for extracellular structure and biochemical support. The results highlight the need for increased efforts to understand the functional role of these pathways in endometriosis pathogenesis, including the investigation of the biological effects of the genetic variants on downstream molecular processes in tissue relevant to endometriosis. Additionally, our results offer further support for the hypothesis of at least partially distinct causal pathophysiology for minimal/mild (rAFS I/II) vs. moderate/severe (rAFS III/IV) endometriosis. The genome-wide association data and Wellcome Trust Case Control Consortium (WTCCC) were generated through funding from the Wellcome Trust (WT084766/Z/08/Z, 076113 and 085475) and the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485 and 552498). N.R. was funded by a grant from the Medical Research Council UK (MR/K011480/1). A.P.M. is a Wellcome Trust Senior Fellow in Basic Biomedical Science (grant WT098017). All authors declare there are no conflicts of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  14. Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis

    PubMed Central

    Uimari, Outi; Rahmioglu, Nilufer; Nyholt, Dale R.; Vincent, Katy; Missmer, Stacey A.; Becker, Christian; Morris, Andrew P.; Montgomery, Grant W.

    2017-01-01

    Abstract STUDY QUESTION Do genome-wide association study (GWAS) data for endometriosis provide insight into novel biological pathways associated with its pathogenesis? SUMMARY ANSWER GWAS analysis uncovered multiple pathways that are statistically enriched for genetic association signals, analysis of Stage A disease highlighted a novel variant in MAP3K4, while top pathways significantly associated with all endometriosis and Stage A disease included several mitogen-activated protein kinase (MAPK)-related pathways. WHAT IS KNOWN ALREADY Endometriosis is a complex disease with an estimated heritability of 50%. To date, GWAS revealed 10 genomic regions associated with endometriosis, explaining <4% of heritability, while half of the heritability is estimated to be due to common risk variants. Pathway analyses combine the evidence of single variants into gene-based measures, leveraging the aggregate effect of variants in genes and uncovering biological pathways involved in disease pathogenesis. STUDY DESIGN, SIZE, DURATION Pathway analysis was conducted utilizing the International Endogene Consortium GWAS data, comprising 3194 surgically confirmed endometriosis cases and 7060 controls of European ancestry with genotype data imputed up to 1000 Genomes Phase three reference panel. GWAS was performed for all endometriosis cases and for Stage A (revised American Fertility Society (rAFS) I/II, n = 1686) and B (rAFS III/IV, n = 1364) cases separately. The identified significant pathways were compared with pathways previously investigated in the literature through candidate association studies. PARTICIPANTS/MATERIALS, SETTING, METHODS The most comprehensive biological pathway databases, MSigDB (including BioCarta, KEGG, PID, SA, SIG, ST and GO) and PANTHER were utilized to test for enrichment of genetic variants associated with endometriosis. Statistical enrichment analysis was performed using the MAGENTA (Meta-Analysis Gene-set Enrichment of variaNT Associations) software. MAIN RESULTS AND THE ROLE OF CHANCE The first genome-wide association analysis for Stage A endometriosis revealed a novel locus, rs144240142 (P = 6.45 × 10−8, OR = 1.71, 95% CI = 1.23–2.37), an intronic single-nucleotide polymorphism (SNP) within MAP3K4. This SNP was not associated with Stage B disease (P = 0.086). MAP3K4 was also shown to be differentially expressed in eutopic endometrium between Stage A endometriosis cases and controls (P = 3.8 × 10−4), but not with Stage B disease (P = 0.26). A total of 14 pathways enriched with genetic endometriosis associations were identified (false discovery rate (FDR)-P < 0.05). The pathways associated with any endometriosis were Grb2-Sos provides linkage to MAPK signaling for integrins pathway (P = 2.8 × 10−5, FDR-P = 3.0 × 10−3), Wnt signaling (P = 0.026, FDR-P = 0.026) and p130Cas linkage to MAPK signaling for integrins pathway (P = 6.0 × 10−4, FDR-P = 0.029); with Stage A endometriosis: extracellular signal-regulated kinase (ERK)1 ERK2 MAPK (P = 5.0 × 10−4, FDR-P = 5.0 × 10−4) and with Stage B endometriosis: two overlapping pathways that related to extracellular matrix biology—Core matrisome (P = 1.4 × 10−3, FDR-P = 0.013) and ECM glycoproteins (P = 1.8 × 10−3, FDR-P = 7.1 × 10−3). Genes arising from endometriosis candidate gene studies performed to date were enriched for Interleukin signaling pathway (P = 2.3 × 10−12), Apoptosis signaling pathway (P = 9.7 × 10−9) and Gonadotropin releasing hormone receptor pathway (P = 1.2 × 10−6); however, these pathways did not feature in the results based on GWAS data. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The analysis is restricted to (i) variants in/near genes that can be assigned to pathways, excluding intergenic variants; (ii) the gene-based pathway definition as registered in the databases; (iii) women of European ancestry. WIDER IMPLICATIONS OF THE FINDINGS The top ranked pathways associated with overall and Stage A endometriosis in particular involve integrin-mediated MAPK activation and intracellular ERK/MAPK acting downstream in the MAPK cascade, both acting in the control of cell division, gene expression, cell movement and survival. Other top enriched pathways in Stage B disease include ECM glycoprotein pathways important for extracellular structure and biochemical support. The results highlight the need for increased efforts to understand the functional role of these pathways in endometriosis pathogenesis, including the investigation of the biological effects of the genetic variants on downstream molecular processes in tissue relevant to endometriosis. Additionally, our results offer further support for the hypothesis of at least partially distinct causal pathophysiology for minimal/mild (rAFS I/II) vs. moderate/severe (rAFS III/IV) endometriosis. STUDY FUNDING/COMPETING INTEREST(S) The genome-wide association data and Wellcome Trust Case Control Consortium (WTCCC) were generated through funding from the Wellcome Trust (WT084766/Z/08/Z, 076113 and 085475) and the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485 and 552498). N.R. was funded by a grant from the Medical Research Council UK (MR/K011480/1). A.P.M. is a Wellcome Trust Senior Fellow in Basic Biomedical Science (grant WT098017). All authors declare there are no conflicts of interest. PMID:28333195

  15. Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts

    PubMed Central

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-01-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function. PMID:24278029

  16. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    PubMed

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-11-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function.

  17. Effect of occupational exposures on lung cancer susceptibility: a study of gene-environment interaction analysis.

    PubMed

    Malhotra, Jyoti; Sartori, Samantha; Brennan, Paul; Zaridze, David; Szeszenia-Dabrowska, Neonila; Świątkowska, Beata; Rudnai, Peter; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Gaborieau, Valerie; Stücker, Isabelle; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo

    2015-03-01

    Occupational exposures are known risk factors for lung cancer. Role of genetically determined host factors in occupational exposure-related lung cancer is unclear. We used genome-wide association (GWA) data from a case-control study conducted in 6 European countries from 1998 to 2002 to identify gene-occupation interactions and related pathways for lung cancer risk. GWA analysis was performed for each exposure using logistic regression and interaction term for genotypes, and exposure was included in this model. Both SNP-based and gene-based interaction P values were calculated. Pathway analysis was performed using three complementary methods, and analyses were adjusted for multiple comparisons. We analyzed 312,605 SNPs and occupational exposure to 70 agents from 1,802 lung cancer cases and 1,725 cancer-free controls. Mean age of study participants was 60.1 ± 9.1 years and 75% were male. Largest number of significant associations (P ≤ 1 × 10(-5)) at SNP level was demonstrated for nickel, brick dust, concrete dust, and cement dust, and for brick dust and cement dust at the gene-level (P ≤ 1 × 10(-4)). Approximately 14 occupational exposures showed significant gene-occupation interactions with pathways related to response to environmental information processing via signal transduction (P < 0.001 and FDR < 0.05). Other pathways that showed significant enrichment were related to immune processes and xenobiotic metabolism. Our findings suggest that pathways related to signal transduction, immune process, and xenobiotic metabolism may be involved in occupational exposure-related lung carcinogenesis. Our study exemplifies an integrative approach using pathway-based analysis to demonstrate the role of genetic variants in occupational exposure-related lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 24(3); 570-9. ©2015 AACR. ©2015 American Association for Cancer Research.

  18. The Arabidopsis endoplasmic reticulum associated degradation pathways are involved in the regulation of heat stress response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lin-Mao; University of Chinese Academy of Sciences, Beijing; Lü, Shi-You

    Abstracts: The Cytosolic Protein Response (CPR) in the cytosol and the Unfolded Protein Response (UPR) and ER-associated degradation (ERAD) in the endoplasmic reticulum are major pathways of the cellular proteostasis network. However, despite years of effort, how these protein quality control systems coordinated in vivo remains largely unknown, particularly in plants. In this study, the roles of two evolutionarily conserved ERAD pathways (DOA10 and HRD1) in heat stress response were investigated through reverse genetic approaches in Arabidopsis. Phenotypic analysis of the mutants showed that the two ERAD pathways additively play negative roles in heat tolerance, which was demonstrated by higher survivalmore » rate and lower electrolyte leakage in the loss of function mutants compared to the wild type plants. Importantly, gene expression analysis revealed that the mutant plants showed elevated transcriptional regulation of several downstream genes, including those encoding CPR and UPR marker genes, under both basal and heat stress conditions. Finally, multiple components of ERAD genes exhibited rapid response to increasing temperature. Taken together, our data not only unravels key insights into the crosstalk between different protein quality control processes, but also provides candidate genes to genetically improve plant heat tolerance in the future. - Highlights: • ERAD pathways cooperatively regulate plant thermotolerance. • ERAD pathways cooperatively regulate UPR and CPR. • ERAD components gene expression are upregulated by heat stress.« less

  19. Construction and engineering of large biochemical pathways via DNA assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442

  20. Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson's disease.

    PubMed

    Zhang, Mingming; Mu, Hongbo; Shang, Zhenwei; Kang, Kai; Lv, Hongchao; Duan, Lian; Li, Jin; Chen, Xinren; Teng, Yanbo; Jiang, Yongshuai; Zhang, Ruijie

    2017-01-06

    Parkinson's disease (PD) is the second most common neurodegenerative disease. It is generally believed that it is influenced by both genetic and environmental factors, but the precise pathogenesis of PD is unknown to date. In this study, we performed a pathway analysis based on genome-wide association study (GWAS) to detect risk pathways of PD in three GWAS datasets. We first mapped all SNP markers to autosomal genes in each GWAS dataset. Then, we evaluated gene risk values using the minimum P-value of the tagSNPs. We took a pathway as a unit to identify the risk pathways based on the cumulative risks of the genes in the pathway. Finally, we combine the analysis results of the three datasets to detect the high risk pathways associated with PD. We found there were five same pathways in the three datasets. Besides, we also found there were five pathways which were shared in two datasets. Most of these pathways are associated with nervoussystem. Five pathways had been reported to be PD-related pathways in the previous literature. Our findings also implied that there was a close association between immune response and PD. Continued investigation of these pathways will further help us explain the pathogenesis of PD. Copyright © 2016. Published by Elsevier Ltd.

  1. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    PubMed

    Calo, Silvia; Nicolás, Francisco E; Lee, Soo Chan; Vila, Ana; Cervantes, Maria; Torres-Martinez, Santiago; Ruiz-Vazquez, Rosa M; Cardenas, Maria E; Heitman, Joseph

    2017-03-01

    Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip) and a Sad-3-like helicase (rnhA), as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  2. The Functional Genetics of Handedness and Language Lateralization: Insights from Gene Ontology, Pathway and Disease Association Analyses.

    PubMed

    Schmitz, Judith; Lor, Stephanie; Klose, Rena; Güntürkün, Onur; Ocklenburg, Sebastian

    2017-01-01

    Handedness and language lateralization are partially determined by genetic influences. It has been estimated that at least 40 (and potentially more) possibly interacting genes may influence the ontogenesis of hemispheric asymmetries. Recently, it has been suggested that analyzing the genetics of hemispheric asymmetries on the level of gene ontology sets, rather than at the level of individual genes, might be more informative for understanding the underlying functional cascades. Here, we performed gene ontology, pathway and disease association analyses on genes that have previously been associated with handedness and language lateralization. Significant gene ontology sets for handedness were anatomical structure development, pattern specification (especially asymmetry formation) and biological regulation. Pathway analysis highlighted the importance of the TGF-beta signaling pathway for handedness ontogenesis. Significant gene ontology sets for language lateralization were responses to different stimuli, nervous system development, transport, signaling, and biological regulation. Despite the fact that some authors assume that handedness and language lateralization share a common ontogenetic basis, gene ontology sets barely overlap between phenotypes. Compared to genes involved in handedness, which mostly contribute to structural development, genes involved in language lateralization rather contribute to activity-dependent cognitive processes. Disease association analysis revealed associations of genes involved in handedness with diseases affecting the whole body, while genes involved in language lateralization were specifically engaged in mental and neurological diseases. These findings further support the idea that handedness and language lateralization are ontogenetically independent, complex phenotypes.

  3. Genetic variation in the TNF/TRAF2/ASK1/p38 kinase signaling pathway as markers for postoperative pulmonary complications in lung cancer patients.

    PubMed

    Hildebrandt, Michelle A T; Roth, Jack A; Vaporciyan, Ara A; Pu, Xia; Ye, Yuanqing; Correa, Arlene M; Kim, Jae Y; Swisher, Stephen G; Wu, Xifeng

    2015-07-13

    Post-operative pulmonary complications are the most common morbidity associated with lung resection in non-small cell lung cancer (NSCLC) patients. The TNF/TRAF2/ASK1/p38 kinase pathway is activated by stress stimuli and inflammatory signals. We hypothesized that genetic polymorphisms within this pathway may contribute to risk of complications. In this case-only study, we genotyped 173 germline genetic variants in a discovery population of 264 NSCLC patients who underwent a lobectomy followed by genotyping of the top variants in a replication population of 264 patients. Complications data was obtained from a prospective database at MD Anderson. MAP2K4:rs12452497 was significantly associated with a decreased risk in both phases, resulting in a 40% reduction in the pooled population (95% CI:0.43-0.83, P = 0.0018). In total, seven variants were significant for risk in the pooled analysis. Gene-based analysis supported the involvement of TRAF2, MAP2K4, and MAP3K5 as mediating complications risk and a highly significant trend was identified between the number of risk genotypes and complications risk (P = 1.63 × 10(-8)). An inverse relationship was observed between association with clinical outcomes and complications for two variants. These results implicate the TNF/TRAF2/ASK1/p38 kinase pathway in modulating risk of pulmonary complications following lobectomy and may be useful biomarkers to identify patients at high risk.

  4. The Functional Genetics of Handedness and Language Lateralization: Insights from Gene Ontology, Pathway and Disease Association Analyses

    PubMed Central

    Schmitz, Judith; Lor, Stephanie; Klose, Rena; Güntürkün, Onur; Ocklenburg, Sebastian

    2017-01-01

    Handedness and language lateralization are partially determined by genetic influences. It has been estimated that at least 40 (and potentially more) possibly interacting genes may influence the ontogenesis of hemispheric asymmetries. Recently, it has been suggested that analyzing the genetics of hemispheric asymmetries on the level of gene ontology sets, rather than at the level of individual genes, might be more informative for understanding the underlying functional cascades. Here, we performed gene ontology, pathway and disease association analyses on genes that have previously been associated with handedness and language lateralization. Significant gene ontology sets for handedness were anatomical structure development, pattern specification (especially asymmetry formation) and biological regulation. Pathway analysis highlighted the importance of the TGF-beta signaling pathway for handedness ontogenesis. Significant gene ontology sets for language lateralization were responses to different stimuli, nervous system development, transport, signaling, and biological regulation. Despite the fact that some authors assume that handedness and language lateralization share a common ontogenetic basis, gene ontology sets barely overlap between phenotypes. Compared to genes involved in handedness, which mostly contribute to structural development, genes involved in language lateralization rather contribute to activity-dependent cognitive processes. Disease association analysis revealed associations of genes involved in handedness with diseases affecting the whole body, while genes involved in language lateralization were specifically engaged in mental and neurological diseases. These findings further support the idea that handedness and language lateralization are ontogenetically independent, complex phenotypes. PMID:28729848

  5. Quantitative trait loci and metabolic pathways

    PubMed Central

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  6. Identification of a missense variant in LNPEP that confers psoriasis risk.

    PubMed

    Cheng, Hui; Li, Yang; Zuo, Xian-Bo; Tang, Hua-Yang; Tang, Xian-Fa; Gao, Jin-Ping; Sheng, Yu-Jun; Yin, Xian-Yong; Zhou, Fu-Sheng; Zhang, Chi; Chen, Gang; Zhu, Jun; Pan, Qian; Liang, Bo; Zheng, Xiao-Dong; Li, Pan; Ding, Yan-Tao; Cheng, Fang; Luo, Jing; Chang, Rui-Xue; Pan, Gong-Bu; Fan, Xing; Wang, Zai-Xing; Zhang, An-Ping; Liu, Jian-Jun; Yang, Sen; Sun, Liang-Dan; Zhang, Xue-Jun

    2014-02-01

    Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To further advance gene discovery, we extended our genome-wide association study data set of 1,139 cases and 2,234 controls and replicated two independent cohorts of 7,200 cases and 10,491 controls. We identified the missense variant rs2303138 (p.Ala763Thr) within the LNPEP gene associated with psoriasis (Pcombined=1.83 × 10(-13), odds ratio=1.16) and validated four previously reported genes: IL28RA, NFKBIA, TRAF3IP2, and CARD14 (9.74 × 10(-11)P9.37 × 10(-5)), which confirmed the involvement of the nuclear factor-κB signaling pathway in psoriasis pathogenesis. LNPEP, also named insulin-responsive aminopeptidase, was identified as an angiotensin IV receptor. Protein function prediction suggested that this missense variant of LNPEP was most likely deleterious. Expression analysis showed that LNPEP was significantly downregulated in psoriatic lesions compared with the control skin (P=1.44 × 10(-6)) and uninvolved patient skin (P=2.95 × 10(-4)). Pathway analysis indicated that LNPEP was involved in the renin-angiotensin system, which also has a key role in cardiovascular disease and diabetes. These results provided genetic evidence that psoriasis might share common mechanisms with hypertension and diabetes, which was consistent with clinical observations. Our study identified a genetic susceptibility factor and provided genetic evidence of insight into psoriasis pathogenesis with the involvement of the renin-angiotensin system pathway.

  7. Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile.

    PubMed

    Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang

    2016-04-01

    Leprosy is an ancient chronic infection in the skin and peripheral nerves caused by Mycobacterium leprae. The development of leprosy depends on genetic background and the immune status of the host. However, there is no systematic view focusing on the biological pathways, interaction networks and overall expression pattern of leprosy-related immune and genetic factors. To identify the hub genes in the center of leprosy genetic network and to provide an insight into immune and genetic factors contributing to leprosy. We retrieved all reported leprosy-related genes and performed integrative analyses covering gene expression profiling, pathway analysis, protein-protein interaction network, and evolutionary analyses. A list of 123 differentially expressed leprosy related genes, which were enriched in activation and regulation of immune response, was obtained in our analyses. Cross-disorder analysis showed that the list of leprosy susceptibility genes was largely shared by typical autoimmune diseases such as lupus erythematosus and arthritis, suggesting that similar pathways might be affected in leprosy and autoimmune diseases. Protein-protein interaction (PPI) and positive selection analyses revealed a co-evolution network of leprosy risk genes. Our analyses showed that leprosy associated genes constituted a co-evolution network and might undergo positive selection driven by M. leprae. We suggested that leprosy may be a kind of autoimmune disease and the development of leprosy is a matter of defect or over-activation of body immunity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: a meta-analysis

    USDA-ARS?s Scientific Manuscript database

    Aims & Hypothesis: Sugar sweetened beverages are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive-element binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and thereby contrib...

  9. Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: A meta-analysis

    USDA-ARS?s Scientific Manuscript database

    Sugar-sweetened beverages (SSBs) are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive element-binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and, thereby, contribute to fru...

  10. A method for gene-based pathway analysis using genomewide association study summary statistics reveals nine new type 1 diabetes associations.

    PubMed

    Evangelou, Marina; Smyth, Deborah J; Fortune, Mary D; Burren, Oliver S; Walker, Neil M; Guo, Hui; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick; Rich, Stephen S; Todd, John A; Wallace, Chris

    2014-12-01

    Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed (P=9.85×10-11) with 12 of the 22 SNPs showing P<0.05. Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, P=7.86×10-9), NRP1 (rs722988, 4.88×10-8), BAD (rs694739, 2.37×10-7), CTSB (rs1296023, 2.79×10-7), FYN (rs11964650, P=5.60×10-7), UBE2G1 (rs9906760, 5.08×10-7), MAP3K14 (rs17759555, 9.67×10-7), ITGB1 (rs1557150, 1.93×10-6), and IL7R (rs1445898, 2.76×10-6). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available. © 2014 The Authors. ** Genetic Epidemiology published by Wiley Periodicals, Inc.

  11. Gene expression profiling and pathway analysis in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    USDA-ARS?s Scientific Manuscript database

    The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene ex...

  12. A large-scale association analysis of 68 thyroid hormone pathway genes with serum TSH and FT4 levels.

    PubMed

    Medici, Marco; van der Deure, Wendy M; Verbiest, Michael; Vermeulen, Sita H; Hansen, Pia S; Kiemeney, Lambertus A; Hermus, Ad R M M; Breteler, Monique M; Hofman, Albert; Hegedüs, Laszlo; Kyvik, Kirsten Ohm; den Heijer, Martin; Uitterlinden, André G; Visser, Theo J; Peeters, Robin P

    2011-05-01

    Minor variation in serum thyroid hormone (TH) levels can have important effects on various clinical endpoints. Although 45-65% of the inter-individual variation in serum TH levels is due to genetic factors, the causative genes are not well established. We therefore studied the effects of genetic variation in 68 TH pathway genes on serum TSH and free thyroxine (FT(4)) levels. Sixty-eight genes (1512 polymorphisms) were studied in relation to serum TSH and FT(4) levels in 1121 Caucasian subjects. Promising hits (P<0.01) were studied in three independent Caucasian populations (2656 subjects) for confirmation. A meta-analysis of all four studies was performed. For TSH, eight PDE8B polymorphisms (P=4×10(-17)) remained significant in the meta-analysis. For FT(4), two DIO1 (P=8×10(-12)) and one FOXE1 (P=0.0003) polymorphisms remained significant in the meta-analysis. Suggestive associations were detected for one FOXE1 (P=0.0028) and three THRB (P=0.0045) polymorphisms with TSH, and one SLC16A10 polymorphism (P=0.0110) with FT(4), but failed to reach the significant multiple-testing corrected P value (P<0.0022 and P<0.0033 respectively). Using a large-scale association analysis, we replicated previously reported associations with genetic variation in PDE8B, THRB, and DIO1. We demonstrate effects of genetic variation in FOXE1 on serum FT(4) levels, and borderline significant effects on serum TSH levels. A suggestive association of genetic variation in SLC16A10 with serum FT(4) levels was found. These data provide insight into the molecular basis of inter-individual variation in TH serum levels.

  13. Genetic variability of VEGF pathway genes in six randomized phase III trials assessing the addition of bevacizumab to standard therapy.

    PubMed

    de Haas, Sanne; Delmar, Paul; Bansal, Aruna T; Moisse, Matthieu; Miles, David W; Leighl, Natasha; Escudier, Bernard; Van Cutsem, Eric; Carmeliet, Peter; Scherer, Stefan J; Pallaud, Celine; Lambrechts, Diether

    2014-10-01

    Despite extensive translational research, no validated biomarkers predictive of bevacizumab treatment outcome have been identified. We performed a meta-analysis of individual patient data from six randomized phase III trials in colorectal, pancreatic, lung, renal, breast, and gastric cancer to explore the potential relationships between 195 common genetic variants in the vascular endothelial growth factor (VEGF) pathway and bevacizumab treatment outcome. The analysis included 1,402 patients (716 bevacizumab-treated and 686 placebo-treated). Twenty variants were associated (P < 0.05) with progression-free survival (PFS) in bevacizumab-treated patients. Of these, 4 variants in EPAS1 survived correction for multiple testing (q < 0.05). Genotype-by-treatment interaction tests revealed that, across these 20 variants, 3 variants in VEGF-C (rs12510099), EPAS1 (rs4953344), and IL8RA (rs2234671) were potentially predictive (P < 0.05), but not resistant to multiple testing (q > 0.05). A weak genotype-by-treatment interaction effect was also observed for rs699946 in VEGF-A, whereas Bayesian genewise analysis revealed that genetic variability in VHL was associated with PFS in the bevacizumab arm (q < 0.05). Variants in VEGF-A, EPAS1, and VHL were located in expression quantitative loci derived from lymphoblastoid cell lines, indicating that they affect the expression levels of their respective gene. This large genetic analysis suggests that variants in VEGF-A, EPAS1, IL8RA, VHL, and VEGF-C have potential value in predicting bevacizumab treatment outcome across tumor types. Although these associations did not survive correction for multiple testing in a genotype-by-interaction analysis, they are among the strongest predictive effects reported to date for genetic variants and bevacizumab efficacy.

  14. Attitudes to Gun Control in an American Twin Sample: Sex Differences in the Causes of Variation.

    PubMed

    Eaves, Lindon J; Silberg, Judy L

    2017-10-01

    The genetic and social causes of individual differences in attitudes to gun control are estimated in a sample of senior male and female twin pairs in the United States. Genetic and environmental parameters were estimated by weighted least squares applied to polychoric correlations for monozygotic (MZ) and dizygotic (DZ) twins of both sexes. The analysis suggests twin similarity for attitudes to gun control in men is entirely genetic while that in women is purely social. Although the volunteer sample is small, the analysis illustrates how the well-tested concepts and methods of genetic epidemiology may be a fertile resource for deepening our scientific understanding of biological and social pathways that affect individual risk to gun violence.

  15. Symptom Cluster Research With Biomarkers and Genetics Using Latent Class Analysis.

    PubMed

    Conley, Samantha

    2017-12-01

    The purpose of this article is to provide an overview of latent class analysis (LCA) and examples from symptom cluster research that includes biomarkers and genetics. A review of LCA with genetics and biomarkers was conducted using Medline, Embase, PubMed, and Google Scholar. LCA is a robust latent variable model used to cluster categorical data and allows for the determination of empirically determined symptom clusters. Researchers should consider using LCA to link empirically determined symptom clusters to biomarkers and genetics to better understand the underlying etiology of symptom clusters. The full potential of LCA in symptom cluster research has not yet been realized because it has been used in limited populations, and researchers have explored limited biologic pathways.

  16. The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions.

    PubMed

    Dato, Serena; Soerensen, Mette; De Rango, Francesco; Rose, Giuseppina; Christensen, Kaare; Christiansen, Lene; Passarino, Giuseppe

    2018-06-01

    In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin-like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1,089 unrelated nonagenarians from the Danish 1905 Birth Cohort Study and 736 Danish controls aged 46-55 years) for evaluating synergic interactions by SNPsyn. Synergies were further tested by the multidimensional reduction (MDR) approach, both intra- and interpathways. The best combinations (FDR<0.0001) resulted those encompassing IGF1R-rs12437963 and PTPN1-rs6067484, TP53-rs2078486 and ERCC2-rs50871, TXNRD1-rs17202060 and TP53-rs2078486, the latter two supporting a central role of TP53 in mediating the concerted activation of the DNA repair and pro-antioxidant pathways in human longevity. Results were consistently replicated with both approaches, as well as a significant effect on longevity was found for the GHSR gene, which also interacts with partners belonging to both IIS and DNA repair pathways (PAPPA, PTPN1, PARK7, MRE11A). The combination GHSR-MREA11, positively associated with longevity by MDR, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP-SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes of additional networks involved in human longevity. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Transcriptome analysis reveals intermittent fasting-induced genetic changes in ischemic stroke.

    PubMed

    Kim, Joonki; Kang, Sung-Wook; Mallilankaraman, Karthik; Baik, Sang-Ha; Lim, James C; Balaganapathy, Priyanka; She, David T; Lok, Ker-Zhing; Fann, David Y; Thambiayah, Uma; Tang, Sung-Chun; Stranahan, Alexis M; Dheen, S Thameem; Gelderblom, Mathias; Seet, Raymond C; Karamyan, Vardan T; Vemuganti, Raghu; Sobey, Christopher G; Mattson, Mark P; Jo, Dong-Gyu; Arumugam, Thiruma V

    2018-05-01

    Genetic changes due to dietary intervention in the form of either calorie restriction (CR) or intermittent fasting (IF) are not reported in detail until now. However, it is well established that both CR and IF extend the lifespan and protect against neurodegenerative diseases and stroke. The current research aims were first to describe the transcriptomic changes in brains of IF mice and, second, to determine whether IF induces extensive transcriptomic changes following ischemic stroke to protect the brain from injury. Mice were randomly assigned to ad libitum feeding (AL), 12 (IF12) or 16 (IF16) h daily fasting. Each diet group was then subjected to sham surgery or middle cerebral artery occlusion and consecutive reperfusion. Mid-coronal sections of ipsilateral cerebral tissue were harvested at the end of the 1 h ischemic period or at 3, 12, 24 or 72 h of reperfusion, and genome-wide mRNA expression was quantified by RNA sequencing. The cerebral transcriptome of mice in AL group exhibited robust, sustained up-regulation of detrimental genetic pathways under ischemic stroke, but activation of these pathways was suppressed in IF16 group. Interestingly, the cerebral transcriptome of AL mice was largely unchanged during the 1 h of ischemia, whereas mice in IF16 group exhibited extensive up-regulation of genetic pathways involved in neuroplasticity and down-regulation of protein synthesis. Our data provide a genetic molecular framework for understanding how IF protects brain cells against damage caused by ischemic stroke, and reveal cellular signaling and bioenergetic pathways to target in the development of clinical interventions.

  18. Plant Reactome: a resource for plant pathways and comparative analysis

    PubMed Central

    Naithani, Sushma; Preece, Justin; D'Eustachio, Peter; Gupta, Parul; Amarasinghe, Vindhya; Dharmawardhana, Palitha D.; Wu, Guanming; Fabregat, Antonio; Elser, Justin L.; Weiser, Joel; Keays, Maria; Fuentes, Alfonso Munoz-Pomer; Petryszak, Robert; Stein, Lincoln D.; Ware, Doreen; Jaiswal, Pankaj

    2017-01-01

    Plant Reactome (http://plantreactome.gramene.org/) is a free, open-source, curated plant pathway database portal, provided as part of the Gramene project. The database provides intuitive bioinformatics tools for the visualization, analysis and interpretation of pathway knowledge to support genome annotation, genome analysis, modeling, systems biology, basic research and education. Plant Reactome employs the structural framework of a plant cell to show metabolic, transport, genetic, developmental and signaling pathways. We manually curate molecular details of pathways in these domains for reference species Oryza sativa (rice) supported by published literature and annotation of well-characterized genes. Two hundred twenty-two rice pathways, 1025 reactions associated with 1173 proteins, 907 small molecules and 256 literature references have been curated to date. These reference annotations were used to project pathways for 62 model, crop and evolutionarily significant plant species based on gene homology. Database users can search and browse various components of the database, visualize curated baseline expression of pathway-associated genes provided by the Expression Atlas and upload and analyze their Omics datasets. The database also offers data access via Application Programming Interfaces (APIs) and in various standardized pathway formats, such as SBML and BioPAX. PMID:27799469

  19. Transcriptomic analysis of genetically defined autism candidate genes reveals common mechanisms of action

    PubMed Central

    2013-01-01

    Background Austism spectrum disorder (ASD) is a heterogeneous behavioral disorder or condition characterized by severe impairment of social engagement and the presence of repetitive activities. The molecular etiology of ASD is still largely unknown despite a strong genetic component. Part of the difficulty in turning genetics into disease mechanisms and potentially new therapeutics is the sheer number and diversity of the genes that have been associated with ASD and ASD symptoms. The goal of this work is to use shRNA-generated models of genetic defects proposed as causative for ASD to identify the common pathways that might explain how they produce a core clinical disability. Methods Transcript levels of Mecp2, Mef2a, Mef2d, Fmr1, Nlgn1, Nlgn3, Pten, and Shank3 were knocked-down in mouse primary neuron cultures using shRNA constructs. Whole genome expression analysis was conducted for each of the knockdown cultures as well as a mock-transduced culture and a culture exposed to a lentivirus expressing an anti-luciferase shRNA. Gene set enrichment and a causal reasoning engine was employed to identify pathway level perturbations generated by the transcript knockdown. Results Quantification of the shRNA targets confirmed the successful knockdown at the transcript and protein levels of at least 75% for each of the genes. After subtracting out potential artifacts caused by viral infection, gene set enrichment and causal reasoning engine analysis showed that a significant number of gene expression changes mapped to pathways associated with neurogenesis, long-term potentiation, and synaptic activity. Conclusions This work demonstrates that despite the complex genetic nature of ASD, there are common molecular mechanisms that connect many of the best established autism candidate genes. By identifying the key regulatory checkpoints in the interlinking transcriptional networks underlying autism, we are better able to discover the ideal points of intervention that provide the broadest efficacy across the diverse population of autism patients. PMID:24238429

  20. Transcriptomic analysis of genetically defined autism candidate genes reveals common mechanisms of action.

    PubMed

    Lanz, Thomas A; Guilmette, Edward; Gosink, Mark M; Fischer, James E; Fitzgerald, Lawrence W; Stephenson, Diane T; Pletcher, Mathew T

    2013-11-15

    Austism spectrum disorder (ASD) is a heterogeneous behavioral disorder or condition characterized by severe impairment of social engagement and the presence of repetitive activities. The molecular etiology of ASD is still largely unknown despite a strong genetic component. Part of the difficulty in turning genetics into disease mechanisms and potentially new therapeutics is the sheer number and diversity of the genes that have been associated with ASD and ASD symptoms. The goal of this work is to use shRNA-generated models of genetic defects proposed as causative for ASD to identify the common pathways that might explain how they produce a core clinical disability. Transcript levels of Mecp2, Mef2a, Mef2d, Fmr1, Nlgn1, Nlgn3, Pten, and Shank3 were knocked-down in mouse primary neuron cultures using shRNA constructs. Whole genome expression analysis was conducted for each of the knockdown cultures as well as a mock-transduced culture and a culture exposed to a lentivirus expressing an anti-luciferase shRNA. Gene set enrichment and a causal reasoning engine was employed to identify pathway level perturbations generated by the transcript knockdown. Quantification of the shRNA targets confirmed the successful knockdown at the transcript and protein levels of at least 75% for each of the genes. After subtracting out potential artifacts caused by viral infection, gene set enrichment and causal reasoning engine analysis showed that a significant number of gene expression changes mapped to pathways associated with neurogenesis, long-term potentiation, and synaptic activity. This work demonstrates that despite the complex genetic nature of ASD, there are common molecular mechanisms that connect many of the best established autism candidate genes. By identifying the key regulatory checkpoints in the interlinking transcriptional networks underlying autism, we are better able to discover the ideal points of intervention that provide the broadest efficacy across the diverse population of autism patients.

  1. Molecular Analysis Research at Community College of Philadelphia

    DTIC Science & Technology

    2015-09-21

    projects presented below fall under the category of "molecular genetics ", as presented in ARO Solicitation Number W911NF-12-R-0012-01. These projects...role of the GADD45 family of genes in innate immunity and sepsis. In addition to studying genetic components of the molecular response of myeloid...Equipment in left  column, procedure in right column.  kinetics of these molecular signaling pathways in genetic variants (gene KO models) has yet to

  2. No Evidence That Genetic Variation in the Myeloid-Derived Suppressor Cell Pathway Influences Ovarian Cancer Survival.

    PubMed

    Sucheston-Campbell, Lara E; Cannioto, Rikki; Clay, Alyssa I; Etter, John Lewis; Eng, Kevin H; Liu, Song; Battaglia, Sebastiano; Hu, Qiang; Szender, J Brian; Minlikeeva, Albina; Joseph, Janine M; Mayor, Paul; Abrams, Scott I; Segal, Brahm H; Wallace, Paul K; Soh, Kah Teong; Zsiros, Emese; Anton-Culver, Hoda; Bandera, Elisa V; Beckmann, Matthias W; Berchuck, Andrew; Bjorge, Line; Bruegl, Amanda; Campbell, Ian G; Campbell, Shawn Patrice; Chenevix-Trench, Georgia; Cramer, Daniel W; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Diergaarde, Brenda; Doerk, Thilo; Doherty, Jennifer A; du Bois, Andreas; Eccles, Diana; Engelholm, Svend Aage; Fasching, Peter A; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Glasspool, Rosalind M; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemmanns, Peter; Høgdall, Claus; Høgdall, Estrid V S; Huzarski, Tomasz; Jensen, Allan; Johnatty, Sharon E; Jung, Audrey; Karlan, Beth Y; Klapdor, Reudiger; Kluz, Tomasz; Konopka, Bożena; Kjær, Susanne Krüger; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lester, Jenny; Lubiński, Jan; Levine, Douglas A; Lundvall, Lene; McGuire, Valerie; McNeish, Iain A; Menon, Usha; Modugno, Francesmary; Ness, Roberta B; Orsulic, Sandra; Paul, James; Pearce, Celeste Leigh; Pejovic, Tanja; Pharoah, Paul; Ramus, Susan J; Rothstein, Joseph; Rossing, Mary Anne; Rübner, Matthias; Schildkraut, Joellen M; Schmalfeldt, Barbara; Schwaab, Ira; Siddiqui, Nadeem; Sieh, Weiva; Sobiczewski, Piotr; Song, Honglin; Terry, Kathryn L; Van Nieuwenhuysen, Els; Vanderstichele, Adriaan; Vergote, Ignace; Walsh, Christine S; Webb, Penelope M; Wentzensen, Nicolas; Whittemore, Alice S; Wu, Anna H; Ziogas, Argyrios; Odunsi, Kunle; Chang-Claude, Jenny; Goode, Ellen L; Moysich, Kirsten B

    2017-03-01

    Background: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immunosuppressive/protumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be a prominent mechanism contributing to immunologic tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. Methods: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype, attributable to SNPs in 24 genes relevant in the MDSC pathway in 10,751 women diagnosed with invasive EOC. Versatile Gene-based Association Study and the admixture likelihood method were used to test gene and pathway associations with survival. Results: We did not identify individual SNPs that were significantly associated with survival after correction for multiple testing ( P < 3.5 × 10 -5 ), nor did we identify significant associations between the MDSC pathway overall, or the 24 individual genes and EOC survival. Conclusions: In this well-powered analysis, we observed no evidence that inherited variations in MDSC-associated SNPs, individual genes, or the collective genetic pathway contributed to EOC survival outcomes. Impact: Common inherited variation in genes relevant to MDSCs was not associated with survival in women diagnosed with invasive EOC. Cancer Epidemiol Biomarkers Prev; 26(3); 420-4. ©2016 AACR . ©2016 American Association for Cancer Research.

  3. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets.

    PubMed

    Wang, Zhang; Arat, Seda; Magid-Slav, Michal; Brown, James R

    2018-01-10

    With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.

  4. Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway

    PubMed Central

    Murali, Rajmohan; Chandramohan, Raghu; Möller, Inga; Scholz, Simone L.; Berger, Michael; Huberman, Kety; Viale, Agnes; Pirun, Mono; Socci, Nicholas D.; Bouvier, Nancy; Bauer, Sebastian; Artl, Monika; Schilling, Bastian; Schimming, Tobias; Sucker, Antje; Schwindenhammer, Benjamin; Grabellus, Florian; Speicher, Michael R.; Schaller, Jörg; Hillen, Uwe; Schadendorf, Dirk; Mentzel, Thomas; Cheng, Donavan T.; Wiesner, Thomas; Griewank, Klaus G.

    2015-01-01

    Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas. PMID:26440310

  5. Genetic Susceptibility to Head and Neck Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacko, Martin; Braakhuis, Boudewijn J.M.; Sturgis, Erich M.

    2014-05-01

    Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and its incidence is growing. Although environmental carcinogens and carcinogenic viruses are the main etiologic factors, genetic predisposition obviously plays a risk-modulating role, given that not all individuals exposed to these carcinogens experience the disease. This review highlights some aspects of genetic susceptibility to HNSCC: among others, genetic polymorphisms in biotransformation enzymes, DNA repair pathway, apoptotic pathway, human papillomavirus-related pathways, mitochondrial polymorphisms, and polymorphism related to the bilirubin-metabolized pathway. Furthermore, epigenetic variations, familial forms of HNSCC, functional assays for HNSCC risk assessment, and the implications and perspectives ofmore » research on genetic susceptibility in HNSCC are discussed.« less

  6. Association between Altered Expression and Genetic Variations of Transforming Growth Factor β-Smad Pathway with Chronic Myeloid Leukemia.

    PubMed

    Shokeen, Yogender; Sharma, Neeta Raj; Vats, Abhishek; Dinand, Veronique; Beg, Mirza Adil; Sanskaran, Satish; Minhas, Sachin; Jauhri, Mayank; Hariharan, Arun K; Taneja, Vibha; Aggarwal, Shyam

    2018-01-01

    Background: Chronic myeloid leukemia (CML) is a hematological disorder caused by fusion of BCR and ABL genes. BCR-ABL dependent and independent pathways play equally important role in CML. TGFβ-Smad pathway, an important BCR -ABL independent pathway, has scarce data in CML. Present study investigate the association between TGFβ-Smad pathway and CML. Materials and Methods: Sixty-four CML patients and age matched healthy controls (n=63) were enrolled in this study. Patients were segregated into responder and resistant groups depending on their response to Imatinib mesylate (IM). TGFβ1 serum levels were evaluated by ELISA and transcript levels of TGFβ1 receptors, SMAD4 and SMAD7 were evaluated by Real-Time PCR. Sequencing of exons and exon-intron boundaries of study genes was performed using Next Generation Sequencing (NGS) in 20 CML patients. Statistical analysis was performed using SPSS version 16.0. Results: TGFβ1 serum levels were significantly elevated ( p = 0.02) and TGFβR2 and SMAD4 were significantly down-regulated ( p = 0.012 and p = 0.043 respectively) in the patients. c.69A>G in TGFβ1 , c.1024+24G>A in TGFβR1 and g.46474746C>T in SMAD7 were the most important genetic variants observed with their presence in 10/20, 8/20 and 7/20 patients respectively. In addition, TGFβR1 transcript levels were reduced in CML patients with c.69A>G mutation. None of the genes differed significantly in terms of expression or genetic variants between responder and resistant patient groups. Conclusion: Our findings demonstrate the role of differential expression and genetic variants of TGFβ-Smad pathway in CML. Decreased TGFβR2 and SMAD4 levels observed in the present study may be responsible for reduced tumor suppressive effects of this pathway in CML.

  7. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans

    PubMed Central

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha JM

    2016-01-01

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild. DOI: http://dx.doi.org/10.7554/eLife.17670.001 PMID:27383050

  8. Vitamin D pathway gene polymorphisms affecting daclatasvir plasma concentration at 2 weeks and 1 month of therapy.

    PubMed

    Cusato, Jessica; Nicolò, Amedeo De; Boglione, Lucio; Favata, Fabio; Ariaudo, Alessandra; Pinna, Simone Mornese; Carcieri, Chiara; Guido, Federica; Cariti, Giuseppe; Perri, Giovanni Di; D'Avolio, Antonio

    2018-06-01

    Vitamin D (VD) influences genetic expression through its receptor (VDR). VD pathway gene polymorphisms seem to influence antiviral drug pharmacokinetics and therapeutic outcome/toxicity. We investigated the association between daclatasvir (DCV) plasma concentrations and genetic variants (SNPs) associated with the VD pathway. Chronic hepatitis C patients treated with DCV from 2014 to 2016 were included. Genotypes were assessed through real-time PCR and plasma concentrations through liquid chromatography. A total of 52 patients were analyzed. DCV levels were influenced by CYP24A1 rs2248359T>C polymorphism at 2 weeks and VDR Cdx2 A>G at 1 month of treatment. Linear regression analysis showed baseline BMI, alanine aminotransferase and hematocrit as significant predictors of DCV concentrations at 2 weeks, BMI and hematocrit at baseline, VDR Cdx2 AG/GG and FokI TC/CC at 1 month. These results showed a possible role of VD pathway gene polymorphisms in influencing DCV plasma concentrations, but further studies are required.

  9. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer | Office of Cancer Genomics

    Cancer.gov

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways.

  10. An Underlying Common Factor, Influenced by Genetics and Unique Environment, Explains the Covariation Between Major Depressive Disorder, Generalized Anxiety Disorder, and Burnout: A Swedish Twin Study.

    PubMed

    Mather, Lisa; Blom, Victoria; Bergström, Gunnar; Svedberg, Pia

    2016-12-01

    Depression and anxiety are highly comorbid due to shared genetic risk factors, but less is known about whether burnout shares these risk factors. We aimed to examine whether the covariation between major depressive disorder (MDD), generalized anxiety disorder (GAD), and burnout is explained by common genetic and/or environmental factors. This cross-sectional study included 25,378 Swedish twins responding to a survey in 2005-2006. Structural equation models were used to analyze whether the trait variances and covariances were due to additive genetics, non-additive genetics, shared environment, and unique environment. Univariate analyses tested sex limitation models and multivariate analysis tested Cholesky, independent pathway, and common pathway models. The phenotypic correlations were 0.71 (0.69-0.74) between MDD and GAD, 0.58 (0.56-0.60) between MDD and burnout, and 0.53 (0.50-0.56) between GAD and burnout. Heritabilities were 45% for MDD, 49% for GAD, and 38% for burnout; no statistically significant sex differences were found. A common pathway model was chosen as the final model. The common factor was influenced by genetics (58%) and unique environment (42%), and explained 77% of the variation in MDD, 69% in GAD, and 44% in burnout. GAD and burnout had additive genetic factors unique to the phenotypes (11% each), while MDD did not. Unique environment explained 23% of the variability in MDD, 20% in GAD, and 45% in burnout. In conclusion, the covariation was explained by an underlying common factor, largely influenced by genetics. Burnout was to a large degree influenced by unique environmental factors not shared with MDD and GAD.

  11. Co-regulation of pluripotency and genetic integrity at the genomic level.

    PubMed

    Cooper, Daniel J; Walter, Christi A; McCarrey, John R

    2014-11-01

    The Disposable Soma Theory holds that genetic integrity will be maintained at more pristine levels in germ cells than in somatic cells because of the unique role germ cells play in perpetuating the species. We tested the hypothesis that the same concept applies to pluripotent cells compared to differentiated cells. Analyses of transcriptome and cistrome databases, along with canonical pathway analysis and chromatin immunoprecipitation confirmed differential expression of DNA repair and cell death genes in embryonic stem cells and induced pluripotent stem cells relative to fibroblasts, and predicted extensive direct and indirect interactions between the pluripotency and genetic integrity gene networks in pluripotent cells. These data suggest that enhanced maintenance of genetic integrity is fundamentally linked to the epigenetic state of pluripotency at the genomic level. In addition, these findings demonstrate how a small number of key pluripotency factors can regulate large numbers of downstream genes in a pathway-specific manner. Copyright © 2014. Published by Elsevier B.V.

  12. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs

    PubMed Central

    Sharifpoor, Sara; van Dyk, Dewald; Costanzo, Michael; Baryshnikova, Anastasia; Friesen, Helena; Douglas, Alison C.; Youn, Ji-Young; VanderSluis, Benjamin; Myers, Chad L.; Papp, Balázs; Boone, Charles; Andrews, Brenda J.

    2012-01-01

    A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks. PMID:22282571

  13. Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-κB pathways.

    PubMed

    Jones, Tania A; Jeyapalan, Jennie N; Forshew, Tim; Tatevossian, Ruth G; Lawson, Andrew R J; Patel, Sheena N; Doctor, Gabriel T; Mumin, Muhammad A; Picker, Simon R; Phipps, Kim P; Michalski, Antony; Jacques, Thomas S; Sheer, Denise

    2015-12-18

    Pilocytic astrocytomas are slow-growing tumors that usually occur in the cerebellum or in the midline along the hypothalamic/optic pathways. The most common genetic alterations in pilocytic astrocytomas activate the ERK/MAPK signal transduction pathway, which is a major driver of proliferation but is also believed to induce senescence in these tumors. Here, we have conducted a detailed investigation of microRNA and gene expression, together with pathway analysis, to improve our understanding of the regulatory mechanisms in pilocytic astrocytomas. Pilocytic astrocytomas were found to have distinctive microRNA and gene expression profiles compared to normal brain tissue and a selection of other pediatric brain tumors. Several microRNAs found to be up-regulated in pilocytic astrocytomas are predicted to target the ERK/MAPK and NF-κB signaling pathways as well as genes involved in senescence-associated inflammation and cell cycle control. Furthermore, IGFBP7 and CEBPB, which are transcriptional inducers of the senescence-associated secretory phenotype (SASP), were also up-regulated together with the markers of senescence and inflammation, CDKN1A (p21), CDKN2A (p16) and IL1B. These findings provide further evidence of a senescent phenotype in pilocytic astrocytomas. In addition, they suggest that the ERK/MAPK pathway, which is considered the major driver of these tumors, is regulated not only by genetic aberrations but also by microRNAs.

  14. Kernel-Based Measure of Variable Importance for Genetic Association Studies.

    PubMed

    Gallego, Vicente; Luz Calle, M; Oller, Ramon

    2017-06-17

    The identification of genetic variants that are associated with disease risk is an important goal of genetic association studies. Standard approaches perform univariate analysis where each genetic variant, usually Single Nucleotide Polymorphisms (SNPs), is tested for association with disease status. Though many genetic variants have been identified and validated so far using this univariate approach, for most complex diseases a large part of their genetic component is still unknown, the so called missing heritability. We propose a Kernel-based measure of variable importance (KVI) that provides the contribution of a SNP, or a group of SNPs, to the joint genetic effect of a set of genetic variants. KVI can be used for ranking genetic markers individually, sets of markers that form blocks of linkage disequilibrium or sets of genetic variants that lie in a gene or a genetic pathway. We prove that, unlike the univariate analysis, KVI captures the relationship with other genetic variants in the analysis, even when measured at the individual level for each genetic variable separately. This is specially relevant and powerful for detecting genetic interactions. We illustrate the results with data from an Alzheimer's disease study and show through simulations that the rankings based on KVI improve those rankings based on two measures of importance provided by the Random Forest. We also prove with a simulation study that KVI is very powerful for detecting genetic interactions.

  15. An Adaptive Genetic Association Test Using Double Kernel Machines.

    PubMed

    Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis

    2015-10-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.

  16. Gene-Based Mapping and Pathway Analysis of Metabolic Traits in Dairy Cows

    PubMed Central

    Ha, Ngoc-Thuy; Gross, Josef Johann; van Dorland, Annette; Tetens, Jens; Thaller, Georg; Schlather, Martin; Bruckmaier, Rupert; Simianer, Henner

    2015-01-01

    The metabolic adaptation of dairy cows during the transition period has been studied intensively in the last decades. However, until now, only few studies have paid attention to the genetic aspects of this process. Here, we present the results of a gene-based mapping and pathway analysis with the measurements of three key metabolites, (1) non-esterified fatty acids (NEFA), (2) beta-hydroxybutyrate (BHBA) and (3) glucose, characterizing the metabolic adaptability of dairy cows before and after calving. In contrast to the conventional single-marker approach, we identify 99 significant and biologically sensible genes associated with at least one of the considered phenotypes and thus giving evidence for a genetic basis of the metabolic adaptability. Moreover, our results strongly suggest three pathways involved in the metabolism of steroids and lipids are potential candidates for the adaptive regulation of dairy cows in their early lactation. From our perspective, a closer investigation of our findings will lead to a step forward in understanding the variability in the metabolic adaptability of dairy cows in their early lactation. PMID:25789767

  17. Translating Discovery in Zebrafish Pancreatic Development to Human Pancreatic Cancer: Biomarkers, Targets, Pathogenesis, and Therapeutics

    PubMed Central

    Kazi, Abid A.; Yee, Rosemary K.

    2013-01-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer. PMID:23682805

  18. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    PubMed

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  19. Genetic specification of left–right asymmetry in the diaphragm muscles and their motor innervation

    PubMed Central

    Charoy, Camille; Dinvaut, Sarah; Chaix, Yohan; Morlé, Laurette; Sanyas, Isabelle; Bozon, Muriel; Kindbeiter, Karine; Durand, Bénédicte; Skidmore, Jennifer M; De Groef, Lies; Seki, Motoaki; Moons, Lieve; Ruhrberg, Christiana; Martin, James F; Martin, Donna M; Falk, Julien; Castellani, Valerie

    2017-01-01

    The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left–right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L–R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry. DOI: http://dx.doi.org/10.7554/eLife.18481.001 PMID:28639940

  20. Frequent PTPRK-RSPO3 fusions and RNF43 mutations in colorectal traditional serrated adenoma.

    PubMed

    Sekine, Shigeki; Yamashita, Satoshi; Tanabe, Taro; Hashimoto, Taiki; Yoshida, Hiroshi; Taniguchi, Hirokazu; Kojima, Motohiro; Shinmura, Kazuya; Saito, Yutaka; Hiraoka, Nobuyoshi; Ushijima, Toshikazu; Ochiai, Atsushi

    2016-06-01

    The molecular mechanisms underlying the serrated pathway of colorectal tumourigenesis, particularly those related to traditional serrated adenomas (TSAs), are still poorly understood. In this study, we analysed genetic alterations in 188 colorectal polyps, including hyperplastic polyps, sessile serrated adenomas/polyps (SSA/Ps), TSAs, tubular adenomas, and tubulovillous adenomas by using targeted next-generation sequencing and reverse transcription-PCR. Our analyses showed that most TSAs (71%) contained genetic alterations in WNT pathway components. In particular, PTPRK-RSPO3 fusions (31%) and RNF43 mutations (24%) were frequently and almost exclusively observed in TSAs. Consistent with the WNT pathway activation, immunohistochemical analysis showed diffuse and focal nuclear accumulation of β-catenin in 53% and 30% of TSAs, respectively. APC mutations were observed in tubular and tubulovillous adenomas and in a subset of TSAs. BRAF mutations were exclusively and frequently encountered in serrated lesions. KRAS mutations were observed in all types of polyps, but were most commonly encountered in tubulovillous adenomas and TSAs. This study has demonstrated that TSAs frequently harbour genetic alterations that lead to WNT pathway activation, in addition to BRAF and KRAS mutations. In particular, PTPRK-RSPO3 fusions and RNF43 mutations were found to be characteristic genetic features of TSAs. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Identification of Biological Targets of Therapeutic Intervention for Hepatocellular Carcinoma by Integrated Bioinformatical Analysis.

    PubMed

    Hu, Wei Qi; Wang, Wei; Fang, Di Long; Yin, Xue Feng

    2018-05-24

    BACKGROUND We screened the potential molecular targets and investigated the molecular mechanisms of hepatocellular carcinoma (HCC). MATERIAL AND METHODS Microarray data of GSE47786, including the 40 μM berberine-treated HepG2 human hepatoma cell line and 0.08% DMSO-treated as control cells samples, was downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed; the protein-protein interaction (PPI) networks were constructed using STRING database and Cytoscape; the genetic alteration, neighboring genes networks, and survival analysis of hub genes were explored by cBio portal; and the expression of mRNA level of hub genes was obtained from the Oncomine databases. RESULTS A total of 56 upregulated and 8 downregulated DEGs were identified. The GO analysis results were significantly enriched in cell-cycle arrest, regulation of transcription, DNA-dependent, protein amino acid phosphorylation, cell cycle, and apoptosis. The KEGG pathway analysis showed that DEGs were enriched in MAPK signaling pathway, ErbB signaling pathway, and p53 signaling pathway. JUN, EGR1, MYC, and CDKN1A were identified as hub genes in PPI networks. The genetic alteration of hub genes was mainly concentrated in amplification. TP53, NDRG1, and MAPK15 were found in neighboring genes networks. Altered genes had worse overall survival and disease-free survival than unaltered genes. The expressions of EGR1, MYC, and CDKN1A were significantly increased, but expression of JUN was not, in the Roessler Liver datasets. CONCLUSIONS We found that JUN, EGR1, MYC, and CDKN1A might be used as diagnostic and therapeutic molecular biomarkers and broaden our understanding of the molecular mechanisms of HCC.

  2. Multi-membership gene regulation in pathway based microarray analysis

    PubMed Central

    2011-01-01

    Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531

  3. Multi-membership gene regulation in pathway based microarray analysis.

    PubMed

    Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M

    2011-09-22

    Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.

  4. Identification of possible genetic polymorphisms involved in cancer cachexia: a systematic review.

    PubMed

    Tan, Benjamin H L; Ross, James A; Kaasa, Stein; Skorpen, Frank; Fearon, Kenneth C H

    2011-04-01

    Cancer cachexia is a polygenic and complex syndrome. Genetic variations in regulation of the inflammatory response, muscle and fat metabolic pathways, and pathways in appetite regulation are likely to contribute to the susceptibility or resistance to developing cancer cachexia. A systematic search of Medline and EmBase databases, covering 1986-2008 was performed for potential candidate genes/genetic polymorphisms relating to cancer cachexia. Related genes were then identified using pathway functional analysis software. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Genes with variants which had functional or clinical associations with cachexia and replicated in at least one study were entered into pathway analysis software to reveal possible network associations between genes. A total of 184 polymorphisms with functional or clinical relevance to cancer cachexia were identified in 92 candidate genes. Of these, 42 polymorphisms (in 33 genes) were replicated in more than one study with 13 polymorphisms found to influence two or more hallmarks of cachexia (i.e. inflammation, loss of fat mass and/or lean mass and reduced survival). Thirty-three genes were found to be significantly interconnected in two major networks with four genes (ADIPOQ, IL6, NFKB1 and TLR4) interlinking both networks. Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides an initial framework to select genes/polymorphisms for further study in cancer cachexia, and to develop their potential as susceptibility biomarkers of developing cachexia.

  5. Microfluidics for Single-Cell Genetic Analysis

    PubMed Central

    Thompson, A. M.; Paguirigan, A. L.; Kreutz, J. E.; Radich, J. P.; Chiu, D. T.

    2014-01-01

    The ability to correlate single-cell genetic information to cellular phenotypes will provide the kind of detailed insight into human physiology and disease pathways that is not possible to infer from bulk cell analysis. Microfluidic technologies are attractive for single-cell manipulation due to precise handling and low risk of contamination. Additionally, microfluidic single-cell techniques can allow for high-throughput and detailed genetic analyses that increase accuracy and decreases reagent cost compared to bulk techniques. Incorporating these microfluidic platforms into research and clinical laboratory workflows can fill an unmet need in biology, delivering the highly accurate, highly informative data necessary to develop new therapies and monitor patient outcomes. In this perspective, we describe the current and potential future uses of microfluidics at all stages of single-cell genetic analysis, including cell enrichment and capture, single-cell compartmentalization and manipulation, and detection and analyses. PMID:24789374

  6. The Future of Molecular Analysis in Melanoma: Diagnostics to Direct Molecularly Targeted Therapy.

    PubMed

    Akabane, Hugo; Sullivan, Ryan J

    2016-02-01

    Melanoma is a malignancy of pigment-producing cells that is driven by a variety of genetic mutations and aberrations. In most cases, this leads to upregulation of the mitogen-activated protein kinase (MAPK) pathway through activating mutations of upstream mediators of the pathway including BRAF and NRAS. With the advent of effective MAPK pathway inhibitors, including the US FDA-approved BRAF inhibitors vemurafenib and dabrafenib and MEK inhibitor trametinib, molecular analysis has become an integral part of the care of patients with metastatic melanoma. In this article, the key molecular targets and strategies to inhibit these targets therapeutically are presented, and the techniques of identifying these targets, in both tissue and blood, are discussed.

  7. Genes that regulate both development and longevity in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, P.L.; Albert, P.S.; Riddle, D.L.

    1995-04-01

    The nematode Caenorhabditis elegans responds to conditions of overcrowding and limited food by arresting development as a dauer larva. Genetic analysis of mutations that alter dauer larva formation (daf mutations) is presented along with an updated genetic pathway for dauer vs. nondauer development. Mutations in the daf-2 and daf-23 genes double adult life span, whereas mutations in four other dauer-constitutive genes positioned in a separate branch of this pathway (daf-1, daf-4, daf-7 and daf-8) do not. The increased life spans are suppressed completely by a daf-16 mutation and partially in a daf-2; daf-18 double mutant. A genetic pathway for determinationmore » of adult life span is presented based on the same strains and growth conditions used to characterize Daf phenotypes. Both dauer larva formation and adult life span are affected in daf-2; daf-12 double mutants in an allele-specific manner. Mutations in daf-12 do not extend adult life span, but certain combinations of daf-2 and daf-12 mutant alleles nearly quadruple it. This synergistic effect, which does not equivalently extend the fertile period, is the largest genetic extension of life span yet observed in a metazoan. 47 refs., 7 figs., 5 tabs.« less

  8. Mapping Genes that Contribute to Daunorubicin-Induced Cytotoxicity

    PubMed Central

    Duan, Shiwei; Bleibel, Wasim K.; Huang, Rong Stephanie; Shukla, Sunita J.; Wu, Xiaolin; Badner, Judith A.; Dolan, M. Eileen

    2009-01-01

    Daunorubicin is an anthracycline antibiotic agent used in the treatment of hematopoietic malignancies. Toxicities associated with this agent include myelosuppression and cardiotoxicity; however, the genes or genetic determinants that contribute to these toxicities are unknown. We present an unbiased genome-wide approach that incorporates heritability, whole-genome linkage analysis, and linkage-directed association to uncover genetic variants contributing to the sensitivity to daunorubicin-induced cytotoxicity. Cell growth inhibition in 324 Centre d’ Etude du Polymorphisme Humain lymphoblastoid cell lines (24 pedigrees) was evaluated following treatment with daunorubicin for 72 h. Heritability analysis showed a significant genetic component contributing to the cytotoxic phenotypes (h2 = 0.18–0.63at 0.0125, 0.025, 0.05, 0.1, 0.2, and 1.0 µmol/L daunorubicin and at the IC50, the dose required to inhibit 50% cell growth). Whole-genome linkage scans at all drug concentrations and IC50 uncovered 11 regions with moderate peak LOD scores (>1.5), including 4q28.2 to 4q32.3 with a maximum LOD score of 3.18. The quantitative transmission disequilibrium tests were done using 31,312 high-frequency single-nucleotide polymorphisms (SNP) located in the 1 LOD confidence interval of these 11 regions. Thirty genes were identified as significantly associated with daunorubicin-induced cytotoxicity (P ≤ 2.0 × 10−4, false discovery rate ≤ 0.1). Pathway and functional gene ontology analysis showed that these genes were overrepresented in the phosphatidylinositol signaling system, axon guidance pathway, and GPI-anchored proteins family. Our findings suggest that a proportion of susceptibility to daunorubicin-induced cytotoxicity may be controlled by genetic determinants and that analysis using linkage-directed association studies with dense SNP markers can be used to identify the genetic variants contributing to cytotoxicity. PMID:17545624

  9. Genes and (Common) Pathways Underlying Drug Addiction

    PubMed Central

    Li, Chuan-Yun; Mao, Xizeng; Wei, Liping

    2008-01-01

    Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn), the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction. PMID:18179280

  10. Principles for circadian orchestration of metabolic pathways.

    PubMed

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim; Westermark, Pål O

    2017-02-14

    Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo.

  11. Principles for circadian orchestration of metabolic pathways

    PubMed Central

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim

    2017-01-01

    Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo. PMID:28159888

  12. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Comparison of Channel Catfish and Blue Catfish Gut Microbiota Assemblages Shows Minimal Effects of Host Genetics on Microbial Structure and Inferred Function.

    PubMed

    Bledsoe, Jacob W; Waldbieser, Geoffrey C; Swanson, Kelly S; Peterson, Brian C; Small, Brian C

    2018-01-01

    The microbiota of teleost fish has gained a great deal of research attention within the past decade, with experiments suggesting that both host-genetics and environment are strong ecological forces shaping the bacterial assemblages of fish microbiomes. Despite representing great commercial and scientific importance, the catfish within the family Ictaluridae , specifically the blue and channel catfish, have received very little research attention directed toward their gut-associated microbiota using 16S rRNA gene sequencing. Within this study we utilize multiple genetically distinct strains of blue and channel catfish, verified via microsatellite genotyping, to further quantify the role of host-genetics in shaping the bacterial communities in the fish gut, while maintaining environmental and husbandry parameters constant. Comparisons of the gut microbiota among the two catfish species showed no differences in bacterial species richness (observed and Chao1) or overall composition (weighted and unweighted UniFrac) and UniFrac distances showed no correlation with host genetic distances (Rst) according to Mantel tests. The microbiota of environmental samples (diet and water) were found to be significantly more diverse than that of the catfish gut associated samples, suggesting that factors within the host were further regulating the bacterial communities, despite the lack of a clear connection between microbiota composition and host genotype. The catfish gut communities were dominated by the phyla Fusobacteria, Proteobacteria, and Firmicutes; however, differential abundance analysis between the two catfish species using analysis of composition of microbiomes detected two differential genera, Cetobacterium and Clostridium XI . The metagenomic pathway features inferred from our dataset suggests the catfish gut bacterial communities possess pathways beneficial to their host such as those involved in nutrient metabolism and antimicrobial biosynthesis, while also containing pathways involved in virulence factors of pathogens. Testing of the inferred KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways by DESeq2 revealed minor difference in microbiota function, with only two metagenomic pathways detected as differentially abundant between the two catfish species. As the first study to characterize the gut microbiota of blue catfish, our study results have direct implications on future ictalurid catfish research. Additionally, our insight into the intrinsic factors driving microbiota structure has basic implications for the future study of fish gut microbiota.

  14. Comparative Transcriptome Analysis of Male and Female Conelets and Development of Microsatellite Markers in Pinus bungeana, an Endemic Conifer in China

    PubMed Central

    Duan, Dong; Jia, Yun; Yang, Jie; Li, Zhong-Hu

    2017-01-01

    The sex determination in gymnosperms is still poorly characterized due to the lack of genomic/transcriptome resources and useful molecular genetic markers. To enhance our understanding of the molecular mechanisms of the determination of sexual recognition of reproductive structures in conifers, the transcriptome of male and female conelets were characterized in a Chinese endemic conifer species, Pinus bungeana Zucc. ex Endl. The 39.62 Gb high-throughput sequencing reads were obtained from two kinds of sexual conelets. After de novo assembly of the obtained reads, 85,305 unigenes were identified, 53,944 (63.23%) of which were annotated with public databases. A total of 12,073 differentially expressed genes were detected between the two types of sexes in P. bungeana, and 5766 (47.76%) of them were up-regulated in females. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched analysis suggested that some of the genes were significantly associated with the sex determination process of P. bungeana, such as those involved in tryptophan metabolism, zeatin biosynthesis, and cysteine and methionine metabolism, and the phenylpropanoid biosynthesis pathways. Meanwhile, some important plant hormone pathways (e.g., the gibberellin (GA) pathway, carotenoid biosynthesis, and brassinosteroid biosynthesis (BR) pathway) that affected sexual determination were also induced in P. bungeana. In addition, 8791 expressed sequence tag-simple sequence repeats (EST-SSRs) from 7859 unigenes were detected in P. bungeana. The most abundant repeat types were dinucleotides (1926), followed by trinucleotides (1711). The dominant classes of the sequence repeat were A/T (4942) in mononucleotides and AT/AT (1283) in dinucleotides. Among these EST-SSRs, 84 pairs of primers were randomly selected for the characterization of potential molecular genetic markers. Finally, 19 polymorphic EST-SSR primers were characterized. We found low to moderate levels of genetic diversity (NA = 1.754; HO = 0.206; HE = 0.205) across natural populations of P. bungeana. The cluster analysis revealed two distinct genetic groups for the six populations that were sampled in this endemic species, which might be caused by the fragmentation of habitats and long-term geographic isolation among different populations. Taken together, this work provides important insights into the molecular mechanisms of sexual identity in the reproductive organs of P. bungeana. The molecular genetic resources that were identified in this study will also facilitate further studies in functional genomics and population genetics in the Pinus species. PMID:29257091

  15. Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway.

    PubMed

    Islam, Rafique; Wei, Shu-Yi; Chiu, Wei-Hsin; Hortsch, Michael; Hsu, Jui-Chou

    2003-05-01

    echinoid (ed) encodes an cell-adhesion molecule (CAM) that contains immunoglobulin domains and regulates the EGFR signaling pathway during Drosophila eye development. Based on our previous genetic mosaic and epistatic analysis, we proposed that Ed, via homotypic interactions, activates a novel, as yet unknown pathway that antagonizes EGFR signaling. In this report, we demonstrate that Ed functions as a homophilic adhesion molecule and also engages in a heterophilic trans-interaction with Drosophila Neuroglian (Nrg), an L1-type CAM. Co-expression of ed and nrg in the eye exhibits a strong genetic synergy in inhibiting EGFR signaling. This synergistic effect requires the intracellular domain of Ed, but not that of Nrg. In addition, Ed and Nrg colocalize in the Drosophila eye and are efficiently co-immunoprecipitated. Together, our results suggest a model in which Nrg acts as a heterophilic ligand and activator of Ed, which in turn antagonizes EGFR signaling.

  16. Congenital diaphragmatic hernia (CDH) etiology as revealed by pathway genetics.

    PubMed

    Kantarci, Sibel; Donahoe, Patricia K

    2007-05-15

    Congenital diaphragmatic hernia (CDH) is a common birth defect with high mortality and morbidity. Two hundred seventy CDH patients were ascertained, carefully phenotyped, and classified as isolated (diaphragm defects alone) or complex (with additional anomalies) cases. We established different strategies to reveal CDH-critical chromosome loci and genes in humans. Candidate genes for sequencing analyses were selected from CDH animal models, genetic intervals of recurrent chromosomal aberration in humans, such as 15q26.1-q26.2 or 1q41-q42.12, as well as genes in the retinoic acid and related pathways and those known to be involved in embryonic lung development. For instance, FOG2, GATA4, and COUP-TFII are all needed for both normal diaphragm and lung development and are likely all in the same genetic and molecular pathway. Linkage analysis was applied first in a large inbred family and then in four multiplex families with Donnai-Barrow syndrome (DBS) associated with CDH. 10K SNP chip and microsatellite markers revealed a DBS locus on chromosome 2q23.3-q31.1. We applied array-based comparative genomic hybridization (aCGH) techniques to over 30, mostly complex, CDH patients and found a de novo microdeletion in a patient with Fryns syndrome related to CDH. Fluorescence in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA) techniques allowed us to further define the deletion interval. Our aim is to identify genetic intervals and, in those, to prioritize genes that might reveal molecular pathways, mutations in any step of which, might contribute to the same phenotype. More important, the elucidation of pathways may ultimately provide clues to treatment strategies. (c) 2007 Wiley-Liss, Inc.

  17. Transcriptomic Insights into Phenological Development and Cold Tolerance of Wheat Grown in the Field1[OPEN

    PubMed Central

    Li, Qiang; Byrns, Brook; Badawi, Mohamed A.; Diallo, Abdoulaye Banire; Danyluk, Jean; Sarhan, Fathey; Zou, Jitao

    2018-01-01

    Cold acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex cold responses are mostly conducted in controlled environments that only consider the responses to single environmental variables. In this study, we have comprehensively profiled global transcriptional responses in crowns of field-grown spring and winter wheat (Triticum aestivum) genotypes and their near-isogenic lines with the VRN-A1 alleles swapped. This in-depth analysis revealed multiple signaling, interactive pathways that influence cold tolerance and phenological development to optimize plant growth and development in preparation for a wide range of over-winter stresses. Investigation of genetic differences at the VRN-A1 locus revealed that a vernalization requirement maintained a higher level of cold response pathways while VRN-A1 genetically promoted floral development. Our results also demonstrated the influence of genetic background on the expression of cold and flowering pathways. The link between delayed shoot apex development and the induction of cold tolerance was reflected by the gradual up-regulation of abscisic acid-dependent and C-REPEAT-BINDING FACTOR pathways. This was accompanied by the down-regulation of key genes involved in meristem development as the autumn progressed. The chromosome location of differentially expressed genes between the winter and spring wheat genetic backgrounds showed a striking pattern of biased gene expression on chromosomes 6A and 6D, indicating a transcriptional regulation at the genome level. This finding adds to the complexity of the genetic cascades and gene interactions that determine the evolutionary patterns of both phenological development and cold tolerance traits in wheat. PMID:29259104

  18. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age.

    PubMed

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-03-09

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. Copyright © 2015 Brown et al.

  19. Pathway-Based Factor Analysis of Gene Expression Data Produces Highly Heritable Phenotypes That Associate with Age

    PubMed Central

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-01-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824

  20. Cells of Origin of Epithelial Ovarian Cancers

    DTIC Science & Technology

    2015-09-01

    cells in oral squamous cell carcinomas by a novel pathway-based lineage tracing approach in a murine model. ! 13! Specific aims: 1. Determine...SUNDARESAN Lineage tracing and clonal analysis of oral cancer initiating cells The goal of this project is to study cancer stem cells /cancer initiating...whether oral cancer cells genetically marked based on their activities for stem cell -related pathways exhibit cancer stem cell properties in vivo by

  1. Genetic studies of body mass index yield new insights for obesity biology.

    PubMed

    Locke, Adam E; Kahali, Bratati; Berndt, Sonja I; Justice, Anne E; Pers, Tune H; Day, Felix R; Powell, Corey; Vedantam, Sailaja; Buchkovich, Martin L; Yang, Jian; Croteau-Chonka, Damien C; Esko, Tonu; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Kutalik, Zoltán; Luan, Jian'an; Mägi, Reedik; Randall, Joshua C; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Faul, Jessica D; Smith, Jennifer A; Zhao, Jing Hua; Zhao, Wei; Chen, Jin; Fehrmann, Rudolf; Hedman, Åsa K; Karjalainen, Juha; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bolton, Jennifer L; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Deng, Guohong; Ehret, Georg B; Feenstra, Bjarke; Feitosa, Mary F; Fischer, Krista; Goel, Anuj; Gong, Jian; Jackson, Anne U; Kanoni, Stavroula; Kleber, Marcus E; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Medland, Sarah E; Nalls, Michael A; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Shungin, Dmitry; Stančáková, Alena; Strawbridge, Rona J; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van Setten, Jessica; Van Vliet-Ostaptchouk, Jana V; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Isaacs, Aaron; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Attwood, Antony P; Bandinelli, Stefania; Barrett, Amy; Bas, Isabelita N; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blagieva, Roza; Blüher, Matthias; Böhringer, Stefan; Bonnycastle, Lori L; Böttcher, Yvonne; Boyd, Heather A; Bruinenberg, Marcel; Caspersen, Ida H; Chen, Yii-Der Ida; Clarke, Robert; Daw, E Warwick; de Craen, Anton J M; Delgado, Graciela; Dimitriou, Maria; Doney, Alex S F; Eklund, Niina; Estrada, Karol; Eury, Elodie; Folkersen, Lasse; Fraser, Ross M; Garcia, Melissa E; Geller, Frank; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Goodall, Alison H; Gordon, Scott D; Gorski, Mathias; Grabe, Hans-Jörgen; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grönberg, Henrik; Groves, Christopher J; Gusto, Gaëlle; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L; Helmer, Quinta; Hengstenberg, Christian; Holmen, Oddgeir; Hottenga, Jouke-Jan; James, Alan L; Jeff, Janina M; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Kinnunen, Leena; Koenig, Wolfgang; Koskenvuo, Markku; Kratzer, Wolfgang; Laitinen, Jaana; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lo, Ken Sin; Lobbens, Stéphane; Lorbeer, Roberto; Lu, Yingchang; Mach, François; Magnusson, Patrik K E; Mahajan, Anubha; McArdle, Wendy L; McLachlan, Stela; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Moayyeri, Alireza; Monda, Keri L; Morken, Mario A; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W; Nagaraja, Ramaiah; Nöthen, Markus M; Nolte, Ilja M; Pilz, Stefan; Rayner, Nigel W; Renstrom, Frida; Rettig, Rainer; Ried, Janina S; Ripke, Stephan; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R; Scott, William R; Seufferlein, Thomas; Shi, Jianxin; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tan, Sian-Tsung; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tyrer, Jonathan P; Uh, Hae-Won; Vandenput, Liesbeth; Verhulst, Frank C; Vermeulen, Sita H; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Warren, Helen R; Waterworth, Dawn; Weedon, Michael N; Wilkens, Lynne R; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Wright, Alan F; Zhang, Qunyuan; Brennan, Eoin P; Choi, Murim; Dastani, Zari; Drong, Alexander W; Eriksson, Per; Franco-Cereceda, Anders; Gådin, Jesper R; Gharavi, Ali G; Goddard, Michael E; Handsaker, Robert E; Huang, Jinyan; Karpe, Fredrik; Kathiresan, Sekar; Keildson, Sarah; Kiryluk, Krzysztof; Kubo, Michiaki; Lee, Jong-Young; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McCarroll, Steven A; McKnight, Amy J; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Okada, Yukinori; Perry, John R B; Dorajoo, Rajkumar; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Scott, Robert A; Stolk, Lisette; Takahashi, Atsushi; Tanaka, Toshihiro; van 't Hooft, Ferdinand M; Vinkhuyzen, Anna A E; Westra, Harm-Jan; Zheng, Wei; Zondervan, Krina T; Heath, Andrew C; Arveiler, Dominique; Bakker, Stephan J L; Beilby, John; Bergman, Richard N; Blangero, John; Bovet, Pascal; Campbell, Harry; Caulfield, Mark J; Cesana, Giancarlo; Chakravarti, Aravinda; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Crawford, Dana C; Cupples, L Adrienne; Cusi, Daniele; Danesh, John; de Faire, Ulf; den Ruijter, Hester M; Dominiczak, Anna F; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G; Farrall, Martin; Felix, Stephan B; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gejman, Pablo V; Gieger, Christian; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Alistair S; Harris, Tamara B; Hattersley, Andrew T; Hicks, Andrew A; Hindorff, Lucia A; Hingorani, Aroon D; Hofman, Albert; Homuth, Georg; Hovingh, G Kees; Humphries, Steve E; Hunt, Steven C; Hyppönen, Elina; Illig, Thomas; Jacobs, Kevin B; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Johansen, Berit; Jousilahti, Pekka; Jukema, J Wouter; Jula, Antti M; Kaprio, Jaakko; Kastelein, John J P; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Knekt, Paul; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Marchand, Loic Le; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Moll, Frans L; Morris, Andrew D; Morris, Andrew P; Murray, Jeffrey C; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Madden, Pamela A F; Pasterkamp, Gerard; Peden, John F; Peters, Annette; Postma, Dirkje S; Pramstaller, Peter P; Price, Jackie F; Qi, Lu; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Ridker, Paul M; Rioux, John D; Ritchie, Marylyn D; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schunkert, Heribert; Schwarz, Peter E H; Sever, Peter; Shuldiner, Alan R; Sinisalo, Juha; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Trégouët, David-Alexandre; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Völker, Uwe; Waeber, Gérard; Willemsen, Gonneke; Witteman, Jacqueline C; Zillikens, M Carola; Adair, Linda S; Amouyel, Philippe; Asselbergs, Folkert W; Assimes, Themistocles L; Bochud, Murielle; Boehm, Bernhard O; Boerwinkle, Eric; Bornstein, Stefan R; Bottinger, Erwin P; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C; Chanock, Stephen J; Cooper, Richard S; de Bakker, Paul I W; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Groop, Leif C; Haiman, Christopher A; Hamsten, Anders; Hui, Jennie; Hunter, David J; Hveem, Kristian; Kaplan, Robert C; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G; März, Winfried; Melbye, Mads; Metspalu, Andres; Moebus, Susanne; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin N A; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sattar, Naveed; Schadt, Eric E; Schlessinger, David; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Weir, David R; Wichmann, H-Erich; Wilson, James F; Zanen, Pieter; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Heid, Iris M; O'Connell, Jeffrey R; Strachan, David P; Stefansson, Kari; van Duijn, Cornelia M; Abecasis, Gonçalo R; Franke, Lude; Frayling, Timothy M; McCarthy, Mark I; Visscher, Peter M; Scherag, André; Willer, Cristen J; Boehnke, Michael; Mohlke, Karen L; Lindgren, Cecilia M; Beckmann, Jacques S; Barroso, Inês; North, Kari E; Ingelsson, Erik; Hirschhorn, Joel N; Loos, Ruth J F; Speliotes, Elizabeth K

    2015-02-12

    Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.

  2. Genetic studies of body mass index yield new insights for obesity biology

    PubMed Central

    Day, Felix R.; Powell, Corey; Vedantam, Sailaja; Buchkovich, Martin L.; Yang, Jian; Croteau-Chonka, Damien C.; Esko, Tonu; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Kutalik, Zoltán; Luan, Jian’an; Mägi, Reedik; Randall, Joshua C.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Faul, Jessica D.; Smith, Jennifer A.; Zhao, Jing Hua; Zhao, Wei; Chen, Jin; Fehrmann, Rudolf; Hedman, Åsa K.; Karjalainen, Juha; Schmidt, Ellen M.; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bolton, Jennifer L.; Bragg-Gresham, Jennifer L.; Buyske, Steven; Demirkan, Ayse; Deng, Guohong; Ehret, Georg B.; Feenstra, Bjarke; Feitosa, Mary F.; Fischer, Krista; Goel, Anuj; Gong, Jian; Jackson, Anne U.; Kanoni, Stavroula; Kleber, Marcus E.; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Medland, Sarah E.; Nalls, Michael A.; Palmer, Cameron D.; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J.; Prokopenko, Inga; Shungin, Dmitry; Stančáková, Alena; Strawbridge, Rona J.; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W.; van Setten, Jessica; Van Vliet-Ostaptchouk, Jana V.; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Isaacs, Aaron; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M.; Attwood, Antony P.; Bandinelli, Stefania; Barrett, Amy; Bas, Isabelita N.; Bellis, Claire; Bennett, Amanda J.; Berne, Christian; Blagieva, Roza; Blüher, Matthias; Böhringer, Stefan; Bonnycastle, Lori L.; Böttcher, Yvonne; Boyd, Heather A.; Bruinenberg, Marcel; Caspersen, Ida H.; Chen, Yii-Der Ida; Clarke, Robert; Daw, E. Warwick; de Craen, Anton J. M.; Delgado, Graciela; Dimitriou, Maria; Doney, Alex S. F.; Eklund, Niina; Estrada, Karol; Eury, Elodie; Folkersen, Lasse; Fraser, Ross M.; Garcia, Melissa E.; Geller, Frank; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S.; Golay, Alain; Goodall, Alison H.; Gordon, Scott D.; Gorski, Mathias; Grabe, Hans-Jörgen; Grallert, Harald; Grammer, Tanja B.; Gräßler, Jürgen; Grönberg, Henrik; Groves, Christopher J.; Gusto, Gaëlle; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A.; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L.; Helmer, Quinta; Hengstenberg, Christian; Holmen, Oddgeir; Hottenga, Jouke-Jan; James, Alan L.; Jeff, Janina M.; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Kinnunen, Leena; Koenig, Wolfgang; Koskenvuo, Markku; Kratzer, Wolfgang; Laitinen, Jaana; Lamina, Claudia; Leander, Karin; Lee, Nanette R.; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lo, Ken Sin; Lobbens, Stéphane; Lorbeer, Roberto; Lu, Yingchang; Mach, François; Magnusson, Patrik K. E.; Mahajan, Anubha; McArdle, Wendy L.; McLachlan, Stela; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Moayyeri, Alireza; Monda, Keri L.; Morken, Mario A.; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W.; Nagaraja, Ramaiah; Nöthen, Markus M.; Nolte, Ilja M.; Pilz, Stefan; Rayner, Nigel W.; Renstrom, Frida; Rettig, Rainer; Ried, Janina S.; Ripke, Stephan; Robertson, Neil R.; Rose, Lynda M.; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R.; Scott, William R.; Seufferlein, Thomas; Shi, Jianxin; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V.; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stringham, Heather M.; Sundström, Johan; Swertz, Morris A.; Swift, Amy J.; Syvänen, Ann-Christine; Tan, Sian-Tsung; Tayo, Bamidele O.; Thorand, Barbara; Thorleifsson, Gudmar; Tyrer, Jonathan P.; Uh, Hae-Won; Vandenput, Liesbeth; Verhulst, Frank C.; Vermeulen, Sita H.; Verweij, Niek; Vonk, Judith M.; Waite, Lindsay L.; Warren, Helen R.; Waterworth, Dawn; Weedon, Michael N.; Wilkens, Lynne R.; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K.; Wong, Andrew; Wright, Alan F.; Zhang, Qunyuan; Brennan, Eoin P.; Choi, Murim; Dastani, Zari; Drong, Alexander W.; Eriksson, Per; Franco-Cereceda, Anders; Gådin, Jesper R.; Gharavi, Ali G.; Goddard, Michael E.; Handsaker, Robert E.; Huang, Jinyan; Karpe, Fredrik; Kathiresan, Sekar; Keildson, Sarah; Kiryluk, Krzysztof; Kubo, Michiaki; Lee, Jong-Young; Liang, Liming; Lifton, Richard P.; Ma, Baoshan; McCarroll, Steven A.; McKnight, Amy J.; Min, Josine L.; Moffatt, Miriam F.; Montgomery, Grant W.; Murabito, Joanne M.; Nicholson, George; Nyholt, Dale R.; Okada, Yukinori; Perry, John R. B.; Dorajoo, Rajkumar; Reinmaa, Eva; Salem, Rany M.; Sandholm, Niina; Scott, Robert A.; Stolk, Lisette; Takahashi, Atsushi; Tanaka, Toshihiro; van ’t Hooft, Ferdinand M.; Vinkhuyzen, Anna A. E.; Westra, Harm-Jan; Zheng, Wei; Zondervan, Krina T.; Heath, Andrew C.; Arveiler, Dominique; Bakker, Stephan J. L.; Beilby, John; Bergman, Richard N.; Blangero, John; Bovet, Pascal; Campbell, Harry; Caulfield, Mark J.; Cesana, Giancarlo; Chakravarti, Aravinda; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Crawford, Dana C.; Cupples, L. Adrienne; Cusi, Daniele; Danesh, John; de Faire, Ulf; den Ruijter, Hester M.; Dominiczak, Anna F.; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G.; Farrall, Martin; Felix, Stephan B.; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G.; Forrester, Terrence; Franco, Oscar H.; Gansevoort, Ron T.; Gejman, Pablo V.; Gieger, Christian; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Alistair S.; Harris, Tamara B.; Hattersley, Andrew T.; Hicks, Andrew A.; Hindorff, Lucia A.; Hingorani, Aroon D.; Hofman, Albert; Homuth, Georg; Hovingh, G. Kees; Humphries, Steve E.; Hunt, Steven C.; Hyppönen, Elina; Illig, Thomas; Jacobs, Kevin B.; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Johansen, Berit; Jousilahti, Pekka; Jukema, J. Wouter; Jula, Antti M.; Kaprio, Jaakko; Kastelein, John J. P.; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Knekt, Paul; Kooner, Jaspal S.; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T.; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A.; Langenberg, Claudia; Marchand, Loic Le; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C.; McKenzie, Colin A.; McKnight, Barbara; Moll, Frans L.; Morris, Andrew D.; Morris, Andrew P.; Murray, Jeffrey C.; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J.; Ong, Ken K.; Madden, Pamela A. F.; Pasterkamp, Gerard; Peden, John F.; Peters, Annette; Postma, Dirkje S.; Pramstaller, Peter P.; Price, Jackie F.; Qi, Lu; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rice, Treva K.; Ridker, Paul M.; Rioux, John D.; Ritchie, Marylyn D.; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J.; Saramies, Jouko; Sarzynski, Mark A.; Schunkert, Heribert; Schwarz, Peter E. H.; Sever, Peter; Shuldiner, Alan R.; Sinisalo, Juha; Stolk, Ronald P.; Strauch, Konstantin; Tönjes, Anke; Trégouët, David-Alexandre; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Völker, Uwe; Waeber, Gérard; Willemsen, Gonneke; Witteman, Jacqueline C.; Zillikens, M. Carola; Adair, Linda S.; Amouyel, Philippe; Asselbergs, Folkert W.; Assimes, Themistocles L.; Bochud, Murielle; Boehm, Bernhard O.; Boerwinkle, Eric; Bornstein, Stefan R.; Bottinger, Erwin P.; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C.; Chanock, Stephen J.; Cooper, Richard S.; de Bakker, Paul I. W.; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W.; Froguel, Philippe; Groop, Leif C.; Haiman, Christopher A.; Hamsten, Anders; Hui, Jennie; Hunter, David J.; Hveem, Kristian; Kaplan, Robert C.; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G.; März, Winfried; Melbye, Mads; Metspalu, Andres; Moebus, Susanne; Munroe, Patricia B.; Njølstad, Inger; Oostra, Ben A.; Palmer, Colin N. A.; Pedersen, Nancy L.; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E.; Saleheen, Danish; Sattar, Naveed; Schadt, Eric E.; Schlessinger, David; Slagboom, P. Eline; Snieder, Harold; Spector, Tim D.; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Weir, David R.; Wichmann, H-Erich; Wilson, James F.; Zanen, Pieter; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Heid, Iris M.; O’Connell, Jeffrey R.; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Abecasis, Gonçalo R.; Franke, Lude; Frayling, Timothy M.; McCarthy, Mark I.; Visscher, Peter M.; Scherag, André; Willer, Cristen J.; Boehnke, Michael; Mohlke, Karen L.; Lindgren, Cecilia M.; Beckmann, Jacques S.; Barroso, Inês; North, Kari E.; Ingelsson, Erik; Hirschhorn, Joel N.; Loos, Ruth J. F.; Speliotes, Elizabeth K.

    2015-01-01

    Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis. PMID:25673413

  3. Genetic and Environmental Pathways in Type 1 Diabetes Complications

    DTIC Science & Technology

    2009-09-01

    increased risk of T1D-Nephropathy (T1DN) and is usually accompanied by other diabetic -related complications such as retinopathy , neuropathy, blood...Genetic and Environmental Pathways in Type 1 Diabetes Complications PRINCIPAL INVESTIGATOR: Massimo Trucco, M.D...To) 27 August 2008 – 26 August 2009 4. TITLE AND SUBTITLE Genetic and Environmental Pathways in Type 1 Diabetes Complications New Advanced

  4. Genetic susceptibility to bone and soft tissue sarcomas: a field synopsis and meta-analysis.

    PubMed

    Benna, Clara; Simioni, Andrea; Pasquali, Sandro; De Boni, Davide; Rajendran, Senthilkumar; Spiro, Giovanna; Colombo, Chiara; Virgone, Calogero; DuBois, Steven G; Gronchi, Alessandro; Rossi, Carlo Riccardo; Mocellin, Simone

    2018-04-06

    The genetic architecture of bone and soft tissue sarcomas susceptibility is yet to be elucidated. We aimed to comprehensively collect and meta-analyze the current knowledge on genetic susceptibility in these rare tumors. We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing sarcomas through searching PubMed, The Cochrane Library, Scopus and Web of Science databases. To evaluate result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Integrative analysis of genetic and eQTL (expression quantitative trait locus) data was coupled with network and pathway analysis to explore the hypothesis that specific cell functions are involved in sarcoma predisposition. We retrieved 90 eligible studies comprising 47,796 subjects (cases: 14,358, 30%) and investigating 1,126 polymorphisms involving 320 distinct genes. Meta-analysis identified 55 single nucleotide polymorphisms (SNPs) significantly associated with disease risk with a high (N=9), moderate (N=38) and low (N=8) level of evidence, findings being classified as noteworthy basically only when the level of evidence was high. The estimated joint population attributable risk for three independent SNPs (rs11599754 of ZNF365/EGR2 , rs231775 of CTLA4 , and rs454006 of PRKCG ) was 37.2%. We also identified 53 SNPs significantly associated with sarcoma risk based on single studies.Pathway analysis enabled us to propose that sarcoma predisposition might be linked especially to germline variation of genes whose products are involved in the function of the DNA repair machinery. We built the first knowledgebase on the evidence linking DNA variation to sarcomas susceptibility, which can be used to generate mechanistic hypotheses and inform future studies in this field of oncology.

  5. Pathway-based outlier method reveals heterogeneous genomic structure of autism in blood transcriptome

    PubMed Central

    2013-01-01

    Background Decades of research strongly suggest that the genetic etiology of autism spectrum disorders (ASDs) is heterogeneous. However, most published studies focus on group differences between cases and controls. In contrast, we hypothesized that the heterogeneity of the disorder could be characterized by identifying pathways for which individuals are outliers rather than pathways representative of shared group differences of the ASD diagnosis. Methods Two previously published blood gene expression data sets – the Translational Genetics Research Institute (TGen) dataset (70 cases and 60 unrelated controls) and the Simons Simplex Consortium (Simons) dataset (221 probands and 191 unaffected family members) – were analyzed. All individuals of each dataset were projected to biological pathways, and each sample’s Mahalanobis distance from a pooled centroid was calculated to compare the number of case and control outliers for each pathway. Results Analysis of a set of blood gene expression profiles from 70 ASD and 60 unrelated controls revealed three pathways whose outliers were significantly overrepresented in the ASD cases: neuron development including axonogenesis and neurite development (29% of ASD, 3% of control), nitric oxide signaling (29%, 3%), and skeletal development (27%, 3%). Overall, 50% of cases and 8% of controls were outliers in one of these three pathways, which could not be identified using group comparison or gene-level outlier methods. In an independently collected data set consisting of 221 ASD and 191 unaffected family members, outliers in the neurogenesis pathway were heavily biased towards cases (20.8% of ASD, 12.0% of control). Interestingly, neurogenesis outliers were more common among unaffected family members (Simons) than unrelated controls (TGen), but the statistical significance of this effect was marginal (Chi squared P < 0.09). Conclusions Unlike group difference approaches, our analysis identified the samples within the case and control groups that manifested each expression signal, and showed that outlier groups were distinct for each implicated pathway. Moreover, our results suggest that by seeking heterogeneity, pathway-based outlier analysis can reveal expression signals that are not apparent when considering only shared group differences. PMID:24063311

  6. Genetic analysis of interferon induced thyroiditis (IIT): evidence for a key role for MHC and apoptosis related genes and pathways.

    PubMed

    Hasham, Alia; Zhang, Weijia; Lotay, Vaneet; Haggerty, Shannon; Stefan, Mihaela; Concepcion, Erlinda; Dieterich, Douglas T; Tomer, Yaron

    2013-08-01

    Autoimmune thyroid diseases (AITD) have become increasingly recognized as a complication of interferon-alpha (IFNα) therapy in patients with chronic Hepatitis C virus (HCV) infection. Interferon-induced thyroiditis (IIT) can manifest as clinical thyroiditis in approximately 15% of HCV patients receiving IFNα and subclinical thyroiditis in up to 40% of patients, possibly resulting in either dose reduction or discontinuation of IFNα treatment. However, the exact mechanisms that lead to the development of IIT are unknown and may include IFNα-mediated immune-recruitment as well as direct toxic effects on thyroid follicular cells. We hypothesized that IIT develops in genetically predisposed individuals whose threshold for developing thyroiditis is lowered by IFNα. Therefore, our aim was to identify the susceptibility genes for IIT. We used a genomic convergence approach combining genetic association data with transcriptome analysis of genes upregulated by IFNα. Integrating results of genetic association, transcriptome data, pathway, and haplotype analyses enabled the identification of 3 putative loci, SP100/110/140 (2q37.1), HLA (6p21.3), and TAP1 (6p21.3) that may be involved in the pathogenesis of IIT. Immune-regulation and apoptosis emerged as the predominant mechanisms underlying the etiology of IIT. Published by Elsevier Ltd.

  7. GENETIC ANALYSIS OF INTERFERON INDUCED THYROIDITIS (IIT): EVIDENCE FOR A KEY ROLE FOR MHC AND APOPTOSIS RELATED GENES AND PATHWAYS

    PubMed Central

    Hasham, Alia; Zhang, Weijia; Lotay, Vaneet; Haggerty, Shannon; Stefan, Mihaela; Concepcion, Erlinda; Dieterich, Douglas T.; Tomer, Yaron

    2013-01-01

    Autoimmune thyroid diseases (AITD) have become increasingly recognized as a complication of interferon-alpha (IFNα) therapy in patients with chronic Hepatitis C virus (HCV) infection. Interferon-induced thyroiditis (IIT) can manifest as clinical thyroiditis in approximately 15% of HCV patients receiving IFNα and subclinical thyroiditis in up to 40% of patients, possibly resulting in either dose reduction or discontinuation of IFNα treatment. However, the exact mechanisms that lead to the development of IIT are unknown and may include IFNα-mediated immune-recruitment as well as direct toxic effects on thyroid follicular cells. We hypothesized that IIT develops in genetically predisposed individuals whose threshold for developing thyroiditis is lowered by IFNα. Therefore, our aim was to identify the susceptibility genes for IIT. We used a genomic convergence approach combining genetic association data with transcriptome analysis of genes upregulated by IFNα. Integrating results of genetic association, transcriptome data, pathway, and haplotype analyses enabled the identification of 3 putative loci, SP100/110/140 (2q37.1), HLA (6p21.3), and TAP1 (6p21.3) that may be involved in the pathogenesis of IIT. Immune-regulation and apoptosis emerged as the predominant mechanisms underlying the etiology of IIT. PMID:23683877

  8. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders.

    PubMed

    Novarino, Gaia; Fenstermaker, Ali G; Zaki, Maha S; Hofree, Matan; Silhavy, Jennifer L; Heiberg, Andrew D; Abdellateef, Mostafa; Rosti, Basak; Scott, Eric; Mansour, Lobna; Masri, Amira; Kayserili, Hulya; Al-Aama, Jumana Y; Abdel-Salam, Ghada M H; Karminejad, Ariana; Kara, Majdi; Kara, Bulent; Bozorgmehri, Bita; Ben-Omran, Tawfeg; Mojahedi, Faezeh; El Din Mahmoud, Iman Gamal; Bouslam, Naima; Bouhouche, Ahmed; Benomar, Ali; Hanein, Sylvain; Raymond, Laure; Forlani, Sylvie; Mascaro, Massimo; Selim, Laila; Shehata, Nabil; Al-Allawi, Nasir; Bindu, P S; Azam, Matloob; Gunel, Murat; Caglayan, Ahmet; Bilguvar, Kaya; Tolun, Aslihan; Issa, Mahmoud Y; Schroth, Jana; Spencer, Emily G; Rosti, Rasim O; Akizu, Naiara; Vaux, Keith K; Johansen, Anide; Koh, Alice A; Megahed, Hisham; Durr, Alexandra; Brice, Alexis; Stevanin, Giovanni; Gabriel, Stacy B; Ideker, Trey; Gleeson, Joseph G

    2014-01-31

    Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.

  9. Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus.

    PubMed

    Julià, Antonio; López-Longo, Francisco Javier; Pérez Venegas, José J; Bonàs-Guarch, Silvia; Olivé, Àlex; Andreu, José Luís; Aguirre-Zamorano, Mª Ángeles; Vela, Paloma; Nolla, Joan M; de la Fuente, José Luís Marenco; Zea, Antonio; Pego-Reigosa, José María; Freire, Mercedes; Díez, Elvira; Rodríguez-Almaraz, Esther; Carreira, Patricia; Blanco, Ricardo; Taboada, Víctor Martínez; López-Lasanta, María; Corbeto, Mireia López; Mercader, Josep M; Torrents, David; Absher, Devin; Marsal, Sara; Fernández-Nebro, Antonio

    2018-05-30

    Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with a complex genetic inheritance. Genome-wide association studies (GWAS) have significantly increased the number of significant loci associated with SLE risk. To date, however, established loci account for less than 30% of the disease heritability and additional risk variants have yet to be identified. Here we performed a GWAS followed by a meta-analysis to identify new genome-wide significant loci for SLE. We genotyped a cohort of 907 patients with SLE (cases) and 1524 healthy controls from Spain and performed imputation using the 1000 Genomes reference data. We tested for association using logistic regression with correction for the principal components of variation. Meta-analysis of the association results was subsequently performed on 7,110,321 variants using genetic data from a large cohort of 4036 patients with SLE and 6959 controls of Northern European ancestry. Genetic association was also tested at the pathway level after removing the effect of known risk loci using PASCAL software. We identified five new loci associated with SLE at the genome-wide level of significance (p < 5 × 10 - 8 ): GRB2, SMYD3, ST8SIA4, LAT2 and ARHGAP27. Pathway analysis revealed several biological processes significantly associated with SLE risk: B cell receptor signaling (p = 5.28 × 10 - 6 ), CTLA4 co-stimulation during T cell activation (p = 3.06 × 10 - 5 ), interleukin-4 signaling (p = 3.97 × 10 - 5 ) and cell surface interactions at the vascular wall (p = 4.63 × 10 - 5 ). Our results identify five novel loci for SLE susceptibility, and biologic pathways associated via multiple low-effect-size loci.

  10. Plant Reactome: a resource for plant pathways and comparative analysis.

    PubMed

    Naithani, Sushma; Preece, Justin; D'Eustachio, Peter; Gupta, Parul; Amarasinghe, Vindhya; Dharmawardhana, Palitha D; Wu, Guanming; Fabregat, Antonio; Elser, Justin L; Weiser, Joel; Keays, Maria; Fuentes, Alfonso Munoz-Pomer; Petryszak, Robert; Stein, Lincoln D; Ware, Doreen; Jaiswal, Pankaj

    2017-01-04

    Plant Reactome (http://plantreactome.gramene.org/) is a free, open-source, curated plant pathway database portal, provided as part of the Gramene project. The database provides intuitive bioinformatics tools for the visualization, analysis and interpretation of pathway knowledge to support genome annotation, genome analysis, modeling, systems biology, basic research and education. Plant Reactome employs the structural framework of a plant cell to show metabolic, transport, genetic, developmental and signaling pathways. We manually curate molecular details of pathways in these domains for reference species Oryza sativa (rice) supported by published literature and annotation of well-characterized genes. Two hundred twenty-two rice pathways, 1025 reactions associated with 1173 proteins, 907 small molecules and 256 literature references have been curated to date. These reference annotations were used to project pathways for 62 model, crop and evolutionarily significant plant species based on gene homology. Database users can search and browse various components of the database, visualize curated baseline expression of pathway-associated genes provided by the Expression Atlas and upload and analyze their Omics datasets. The database also offers data access via Application Programming Interfaces (APIs) and in various standardized pathway formats, such as SBML and BioPAX. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time.

    PubMed

    van Dijk, Aalt D J; Molenaar, Jaap

    2017-01-01

    The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, intricate genetic networks integrate various environmental and endogenous cues such as temperature or hormonal statues. These signals integrate into a network of floral pathway integrator genes. At a quantitative level, it is currently unclear how the impact of genetic variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in upstream signalling components with the expression levels of floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that flowering time depends in a quite linear way on expression levels of floral pathway integrator genes. This gradual, proportional response of flowering time to upstream changes enables a gradual adaptation to changing environmental factors such as temperature and light.

  12. ABC transporters and the proteasome complex are implicated in susceptibility to Stevens-Johnson syndrome and toxic epidermal necrolysis across multiple drugs.

    PubMed

    Nicoletti, Paola; Bansal, Mukesh; Lefebvre, Celine; Guarnieri, Paolo; Shen, Yufeng; Pe'er, Itsik; Califano, Andrea; Floratos, Aris

    2015-01-01

    Stevens-Johnson syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) represent rare but serious adverse drug reactions (ADRs). Both are characterized by distinctive blistering lesions and significant mortality rates. While there is evidence for strong drug-specific genetic predisposition related to HLA alleles, recent genome wide association studies (GWAS) on European and Asian populations have failed to identify genetic susceptibility alleles that are common across multiple drugs. We hypothesize that this is a consequence of the low to moderate effect size of individual genetic risk factors. To test this hypothesis we developed Pointer, a new algorithm that assesses the aggregate effect of multiple low risk variants on a pathway using a gene set enrichment approach. A key advantage of our method is the capability to associate SNPs with genes by exploiting physical proximity as well as by using expression quantitative trait loci (eQTLs) that capture information about both cis- and trans-acting regulatory effects. We control for known bias-inducing aspects of enrichment based analyses, such as: 1) gene length, 2) gene set size, 3) presence of biologically related genes within the same linkage disequilibrium (LD) region, and, 4) genes shared among multiple gene sets. We applied this approach to publicly available SJS/TEN genome-wide genotype data and identified the ABC transporter and Proteasome pathways as potentially implicated in the genetic susceptibility of non-drug-specific SJS/TEN. We demonstrated that the innovative SNP-to-gene mapping phase of the method was essential in detecting the significant enrichment for those pathways. Analysis of an independent gene expression dataset provides supportive functional evidence for the involvement of Proteasome pathways in SJS/TEN cutaneous lesions. These results suggest that Pointer provides a useful framework for the integrative analysis of pharmacogenetic GWAS data, by increasing the power to detect aggregate effects of multiple low risk variants. The software is available for download at https://sourceforge.net/projects/pointergsa/.

  13. Diverse Genome-wide Association Studies Associate the IL12/IL23 Pathway with Crohn Disease

    PubMed Central

    Wang, Kai; Zhang, Haitao; Kugathasan, Subra; Annese, Vito; Bradfield, Jonathan P.; Russell, Richard K.; Sleiman, Patrick M.A.; Imielinski, Marcin; Glessner, Joseph; Hou, Cuiping; Wilson, David C.; Walters, Thomas; Kim, Cecilia; Frackelton, Edward C.; Lionetti, Paolo; Barabino, Arrigo; Van Limbergen, Johan; Guthery, Stephen; Denson, Lee; Piccoli, David; Li, Mingyao; Dubinsky, Marla; Silverberg, Mark; Griffiths, Anne; Grant, Struan F.A.; Satsangi, Jack; Baldassano, Robert; Hakonarson, Hakon

    2009-01-01

    Previous genome-wide association (GWA) studies typically focus on single-locus analysis, which may not have the power to detect the majority of genuinely associated loci. Here, we applied pathway analysis using Affymetrix SNP genotype data from the Wellcome Trust Case Control Consortium (WTCCC) and uncovered significant association between Crohn Disease (CD) and the IL12/IL23 pathway, harboring 20 genes (p = 8 × 10−5). Interestingly, the pathway contains multiple genes (IL12B and JAK2) or homologs of genes (STAT3 and CCR6) that were recently identified as genuine susceptibility genes only through meta-analysis of several GWA studies. In addition, the pathway contains other susceptibility genes for CD, including IL18R1, JUN, IL12RB1, and TYK2, which do not reach genome-wide significance by single-marker association tests. The observed pathway-specific association signal was subsequently replicated in three additional GWA studies of European and African American ancestry generated on the Illumina HumanHap550 platform. Our study suggests that examination beyond individual SNP hits, by focusing on genetic networks and pathways, is important to unleashing the true power of GWA studies. PMID:19249008

  14. Genetic variation in the prostaglandin E2 pathway is associated with primary graft dysfunction.

    PubMed

    Diamond, Joshua M; Akimova, Tatiana; Kazi, Altaf; Shah, Rupal J; Cantu, Edward; Feng, Rui; Levine, Matthew H; Kawut, Steven M; Meyer, Nuala J; Lee, James C; Hancock, Wayne W; Aplenc, Richard; Ware, Lorraine B; Palmer, Scott M; Bhorade, Sangeeta; Lama, Vibha N; Weinacker, Ann; Orens, Jonathan; Wille, Keith; Crespo, Maria; Lederer, David J; Arcasoy, Selim; Demissie, Ejigayehu; Christie, Jason D

    2014-03-01

    Biologic pathways with significant genetic conservation across human populations have been implicated in the pathogenesis of primary graft dysfunction (PGD). The evaluation of the role of recipient genetic variation in PGD has thus far been limited to single, candidate gene analyses. We sought to identify genetic variants in lung transplant recipients that are responsible for increased risk of PGD using a two-phase large-scale genotyping approach. Phase 1 was a large-scale candidate gene association study of the multicenter, prospective Lung Transplant Outcomes Group cohort. Phase 2 included functional evaluation of selected variants and a bioinformatics screening of variants identified in phase 1. After genetic data quality control, 680 lung transplant recipients were included in the analysis. In phase 1, a total of 17 variants were significantly associated with PGD, four of which were in the prostaglandin E2 family of genes. Among these were a coding variant in the gene encoding prostaglandin E2 synthase (PTGES2; P = 9.3 × 10(-5)) resulting in an arginine to histidine substitution at amino acid position 298, and three variants in a block containing the 5' promoter and first intron of the PTGER4 gene (encoding prostaglandin E2 receptor subtype 4; all P < 5 × 10(-5)). Functional evaluation in regulatory T cells identified that rs4434423A in the PTGER4 gene was associated with differential suppressive function of regulatory T cells. Further research aimed at replication and additional functional insight into the role played by genetic variation in prostaglandin E2 synthetic and signaling pathways in PGD is warranted.

  15. Serrated colorectal cancer: Molecular classification, prognosis, and response to chemotherapy

    PubMed Central

    Murcia, Oscar; Juárez, Miriam; Hernández-Illán, Eva; Egoavil, Cecilia; Giner-Calabuig, Mar; Rodríguez-Soler, María; Jover, Rodrigo

    2016-01-01

    Molecular advances support the existence of an alternative pathway of colorectal carcinogenesis that is based on the hypermethylation of specific DNA regions that silences tumor suppressor genes. This alternative pathway has been called the serrated pathway due to the serrated appearance of tumors in histological analysis. New classifications for colorectal cancer (CRC) were proposed recently based on genetic profiles that show four types of molecular alterations: BRAF gene mutations, KRAS gene mutations, microsatellite instability, and hypermethylation of CpG islands. This review summarizes what is known about the serrated pathway of CRC, including CRC molecular and clinical features, prognosis, and response to chemotherapy. PMID:27053844

  16. An Adaptive Genetic Association Test Using Double Kernel Machines

    PubMed Central

    Zhan, Xiang; Epstein, Michael P.; Ghosh, Debashis

    2014-01-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study. PMID:26640602

  17. Genetic and Epigenetic Events Generate Multiple Pathways in Colorectal Cancer Progression

    PubMed Central

    Pancione, Massimo; Remo, Andrea; Colantuoni, Vittorio

    2012-01-01

    Colorectal cancer (CRC) is one of the most common causes of death, despite decades of research. Initially considered as a disease due to genetic mutations, it is now viewed as a complex malignancy because of the involvement of epigenetic abnormalities. A functional equivalence between genetic and epigenetic mechanisms has been suggested in CRC initiation and progression. A hallmark of CRC is its pathogenetic heterogeneity attained through at least three distinct pathways: a traditional (adenoma-carcinoma sequence), an alternative, and more recently the so-called serrated pathway. While the alternative pathway is more heterogeneous and less characterized, the traditional and serrated pathways appear to be more homogeneous and clearly distinct. One unsolved question in colon cancer biology concerns the cells of origin and from which crypt compartment the different pathways originate. Based on molecular and pathological evidences, we propose that the traditional and serrated pathways originate from different crypt compartments explaining their genetic/epigenetic and clinicopathological differences. In this paper, we will discuss the current knowledge of CRC pathogenesis and, specifically, summarize the role of genetic/epigenetic changes in the origin and progression of the multiple CRC pathways. Elucidation of the link between the molecular and clinico-pathological aspects of CRC would improve our understanding of its etiology and impact both prevention and treatment. PMID:22888469

  18. Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape

    PubMed Central

    Mattiazzi, M.; Jambhekar, A.; Kaferle, P.; DeRisi, J. L.; Križaj, I.

    2010-01-01

    Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them. Electronic supplementary material The online version of this article (doi:10.1007/s00438-010-0533-8) contains supplementary material, which is available to authorized users. PMID:20379744

  19. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas.

    PubMed

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko; Kanai, Yae

    2015-12-01

    CpG-island methylator phenotype (CIMP)-positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP-positive renal carcinogenesis. Genome (whole-exome and copy number), transcriptome and proteome (two-dimensional image converted analysis of liquid chromatography-mass spectrometry) analyses were performed using tissue specimens of 87 CIMP-negative and 14 CIMP-positive clear cell RCCs and corresponding specimens of non-cancerous renal cortex. Genes encoding microtubule-associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non-synonymous single-nucleotide mutations and insertions/deletions) in CIMP-positive RCCs, whereas CIMP-negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP-positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the "The metaphase checkpoint (p = 1.427 × 10(-6))," "Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10(-6))" and "Spindle assembly and chromosome separation (p = 9.260 × 10(-6))" pathways. Quantitative RT-PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP-positive than in CIMP-negative RCCs. All CIMP-positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP-positive renal carcinogenesis, and that AURKA and AURKB may be potential therapeutic targets in more aggressive CIMP-positive RCCs. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  20. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas

    PubMed Central

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko

    2015-01-01

    CpG‐island methylator phenotype (CIMP)‐positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP‐positive renal carcinogenesis. Genome (whole‐exome and copy number), transcriptome and proteome (two‐dimensional image converted analysis of liquid chromatography‐mass spectrometry) analyses were performed using tissue specimens of 87 CIMP‐negative and 14 CIMP‐positive clear cell RCCs and corresponding specimens of non‐cancerous renal cortex. Genes encoding microtubule‐associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non‐synonymous single‐nucleotide mutations and insertions/deletions) in CIMP‐positive RCCs, whereas CIMP‐negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP‐positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the “The metaphase checkpoint (p = 1.427 × 10−6),” “Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10−6)” and “Spindle assembly and chromosome separation (p = 9.260 × 10−6)” pathways. Quantitative RT‐PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP‐positive than in CIMP‐negative RCCs. All CIMP‐positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP‐positive renal carcinogenesis, and that AURKA and AURKB may be potential therapeutic targets in more aggressive CIMP‐positive RCCs. PMID:26061684

  1. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.

    PubMed

    Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.

  2. Estrogen pathway polymorphisms in relation to primary open angle glaucoma: An analysis accounting for gender from the United States

    PubMed Central

    Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.

    2013-01-01

    Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166

  3. Examination of association to autism of common genetic variationin genes related to dopamine.

    PubMed

    Anderson, B M; Schnetz-Boutaud, N; Bartlett, J; Wright, H H; Abramson, R K; Cuccaro, M L; Gilbert, J R; Pericak-Vance, M A; Haines, J L

    2008-12-01

    Autism is a severe neurodevelopmental disorder characterized by a triad of complications. Autistic individuals display significant disturbances in language and reciprocal social interactions, combined with repetitive and stereotypic behaviors. Prevalence studies suggest that autism is more common than originally believed, with recent estimates citing a rate of one in 150. Although multiple genetic linkage and association studies have yielded multiple suggestive genes or chromosomal regions, a specific risk locus has yet to be identified and widely confirmed. Because many etiologies have been suggested for this complex syndrome, we hypothesize that one of the difficulties in identifying autism genes is that multiple genetic variants may be required to significantly increase the risk of developing autism. Thus, we took the alternative approach of examining 14 prominent dopamine pathway candidate genes for detailed study by genotyping 28 single nucleotide polymorphisms. Although we did observe a nominally significant association for rs2239535 (P=0.008) on chromosome 20, single-locus analysis did not reveal any results as significant after correction for multiple comparisons. No significant interaction was identified when Multifactor Dimensionality Reduction was employed to test specifically for multilocus effects. Although genome-wide linkage scans in autism have provided support for linkage to various loci along the dopamine pathway, our study does not provide strong evidence of linkage or association to any specific gene or combination of genes within the pathway. These results demonstrate that common genetic variation within the tested genes located within this pathway at most play a minor to moderate role in overall autism pathogenesis.

  4. WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data

    PubMed Central

    Yi, Ming; Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H; Stephens, Robert M

    2006-01-01

    Background Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Biocarta, GO (Gene Ontology) terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs). WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at . PMID:16423281

  5. Witnessing stressful events induces glutamatergic synapse pathway alterations and gene set enrichment of positive EPSP regulation within the VTA of adult mice: An ontology based approach

    NASA Astrophysics Data System (ADS)

    Brewer, Jacob S.

    It is well known that exposure to severe stress increases the risk for developing mood disorders. Currently, the neurobiological and genetic mechanisms underlying the functional effects of psychological stress are poorly understood. Presenting a major obstacle to the study of psychological stress is the inability of current animal models of stress to distinguish between physical and psychological stressors. A novel paradigm recently developed by Warren et al., is able to tease apart the effects of physical and psychological stress in adult mice by allowing these mice to "witness," the social defeat of another mouse thus removing confounding variables associated with physical stressors. Using this 'witness' model of stress and RNA-Seq technology, the current study aims to study the genetic effects of psychological stress. After, witnessing the social defeat of another mouse, VTA tissue was extracted, sequenced, and analyzed for differential expression. Since genes often work together in complex networks, a pathway and gene ontology (GO) analysis was performed using data from the differential expression analysis. The pathway and GO analyzes revealed a perturbation of the glutamatergic synapse pathway and an enrichment of positive excitatory post-synaptic potential regulation. This is consistent with the excitatory synapse theory of depression. Together these findings demonstrate a dysregulation of the mesolimbic reward pathway at the gene level as a result of psychological stress potentially contributing to depressive like behaviors.

  6. New insights into the roles of NADPH oxidases in sexual development and ascospore germination in Sordaria macrospora.

    PubMed

    Dirschnabel, Daniela Elisabeth; Nowrousian, Minou; Cano-Domínguez, Nallely; Aguirre, Jesus; Teichert, Ines; Kück, Ulrich

    2014-03-01

    NADPH oxidase (NOX)-derived reactive oxygen species (ROS) act as signaling determinants that induce different cellular processes. To characterize NOX function during fungal development, we utilized the genetically tractable ascomycete Sordaria macrospora. Genome sequencing of a sterile mutant led us to identify the NADPH oxidase encoding nox1 as a gene required for fruiting body formation, regular hyphal growth, and hyphal fusion. These phenotypes are shared by nor1, lacking the NOX regulator NOR1. Further phenotypic analyses revealed a high correlation between increased ROS production and hyphal fusion deficiencies in nox1 and other sterile mutants. A genome-wide transcriptional profiling analysis of mycelia and isolated protoperithecia from wild type and nox1 revealed that nox1 inactivation affects the expression of genes related to cytoskeleton remodeling, hyphal fusion, metabolism, and mitochondrial respiration. Genetic analysis of nox2, lacking the NADPH oxidase 2 gene, nor1, and transcription factor deletion mutant ste12, revealed a strict melanin-dependent ascospore germination defect, indicating a common genetic pathway for these three genes. We report that gsa3, encoding a G-protein α-subunit, and sac1, encoding cAMP-generating adenylate cyclase, act in a separate pathway during the germination process. The finding that cAMP inhibits ascospore germination in a melanin-dependent manner supports a model in which cAMP inhibits NOX2 activity, thus suggesting a link between both pathways. Our results expand the current knowledge on the role of NOX enzymes in fungal development and provide a frame to define upstream and downstream components of the NOX signaling pathways in fungi.

  7. New Insights Into the Roles of NADPH Oxidases in Sexual Development and Ascospore Germination in Sordaria macrospora

    PubMed Central

    Dirschnabel, Daniela Elisabeth; Nowrousian, Minou; Cano-Domínguez, Nallely; Aguirre, Jesus; Teichert, Ines; Kück, Ulrich

    2014-01-01

    NADPH oxidase (NOX)-derived reactive oxygen species (ROS) act as signaling determinants that induce different cellular processes. To characterize NOX function during fungal development, we utilized the genetically tractable ascomycete Sordaria macrospora. Genome sequencing of a sterile mutant led us to identify the NADPH oxidase encoding nox1 as a gene required for fruiting body formation, regular hyphal growth, and hyphal fusion. These phenotypes are shared by ∆nor1, lacking the NOX regulator NOR1. Further phenotypic analyses revealed a high correlation between increased ROS production and hyphal fusion deficiencies in ∆nox1 and other sterile mutants. A genome-wide transcriptional profiling analysis of mycelia and isolated protoperithecia from wild type and ∆nox1 revealed that nox1 inactivation affects the expression of genes related to cytoskeleton remodeling, hyphal fusion, metabolism, and mitochondrial respiration. Genetic analysis of ∆nox2, lacking the NADPH oxidase 2 gene, ∆nor1, and transcription factor deletion mutant ∆ste12, revealed a strict melanin-dependent ascospore germination defect, indicating a common genetic pathway for these three genes. We report that gsa3, encoding a G-protein α-subunit, and sac1, encoding cAMP-generating adenylate cyclase, act in a separate pathway during the germination process. The finding that cAMP inhibits ascospore germination in a melanin-dependent manner supports a model in which cAMP inhibits NOX2 activity, thus suggesting a link between both pathways. Our results expand the current knowledge on the role of NOX enzymes in fungal development and provide a frame to define upstream and downstream components of the NOX signaling pathways in fungi. PMID:24407906

  8. MaizeCyc: Metabolic networks in maize

    USDA-ARS?s Scientific Manuscript database

    MaizeCyc is a catalog of known and predicted metabolic and transport pathways that enables plant researchers to graphically represent the metabolome of maize (Zea mays), thereby supporting integrated systems-biology analysis. Supported analyses include molecular and genetic/phenotypic profiling (e.g...

  9. Update on the role of genetics in the onset of age-related macular degeneration

    PubMed Central

    Francis, Peter James; Klein, Michael L

    2011-01-01

    Age-related macular degeneration (AMD), akin to other common age-related diseases, has a complex pathogenesis and arises from the interplay of genes, environmental factors, and personal characteristics. The past decade has seen very significant strides towards identification of those precise genetic variants associated with disease. That genes encoding proteins of the (alternative) complement pathway (CFH, C2, CFB, C3, CFI) are major players in etiology came as a surprise to many but has already lead to the development of therapies entering human clinical trials. Other genes replicated in many populations ARMS2, APOE, variants near TIMP3, and genes involved in lipid metabolism have also been implicated in disease pathogenesis. The genes discovered to date can be estimated to account for approximately 50% of the genetic variance of AMD and have been discovered by candidate gene approaches, pathway analysis, and latterly genome-wide association studies. Next generation sequencing modalities and meta-analysis techniques are being employed with the aim of identifying the remaining rarer but, perhaps, individually more significant sequence variations, linked to disease status. Complementary studies have also begun to utilize this genetic information to develop clinically useful algorithms to predict AMD risk and evaluate pharmacogenetics. In this article, contemporary commentary is provided on rapidly progressing efforts to elucidate the genetic pathogenesis of AMD as the field stands at the end of the first decade of the 21st century. PMID:21887094

  10. Mendelian randomization with fine-mapped genetic data: Choosing from large numbers of correlated instrumental variables.

    PubMed

    Burgess, Stephen; Zuber, Verena; Valdes-Marquez, Elsa; Sun, Benjamin B; Hopewell, Jemma C

    2017-12-01

    Mendelian randomization uses genetic variants to make causal inferences about the effect of a risk factor on an outcome. With fine-mapped genetic data, there may be hundreds of genetic variants in a single gene region any of which could be used to assess this causal relationship. However, using too many genetic variants in the analysis can lead to spurious estimates and inflated Type 1 error rates. But if only a few genetic variants are used, then the majority of the data is ignored and estimates are highly sensitive to the particular choice of variants. We propose an approach based on summarized data only (genetic association and correlation estimates) that uses principal components analysis to form instruments. This approach has desirable theoretical properties: it takes the totality of data into account and does not suffer from numerical instabilities. It also has good properties in simulation studies: it is not particularly sensitive to varying the genetic variants included in the analysis or the genetic correlation matrix, and it does not have greatly inflated Type 1 error rates. Overall, the method gives estimates that are less precise than those from variable selection approaches (such as using a conditional analysis or pruning approach to select variants), but are more robust to seemingly arbitrary choices in the variable selection step. Methods are illustrated by an example using genetic associations with testosterone for 320 genetic variants to assess the effect of sex hormone related pathways on coronary artery disease risk, in which variable selection approaches give inconsistent inferences. © 2017 The Authors Genetic Epidemiology Published by Wiley Periodicals, Inc.

  11. Integrated analyses for genetic markers of polycystic ovary syndrome with 9 case-control studies of gene expression profiles.

    PubMed

    Lu, Chenqi; Liu, Xiaoqin; Wang, Lin; Jiang, Ning; Yu, Jun; Zhao, Xiaobo; Hu, Hairong; Zheng, Saihua; Li, Xuelian; Wang, Guiying

    2017-01-10

    Due to genetic heterogeneity and variable diagnostic criteria, genetic studies of polycystic ovary syndrome are particularly challenging. Furthermore, lack of sufficiently large cohorts limits the identification of susceptibility genes contributing to polycystic ovary syndrome. Here, we carried out a systematic search of studies deposited in the Gene Expression Omnibus database through August 31, 2016. The present analyses included studies with: 1) patients with polycystic ovary syndrome and normal controls, 2) gene expression profiling of messenger RNA, and 3) sufficient data for our analysis. Ultimately, a total of 9 studies with 13 datasets met the inclusion criteria and were performed for the subsequent integrated analyses. Through comprehensive analyses, there were 13 genetic factors overlapped in all datasets and identified as significant specific genes for polycystic ovary syndrome. After quality control assessment, there were six datasets remained. Further gene ontology enrichment and pathway analyses suggested that differentially expressed genes mainly enriched in oocyte pathways. These findings provide potential molecular markers for diagnosis and prognosis of polycystic ovary syndrome, and need in-depth studies on the exact function and mechanism in polycystic ovary syndrome.

  12. Sporadic and hereditary amyotrophic lateral sclerosis (ALS).

    PubMed

    Ajroud-Driss, Senda; Siddique, Teepu

    2015-04-01

    Genetic discoveries in ALS have a significant impact on deciphering molecular mechanisms of motor neuron degeneration. The identification of SOD1 as the first genetic cause of ALS led to the engineering of the SOD1 mouse, the backbone of ALS research, and set the stage for future genetic breakthroughs. In addition, careful analysis of ALS pathology added valuable pieces to the ALS puzzle. From this joint effort, major pathogenic pathways emerged. Whereas the study of TDP43, FUS and C9ORF72 pointed to the possible involvement of RNA biology in motor neuron survival, recent work on P62 and UBQLN2 refocused research on protein degradation pathways. Despite all these efforts, the etiology of most cases of sporadic ALS remains elusive. Newly acquired genomic tools now allow the identification of genetic and epigenetic factors that can either increase ALS risk or modulate disease phenotype. These developments will certainly allow for better disease modeling to identify novel therapeutic targets for ALS. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A glimpse into the genetic basis of symbiosis between Hydrogenophaga and their helper strains in the biodegradation of 4-aminobenzenesulfonate

    PubMed Central

    Kim, Kangsan; Gan, Han Ming

    2017-01-01

    We report the whole genome sequences of Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2, the first reported bacterial co-culture capable of degrading 4-aminobenzenesulfonate (4-ABS), a recalcitrant industrial waste product. To gain insights into the genetic basis for the syntrophic interaction between this symbiotic pair and also another recently reported Hydrogenophaga associated co-culture, Hydrogenophaga sp. PBC and Ralstonia sp. PBA, we performed detailed genetic analysis of these four strains focusing on the metabolic pathways associated with biotin, para-aminobenzoic acid (pABA), and protocatechuate metabolism. Both assembled Hydrogenophaga draft genomes are missing a majority of the genetic components associated in the biosynthetic pathway of pABA and biotin. Interestingly, a fused pABA synthase was found in R. sp PBA but not in A. radiobacter S2. Furthermore, using whole genome data, the taxonomic classification of R. sp. PBA and A. radiobacter S2 (both previously inferred from 16S rRNA gene) was re-investigated, providing new evidence to propose for their re-classification at the genus and species level, respectively PMID:28775791

  14. An Optimal Bahadur-Efficient Method in Detection of Sparse Signals with Applications to Pathway Analysis in Sequencing Association Studies.

    PubMed

    Dai, Hongying; Wu, Guodong; Wu, Michael; Zhi, Degui

    2016-01-01

    Next-generation sequencing data pose a severe curse of dimensionality, complicating traditional "single marker-single trait" analysis. We propose a two-stage combined p-value method for pathway analysis. The first stage is at the gene level, where we integrate effects within a gene using the Sequence Kernel Association Test (SKAT). The second stage is at the pathway level, where we perform a correlated Lancaster procedure to detect joint effects from multiple genes within a pathway. We show that the Lancaster procedure is optimal in Bahadur efficiency among all combined p-value methods. The Bahadur efficiency,[Formula: see text], compares sample sizes among different statistical tests when signals become sparse in sequencing data, i.e. ε →0. The optimal Bahadur efficiency ensures that the Lancaster procedure asymptotically requires a minimal sample size to detect sparse signals ([Formula: see text]). The Lancaster procedure can also be applied to meta-analysis. Extensive empirical assessments of exome sequencing data show that the proposed method outperforms Gene Set Enrichment Analysis (GSEA). We applied the competitive Lancaster procedure to meta-analysis data generated by the Global Lipids Genetics Consortium to identify pathways significantly associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.

  15. Molecular and Genomic Alterations in Glioblastoma Multiforme.

    PubMed

    Crespo, Ines; Vital, Ana Louisa; Gonzalez-Tablas, María; Patino, María del Carmen; Otero, Alvaro; Lopes, María Celeste; de Oliveira, Catarina; Domingues, Patricia; Orfao, Alberto; Tabernero, Maria Dolores

    2015-07-01

    In recent years, important advances have been achieved in the understanding of the molecular biology of glioblastoma multiforme (GBM); thus, complex genetic alterations and genomic profiles, which recurrently involve multiple signaling pathways, have been defined, leading to the first molecular/genetic classification of the disease. In this regard, different genetic alterations and genetic pathways appear to distinguish primary (eg, EGFR amplification) versus secondary (eg, IDH1/2 or TP53 mutation) GBM. Such genetic alterations target distinct combinations of the growth factor receptor-ras signaling pathways, as well as the phosphatidylinositol 3-kinase/phosphatase and tensin homolog/AKT, retinoblastoma/cyclin-dependent kinase (CDK) N2A-p16(INK4A), and TP53/mouse double minute (MDM) 2/MDM4/CDKN2A-p14(ARF) pathways, in cells that present features associated with key stages of normal neurogenesis and (normal) central nervous system cell types. This translates into well-defined genomic profiles that have been recently classified by The Cancer Genome Atlas Consortium into four subtypes: classic, mesenchymal, proneural, and neural GBM. Herein, we review the most relevant genetic alterations of primary versus secondary GBM, the specific signaling pathways involved, and the overall genomic profile of this genetically heterogeneous group of malignant tumors. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Use of a bovine genome chip to identify new biological pathways for beef quality in cattle.

    PubMed

    Guifen, Liu; Xiaomu, Liu; Fachun, Wan; Xiuwen, Tan; Haijian, Cheng; Enliang, Song

    2012-12-01

    The accumulation of muscle is largely influenced by the genetic background of cattle. Muscle tissue was collected from the longissimus muscle of Lilu beef cattle at 12, 18, 24 and 30 months old. Using meat quality analysis, we found that the Lilu beef cattle have good production and slaughter performance, the performance meets the criterion of beef cattle. Microarray analysis was able to identify a total of 4,219 genes that are differentially expressed (P ≤ 0.01) between the two groups of cattle (12 vs 18; 18 vs 24; 24 vs 30). Bioinformatics analysis results suggested that most of the differentially expressed genes are involved in the metabolic pathways and neuroactive ligand-receptor interaction pathways. In the future study that aims to look for genes relating to growth and meat quality, we will focus on the genes that have been shown to have a significant variation between groups and are involved in the two pathways.

  17. [Exploration of common biological pathways for attention deficit hyperactivity disorder and low birth weight].

    PubMed

    Xiang, Bo; Yu, Minglan; Liang, Xuemei; Lei, Wei; Huang, Chaohua; Chen, Jing; He, Wenying; Zhang, Tao; Li, Tao; Liu, Kezhi

    2017-12-10

    To explore common biological pathways for attention deficit hyperactivity disorder (ADHD) and low birth weight (LBW). Thei-Gsea4GwasV2 software was used to analyze the result of genome-wide association analysis (GWAS) for LBW (pathways were derived from Reactome), and nominally significant (P< 0.05, FDR< 0.25) pathways were tested for replication in ADHD.Significant pathways were analyzed with DAPPLE and Reatome FI software to identify genes involved in such pathways, with each cluster enriched with the gene ontology (GO). The Centiscape2.0 software was used to calculate the degree of genetic networks and the betweenness value to explore the core node (gene). Weighed gene co-expression network analysis (WGCNA) was then used to explore the co-expression of genes in these pathways.With gene expression data derived from BrainSpan, GO enrichment was carried out for each gene module. Eleven significant biological pathways was identified in association with LBW, among which two (Selenoamino acid metabolism and Diseases associated with glycosaminoglycan metabolism) were replicated during subsequent ADHD analysis. Network analysis of 130 genes in these pathways revealed that some of the sub-networksare related with morphology of cerebellum, development of hippocampus, and plasticity of synaptic structure. Upon co-expression network analysis, 120 genes passed the quality control and were found to express in 3 gene modules. These modules are mainly related to the regulation of synaptic structure and activity regulation. ADHD and LBW share some biological regulation processes. Anomalies of such proces sesmay predispose to ADHD.

  18. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology

    PubMed Central

    2015-01-01

    Background Sufficient knowledge of molecular and genetic interactions, which comprise the entire basis of the functioning of living systems, is one of the necessary requirements for successfully answering almost any research question in the field of biology and medicine. To date, more than 24 million scientific papers can be found in PubMed, with many of them containing descriptions of a wide range of biological processes. The analysis of such tremendous amounts of data requires the use of automated text-mining approaches. Although a handful of tools have recently been developed to meet this need, none of them provide error-free extraction of highly detailed information. Results The ANDSystem package was developed for the reconstruction and analysis of molecular genetic networks based on an automated text-mining technique. It provides a detailed description of the various types of interactions between genes, proteins, microRNA's, metabolites, cellular components, pathways and diseases, taking into account the specificity of cell lines and organisms. Although the accuracy of ANDSystem is comparable to other well known text-mining tools, such as Pathway Studio and STRING, it outperforms them in having the ability to identify an increased number of interaction types. Conclusion The use of ANDSystem, in combination with Pathway Studio and STRING, can improve the quality of the automated reconstruction of molecular and genetic networks. ANDSystem should provide a useful tool for researchers working in a number of different fields, including biology, biotechnology, pharmacology and medicine. PMID:25881313

  19. Molecular insights into the association of obesity with breast cancer risk: relevance to xenobiotic metabolism and CpG island methylation of tumor suppressor genes.

    PubMed

    Naushad, Shaik Mohammad; Hussain, Tajamul; Al-Attas, Omar S; Prayaga, Aruna; Digumarti, Raghunadha Rao; Gottumukkala, Suryanarayana Raju; Kutala, Vijay Kumar

    2014-07-01

    Obesity, genetic polymorphisms of xenobiotic metabolic pathway, hypermethylation of tumor suppressor genes, and hypomethylation of proapoptotic genes are known to be independent risk factors for breast cancer. The objective of this study is to evaluate the combined effect of these environmental, genetic, and epigenetic risk factors on the susceptibility to breast cancer. PCR-RFLP and multiplex PCR were used for the genetic analysis of six variants of xenobiotic metabolic pathway. Methylation-specific PCR was used for the epigenetic analysis of four genetic loci. Multifactor dimensionality reduction analysis revealed a significant interaction between the body mass index (BMI) and catechol-O-methyl transferase H108L variant alone or in combination with cytochrome P450 (CYP) 1A1m1 variant. Women with "Luminal A" breast cancer phenotype had higher BMI compared to other phenotypes and healthy controls. There was no association between the BMI and tumor grade. The post-menopausal obese women exhibited lower glutathione levels. BMI showed a positive association with the methylation of extracellular superoxide dismutase (r = 0.21, p < 0.05), Ras-association (RalGDS/AF-6) domain family member 1 (RASSF1A) (r = 0.31, p < 0.001), and breast cancer type 1 susceptibility protein (r = 0.19, p < 0.05); and inverse association with methylation of BNIP3 (r = -0.48, p < 0.0001). To conclude based on these results, obesity increases the breast cancer susceptibility by two possible mechanisms: (i) by interacting with xenobiotic genetic polymorphisms in inducing increased oxidative DNA damage and (ii) by altering the methylome of several tumor suppressor genes.

  20. New Insights from Drosophila into the Regulation of EGFR Signaling.

    PubMed

    Harden, Nicholas

    2017-01-01

    Genetic analysis of Egfr signaling in Drosophila has a long-standing track record of making important contributions to our understanding of the Egfr pathway. While the central Ras/MAPK pathway has long been well defined, there is much to learn with regard to its cross talk with other pathways and how it is regulated. A better understanding of the regulation of Egfr signaling is of particular interest with regard to the participation of misregulated Egfr signaling in tumorigenesis. Recent studies in the fly have led to some surprising results, identifying regulators of Egfr acting in unexpected ways.

  1. Redundancy control in pathway databases (ReCiPa): an application for improving gene-set enrichment analysis in Omics studies and "Big data" biology.

    PubMed

    Vivar, Juan C; Pemu, Priscilla; McPherson, Ruth; Ghosh, Sujoy

    2013-08-01

    Abstract Unparalleled technological advances have fueled an explosive growth in the scope and scale of biological data and have propelled life sciences into the realm of "Big Data" that cannot be managed or analyzed by conventional approaches. Big Data in the life sciences are driven primarily via a diverse collection of 'omics'-based technologies, including genomics, proteomics, metabolomics, transcriptomics, metagenomics, and lipidomics. Gene-set enrichment analysis is a powerful approach for interrogating large 'omics' datasets, leading to the identification of biological mechanisms associated with observed outcomes. While several factors influence the results from such analysis, the impact from the contents of pathway databases is often under-appreciated. Pathway databases often contain variously named pathways that overlap with one another to varying degrees. Ignoring such redundancies during pathway analysis can lead to the designation of several pathways as being significant due to high content-similarity, rather than truly independent biological mechanisms. Statistically, such dependencies also result in correlated p values and overdispersion, leading to biased results. We investigated the level of redundancies in multiple pathway databases and observed large discrepancies in the nature and extent of pathway overlap. This prompted us to develop the application, ReCiPa (Redundancy Control in Pathway Databases), to control redundancies in pathway databases based on user-defined thresholds. Analysis of genomic and genetic datasets, using ReCiPa-generated overlap-controlled versions of KEGG and Reactome pathways, led to a reduction in redundancy among the top-scoring gene-sets and allowed for the inclusion of additional gene-sets representing possibly novel biological mechanisms. Using obesity as an example, bioinformatic analysis further demonstrated that gene-sets identified from overlap-controlled pathway databases show stronger evidence of prior association to obesity compared to pathways identified from the original databases.

  2. A Novel Role for the BMP Antagonist Noggin in Sensitizing Cells to Non-canonical Wnt-5a/Ror2/Disheveled Pathway Activation

    PubMed Central

    Bernatik, Ondrej; Radaszkiewicz, Tomasz; Behal, Martin; Dave, Zankruti; Witte, Florian; Mahl, Annika; Cernohorsky, Nicole H.; Krejci, Pavel; Stricker, Sigmar; Bryja, Vitezslav

    2017-01-01

    Mammalian limb development is driven by the integrative input from several signaling pathways; a failure to receive or a misinterpretation of these signals results in skeletal defects. The brachydactylies, a group of overlapping inherited human hand malformation syndromes, are mainly caused by mutations in BMP signaling pathway components. Two closely related forms, Brachydactyly type B2 (BDB2) and BDB1 are caused by mutations in the BMP antagonist Noggin (NOG) and the atypical receptor tyrosine kinase ROR2 that acts as a receptor in the non-canonical Wnt pathway. Genetic analysis of Nog and Ror2 functional interaction via crossing Noggin and Ror2 mutant mice revealed a widening of skeletal elements in compound but not in any of the single mutants, thus indicating genetic interaction. Since ROR2 is a non-canonical Wnt co-receptor specific for Wnt-5a we speculated that this phenotype might be a result of deregulated Wnt-5a signaling activation, which is known to be essential for limb skeletal elements growth and patterning. We show that Noggin potentiates activation of the Wnt-5a-Ror2-Disheveled (Dvl) pathway in mouse embryonic fibroblast (MEF) cells in a Ror2-dependent fashion. Rat chondrosarcoma chondrocytes (RCS), however, are not able to respond to Noggin in this fashion unless growth arrest is induced by FGF2. In summary, our data demonstrate genetic interaction between Noggin and Ror2 and show that Noggin can sensitize cells to Wnt-5a/Ror2-mediated non-canonical Wnt signaling, a feature that in cartilage may depend on the presence of active FGF signaling. These findings indicate an unappreciated function of Noggin that will help to understand BMP and Wnt/PCP signaling pathway interactions. PMID:28523267

  3. Genetic and environmental influences on female sexual orientation, childhood gender typicality and adult gender identity.

    PubMed

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates--childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation.

  4. Integrated single-cell genetic and transcriptional analysis suggests novel drivers of chronic lymphocytic leukemia

    PubMed Central

    Wang, Lili; Fan, Jean; Francis, Joshua M.; Georghiou, George; Hergert, Sarah; Li, Shuqiang; Gambe, Rutendo; Zhou, Chensheng W.; Yang, Chunxiao; Xiao, Sheng; Cin, Paola Dal; Bowden, Michaela; Kotliar, Dylan; Shukla, Sachet A.; Brown, Jennifer R.; Neuberg, Donna; Alessi, Dario R.; Zhang, Cheng-Zhong; Kharchenko, Peter V.; Livak, Kenneth J.; Wu, Catherine J.

    2017-01-01

    Intra-tumoral genetic heterogeneity has been characterized across cancers by genome sequencing of bulk tumors, including chronic lymphocytic leukemia (CLL). In order to more accurately identify subclones, define phylogenetic relationships, and probe genotype–phenotype relationships, we developed methods for targeted mutation detection in DNA and RNA isolated from thousands of single cells from five CLL samples. By clearly resolving phylogenic relationships, we uncovered mutated LCP1 and WNK1 as novel CLL drivers, supported by functional evidence demonstrating their impact on CLL pathways. Integrative analysis of somatic mutations with transcriptional states prompts the idea that convergent evolution generates phenotypically similar cells in distinct genetic branches, thus creating a cohesive expression profile in each CLL sample despite the presence of genetic heterogeneity. Our study highlights the potential for single-cell RNA-based targeted analysis to sensitively determine transcriptional and mutational profiles of individual cancer cells, leading to increased understanding of driving events in malignancy. PMID:28679620

  5. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed

    Johnson Hamlet, M R; Perkins, L A

    2001-11-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.

  6. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed Central

    Johnson Hamlet, M R; Perkins, L A

    2001-01-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway. PMID:11729154

  7. An initial investigation of associations between dopamine-linked genetic variation and smoking motives in African Americans.

    PubMed

    Bidwell, L C; McGeary, J E; Gray, J C; Palmer, R H C; Knopik, V S; MacKillop, J

    2015-11-01

    Nicotine dependence (ND) is a heterogeneous phenotype with complex genetic influences that may vary across ethnicities. The use of intermediate phenotypes may clarify genetic influences and reveal specific etiological pathways. Prior work in European Americans has found that the four Primary Dependence Motives (PDM) subscales (Automaticity, Craving, Loss of Control, and Tolerance) of the Wisconsin Inventory of Smoking Motives represent core features of nicotine dependence and are promising intermediate phenotypes for understanding genetic pathways to ND. However, no studies have examined PDM as an intermediate phenotype in African American smokers, an ethnic population that displays unique patterns of smoking and genetic variation. In the current study, 268 African American daily smokers completed a phenotypic assessment and provided a sample of DNA. Associations among haplotypes in the NCAM1-TTC12-ANKK1-DRD2 gene cluster, a dopamine-related gene region associated with ND, PDM intermediate phenotypes, and ND were examined. Dopamine-related genetic variation in the DBH and COMT genes was also considered on an exploratory basis. Mediational analysis was used to test the indirect pathway from genetic variation to smoking motives to nicotine dependence. NCAM1-TTC12-ANKK1-DRD2 region variation was significantly associated with the Automaticity subscale and, further, Automaticity significantly mediated associations among NCAM1-TTC12-ANKK1-DRD2 cluster variants and ND. DBH was also significantly associated with Automaticity, Craving, and Tolerance; Automaticity and Tolerance also served as mediators of the DBH-ND relationship. These results suggest that PDM, Automaticity in particular, may be a viable intermediate phenotype for understanding dopamine-related genetic influences on ND in African American smokers. Findings support a model in which putatively dopaminergic variants exert influence on ND through an effect on patterns of automatic routinized smoking. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution.

    PubMed

    Boueiz, Adel; Lutz, Sharon M; Cho, Michael H; Hersh, Craig P; Bowler, Russell P; Washko, George R; Halper-Stromberg, Eitan; Bakke, Per; Gulsvik, Amund; Laird, Nan M; Beaty, Terri H; Coxson, Harvey O; Crapo, James D; Silverman, Edwin K; Castaldi, Peter J; DeMeo, Dawn L

    2017-03-15

    Emphysema has considerable variability in the severity and distribution of parenchymal destruction throughout the lungs. Upper lobe-predominant emphysema has emerged as an important predictor of response to lung volume reduction surgery. Yet, aside from alpha-1 antitrypsin deficiency, the genetic determinants of emphysema distribution remain largely unknown. To identify the genetic influences of emphysema distribution in non-alpha-1 antitrypsin-deficient smokers. A total of 11,532 subjects with complete genotype and computed tomography densitometry data in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]; non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), and GenKOLS (Genetics of Chronic Obstructive Lung Disease) studies were analyzed. Two computed tomography scan emphysema distribution measures (difference between upper-third and lower-third emphysema; ratio of upper-third to lower-third emphysema) were tested for genetic associations in all study subjects. Separate analyses in each study population were followed by a fixed effect metaanalysis. Single-nucleotide polymorphism-, gene-, and pathway-based approaches were used. In silico functional evaluation was also performed. We identified five loci associated with emphysema distribution at genome-wide significance. These loci included two previously reported associations with COPD susceptibility (4q31 near HHIP and 15q25 near CHRNA5) and three new associations near SOWAHB, TRAPPC9, and KIAA1462. Gene set analysis and in silico functional evaluation revealed pathways and cell types that may potentially contribute to the pathogenesis of emphysema distribution. This multicohort genome-wide association study identified new genomic loci associated with differential emphysematous destruction throughout the lungs. These findings may point to new biologic pathways on which to expand diagnostic and therapeutic approaches in chronic obstructive pulmonary disease. Clinical trial registered with www.clinicaltrials.gov (NCT 00608764).

  9. Genetic Variation in the Prostaglandin E2 Pathway Is Associated with Primary Graft Dysfunction

    PubMed Central

    Akimova, Tatiana; Kazi, Altaf; Shah, Rupal J.; Cantu, Edward; Feng, Rui; Levine, Matthew H.; Kawut, Steven M.; Meyer, Nuala J.; Lee, James C.; Hancock, Wayne W.; Aplenc, Richard; Ware, Lorraine B.; Palmer, Scott M.; Bhorade, Sangeeta; Lama, Vibha N.; Weinacker, Ann; Orens, Jonathan; Wille, Keith; Crespo, Maria; Lederer, David J.; Arcasoy, Selim; Demissie, Ejigayehu; Christie, Jason D.

    2014-01-01

    Rationale: Biologic pathways with significant genetic conservation across human populations have been implicated in the pathogenesis of primary graft dysfunction (PGD). The evaluation of the role of recipient genetic variation in PGD has thus far been limited to single, candidate gene analyses. Objectives: We sought to identify genetic variants in lung transplant recipients that are responsible for increased risk of PGD using a two-phase large-scale genotyping approach. Methods: Phase 1 was a large-scale candidate gene association study of the multicenter, prospective Lung Transplant Outcomes Group cohort. Phase 2 included functional evaluation of selected variants and a bioinformatics screening of variants identified in phase 1. Measurements and Main Results: After genetic data quality control, 680 lung transplant recipients were included in the analysis. In phase 1, a total of 17 variants were significantly associated with PGD, four of which were in the prostaglandin E2 family of genes. Among these were a coding variant in the gene encoding prostaglandin E2 synthase (PTGES2; P = 9.3 × 10−5) resulting in an arginine to histidine substitution at amino acid position 298, and three variants in a block containing the 5′ promoter and first intron of the PTGER4 gene (encoding prostaglandin E2 receptor subtype 4; all P < 5 × 10−5). Functional evaluation in regulatory T cells identified that rs4434423A in the PTGER4 gene was associated with differential suppressive function of regulatory T cells. Conclusions: Further research aimed at replication and additional functional insight into the role played by genetic variation in prostaglandin E2 synthetic and signaling pathways in PGD is warranted. PMID:24467603

  10. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence.

    PubMed

    Savage, Jeanne E; Jansen, Philip R; Stringer, Sven; Watanabe, Kyoko; Bryois, Julien; de Leeuw, Christiaan A; Nagel, Mats; Awasthi, Swapnil; Barr, Peter B; Coleman, Jonathan R I; Grasby, Katrina L; Hammerschlag, Anke R; Kaminski, Jakob A; Karlsson, Robert; Krapohl, Eva; Lam, Max; Nygaard, Marianne; Reynolds, Chandra A; Trampush, Joey W; Young, Hannah; Zabaneh, Delilah; Hägg, Sara; Hansell, Narelle K; Karlsson, Ida K; Linnarsson, Sten; Montgomery, Grant W; Muñoz-Manchado, Ana B; Quinlan, Erin B; Schumann, Gunter; Skene, Nathan G; Webb, Bradley T; White, Tonya; Arking, Dan E; Avramopoulos, Dimitrios; Bilder, Robert M; Bitsios, Panos; Burdick, Katherine E; Cannon, Tyrone D; Chiba-Falek, Ornit; Christoforou, Andrea; Cirulli, Elizabeth T; Congdon, Eliza; Corvin, Aiden; Davies, Gail; Deary, Ian J; DeRosse, Pamela; Dickinson, Dwight; Djurovic, Srdjan; Donohoe, Gary; Conley, Emily Drabant; Eriksson, Johan G; Espeseth, Thomas; Freimer, Nelson A; Giakoumaki, Stella; Giegling, Ina; Gill, Michael; Glahn, David C; Hariri, Ahmad R; Hatzimanolis, Alex; Keller, Matthew C; Knowles, Emma; Koltai, Deborah; Konte, Bettina; Lahti, Jari; Le Hellard, Stephanie; Lencz, Todd; Liewald, David C; London, Edythe; Lundervold, Astri J; Malhotra, Anil K; Melle, Ingrid; Morris, Derek; Need, Anna C; Ollier, William; Palotie, Aarno; Payton, Antony; Pendleton, Neil; Poldrack, Russell A; Räikkönen, Katri; Reinvang, Ivar; Roussos, Panos; Rujescu, Dan; Sabb, Fred W; Scult, Matthew A; Smeland, Olav B; Smyrnis, Nikolaos; Starr, John M; Steen, Vidar M; Stefanis, Nikos C; Straub, Richard E; Sundet, Kjetil; Tiemeier, Henning; Voineskos, Aristotle N; Weinberger, Daniel R; Widen, Elisabeth; Yu, Jin; Abecasis, Goncalo; Andreassen, Ole A; Breen, Gerome; Christiansen, Lene; Debrabant, Birgit; Dick, Danielle M; Heinz, Andreas; Hjerling-Leffler, Jens; Ikram, M Arfan; Kendler, Kenneth S; Martin, Nicholas G; Medland, Sarah E; Pedersen, Nancy L; Plomin, Robert; Polderman, Tinca J C; Ripke, Stephan; van der Sluis, Sophie; Sullivan, Patrick F; Vrieze, Scott I; Wright, Margaret J; Posthuma, Danielle

    2018-06-25

    Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence 3-7 , but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.

  11. Systematic profiling of Caenorhabditis elegans locomotive behaviors reveals additional components in G-protein Gαq signaling.

    PubMed

    Yu, Hui; Aleman-Meza, Boanerges; Gharib, Shahla; Labocha, Marta K; Cronin, Christopher J; Sternberg, Paul W; Zhong, Weiwei

    2013-07-16

    Genetic screens have been widely applied to uncover genetic mechanisms of movement disorders. However, most screens rely on human observations of qualitative differences. Here we demonstrate the application of an automatic imaging system to conduct a quantitative screen for genes regulating the locomotive behavior in Caenorhabditis elegans. Two hundred twenty-seven neuronal signaling genes with viable homozygous mutants were selected for this study. We tracked and recorded each animal for 4 min and analyzed over 4,400 animals of 239 genotypes to obtain a quantitative, 10-parameter behavioral profile for each genotype. We discovered 87 genes whose inactivation causes movement defects, including 50 genes that had never been associated with locomotive defects. Computational analysis of the high-content behavioral profiles predicted 370 genetic interactions among these genes. Network partition revealed several functional modules regulating locomotive behaviors, including sensory genes that detect environmental conditions, genes that function in multiple types of excitable cells, and genes in the signaling pathway of the G protein Gαq, a protein that is essential for animal life and behavior. We developed quantitative epistasis analysis methods to analyze the locomotive profiles and validated the prediction of the γ isoform of phospholipase C as a component in the Gαq pathway. These results provided a system-level understanding of how neuronal signaling genes coordinate locomotive behaviors. This study also demonstrated the power of quantitative approaches in genetic studies.

  12. Urotensin-II System in Genetic Control of Blood Pressure and Renal Function

    PubMed Central

    Debiec, Radoslaw; Christofidou, Paraskevi; Denniff, Matthew; Bloomer, Lisa D.; Bogdanski, Pawel; Wojnar, Lukasz; Musialik, Katarzyna; Charchar, Fadi J.; Thompson, John R.; Waterworth, Dawn; Song, Kijoung; Vollenweider, Peter; Waeber, Gerard; Zukowska-Szczechowska, Ewa; Samani, Nilesh J.; Lambert, David; Tomaszewski, Maciej

    2013-01-01

    Urotensin-II controls ion/water homeostasis in fish and vascular tone in rodents. We hypothesised that common genetic variants in urotensin-II pathway genes are associated with human blood pressure or renal function. We performed family-based analysis of association between blood pressure, glomerular filtration and genes of the urotensin-II pathway (urotensin-II, urotensin-II related peptide, urotensin-II receptor) saturated with 28 tagging single nucleotide polymorphisms in 2024 individuals from 520 families; followed by an independent replication in 420 families and 7545 unrelated subjects. The expression studies of the urotensin-II pathway were carried out in 97 human kidneys. Phylogenetic evolutionary analysis was conducted in 17 vertebrate species. One single nucleotide polymorphism (rs531485 in urotensin-II gene) was associated with adjusted estimated glomerular filtration rate in the discovery cohort (p = 0.0005). It showed no association with estimated glomerular filtration rate in the combined replication resource of 8724 subjects from 6 populations. Expression of urotensin-II and its receptor showed strong linear correlation (r = 0.86, p<0.0001). There was no difference in renal expression of urotensin-II system between hypertensive and normotensive subjects. Evolutionary analysis revealed accumulation of mutations in urotensin-II since the divergence of primates and weaker conservation of urotensin-II receptor in primates than in lower vertebrates. Our data suggest that urotensin-II system genes are unlikely to play a major role in genetic control of human blood pressure or renal function. The signatures of evolutionary forces acting on urotensin-II system indicate that it may have evolved towards loss of function since the divergence of primates. PMID:24391740

  13. Comparative Transcriptome Analysis Reveals the Genetic Basis of Skin Color Variation in Common Carp

    PubMed Central

    Jiang, Yanliang; Zhang, Songhao; Xu, Jian; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A.; Sun, Xiaowen; Xu, Peng

    2014-01-01

    Background The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied. Methodology/Principal Findings In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains. Conclusions In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values. PMID:25255374

  14. Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp.

    PubMed

    Jiang, Yanliang; Zhang, Songhao; Xu, Jian; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Sun, Xiaowen; Xu, Peng

    2014-01-01

    The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied. In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains. In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values.

  15. Genetic Analysis of Mice Skin Exposed by Hyper-Gravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Rika; Terada, Masahiro; Seki, Masaya; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki

    2013-02-01

    In the space environment, physiological alterations, such as low bone density, muscle weakness and decreased immunity, are caused by microgravity and cosmic radiation. On the other hand, it is known that the leg muscles are hypertrophy by 2G-gravity. An understanding of the effects on human body from microgravity to hyper-gravity is very important. Recently, the Japan Aerospace Exploration Agency (JAXA) has started a project to detect the changes on gene expression and mineral metabolism caused by microgravity by analyzing the hair of astronauts who stay in the international Space Station (ISS) for a long time. From these results of human hair’s research, the genetic effects of human hair roots by microgravity will become clear. However, it is unclear how the gene expression of hair roots was effected by hypergravity. Therefore, in this experiment, we analyzed the effect on mice skin contained hair roots by comparing microgravity or hypergravity exposed mice. The purpose of this experiment is to evaluate the genetic effects on mice skin by microgravity or 2G-gravity. The samples were taken from mice exposed to space flight (FL) or hypergravity environment (2G) for 3-months, respectively. The extracted and amplified RNA from these mice skin was used to DNA microarray analysis. in this experiment, we analyzed the effect of gravity by using mice skin contained hair roots, which exposed space (FL) and hyper-gravity (2G) for 3 months and each control. By DNA microarray analysis, we found the common 98 genes changed in both FL and 2G. Among these 98 genes, the functions and pathways were identified by Gene Ontology (GO) analysis and Ingenuity Pathways Analysis (IPA) software. Next, we focused the one of the identified pathways and compared the effects on each molecules in this pathways by the different environments, such as FL and 2G. As the results, we could detect some interesting molecules, which might be depended on the gravity levels. In addition, to investigate the relationships between genes and protein expression, the proteome analysis was performed. From the result of 2-dimentional electrophoresis, we could detect the some different spots between FL and 2G. These identifications are now in progress using by MALDI-TOF-MS/MS. These results suggested that many genes or proteins on the mice skin might be effected by the different gravity levels.

  16. BioPAX – A community standard for pathway data sharing

    PubMed Central

    Demir, Emek; Cary, Michael P.; Paley, Suzanne; Fukuda, Ken; Lemer, Christian; Vastrik, Imre; Wu, Guanming; D’Eustachio, Peter; Schaefer, Carl; Luciano, Joanne; Schacherer, Frank; Martinez-Flores, Irma; Hu, Zhenjun; Jimenez-Jacinto, Veronica; Joshi-Tope, Geeta; Kandasamy, Kumaran; Lopez-Fuentes, Alejandra C.; Mi, Huaiyu; Pichler, Elgar; Rodchenkov, Igor; Splendiani, Andrea; Tkachev, Sasha; Zucker, Jeremy; Gopinath, Gopal; Rajasimha, Harsha; Ramakrishnan, Ranjani; Shah, Imran; Syed, Mustafa; Anwar, Nadia; Babur, Ozgun; Blinov, Michael; Brauner, Erik; Corwin, Dan; Donaldson, Sylva; Gibbons, Frank; Goldberg, Robert; Hornbeck, Peter; Luna, Augustin; Murray-Rust, Peter; Neumann, Eric; Reubenacker, Oliver; Samwald, Matthias; van Iersel, Martijn; Wimalaratne, Sarala; Allen, Keith; Braun, Burk; Whirl-Carrillo, Michelle; Dahlquist, Kam; Finney, Andrew; Gillespie, Marc; Glass, Elizabeth; Gong, Li; Haw, Robin; Honig, Michael; Hubaut, Olivier; Kane, David; Krupa, Shiva; Kutmon, Martina; Leonard, Julie; Marks, Debbie; Merberg, David; Petri, Victoria; Pico, Alex; Ravenscroft, Dean; Ren, Liya; Shah, Nigam; Sunshine, Margot; Tang, Rebecca; Whaley, Ryan; Letovksy, Stan; Buetow, Kenneth H.; Rzhetsky, Andrey; Schachter, Vincent; Sobral, Bruno S.; Dogrusoz, Ugur; McWeeney, Shannon; Aladjem, Mirit; Birney, Ewan; Collado-Vides, Julio; Goto, Susumu; Hucka, Michael; Le Novère, Nicolas; Maltsev, Natalia; Pandey, Akhilesh; Thomas, Paul; Wingender, Edgar; Karp, Peter D.; Sander, Chris; Bader, Gary D.

    2010-01-01

    BioPAX (Biological Pathway Exchange) is a standard language to represent biological pathways at the molecular and cellular level. Its major use is to facilitate the exchange of pathway data (http://www.biopax.org). Pathway data captures our understanding of biological processes, but its rapid growth necessitates development of databases and computational tools to aid interpretation. However, the current fragmentation of pathway information across many databases with incompatible formats presents barriers to its effective use. BioPAX solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. BioPAX was created through a community process. Through BioPAX, millions of interactions organized into thousands of pathways across many organisms, from a growing number of sources, are available. Thus, large amounts of pathway data are available in a computable form to support visualization, analysis and biological discovery. PMID:20829833

  17. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    PubMed

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-21

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.

  18. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish.

    PubMed

    Lovely, C Ben; Swartz, Mary E; McCarthy, Neil; Norrie, Jacqueline L; Eberhart, Johann K

    2016-06-01

    The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. © 2016. Published by The Company of Biologists Ltd.

  19. Genetic Analysis of Benzothiophene Biodesulfurization Pathway of Gordonia terrae Strain C-6

    PubMed Central

    Lian, Kehui; Zhang, Yue; Tian, Huimei; Ji, Kaihua; Li, Guoqiang

    2013-01-01

    Sulfur can be removed from benzothiophene (BT) by some bacteria without breaking carbon-carbon bonds. However, a clear mechanism for BT desulfurization and its genetic components have not been reported in literatures so far. In this study, we used comparative transcriptomics to study differential expression of genes in Gordonia terrae C-6 cultured with BT or sodium sulfate as the sole source of sulfur. We found that 135 genes were up-regulated with BT relative to sodium sulfate as the sole sulfur source. Many of these genes encode flavin-dependent monooxygenases, alkane sulfonate monooxygenases and desulfinase, which perform similar functions to those involved in the 4S pathway of dibenzothiophene (DBT) biodesulfurization. Three of the genes were found to be located in the same operon, designated bdsABC. Cell extracts of pET28a-bdsABC transfected E. coli Rosetta (DE3) converted BT to a phenolic compound, identified as o-hydroxystyrene. These results advance our understanding of enzymes involved in the BT biodesulfurization pathway. PMID:24367657

  20. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    PubMed Central

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H.; Johnson, Andrew D.; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F.; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B.; Nolte, Ilja M.; van der Most, Peter J.; Wright, Alan F.; Shuldiner, Alan R.; Morrison, Alanna C.; Hofman, Albert; Smith, Albert V.; Dreisbach, Albert W.; Franke, Andre; Uitterlinden, Andre G.; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I.; Ponte, Belen; Oostra, Ben A.; Paulweber, Bernhard; Krämer, Bernhard K.; Mitchell, Braxton D.; Buckley, Brendan M.; Peralta, Carmen A.; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N.; Shaffer, Christian M.; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M.; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S.; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J.; Holliday, Elizabeth G.; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P.; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B.; Navis, Gerjan J.; Curhan, Gary C.; Ehret, George B.; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W.; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K.; Kramer, Holly; Lin, Honghuang; Leach, I. Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M.; Kolcic, Ivana; Persico, Ivana; Jukema, J. Wouter; Wilson, James F.; Felix, Janine F.; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M.; Gaspoz, Jean-Michel; Smith, Jennifer A.; Faul, Jessica D.; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N.; Attia, John; Whitfield, John B.; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C.; Karjalainen, Juha; Fernandes, Jyotika K.; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L.; Lohman, Kurt; Portas, Laura; Launer, Lenore J.; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M.; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E.; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C.; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A.; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K.; Sale, Michele M.; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G.; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H.; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B.; Ridker, Paul M.; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H.; Abecasis, Goncalo R.; Adair, Linda S.; Alexander, Myriam; Altshuler, David; Amin, Najaf; Arking, Dan E.; Arora, Pankaj; Aulchenko, Yurii; Bakker, Stephan J. L.; Bandinelli, Stefania; Barroso, Ines; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Bis, Joshua C.; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bots, Michiel L.; Bragg-Gresham, Jennifer L.; Brand, Stefan-Martin; Brand, Eva; Braund, Peter S.; Brown, Morris J.; Burton, Paul R.; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chambers, John C.; Chandak, Giriraj R.; Chang, Yen-Pei C.; Charchar, Fadi J.; Chaturvedi, Nish; Shin Cho, Yoon; Clarke, Robert; Collins, Francis S.; Collins, Rory; Connell, John M.; Cooper, Jackie A.; Cooper, Matthew N.; Cooper, Richard S.; Corsi, Anna Maria; Dörr, Marcus; Dahgam, Santosh; Danesh, John; Smith, George Davey; Day, Ian N. M.; Deloukas, Panos; Denniff, Matthew; Dominiczak, Anna F.; Dong, Yanbin; Doumatey, Ayo; Elliott, Paul; Elosua, Roberto; Erdmann, Jeanette; Eyheramendy, Susana; Farrall, Martin; Fava, Cristiano; Forrester, Terrence; Fowkes, F. Gerald R.; Fox, Ervin R.; Frayling, Timothy M.; Galan, Pilar; Ganesh, Santhi K.; Garcia, Melissa; Gaunt, Tom R.; Glazer, Nicole L.; Go, Min Jin; Goel, Anuj; Grässler, Jürgen; Grobbee, Diederick E.; Groop, Leif; Guarrera, Simonetta; Guo, Xiuqing; Hadley, David; Hamsten, Anders; Han, Bok-Ghee; Hardy, Rebecca; Hartikainen, Anna-Liisa; Heath, Simon; Heckbert, Susan R.; Hedblad, Bo; Hercberg, Serge; Hernandez, Dena; Hicks, Andrew A.; Hilton, Gina; Hingorani, Aroon D.; Bolton, Judith A Hoffman; Hopewell, Jemma C.; Howard, Philip; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Ikram, M. Arfan; Islam, Muhammad; Iwai, Naoharu; Jarvelin, Marjo-Riitta; Jackson, Anne U.; Jafar, Tazeen H.; Janipalli, Charles S.; Johnson, Toby; Kathiresan, Sekar; Khaw, Kay-Tee; Kim, Hyung-Lae; Kinra, Sanjay; Kita, Yoshikuni; Kivimaki, Mika; Kooner, Jaspal S.; Kumar, M. J. Kranthi; Kuh, Diana; Kulkarni, Smita R.; Kumari, Meena; Kuusisto, Johanna; Kuznetsova, Tatiana; Laakso, Markku; Laan, Maris; Laitinen, Jaana; Lakatta, Edward G.; Langefeld, Carl D.; Larson, Martin G.; Lathrop, Mark; Lawlor, Debbie A.; Lawrence, Robert W.; Lee, Jong-Young; Lee, Nanette R.; Levy, Daniel; Li, Yali; Longstreth, Will T.; Luan, Jian'an; Lucas, Gavin; Ludwig, Barbara; Mangino, Massimo; Mani, K. Radha; Marmot, Michael G.; Mattace-Raso, Francesco U. S.; Matullo, Giuseppe; McArdle, Wendy L.; McKenzie, Colin A.; Meitinger, Thomas; Melander, Olle; Meneton, Pierre; Meschia, James F.; Miki, Tetsuro; Milaneschi, Yuri; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Morris, Richard W.; Mosley, Thomas H.; Najjar, Samer; Narisu, Narisu; Newton-Cheh, Christopher; Nguyen, Khanh-Dung Hoang; Nilsson, Peter; Nyberg, Fredrik; O'Donnell, Christopher J.; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ong, RickTwee-Hee; Ongen, Halit; Onland-Moret, N. Charlotte; O'Reilly, Paul F.; Org, Elin; Orru, Marco; Palmas, Walter; Palmen, Jutta; Palmer, Lyle J.; Palmer, Nicholette D.; Parker, Alex N.; Peden, John F.; Peltonen, Leena; Perola, Markus; Pihur, Vasyl; Platou, Carl G. P.; Plump, Andrew; Prabhakaran, Dorairajan; Psaty, Bruce M.; Raffel, Leslie J.; Rao, Dabeeru C.; Rasheed, Asif; Ricceri, Fulvio; Rice, Kenneth M.; Rosengren, Annika; Rotter, Jerome I.; Rudock, Megan E.; Sõber, Siim; Salako, Tunde; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J.; Schwartz, Steven M.; Schwarz, Peter E. H.; Scott, Laura J.; Scott, James; Scuteri, Angelo; Sehmi, Joban S.; Seielstad, Mark; Seshadri, Sudha; Sharma, Pankaj; Shaw-Hawkins, Sue; Shi, Gang; Shrine, Nick R. G.; Sijbrands, Eric J. G.; Sim, Xueling; Singleton, Andrew; Sjögren, Marketa; Smith, Nicholas L.; Artigas, Maria Soler; Spector, Tim D.; Staessen, Jan A.; Stancakova, Alena; Steinle, Nanette I.; Strachan, David P.; Stringham, Heather M.; Sun, Yan V.; Swift, Amy J.; Tabara, Yasuharu; Tai, E-Shyong; Talmud, Philippa J.; Taylor, Andrew; Terzic, Janos; Thelle, Dag S.; Tobin, Martin D.; Tomaszewski, Maciej; Tripathy, Vikal; Tuomilehto, Jaakko; Tzoulaki, Ioanna; Uda, Manuela; Ueshima, Hirotsugu; Uiterwaal, Cuno S. P. M.; Umemura, Satoshi; van der Harst, Pim; van der Schouw, Yvonne T.; van Gilst, Wiek H.; Vartiainen, Erkki; Vasan, Ramachandran S.; Veldre, Gudrun; Verwoert, Germaine C.; Viigimaa, Margus; Vinay, D. G.; Vineis, Paolo; Voight, Benjamin F.; Vollenweider, Peter; Wagenknecht, Lynne E.; Wain, Louise V.; Wang, Xiaoling; Wang, Thomas J.; Wareham, Nicholas J.; Watkins, Hugh; Weder, Alan B.; Whincup, Peter H.; Wiggins, Kerri L.; Witteman, Jacqueline C. M.; Wong, Andrew; Wu, Ying; Yajnik, Chittaranjan S.; Yao, Jie; Young, J. H.; Zelenika, Diana; Zhai, Guangju; Zhang, Weihua; Zhang, Feng; Zhao, Jing Hua; Zhu, Haidong; Zhu, Xiaofeng; Zitting, Paavo; Zukowska-Szczechowska, Ewa; Okada, Yukinori; Wu, Jer-Yuarn; Gu, Dongfeng; Takeuchi, Fumihiko; Takahashi, Atsushi; Maeda, Shiro; Tsunoda, Tatsuhiko; Chen, Peng; Lim, Su-Chi; Wong, Tien-Yin; Liu, Jianjun; Young, Terri L.; Aung, Tin; Teo, Yik-Ying; Kim, Young Jin; Kang, Daehee; Chen, Chien-Hsiun; Tsai, Fuu-Jen; Chang, Li-Ching; Fann, S. -J. Cathy; Mei, Hao; Hixson, James E.; Chen, Shufeng; Katsuya, Tomohiro; Isono, Masato; Albrecht, Eva; Yamamoto, Kazuhiko; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki; Kato, Norihiro; He, Jiang; Chen, Yuan-Tsong; Tanaka, Toshihiro; Reilly, Muredach P; Schunkert, Heribert; Assimes, Themistocles L.; Hall, Alistair; Hengstenberg, Christian; König, Inke R.; Laaksonen, Reijo; McPherson, Ruth; Thompson, John R.; Thorsteinsdottir, Unnur; Ziegler, Andreas; Absher, Devin; Chen, Li; Cupples13, L. Adrienne; Halperin, Eran; Li, Mingyao; Musunuru, Kiran; Preuss, Michael; Schillert, Arne; Thorleifsson, Gudmar; Wells, George A.; Holm, Hilma; Roberts, Robert; Stewart, Alexandre F. R.; Fortmann, Stephen; Go, Alan; Hlatky, Mark; Iribarren, Carlos; Knowles, Joshua; Myers, Richard; Quertermous, Thomas; Sidney, Steven; Risch, Neil; Tang, Hua; Blankenberg, Stefan; Schnabel, Renate; Sinning, Christoph; Lackner, Karl J.; Tiret, Laurence; Nicaud, Viviane; Cambien, Francois; Bickel, Christoph; Rupprecht, Hans J.; Perret, Claire; Proust, Carole; Münzel, Thomas F.; Barbalic, Maja; Chen, Ida Yii-Der; Demissie-Banjaw, Serkalem; Folsom, Aaron; Lumley, Thomas; Marciante, Kristin; Taylor, Kent D.; Volcik, Kelly; Gretarsdottir, Solveig; Gulcher, Jeffrey R.; Kong, Augustine; Stefansson, Kari; Thorgeirsson, Gudmundur; Andersen, Karl; Fischer, Marcus; Grosshennig, Anika; Linsel-Nitschke, Patrick; Stark, Klaus; Schreiber, Stefan; Aherrahrou, Zouhair; Bruse, Petra; Doering, Angela; Klopp, Norman; Diemert, Patrick; Loley, Christina; Medack, Anja; Nahrstedt, Janja; Peters, Annette; Wagner, Arnika K.; Willenborg, Christina; Böhm, Bernhard O.; Dobnig, Harald; Grammer, Tanja B.; Hoffmann, Michael M.; Meinitzer, Andreas; Winkelmann, Bernhard R.; Pilz, Stefan; Renner, Wilfried; Scharnagl, Hubert; Stojakovic, Tatjana; Tomaschitz, Andreas; Winkler, Karl; Guiducci, Candace; Burtt, Noel; Gabriel, Stacey B.; Dandona, Sonny; Jarinova, Olga; Qu, Liming; Wilensky, Robert; Matthai, William; Hakonarson, Hakon H.; Devaney, Joe; Burnett, Mary Susan; Pichard, Augusto D.; Kent, Kenneth M.; Satler, Lowell; Lindsay, Joseph M.; Waksman, Ron; Knouff, Christopher W.; Waterworth, Dawn M.; Walker, Max C.; Epstein, Stephen E.; Rader, Daniel J.; Nelson, Christopher P.; Wright, Benjamin J.; Balmforth, Anthony J.; Ball, Stephen G.; Loehr, Laura R.; Rosamond, Wayne D.; Benjamin, Emelia; Haritunians, Talin; Couper, David; Murabito, Joanne; Wang, Ying A.; Stricker, Bruno H.; Chang, Patricia P.; Willerson, James T.; Felix, Stephan B.; Watzinger, Norbert; Aragam, Jayashri; Zweiker, Robert; Lind, Lars; Rodeheffer, Richard J.; Greiser, Karin Halina; Deckers, Jaap W.; Stritzke, Jan; Ingelsson, Erik; Kullo, Iftikhar; Haerting, Johannes; Reffelmann, Thorsten; Redfield, Margaret M.; Werdan, Karl; Mitchell, Gary F.; Arnett, Donna K.; Gottdiener, John S.; Blettner, Maria; Friedrich, Nele; Kovacs, Peter; Wild, Philipp S.; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P. S.; Carroll, Robert J.; Penninx, Brenda W.; Scott, Rodney J.; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H.; Kardia, Sharon L. R.; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J.; Turner, Stephen T.; Rosas, Sylvia E.; Stracke, Sylvia; Harris, Tamara B.; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J. F.; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P.; Parsa, Afshin; O'Connell, Jeffrey R.; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H.; Böger, Carsten A.; Goessling, Wolfram; Chasman, Daniel I.; Köttgen, Anna; Kao, W. H. Linda; Fox, Caroline S.

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  1. Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria

    PubMed Central

    Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H.; Roberts, Ian S.D.; Sheehan, Susan; Savage, Holly; Haller, Hermann

    2016-01-01

    Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. PMID:27020856

  2. Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango.

    PubMed

    Talay, Mustafa; Richman, Ethan B; Snell, Nathaniel J; Hartmann, Griffin G; Fisher, John D; Sorkaç, Altar; Santoyo, Juan F; Chou-Freed, Cambria; Nair, Nived; Johnson, Mark; Szymanski, John R; Barnea, Gilad

    2017-11-15

    Mapping neural circuits across defined synapses is essential for understanding brain function. Here we describe trans-Tango, a technique for anterograde transsynaptic circuit tracing and manipulation. At the core of trans-Tango is a synthetic signaling pathway that is introduced into all neurons in the animal. This pathway converts receptor activation at the cell surface into reporter expression through site-specific proteolysis. Specific labeling is achieved by presenting a tethered ligand at the synapses of genetically defined neurons, thereby activating the pathway in their postsynaptic partners and providing genetic access to these neurons. We first validated trans-Tango in the Drosophila olfactory system and then implemented it in the gustatory system, where projections beyond the first-order receptor neurons are not fully characterized. We identified putative second-order neurons within the sweet circuit that include projection neurons targeting known neuromodulation centers in the brain. These experiments establish trans-Tango as a flexible platform for transsynaptic circuit analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish

    PubMed Central

    Swartz, Mary E.; McCarthy, Neil; Norrie, Jacqueline L.; Eberhart, Johann K.

    2016-01-01

    The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. PMID:27122171

  4. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat.

    PubMed

    Xu, Rong; Wang, QuanQiu; Li, Li

    2015-01-01

    Dietary intakes of red meat and fat are established risk factors for both colorectal cancer (CRC) and cardiovascular disease (CVDs). Recent studies have shown a mechanistic link between TMAO, an intestinal microbial metabolite of red meat and fat, and risk of CVDs. Data linking TMAO directly to CRC is, however, lacking. Here, we present an unbiased data-driven network-based systems approach to uncover a potential genetic relationship between TMAO and CRC. We constructed two different epigenetic interaction networks (EINs) using chemical-gene, disease-gene and protein-protein interaction data from multiple large-scale data resources. We developed a network-based ranking algorithm to ascertain TMAO-related diseases from EINs. We systematically analyzed disease categories among TMAO-related diseases at different ranking cutoffs. We then determined which genetic pathways were associated with both TMAO and CRC. We show that CVDs and their major risk factors were ranked highly among TMAO-related diseases, confirming the newly discovered mechanistic link between CVDs and TMAO, and thus validating our algorithms. CRC was ranked highly among TMAO-related disease retrieved from both EINs (top 0.02%, #1 out of 4,372 diseases retrieved based on Mendelian genetics and top 10.9% among 882 diseases based on genome-wide association genetics), providing strong supporting evidence for our hypothesis that TMAO is genetically related to CRC. We have also identified putative genetic pathways that may link TMAO to CRC, which warrants further investigation. Through systematic disease enrichment analysis, we also demonstrated that TMAO is related to metabolic syndromes and cancers in general. Our genome-wide analysis demonstrates that systems approaches to studying the epigenetic interactions among diet, microbiome metabolisms, and disease genetics hold promise for understanding disease pathogenesis. Our results show that TMAO is genetically associated with CRC. This study suggests that TMAO may be an important intermediate marker linking dietary meat and fat and gut microbiota metabolism to risk of CRC, underscoring opportunities for the development of new gut microbiome-dependent diagnostic tests and therapeutics for CRC.

  5. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.

    PubMed

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia

    2012-05-13

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

  6. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease

    PubMed Central

    Zhao, Wei; Rasheed, Asif; Tikkanen, Emmi; Lee, Jung-Jin; Butterworth, Adam S; Howson, Joanna MM; Assimes, Themistocles L; Chowdhury, Rajiv; Orho-Melander, Marju; Damrauer, Scott; Small, Aeron; Asma, Senay; Imamura, Minako; Yamauch, Toshimasa; Chambers, John C; Chen, Peng; Sapkota, Bishwa R; Shah, Nabi; Jabeen, Sehrish; Surendran, Praveen; Lu, Yingchang; Zhang, Weihua; Imran, Atif; Abbas, Shahid; Majeed, Faisal; Trindade, Kevin; Qamar, Nadeem; Mallick, Nadeem Hayyat; Yaqoob, Zia; Saghir, Tahir; Rizvi, Syed Nadeem Hasan; Memon, Anis; Rasheed, Syed Zahed; Memon, Fazal-ur-Rehman; Mehmood, Khalid; Ahmed, Naveeduddin; Qureshi, Irshad Hussain; Tanveer-us-Salam; Iqbal, Wasim; Malik, Uzma; Mehra, Narinder; Kuo, Jane Z; Sheu, Wayne H-H; Guo, Xiuqing; Hsiung, Chao A; Juang, Jyh-Ming J; Taylor, Kent D; Hung, Yi-Jen; Lee, Wen-Jane; Quertermous, Thomas; Lee, I-Te; Hsu, Chih-Cheng; Bottinger, Erwin P.; Ralhan, Sarju; Teo, Yik Ying; Wang, Tzung-Dau; Alam, Dewan S; Di Angelantonio, Emanuele; Epstein, Steve; Nielsen, Sune F; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne; Young, Robin; Benn, Marianne; Frikke-Schmidt, Ruth; Kamstrup, Pia R; Biobank, Michigan; Jukema, J Wouter; Sattar, Naveed; Smit, Roelof; Chung, Ren-Hua; Liang, Kae-Woei; Anand, Sonia; Sanghera, Dharambir K; Ripatti, Samuli; Loos, Ruth J.F.; Kooner, Jaspal S; Tai, E Shyong; Rotter, Jerome I; Chen, Yii-Der Ida; Frossard, Philippe; Maeda, Shiro; Kadowaki, Takashi; Reilly, Muredach; Pare, Guillaume; Melander, Olle; Salomaa, Veikko; Rader, Daniel J; Danesh, John; Voight, Benjamin F; Saleheen, Danish

    2018-01-01

    To evaluate the shared genetic etiology of type-2 diabetes (T2D) and coronary heart disease (CHD), we conducted a multi-ethnic study of genetic variation genome-wide for both diseases in up to 265,678 subjects for T2D and 260,365 subjects for CHD. We identify 16 previously unreported loci for T2D and one for CHD, including a novel T2D association at a missense variant in HLA-DRB5 (OR=1.29). We show that genetically mediated increase in T2D risk also confers higher CHD risk. Joint analysis of T2D loci demonstrated that 24% are associated with CHD, highlighting eight variants - two of which are coding - where T2D and CHD associations appear to co-localize, and a novel joint T2D/CHD association which also replicated for T2D. Variants associated with both outcomes implicate several novel pathways including cellular proliferation and cardiovascular development. PMID:28869590

  7. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks

    PubMed Central

    Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295

  8. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    USDA-ARS?s Scientific Manuscript database

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  9. Impact of the HIV-1 genetic background and HIV-1 population size on the evolution of raltegravir resistance.

    PubMed

    Fun, Axel; Leitner, Thomas; Vandekerckhove, Linos; Däumer, Martin; Thielen, Alexander; Buchholz, Bernd; Hoepelman, Andy I M; Gisolf, Elizabeth H; Schipper, Pauline J; Wensing, Annemarie M J; Nijhuis, Monique

    2018-01-05

    Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway emerged in each individual culture. The generation of a specific raltegravir resistant variant is not predisposed in the genetic background of the viral integrase CDS. Typically, in the early phases of therapy failure the sequence space is explored and multiple resistance pathways emerge and then compete for dominance which frequently results in a switch of the dominant population over time towards the fittest variant or even multiple variants of similar fitness that can coexist in the viral population.

  10. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis

    PubMed Central

    Moriarity, Branden S; Otto, George M; Rahrmann, Eric P; Rathe, Susan K; Wolf, Natalie K; Weg, Madison T; Manlove, Luke A; LaRue, Rebecca S; Temiz, Nuri A; Molyneux, Sam D; Choi, Kwangmin; Holly, Kevin J; Sarver, Aaron L; Scott, Milcah C; Forster, Colleen L; Modiano, Jaime F; Khanna, Chand; Hewitt, Stephen M; Khokha, Rama; Yang, Yi; Gorlick, Richard; Dyer, Michael A; Largaespada, David A

    2016-01-01

    Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma. PMID:25961939

  11. Identification of Genetic Bases of Vibrio fluvialis Species-Specific Biochemical Pathways and Potential Virulence Factors by Comparative Genomic Analysis

    PubMed Central

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang

    2014-01-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

  12. Integrated RNA-seq and sRNA-seq analysis reveals miRNA effects on secondary metabolism in Solanum tuberosum L.

    PubMed

    Qiao, Yan; Zhang, Jinjin; Zhang, Jinwen; Wang, Zhiwei; Ran, An; Guo, Haixia; Wang, Di; Zhang, Junlian

    2017-02-01

    Light is a major environmental factor that affects metabolic pathways and stimulates the production of secondary metabolites in potato. However, adaptive changes in potato metabolic pathways and physiological functions triggered by light are partly explained by gene expression changes. Regulation of secondary metabolic pathways in potato has been extensively studied at transcriptional level, but little is known about the mechanisms of post-transcriptional regulation by miRNAs. To identify light-responsive miRNAs/mRNAs and construct putative metabolism pathways regulated by the miRNA-mRNA pairs, an integrated omics (sRNAome and transcriptome) analysis was performed to potato under light stimulus. A total of 31 and 48 miRNAs were identified to be differentially expressed in the leaves and tubers, respectively. Among the DEGs, 1353 genes in the leaves and 1841 genes in the tubers were upregulated, while 1595 genes in the leaves and 897 genes in the tubers were downregulated by light. Mapman enrichment analyses showed that genes related to MVA pathway, alkaloids-like, phenylpropanoids, flavonoids, and carotenoids metabolism were significantly upregulated, while genes associated with major CHO metabolism were repressed in the leaves and tubers. Integrated miRNA and mRNA profiles revealed that light-responsive miRNAs are important regulators in alkaloids metabolism, UMP salvage, lipid biosynthesis, and cellulose catabolism. Moreover, several miRNAs may participate in glycoalkaloids metabolism via JA signaling pathway, UDP-glucose biosynthesis and hydroxylation reaction. This study provides a global view of miRNA and mRNA expression profiles in potato response to light, our results suggest that miRNAs might play important roles in secondary metabolic pathways, especially in glycoalkaloid biosynthesis. The findings will enlighten us on the genetic regulation of secondary metabolite pathways and pave the way for future application of genetically engineered potato.

  13. Meta-analysis of genetic variants associated with human exceptional longevity

    PubMed Central

    Sebastiani, Paola; Bae1, Harold; Sun, Fangui X.; Andersen, Stacy L.; Daw, E. Warwick; Malovini, Alberto; Kojima, Toshio; Hirose, Nobuyoshi; Schupf, Nicole; Puca, Annibale; Perls, Thomas T

    2013-01-01

    Despite evidence from family studies that there is a strong genetic influence upon exceptional longevity, relatively few genetic variants have been associated with this trait. One reason could be that many genes individually have such weak effects that they cannot meet standard thresholds of genome wide significance, but as a group in specific combinations of genetic variations, they can have a strong influence. Previously we reported that such genetic signatures of 281 genetic markers associated with about 130 genes can do a relatively good job of differentiating centenarians from non-centenarians particularly if the centenarians are 106 years and older. This would support our hypothesis that the genetic influence upon exceptional longevity increases with older and older (and rarer) ages. We investigated this list of markers using similar genetic data from 5 studies of centenarians from the USA, Europe and Japan. The results from the meta-analysis show that many of these variants are associated with survival to these extreme ages in other studies. Since many centenarians compress morbidity and disability towards the end of their lives, these results could point to biological pathways and therefore new therapeutics to increase years of healthy lives in the general population. PMID:24244950

  14. Genetic analysis of teat number in pigs reveals some developmental pathways independent of vertebra number and several loci which only affect a specific side

    USDA-ARS?s Scientific Manuscript database

    Background: Number of functional teats is an important trait in commercial swine production. As litter size increases, the number of teats must also increase to supply nutrition to all piglets. Therefore, a genome-wide association analysis was conducted to identify genomic regions that affect this ...

  15. Integration of parallel 13 C-labeling experiments and in silico pathway analysis for enhanced production of ascomycin.

    PubMed

    Qi, Haishan; Lv, Mengmeng; Song, Kejing; Wen, Jianping

    2017-05-01

    Herein, the hyper-producing strain for ascomycin was engineered based on 13 C-labeling experiments and elementary flux modes analysis (EFMA). First, the metabolism of non-model organism Streptomyces hygroscopicus var. ascomyceticus SA68 was investigated and an updated network model was reconstructed using 13 C- metabolic flux analysis. Based on the precise model, EFMA was further employed to predict genetic targets for higher ascomycin production. Chorismatase (FkbO) and pyruvate carboxylase (Pyc) were predicted as the promising overexpression and deletion targets, respectively. The corresponding mutant TD-FkbO and TD-ΔPyc exhibited the consistency effects between model prediction and experimental results. Finally, the combined genetic manipulations were performed, achieving a high-yield ascomycin engineering strain TD-ΔPyc-FkbO with production up to 610 mg/L, 84.8% improvement compared with the parent strain SA68. These results manifested that the integration of 13 C-labeling experiments and in silico pathway analysis could serve as a promising concept to enhance ascomycin production, as well as other valuable products. Biotechnol. Bioeng. 2017;114: 1036-1044. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Metabolic Context of the Competence-Induced Checkpoint for Cell Replication in Streptococcus suis.

    PubMed

    Zaccaria, Edoardo; Wells, Jerry M; van Baarlen, Peter

    2016-01-01

    Natural genetic transformation is a transient, rapidly progressing energy-consuming process characterized by expression of the transformasome and competence-associated regulatory genes. This transient state is tightly controlled to avoid potentially adverse effects of genetic recombination on genome integrity during cell division. We investigated the global response of Streptococcus suis to exposure to the SigX competence-inducing peptide (XIP), and thus to the activation of the competence machinery, using time series analysis together with PCA analysis, gene clustering followed by heatmap visualisation, and GO enrichment analysis. We explored the possible regulatory link between metabolism and competence, and predicted the physiological adaptation of S. suis during competence induction, progression and exit using transcriptome analysis. We showed that competence development is associated with a suppression of basal metabolism, which may have consequences for the microbe's resilience to fluctuations in the environment, as competence is costly in terms of use of energy and protein translation. Furthermore our data suggest that several basal metabolic pathways are incompatible with activation of competence in S. suis. This study also showed that targeting specific pathways during the development of competence, might render S. suis more vulnerable toward novel antibiotic therapies.

  17. Metabolic Context of the Competence-Induced Checkpoint for Cell Replication in Streptococcus suis

    PubMed Central

    Zaccaria, Edoardo; Wells, Jerry M.

    2016-01-01

    Natural genetic transformation is a transient, rapidly progressing energy-consuming process characterized by expression of the transformasome and competence-associated regulatory genes. This transient state is tightly controlled to avoid potentially adverse effects of genetic recombination on genome integrity during cell division. We investigated the global response of Streptococcus suis to exposure to the SigX competence-inducing peptide (XIP), and thus to the activation of the competence machinery, using time series analysis together with PCA analysis, gene clustering followed by heatmap visualisation, and GO enrichment analysis. We explored the possible regulatory link between metabolism and competence, and predicted the physiological adaptation of S. suis during competence induction, progression and exit using transcriptome analysis. We showed that competence development is associated with a suppression of basal metabolism, which may have consequences for the microbe's resilience to fluctuations in the environment, as competence is costly in terms of use of energy and protein translation. Furthermore our data suggest that several basal metabolic pathways are incompatible with activation of competence in S. suis. This study also showed that targeting specific pathways during the development of competence, might render S. suis more vulnerable toward novel antibiotic therapies. PMID:27149631

  18. Pathway Profiling and Rational Trial Design for Studies in Advanced Stage Cervical Carcinoma: A Review and a Perspective

    PubMed Central

    Scholl, Susy M. E.; Kenter, Gemma; Kurzeder, Christian; Beuzeboc, Philippe

    2011-01-01

    Multiple genetic abnormalities will have occurred in advanced cervical cancer and multiple targeting is likely to be needed to control tumor growth. To date, dominant therapeutic targets under scrutiny for cervical cancer treatment have been EGFR pathway and angiogenesis inhibition as well as anti-HPV vaccines. The potentially most effective targets to be blocked may be downstream from the membrane receptor or at the level of the nucleus. Alterations of the pathways involved in DNA repair and in checkpoint activations, as well as the specific site of HPV genome integration, appear worth assessing. For genetic mutational analysis, complete exon sequencing may become the norm in the future but at this stage frequent mutations (that matter) can be verified by PCR analysis. A precise documentation of relevant alterations of a large spectrum of protein biomarkers can be carried out by reverse phase protein array (RPPA) or by multiplex analysis. Clinical decision-making on the drug(s) of choice as a function of the biological alteration will need input from bio-informatics platforms as well as novel statistical designs. Endpoints are yet to be defined such as the loss (or reappearance) of a predictive biomarker. Single or dual targeting needs to be explored first in relevant preclinical animal and in xenograft models prior to clinical deployment. PMID:22091418

  19. Whole-Exome Sequencing to Identify Novel Biological Pathways Associated With Infertility After Pelvic Inflammatory Disease.

    PubMed

    Taylor, Brandie D; Zheng, Xiaojing; Darville, Toni; Zhong, Wujuan; Konganti, Kranti; Abiodun-Ojo, Olayinka; Ness, Roberta B; O'Connell, Catherine M; Haggerty, Catherine L

    2017-01-01

    Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.

  20. Genetic variants in Alzheimer disease – molecular and brain network approaches

    PubMed Central

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher; De Jager, Philip L.; Bennett, David A.

    2016-01-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care for AD. However, due to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extracting actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effect of LOAD-associated genetic variants. We then discuss emerging combinations of omic data types in multiscale models, which provide a more comprehensive representation of the effect of LOAD-associated genetic variants at multiple biophysical scales. Further, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  1. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprowles, Amy; Robinson, Dan; Wu Yimi

    2005-08-15

    The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis tomore » define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli.« less

  2. Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome.

    PubMed

    Lin, Xinyi; Lim, Ives Yubin; Wu, Yonghui; Teh, Ai Ling; Chen, Li; Aris, Izzuddin M; Soh, Shu E; Tint, Mya Thway; MacIsaac, Julia L; Morin, Alexander M; Yap, Fabian; Tan, Kok Hian; Saw, Seang Mei; Kobor, Michael S; Meaney, Michael J; Godfrey, Keith M; Chong, Yap Seng; Holbrook, Joanna D; Lee, Yung Seng; Gluckman, Peter D; Karnani, Neerja

    2017-03-07

    Obesity is an escalating health problem worldwide, and hence the causes underlying its development are of primary importance to public health. There is growing evidence that suboptimal intrauterine environment can perturb the metabolic programing of the growing fetus, thereby increasing the risk of developing obesity in later life. However, the link between early exposures in the womb, genetic susceptibility, and perturbed epigenome on metabolic health is not well understood. In this study, we shed more light on this aspect by performing a comprehensive analysis on the effects of variation in prenatal environment, neonatal methylome, and genotype on birth weight and adiposity in early childhood. In a prospective mother-offspring cohort (N = 987), we interrogated the effects of 30 variables that influence the prenatal environment, umbilical cord DNA methylation, and genotype on offspring weight and adiposity, over the period from birth to 48 months. This is an interim analysis on an ongoing cohort study. Eleven of 30 prenatal environments, including maternal adiposity, smoking, blood glucose and plasma unsaturated fatty acid levels, were associated with birth weight. Polygenic risk scores derived from genetic association studies on adult adiposity were also associated with birth weight and child adiposity, indicating an overlap between the genetic pathways influencing metabolic health in early and later life. Neonatal methylation markers from seven gene loci (ANK3, CDKN2B, CACNA1G, IGDCC4, P4HA3, ZNF423 and MIRLET7BHG) were significantly associated with birth weight, with a subset of these in genes previously implicated in metabolic pathways in humans and in animal models. Methylation levels at three of seven birth weight-linked loci showed significant association with prenatal environment, but none were affected by polygenic risk score. Six of these birth weight-linked loci continued to show a longitudinal association with offspring size and/or adiposity in early childhood. This study provides further evidence that developmental pathways to adiposity begin before birth and are influenced by environmental, genetic and epigenetic factors. These pathways can have a lasting effect on offspring size, adiposity and future metabolic outcomes, and offer new opportunities for risk stratification and prevention of obesity. This birth cohort is a prospective observational study, designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875 .

  3. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.

    PubMed

    Gu, Yunyan; Wang, Hongwei; Qin, Yao; Zhang, Yujing; Zhao, Wenyuan; Qi, Lishuang; Zhang, Yuannv; Wang, Chenguang; Guo, Zheng

    2013-03-01

    The heterogeneity of genetic alterations in human cancer genomes presents a major challenge to advancing our understanding of cancer mechanisms and identifying cancer driver genes. To tackle this heterogeneity problem, many approaches have been proposed to investigate genetic alterations and predict driver genes at the individual pathway level. However, most of these approaches ignore the correlation of alteration events between pathways and miss many genes with rare alterations collectively contributing to carcinogenesis. Here, we devise a network-based approach to capture the cooperative functional modules hidden in genome-wide somatic mutation and copy number alteration profiles of glioblastoma (GBM) from The Cancer Genome Atlas (TCGA), where a module is a set of altered genes with dense interactions in the protein interaction network. We identify 7 pairs of significantly co-altered modules that involve the main pathways known to be altered in GBM (TP53, RB and RTK signaling pathways) and highlight the striking co-occurring alterations among these GBM pathways. By taking into account the non-random correlation of gene alterations, the property of co-alteration could distinguish oncogenic modules that contain driver genes involved in the progression of GBM. The collaboration among cancer pathways suggests that the redundant models and aggravating models could shed new light on the potential mechanisms during carcinogenesis and provide new indications for the design of cancer therapeutic strategies.

  4. A Network-Based Kernel Machine Test for the Identification of Risk Pathways in Genome-Wide Association Studies

    PubMed Central

    Freytag, Saskia; Manitz, Juliane; Schlather, Martin; Kneib, Thomas; Amos, Christopher I.; Risch, Angela; Chang-Claude, Jenny; Heinrich, Joachim; Bickeböller, Heike

    2014-01-01

    Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). Here, the kernel converts genomic information of two individuals to a quantitative value reflecting their genetic similarity. With the selection of the kernel one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms. PMID:24434848

  5. AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes.

    PubMed

    Navone, Laura; Macagno, Juan Pablo; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K; Gramajo, Hugo; Rodriguez, Eduardo

    2015-10-01

    Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation.

    PubMed

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie; Courtin, Christophe M; Verstrepen, Kevin J

    2013-12-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation.

  7. AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes

    PubMed Central

    Navone, Laura; Macagno, Juan Pablo; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K.; Gramajo, Hugo

    2015-01-01

    Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production. PMID:26187964

  8. Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N = 1345 young and elderly subjects.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Ryles, April B; Kohannim, Omid; Jahanshad, Neda; Medland, Sarah E; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Martin, Nicholas G; Wright, Margaret J; Saykin, Andrew J; Jack, Clifford R; Weiner, Michael W; Toga, Arthur W; Thompson, Paul M

    2013-06-01

    Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson's disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 706) and the Queensland Twin Imaging Study (QTIM; N = 639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (P MA  = 4.79 × 10(-8)). This commonly-carried genetic variant accounted for 2.68 % and 0.84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster's involvement in lentiform nucleus volume differences in human populations.

  9. Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality.

    PubMed

    Baum, Amber E; Solberg, Leah C; Churchill, Gary A; Ahmadiyeh, Nasim; Takahashi, Joseph S; Redei, Eva E

    2006-05-15

    Inbred Wistar-Kyoto rats consistently display hypoactivity in tests of emotional behavior. We used them to test the hypothesis that the genetic factors underlying the behavioral decision-making process will vary in different environmental contexts. The contexts used were the open-field test (OFT), a novel environment with no explicit threats present, and the defensive-burying test (DB), a habituated environment into which a threat has been introduced. Rearing, a voluntary behavior was measured in both tests, and our study was the first to look for genetic loci affecting grooming, a relatively automatic, stress-responsive stereotyped behavior. Quantitative trait locus analysis was performed on a population of 486 F2 animals bred from reciprocal inter-crosses. The genetic architectures of DB and OFT rearing, and of DB and OFT grooming, were compared. There were no common loci affecting grooming behavior in both tests. These different contexts produced the stereotyped behavior via different pathways, and genetic factors seem to influence the decision-making pathways and not the expression of the behavior. Three loci were found that affected rearing behavior in both tests. However, in both contexts, other loci had greater effects on the behavior. Our results imply that environmental context's effects on decision-making vary depending on the category of behavior.

  10. The impact of genetics on future drug discovery in schizophrenia.

    PubMed

    Matsumoto, Mitsuyuki; Walton, Noah M; Yamada, Hiroshi; Kondo, Yuji; Marek, Gerard J; Tajinda, Katsunori

    2017-07-01

    Failures of investigational new drugs (INDs) for schizophrenia have left huge unmet medical needs for patients. Given the recent lackluster results, it is imperative that new drug discovery approaches (and resultant drug candidates) target pathophysiological alterations that are shared in specific, stratified patient populations that are selected based on pre-identified biological signatures. One path to implementing this paradigm is achievable by leveraging recent advances in genetic information and technologies. Genome-wide exome sequencing and meta-analysis of single nucleotide polymorphism (SNP)-based association studies have already revealed rare deleterious variants and SNPs in patient populations. Areas covered: Herein, the authors review the impact that genetics have on the future of schizophrenia drug discovery. The high polygenicity of schizophrenia strongly indicates that this disease is biologically heterogeneous so the identification of unique subgroups (by patient stratification) is becoming increasingly necessary for future investigational new drugs. Expert opinion: The authors propose a pathophysiology-based stratification of genetically-defined subgroups that share deficits in particular biological pathways. Existing tools, including lower-cost genomic sequencing and advanced gene-editing technology render this strategy ever more feasible. Genetically complex psychiatric disorders such as schizophrenia may also benefit from synergistic research with simpler monogenic disorders that share perturbations in similar biological pathways.

  11. Genetic susceptibility to bone and soft tissue sarcomas: a field synopsis and meta-analysis

    PubMed Central

    Benna, Clara; Simioni, Andrea; Pasquali, Sandro; De Boni, Davide; Rajendran, Senthilkumar; Spiro, Giovanna; Colombo, Chiara; Virgone, Calogero; DuBois, Steven G.; Gronchi, Alessandro; Rossi, Carlo Riccardo; Mocellin, Simone

    2018-01-01

    Background The genetic architecture of bone and soft tissue sarcomas susceptibility is yet to be elucidated. We aimed to comprehensively collect and meta-analyze the current knowledge on genetic susceptibility in these rare tumors. Methods We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing sarcomas through searching PubMed, The Cochrane Library, Scopus and Web of Science databases. To evaluate result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Integrative analysis of genetic and eQTL (expression quantitative trait locus) data was coupled with network and pathway analysis to explore the hypothesis that specific cell functions are involved in sarcoma predisposition. Results We retrieved 90 eligible studies comprising 47,796 subjects (cases: 14,358, 30%) and investigating 1,126 polymorphisms involving 320 distinct genes. Meta-analysis identified 55 single nucleotide polymorphisms (SNPs) significantly associated with disease risk with a high (N=9), moderate (N=38) and low (N=8) level of evidence, findings being classified as noteworthy basically only when the level of evidence was high. The estimated joint population attributable risk for three independent SNPs (rs11599754 of ZNF365/EGR2, rs231775 of CTLA4, and rs454006 of PRKCG) was 37.2%. We also identified 53 SNPs significantly associated with sarcoma risk based on single studies. Pathway analysis enabled us to propose that sarcoma predisposition might be linked especially to germline variation of genes whose products are involved in the function of the DNA repair machinery. Conclusions We built the first knowledgebase on the evidence linking DNA variation to sarcomas susceptibility, which can be used to generate mechanistic hypotheses and inform future studies in this field of oncology. PMID:29719630

  12. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    PubMed

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  13. RECOVERING FILTER-BASED MICROARRAY DATA FOR PATHWAYS ANALYSIS USING A MULTIPOINT ALIGNMENT STRATEGY

    EPA Science Inventory

    The use of commercial microarrays are rapidly becoming the method of choice for profiling gene expression and assessing various disease states. Research Genetics has provided a series of well defined biological and software tools to the research community for these analyses. Th...

  14. Identification of genes associated with low furanocoumarin content in grapefruit

    USDA-ARS?s Scientific Manuscript database

    Some furanocoumarins in grapefruit (Citrus paradisi) are associated with the so-called grapefruit juice effect. Previous phytochemical quantification and genetic analysis suggested that the synthesis of these furanocoumarins may be controlled by a single gene in the pathway. In this study, cDNA-ampl...

  15. Molecular genetic pathway analysis of Asian longhorned beetle

    Treesearch

    Evan Braswell

    2011-01-01

    The Asian longhorned beetle, Anoplophora glabripennis, is a destructive pest of hardwood trees. Historically, A. glabripennis was geographically restricted within China and Korea and not of economic importance. However, as a result of massive reforestation programs designed to combat desertification, the species emerged as a pest...

  16. Drosophila sex combs as a model of evolutionary innovations.

    PubMed

    Kopp, Artyom

    2011-01-01

    The diversity of animal and plant forms is shaped by nested evolutionary innovations. Understanding the genetic and molecular changes responsible for these innovations is therefore one of the key goals of evolutionary biology. From the genetic point of view, the origin of novel traits implies the origin of new regulatory pathways to control their development. To understand how these new pathways are assembled in the course of evolution, we need model systems that combine relatively recent innovations with a powerful set of genetic and molecular tools. One such model is provided by the Drosophila sex comb-a male-specific morphological structure that evolved in a relatively small lineage related to the model species D. melanogaster. Our extensive knowledge of sex comb development in D. melanogaster provides the basis for investigating the genetic changes responsible for sex comb origin and diversification. At the same time, sex combs can change on microevolutionary timescales and differ spectacularly among closely related species, providing opportunities for direct genetic analysis and for integrating developmental and population-genetic approaches. Sex comb evolution is associated with the origin of novel interactions between Hox and sex determination genes. Activity of the sex determination pathway was brought under the control of the Hox code to become segment-specific, while Hox gene expression became sexually dimorphic. At the same time, both Hox and sex determination genes were integrated into the intrasegmental spatial patterning network, and acquired new joint downstream targets. Phylogenetic analysis shows that similar sex comb morphologies evolved independently in different lineages. Convergent evolution at the phenotypic level reflects convergent changes in the expression of Hox and sex determination genes, involving both independent gains and losses of regulatory interactions. However, the downstream cell-differentiation programs have diverged between species, and in some lineages, similar adult morphologies are produced by different morphogenetic mechanisms. These features make the sex comb an excellent model for examining not only the genetic changes responsible for its evolution, but also the cellular processes that translate DNA sequence changes into morphological diversity. The origin and diversification of sex combs provides insights into the roles of modularity, cooption, and regulatory changes in evolutionary innovations, and can serve as a model for understanding the origin of the more drastic novelties that define higher order taxa. © 2011 Wiley Periodicals, Inc.

  17. Drosophila Sex Combs as a Model of Evolutionary Innovations

    PubMed Central

    Kopp, Artyom

    2011-01-01

    The diversity of animal and plant forms is shaped by nested evolutionary innovations. Understanding the genetic and molecular changes responsible for these innovations is therefore one of the key goals of evolutionary biology. From the genetic point of view, the origin of novel traits implies the origin of new regulatory pathways to control their development. To understand how these new pathways are assembled in the course of evolution, we need model systems that combine relatively recent innovations with a powerful set of genetic and molecular tools. One such model is provided by the Drosophila sex comb – a male-specific morphological structure that evolved in a relatively small lineage related to the model species D. melanogaster. Our extensive knowledge of sex comb development in D. melanogaster provides the basis for investigating the genetic changes responsible for sex comb origin and diversification. At the same time, sex combs can change on microevolutionary timescales and differ spectacularly among closely related species, providing opportunities for direct genetic analysis and for integrating developmental and population-genetic approaches. Sex comb evolution is associated with the origin of novel interactions between HOX and sex determination genes. Activity of the sex determination pathway was brought under the control of the HOX code to become segment-specific, while HOX gene expression became sexually dimorphic. At the same time, both HOX and sex determination genes were integrated into the intrasegmental spatial patterning network, and acquired new joint downstream targets. Phylogenetic analysis shows that similar sex comb morphologies evolved independently in different lineages. Convergent evolution at the phenotypic level reflects convergent changes in the expression of HOX and sex determination genes, involving both independent gains and losses of regulatory interactions. However, the downstream cell differentiation programs have diverged between species, and in some lineages similar adult morphologies are produced by different morphogenetic mechanisms. These features make the sex comb an excellent model for examining not only the genetic changes responsible for its evolution, but also the cellular processes that translate DNA sequence changes into morphological diversity. The origin and diversification of sex combs provides insights into the roles of modularity, cooption, and regulatory changes in evolutionary innovations, and can serve as a model for understanding the origin of the more drastic novelties that define higher-order taxa. PMID:23016935

  18. Pathway-Based Genome-Wide Association Studies for Two Meat Production Traits in Simmental Cattle.

    PubMed

    Fan, Huizhong; Wu, Yang; Zhou, Xiaojing; Xia, Jiangwei; Zhang, Wengang; Song, Yuxin; Liu, Fei; Chen, Yan; Zhang, Lupei; Gao, Xue; Gao, Huijiang; Li, Junya

    2015-12-17

    Most single nucleotide polymorphisms (SNPs) detected by genome-wide association studies (GWAS), explain only a small fraction of phenotypic variation. Pathway-based GWAS were proposed to improve the proportion of genes for some human complex traits that could be explained by enriching a mass of SNPs within genetic groups. However, few attempts have been made to describe the quantitative traits in domestic animals. In this study, we used a dataset with approximately 7,700,000 SNPs from 807 Simmental cattle and analyzed live weight and longissimus muscle area using a modified pathway-based GWAS method to orthogonalise the highly linked SNPs within each gene using principal component analysis (PCA). As a result, of the 262 biological pathways of cattle collected from the KEGG database, the gamma aminobutyric acid (GABA)ergic synapse pathway and the non-alcoholic fatty liver disease (NAFLD) pathway were significantly associated with the two traits analyzed. The GABAergic synapse pathway was biologically applicable to the traits analyzed because of its roles in feed intake and weight gain. The proposed method had high statistical power and a low false discovery rate, compared to those of the smallest P-value and SNP set enrichment analysis methods.

  19. Inferring molecular interactions pathways from eQTL data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, Imran; McDermott, Jason E.; Samudrala, Ram

    Analysis of expression quantitative trait loci (eQTL) helps elucidate the connection between genotype, gene expression levels, and phenotype. However, standard statistical genetics can only attribute changes in expression levels to loci on the genome, not specific genes. Each locus can contain many genes, making it very difficult to discover which gene is controlling the expression levels of other genes. Furthermore, it is even more difficult to find a pathway of molecular interactions responsible for controlling the expression levels. Here we describe a series of techniques for finding explanatory pathways by exploring graphs of molecular interactions. We show several simple methodsmore » can find complete pathways the explain the mechanism of differential expression in eQTL data.« less

  20. How rare bone diseases have informed our knowledge of complex diseases.

    PubMed

    Johnson, Mark L

    2016-01-01

    Rare bone diseases, generally defined as monogenic traits with either autosomal recessive or dominant patterns of inheritance, have provided a rich database of genes and associated pathways over the past 2-3 decades. The molecular genetic dissection of these bone diseases has yielded some major surprises in terms of the causal genes and/or involved pathways. The discovery of genes/pathways involved in diseases such as osteopetrosis, osteosclerosis, osteogenesis imperfecta and many other rare bone diseases have all accelerated our understanding of complex traits. Importantly these discoveries have provided either direct validation for a specific gene embedded in a group of genes within an interval identified through a complex trait genome-wide association study (GWAS) or based upon the pathway associated with a monogenic trait gene, provided a means to prioritize a large number of genes for functional validation studies. In some instances GWAS studies have yielded candidate genes that fall within linkage intervals associated with monogenic traits and resulted in the identification of causal mutations in those rare diseases. Driving all of this discovery is a complement of technologies such as genome sequencing, bioinformatics and advanced statistical analysis methods that have accelerated genetic dissection and greatly reduced the cost. Thus, rare bone disorders in partnership with GWAS have brought us to the brink of a new era of personalized genomic medicine in which the prevention and management of complex diseases will be driven by the molecular understanding of each individuals contributing genetic risks for disease.

  1. Examination of Association to Autism of Common Genetic Variation in Genes Related to Dopamine

    PubMed Central

    Anderson, B.M.; Schnetz-Boutaud, N.; Bartlett, J.; Wright, H.H.; Abramson, R.K.; Cuccaro, M.L.; Gilbert, J.R.; Pericak-Vance, M.A.; Haines, J.L.

    2010-01-01

    Autism is a severe neurodevelopmental disorder characterized by a triad of complications. Autistic individuals display significant disturbances in language and reciprocal social interactions, combined with repetitive and stereotypic behaviors. Prevalence studies suggest that autism is more common than originally believed, with recent estimates citing a rate of one in 150. Although this genomic approach has yielded multiple suggestive regions, a specific risk locus has yet to be identified and widely confirmed. Because many etiologies have been suggested for this complex syndrome, we hypothesize that one of the difficulties in identifying autism genes is that multiple genetic variants may be required to significantly increase the risk of developing autism. Thus we took the alternative approach of examining 14 prominent dopamine pathway candidate genes for detailed study by genotyping 28 SNPs. Although we did observe a nominally significant association for rs2239535 (p=.008) on chromosome 20, single locus analysis did not reveal any results as significant after correction for multiple comparisons. No significant interaction was identified when Multifactor Dimensionality Reduction (MDR) was employed to test specifically for multilocus effects. Although genome-wide linkage scans in autism have provided support for linkage to various loci along the dopamine pathway, our study does not provide strong evidence of linkage or association to any specific gene or combination of genes within the pathway. These results demonstrate that common genetic variation within the tested genes located within this pathway at most play a minor to moderate role in overall autism pathogenesis. PMID:19360691

  2. Novel and ultra-rare damaging variants in neuropeptide signaling are associated with disordered eating behaviors

    PubMed Central

    Bahl, Ethan; Hannah, Claire; Hofammann, Dabney; Acevedo, Summer; Cui, Huxing; McAdams, Carrie J.

    2017-01-01

    Objective Eating disorders develop through a combination of genetic vulnerability and environmental stress, however the genetic basis of this risk is unknown. Methods To understand the genetic basis of this risk, we performed whole exome sequencing on 93 unrelated individuals with eating disorders (38 restricted-eating and 55 binge-eating) to identify novel damaging variants. Candidate genes with an excessive burden of predicted damaging variants were then prioritized based upon an unbiased, data-driven bioinformatic analysis. One top candidate pathway was empirically tested for therapeutic potential in a mouse model of binge-like eating. Results An excessive burden of novel damaging variants was identified in 186 genes in the restricted-eating group and 245 genes in the binge-eating group. This list is significantly enriched (OR = 4.6, p<0.0001) for genes involved in neuropeptide/neurotrophic pathways implicated in appetite regulation, including neurotensin-, glucagon-like peptide 1- and BDNF-signaling. Administration of the glucagon-like peptide 1 receptor agonist exendin-4 significantly reduced food intake in a mouse model of ‘binge-like’ eating. Conclusions These findings implicate ultra-rare and novel damaging variants in neuropeptide/neurotropic factor signaling pathways in the development of eating disorder behaviors and identify glucagon-like peptide 1-receptor agonists as a potential treatment for binge eating. PMID:28846695

  3. Polymorphisms in Genes of Relevance for Oestrogen and Oxytocin Pathways and Risk of Barrett's Oesophagus and Oesophageal Adenocarcinoma: A Pooled Analysis from the BEACON Consortium.

    PubMed

    Lagergren, Katarina; Ek, Weronica E; Levine, David; Chow, Wong-Ho; Bernstein, Leslie; Casson, Alan G; Risch, Harvey A; Shaheen, Nicholas J; Bird, Nigel C; Reid, Brian J; Corley, Douglas A; Hardie, Laura J; Wu, Anna H; Fitzgerald, Rebecca C; Pharoah, Paul; Caldas, Carlos; Romero, Yvonne; Vaughan, Thomas L; MacGregor, Stuart; Whiteman, David; Westberg, Lars; Nyren, Olof; Lagergren, Jesper

    2015-01-01

    The strong male predominance in oesophageal adenocarcinoma (OAC) and Barrett's oesophagus (BO) continues to puzzle. Hormonal influence, e.g. oestrogen or oxytocin, might contribute. This genetic-epidemiological study pooled 14 studies from three continents, Australia, Europe, and North America. Polymorphisms in 3 key genes coding for the oestrogen pathway (receptor alpha (ESR1), receptor beta (ESR2), and aromatase (CYP19A1)), and 3 key genes of the oxytocin pathway (the oxytocin receptor (OXTR), oxytocin protein (OXT), and cyclic ADP ribose hydrolase glycoprotein (CD38)), were analysed using a gene-based approach, versatile gene-based test association study (VEGAS). Among 1508 OAC patients, 2383 BO patients, and 2170 controls, genetic variants within ESR1 were associated with BO in males (p = 0.0058) and an increased risk of OAC and BO combined in males (p = 0.0023). Genetic variants within OXTR were associated with an increased risk of BO in both sexes combined (p = 0.0035) and in males (p = 0.0012). We followed up these suggestive findings in a further smaller data set, but found no replication. There were no significant associations between the other 4 genes studied and risk of OAC, BO, separately on in combination, in males and females combined or in males only. Genetic variants in the oestrogen receptor alpha and the oxytocin receptor may be associated with an increased risk of BO or OAC, but replication in other large samples are needed.

  4. Meta-dimensional data integration identifies critical pathways for susceptibility, tumorigenesis and progression of endometrial cancer.

    PubMed

    Wei, Runmin; De Vivo, Immaculata; Huang, Sijia; Zhu, Xun; Risch, Harvey; Moore, Jason H; Yu, Herbert; Garmire, Lana X

    2016-08-23

    Endometrial Cancer (EC) is one of the most common female cancers. Genome-wide association studies (GWAS) have been investigated to identify genetic polymorphisms that are predictive of EC risks. Here we utilized a meta-dimensional integrative approach to seek genetically susceptible pathways that may be associated with tumorigenesis and progression of EC. We analyzed GWAS data obtained from Connecticut Endometrial Cancer Study (CECS) and identified the top 20 EC susceptible pathways. To further verify the significance of top 20 EC susceptible pathways, we conducted pathway-level multi-omics analyses using EC exome-Seq, RNA-Seq and survival data, all based on The Cancer Genome Atlas (TCGA) samples. We measured the overall consistent rankings of these pathways in all four data types. Some well-studied pathways, such as p53 signaling and cell cycle pathways, show consistently high rankings across different analyses. Additionally, other cell signaling pathways (e.g. IGF-1/mTOR, rac-1 and IL-5 pathway), genetic information processing pathway (e.g. homologous recombination) and metabolism pathway (e.g. sphingolipid metabolism) are also highly associated with EC risks, diagnosis and prognosis. In conclusion, the meta-dimensional integration of EC cohorts has suggested some common pathways that may be associated from predisposition, tumorigenesis to progression.

  5. The C-Terminal Sequence of RhoB Directs Protein Degradation through an Endo-Lysosomal Pathway

    PubMed Central

    Ramos, Irene; Herrera, Mónica; Stamatakis, Konstantinos

    2009-01-01

    Background Protein degradation is essential for cell homeostasis. Targeting of proteins for degradation is often achieved by specific protein sequences or posttranslational modifications such as ubiquitination. Methodology/Principal Findings By using biochemical and genetic tools we have monitored the localization and degradation of endogenous and chimeric proteins in live primary cells by confocal microscopy and ultra-structural analysis. Here we identify an eight amino acid sequence from the C-terminus of the short-lived GTPase RhoB that directs the rapid degradation of both RhoB and chimeric proteins bearing this sequence through a lysosomal pathway. Elucidation of the RhoB degradation pathway unveils a mechanism dependent on protein isoprenylation and palmitoylation that involves sorting of the protein into multivesicular bodies, mediated by the ESCRT machinery. Moreover, RhoB sorting is regulated by late endosome specific lipid dynamics and is altered in human genetic lipid traffic disease. Conclusions/Significance Our findings characterize a short-lived cytosolic protein that is degraded through a lysosomal pathway. In addition, we define a novel motif for protein sorting and rapid degradation, which allows controlling protein levels by means of clinically used drugs. PMID:19956591

  6. Inferring genetic interactions via a nonlinear model and an optimization algorithm.

    PubMed

    Chen, Chung-Ming; Lee, Chih; Chuang, Cheng-Long; Wang, Chia-Chang; Shieh, Grace S

    2010-02-26

    Biochemical pathways are gradually becoming recognized as central to complex human diseases and recently genetic/transcriptional interactions have been shown to be able to predict partial pathways. With the abundant information made available by microarray gene expression data (MGED), nonlinear modeling of these interactions is now feasible. Two of the latest advances in nonlinear modeling used sigmoid models to depict transcriptional interaction of a transcription factor (TF) for a target gene, but do not model cooperative or competitive interactions of several TFs for a target. An S-shape model and an optimization algorithm (GASA) were developed to infer genetic interactions/transcriptional regulation of several genes simultaneously using MGED. GASA consists of a genetic algorithm (GA) and a simulated annealing (SA) algorithm, which is enhanced by a steepest gradient descent algorithm to avoid being trapped in local minimum. Using simulated data with various degrees of noise, we studied how GASA with two model selection criteria and two search spaces performed. Furthermore, GASA was shown to outperform network component analysis, the time series network inference algorithm (TSNI), GA with regular GA (GAGA) and GA with regular SA. Two applications are demonstrated. First, GASA is applied to infer a subnetwork of human T-cell apoptosis. Several of the predicted interactions are supported by the literature. Second, GASA was applied to infer the transcriptional factors of 34 cell cycle regulated targets in S. cerevisiae, and GASA performed better than one of the latest advances in nonlinear modeling, GAGA and TSNI. Moreover, GASA is able to predict multiple transcription factors for certain targets, and these results coincide with experiments confirmed data in YEASTRACT. GASA is shown to infer both genetic interactions and transcriptional regulatory interactions well. In particular, GASA seems able to characterize the nonlinear mechanism of transcriptional regulatory interactions (TIs) in yeast, and may be applied to infer TIs in other organisms. The predicted genetic interactions of a subnetwork of human T-cell apoptosis coincide with existing partial pathways, suggesting the potential of GASA on inferring biochemical pathways.

  7. A Method for Gene-Based Pathway Analysis Using Genomewide Association Study Summary Statistics Reveals Nine New Type 1 Diabetes Associations

    PubMed Central

    Evangelou, Marina; Smyth, Deborah J; Fortune, Mary D; Burren, Oliver S; Walker, Neil M; Guo, Hui; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick; Rich, Stephen S; Todd, John A; Wallace, Chris

    2014-01-01

    Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed () with 12 of the 22 SNPs showing . Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, ), NRP1 (rs722988, ), BAD (rs694739, ), CTSB (rs1296023, ), FYN (rs11964650, ), UBE2G1 (rs9906760, ), MAP3K14 (rs17759555, ), ITGB1 (rs1557150, ), and IL7R (rs1445898, ). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available. PMID:25371288

  8. The Fourth International Symposium on Genetic Disorders of the Ras/MAPK Pathway

    PubMed Central

    Stevenson, David A.; Schill, Lisa; Schoyer, Lisa; Andresen, Brage S.; Bakker, Annette; Bayrak-Toydemir, Pinar; Burkitt-Wright, Emma; Chatfield, Kathryn; Elefteriou, Florent; Elgersma, Ype; Fisher, Michael J.; Franz, David; Gelb, Bruce D.; Goriely, Anne; Gripp, Karen W.; Hardan, Antonio Y.; Keppler-Noreuil, Kim M.; Kerr, Bronwyn; Korf, Bruce; Leoni, Chiara; McCormick, Frank; Plotkin, Scott R.; Rauen, Katherine A.; Reilly, Karlyne; Roberts, Amy; Sandler, Abby; Siegel, Dawn; Walsh, Karin; Widemann, Brigitte C.

    2016-01-01

    The RASopathies are a group of disorders due to variations of genes associated with the Ras/MAPK pathway. Some of the RASopathies include neurofibromatosis type 1 (NF1), Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous (CFC) syndrome, Costello syndrome, Legius syndrome, and capillary malformation–arteriovenous malformation (CM-AVM) syndrome. In combination, the RASopathies are a frequent group of genetic disorders. This report summarizes the proceedings of the 4th International Symposium on Genetic Disorders of the Ras/MAPK pathway and highlights gaps in the field. PMID:27155140

  9. Screening key candidate genes and pathways involved in insulinoma by microarray analysis.

    PubMed

    Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin

    2018-06-01

    Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.

  10. Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa†

    PubMed Central

    Du, Qingzhang; Tian, Jiaxing; Yang, Xiaohui; Pan, Wei; Xu, Baohua; Li, Bailian; Ingvarsson, Pär K.; Zhang, Deqiang

    2015-01-01

    Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positive associations, we conducted single-marker analysis in a linkage population of 1,200 individuals. We identified 118, 121, and 43 associations (P< 0.01) corresponding to additive, dominant, and epistatic effects, respectively, with low to moderate proportions of phenotypic variance (R2). Epistatic interaction models uncovered a combination of three non-synonymous sites from three unique genes, representing a significant epistasis for diameter at breast height and stem volume. Single-marker analysis validated 61 associations (false discovery rate, Q ≤ 0.10), representing 38 SNPs from nine genes, and its average effect (R2 = 3.8%) nearly 2-fold higher than that identified with multi-gene association, suggesting that multi-gene association can capture smaller individual variants. Moreover, a structural gene–gene network based on tissue-specific transcript abundances provides a better understanding of the multi-gene pathway affecting tree growth and lignocellulose biosynthesis. Our study highlights the importance of pathway-based multiple gene associations to uncover the nature of genetic variance for quantitative traits and may drive novel progress in molecular breeding. PMID:25428896

  11. Susceptibility loci of CNOT6 in the general mRNA degradation pathway and lung cancer risk-A re-analysis of eight GWASs.

    PubMed

    Zhou, Fei; Wang, Yanru; Liu, Hongliang; Ready, Neal; Han, Younghun; Hung, Rayjean J; Brhane, Yonathan; McLaughlin, John; Brennan, Paul; Bickeböller, Heike; Rosenberger, Albert; Houlston, Richard S; Caporaso, Neil; Landi, Maria Teresa; Brüske, Irene; Risch, Angela; Ye, Yuanqing; Wu, Xifeng; Christiani, David C; Goodman, Gary; Chen, Chu; Amos, Christopher I; Wei, Qingyi

    2017-04-01

    mRNA degradation is an important regulatory step for controlling gene expression and cell functions. Genetic abnormalities involved in mRNA degradation genes were found to be associated with cancer risks. Therefore, we systematically investigated the roles of genetic variants in the general mRNA degradation pathway in lung cancer risk. Meta-analyses were conducted using summary data from six lung cancer genome-wide association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung and additional two GWASs from Harvard University and deCODE in the International Lung Cancer Consortium. Expression quantitative trait loci analysis (eQTL) was used for in silico functional validation of the identified significant susceptibility loci. This pathway-based analysis included 6816 single nucleotide polymorphisms (SNP) in 68 genes in 14 463 lung cancer cases and 44 188 controls. In the single-locus analysis, we found that 20 SNPs were associated with lung cancer risk with a false discovery rate threshold of <0.05. Among the 11 newly identified SNPs in CNOT6, which were in high linkage disequilibrium, the rs2453176 with a RegulomDB score "1f" was chosen as the tagSNP for further analysis. We found that the rs2453176 T allele was significantly associated with lung cancer risk (odds ratio = 1.11, 95% confidence interval = 1.04-1.18) in the eight GWASs. In the eQTL analysis, we found that levels of CNOT6 mRNA expression were significantly correlated with the rs2453176 T allele, which provided additional biological basis for the observed positive association. The CNOT6 rs2453176 SNP may be a new functional susceptible locus for lung cancer risk. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Examining the Genetic Background of Porcine Muscle Growth and Development Based on Transcriptome and miRNAome Data.

    PubMed

    Ropka-Molik, Katarzyna; Pawlina-Tyszko, Klaudia; Żukowski, Kacper; Piórkowska, Katarzyna; Żak, Grzegorz; Gurgul, Artur; Derebecka, Natalia; Wesoły, Joanna

    2018-04-16

    Recently, selection in pigs has been focused on improving the lean meat content in carcasses; this focus has been most evident in breeds constituting a paternal component in breeding. Such sire-breeds are used to improve the meat quantity of cross-breed pig lines. However, even in one breed, a significant variation in the meatiness level can be observed. In the present study, the comprehensive analysis of genes and microRNA expression profiles in porcine muscle tissue was applied to identify the genetic background of meat content. The comparison was performed between whole gene expression and miRNA profiles of muscle tissue collected from two sire-line pig breeds (Pietrain, Hampshire). The RNA-seq approach allowed the identification of 627 and 416 differentially expressed genes (DEGs) between pig groups differing in terms of loin weight between Pietrain and Hampshire breeds, respectively. The comparison of miRNA profiles showed differential expression of 57 microRNAs for Hampshire and 34 miRNAs for Pietrain pigs. Next, 43 genes and 18 miRNAs were selected as differentially expressed in both breeds and potentially related to muscle development. According to Gene Ontology analysis, identified DEGs and microRNAs were involved in the regulation of the cell cycle, fatty acid biosynthesis and regulation of the actin cytoskeleton. The most deregulated pathways dependent on muscle mass were the Hippo signalling pathway connected with the TGF-β signalling pathway and controlling organ size via the regulation of ubiquitin-mediated proteolysis, cell proliferation and apoptosis. The identified target genes were also involved in pathways such as the FoxO signalling pathway, signalling pathways regulating pluripotency of stem cells and the PI3K-Akt signalling pathway. The obtained results indicate molecular mechanisms controlling porcine muscle growth and development. Identified genes ( SOX2 , SIRT1 , KLF4 , PAX6 and genes belonging to the transforming growth factor beta superfamily) could be considered candidate genes for determining muscle mass in pigs.

  13. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    ERIC Educational Resources Information Center

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  14. Genetic and Environmental Influences on Female Sexual Orientation, Childhood Gender Typicality and Adult Gender Identity

    PubMed Central

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Background Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates – childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Methodology/Principal Findings Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. Conclusions/Significance This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation. PMID:21760939

  15. An analysis of the metabolic theory of the origin of the genetic code

    NASA Technical Reports Server (NTRS)

    Amirnovin, R.; Bada, J. L. (Principal Investigator)

    1997-01-01

    A computer program was used to test Wong's coevolution theory of the genetic code. The codon correlations between the codons of biosynthetically related amino acids in the universal genetic code and in randomly generated genetic codes were compared. It was determined that many codon correlations are also present within random genetic codes and that among the random codes there are always several which have many more correlations than that found in the universal code. Although the number of correlations depends on the choice of biosynthetically related amino acids, the probability of choosing a random genetic code with the same or greater number of codon correlations as the universal genetic code was found to vary from 0.1% to 34% (with respect to a fairly complete listing of related amino acids). Thus, Wong's theory that the genetic code arose by coevolution with the biosynthetic pathways of amino acids, based on codon correlations between biosynthetically related amino acids, is statistical in nature.

  16. Genetic manipulation and monitoring of autophagy in Drosophila.

    PubMed

    Neufeld, Thomas P

    2008-01-01

    Drosophila melanogaster provides a model system useful for many aspects of the study of autophagy in vivo. These include testing and validation of genes potentially involved in autophagy, discovery of novel genes through genetic screening for mutations that affect autophagy, and analysis of potential roles of autophagy in specific developmental or physiological processes. In recent years, a number of techniques and transgenic and mutant fly strains have been developed to facilitate autophagy analysis in this system. Here, protocols are described for activating or inhibiting autophagy in Drosophila, and for examining the progression of autophagy in vivo through imaging-based assays. The goal of this chapter is to provide a resource both for autophagy investigators with limited familiarity with fly genetics, as well as for experienced Drosophila biologists who wish to test for connections between autophagy and a given gene, pathway or process.

  17. Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-01-01

    We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.

  18. Genetic association of impulsivity in young adults: a multivariate study

    PubMed Central

    Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D

    2014-01-01

    Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255

  19. Associations of genetic risk scores based on adult adiposity pathways with childhood growth and adiposity measures.

    PubMed

    Monnereau, Claire; Vogelezang, Suzanne; Kruithof, Claudia J; Jaddoe, Vincent W V; Felix, Janine F

    2016-08-18

    Results from genome-wide association studies (GWAS) identified many loci and biological pathways that influence adult body mass index (BMI). We aimed to identify if biological pathways related to adult BMI also affect infant growth and childhood adiposity measures. We used data from a population-based prospective cohort study among 3,975 children with a mean age of 6 years. Genetic risk scores were constructed based on the 97 SNPs associated with adult BMI previously identified with GWAS and on 28 BMI related biological pathways based on subsets of these 97 SNPs. Outcomes were infant peak weight velocity, BMI at adiposity peak and age at adiposity peak, and childhood BMI, total fat mass percentage, android/gynoid fat ratio, and preperitoneal fat area. Analyses were performed using linear regression models. A higher overall adult BMI risk score was associated with infant BMI at adiposity peak and childhood BMI, total fat mass, android/gynoid fat ratio, and preperitoneal fat area (all p-values < 0.05). Analyses focused on specific biological pathways showed that the membrane proteins genetic risk score was associated with infant peak weight velocity, and the genetic risk scores related to neuronal developmental processes, hypothalamic processes, cyclicAMP, WNT-signaling, membrane proteins, monogenic obesity and/or energy homeostasis, glucose homeostasis, cell cycle, and muscle biology pathways were associated with childhood adiposity measures (all p-values <0.05). None of the pathways were associated with childhood preperitoneal fat area. A genetic risk score based on 97 SNPs related to adult BMI was associated with peak weight velocity during infancy and general and abdominal fat measurements at the age of 6 years. Risk scores based on genetic variants linked to specific biological pathways, including central nervous system and hypothalamic processes, influence body fat development from early life onwards.

  20. Childhood socioeconomic status and longitudinal patterns of alcohol problems: Variation across etiological pathways in genetic risk.

    PubMed

    Barr, Peter B; Silberg, Judy; Dick, Danielle M; Maes, Hermine H

    2018-05-14

    Childhood socioeconomic status (SES) is an important aspect of early life environment associated with later life health/health behaviors, including alcohol misuse. However, alcohol misuse is modestly heritable and involves differing etiological pathways. Externalizing disorders show significant genetic overlap with substance use, suggesting an impulsivity pathway to alcohol misuse. Alcohol misuse also overlaps with internalizing disorders, suggesting alcohol is used to cope. These differing pathways could lead to different patterns over time and/or differential susceptibility to environmental conditions, such as childhood SES. We examine whether: 1) genetic risk for externalizing and internalizing disorders influence trajectories of alcohol problems across adolescence to adulthood, 2) childhood SES alters genetic risk these disorders on trajectories of alcohol problems, and 3) these patterns are consistent across sex. We find modest evidence of gene-environment interaction. Higher childhood SES increases the risk of alcohol problems in late adolescence/early adulthood, while lower childhood SES increases the risk of alcohol problems in later adulthood, but only among males at greater genetic risk of externalizing disorders. Females from lower SES families with higher genetic risk of internalizing or externalizing disorders have greater risk of developing alcohol problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Postglacial expansion pathways of red mangrove, Rhizophora mangle, in the Caribbean Basin and Florida.

    PubMed

    Kennedy, John Paul; Pil, Maria W; Proffitt, C Edward; Boeger, Walter A; Stanford, Alice M; Devlin, Donna J

    2016-02-01

    The Last Glacial Maximum (LGM) was a period of massive range contraction. Post-LGM, water-dispersed coastal species, including the red mangrove (Rhizophora mangle), expanded poleward as propagules were transported by ocean currents. We assessed postglacial marine expansion pathways for R. mangle within the Caribbean Basin and Florida. Six microsatellite loci were used to genotype 237 individuals from nine R. mangle populations in the Caribbean, Florida, and Northwest Africa. We evaluated genetic variation, population structure, gene flow along alternative post-LGM expansion pathways to Florida, and potential long-distance dispersal (LDD) from West Africa to Caribbean islands. These R. mangle populations had substantial genetic structure (FST = 0.37, P < 0.0001) with three discrete population clusters (Caribbean mainland, Caribbean islands, and Florida). Genetic connectivity along the mainland pathway (Caribbean mainland to Florida) vs. limited gene dispersal along the Antilles Island pathway (Caribbean islands to Florida) supported Florida recolonization from Caribbean mainland sources. Genetic similarity of Northwest Africa and two Caribbean islands provided evidence for trans-Atlantic LDD. We did not find a pattern of decreasing genetic diversity with latitude. We outline a complex expansion history for R. mangle, with discrete pathways of recolonization for Florida and Caribbean islands. Contrary to expectation, connectivity to putative Caribbean mainland refugial populations via ocean currents, and not latitude, appears to dictate genetic diversity within Caribbean island and Florida R. mangle. These findings provide a framework for further investigation of additional water-dispersed neotropical species, and insights for management initiatives. © 2016 Botanical Society of America.

  2. Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening

    PubMed Central

    Crowhurst, Ross N; Gleave, Andrew P; MacRae, Elspeth A; Ampomah-Dwamena, Charles; Atkinson, Ross G; Beuning, Lesley L; Bulley, Sean M; Chagne, David; Marsh, Ken B; Matich, Adam J; Montefiori, Mirco; Newcomb, Richard D; Schaffer, Robert J; Usadel, Björn; Allan, Andrew C; Boldingh, Helen L; Bowen, Judith H; Davy, Marcus W; Eckloff, Rheinhart; Ferguson, A Ross; Fraser, Lena G; Gera, Emma; Hellens, Roger P; Janssen, Bart J; Klages, Karin; Lo, Kim R; MacDiarmid, Robin M; Nain, Bhawana; McNeilage, Mark A; Rassam, Maysoon; Richardson, Annette C; Rikkerink, Erik HA; Ross, Gavin S; Schröder, Roswitha; Snowden, Kimberley C; Souleyre, Edwige JF; Templeton, Matt D; Walton, Eric F; Wang, Daisy; Wang, Mindy Y; Wang, Yanming Y; Wood, Marion; Wu, Rongmei; Yauk, Yar-Khing; Laing, William A

    2008-01-01

    Background Kiwifruit (Actinidia spp.) are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs). Results The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha) and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons). Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases) and pathways (terpenoid biosynthesis) is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. Conclusion This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia. PMID:18655731

  3. Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS.

    PubMed

    Kim, Nora Chung; Andrews, Peter C; Asselbergs, Folkert W; Frost, H Robert; Williams, Scott M; Harris, Brent T; Read, Cynthia; Askland, Kathleen D; Moore, Jason H

    2012-07-28

    It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO). We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR) method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs). Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA) method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, 'Regulation of Cellular Component Organization and Biogenesis', a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, 'Actin Cytoskeleton', a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Pathway analysis of pairwise genetic associations in two GWAS of sporadic ALS revealed a set of genes involved in cellular component organization and actin cytoskeleton, more specifically, that were not reported by prior GWAS. However, prior biological studies have implicated actin cytoskeleton in ALS and other motor neuron diseases. This study supports the idea that pathway-level analysis of GWAS data may discover important associations not revealed using conventional one-SNP-at-a-time approaches.

  4. Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries

    PubMed Central

    Goss, Erica M.; Larsen, Meg; Chastagner, Gary A.; Givens, Donald R.; Grünwald, Niklaus J.

    2009-01-01

    Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens. PMID:19774068

  5. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans

    PubMed Central

    Liu, Junyan; Deng, Yang; Peters, Brian M.; Li, Lin; Li, Bing; Chen, Lequn; Xu, Zhenbo; Shirtliff, Mark E.

    2016-01-01

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA14528 under normal, mid-term and VPNC states were performed using RNA-sequencing (RNA-seq) and further bioinformatics analyses. GO function, COG category, and KEGG pathway enrichment analysis were conducted to investigate functional and related metabolic pathways of the differentially expressed genes. Functional and pathway enrichment analysis indicated that heightened stress response and reduction in genes associated with transport, metabolic process, and enzyme activity might play important roles in the formation of the VPNC state. This is the first transcriptomic analysis on the formation of the VPNC state of beer spoilage L. acetotolerans. PMID:27819317

  6. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans.

    PubMed

    Liu, Junyan; Deng, Yang; Peters, Brian M; Li, Lin; Li, Bing; Chen, Lequn; Xu, Zhenbo; Shirtliff, Mark E

    2016-11-07

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA14528 under normal, mid-term and VPNC states were performed using RNA-sequencing (RNA-seq) and further bioinformatics analyses. GO function, COG category, and KEGG pathway enrichment analysis were conducted to investigate functional and related metabolic pathways of the differentially expressed genes. Functional and pathway enrichment analysis indicated that heightened stress response and reduction in genes associated with transport, metabolic process, and enzyme activity might play important roles in the formation of the VPNC state. This is the first transcriptomic analysis on the formation of the VPNC state of beer spoilage L. acetotolerans.

  7. Identification of flowering genes in strawberry, a perennial SD plant

    PubMed Central

    Mouhu, Katriina; Hytönen, Timo; Folta, Kevin; Rantanen, Marja; Paulin, Lars; Auvinen, Petri; Elomaa, Paula

    2009-01-01

    Background We are studying the regulation of flowering in perennial plants by using diploid wild strawberry (Fragaria vesca L.) as a model. Wild strawberry is a facultative short-day plant with an obligatory short-day requirement at temperatures above 15°C. At lower temperatures, however, flowering induction occurs irrespective of photoperiod. In addition to short-day genotypes, everbearing forms of wild strawberry are known. In 'Baron Solemacher' recessive alleles of an unknown repressor, SEASONAL FLOWERING LOCUS (SFL), are responsible for continuous flowering habit. Although flower induction has a central effect on the cropping potential, the molecular control of flowering in strawberries has not been studied and the genetic flowering pathways are still poorly understood. The comparison of everbearing and short-day genotypes of wild strawberry could facilitate our understanding of fundamental molecular mechanisms regulating perennial growth cycle in plants. Results We have searched homologs for 118 Arabidopsis flowering time genes from Fragaria by EST sequencing and bioinformatics analysis and identified 66 gene homologs that by sequence similarity, putatively correspond to genes of all known genetic flowering pathways. The expression analysis of 25 selected genes representing various flowering pathways did not reveal large differences between the everbearing and the short-day genotypes. However, putative floral identity and floral integrator genes AP1 and LFY were co-regulated during early floral development. AP1 mRNA was specifically accumulating in the shoot apices of the everbearing genotype, indicating its usability as a marker for floral initiation. Moreover, we showed that flowering induction in everbearing 'Baron Solemacher' and 'Hawaii-4' was inhibited by short-day and low temperature, in contrast to short-day genotypes. Conclusion We have shown that many central genetic components of the flowering pathways in Arabidopsis can be identified from strawberry. However, novel regulatory mechanisms exist, like SFL that functions as a switch between short-day/low temperature and long-day/high temperature flowering responses between the short-day genotype and the everbearing 'Baron Solemacher'. The identification of putative flowering gene homologs and AP1 as potential marker gene for floral initiation will strongly facilitate the exploration of strawberry flowering pathways. PMID:19785732

  8. Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis.

    PubMed

    Baranzini, Sergio E; Srinivasan, Radhika; Khankhanian, Pouya; Okuda, Darin T; Nelson, Sarah J; Matthews, Paul M; Hauser, Stephen L; Oksenberg, Jorge R; Pelletier, Daniel

    2010-09-01

    Glutamate is the main excitatory neurotransmitter in the mammalian brain. Appropriate transmission of nerve impulses through glutamatergic synapses is required throughout the brain and forms the basis of many processes including learning and memory. However, abnormally high levels of extracellular brain glutamate can lead to neuroaxonal cell death. We have previously reported elevated glutamate levels in the brains of patients suffering from multiple sclerosis. Here two complementary analyses to assess the extent of genomic control over glutamate levels were used. First, a genome-wide association analysis in 382 patients with multiple sclerosis using brain glutamate concentration as a quantitative trait was conducted. In a second approach, a protein interaction network was used to find associated genes within the same pathway. The top associated marker was rs794185 (P < 6.44 x 10(-7)), a non-coding single nucleotide polymorphism within the gene sulphatase modifying factor 1. Our pathway approach identified a module composed of 70 genes with high relevance to glutamate biology. Individuals carrying a higher number of associated alleles from genes in this module showed the highest levels of glutamate. These individuals also showed greater decreases in N-acetylaspartate and in brain volume over 1 year of follow-up. Patients were then stratified by the amount of annual brain volume loss and the same approach was performed in the 'high' (n = 250) and 'low' (n = 132) neurodegeneration groups. The association with rs794185 was highly significant in the group with high neurodegeneration. Further, results from the network-based pathway analysis remained largely unchanged even after stratification. Results from these analyses indicated that variance in the activity of neurochemical pathways implicated in neurodegeneration is explained, at least in part, by the inheritance of common genetic polymorphisms. Spectroscopy-based imaging provides a novel quantitative endophenotype for genetic association studies directed towards identifying new factors that contribute to the heterogeneity of clinical expression of multiple sclerosis.

  9. Comparative mRNA analysis of behavioral and genetic mouse models of aggression.

    PubMed

    Malki, Karim; Tosto, Maria G; Pain, Oliver; Sluyter, Frans; Mineur, Yann S; Crusio, Wim E; de Boer, Sietse; Sandnabba, Kenneth N; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C; Asherson, Philip

    2016-04-01

    Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors. © 2016 Wiley Periodicals, Inc.

  10. The genetics of East African populations: a Nilo-Saharan component in the African genetic landscape

    PubMed Central

    Dobon, Begoña; Hassan, Hisham Y.; Laayouni, Hafid; Luisi, Pierre; Ricaño-Ponce, Isis; Zhernakova, Alexandra; Wijmenga, Cisca; Tahir, Hanan; Comas, David; Netea, Mihai G.; Bertranpetit, Jaume

    2015-01-01

    East Africa is a strategic region to study human genetic diversity due to the presence of ethnically, linguistically, and geographically diverse populations. Here, we provide new insight into the genetic history of populations living in the Sudanese region of East Africa by analysing nine ethnic groups belonging to three African linguistic families: Niger-Kordofanian, Nilo-Saharan and Afro-Asiatic. A total of 500 individuals were genotyped for 200,000 single-nucleotide polymorphisms. Principal component analysis, clustering analysis using ADMIXTURE, FST statistics, and the three-population test were used to investigate the underlying genetic structure and ancestry of the different ethno-linguistic groups. Our analyses revealed a genetic component for Sudanese Nilo-Saharan speaking groups (Darfurians and part of Nuba populations) related to Nilotes of South Sudan, but not to other Sudanese populations or other sub-Saharan populations. Populations inhabiting the North of the region showed close genetic affinities with North Africa, with a component that could be remnant of North Africans before the migrations of Arabs from Arabia. In addition, we found very low genetic distances between populations in genes important for anti-malarial and anti-bacterial host defence, suggesting similar selective pressures on these genes and stressing the importance of considering functional pathways to understand the evolutionary history of populations. PMID:26017457

  11. Association of HSP70 and its co-chaperones with Alzheimer’s Disease

    PubMed Central

    Broer, Linda; Ikram, Mohammad Arfan; Schuur, Maaike; DeStefano, Anita L.; Bis, Joshua C.; Liu, Fan; Rivadeneira, Fernando; Uitterlinden, Andre G.; Beiser, Alexa S.; Longstreth, William T.; Hofman, Albert; Aulchenko, Yurii; Seshadri, Sudha; Fitzpatrick, Annette L.; Oostra, Ben A.; Breteler, Monique M.B.; van Duijn, Cornelia M.

    2012-01-01

    The heat shock protein (HSP) 70 family has been implicated in the pathology of Alzheimer’s disease (AD). In this study, we examined common genetic variations in the 80 genes encoding HSP70 and its co-chaperones. We conducted a study in a series of 462 patients and 5238 unaffected participants derived from the Rotterdam Study, a population-based study including 7983 persons aged 55 years and older. We genotyped a total of 12,053 Single Nucleotide Polymorphisms (SNPs) using the HumanHap550K Genotyping BeadChip from Illumina. Replication was performed in two independent cohort studies, the Framingham Heart study (FHS; N=806) and Cardiovascular Health Study (CHS; N=2150). When adjusting for multiple testing, we found a small but consistent, though not significant effect of rs12118313 located 32kb from PFDN2, with an OR of 1.19 (p-value from meta-analysis =0.003). However this SNP was in the intron of another gene, suggesting it is unlikely this SNP reflects the effect of PFDN2. In a formal pathway analysis we found nominally significant evidence for an association of BAG, DNAJA and prefoldin with AD. These findings corroborate with those of a study of 2032 AD patients and 5328 controls, in which several members of the prefoldin family showed evidence for association to AD. Our study did not reveal evidence for a genetic variant if the HSP70 family with a major effect on AD. However, our findings of the single SNP analysis and pathway analysis suggest that multiple genetic variants in prefoldin are associated with AD. PMID:21403392

  12. Genetic heterogeneity in autism: From single gene to a pathway perspective.

    PubMed

    An, Joon Yong; Claudianos, Charles

    2016-09-01

    The extreme genetic heterogeneity of autism spectrum disorder (ASD) represents a major challenge. Recent advances in genetic screening and systems biology approaches have extended our knowledge of the genetic etiology of ASD. In this review, we discuss the paradigm shift from a single gene causation model to pathway perturbation model as a guide to better understand the pathophysiology of ASD. We discuss recent genetic findings obtained through next-generation sequencing (NGS) and examine various integrative analyses using systems biology and complex networks approaches that identify convergent patterns of genetic elements associated with ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. THE GENOMIC LANDSCAPE OF PEDIATRIC AND YOUNG ADULT T-LINEAGE ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Liu, Yu; Easton, John; Shao, Ying; Maciaszek, Jamie; Wang, Zhaoming; Wilkinson, Mark R.; McCastlain, Kelly; Edmonson, Michael; Pounds, Stanley B.; Shi, Lei; Zhou, Xin; Ma, Xiaotu; Sioson, Edgar; Li, Yongjin; Rusch, Michael; Gupta, Pankaj; Pei, Deqing; Cheng, Cheng; Smith, Malcolm A.; Auvil, Jaime Guidry; Gerhard, Daniela S.; Relling, Mary V.; Winick, Naomi J.; Carroll, Andrew J.; Heerema, Nyla A.; Raetz, Elizabeth; Devidas, Meenakshi; Willman, Cheryl L.; Harvey, Richard C.; Carroll, William L.; Dunsmore, Kimberly P.; Winter, Stuart S.; Wood, Brent L; Sorrentino, Brian P.; Downing, James R.; Loh, Mignon L.; Hunger, Stephen P; Zhang, Jinghui; Mullighan, Charles G.

    2017-01-01

    Genetic alterations activating NOTCH1 signaling and T cell transcription factors, coupled with inactivation of the INK4/ARF tumor suppressors are hallmarks of T-ALL, but detailed genome-wide sequencing of large T-ALL cohorts has not been performed. Using integrated genomic analysis of 264 T-ALL cases, we identify 106 putative driver genes, half of which were not previously described in childhood T-ALL (e.g. CCND3, CTCF, MYB, SMARCA4, ZFP36L2 and MYCN). We described new mechanisms of coding and non-coding alteration, and identify 10 recurrently altered pathways, with associations between mutated genes and pathways, and stage or subtype of T-ALL. For example, NRAS/FLT3 mutations were associated with immature T-ALL, JAK3/STAT5B mutations in HOX1 deregulated ALL, PTPN2 mutations in TLX1 T-ALL, and PIK3R1/PTEN mutations in TAL1 ALL, suggesting that different signaling pathways have distinct roles according to maturational stage. This genomic landscape provides a logical framework for the development of faithful genetic models and new therapeutic approaches. PMID:28671688

  14. Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria.

    PubMed

    Korstanje, Ron; Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H; Roberts, Ian S D; Sheehan, Susan; Savage, Holly; Haller, Hermann; Schiffer, Mario

    2016-11-01

    Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. Copyright © 2016 by the American Society of Nephrology.

  15. SS-mPMG and SS-GA: tools for finding pathways and dynamic simulation of metabolic networks.

    PubMed

    Katsuragi, Tetsuo; Ono, Naoaki; Yasumoto, Keiichi; Altaf-Ul-Amin, Md; Hirai, Masami Y; Sriyudthsak, Kansuporn; Sawada, Yuji; Yamashita, Yui; Chiba, Yukako; Onouchi, Hitoshi; Fujiwara, Toru; Naito, Satoshi; Shiraishi, Fumihide; Kanaya, Shigehiko

    2013-05-01

    Metabolomics analysis tools can provide quantitative information on the concentration of metabolites in an organism. In this paper, we propose the minimum pathway model generator tool for simulating the dynamics of metabolite concentrations (SS-mPMG) and a tool for parameter estimation by genetic algorithm (SS-GA). SS-mPMG can extract a subsystem of the metabolic network from the genome-scale pathway maps to reduce the complexity of the simulation model and automatically construct a dynamic simulator to evaluate the experimentally observed behavior of metabolites. Using this tool, we show that stochastic simulation can reproduce experimentally observed dynamics of amino acid biosynthesis in Arabidopsis thaliana. In this simulation, SS-mPMG extracts the metabolic network subsystem from published databases. The parameters needed for the simulation are determined using a genetic algorithm to fit the simulation results to the experimental data. We expect that SS-mPMG and SS-GA will help researchers to create relevant metabolic networks and carry out simulations of metabolic reactions derived from metabolomics data.

  16. The Tbr2 Molecular Network Controls Cortical Neuronal Differentiation Through Complementary Genetic and Epigenetic Pathways.

    PubMed

    Sessa, Alessandro; Ciabatti, Ernesto; Drechsel, Daniela; Massimino, Luca; Colasante, Gaia; Giannelli, Serena; Satoh, Takashi; Akira, Shizuo; Guillemot, Francois; Broccoli, Vania

    2017-06-01

    The T-box containing Tbr2 gene encodes for a transcription factor essential for the specification of the intermediate neural progenitors (INPs) originating the excitatory neurons of the cerebral cortex. However, its overall mechanism of action, direct target genes and cofactors remain unknown. Herein, we carried out global gene expression profiling combined with genome-wide binding site identification to determine the molecular pathways regulated by TBR2 in INPs. This analysis led to the identification of novel protein-protein interactions that control multiple features of INPs including cell-type identity, morphology, proliferation and migration dynamics. In particular, NEUROG2 and JMJD3 were found to associate with TBR2 revealing unexplored TBR2-dependent mechanisms. These interactions can explain, at least in part, the role of this transcription factor in the implementation of the molecular program controlling developmental milestones during corticogenesis. These data identify TBR2 as a major determinant of the INP-specific traits by regulating both genetic and epigenetic pathways. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Genetic control of the alternative pathway of complement in humans and age-related macular degeneration

    PubMed Central

    Hecker, Laura A.; Edwards, Albert O.; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H.; Brown, William L.; Issa, Peter Charbel; Scholl, Hendrik P.; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E.; Bailey, Kent R.; Oppermann, Martin

    2010-01-01

    Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues. PMID:19825847

  18. Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK.

    PubMed

    Castillejo-López, Casimiro; Delgado-Vega, Angélica M; Wojcik, Jerome; Kozyrev, Sergey V; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A; Merrill, Joan T; Kelly, Jennifer A; Kaufman, Kenneth M; Moser, Kathy L; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A; D'Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B; Gaffney, Patrick M; Martin, Javier; Guthridge, Joel M; Alarcón-Riquelme, Marta E

    2012-01-01

    Altered signalling in B cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signalling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterise the role of BANK1 and BLK in SLE, a genetic interaction analysis was performed hypothesising that genetic interactions could reveal functional pathways relevant to disease pathogenesis. The GPAT16 method was used to analyse the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localisation, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, the possibility that BANK1 and BLK could also show a protein-protein interaction was tested. The co-immunoprecipitation and co-localisation of BLK and BANK1 were demonstrated. In a Daudi cell line and primary naive B cells endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. This study shows a genetic interaction between BANK1 and BLK, and demonstrates that these molecules interact physically. The results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signalling pathway.

  19. Genetic and Physical Interaction of the B-Cell SLE-Associated Genes BANK1 and BLK

    PubMed Central

    Castillejo-López, Casimiro; Delgado-Vega, Angélica M.; Wojcik, Jerome; Kozyrev, Sergey V.; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R.; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A.; Merrill, Joan T.; Kelly, Jennifer A.; Kaufman, Kenneth M.; Moser, Kathy; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A.; D’Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B.; Gaffney, Patrick; Martin, Javier; Guthridge, Joel M.; Alarcón-Riquelme, Marta E.

    2012-01-01

    Objectives Altered signaling in B-cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signaling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterize the role of BANK1 and BLK in SLE, we performed a genetic interaction analysis hypothesizing that genetic interactions could reveal functional pathways relevant to disease pathogenesis. Methods We Used the method GPAT16 to analyze the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localization, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Results Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from Northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, we tested the possibility that BANK1 and BLK could also show a protein-protein interaction. We demonstrated co-immunoprecipitation and co-localization of BLK and BANK1. In a Daudi cell line and primary naïve B-cells the endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. Conclusions Here, we show a genetic interaction between BANK1 and BLK, and demonstrate that these molecules interact physically. Our results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signaling pathway. PMID:21978998

  20. The Genetic Landscape of Renal Complications in Type 1 Diabetes

    PubMed Central

    Sandholm, Niina; Van Zuydam, Natalie; Ahlqvist, Emma; Juliusdottir, Thorhildur; Deshmukh, Harshal A.; Rayner, N. William; Di Camillo, Barbara; Forsblom, Carol; Fadista, Joao; Ziemek, Daniel; Salem, Rany M.; Hiraki, Linda T.; Pezzolesi, Marcus; Trégouët, David; Dahlström, Emma; Valo, Erkka; Oskolkov, Nikolay; Ladenvall, Claes; Marcovecchio, M. Loredana; Cooper, Jason; Sambo, Francesco; Malovini, Alberto; Manfrini, Marco; McKnight, Amy Jayne; Lajer, Maria; Harjutsalo, Valma; Gordin, Daniel; Parkkonen, Maija; Lyssenko, Valeriya; McKeigue, Paul M.; Rich, Stephen S.; Brosnan, Mary Julia; Fauman, Eric; Bellazzi, Riccardo; Rossing, Peter; Hadjadj, Samy; Krolewski, Andrzej; Paterson, Andrew D.; Hirschhorn, Joel N.; Maxwell, Alexander P.; Cobelli, Claudio; Colhoun, Helen M.; Groop, Leif; McCarthy, Mark I.

    2017-01-01

    Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4×10−3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associated variants. Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2×10−5) and the risk of type 2 diabetes (P=6.1×10−4) associated with the risk of diabetic kidney disease. We also found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1×10−4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0×10−6), and pentose and glucuronate interconversions (P=3.0×10−6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease. PMID:27647854

  1. Dynamics of the Saccharomyces cerevisiae Transcriptome during Bread Dough Fermentation

    PubMed Central

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie

    2013-01-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation. PMID:24056467

  2. Multivariate Genetic Correlates of the Auditory Paired Stimuli-Based P2 Event-Related Potential in the Psychosis Dimension From the BSNIP Study.

    PubMed

    Mokhtari, Mohammadreza; Narayanan, Balaji; Hamm, Jordan P; Soh, Pauline; Calhoun, Vince D; Ruaño, Gualberto; Kocherla, Mohan; Windemuth, Andreas; Clementz, Brett A; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S; Pearlson, Godfrey D

    2016-05-01

    The complex molecular etiology of psychosis in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is not well defined, presumably due to their multifactorial genetic architecture. Neurobiological correlates of psychosis can be identified through genetic associations of intermediate phenotypes such as event-related potential (ERP) from auditory paired stimulus processing (APSP). Various ERP components of APSP are heritable and aberrant in SZ, PBP and their relatives, but their multivariate genetic factors are less explored. We investigated the multivariate polygenic association of ERP from 64-sensor auditory paired stimulus data in 149 SZ, 209 PBP probands, and 99 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Multivariate association of 64-channel APSP waveforms with a subset of 16 999 single nucleotide polymorphisms (SNPs) (reduced from 1 million SNP array) was examined using parallel independent component analysis (Para-ICA). Biological pathways associated with the genes were assessed using enrichment-based analysis tools. Para-ICA identified 2 ERP components, of which one was significantly correlated with a genetic network comprising multiple linearly coupled gene variants that explained ~4% of the ERP phenotype variance. Enrichment analysis revealed epidermal growth factor, endocannabinoid signaling, glutamatergic synapse and maltohexaose transport associated with P2 component of the N1-P2 ERP waveform. This ERP component also showed deficits in SZ and PBP. Aberrant P2 component in psychosis was associated with gene networks regulating several fundamental biologic functions, either general or specific to nervous system development. The pathways and processes underlying the gene clusters play a crucial role in brain function, plausibly implicated in psychosis. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Recipient’s Genetic R702W NOD2 Variant Is Associated with an Increased Risk of Bacterial Infections after Orthotopic Liver Transplantation

    PubMed Central

    van Hoek, Bart; van den Berg, Arie P.; Porte, Robert J.; Blokzijl, Hans; Coenraad, Minneke J.; Hepkema, Bouke G.; Schaapherder, Alexander F.; Ringers, Jan; Weersma, Rinse K.; Verspaget, Hein W.

    2013-01-01

    Introduction Orthotopic liver transplantation (OLT) is accompanied by a significant postoperative infection risk. Immunosuppression to prevent rejection increases the susceptibility to infections, mainly by impairing the adaptive immune system. Genetic polymorphisms in the lectin complement pathway of the donor have recently been identified as important risk determinants of clinically significant bacterial infection (CSI) after OLT. Another genetic factor involved in innate immunity is NOD2, which was reported to be associated with increased risk of spontaneous bacterial peritonitis in cirrhotic patients. Methods We assessed association of three genetic NOD2 variants (R702W, G908R and 3020insC) with increased risk of CSI after OLT. 288 OLT recipient-donor pairs from two tertiary referral centers were genotyped for the three NOD2 variants. The probability of CSI in relation to NOD2 gene variants was determined with cumulative incidence curves and log-rank analysis. Results The R702W NOD2 variant in the recipient was associated with CSI after OLT. Eight out of 15 (53.3%) individuals with a mutated genotype compared to 80/273 (29.3%) with wild type genotype developed CSI (p=0.027, univariate cox regression), illustrated by a higher frequency of CSI after OLT over time (p=0.0003, log rank analysis). Multivariate analysis (including the donor lectin complement pathway profile) showed independence of this R702W NOD2 association from other risk factors (HR 2.0; p=0.04). The other NOD2 variants, G908R and 3020insC, in the recipient were not associated with CSI. There was no association with CSI after OLT for any of the NOD2 variants in the donor. Conclusion The mutated NOD2 R702W genotype in the recipient is independently associated with an increased risk of bacterial infections after liver transplantation, indicating a predisposing role for this genetic factor impairing the recipient’s innate immune system. PMID:23977330

  4. Genetic Insights Into ADHD Biology.

    PubMed

    Hayman, Victoria; Fernandez, Thomas V

    2018-01-01

    ADHD is a neurobiological disorder with a large worldwide prevalence causing significant impairment in children, adolescents, and adults. While there is general agreement about genetic contributions toward the disorder, progress in leveraging genetics to learn more about the biology and risk factors for ADHD has been limited. In this perspective, we identified 105 genes from the literature showing at least nominal statistical significance in association with ADHD. We analyzed these genes for enrichment in biological pathways and in known interacting biological networks. We also analyzed the expression patterns of candidate genes across brain regions and across periods of human development. From our analysis, we identify 14 genes that cluster within an interactive gene network, with enrichment in nitric oxide synthase and alpha-1 adrenergic pathways. Furthermore, these genes show enrichment for expression in the cerebellum during childhood through young adulthood, and in the cortex in adolescence and young adulthood. Gene discovery holds great potential for elucidating the unknown biological underpinnings of ADHD. Genome-wide sequencing efforts are underway and are likely to provide important insights that can be leveraged for new treatments and interventions.

  5. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease.

    PubMed

    Zhao, Wei; Rasheed, Asif; Tikkanen, Emmi; Lee, Jung-Jin; Butterworth, Adam S; Howson, Joanna M M; Assimes, Themistocles L; Chowdhury, Rajiv; Orho-Melander, Marju; Damrauer, Scott; Small, Aeron; Asma, Senay; Imamura, Minako; Yamauch, Toshimasa; Chambers, John C; Chen, Peng; Sapkota, Bishwa R; Shah, Nabi; Jabeen, Sehrish; Surendran, Praveen; Lu, Yingchang; Zhang, Weihua; Imran, Atif; Abbas, Shahid; Majeed, Faisal; Trindade, Kevin; Qamar, Nadeem; Mallick, Nadeem Hayyat; Yaqoob, Zia; Saghir, Tahir; Rizvi, Syed Nadeem Hasan; Memon, Anis; Rasheed, Syed Zahed; Memon, Fazal-Ur-Rehman; Mehmood, Khalid; Ahmed, Naveeduddin; Qureshi, Irshad Hussain; Tanveer-Us-Salam; Iqbal, Wasim; Malik, Uzma; Mehra, Narinder; Kuo, Jane Z; Sheu, Wayne H-H; Guo, Xiuqing; Hsiung, Chao A; Juang, Jyh-Ming J; Taylor, Kent D; Hung, Yi-Jen; Lee, Wen-Jane; Quertermous, Thomas; Lee, I-Te; Hsu, Chih-Cheng; Bottinger, Erwin P; Ralhan, Sarju; Teo, Yik Ying; Wang, Tzung-Dau; Alam, Dewan S; Di Angelantonio, Emanuele; Epstein, Steve; Nielsen, Sune F; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne; Young, Robin; Benn, Marianne; Frikke-Schmidt, Ruth; Kamstrup, Pia R; Jukema, J Wouter; Sattar, Naveed; Smit, Roelof; Chung, Ren-Hua; Liang, Kae-Woei; Anand, Sonia; Sanghera, Dharambir K; Ripatti, Samuli; Loos, Ruth J F; Kooner, Jaspal S; Tai, E Shyong; Rotter, Jerome I; Chen, Yii-Der Ida; Frossard, Philippe; Maeda, Shiro; Kadowaki, Takashi; Reilly, Muredach; Pare, Guillaume; Melander, Olle; Salomaa, Veikko; Rader, Daniel J; Danesh, John; Voight, Benjamin F; Saleheen, Danish

    2017-10-01

    To evaluate the shared genetic etiology of type 2 diabetes (T2D) and coronary heart disease (CHD), we conducted a genome-wide, multi-ancestry study of genetic variation for both diseases in up to 265,678 subjects for T2D and 260,365 subjects for CHD. We identify 16 previously unreported loci for T2D and 1 locus for CHD, including a new T2D association at a missense variant in HLA-DRB5 (odds ratio (OR) = 1.29). We show that genetically mediated increase in T2D risk also confers higher CHD risk. Joint T2D-CHD analysis identified eight variants-two of which are coding-where T2D and CHD associations appear to colocalize, including a new joint T2D-CHD association at the CCDC92 locus that also replicated for T2D. The variants associated with both outcomes implicate new pathways as well as targets of existing drugs, including icosapent ethyl and adipocyte fatty-acid-binding protein.

  6. Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis

    PubMed Central

    Vizeacoumar, Franco J.; van Dyk, Nydia; S.Vizeacoumar, Frederick; Cheung, Vincent; Li, Jingjing; Sydorskyy, Yaroslav; Case, Nicolle; Li, Zhijian; Datti, Alessandro; Nislow, Corey; Raught, Brian; Zhang, Zhaolei; Frey, Brendan; Bloom, Kerry

    2010-01-01

    We describe the application of a novel screening approach that combines automated yeast genetics, synthetic genetic array (SGA) analysis, and a high-content screening (HCS) system to examine mitotic spindle morphogenesis. We measured numerous spindle and cellular morphological parameters in thousands of single mutants and corresponding sensitized double mutants lacking genes known to be involved in spindle function. We focused on a subset of genes that appear to define a highly conserved mitotic spindle disassembly pathway, which is known to involve Ipl1p, the yeast aurora B kinase, as well as the cell cycle regulatory networks mitotic exit network (MEN) and fourteen early anaphase release (FEAR). We also dissected the function of the kinetochore protein Mcm21p, showing that sumoylation of Mcm21p regulates the enrichment of Ipl1p and other chromosomal passenger proteins to the spindle midzone to mediate spindle disassembly. Although we focused on spindle disassembly in a proof-of-principle study, our integrated HCS-SGA method can be applied to virtually any pathway, making it a powerful means for identifying specific cellular functions. PMID:20065090

  7. Scapula development is governed by genetic interactions of Pbx1 with its family members and with Emx2 via their cooperative control of Alx1

    PubMed Central

    Capellini, Terence D.; Vaccari, Giulia; Ferretti, Elisabetta; Fantini, Sebastian; He, Mu; Pellegrini, Massimo; Quintana, Laura; Di Giacomo, Giuseppina; Sharpe, James; Selleri, Licia; Zappavigna, Vincenzo

    2010-01-01

    The genetic pathways underlying shoulder blade development are largely unknown, as gene networks controlling limb morphogenesis have limited influence on scapula formation. Analysis of mouse mutants for Pbx and Emx2 genes has suggested their potential roles in girdle development. In this study, by generating compound mutant mice, we examined the genetic control of scapula development by Pbx genes and their functional relationship with Emx2. Analyses of Pbx and Pbx1;Emx2 compound mutants revealed that Pbx genes share overlapping functions in shoulder development and that Pbx1 genetically interacts with Emx2 in this process. Here, we provide a biochemical basis for Pbx1;Emx2 genetic interaction by showing that Pbx1 and Emx2 can bind specific DNA sequences as heterodimers. Moreover, the expression of genes crucial for scapula development is altered in these mutants, indicating that Pbx genes act upstream of essential pathways for scapula formation. In particular, expression of Alx1, an effector of scapula blade patterning, is absent in all compound mutants. We demonstrate that Pbx1 and Emx2 bind in vivo to a conserved sequence upstream of Alx1 and cooperatively activate its transcription via this potential regulatory element. Our results establish an essential role for Pbx1 in genetic interactions with its family members and with Emx2 and delineate novel regulatory networks in shoulder girdle development. PMID:20627960

  8. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution

    PubMed Central

    Boueiz, Adel; Lutz, Sharon M.; Cho, Michael H.; Hersh, Craig P.; Bowler, Russell P.; Washko, George R.; Halper-Stromberg, Eitan; Bakke, Per; Gulsvik, Amund; Laird, Nan M.; Beaty, Terri H.; Coxson, Harvey O.; Crapo, James D.; Silverman, Edwin K.; Castaldi, Peter J.

    2017-01-01

    Rationale: Emphysema has considerable variability in the severity and distribution of parenchymal destruction throughout the lungs. Upper lobe–predominant emphysema has emerged as an important predictor of response to lung volume reduction surgery. Yet, aside from alpha-1 antitrypsin deficiency, the genetic determinants of emphysema distribution remain largely unknown. Objectives: To identify the genetic influences of emphysema distribution in non–alpha-1 antitrypsin–deficient smokers. Methods: A total of 11,532 subjects with complete genotype and computed tomography densitometry data in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]; non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), and GenKOLS (Genetics of Chronic Obstructive Lung Disease) studies were analyzed. Two computed tomography scan emphysema distribution measures (difference between upper-third and lower-third emphysema; ratio of upper-third to lower-third emphysema) were tested for genetic associations in all study subjects. Separate analyses in each study population were followed by a fixed effect metaanalysis. Single-nucleotide polymorphism–, gene-, and pathway-based approaches were used. In silico functional evaluation was also performed. Measurements and Main Results: We identified five loci associated with emphysema distribution at genome-wide significance. These loci included two previously reported associations with COPD susceptibility (4q31 near HHIP and 15q25 near CHRNA5) and three new associations near SOWAHB, TRAPPC9, and KIAA1462. Gene set analysis and in silico functional evaluation revealed pathways and cell types that may potentially contribute to the pathogenesis of emphysema distribution. Conclusions: This multicohort genome-wide association study identified new genomic loci associated with differential emphysematous destruction throughout the lungs. These findings may point to new biologic pathways on which to expand diagnostic and therapeutic approaches in chronic obstructive pulmonary disease. Clinical trial registered with www.clinicaltrials.gov (NCT 00608764). PMID:27669027

  9. Genome-wide association study of perioperative myocardial infarction after coronary artery bypass surgery.

    PubMed

    Kertai, Miklos D; Li, Yi-Ju; Li, Yen-Wei; Ji, Yunqi; Alexander, John; Newman, Mark F; Smith, Peter K; Joseph, Diane; Mathew, Joseph P; Podgoreanu, Mihai V

    2015-05-06

    Identification of patient subpopulations susceptible to develop myocardial infarction (MI) or, conversely, those displaying either intrinsic cardioprotective phenotypes or highly responsive to protective interventions remain high-priority knowledge gaps. We sought to identify novel common genetic variants associated with perioperative MI in patients undergoing coronary artery bypass grafting using genome-wide association methodology. 107 secondary and tertiary cardiac surgery centres across the USA. We conducted a stage I genome-wide association study (GWAS) in 1433 ethnically diverse patients of both genders (112 cases/1321 controls) from the Genetics of Myocardial Adverse Outcomes and Graft Failure (GeneMAGIC) study, and a stage II analysis in an expanded population of 2055 patients (225 cases/1830 controls) combined from the GeneMAGIC and Duke Perioperative Genetics and Safety Outcomes (PEGASUS) studies. Patients undergoing primary non-emergent coronary bypass grafting were included. The primary outcome variable was perioperative MI, defined as creatine kinase MB isoenzyme (CK-MB) values ≥10× upper limit of normal during the first postoperative day, and not attributable to preoperative MI. Secondary outcomes included postoperative CK-MB as a quantitative trait, or a dichotomised phenotype based on extreme quartiles of the CK-MB distribution. Following quality control and adjustment for clinical covariates, we identified 521 single nucleotide polymorphisms in the stage I GWAS analysis. Among these, 8 common variants in 3 genes or intergenic regions met p<10(-5) in stage II. A secondary analysis using CK-MB as a quantitative trait (minimum p=1.26×10(-3) for rs609418), or a dichotomised phenotype based on extreme CK-MB values (minimum p=7.72×10(-6) for rs4834703) supported these findings. Pathway analysis revealed that genes harbouring top-scoring variants cluster in pathways of biological relevance to extracellular matrix remodelling, endoplasmic reticulum-to-Golgi transport and inflammation. Using a two-stage GWAS and pathway analysis, we identified and prioritised several potential susceptibility loci for perioperative MI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Susceptibility loci of CNOT6 in the general mRNA degradation pathway and lung cancer risk - a re-analysis of eight GWASs

    PubMed Central

    Zhou, Fei; Wang, Yanru; Liu, Hongliang; Ready, Neal; Han, Younghun; Hung, Rayjean J.; Brhane, Yonathan; McLaughlin, John; Brennan, Paul; Bickeböller, Heike; Rosenberger, Albert; Houlston, Richard S.; Caporaso, Neil; Landi, Maria Teresa; Brüske, Irene; Risch, Angela; Ye, Yuanqing; Wu, Xifeng; Christiani, David C.; Goodman, Gary; Chen, Chu; Amos, Christopher I.; Qingyi, Wei

    2017-01-01

    Purpose mRNA degradation is an important regulatory step for controlling gene expression and cell functions. Genetic abnormalities of the genes involved in mRNA degradation were found to be associated with cancer risks. Therefore, we systematically investigated the roles of genetic variants of genes in the general mRNA degradation pathway in lung cancer risk. Experimental design Meta-analyses were conducted in six lung cancer genome-wide association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung and additional two GWASs from Harvard University and deCODE in the International Lung Cancer Consortium. Expression quantitative trait loci analysis (eQTL) was used for in silico functional validation of the identified significant susceptibility loci. Results This pathway-based analysis included 4,603 single nucleotide polymorphisms (SNP) in 68 genes in 14,463 lung cancer cases and 44,188 controls, of which 20 SNPs were found to be associated with lung cancer risk with a false discovery rate threshold of <0.05. Among the 11 newly identified SNPs in CNOT6, which were in high linkage disequilibrium, the rs2453176 with a RegulomDB score “1f” was chosen as the tag SNP for further analysis. We found that the rs2453176 T allele was significantly associated with lung cancer risk (odds ratio=1.11, 95% confidence interval=1.04–1.18, P=0.001) in the eight GWASs. In the eQTL analysis, we found that levels of CNOT6 mRNA expression were significantly correlated with the rs2453176 T allele, which provided additional biological basis for the observed positive association. Conclusion The CNOT6 rs2453176 SNP may be a new functional susceptible locus for lung cancer risk. PMID:27805284

  11. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia

    PubMed Central

    Loughman, James; Wildsoet, Christine F.; Williams, Cathy; Guggenheim, Jeremy A.

    2018-01-01

    Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1, COL9A2, ERBB3, FBN1, GJA1, GNPTG, IFIH1, KIF11, LTBP2, OCA2, POLR3B, POMT1, PTPN11, TFAP2A, ZNF469). Conclusions Common genetic variants within or nearby genes that cause syndromic myopia are enriched for variants that cause nonsyndromic, common myopia. Analysis of syndromic forms of refractive errors can provide new insights into the etiology of myopia and additional potential targets for therapeutic interventions. PMID:29346494

  12. Effect of curcumin on aged Drosophila melanogaster: a pathway prediction analysis.

    PubMed

    Zhang, Zhi-guo; Niu, Xu-yan; Lu, Ai-ping; Xiao, Gary Guishan

    2015-02-01

    To re-analyze the data published in order to explore plausible biological pathways that can be used to explain the anti-aging effect of curcumin. Microarray data generated from other study aiming to investigate effect of curcumin on extending lifespan of Drosophila melanogaster were further used for pathway prediction analysis. The differentially expressed genes were identified by using GeneSpring GX with a criterion of 3.0-fold change. Two Cytoscape plugins including BisoGenet and molecular complex detection (MCODE) were used to establish the protein-protein interaction (PPI) network based upon differential genes in order to detect highly connected regions. The function annotation clustering tool of Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for pathway analysis. A total of 87 genes expressed differentially in D. melanogaster melanogaster treated with curcumin were identified, among which 50 were up-regulated significantly and 37 were remarkably down-regulated in D. melanogaster melanogaster treated with curcumin. Based upon these differential genes, PPI network was constructed with 1,082 nodes and 2,412 edges. Five highly connected regions in PPI networks were detected by MCODE algorithm, suggesting anti-aging effect of curcumin may be underlined through five different pathways including Notch signaling pathway, basal transcription factors, cell cycle regulation, ribosome, Wnt signaling pathway, and p53 pathway. Genes and their associated pathways in D. melanogaster melanogaster treated with anti-aging agent curcumin were identified using PPI network and MCODE algorithm, suggesting that curcumin may be developed as an alternative therapeutic medicine for treating aging-associated diseases.

  13. A Combined Pathway and Regional Heritability Analysis Indicates NETRIN1 Pathway Is Associated With Major Depressive Disorder.

    PubMed

    Zeng, Yanni; Navarro, Pau; Fernandez-Pujals, Ana M; Hall, Lynsey S; Clarke, Toni-Kim; Thomson, Pippa A; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; MacIntyre, Donald J; Wray, Naomi R; Deary, Ian J; Porteous, David J; Haley, Chris S; McIntosh, Andrew M

    2017-02-15

    Genome-wide association studies (GWASs) of major depressive disorder (MDD) have identified few significant associations. Testing the aggregation of genetic variants, in particular biological pathways, may be more powerful. Regional heritability analysis can be used to detect genomic regions that contribute to disease risk. We integrated pathway analysis and multilevel regional heritability analyses in a pipeline designed to identify MDD-associated pathways. The pipeline was applied to two independent GWAS samples [Generation Scotland: The Scottish Family Health Study (GS:SFHS, N = 6455) and Psychiatric Genomics Consortium (PGC:MDD) (N = 18,759)]. A polygenic risk score (PRS) composed of single nucleotide polymorphisms from the pathway most consistently associated with MDD was created, and its accuracy to predict MDD, using area under the curve, logistic regression, and linear mixed model analyses, was tested. In GS:SFHS, four pathways were significantly associated with MDD, and two of these explained a significant amount of pathway-level regional heritability. In PGC:MDD, one pathway was significantly associated with MDD. Pathway-level regional heritability was significant in this pathway in one subset of PGC:MDD. For both samples the regional heritabilities were further localized to the gene and subregion levels. The NETRIN1 signaling pathway showed the most consistent association with MDD across the two samples. PRSs from this pathway showed competitive predictive accuracy compared with the whole-genome PRSs when using area under the curve statistics, logistic regression, and linear mixed model. These post-GWAS analyses highlight the value of combining multiple methods on multiple GWAS data for the identification of risk pathways for MDD. The NETRIN1 signaling pathway is identified as a candidate pathway for MDD and should be explored in further large population studies. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Genome sequence analysis of a flocculant-producing bacterium, Paenibacillus shenyangensis.

    PubMed

    Fu, Lili; Jiang, Binhui; Liu, Jinliang; Zhao, Xin; Liu, Qian; Hu, Xiaomin

    2016-03-01

    To explore the metabolic process of Paenibacillus shenyangensis that is an efficient bioflocculant-producing bacterium. The biosynthesis mechanism of bioflocculation was used to enrich the genome of Paenibacillus shenyangensis and provide a basis for molecular genetics and functional genomics analyses. According to the analysis of de novo assembly, a total of 5,501,467 bp clean reads were generated, and were assembled into 92 contigs. 4800 unigenes were predicted of which 4393 were annotated showing a specific gene function in the NCBI-Nr database. 3423 genes were found in the database of cluster of orthologous groups. Among the 168 Kyoto Encyclopedia of Genes and Genomes database, cell growth and metabolism were the main biological processes, and a potential metabolic pathway was predicted from glucose to exopolysaccharide within the starch and sucrose metabolism pathway. By using the high-throughput sequencing technology, we provide a genome analysis of Paenibacillus shenyangensis that predicts the main metabolic processes and a potential pathway of exopolysaccharide biosynthesis.

  15. Genetic surgery - a right strategy to attack cancer.

    PubMed

    Sverdlov, Eugene D

    2011-12-01

    The approaches now united under the term "gene therapy" can be divided into two broad strategies: (1) strategy using the ideology of molecular targeted therapy, but with genes in the role of agents targeted at certain molecular component(s) or pathways presumably crucial for cancer maintenance; (ii) strategy aimed at the destruction of tumors as a whole exploiting the features shared by all cancers, for example relatively fast mitotic cell division. While the first strategy is "true" gene therapy, the second one, as e.g. suicide gene therapy, is more like genetic surgery, when a surgeon just cuts off a tumor being not interested in subtle genetic mechanisms of cancer emergence and progression. This approach inherits the ideology of chemotherapy but escapes its severe toxic effects due to intracellular formation of toxic agents. Genetic surgery seems to be the most appropriate approach to combat cancer, and its simplicity is paradoxically adequate to the super-complexity of tumors. The review consists of three parts: (i) analysis of the reasons of tumor supercomplexity and fatally inevitable failure of molecular targeted therapy, (ii) general principles of the genetic surgery strategy, and (iii) examples of genetic surgery approaches with analysis of their drawbacks and the ways for their improvement.

  16. Genetics of rheumatoid arthritis contributes to biology and drug discovery.

    PubMed

    Okada, Yukinori; Wu, Di; Trynka, Gosia; Raj, Towfique; Terao, Chikashi; Ikari, Katsunori; Kochi, Yuta; Ohmura, Koichiro; Suzuki, Akari; Yoshida, Shinji; Graham, Robert R; Manoharan, Arun; Ortmann, Ward; Bhangale, Tushar; Denny, Joshua C; Carroll, Robert J; Eyler, Anne E; Greenberg, Jeffrey D; Kremer, Joel M; Pappas, Dimitrios A; Jiang, Lei; Yin, Jian; Ye, Lingying; Su, Ding-Feng; Yang, Jian; Xie, Gang; Keystone, Ed; Westra, Harm-Jan; Esko, Tõnu; Metspalu, Andres; Zhou, Xuezhong; Gupta, Namrata; Mirel, Daniel; Stahl, Eli A; Diogo, Dorothée; Cui, Jing; Liao, Katherine; Guo, Michael H; Myouzen, Keiko; Kawaguchi, Takahisa; Coenen, Marieke J H; van Riel, Piet L C M; van de Laar, Mart A F J; Guchelaar, Henk-Jan; Huizinga, Tom W J; Dieudé, Philippe; Mariette, Xavier; Bridges, S Louis; Zhernakova, Alexandra; Toes, Rene E M; Tak, Paul P; Miceli-Richard, Corinne; Bang, So-Young; Lee, Hye-Soon; Martin, Javier; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Rantapää-Dahlqvist, Solbritt; Arlestig, Lisbeth; Choi, Hyon K; Kamatani, Yoichiro; Galan, Pilar; Lathrop, Mark; Eyre, Steve; Bowes, John; Barton, Anne; de Vries, Niek; Moreland, Larry W; Criswell, Lindsey A; Karlson, Elizabeth W; Taniguchi, Atsuo; Yamada, Ryo; Kubo, Michiaki; Liu, Jun S; Bae, Sang-Cheol; Worthington, Jane; Padyukov, Leonid; Klareskog, Lars; Gregersen, Peter K; Raychaudhuri, Soumya; Stranger, Barbara E; De Jager, Philip L; Franke, Lude; Visscher, Peter M; Brown, Matthew A; Yamanaka, Hisashi; Mimori, Tsuneyo; Takahashi, Atsushi; Xu, Huji; Behrens, Timothy W; Siminovitch, Katherine A; Momohara, Shigeki; Matsuda, Fumihiko; Yamamoto, Kazuhiko; Plenge, Robert M

    2014-02-20

    A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2 - 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses--as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes--to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.

  17. Transcriptome analysis and discovery of genes involved in immune pathways from coelomocytes of Onchidium struma after bacterial challenge

    USDA-ARS?s Scientific Manuscript database

    Onchidium struma widely distributes in subtidal and low-tidal zones, which is considered to be an economical species with rich nutrition, a valuable biomonitor for heavy metal pollution and a representative species for evolution from ocean to land. However, there is limited genetic information avail...

  18. Finding the ‘lost years’ in green turtles: insights from ocean circulation models and genetic analysis

    PubMed Central

    Putman, Nathan F.; Naro-Maciel, Eugenia

    2013-01-01

    Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as ‘the lost years’. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their ‘lost years’. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many ‘lost years hotspots’ are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period. PMID:23945687

  19. Possible association between Helicobacter pylori infection and nonalcoholic fatty liver disease.

    PubMed

    Chen, Chang-Xi; Mao, Yu-Shan; Foster, Parker; Zhu, Zhong-Wei; Du, Juan; Guo, Chuan-Yong

    2017-03-01

    Possible association between Helicobacter pylori infection (HPI) and nonalcoholic fatty liver disease (NAFLD) has been proposed by several studies with inconsistent conclusions. Here, we studied the association between HPI and NAFLD at 3 levels: (i) genetic level; (ii) small molecular level; and (iii) clinical level. Relation data between diseases, genes, and small molecules were acquired from Pathway Studio ResNet Mammalian database. Clinical data were acquired from 2263 elderly South Chinese subjects, including 603 NAFLD patients and 1660 subjects without NAFLD. Results showed that HPI and NAFLD present significantly shared genetic bases (95 genes, p value = 2.5E-72), demonstrating multiple common genetic pathways (enrichment p value ≤ 4.38E-20 for the top 10 pathways). Genetic network analysis suggested that mutual regulation may exist between HPI and NAFLD through 21 out of 95 genes. Furthermore, 85 out of the 95 genes manifested strong interaction with 12 small molecules/drugs that demonstrate effectiveness in treating both diseases. Clinical results showed that HPI rate in the NAFLD group was significantly higher than that in the group without NAFLD (51.9% vs. 43.6%; p value = 4.9E-4). Multivariate logistic regression results supported the observations and suggested that HPI served as a risk factor for NAFLD in the experiment data studied (odds ratio: 1.387, p value = 0.018). Results from this study support the hypothesis that complex biological association may exist between HPI and NAFLD, which partially explains the significant clinical co-incidence in the elderly population of south China.

  20. Molecular population genetics of the insulin/TOR signal transduction pathway: a network-level analysis in Drosophila melanogaster.

    PubMed

    Alvarez-Ponce, David; Guirao-Rico, Sara; Orengo, Dorcas J; Segarra, Carmen; Rozas, Julio; Aguadé, Montserrat

    2012-01-01

    The IT-insulin/target of rapamycin (TOR)-signal transduction pathway is a relatively well-characterized pathway that plays a central role in fundamental biological processes. Network-level analyses of DNA divergence in Drosophila and vertebrates have revealed a clear gradient in the levels of purifying selection along this pathway, with the downstream genes being the most constrained. Remarkably, this feature does not result from factors known to affect selective constraint such as gene expression, codon bias, protein length, and connectivity. The present work aims to establish whether the selective constraint gradient detected along the IT pathway at the between-species level can also be observed at a shorter time scale. With this purpose, we have surveyed DNA polymorphism in Drosophila melanogaster and divergence from D. simulans along the IT pathway. Our network-level analysis shows that DNA polymorphism exhibits the same polarity in the strength of purifying selection as previously detected at the divergence level. This equivalent feature detected both within species and between closely and distantly related species points to the action of a general mechanism, whose action is neither organism specific nor evolutionary time dependent. The detected polarity would be, therefore, intrinsic to the IT pathway architecture and function.

  1. Hedgehog pathway as a potential treatment target in human cholangiocarcinoma.

    PubMed

    Riedlinger, Dorothee; Bahra, Marcus; Boas-Knoop, Sabine; Lippert, Steffen; Bradtmöller, Maren; Guse, Katrin; Seehofer, Daniel; Bova, Roberta; Sauer, Igor M; Neuhaus, Peter; Koch, Arend; Kamphues, Carsten

    2014-08-01

    Innovative treatment concepts targeting essential signaling pathways may offer new chances for patients suffering from cholangiocarcinoma (CCC). For that, we performed a systematic molecular genetic analysis concerning the Hedgehog activity in human CCC samples and analyzed the effect of Hh inhibition on CCC cells in vitro and in vivo. Activation of the Hh pathway was analyzed in 50 human CCC samples using quantitative polymerase chain reaction (qPCR). The efficacy of Hh inhibition using cyclopamine and BMS-833923 was evaluated in vitro. In addition, the effect of BMS-833923, alone or in combination with gemcitabine, was analyzed in vivo in a murine subcutaneous xenograft model. Expression analysis revealed a significant activation of the Hh-signaling pathway in nearly 50% of CCCs. Hh inhibition resulted in a significant decrease in cell proliferation of CCC cells. Moreover, a distinct inhibition of tumor growth could be seen as a result of a combined therapy with BMS-833923 and gemcitabine in CCC xenografts. The results of our study suggest that the Hh pathway plays a relevant role at least in a subset of human CCC. Inhibition of this pathway may represent a possible treatment option for CCC patients in which the Hh pathway is activated. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  2. Substitutions at Amino Acid Positions 143, 148, and 155 of HIV-1 Integrase Define Distinct Genetic Barriers to Raltegravir Resistance In Vivo

    PubMed Central

    Fransen, Signe; Gupta, Soumi; Frantzell, Arne; Petropoulos, Christos J.

    2012-01-01

    Mutations at amino acids 143, 148, and 155 in HIV-1 integrase (IN) define primary resistance pathways in subjects failing raltegravir (RAL)-containing treatments. Although each pathway appears to be genetically distinct, shifts in the predominant resistant virus population have been reported under continued drug pressure. To better understand this dynamic, we characterized the RAL susceptibility of 200 resistant viruses, and we performed sequential clonal analysis for selected cases. Patient viruses containing Y143R, Q148R, or Q148H mutations consistently exhibited larger reductions in RAL susceptibility than patient viruses containing N155H mutations. Sequential analyses of virus populations from three subjects revealed temporal shifts in subpopulations representing N155H, Y143R, or Q148H escape pathways. Evaluation of molecular clones isolated from different time points demonstrated that Y143R and Q148H variants exhibited larger reductions in RAL susceptibility and higher IN-mediated replication capacity (RC) than N155H variants within the same subject. Furthermore, shifts from the N155H pathway to either the Q148R or H pathway or the Y143R pathway were dependent on the amino acid substitution at position 148 and the secondary mutations in Y143R- or Q148R- or H-containing variants and correlated with reductions in RAL susceptibility and restorations in RC. Our observations in patient viruses were confirmed by analyzing site-directed mutations. In summary, viruses that acquire mutations defining the 143 or 148 escape pathways are less susceptible to RAL and exhibit greater RC than viruses containing 155 pathway mutations. These selective pressures result in the displacement of N155H variants by 143 or 148 variants under continued drug exposure. PMID:22553340

  3. A sibling method for identifying vQTLs

    PubMed Central

    Domingue, Ben; Dawes, Christopher; Boardman, Jason; Siegal, Mark

    2018-01-01

    The propensity of a trait to vary within a population may have evolutionary, ecological, or clinical significance. In the present study we deploy sibling models to offer a novel and unbiased way to ascertain loci associated with the extent to which phenotypes vary (variance-controlling quantitative trait loci, or vQTLs). Previous methods for vQTL-mapping either exclude genetically related individuals or treat genetic relatedness among individuals as a complicating factor addressed by adjusting estimates for non-independence in phenotypes. The present method uses genetic relatedness as a tool to obtain unbiased estimates of variance effects rather than as a nuisance. The family-based approach, which utilizes random variation between siblings in minor allele counts at a locus, also allows controls for parental genotype, mean effects, and non-linear (dominance) effects that may spuriously appear to generate variation. Simulations show that the approach performs equally well as two existing methods (squared Z-score and DGLM) in controlling type I error rates when there is no unobserved confounding, and performs significantly better than these methods in the presence of small degrees of confounding. Using height and BMI as empirical applications, we investigate SNPs that alter within-family variation in height and BMI, as well as pathways that appear to be enriched. One significant SNP for BMI variability, in the MAST4 gene, replicated. Pathway analysis revealed one gene set, encoding members of several signaling pathways related to gap junction function, which appears significantly enriched for associations with within-family height variation in both datasets (while not enriched in analysis of mean levels). We recommend approximating laboratory random assignment of genotype using family data and more careful attention to the possible conflation of mean and variance effects. PMID:29617452

  4. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism

    PubMed Central

    James, S. Jill; Melnyk, Stepan; Jernigan, Stefanie; Lehman, Sara; Seidel, Lisa; Gaylor, David .W.; Cleves, Mario A.

    2010-01-01

    The biologic basis of autism is complex and is thought to involve multiple and variable gene-environment interactions. While the logical focus has been on the affected child, the impact of maternal genetics on intrauterine microenvironment during pivotal developmental windows could be substantial. Folate-dependent one carbon metabolism is a highly polymorphic pathway that regulates the distribution of one-carbon derivatives between DNA synthesis (proliferation) and DNA methylation (cell-specific gene expression and differentiation). These pathways are essential to support the programmed shifts between proliferation and differentiation during embryogenesis and organogenesis. Maternal genetic variants that compromise intrauterine availability of folate derivatives could alter fetal cell trajectories and disrupt normal neurodevelopment. In this investigation, the frequency of common functional polymorphisms in the folate pathway was investigated in a large population-based sample of autism case-parent triads. In case-control analysis, a significant increase in the reduced folate carrier (RFC1) G allele frequency was found among case mothers, but not among fathers or affected children. Subsequent log linear analysis of the RFC1 A80G genotype within family trios revealed that the maternal G allele was associated with a significant increase in risk of autism whereas the inherited genotype of the child was not. Further, maternal DNA from the autism mothers was found to be significantly hypomethylated relative to reference control DNA. Metabolic profiling indicated that plasma homocysteine, adenosine, and S-adenosylhomocyteine were significantly elevated among autism mothers consistent with reduced methylation capacity and DNA hypomethylation. Together, these results suggest that the maternal genetics/epigenetics may influence fetal predisposition to autism. PMID:20468076

  5. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism.

    PubMed

    James, S Jill; Melnyk, Stepan; Jernigan, Stefanie; Pavliv, Oleksandra; Trusty, Timothy; Lehman, Sara; Seidel, Lisa; Gaylor, David W; Cleves, Mario A

    2010-09-01

    The biologic basis of autism is complex and is thought to involve multiple and variable gene-environment interactions. While the logical focus has been on the affected child, the impact of maternal genetics on intrauterine microenvironment during pivotal developmental windows could be substantial. Folate-dependent one carbon metabolism is a highly polymorphic pathway that regulates the distribution of one-carbon derivatives between DNA synthesis (proliferation) and DNA methylation (cell-specific gene expression and differentiation). These pathways are essential to support the programmed shifts between proliferation and differentiation during embryogenesis and organogenesis. Maternal genetic variants that compromise intrauterine availability of folate derivatives could alter fetal cell trajectories and disrupt normal neurodevelopment. In this investigation, the frequency of common functional polymorphisms in the folate pathway was investigated in a large population-based sample of autism case-parent triads. In case-control analysis, a significant increase in the reduced folate carrier (RFC1) G allele frequency was found among case mothers, but not among fathers or affected children. Subsequent log linear analysis of the RFC1 A80G genotype within family trios revealed that the maternal G allele was associated with a significant increase in risk of autism whereas the inherited genotype of the child was not. Further, maternal DNA from the autism mothers was found to be significantly hypomethylated relative to reference control DNA. Metabolic profiling indicated that plasma homocysteine, adenosine, and S-adenosylhomocyteine were significantly elevated among autism mothers consistent with reduced methylation capacity and DNA hypomethylation. Together, these results suggest that the maternal genetics/epigenetics may influence fetal predisposition to autism. (c) 2010 Wiley-Liss, Inc.

  6. Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia.

    PubMed

    Gu, Fangyi; Zhang, Han; Hyland, Paula L; Berndt, Sonja; Gapstur, Susan M; Wheeler, William; Ellipse Consortium, The; Amos, Christopher I; Bezieau, Stephane; Bickeböller, Heike; Brenner, Hermann; Brennan, Paul; Chang-Claude, Jenny; Conti, David V; Doherty, Jennifer Anne; Gruber, Stephen B; Harrison, Tabitha A; Hayes, Richard B; Hoffmeister, Michael; Houlston, Richard S; Hung, Rayjean J; Jenkins, Mark A; Kraft, Peter; Lawrenson, Kate; McKay, James; Markt, Sarah; Mucci, Lorelei; Phelan, Catherine M; Qu, Conghui; Risch, Angela; Rossing, Mary Anne; Wichmann, H-Erich; Shi, Jianxin; Schernhammer, Eva; Yu, Kai; Landi, Maria Teresa; Caporaso, Neil E

    2017-11-01

    Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in humans is inconclusive. Genetic variation in circadian rhythm genes provides a tool to investigate such associations. We examined associations of genetic variation in nine core circadian rhythm genes and six melatonin pathway genes with risk of colorectal, lung, ovarian and prostate cancers using data from the Genetic Associations and Mechanisms in Oncology (GAME-ON) network. The major results for prostate cancer were replicated in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial, and for colorectal cancer in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). The total number of cancer cases and controls was 15,838/18,159 for colorectal, 14,818/14,227 for prostate, 12,537/17,285 for lung and 4,369/9,123 for ovary. For each cancer site, we conducted gene-based and pathway-based analyses by applying the summary-based Adaptive Rank Truncated Product method (sARTP) on the summary association statistics for each SNP within the candidate gene regions. Aggregate genetic variation in circadian rhythm and melatonin pathways were significantly associated with the risk of prostate cancer in data combining GAME-ON and PLCO, after Bonferroni correction (p pathway  < 0.00625). The two most significant genes were NPAS2 (p gene  = 0.0062) and AANAT (p gene  = 0.00078); the latter being significant after Bonferroni correction. For colorectal cancer, we observed a suggestive association with the circadian rhythm pathway in GAME-ON (p pathway  = 0.021); this association was not confirmed in GECCO (p pathway  = 0.76) or the combined data (p pathway  = 0.17). No significant association was observed for ovarian and lung cancer. These findings support a potential role for circadian rhythm and melatonin pathways in prostate carcinogenesis. Further functional studies are needed to better understand the underlying biologic mechanisms. © 2017 UICC.

  7. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.

    PubMed

    Zhang-James, Yanli; Faraone, Stephen V

    2016-07-01

    Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Identification of the Pr1 Gene Product Completes the Anthocyanin Biosynthesis Pathway of Maize

    PubMed Central

    Sharma, Mandeep; Cortes-Cruz, Moises; Ahern, Kevin R.; McMullen, Michael; Brutnell, Thomas P.; Chopra, Surinder

    2011-01-01

    In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3′H encoding gene (Zmf3′h1) and showed by segregation analysis that the red kernel phenotype is linked to this gene. Genetic mapping using SNP markers confirms its position on chromosome 5L. Furthermore, genetic complementation experiments using a CaMV 35S::ZmF3′H1 promoter–gene construct established that the encoded protein product was sufficient to perform a 3′-hydroxylation reaction. The Zmf3′h1-specific transcripts were detected in floral and vegetative tissues of Pr1 plants and were absent in pr1. Four pr1 alleles were characterized: two carry a 24 TA dinucleotide repeat insertion in the 5′-upstream promoter region, a third has a 17-bp deletion near the TATA box, and a fourth contains a Ds insertion in exon1. Genetic and transcription assays demonstrated that the pr1 gene is under the regulatory control of anthocyanin transcription factors red1 and colorless1. The cloning and characterization of pr1 completes the molecular identification of all genes encoding structural enzymes of the anthocyanin pathway of maize. PMID:21385724

  9. The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice.

    PubMed

    Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K

    2015-01-01

    Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Deep epistasis in human metabolism

    NASA Astrophysics Data System (ADS)

    Imielinski, Marcin; Belta, Calin

    2010-06-01

    We extend and apply a method that we have developed for deriving high-order epistatic relationships in large biochemical networks to a published genome-scale model of human metabolism. In our analysis we compute 33 328 reaction sets whose knockout synergistically disables one or more of 43 important metabolic functions. We also design minimal knockouts that remove flux through fumarase, an enzyme that has previously been shown to play an important role in human cancer. Most of these knockout sets employ more than eight mutually buffering reactions, spanning multiple cellular compartments and metabolic subsystems. These reaction sets suggest that human metabolic pathways possess a striking degree of parallelism, inducing "deep" epistasis between diversely annotated genes. Our results prompt specific chemical and genetic perturbation follow-up experiments that could be used to query in vivo pathway redundancy. They also suggest directions for future statistical studies of epistasis in genetic variation data sets.

  11. Origin and function of myofibroblasts in kidney fibrosis.

    PubMed

    LeBleu, Valerie S; Taduri, Gangadhar; O'Connell, Joyce; Teng, Yingqi; Cooke, Vesselina G; Woda, Craig; Sugimoto, Hikaru; Kalluri, Raghu

    2013-08-01

    Myofibroblasts are associated with organ fibrosis, but their precise origin and functional role remain unknown. We used multiple genetically engineered mice to track, fate map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Through this comprehensive analysis, we identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts through proliferation. The nonproliferating myofibroblasts derive through differentiation from bone marrow (35%), the endothelial-to-mesenchymal transition program (10%) and the epithelial-to-mesenchymal transition program (5%). Specific deletion of Tgfbr2 in α-smooth muscle actin (αSMA)(+) cells revealed the importance of this pathway in the recruitment of myofibroblasts through differentiation. Using genetic mouse models and a fate-mapping strategy, we determined that vascular pericytes probably do not contribute to the emergence of myofibroblasts or fibrosis. Our data suggest that targeting diverse pathways is required to substantially inhibit the composite accumulation of myofibroblasts in kidney fibrosis.

  12. Origin and Function of Myofibroblasts in Kidney Fibrosis

    PubMed Central

    LeBleu, Valerie S.; Taduri, Gangadhar; O’Connell, Joyce; Teng, Yingqi; Cooke, Vesselina G.; Woda, Craig; Sugimoto, Hikaru; Kalluri, Raghu

    2014-01-01

    Myofibroblasts are associated with organ fibrosis but their precise origin and functional role remain unknown. We employed multiple genetically engineered mice to track, fate-map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Such comprehensive analysis identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts via proliferation. The non-proliferating myofibroblasts derive via differentiation from bone marrow (35%), endothelial to mesenchymal transition (EndMT) program (10%) and epithelial to mesenchymal transition (EMT) program (5%). Specific deletion of Tgfbr2 in αSMA+ cells revealed the importance of this pathway in recruitment of myofibroblasts via differentiation. Using genetic mouse models and fate-mapping strategy we determined that vascular pericytes likely do not contribute to the emergence of myofibroblasts or fibrosis. This study suggests that targeting diverse pathways is required to significantly inhibit composite accumulation of myofibroblasts in kidney fibrosis. PMID:23817022

  13. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae.

    PubMed

    Xie, Wenping; Liu, Min; Lv, Xiaomei; Lu, Wenqiang; Gu, Jiali; Yu, Hongwei

    2014-01-01

    Saccharomyces cerevisiae is an important platform organism for the synthesis of a great number of natural products. However, the assembly of controllable and genetically stable heterogeneous biosynthetic pathways in S. cerevisiae still remains a significant challenge. Here, we present a strategy for reconstructing controllable multi-gene pathways by employing the GAL regulatory system. A set of marker recyclable integrative plasmids (pMRI) was designed for decentralized assembly of pathways. As proof-of-principle, a controllable β-carotene biosynthesis pathway (∼16 kb) was reconstructed and optimized by repeatedly using GAL10-GAL1 bidirectional promoters with high efficiency (80-100%). By controling the switch time of the pathway, production of 11 mg/g DCW of total carotenoids (72.57 mg/L) and 7.41 mg/g DCW of β-carotene was achieved in shake-flask culture. In addition, the engineered yeast strain exhibited high genetic stability after 20 generations of subculture. The results demonstrated a controllable and genetically stable biosynthetic pathway capable of increasing the yield of target products. Furthermore, the strategy presented in this study could be extended to construct other pathways in S. cerevisisae. © 2013 Wiley Periodicals, Inc.

  14. De novo transcriptome analysis in Dendrobium and identification of critical genes associated with flowering.

    PubMed

    Chen, Yue; Shen, Qi; Lin, Renan; Zhao, Zhuangliu; Shen, Chenjia; Sun, Chongbo

    2017-10-01

    Artificial control of flowering time is pivotal for the ornamental value of orchids including the genus Dendrobium. Although various flowering pathways have been revealed in model plants, little information is available on the genetic regualtion of flowering in Dendrobium. To identify the critical genes associated with flowering, transcriptomes from four organs (leaf, root, stem and flower) of D. officinale were analyzed in our study. In total, 2645 flower-specific transcripts were identified. Functional annotation and classification suggested that several metabolic pathways, including four sugar-related pathways and two fatty acid-related pathways, were enriched. A total of 24 flowering-related transcripts were identified in D. officinale according to the similarities to their homologous genes from Arabidopsis, suggesting that most classical flowering pathways existed in D. officinale. Furthermore, phylogenetic analysis suggested that the FLOWERING LOCUS T homologs in orchids are highly conserved during evolution process. In addition, expression changes in nine randomly-selected critical flowering-related transcripts between the vegetative stage and reproductive stage were quantified by qRT-PCR analysis. Our study provided a number of candidate genes and sequence resources for investigating the mechanisms underlying the flowering process of the Dendrobium genus. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    PubMed

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  16. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals

    PubMed Central

    Su, Fei; Xu, Ping

    2014-01-01

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species. PMID:24473268

  17. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A portable expression resource for engineering cross-species genetic circuits and pathways

    PubMed Central

    Kushwaha, Manish; Salis, Howard M.

    2015-01-01

    Genetic circuits and metabolic pathways can be reengineered to allow organisms to process signals and manufacture useful chemicals. However, their functions currently rely on organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering into host-specific domains. To unify efforts, here we have engineered a cross-species expression resource that enables circuits and pathways to reuse the same genetic parts, while functioning similarly across diverse organisms. Our engineered system combines mixed feedback control loops and cross-species translation signals to autonomously self-regulate expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria. Combining 50 characterized system variants with mechanistic modelling, we show how the cross-species expression resource's dynamics, capacity and toxicity are controlled by the control loops' architecture and feedback strengths. We also demonstrate one application of the resource by reusing the same genetic parts to express a biosynthesis pathway in both model and non-model hosts. PMID:26184393

  19. Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies.

    PubMed

    Templin, William D; Seeb, James E; Jasper, James R; Barclay, Andrew W; Seeb, Lisa W

    2011-03-01

    Most information about Chinook salmon genetic diversity and life history originates from studies from the West Coast USA, western Canada and southeast Alaska; less is known about Chinook salmon from western and southcentral Alaska drainages. Populations in this large area are genetically distinct from populations to the south and represent an evolutionary legacy of unique genetic, phenotypic and life history diversity. More genetic information is necessary to advance mixed stock analysis applications for studies involving these populations. We assembled a comprehensive, open-access baseline of 45 single nucleotide polymorphisms (SNPs) from 172 populations ranging from Russia to California. We compare SNP data from representative populations throughout the range with particular emphasis on western and southcentral Alaska. We grouped populations into major lineages based upon genetic and geographic characteristics, evaluated the resolution for identifying the composition of admixtures and performed mixed stock analysis on Chinook salmon caught incidentally in the walleye pollock fishery in the Bering Sea. SNP data reveal complex genetic structure within Alaska and can be used in applications to address not only regional issues, but also migration pathways, bycatch studies on the high seas, and potential changes in the range of the species in response to climate change. © 2011 Blackwell Publishing Ltd.

  20. Highly polygenic architecture of antidepressant treatment response: Comparative analysis of SSRI and NRI treatment in an animal model of depression.

    PubMed

    Malki, Karim; Tosto, Maria Grazia; Mouriño-Talín, Héctor; Rodríguez-Lorenzo, Sabela; Pain, Oliver; Jumhaboy, Irfan; Liu, Tina; Parpas, Panos; Newman, Stuart; Malykh, Artem; Carboni, Lucia; Uher, Rudolf; McGuffin, Peter; Schalkwyk, Leonard C; Bryson, Kevin; Herbster, Mark

    2017-04-01

    Response to antidepressant (AD) treatment may be a more polygenic trait than previously hypothesized, with many genetic variants interacting in yet unclear ways. In this study we used methods that can automatically learn to detect patterns of statistical regularity from a sparsely distributed signal across hippocampal transcriptome measurements in a large-scale animal pharmacogenomic study to uncover genomic variations associated with AD. The study used four inbred mouse strains of both sexes, two drug treatments, and a control group (escitalopram, nortriptyline, and saline). Multi-class and binary classification using Machine Learning (ML) and regularization algorithms using iterative and univariate feature selection methods, including InfoGain, mRMR, ANOVA, and Chi Square, were used to uncover genomic markers associated with AD response. Relevant genes were selected based on Jaccard distance and carried forward for gene-network analysis. Linear association methods uncovered only one gene associated with drug treatment response. The implementation of ML algorithms, together with feature reduction methods, revealed a set of 204 genes associated with SSRI and 241 genes associated with NRI response. Although only 10% of genes overlapped across the two drugs, network analysis shows that both drugs modulated the CREB pathway, through different molecular mechanisms. Through careful implementation and optimisations, the algorithms detected a weak signal used to predict whether an animal was treated with nortriptyline (77%) or escitalopram (67%) on an independent testing set. The results from this study indicate that the molecular signature of AD treatment may include a much broader range of genomic markers than previously hypothesized, suggesting that response to medication may be as complex as the pathology. The search for biomarkers of antidepressant treatment response could therefore consider a higher number of genetic markers and their interactions. Through predominately different molecular targets and mechanisms of action, the two drugs modulate the same Creb1 pathway which plays a key role in neurotrophic responses and in inflammatory processes. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.

  1. Genomics of mucoepidermoid and adenoid cystic carcinomas.

    PubMed

    Yan, Kenneth; Yesensky, Jessica; Hasina, Rifat; Agrawal, Nishant

    2018-02-01

    To report on the current state of the literature on the genetics of mucoepidermoid and adenoid cystic carcinomas of the salivary glands with a focus on genomic screens and recently discovered genetic translocations. A PubMed based literature review was performed to query for genetics related basic science and preclinical studies about mucoepidermoid and adenoid cystic carcinomas of the salivary glands. Genetic translocations between CRTC1 and MAML2 in mucoepidermoid carcinoma and between MYB and NFIB in adenoid cystic carcinoma have been recently discovered and have therapeutic implications. Key signaling pathways such as the EGFR pathway in mucoepidermoid carcinoma and the Notch pathway, chromatin regulation, and c-kit mediated epithelial-mesenchymal transitions in adenoid cystic carcinoma have recently been elucidated, pointing to possible therapeutic targets in both cancers.

  2. Genomics of mucoepidermoid and adenoid cystic carcinomas

    PubMed Central

    Yan, Kenneth; Yesensky, Jessica; Hasina, Rifat

    2018-01-01

    Objective To report on the current state of the literature on the genetics of mucoepidermoid and adenoid cystic carcinomas of the salivary glands with a focus on genomic screens and recently discovered genetic translocations. Methods A PubMed based literature review was performed to query for genetics related basic science and preclinical studies about mucoepidermoid and adenoid cystic carcinomas of the salivary glands. Results and conclusions Genetic translocations between CRTC1 and MAML2 in mucoepidermoid carcinoma and between MYB and NFIB in adenoid cystic carcinoma have been recently discovered and have therapeutic implications. Key signaling pathways such as the EGFR pathway in mucoepidermoid carcinoma and the Notch pathway, chromatin regulation, and c‐kit mediated epithelial‐mesenchymal transitions in adenoid cystic carcinoma have recently been elucidated, pointing to possible therapeutic targets in both cancers. PMID:29492469

  3. Tissue-Specific and Genetic Regulation of Insulin Sensitivity-Associated Transcripts in African Americans

    PubMed Central

    Sharma, Neeraj K.; Sajuthi, Satria P.; Chou, Jeff W.; Calles-Escandon, Jorge; Demons, Jamehl; Rogers, Samantha; Ma, Lijun; Palmer, Nicholette D.; McWilliams, David R.; Beal, John; Comeau, Mary E.; Cherry, Kristina; Hawkins, Gregory A.; Menon, Lata; Kouba, Ethel; Davis, Donna; Burris, Marcie; Byerly, Sara J.; Easter, Linda; Bowden, Donald W.; Freedman, Barry I.; Langefeld, Carl D.

    2016-01-01

    Context: Compared with European Americans, African Americans (AAs) are more insulin resistant, have a higher insulin secretion response to glucose, and develop type 2 diabetes more often. Molecular processes and/or genetic variations contributing to altered glucose homeostasis in high-risk AAs remain uncharacterized. Objective: Adipose and muscle transcript expression profiling and genotyping were performed in 260 AAs to identify genetic regulatory mechanisms associated with insulin sensitivity (SI). We hypothesized that: 1) transcription profiles would reveal tissue-specific modulation of physiologic pathways with SI, and 2) a subset of SI-associated transcripts would be controlled by DNA sequence variants as expression quantitative traits, and these variants in turn would be associated with SI. Design and Settings: The cross-sectional research study was performed in a clinical research unit. Participants: Unrelated nondiabetic AAs were recruited for the study. Main Outcome Measures: SI was measured by frequently sampled iv glucose tolerance test. Results: The expression levels of 2212 transcripts in adipose and 145 transcripts in muscle were associated with SI. Genes involved in eIF2, eIF4-p70S6K, and mTOR signaling were modulated with SI in both tissues. Genes involved in leukocyte extravasation signaling showed adipose-specific regulation, and genes involved in oxidative phosphorylation had discordant regulation between tissues. Intersecting cis-expression quantitative trait loci results with data from transcript-SI association analysis identified cis-regulatory single nucleotide polymorphisms for 363 and 42 SI-associated transcripts in adipose and muscle, respectively. Cis-eSNPs for three SI-associated adipose transcripts, NINJ1, AGA, and CLEC10A were associated with SI. Abrogation of NINJ1 induction in THP1 macrophages modulated expression of genes in chemokine signaling, cell adhesion, and angiogenesis pathways. Conclusion: This study identified multiple pathways associated with SI; particularly discordant tissue-specific regulation of the oxidative phosphorylation pathway, and adipose-specific regulation of transcripts in the leukocyte extravasation signaling pathway that seem to be important in insulin resistance. Identification of single nucleotide polymorphisms associated with SI and with modulation of expression of SI-associated transcripts, including NINJ1, reveals novel genetic regulatory mechanisms of insulin resistance in AAs. PMID:26789776

  4. [EST-SSR identification, markers development of Ligusticum chuanxiong based on Ligusticum chuanxiong transcriptome sequences].

    PubMed

    Yuan, Can; Peng, Fang; Yang, Ze-Mao; Zhong, Wen-Juan; Mou, Fang-Sheng; Gong, Yi-Yun; Ji, Pei-Cheng; Pu, De-Qiang; Huang, Hai-Yan; Yang, Xiao; Zhang, Chao

    2017-09-01

    Ligusticum chuanxiong is a well-known traditional Chinese medicine plant. The study on its molecular markers development and germplasm resources is very important. In this study, we obtained 24 422 unigenes by assembling transcriptome sequencing reads of L. chuanxiong root. EST-SSR was detected and 4 073 SSR loci were identified. EST-SSR distribution and characteristic analysis results showed that the mono-nucleotide repeats were the main repeat types, accounting for 41.0%. In addition, the sequences containing SSR were functionally annotated in Gene Ontology (GO) and KEGG pathway and were assigned to 49 GO categories, 242 KEGG pathways, among them 2 201 sequences were annotated against Nr database. By validating 235 EST-SSRs,74 primer pairs were ultimately proved to have high quality amplification. Subsequently, genetic diversity analysis, UPGMA cluster analysis, PCoA analysis and population structure analysis of 34 L. chuanxiong germplasm resources were carried out with 74 primer pairs. In both UPGMA tree and PCoA results, L. chuanxiong resources were clustered into two groups, which are believed to be partial related to their geographical distribution. In this study, EST-SSRs in L. chuanxiong was firstly identified, and newly developed molecular markers would contribute significantly to further genetic diversity study, the purity detection, gene mapping, and molecular breeding. Copyright© by the Chinese Pharmaceutical Association.

  5. 1H NMR based pharmacometabolomics analysis of urine identifies metabolic phenotype of clopidogrel high on treatment platelets reactivity in coronary artery disease patients.

    PubMed

    Amin, Arwa M; Sheau Chin, Lim; Teh, Chin-Hoe; Mostafa, Hamza; Mohamed Noor, Dzul Azri; Sk Abdul Kader, Muhamad Ali; Kah Hay, Yuen; Ibrahim, Baharudin

    2017-11-30

    Clopidogrel high on treatment platelets reactivity (HTPR) has burdened achieving optimum therapeutic outcome. Although there are known genetic and non-genetic factors associated with clopidogrel HTPR, which explain in part clopidogrel HTPR, yet, great portion remains unknown, often hindering personalizing antiplatelet therapy. Nuclear magnetic resonance ( 1 H NMR) pharmacometabolomics analysis is useful technique to phenotype drug response. We investigated using 1 H NMR analysis to phenotype clopidogrel HTPR in urine. Urine samples were collected from 71 coronary artery disease (CAD) patients who were planned for interventional angiographic procedure prior to taking 600mg clopidogrel loading dose (LD) and 6h post LD. Patients' platelets function testing was assessed with the VerifyNow ® P2Y12 assay at 6h after LD. Urine samples were analysed using 1 H NMR. Multivariate statistical analysis was used to identify metabolites associated with clopidogrel HTPR. In pre-dose samples, 16 metabolites were associated with clopidogrel HTPR. However, 18 metabolites were associated with clopidogrel HTPR in post-dose samples. The pathway analysis of the identified biomarkers reflected that multifactorial conditions are associated with clopidogrel HTPR. It also revealed the implicated role of gut microbiota in clopidogrel HTPR. Pharmacometabolomics not only discovered novel biomarkers of clopidogrel HTPR but also revealed implicated pathways and conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Genetic aspects of autism spectrum disorders: insights from animal models

    PubMed Central

    Banerjee, Swati; Riordan, Maeveen; Bhat, Manzoor A.

    2014-01-01

    Autism spectrum disorders (ASDs) are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development, and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy, and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute toward the formation, stabilization, and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD. PMID:24605088

  7. Exploring Genetic Attributions Underlying Radiotherapy-Induced Fatigue in Prostate Cancer Patients.

    PubMed

    Hashemi, Sepehr; Fernandez Martinez, Juan Luis; Saligan, Leorey; Sonis, Stephen

    2017-09-01

    Despite numerous proposed mechanisms, no definitive pathophysiology underlying radiotherapy-induced fatigue (RIF) has been established. However, the dysregulation of a set of 35 genes was recently validated to predict development of fatigue in prostate cancer patients receiving radiotherapy. To hypothesize novel pathways, and provide genetic targets for currently proposed pathways implicated in RIF development through analysis of the previously validated gene set. The gene set was analyzed for all phenotypic attributions implicated in the phenotype of fatigue. Initially, a "directed" approach was used by querying specific fatigue-related sub-phenotypes against all known phenotypic attributions of the gene set. Then, an "undirected" approach, reviewing the entirety of the literature referencing the 35 genes, was used to increase analysis sensitivity. The dysregulated genes attribute to neural, immunological, mitochondrial, muscular, and metabolic pathways. In addition, certain genes suggest phenotypes not previously emphasized in the context of RIF, such as ionizing radiation sensitivity, DNA damage, and altered DNA repair frequency. Several genes also associated with prostate cancer depression, possibly emphasizing variable radiosensitivity by RIF-prone patients, which may have palliative care implications. Despite the relevant findings, many of the 35 RIF-predictive genes are poorly characterized, warranting their investigation. The implications of herein presented RIF pathways are purely theoretical until specific end-point driven experiments are conducted in more congruent contexts. Nevertheless, the presented attributions are informative, directing future investigation to definitively elucidate RIF's pathoetiology. This study demonstrates an arguably comprehensive method of approaching known differential expression underlying a complex phenotype, to correlate feasible pathophysiology. Copyright © 2017 American Academy of Hospice and Palliative Medicine. All rights reserved.

  8. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    PubMed Central

    2011-01-01

    Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia), 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy), and 16wk (market age) from two genetic lines: a randombred control line (RBC2) maintained without selection pressure, and a line (F) selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR < 0.001) by overall effect of development, while 16 genes were differentially expressed (FDR < 0.10) by overall effect of genetic line. Ingenuity Pathways Analysis was used to group annotated genes into networks, functions, and canonical pathways. The expression of 28 genes involved in extracellular matrix regulation, cell death/apoptosis, and calcium signaling/muscle function, as well as genes with miscellaneous function was confirmed by qPCR. Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of their protein products. PMID:21385442

  9. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity.

    PubMed

    Klein, Theo; Viner, Rosa I; Overall, Christopher M

    2016-10-28

    Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.

  10. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization

    PubMed Central

    Randles, Michael J.; Woolf, Adrian S.; Huang, Jennifer L.; Byron, Adam; Humphries, Jonathan D.; Price, Karen L.; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J.; Long, David A.

    2015-01-01

    Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein–protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. PMID:25896609

  11. Genes affecting novel seed constituents in Limnanthes alba Benth: transcriptome analysis of developing embryos and a new genetic map of meadowfoam

    PubMed Central

    Cooper, Laurel D.; Kishore, Venkata K.; Knapp, Steven J.; Kling, Jennifer G.

    2015-01-01

    The seed oil of meadowfoam, a new crop in the Limnanthaceae family, is highly enriched in very long chain fatty acids that are desaturated at the Δ5 position. The unusual oil is desirable for cosmetics and innovative industrial applications and the seed meal remaining after oil extraction contains glucolimnanthin, a methoxylated benzylglucosinolate whose degradation products are herbicidal and anti-microbial. Here we describe EST analysis of the developing seed transcriptome that identified major genes involved in biosynthesis and assembly of the seed oil and in glucosinolate metabolic pathways. mRNAs encoding acyl-CoA Δ5 desaturase were notably abundant. The library was searched for simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). Fifty-four new SSR markers and eight candidate gene markers were developed and combined with previously developed SSRs to construct a new genetic map for Limnanthes alba. Mapped genes in the lipid biosynthetic pathway encode 3-ketoacyl-CoA synthase (KCS), Δ5 desaturase (Δ5DS), lysophosphatidylacyl-acyl transferase (LPAT), and acyl-CoA diacylglycerol acyl transferase (DGAT). Mapped genes in glucosinolate biosynthetic and degradation pathways encode CYP79A, myrosinase (TGG), and epithiospecifier modifier protein (ESM). The resources developed in this study will further the domestication and improvement of meadowfoam as an oilseed crop. PMID:26038713

  12. Heritability of circulating growth factors involved in the angiogenesis in healthy human population.

    PubMed

    Pantsulaia, I; Trofimov, S; Kobyliansky, E; Livshits, G

    2004-09-21

    The present study examined the extent of genetic and environmental influences on the populational variation of circulating growth factors (VEGF, EGF) involved in angiogenesis in healthy and ethnically homogeneous Caucasian families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 478 healthy individuals aged 18-75 years. Quantitative genetic analysis showed that the VEGF and EGF variation was appreciably attributable to genetic effects, with heritability estimates of 79.9% and 48.4%, respectively. Yet, common environmental factors, shared by members of the same household, also played a significant role (P < 0.01) and explained between 20.1% and 32.6% of the variation. The present study additionally examined the covariations between these molecules and either transforming growth factor-beta 1 (TGF-beta 1) or tissue inhibitors of matrix metalloproteinases 1 (TIMP-1), likewise relevant for angiogenesis. Bivariate analysis revealed significant phenotypic correlations (P < 0.002) between all pairs of variables, thus indicating the possible existence of common genetic and environmental factors. The analysis suggested that the pleiotropic genetic effects were consistently the primary (or even the sole) source of correlation between all pairs of studied molecules. The results of our study affirm the existence of specific and common genetic pathways that commonly determine the greater part of the circulating variation of these molecules.

  13. The genetic regulatory network centered on Pto-Wuschela and its targets involved in wood formation revealed by association studies.

    PubMed

    Yang, Xiaohui; Wei, Zunzheng; Du, Qingzhang; Chen, Jinhui; Wang, Qingshi; Quan, Mingyang; Song, Yuepeng; Xie, Jianbo; Zhang, Deqiang

    2015-11-09

    Transcription factors (TFs) regulate gene expression and can strongly affect phenotypes. However, few studies have examined TF variants and TF interactions with their targets in plants. Here, we used genetic association in 435 unrelated individuals of Populus tomentosa to explore the variants in Pto-Wuschela and its targets to decipher the genetic regulatory network of Pto-Wuschela. Our bioinformatics and co-expression analysis identified 53 genes with the motif TCACGTGA as putative targets of Pto-Wuschela. Single-marker association analysis showed that Pto-Wuschela was associated with wood properties, which is in agreement with the observation that it has higher expression in stem vascular tissues in Populus. Also, SNPs in the 53 targets were associated with growth or wood properties under additive or dominance effects, suggesting these genes and Pto-Wuschela may act in the same genetic pathways that affect variation in these quantitative traits. Epistasis analysis indicated that 75.5% of these genes directly or indirectly interacted Pto-Wuschela, revealing the coordinated genetic regulatory network formed by Pto-Wuschela and its targets. Thus, our study provides an alternative method for dissection of the interactions between a TF and its targets, which will strength our understanding of the regulatory roles of TFs in complex traits in plants.

  14. AmpliSeq Screening of Genes Encoding the C-Type Lectin Receptors and Their Signaling Components Reveals a Common Variant in MASP1 Associated with Pulmonary Tuberculosis in an Indian Population.

    PubMed

    Klassert, Tilman E; Goyal, Surabhi; Stock, Magdalena; Driesch, Dominik; Hussain, Abid; Berrocal-Almanza, Luis Carlos; Myakala, Rajashekar; Sumanlatha, Gaddam; Valluri, Vijayalakshmi; Ahmed, Niyaz; Schumann, Ralf R; Flores, Carlos; Slevogt, Hortense

    2018-01-01

    Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p  = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro . In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance.

  15. AmpliSeq Screening of Genes Encoding the C-Type Lectin Receptors and Their Signaling Components Reveals a Common Variant in MASP1 Associated with Pulmonary Tuberculosis in an Indian Population

    PubMed Central

    Klassert, Tilman E.; Goyal, Surabhi; Stock, Magdalena; Driesch, Dominik; Hussain, Abid; Berrocal-Almanza, Luis Carlos; Myakala, Rajashekar; Sumanlatha, Gaddam; Valluri, Vijayalakshmi; Ahmed, Niyaz; Schumann, Ralf R.; Flores, Carlos; Slevogt, Hortense

    2018-01-01

    Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro. In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance. PMID:29515573

  16. Genetic associations with childhood brain growth, defined in two longitudinal cohorts.

    PubMed

    Szekely, Eszter; Schwantes-An, Tae-Hwi Linus; Justice, Cristina M; Sabourin, Jeremy A; Jansen, Philip R; Muetzel, Ryan L; Sharp, Wendy; Tiemeier, Henning; Sung, Heejong; White, Tonya J; Wilson, Alexander F; Shaw, Philip

    2018-06-01

    Genome-wide association studies (GWASs) are unraveling the genetics of adult brain neuroanatomy as measured by cross-sectional anatomic magnetic resonance imaging (aMRI). However, the genetic mechanisms that shape childhood brain development are, as yet, largely unexplored. In this study we identify common genetic variants associated with childhood brain development as defined by longitudinal aMRI. Genome-wide single nucleotide polymorphism (SNP) data were determined in two cohorts: one enriched for attention-deficit/hyperactivity disorder (ADHD) (LONG cohort: 458 participants; 119 with ADHD) and the other from a population-based cohort (Generation R: 257 participants). The growth of the brain's major regions (cerebral cortex, white matter, basal ganglia, and cerebellum) and one region of interest (the right lateral prefrontal cortex) were defined on all individuals from two aMRIs, and a GWAS and a pathway analysis were performed. In addition, association between polygenic risk for ADHD and brain growth was determined for the LONG cohort. For white matter growth, GWAS meta-analysis identified a genome-wide significant intergenic SNP (rs12386571, P = 9.09 × 10 -9 ), near AKR1B10. This gene is part of the aldo-keto reductase superfamily and shows neural expression. No enrichment of neural pathways was detected and polygenic risk for ADHD was not associated with the brain growth phenotypes in the LONG cohort that was enriched for the diagnosis of ADHD. The study illustrates the use of a novel brain growth phenotype defined in vivo for further study. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  17. Type 1 diabetes susceptibility alleles are associated with distinct alterations in the gut microbiota.

    PubMed

    Mullaney, Jane A; Stephens, Juliette E; Costello, Mary-Ellen; Fong, Cai; Geeling, Brooke E; Gavin, Patrick G; Wright, Casey M; Spector, Timothy D; Brown, Matthew A; Hamilton-Williams, Emma E

    2018-02-17

    Dysbiosis of the gut microbiota has been implicated in the pathogenesis of many autoimmune conditions including type 1 diabetes (T1D). It is unknown whether changes in the gut microbiota observed in T1D are due to environmental drivers, genetic risk factors, or both. Here, we have performed an analysis of associations between the gut microbiota and T1D genetic risk using the non-obese diabetic (NOD) mouse model of T1D and the TwinsUK cohort. Through the analysis of five separate colonies of T1D susceptible NOD mice, we identified similarities in NOD microbiome that were independent of animal facility. Introduction of disease protective alleles at the Idd3 and Idd5 loci (IL2, Ctla4, Slc11a1, and Acadl) resulted in significant alterations in the NOD microbiome. Disease-protected strains exhibited a restoration of immune regulatory pathways within the gut which could also be reestablished using IL-2 therapy. Increased T1D disease risk from IL-2 pathway loci in the TwinsUK cohort of human subjects resulted in some similar microbiota changes to those observed in the NOD mouse. These findings demonstrate for the first time that type 1 diabetes-associated genetic variants that restore immune tolerance to islet antigens also result in functional changes in the gut immune system and resultant changes in the microbiota.

  18. Comparative Analysis of Argonaute-dependent Small RNA Pathways in Drosophila

    PubMed Central

    Zhou, Rui; Hotta, Ikuko; Denli, Ahmet M.; Hong, Pengyu; Perrimon, Norbert; Hannon, Gregory J.

    2008-01-01

    Summary The specificity of RNAi pathways is determined by several classes of small RNAs, which include siRNAs, piRNAs, endo-siRNAs, and microRNAs (miRNAs). These small RNAs are invariably incorporated into large Argonaute (Ago)-containing effector complexes known as RNA-induced silencing complexes (RISCs), which they guide to silencing targets. Both genetic and biochemical strategies have yielded conserved molecular components of small RNA biogenesis and effector machineries. However, given the complexity of these pathways, there are likely to be additional components and regulators that remain to be uncovered. We have undertaken a comparative and comprehensive RNAi screen to identify genes that impact three major Ago-dependent small RNA pathways that operate in Drosophila S2 cells. We identify subsets of candidates that act positively or negatively in siRNA, endo-siRNA and miRNA pathways. Our studies indicate that many components are shared among all three Argonaute-dependent silencing pathways, though each is also impacted by discrete sets of genes. PMID:19026789

  19. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model.

    PubMed

    Kogelman, Lisette J A; Cirera, Susanna; Zhernakova, Daria V; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2014-09-30

    Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P < 0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to be associated with obesity in humans and rodents, e.g. CSF1R and MARC2. To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory genes related to obesity, confirming the complexity of obesity and its association with immune-related disorders and osteoporosis.

  20. Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors.

    PubMed

    Stevens, Kathleen E; Chang, Diana; Zwack, Erin E; Sebert, Michael E

    2011-01-01

    Competence for genetic transformation in Streptococcus pneumoniae develops in response to accumulation of a secreted peptide pheromone and was one of the initial examples of bacterial quorum sensing. Activation of this signaling system induces not only expression of the proteins required for transformation but also the production of cellular chaperones and proteases. We have shown here that activity of this pathway is sensitively responsive to changes in the accuracy of protein synthesis that are triggered by either mutations in ribosomal proteins or exposure to antibiotics. Increasing the error rate during ribosomal decoding promoted competence, while reducing the error rate below the baseline level repressed the development of both spontaneous and antibiotic-induced competence. This pattern of regulation was promoted by the bacterial HtrA serine protease. Analysis of strains with the htrA (S234A) catalytic site mutation showed that the proteolytic activity of HtrA selectively repressed competence when translational fidelity was high but not when accuracy was low. These findings redefine the pneumococcal competence pathway as a response to errors during protein synthesis. This response has the capacity to address the immediate challenge of misfolded proteins through production of chaperones and proteases and may also be able to address, through genetic exchange, upstream coding errors that cause intrinsic protein folding defects. The competence pathway may thereby represent a strategy for dealing with lesions that impair proper protein coding and for maintaining the coding integrity of the genome. The signaling pathway that governs competence in the human respiratory tract pathogen Streptococcus pneumoniae regulates both genetic transformation and the production of cellular chaperones and proteases. The current study shows that this pathway is sensitively controlled in response to changes in the accuracy of protein synthesis. Increasing the error rate during ribosomal decoding induced competence, while decreasing the error rate repressed competence. This pattern of regulation was promoted by the HtrA protease, which selectively repressed competence when translational fidelity was high but not when accuracy was low. Our findings demonstrate that this organism is able to monitor the accuracy of information used for protein biosynthesis and suggest that errors trigger a response addressing both the immediate challenge of misfolded proteins and, through genetic exchange, upstream coding errors that may underlie protein folding defects. This pathway may represent an evolutionary strategy for maintaining the coding integrity of the genome.

  1. A Defined and Flexible Pocket Explains Aryl Substrate Promiscuity by the Cahuitamycin Starter Unit Activating Enzyme CahJ.

    PubMed

    Sherman, David H; Tripathi, Ashootosh; Park, Sung Ryeol; Sikkema, Andrew; Cho, Hyo Je; Wu, Jianfeng; Lee, Brian; Xi, Chuanwu; Smith, Janet L

    2018-05-09

    Cahuitamycins are biofilm inhibitors biosynthesized by a convergent NRPS pathway. Previous genetic analysis indicated that a discrete enzyme, CahJ, serves as a gatekeeper for cahuitamycin structural diversification. Herein, the CahJ protein was probed structurally, functionally and through mutasynthesis. This analysis enabled production of a new cahuitamycin congener through targeted precursor incorporation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease.

    PubMed

    Gan-Or, Ziv; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways.

  3. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease

    PubMed Central

    Gan-Or, Ziv; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways. PMID:26207393

  4. A novel splicing site IRP1 somatic mutation in a patient with pheochromocytoma and JAK2V617F positive polycythemia vera: a case report.

    PubMed

    Pang, Ying; Gupta, Garima; Yang, Chunzhang; Wang, Herui; Huynh, Thanh-Truc; Abdullaev, Ziedulla; Pack, Svetlana D; Percy, Melanie J; Lappin, Terence R J; Zhuang, Zhengping; Pacak, Karel

    2018-03-13

    The role of the hypoxia signaling pathway in the pathogenesis of pheochromocytoma/paraganglioma (PPGL)-polycythemia syndrome has been elucidated. Novel somatic mutations in hypoxia-inducible factor type 2A (HIF2A) and germline mutations in prolyl hydroxylase type 1 and type 2 (PHD1 and PHD2) have been identified to cause upregulation of the hypoxia signaling pathway and its target genes including erythropoietin (EPO) and its receptor (EPOR). However, in a minority of patients presenting with this syndrome, the genetics and molecular pathogenesis remain unexplained. The aim of the present study was to uncover novel genetic causes of PPGL-polycythemia syndrome. A female presented with a history of JAK2 V617F positive PV, diagnosed in 2007, and right adrenal pheochromocytoma diagnosed and resected in 2011. Her polycythemia symptoms and hematocrit levels continued to worsen from 2007 to 2011, with an increased frequency of phlebotomies. Postoperatively, until early 2013, her hematocrit levels remained normalized. Following this, the hematocrit levels ranged between 46.4 and 48.9% [35-45%]. Tumor tissue from the patient was further tested for mutations in genes related to upregulation of the hypoxia signaling pathway including iron regulatory protein 1 (IRP1), which is a known regulator of HIF-2α mRNA translation. Functional studies were performed to investigate the consequences of these mutations, especially their effect on the HIF signaling pathway and EPO. Indel mutations (c.267-1_267delGGinsTA) were discovered at the exon 3 splicing site of IRP1. Minigene construct and splicing site analysis showed that the mutation led to a new splicing site and a frameshift mutation of IRP1, which caused a truncated protein. Fluorescence in situ hybridization analysis demonstrated heterozygous IRP1 deletions in tumor cells. Immunohistochemistry results confirmed the truncated IRP1 and overexpressed HIF-2α, EPO and EPOR in tumor cells. This is the first report which provides direct molecular genetic evidence of association between a somatic IRP1 loss-of-function mutation and PHEO and secondary polycythemia. In patients diagnosed with PHEO/PGL and polycythemia with negative genetic testing for mutations in HIF2A, PHD1/2, and VHL, IRP1 should be considered as a candidate gene.

  5. A Genetic and Pharmacological Analysis of Isoprenoid Pathway by LC-MS/MS in Fission Yeast

    PubMed Central

    Takami, Tomonori; Fang, Yue; Zhou, Xin; Jaiseng, Wurentuya; Ma, Yan; Kuno, Takayoshi

    2012-01-01

    Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level. PMID:23145048

  6. Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer

    PubMed Central

    Duell, Eric J.; Yu, Kai; Risch, Harvey A.; Olson, Sara H.; Kooperberg, Charles; Wolpin, Brian M.; Jiao, Li; Dong, Xiaoqun; Wheeler, Bill; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Fuchs, Charles S.; Gallinger, Steven; Gross, Myron; Hartge, Patricia; Hoover, Robert N.; Holly, Elizabeth A.; Jacobs, Eric J.; Klein, Alison P.; LaCroix, Andrea; Mandelson, Margaret T.; Petersen, Gloria; Zheng, Wei; Agalliu, Ilir; Albanes, Demetrius; Boutron-Ruault, Marie-Christine; Bracci, Paige M.; Buring, Julie E.; Canzian, Federico; Chang, Kenneth; Chanock, Stephen J.; Cotterchio, Michelle; Gaziano, J.Michael; Giovannucci, Edward L.; Goggins, Michael; Hallmans, Göran; Hankinson, Susan E.; Hoffman Bolton, Judith A.; Hunter, David J.; Hutchinson, Amy; Jacobs, Kevin B.; Jenab, Mazda; Khaw, Kay-Tee; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; McWilliams, Robert R.; Mendelsohn, Julie B.; Patel, Alpa V.; Rabe, Kari G.; Riboli, Elio; Shu, Xiao-Ou; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Virtamo, Jarmo; Visvanathan, Kala; Watters, Joanne; Yu, Herbert; Zeleniuch-Jacquotte, Anne; Stolzenberg-Solomon, Rachael Z.

    2012-01-01

    Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case–control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10−6, 1.6 × 10−5, 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10−5), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H. pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer. PMID:22523087

  7. Testing the Role of p21-Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease

    DTIC Science & Technology

    2015-06-01

    preclinical models of NF1? Can whole kinome analysis predict pathways for drug resistance in treated mice? Procuring Contracting/Grants Officer: Emily...cells. b) Evaluate transduction of hydroxyethyl starch (HES)-processed hematopoietic cells. c) Monitor gene transfer in primary FANCC-/- progenitors

  8. Genetic analysis of hyperemesis gravidarum reveals association with intracellular calcium release channel (RYR2).

    PubMed

    Fejzo, Marlena Schoenberg; Myhre, Ronny; Colodro-Conde, Lucía; MacGibbon, Kimber W; Sinsheimer, Janet S; Reddy, M V Prasad Linga; Pajukanta, Päivi; Nyholt, Dale R; Wright, Margaret J; Martin, Nicholas G; Engel, Stephanie M; Medland, Sarah E; Magnus, Per; Mullin, Patrick M

    2017-01-05

    Hyperemesis Gravidarum (HG), severe nausea/vomiting in pregnancy (NVP), can cause poor maternal/fetal outcomes. Genetic predisposition suggests the genetic component is essential in discovering an etiology. We performed whole-exome sequencing of 5 families followed by analysis of variants in 584 cases/431 controls. Variants in RYR2 segregated with disease in 2 families. The novel variant L3277R was not found in any case/control. The rare variant, G1886S was more common in cases (p = 0.046) and extreme cases (p = 0.023). Replication of G1886S using Norwegian/Australian data was supportive. Common variants rs790899 and rs1891246 were significantly associated with HG and weight loss. Copy-number analysis revealed a deletion in a patient. RYR2 encodes an intracellular calcium release channel involved in vomiting, cyclic-vomiting syndrome, and is a thyroid hormone target gene. Additionally, RYR2 is a downstream drug target of Inderal, used to treat HG and CVS. Thus, herein we provide genetic evidence for a pathway and therapy for HG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function

    PubMed Central

    Wild, Philipp S.; Felix, Janine F.; Schillert, Arne; Chen, Ming-Huei; Leening, Maarten J.G.; Völker, Uwe; Großmann, Vera; Brody, Jennifer A.; Irvin, Marguerite R.; Shah, Sanjiv J.; Pramana, Setia; Lieb, Wolfgang; Schmidt, Reinhold; Stanton, Alice V.; Malzahn, Dörthe; Lyytikäinen, Leo-Pekka; Tiller, Daniel; Smith, J. Gustav; Di Tullio, Marco R.; Musani, Solomon K.; Morrison, Alanna C.; Pers, Tune H.; Morley, Michael; Kleber, Marcus E.; Aragam, Jayashri; Bis, Joshua C.; Bisping, Egbert; Broeckel, Ulrich; Cheng, Susan; Deckers, Jaap W.; Del Greco M, Fabiola; Edelmann, Frank; Fornage, Myriam; Franke, Lude; Friedrich, Nele; Harris, Tamara B.; Hofer, Edith; Hofman, Albert; Huang, Jie; Hughes, Alun D.; Kähönen, Mika; investigators, KNHI; Kruppa, Jochen; Lackner, Karl J.; Lannfelt, Lars; Laskowski, Rafael; Launer, Lenore J.; Lindgren, Cecilia M.; Loley, Christina; Mayet, Jamil; Medenwald, Daniel; Morris, Andrew P.; Müller, Christian; Müller-Nurasyid, Martina; Nappo, Stefania; Nilsson, Peter M.; Nuding, Sebastian; Nutile, Teresa; Peters, Annette; Pfeufer, Arne; Pietzner, Diana; Pramstaller, Peter P.; Raitakari, Olli T.; Rice, Kenneth M.; Rotter, Jerome I.; Ruohonen, Saku T.; Sacco, Ralph L.; Samdarshi, Tandaw E.; Sharp, Andrew S.P.; Shields, Denis C.; Sorice, Rossella; Sotoodehnia, Nona; Stricker, Bruno H.; Surendran, Praveen; Töglhofer, Anna M.; Uitterlinden, André G.; Völzke, Henry; Ziegler, Andreas; Münzel, Thomas; März, Winfried; Cappola, Thomas P.; Hirschhorn, Joel N.; Mitchell, Gary F.; Smith, Nicholas L.; Fox, Ervin R.; Dueker, Nicole D.; Jaddoe, Vincent W.V.; Melander, Olle; Lehtimäki, Terho; Ciullo, Marina; Hicks, Andrew A.; Lind, Lars; Gudnason, Vilmundur; Pieske, Burkert; Barron, Anthony J.; Zweiker, Robert; Schunkert, Heribert; Ingelsson, Erik; Liu, Kiang; Arnett, Donna K.; Psaty, Bruce M.; Blankenberg, Stefan; Larson, Martin G.; Felix, Stephan B.; Franco, Oscar H.; Zeller, Tanja; Vasan, Ramachandran S.; Dörr, Marcus

    2017-01-01

    BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING. For detailed information per study, see Acknowledgments. PMID:28394258

  10. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy.

    PubMed

    Li, Jiajia; Ding, Xianlong; Han, Shaohuai; He, Tingting; Zhang, Hao; Yang, Longshu; Yang, Shouping; Gai, Junyi

    2016-04-14

    To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Bayesian Networks Predict Neuronal Transdifferentiation.

    PubMed

    Ainsworth, Richard I; Ai, Rizi; Ding, Bo; Li, Nan; Zhang, Kai; Wang, Wei

    2018-05-30

    We employ the language of Bayesian networks to systematically construct gene-regulation topologies from deep-sequencing single-nucleus RNA-Seq data for human neurons. From the perspective of the cell-state potential landscape, we identify attractors that correspond closely to different neuron subtypes. Attractors are also recovered for cell states from an independent data set confirming our models accurate description of global genetic regulations across differing cell types of the neocortex (not included in the training data). Our model recovers experimentally confirmed genetic regulations and community analysis reveals genetic associations in common pathways. Via a comprehensive scan of all theoretical three-gene perturbations of gene knockout and overexpression, we discover novel neuronal trans-differrentiation recipes (including perturbations of SATB2, GAD1, POU6F2 and ADARB2) for excitatory projection neuron and inhibitory interneuron subtypes. Copyright © 2018, G3: Genes, Genomes, Genetics.

  12. BioCichlid: central dogma-based 3D visualization system of time-course microarray data on a hierarchical biological network.

    PubMed

    Ishiwata, Ryosuke R; Morioka, Masaki S; Ogishima, Soichi; Tanaka, Hiroshi

    2009-02-15

    BioCichlid is a 3D visualization system of time-course microarray data on molecular networks, aiming at interpretation of gene expression data by transcriptional relationships based on the central dogma with physical and genetic interactions. BioCichlid visualizes both physical (protein) and genetic (regulatory) network layers, and provides animation of time-course gene expression data on the genetic network layer. Transcriptional regulations are represented to bridge the physical network (transcription factors) and genetic network (regulated genes) layers, thus integrating promoter analysis into the pathway mapping. BioCichlid enhances the interpretation of microarray data and allows for revealing the underlying mechanisms causing differential gene expressions. BioCichlid is freely available and can be accessed at http://newton.tmd.ac.jp/. Source codes for both biocichlid server and client are also available.

  13. [Implications of the new etiophatogenic approach in the classification of constitutional and genetic bone diseases].

    PubMed

    Morales Piga, Antonio; Alonso Ferreira, Verónica; Villaverde-Hueso, Ana

    2011-01-01

    Recent years have seen an unprecedented increase in the knowledge and understanding of biochemical disturbances involved on constitutional bone disorders. Recognition of the genetic background as the common cause of these diseases prompted the substitution of the term «constitutional» by «genetic», in referring to them. Understanding physiopathological bases by finding out the altered metabolic pathways as well as their regulatory and control systems, favours an earlier and more accurate diagnosis based on interdisciplinary collaboration. Although clinical and radiological assessment remains crucial in the study of these disorders, ever more often the diagnosis is achieved by molecular and genetic analysis. Elucidation of the damaged underlying molecular mechanisms offers targets potentially useful for therapeutic research in these complex and often disabling diseases. 2010 Elsevier España, S.L. All rights reserved.

  14. Genetic analysis for the grain number heterosis of a super-hybrid rice WFYT025 combination using RNA-Seq.

    PubMed

    Chen, Liang; Bian, Jianmin; Shi, Shilai; Yu, Jianfeng; Khanzada, Hira; Wassan, Ghulam Mustafa; Zhu, Changlan; Luo, Xin; Tong, Shan; Yang, Xiaorong; Peng, Xiaosong; Yong, Shuang; Yu, Qiuying; He, Xiaopeng; Fu, Junru; Chen, Xiaorong; Hu, Lifang; Ouyang, Linjuan; He, Haohua

    2018-06-15

    Despite the great contributions of utilizing heterosis to crop productivity worldwide, the molecular mechanism of heterosis remains largely unexplored. Thus, the present research is focused on the grain number heterosis of a widely used late-cropping indica super hybrid rice combination in China using a high-throughput next-generation RNA-seq strategy. Here, we obtained 872 million clean reads, and at least one read could maps 27,917 transcripts out of 35,679 annotations. Transcript differential expression analysis revealed a total of 5910 differentially expressed genes (DG HP ) between super-hybrid rice Wufengyou T025 (WFYT025) and its parents were identified in the young panicles. Out of the 5910 DG HP , 63.1% had a genetic action mode of over-dominance, 17.3% had a complete-dominance action, 15.6% had a partial-dominance action and 4.0% had an additive action. DG HP were significantly enriched in carotenoid biosynthesis, diterpenoid biosynthesis and plant hormone signal transduction pathways, with the key genes involved in the three pathways being up-regulated in the hybrid. By comparing the DG HP enriched in the KEGG pathway with QTLs associated with grain number, several DG HP were located on the same chromosomal segment with some of these grain number QTLs. Through young panicle development transcriptome analysis, we conclude that the over-dominant effect is probably the major contributor to the grain number heterosis of WFYT025. The DG HP sharing the same location with grain number QTLs could be considered a candidate gene and provide valuable targets for the cloning and functional analysis of these grain number QTLs.

  15. A genome-wide association study and biological pathway analysis of epilepsy prognosis in a prospective cohort of newly treated epilepsy

    PubMed Central

    Speed, Doug; Hoggart, Clive; Petrovski, Slave; Tachmazidou, Ioanna; Coffey, Alison; Jorgensen, Andrea; Eleftherohorinou, Hariklia; De Iorio, Maria; Todaro, Marian; De, Tisham; Smith, David; Smith, Philip E.; Jackson, Margaret; Cooper, Paul; Kellett, Mark; Howell, Stephen; Newton, Mark; Yerra, Raju; Tan, Meng; French, Chris; Reuber, Markus; Sills, Graeme E.; Chadwick, David; Pirmohamed, Munir; Bentley, David; Scheffer, Ingrid; Berkovic, Samuel; Balding, David; Palotie, Aarno; Marson, Anthony; O'Brien, Terence J.; Johnson, Michael R.

    2014-01-01

    We present the analysis of a prospective multicentre study to investigate genetic effects on the prognosis of newly treated epilepsy. Patients with a new clinical diagnosis of epilepsy requiring medication were recruited and followed up prospectively. The clinical outcome was defined as freedom from seizures for a minimum of 12 months in accordance with the consensus statement from the International League Against Epilepsy (ILAE). Genetic effects on remission of seizures after starting treatment were analysed with and without adjustment for significant clinical prognostic factors, and the results from each cohort were combined using a fixed-effects meta-analysis. After quality control (QC), we analysed 889 newly treated epilepsy patients using 472 450 genotyped and 6.9 × 106 imputed single-nucleotide polymorphisms. Suggestive evidence for association (defined as Pmeta < 5.0 × 10−7) with remission of seizures after starting treatment was observed at three loci: 6p12.2 (rs492146, Pmeta = 2.1 × 10−7, OR[G] = 0.57), 9p23 (rs72700966, Pmeta = 3.1 × 10−7, OR[C] = 2.70) and 15q13.2 (rs143536437, Pmeta = 3.2 × 10−7, OR[C] = 1.92). Genes of biological interest at these loci include PTPRD and ARHGAP11B (encoding functions implicated in neuronal development) and GSTA4 (a phase II biotransformation enzyme). Pathway analysis using two independent methods implicated a number of pathways in the prognosis of epilepsy, including KEGG categories ‘calcium signaling pathway’ and ‘phosphatidylinositol signaling pathway’. Through a series of power curves, we conclude that it is unlikely any single common variant explains >4.4% of the variation in the outcome of newly treated epilepsy. PMID:23962720

  16. GENETIC ARCHITECTURE OF AMBULATORY BLOOD PRESSURE IN THE GENERAL POPULATION – INSIGHTS FROM CARDIOVASCULAR GENE-CENTRIC ARRAY

    PubMed Central

    Tomaszewski, Maciej; Debiec, Radoslaw; Braund, Peter S; Nelson, Christopher P; Hardwick, Robert; Christofidou, Paraskevi; Denniff, Matthew; Codd, Veryan; Rafelt, Suzanne; van der Harst, Pim; Waterworth, Dawn; Song, Kijoung; Vollenweider, Peter; Waeber, Gerard; Zukowska-Szczechowska, Ewa; Burton, Paul R; Mooser, Vincent; Charchar, Fadi J; Thompson, John R; Tobin, Martin D; Samani, Nilesh J

    2010-01-01

    Genetic determinants of blood pressure are poorly defined. We undertook a large-scale gene-centric analysis to identify loci and pathways associated with ambulatory systolic and diastolic blood pressure. We measured 24-hour ambulatory BP in 2020 individuals from 520 white European nuclear families (the GRAPHIC Study) and genotyped their DNA using the Illumina HumanCVD BeadChip array which contains approximately 50000 single nucleotide polymorphisms in >2000 cardiovascular candidate loci. We found a strong association between rs13306560 polymorphism in the promoter region of MTHFR and CLCN6 and mean 24-hour diastolic blood pressure - each minor allele copy of rs13306560 was associated with 2.6 mmHg lower mean 24-hour diastolic blood pressure (P=1.2×10−8). rs13306560 was also associated with clinic diastolic blood pressure in a combined analysis of 8129 subjects from the GRAPHIC Study, the CoLaus Study and the Silesian Cardiovascular Study (P=5.4×10−6). Additional analysis of associations between variants in Gene Ontology-defined pathways and mean 24-hour blood pressure in the GRAPHIC Study showed that cell survival control signalling cascades could play a role in blood pressure regulation. There was also a significant over-representation of rare variants (minor allele frequency <0.05) amongst polymorphisms showing at least nominal association with mean 24-hour blood pressure indicating that a considerable proportion of its heritability may be explained by uncommon alleles. Through a large scale gene-centric analysis of ambulatory blood pressure, we identified an association of a novel variant at the MTHFR/CLNC6 locus with diastolic blood pressure and provided new insights into the genetic architecture of blood pressure. PMID:21060006

  17. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal

    PubMed Central

    Gao, Jianjiong; Aksoy, Bülent Arman; Dogrusoz, Ugur; Dresdner, Gideon; Gross, Benjamin; Sumer, S. Onur; Sun, Yichao; Jacobsen, Anders; Sinha, Rileen; Larsson, Erik; Cerami, Ethan; Sander, Chris; Schultz, Nikolaus

    2014-01-01

    The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics. PMID:23550210

  18. TGFβ Receptor 1: An Immune Susceptibility Gene in HPV-Associated Cancer

    PubMed Central

    Levovitz, Chaya; Chen, Dan; Ivansson, Emma; Gyllensten, Ulf; Finnigan, John P.; Alshawish, Sara; Zhang, Weijia; Schadt, Eric E.; Posner, Marshal R.; Genden, Eric M.; Boffetta, Paolo; Sikora, Andrew G.

    2015-01-01

    Only a minority of those exposed to human papillomavirus (HPV) develop HPV-related cervical and oropharyngeal cancer. Because host immunity affects infection and progression to cancer, we tested the hypothesis that genetic variation in immune-related genes is a determinant of susceptibility to oropharyngeal cancer and other HPV-associated cancers by performing a multitier integrative computational analysis with oropharyngeal cancer data from a head and neck cancer genome-wide association study (GWAS). Independent analyses, including single-gene, gene-interconnectivity, protein–protein interaction, gene expression, and pathway analysis, identified immune genes and pathways significantly associated with oropharyngeal cancer. TGFβR1, which intersected all tiers of analysis and thus selected for validation, replicated significantly in the head and neck cancer GWAS limited to HPV-seropositive cases and an independent cervical cancer GWAS. The TGFβR1 containing p38–MAPK pathway was significantly associated with oropharyngeal cancer and cervical cancer, and TGFβR1 was overexpressed in oropharyngeal cancer, cervical cancer, and HPV+ head and neck cancer tumors. These concordant analyses implicate TGFβR1 signaling as a process dysregulated across HPV-related cancers. This study demonstrates that genetic variation in immune-related genes is associated with susceptibility to oropharyngeal cancer and implicates TGFβR1/TGFβ signaling in the development of both oropharyngeal cancer and cervical cancer. Better understanding of the immunogenetic basis of susceptibility to HPV-associated cancers may provide insight into host/virus interactions and immune processes dysregulated in the minority of HPV-exposed individuals who progress to cancer. PMID:25273091

  19. Asthma pharmacogenetics and the development of genetic profiles for personalized medicine

    PubMed Central

    Ortega, Victor E; Meyers, Deborah A; Bleecker, Eugene R

    2015-01-01

    Human genetics research will be critical to the development of genetic profiles for personalized or precision medicine in asthma. Genetic profiles will consist of gene variants that predict individual disease susceptibility and risk for progression, predict which pharmacologic therapies will result in a maximal therapeutic benefit, and predict whether a therapy will result in an adverse response and should be avoided in a given individual. Pharmacogenetic studies of the glucocorticoid, leukotriene, and β2-adrenergic receptor pathways have focused on candidate genes within these pathways and, in addition to a small number of genome-wide association studies, have identified genetic loci associated with therapeutic responsiveness. This review summarizes these pharmacogenetic discoveries and the future of genetic profiles for personalized medicine in asthma. The benefit of a personalized, tailored approach to health care delivery is needed in the development of expensive biologic drugs directed at a specific biologic pathway. Prior pharmacogenetic discoveries, in combination with additional variants identified in future studies, will form the basis for future genetic profiles for personalized tailored approaches to maximize therapeutic benefit for an individual asthmatic while minimizing the risk for adverse events. PMID:25691813

  20. Genome-wide associations for birth weight and correlations with adult disease

    PubMed Central

    Feenstra, Bjarke; van Zuydam, Natalie R; Gaulton, Kyle J; Grarup, Niels; Bradfield, Jonathan P; Strachan, David P; Li-Gao, Ruifang; Ahluwalia, Tarunveer S; Kreiner, Eskil; Rueedi, Rico; Lyytikäinen, Leo-Pekka; Cousminer, Diana L; Wu, Ying; Thiering, Elisabeth; Wang, Carol A; Have, Christian T; Hottenga, Jouke-Jan; Vilor-Tejedor, Natalia; Joshi, Peter K; Boh, Eileen Tai Hui; Ntalla, Ioanna; Pitkänen, Niina; Mahajan, Anubha; van Leeuwen, Elisabeth M; Joro, Raimo; Lagou, Vasiliki; Nodzenski, Michael; Diver, Louise A; Zondervan, Krina T; Bustamante, Mariona; Marques-Vidal, Pedro; Mercader, Josep M; Bennett, Amanda J; Rahmioglu, Nilufer; Nyholt, Dale R; Ma, Ronald Ching Wan; Tam, Claudia Ha Ting; Tam, Wing Hung; Ganesh, Santhi K; van Rooij, Frank JA; Jones, Samuel E; Loh, Po-Ru; Ruth, Katherine S; Tuke, Marcus A; Tyrrell, Jessica; Wood, Andrew R; Yaghootkar, Hanieh; Scholtens, Denise M; Paternoster, Lavinia; Prokopenko, Inga; Kovacs, Peter; Atalay, Mustafa; Willems, Sara M; Panoutsopoulou, Kalliope; Wang, Xu; Carstensen, Lisbeth; Geller, Frank; Schraut, Katharina E; Murcia, Mario; van Beijsterveldt, Catharina EM; Willemsen, Gonneke; Appel, Emil V R; Fonvig, Cilius E; Trier, Caecilie; Tiesler, Carla MT; Standl, Marie; Kutalik, Zoltán; Bonas-Guarch, Sílvia; Hougaard, David M; Sánchez, Friman; Torrents, David; Waage, Johannes; Hollegaard, Mads V; de Haan, Hugoline G; Rosendaal, Frits R; Medina-Gomez, Carolina; Ring, Susan M; Hemani, Gibran; McMahon, George; Robertson, Neil R; Groves, Christopher J; Langenberg, Claudia; Luan, Jian'an; Scott, Robert A; Zhao, Jing Hua; Mentch, Frank D; MacKenzie, Scott M; Reynolds, Rebecca M; Lowe, William L; Tönjes, Anke; Stumvoll, Michael; Lindi, Virpi; Lakka, Timo A; van Duijn, Cornelia M; Kiess, Wieland; Körner, Antje; Sørensen, Thorkild IA; Niinikoski, Harri; Pahkala, Katja; Raitakari, Olli T; Zeggini, Eleftheria; Dedoussis, George V; Teo, Yik-Ying; Saw, Seang-Mei; Melbye, Mads; Campbell, Harry; Wilson, James F; Vrijheid, Martine; de Geus, Eco JCN; Boomsma, Dorret I; Kadarmideen, Haja N; Holm, Jens-Christian; Hansen, Torben; Sebert, Sylvain; Hattersley, Andrew T; Beilin, Lawrence J; Newnham, John P; Pennell, Craig E; Heinrich, Joachim; Adair, Linda S; Borja, Judith B; Mohlke, Karen L; Eriksson, Johan G; Widén, Elisabeth E; Kähönen, Mika; Viikari, Jorma S; Lehtimäki, Terho; Vollenweider, Peter; Bønnelykke, Klaus; Bisgaard, Hans; Mook-Kanamori, Dennis O; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Pisinger, Charlotta; Pedersen, Oluf; Power, Christine; Hyppönen, Elina; Wareham, Nicholas J; Hakonarson, Hakon; Davies, Eleanor; Walker, Brian R; Jaddoe, Vincent WV; Jarvelin, Marjo-Riitta; Grant, Struan FA; Vaag, Allan A; Lawlor, Debbie A; Frayling, Timothy M; Davey Smith, George; Morris, Andrew P; Ong, Ken K; Felix, Janine F; Timpson, Nicholas J; Perry, John RB; Evans, David M; McCarthy, Mark I; Freathy, Rachel M

    2016-01-01

    Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the impact of an adverse early life environment. We performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be captured by assays of foetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (rg=-0.22, P =5.5x10-13), T2D (rg=-0.27, P =1.1x10-6) and coronary artery disease (rg=-0.30, P =6.5x10-9) and, in large cohort data sets, demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P =1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and have highlighted some of the pathways through which these causal genetic effects are mediated. PMID:27680694

  1. Genetic similarities between tobacco use disorder and related comorbidities: an exploratory study

    PubMed Central

    2014-01-01

    Background Tobacco use disorder (TUD), defined as the use of tobacco to the detriment of a person’s health or social functioning, is associated with various disorders. We hypothesized that mutual variation in genes may partly explain this link. The aims of this study were to make a non-exhaustive inventory of the disorders using (partially) the same genetic pathways as TUD, and to describe the genetic similarities between TUD and the selected disorders. Methods We developed a 3 stage approach: (i) selection of genes influencing TUD using Gene2Mesh and Ingenuity Pathway Analysis (IPA), (ii) selection of disorders associated with the selected genes using IPA and (iii) genetic similarities between disorders associated with TUD using Jaccard distance and cluster analyses. Results Fourteen disorders and thirty-two genes met our inclusion criteria. The Jaccard distance between pairs of disorders ranged from 0.00 (e.g. oesophageal cancer and malignant hypertension) to 0.45 (e.g. bladder cancer and addiction). A lower number in the Jaccard distance indicates a higher similarity between the two disorders. Two main clusters of genetically similar disorders were observed, one including coexisting disorders (e.g. addiction and alcoholism) and the other one with the side-effects of smoking (e.g. gastric cancer and malignant hypertension). Conclusions This exploratory study partly explains the potential genetic components linking TUD to other disorders. Two principle clusters of disorders were observed (i) coexisting disorders of TUD and (ii) side-effects of TUD disorders. A further deepening of this observation in a real life study should allow strengthening this hypothesis. PMID:25060307

  2. Genetics in child and adolescent psychiatry: methodological advances and conceptual issues.

    PubMed

    Hohmann, Sarah; Adamo, Nicoletta; Lahey, Benjamin B; Faraone, Stephen V; Banaschewski, Tobias

    2015-06-01

    Discovering the genetic basis of early-onset psychiatric disorders has been the aim of intensive research during the last decade. We will first selectively summarize results of genetic research in child and adolescent psychiatry by using examples from different disorders and discuss methodological issues, emerging questions and future directions. In the second part of this review, we will focus on how to link genetic causes of disorders with physiological pathways, discuss the impact of genetic findings on diagnostic systems, prevention and therapeutic interventions. Finally we will highlight some ethical aspects connected to genetic research in child and adolescent psychiatry. Advances in molecular genetic methods have led to insights into the genetic architecture of psychiatric disorders, but not yet provided definite pathways to pathophysiology. If replicated, promising findings from genetic studies might in some cases lead to personalized treatments. On the one hand, knowledge of the genetic basis of disorders may influence diagnostic categories. On the other hand, models also suggest studying the genetic architecture of psychiatric disorders across diagnoses and clinical groups.

  3. Genetically determined height and coronary artery disease.

    PubMed

    Nelson, Christopher P; Hamby, Stephen E; Saleheen, Danish; Hopewell, Jenna C; Zeng, Lingyao; Assimes, Themistocles L; Kanoni, Stavroula; Willenborg, Christina; Burgess, Stephen; Amouyel, Phillipe; Anand, Sonia; Blankenberg, Stefan; Boehm, Bernhard O; Clarke, Robert J; Collins, Rory; Dedoussis, George; Farrall, Martin; Franks, Paul W; Groop, Leif; Hall, Alistair S; Hamsten, Anders; Hengstenberg, Christian; Hovingh, G Kees; Ingelsson, Erik; Kathiresan, Sekar; Kee, Frank; König, Inke R; Kooner, Jaspal; Lehtimäki, Terho; März, Winifred; McPherson, Ruth; Metspalu, Andres; Nieminen, Markku S; O'Donnell, Christopher J; Palmer, Colin N A; Peters, Annette; Perola, Markus; Reilly, Muredach P; Ripatti, Samuli; Roberts, Robert; Salomaa, Veikko; Shah, Svati H; Schreiber, Stefan; Siegbahn, Agneta; Thorsteinsdottir, Unnur; Veronesi, Giovani; Wareham, Nicholas; Willer, Cristen J; Zalloua, Pierre A; Erdmann, Jeanette; Deloukas, Panos; Watkins, Hugh; Schunkert, Heribert; Danesh, John; Thompson, John R; Samani, Nilesh J

    2015-04-23

    The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.).

  4. Biotechnology of polyketides: New breath of life for the novel antibiotic genetic pathways discovery through metagenomics

    PubMed Central

    Gomes, Elisângela Soares; Schuch, Viviane; de Macedo Lemos, Eliana Gertrudes

    2013-01-01

    The discovery of secondary metabolites produced by microorganisms (e.g., penicillin in 1928) and the beginning of their industrial application (1940) opened new doors to what has been the main medication source for the treatment of infectious diseases and tumors. In fact, approximately 80 years after the discovery of the first antibiotic compound, and despite all of the warnings about the failure of the “goose that laid the golden egg,” the potential of this wealth is still inexorable: simply adjust the focus from “micro” to “nano”, that means changing the look from microorganisms to nanograms of DNA. Then, the search for new drugs, driven by genetic engineering combined with metagenomic strategies, shows us a way to bypass the barriers imposed by methodologies limited to isolation and culturing. However, we are far from solving the problem of supplying new molecules that are effective against the plasticity of multi- or pan-drug-resistant pathogens. Although the first advances in genetic engineering date back to 1990, there is still a lack of high-throughput methods to speed up the screening of new genes and design new molecules by recombination of pathways. In addition, it is necessary an increase in the variety of heterologous hosts and improvements throughout the full drug discovery pipeline. Among numerous studies focused on this subject, those on polyketide antibiotics stand out for the large technical-scientific efforts that established novel solutions for the transfer/engineering of major metabolic pathways using transposons and other episomes, overcoming one of the main methodological constraints for the heterologous expression of major pathways. In silico prediction analysis of three-dimensional enzymatic structures and advances in sequencing technologies have expanded access to the metabolic potential of microorganisms. PMID:24688489

  5. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation

    PubMed Central

    Yoshizato, Tetsuichi; Nannya, Yasuhito; Atsuta, Yoshiko; Shiozawa, Yusuke; Iijima-Yamashita, Yuka; Yoshida, Kenichi; Shiraishi, Yuichi; Suzuki, Hiromichi; Nagata, Yasunobu; Sato, Yusuke; Kakiuchi, Nobuyuki; Matsuo, Keitaro; Onizuka, Makoto; Kataoka, Keisuke; Chiba, Kenichi; Tanaka, Hiroko; Ueno, Hiroo; Nakagawa, Masahiro M.; Przychodzen, Bartlomiej; Haferlach, Claudia; Kern, Wolfgang; Aoki, Kosuke; Itonaga, Hidehiro; Kanda, Yoshinobu; Sekeres, Mikkael A.; Maciejewski, Jaroslaw P.; Haferlach, Torsten; Miyazaki, Yasushi; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Makishima, Hideki

    2017-01-01

    Genetic alterations, including mutations and copy-number alterations, are central to the pathogenesis of myelodysplastic syndromes and related diseases (myelodysplasia), but their roles in allogeneic stem cell transplantation have not fully been studied in a large cohort of patients. We enrolled 797 patients who had been diagnosed with myelodysplasia at initial presentation and received transplantation via the Japan Marrow Donor Program. Targeted-capture sequencing was performed to identify mutations in 69 genes, together with copy-number alterations, whose effects on transplantation outcomes were investigated. We identified 1776 mutations and 927 abnormal copy segments among 617 patients (77.4%). In multivariate modeling using Cox proportional-hazards regression, genetic factors explained 30% of the total hazards for overall survival; clinical characteristics accounted for 70% of risk. TP53 and RAS-pathway mutations, together with complex karyotype (CK) as detected by conventional cytogenetics and/or sequencing-based analysis, negatively affected posttransplant survival independently of clinical factors. Regardless of disease subtype, TP53-mutated patients with CK were characterized by unique genetic features and associated with an extremely poor survival with frequent early relapse, whereas outcomes were substantially better in TP53-mutated patients without CK. By contrast, the effects of RAS-pathway mutations depended on disease subtype and were confined to myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Our results suggest that TP53 and RAS-pathway mutations predicted a dismal prognosis, when associated with CK and MDS/MPNs, respectively. However, for patients with mutated TP53 or CK alone, long-term survival could be obtained with transplantation. Clinical sequencing provides vital information for accurate prognostication in transplantation. PMID:28223278

  6. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation.

    PubMed

    Yoshizato, Tetsuichi; Nannya, Yasuhito; Atsuta, Yoshiko; Shiozawa, Yusuke; Iijima-Yamashita, Yuka; Yoshida, Kenichi; Shiraishi, Yuichi; Suzuki, Hiromichi; Nagata, Yasunobu; Sato, Yusuke; Kakiuchi, Nobuyuki; Matsuo, Keitaro; Onizuka, Makoto; Kataoka, Keisuke; Chiba, Kenichi; Tanaka, Hiroko; Ueno, Hiroo; Nakagawa, Masahiro M; Przychodzen, Bartlomiej; Haferlach, Claudia; Kern, Wolfgang; Aoki, Kosuke; Itonaga, Hidehiro; Kanda, Yoshinobu; Sekeres, Mikkael A; Maciejewski, Jaroslaw P; Haferlach, Torsten; Miyazaki, Yasushi; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Makishima, Hideki; Ogawa, Seishi

    2017-04-27

    Genetic alterations, including mutations and copy-number alterations, are central to the pathogenesis of myelodysplastic syndromes and related diseases (myelodysplasia), but their roles in allogeneic stem cell transplantation have not fully been studied in a large cohort of patients. We enrolled 797 patients who had been diagnosed with myelodysplasia at initial presentation and received transplantation via the Japan Marrow Donor Program. Targeted-capture sequencing was performed to identify mutations in 69 genes, together with copy-number alterations, whose effects on transplantation outcomes were investigated. We identified 1776 mutations and 927 abnormal copy segments among 617 patients (77.4%). In multivariate modeling using Cox proportional-hazards regression, genetic factors explained 30% of the total hazards for overall survival; clinical characteristics accounted for 70% of risk. TP53 and RAS-pathway mutations, together with complex karyotype (CK) as detected by conventional cytogenetics and/or sequencing-based analysis, negatively affected posttransplant survival independently of clinical factors. Regardless of disease subtype, TP53 -mutated patients with CK were characterized by unique genetic features and associated with an extremely poor survival with frequent early relapse, whereas outcomes were substantially better in TP53 -mutated patients without CK. By contrast, the effects of RAS-pathway mutations depended on disease subtype and were confined to myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Our results suggest that TP53 and RAS-pathway mutations predicted a dismal prognosis, when associated with CK and MDS/MPNs, respectively. However, for patients with mutated TP53 or CK alone, long-term survival could be obtained with transplantation. Clinical sequencing provides vital information for accurate prognostication in transplantation. © 2017 by The American Society of Hematology.

  7. Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages

    PubMed Central

    Winn, Mary E.; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J.; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism. PMID:22457638

  8. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    PubMed

    Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.

  9. PTSD and Gene Variants: New Pathways and New Thinking

    PubMed Central

    Skelton, Kelly; Ressler, Kerry J.; Norrholm, Seth D.; Jovanovic, Tanja; Bradley-Davino, Bekh

    2011-01-01

    Posttraumatic Stress Disorder (PTSD) is an anxiety disorder which can develop as a result of exposure to a traumatic event and is associated with significant functional impairment. Family and twin studies have found that risk for PTSD is associated with an underlying genetic vulnerability and that more than 30% of the variance associated with PTSD is related to a heritable component. Using a fear conditioning model to conceptualize the neurobiology of PTSD, three primary neuronal systems have been investigated – the hypothalamic-pituitary-adrenal axis, the locus coeruleus-noradrenegic system, and neurocircuitry interconnecting the limbic system and frontal cortex. The majority of the initial investigations into main effects of candidate genes hypothesized to be associated with PTSD risk have been negative, but studies examining the interaction of genetic polymorphisms with specific environments in predicting PTSD have produced several positive results which have increased our understanding of the determinants of risk and resilience in the aftermath of trauma. Promising avenues of inquiry into the role of epigenetic modification have also been proposed to explain the enduring impact of environmental exposures which occur during key, often early, developmental periods on gene expression. Studies of PTSD endophenotypes, which are heritable biomarkers associated with a circumscribed trait within the more complex psychiatric disorder, may be more directly amenable to analysis of the underlying genetics and neural pathways and have provided promising targets for elucidating the neurobiology of PTSD. Knowledge of the genetic underpinnings and neuronal pathways involved in the etiology and maintenance of PTSD will allow for improved targeting of primary prevention amongst vulnerable individuals or populations, as well as timely, targeted treatment interventions. PMID:21356219

  10. Peripheral blood gene expression signature differentiates children with autism from unaffected siblings

    PubMed Central

    Kong, SW; Shimizu-Motohashi, Y; Campbell, MG; Lee, IH; Collins, CD; Brewster, SJ; Holm, IA; Rappaport, L

    2013-01-01

    Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental disorders with high heritability, yet a majority of genetic contribution to pathophysiology is not known. Siblings of individuals with ASD are at increased risk for ASD and autistic traits, but the genetic contribution for simplex families is estimated to be less when compared to multiplex families. To explore the genomic (dis-) similarity between proband and unaffected sibling in simplex families, we used genome-wide gene expression profiles of blood from 20 proband-unaffected sibling pairs and 18 unrelated control individuals. The global gene expression profiles of unaffected siblings were more similar to those from probands as they shared genetic and environmental background. One hundred eighty nine genes were significantly differentially expressed between proband-sib pairs (nominal p-value < 0.01) after controlling for age, sex, and family effects. Probands and siblings were distinguished into two groups by cluster analysis with these genes. Overall, unaffected siblings were equally distant from the centroid of probands and from that of unrelated controls with the differentially expressed genes. Interestingly, 5 of 20 siblings had gene expression profiles that were more similar to unrelated controls than to their matched probands. In summary, we found a set of genes that distinguished probands from the unaffected siblings, and a subgroup of unaffected siblings who were more similar to probands. The pathways that characterized probands compared to siblings using peripheral blood gene expression profiles were the up-regulation of ribosomal, spliceosomal, and mitochondrial pathways, and the down-regulation of neuroreceptor-ligand, immune response and calcium signaling pathways. Further integrative study with structural genetic variations such as de novo mutations, rare variants, and copy number variations would clarify whether these transcriptomic changes are structural or environmental in origin. PMID:23625158

  11. Genetic variants in endotoxin signalling pathway, domestic endotoxin exposure and asthma exacerbations.

    PubMed

    Kljaic-Bukvic, Blazenka; Blekic, Mario; Aberle, Neda; Curtin, John A; Hankinson, Jenny; Semic-Jusufagic, Aida; Belgrave, Danielle; Simpson, Angela; Custovic, Adnan

    2014-10-01

    We investigated the interaction between genetic variants in endotoxin signalling pathway and domestic endotoxin exposure in relation to asthma presence, and amongst children with asthma, we explored the association of these genetic variants and endotoxin exposure with hospital admissions due to asthma exacerbations. In a case-control study, we analysed data from 824 children (417 asthmatics, 407 controls; age 5-18 yr). Amongst asthmatics, we extracted data on hospitalization for asthma exacerbation from medical records. Endotoxin exposure was measured in dust samples collected from homes. We included 26 single-nucleotide polymorphisms (SNPs) in the final analysis (5 CD14, 7LY96 and 14 TLR4). Two variants remained significantly associated with hospital admissions with asthma exacerbations after correction for multiple testing: for CD14 SNP rs5744455, carriers of T allele had decreased risk of repeated hospital admissions compared with homozygotes for C allele [OR (95% CI), 0.42 (0.25-0.88), p = 0.01, False Discovery Rate (FDR) p = 0.02]; for LY96 SNP rs17226566, C-allele carriers were at a lower risk of hospital admissions compared with T-allele homozygotes [0.59 (0.38-0.90), p = 0.01, FDR p = 0.04]. We observed two interactions between SNPs in CD14 and LY96 with environmental endotoxin exposure in relation to hospital admissions due to asthma exacerbation which remained significant after correction for multiple testing (CD14 SNPs rs2915863 and LY96 SNP rs17226566). Amongst children with asthma, genetic variants in CD14 and LY96 may increase the risk of hospital admissions with acute exacerbations. Polymorphisms in endotoxin pathway interact with domestic endotoxin exposure in further modification of the risk of hospitalization. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine

    PubMed Central

    Kumar, Ritesh; Zhao, Suwen; Vetting, Matthew W.; Wood, B. McKay; Sakai, Ayano; Cho, Kyuil; Solbiati, José; Almo, Steven C.; Sweedler, Jonathan V.; Jacobson, Matthew P.; Gerlt, John A.; Cronan, John E.

    2014-01-01

    ABSTRACT Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metabolomic analyses detected each of the metabolic intermediates of the pathway. The proline betaine catabolic pathway was repressed by osmotic stress and cold stress, and a regulatory transcription factor was identified. We also report crystal structure complexes of the P. denitrificans HpbD hydroxyproline betaine epimerase/proline betaine racemase with l-proline betaine and cis-hydroxyproline betaine. PMID:24520058

  13. Long-Range Regulatory Polymorphisms Affecting a GABA Receptor Constitute a Quantitative Trait Locus (QTL) for Social Behavior in Caenorhabditis elegans

    PubMed Central

    Bendesky, Andres; Pitts, Jason; Rockman, Matthew V.; Chen, William C.; Tan, Man-Wah; Kruglyak, Leonid; Bargmann, Cornelia I.

    2012-01-01

    Aggregation is a social behavior that varies between and within species, providing a model to study the genetic basis of behavioral diversity. In the nematode Caenorhabditis elegans, aggregation is regulated by environmental context and by two neuromodulatory pathways, one dependent on the neuropeptide receptor NPR-1 and one dependent on the TGF-β family protein DAF-7. To gain further insight into the genetic regulation of aggregation, we characterize natural variation underlying behavioral differences between two wild-type C. elegans strains, N2 and CB4856. Using quantitative genetic techniques, including a survey of chromosome substitution strains and QTL analysis of recombinant inbred lines, we identify three new QTLs affecting aggregation in addition to the two known N2 mutations in npr-1 and glb-5. Fine-mapping with near-isogenic lines localized one QTL, accounting for 5%–8% of the behavioral variance between N2 and CB4856, 3′ to the transcript of the GABA neurotransmitter receptor gene exp-1. Quantitative complementation tests demonstrated that this QTL affects exp-1, identifying exp-1 and GABA signaling as new regulators of aggregation. exp-1 interacts genetically with the daf-7 TGF-β pathway, which integrates food availability and population density, and exp-1 mutations affect the level of daf-7 expression. Our results add to growing evidence that genetic variation affecting neurotransmitter receptor genes is a source of natural behavioral variation. PMID:23284308

  14. A roadmap for the genetic analysis of renal aging

    PubMed Central

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  15. Genetic Dissection of Nutrition-Induced Plasticity in Insulin/Insulin-Like Growth Factor Signaling and Median Life Span in a Drosophila Multiparent Population

    PubMed Central

    Stanley, Patrick D.; Ng’oma, Enoch; O’Day, Siri; King, Elizabeth G.

    2017-01-01

    The nutritional environments that organisms experience are inherently variable, requiring tight coordination of how resources are allocated to different functions relative to the total amount of resources available. A growing body of evidence supports the hypothesis that key endocrine pathways play a fundamental role in this coordination. In particular, the insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) pathways have been implicated in nutrition-dependent changes in metabolism and nutrient allocation. However, little is known about the genetic basis of standing variation in IIS/TOR or how diet-dependent changes in expression in this pathway influence phenotypes related to resource allocation. To characterize natural genetic variation in the IIS/TOR pathway, we used >250 recombinant inbred lines (RILs) derived from a multiparental mapping population, the Drosophila Synthetic Population Resource, to map transcript-level QTL of genes encoding 52 core IIS/TOR components in three different nutritional environments [dietary restriction (DR), control (C), and high sugar (HS)]. Nearly all genes, 87%, were significantly differentially expressed between diets, though not always in ways predicted by loss-of-function mutants. We identified cis (i.e., local) expression QTL (eQTL) for six genes, all of which are significant in multiple nutrient environments. Further, we identified trans (i.e., distant) eQTL for two genes, specific to a single nutrient environment. Our results are consistent with many small changes in the IIS/TOR pathways. A discriminant function analysis for the C and DR treatments identified a pattern of gene expression associated with the diet treatment. Mapping the composite discriminant function scores revealed a significant global eQTL within the DR diet. A correlation between the discriminant function scores and the median life span (r = 0.46) provides evidence that gene expression changes in response to diet are associated with longevity in these RILs. PMID:28592498

  16. Functional Analysis With a Barcoder Yeast Gene Overexpression System

    PubMed Central

    Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.

    2012-01-01

    Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238

  17. Genetic Variation in the MAPK/ERK Pathway Affects Contact Hypersensitivity Responses.

    PubMed

    Legrand, Julien M D; Roy, Edwige; Baz, Batoul; Mukhopadhyay, Pamela; Wong, Ho Yi; Ram, Ramesh; Morahan, Grant; Walker, Graeme; Khosrotehrani, Kiarash

    2018-05-10

    Using a genetic resource that enables rapid mapping of genes for complex traits, we demonstrate dramatic diversity between murine strains in response to immune challenge. We identified several candidate genes that point to the MAPK/ERK pathway as a key modulator of this process. Copyright © 2018. Published by Elsevier Inc.

  18. Pathways to Childhood Depressive Symptoms: The Role of Social, Cognitive, and Genetic Risk Factors

    ERIC Educational Resources Information Center

    Lau, Jennifer Y. F.; Rijsdijk, Fruhling; Gregory, Alice M.; McGuffin, Peter; Eley, Thalia C.

    2007-01-01

    Childhood depressive conditions have been explored from multiple theoretical approaches but with few empirical attempts to address the interrelationships among these different domains and their combined effects. In the present study, the authors examined different pathways through which social, cognitive, and genetic risk factors may be expressed…

  19. Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling

    PubMed Central

    Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat

    2016-01-01

    The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937

  20. The genomic landscape of rapid repeated evolutionary ...

    EPA Pesticide Factsheets

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch

  1. [Complete genome sequencing of polymalic acid-producing strain Aureobasidium pullulans CCTCC M2012223].

    PubMed

    Wang, Yongkang; Song, Xiaodan; Li, Xiaorong; Yang, Sang-tian; Zou, Xiang

    2017-01-04

    To explore the genome sequence of Aureobasidium pullulans CCTCC M2012223, analyze the key genes related to the biosynthesis of important metabolites, and provide genetic background for metabolic engineering. Complete genome of A. pullulans CCTCC M2012223 was sequenced by Illumina HiSeq high throughput sequencing platform. Then, fragment assembly, gene prediction, functional annotation, and GO/COG cluster were analyzed in comparison with those of other five A. pullulans varieties. The complete genome sequence of A. pullulans CCTCC M2012223 was 30756831 bp with an average GC content of 47.49%, and 9452 genes were successfully predicted. Genome-wide analysis showed that A. pullulans CCTCC M2012223 had the biggest genome assembly size. Protein sequences involved in the pullulan and polymalic acid pathway were highly conservative in all of six A. pullulans varieties. Although both A. pullulans CCTCC M2012223 and A. pullulans var. melanogenum have a close affinity, some point mutation and inserts were occurred in protein sequences involved in melanin biosynthesis. Genome information of A. pullulans CCTCC M2012223 was annotated and genes involved in melanin, pullulan and polymalic acid pathway were compared, which would provide a theoretical basis for genetic modification of metabolic pathway in A. pullulans.

  2. Genome-wide ENU mutagenesis for the discovery of novel male fertility regulators.

    PubMed

    Jamsai, Duangporn; O'Bryan, Moira K

    2010-06-01

    The completion of genome sequencing projects has provided an extensive knowledge of the contents of the genomes of human, mouse, and many other organisms. Despite this, the function of most of the estimated 25,000 human genes remains largely unknown. Attention has now turned to elucidating gene function and identifying biological pathways that contribute to human diseases, including male infertility. Our understanding of the genetic regulation of male fertility has been accelerated through the use of genetically modified mouse models including knockout, knock-in, gene-trapped, and transgenic mice. Such reverse genetic approaches however, require some fore-knowledge of a gene's function and, as such, bias against the discovery of completely novel genes and biological pathways. To facilitate high throughput gene discovery, genome-wide mouse mutagenesis via the use of a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU), has been developed over the past decade. This forward genetic, or phenotype-driven, approach relies upon observing a phenotype first, then subsequently defining the underlining genetic defect. Mutations are randomly introduced into the mouse genome via ENU exposure. Through a controlled breeding scheme, mutations causing a phenotype of interest (e.g., male infertility) are then identified by linkage analysis and candidate gene sequencing. This approach allows for the possibility of revealing comprehensive phenotype-genotype relationships for a range of genes and pathways i.e. in addition to null alleles, mice containing partial loss of function or gain-of-function mutations, can be recovered. Such point mutations are likely to be more reflective of those that occur within the human population. Many research groups have successfully used this approach to generate infertile mouse lines and some novel male fertility genes have been revealed. In this review, we focus on the utility of ENU mutagenesis for the discovery of novel male fertility regulators.

  3. Pathways to childhood depressive symptoms: the role of social, cognitive, and genetic risk factors.

    PubMed

    Lau, Jennifer Y F; Rijsdijk, Frühling; Gregory, Alice M; McGuffin, Peter; Eley, Thalia C

    2007-11-01

    Childhood depressive conditions have been explored from multiple theoretical approaches but with few empirical attempts to address the interrelationships among these different domains and their combined effects. In the present study, the authors examined different pathways through which social, cognitive, and genetic risk factors may be expressed to influence depressive symptoms in 300 pairs of child twins from a longitudinal study. Path analysis supported several indirect routes. First, risks associated with living in a step- or single-parent family and punitive parenting did not directly influence depressive outcome but were instead mediated through maternal depressive symptoms and child negative attributional style. Second, the effects of negative attributional style on depressive outcome were greatly exacerbated in the presence of precipitating negative life events. Third, independent of these social and cognitive risk mechanisms, modest genetic effects were also implicated in symptoms, with some indication that these risks are expressed through exposure to negative stressors. Together, these routes accounted for approximately 13% of total phenotypic variance in depressive symptoms. Theoretical and analytical implications of these results are discussed in the context of several design-related caveats. (c) 2007 APA.

  4. A Novel Hydrolase Identified by Genomic-Proteomic Analysis of Phenylurea Herbicide Mineralization by Variovorax sp. Strain SRS16▿†

    PubMed Central

    Bers, Karolien; Leroy, Baptiste; Breugelmans, Philip; Albers, Pieter; Lavigne, Rob; Sørensen, Sebastian R.; Aamand, Jens; De Mot, René; Wattiez, Ruddy; Springael, Dirk

    2011-01-01

    The soil bacterial isolate Variovorax sp. strain SRS16 mineralizes the phenylurea herbicide linuron. The proposed pathway initiates with hydrolysis of linuron to 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine, followed by conversion of DCA to Krebs cycle intermediates. Differential proteomic analysis showed a linuron-dependent upregulation of several enzymes that fit into this pathway, including an amidase (LibA), a multicomponent chloroaniline dioxygenase, and enzymes associated with a modified chlorocatechol ortho-cleavage pathway. Purified LibA is a monomeric linuron hydrolase of ∼55 kDa with a Km and a Vmax for linuron of 5.8 μM and 0.16 nmol min−1, respectively. This novel member of the amidase signature family is unrelated to phenylurea-hydrolyzing enzymes from Gram-positive bacteria and lacks activity toward other tested phenylurea herbicides. Orthologues of libA are present in all other tested linuron-degrading Variovorax strains with the exception of Variovorax strains WDL1 and PBS-H4, suggesting divergent evolution of the linuron catabolic pathway in different Variovorax strains. The organization of the linuron degradation genes identified in the draft SRS16 genome sequence indicates that gene patchwork assembly is at the origin of the pathway. Transcription analysis suggests that a catabolic intermediate, rather than linuron itself, acts as effector in activation of the pathway. Our study provides the first report on the genetic organization of a bacterial pathway for complete mineralization of a phenylurea herbicide and the first report on a linuron hydrolase in Gram-negative bacteria. PMID:22003008

  5. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    PubMed

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. To our knowledge, this is the first study to perform an integrated genomics and transcriptomics (eQTL) study using, and modeling, genomic and subcutaneous adipose tissue RNA sequencing data on obesity in a porcine model. We detected several pathways and potential causal genes for obesity. Further validation and investigation may reveal their exact function and association with obesity.

  6. Experimental evolution reveals hidden diversity in evolutionary pathways.

    PubMed

    Lind, Peter A; Farr, Andrew D; Rainey, Paul B

    2015-03-25

    Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans.

  7. Annual research review: Rare genotypes and childhood psychopathology--uncovering diverse developmental mechanisms of ADHD risk.

    PubMed

    Scerif, Gaia; Baker, Kate

    2015-03-01

    Through the increased availability and sophistication of genetic testing, it is now possible to identify causal diagnoses in a growing proportion of children with neurodevelopmental disorders. In addition to developmental delay and intellectual disability, many genetic disorders are associated with high risks of psychopathology, which curtail the wellbeing of affected individuals and their families. Beyond the identification of significant clinical needs, understanding the diverse pathways from rare genetic mutations to cognitive dysfunction and emotional-behavioural disturbance has theoretical and practical utility. We overview (based on a strategic search of the literature) the state-of-the-art on causal mechanisms leading to one of the most common childhood behavioural diagnoses - attention deficit hyperactivity disorder (ADHD) - in the context of specific genetic disorders. We focus on new insights emerging from the mapping of causal pathways from identified genetic differences to neuronal biology, brain abnormalities, cognitive processing differences and ultimately behavioural symptoms of ADHD. First, ADHD research in the context of rare genotypes highlights the complexity of multilevel mechanisms contributing to psychopathology risk. Second, comparisons between genetic disorders associated with similar psychopathology risks can elucidate convergent or distinct mechanisms at each level of analysis, which may inform therapeutic interventions and prognosis. Third, genetic disorders provide an unparalleled opportunity to observe dynamic developmental interactions between neurocognitive risk and behavioural symptoms. Fourth, variation in expression of psychopathology risk within each genetic disorder points to putative moderating and protective factors within the genome and the environment. A common imperative emerging within psychopathology research is the need to investigate mechanistically how developmental trajectories converge or diverge between and within genotype-defined groups. Crucially, as genetic predispositions modify interaction dynamics from the outset, longitudinal research is required to understand the multi-level developmental processes that mediate symptom evolution. © 2014 Association for Child and Adolescent Mental Health.

  8. Guidance to rational use of pharmaceuticals in gallbladder sarcomatoid carcinoma using patient-derived cancer cells and whole exome sequencing.

    PubMed

    Feng, Feiling; Cheng, Qingbao; Yang, Liang; Zhang, Dadong; Ji, Shunlong; Zhang, Qiangzu; Lin, Yihui; Li, Fugen; Xiong, Lei; Liu, Chen; Jiang, Xiaoqing

    2017-01-17

    Gallbladder sarcomatoid carcinoma is a rare cancer with no clinical standard treatment. With the rapid development of next generation sequencing, it has been able to provide reasonable treatment options for patients based on genetic variations. However, most cancer drugs are not approval for gallbladder sarcomatoid carcinoma indications. The correlation between drug response and a genetic variation needs to be further elucidated. Three patient-derived cells-JXQ-3D-001, JXQ-3D-002, and JXQ-3D-003, were derived from biopsy samples of one gallbladder sarcomatoid carcinoma patient with progression and have been characterized. In order to study the relationship between drug sensitivity and gene alteration, genetic mutations of three patient-derived cells were discovered by whole exome sequencing, and drug screening has been performed based on the gene alterations and related signaling pathways that are associated with drug targets. It has been found that there are differences in biological characteristics such as morphology, cell proliferation, cell migration and colony formation activity among these three patient-derived cells although they are derived from the same patient. Their sensitivities to the chemotherapy drugs-Fluorouracil, Doxorubicin, and Cisplatin are distinct. Moreover, none of common chemotherapy drugs could inhibit the proliferations of all three patient-derived cells. Comprehensive analysis of their whole exome sequencing demonstrated that tumor-associated genes TP53, AKT2, FGFR3, FGF10, SDHA, and PI3KCA were mutated or amplified. Part of these alterations are actionable. By screening a set of compounds that are associated with the genetic alteration, it has been found that GDC-0941 and PF-04691502 for PI3K-AKT-mTOR pathway inhibitors could dramatically decrease the proliferation of three patient-derived cells. Importantly, expression of phosphorylated AKT and phosphorylated S6 were markedly decreased after treatments with PI3K-AKT-mTOR pathway inhibitors GDC-0941 (0.5 μM) and PF-04691502 (0.1 μM) in all three patient-derived cells. These data suggested that inhibition of the PI3K-AKT-mTOR pathway that was activated by PIK3CA amplification in all three patient-derived cells could reduce the cell proliferation. A patient-derived cell model combined with whole exome sequencing is a powerful tool to elucidate relationship between drug sensitivities and genetic alternations. In these gallbladder sarcomatoid carcinoma patient-derived cells, it is found that PIK3CA amplification could be used as a biomarker to indicate PI3K-AKT-mTOR pathway activation. Block of the pathway may benefit the gallbladder sarcomatoid carcinoma patient with this alternation in hypothesis. The real efficacy needs to be confirmed in vivo or in a clinical trial.

  9. Landscape genomics and pathway analysis to understand genetic adaptation of South African indigenous goat populations.

    PubMed

    Mdladla, K; Dzomba, E F; Muchadeyi, F C

    2018-04-01

    In Africa, extensively raised livestock populations in most smallholder farming communities are exposed to harsh and heterogeneous climatic conditions and disease pathogens that they adapt to in order to survive. Majority of these livestock species, including goats, are of non-descript and uncharacterized breeds and their response to natural selection presented by heterogeneous environments is still unresolved. This study investigated genetic diversity and its association with environmental and geographic conditions in 194 South African indigenous goats from different geographic locations genotyped on the Illumina goat SNP50K panel. Population structure analysis revealed a homogeneous genetic cluster of the Tankwa goats, restricted to the Northern Cape province. Overall, the Boer, Kalahari Red, and Savanna showed a wide geographic spread of shared genetic components, whereas the village ecotypes revealed a longitudinal distribution. The relative importance of environmental factors on genetic variation of goat populations was assessed using redundancy analysis (RDA). Climatic and geographic variables explained 22% of the total variation while climatic variables alone accounted for 17% of the diversity. Geographic variables solitarily explained 1% of the total variation. The first axis (Model I) of the RDA analysis revealed 329 outlier SNPs. Landscape genomic approaches of spatial analysis method (SAM) identified a total of 843 (1.75%) SNPs, while latent factor mixed models (LFMM) identified 714 (1.48%) SNPs significantly associated with environmental variables. Significant markers were within genes involved in biological functions potentially important for environmental adaptation. Overall, the study suggested environmental factors to have some effect in shaping the genetic variation of South African indigenous goat populations. Loci observed to be significant and under selection may be responsible for the adaption of the goat populations to local production systems.

  10. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making.

    PubMed

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha; Zhou, Xiaolin

    2017-09-01

    The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. © The Author (2017). Published by Oxford University Press.

  11. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making

    PubMed Central

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha

    2017-01-01

    Abstract The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. PMID:28431168

  12. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation.

    PubMed

    Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth

    2010-01-01

    Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.

  13. Genetic interactions within inositol-related pathways are associated with longitudinal changes in ventricle size

    PubMed Central

    Koran, Mary Ellen I.; Hohman, Timothy J.; Meda, Shashwath A.; Thornton-Wells, Tricia A.

    2013-01-01

    The genetic etiology of late onset Alzheimer disease (LOAD) has proven complex, involving clinical and genetic heterogeneity and gene-gene interactions. Recent genome wide association studies (GWAS) in LOAD have led to the discovery of novel genetic risk factors; however, the investigation of gene-gene interactions has been limited. Conventional genetic studies often use binary disease status as the primary phenotype, but for complex brain-based diseases, neuroimaging data can serve as quantitative endophenotypes that correlate with disease status and closely reflect pathological changes. In the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, we tested for association of genetic interactions with longitudinal MRI measurements of the inferior lateral ventricles (ILVs), which have repeatedly shown a relationship to LOAD status and progression. We performed linear regression to evaluate the ability of pathway-derived SNP-SNP pairs to predict the slope of change in volume of the ILVs. After Bonferroni correction, we identified four significant interactions in the right ILV (RILV) corresponding to gene-gene pairs SYNJ2-PI4KA, PARD3-MYH2, PDE3A-ABHD12B and OR2L13-PRKG1 and one significant interaction in the left ILV (LILV) corresponding to SYNJ2-PI4KA. The SNP-SNP interaction corresponding to SYNJ2-PI4KA was identical in the RILV and LILV and was the most significant interaction in each (RILV: p=9.10×10−12; LILV: p=8.20×10−13). Both genes belong to the inositol phosphate signaling pathway which has been previously associated with neurodegeneration in AD and we discuss the possibility that perturbation of this pathway results in a down-regulation of the Akt cell survival pathway and, thereby, decreased neuronal survival, as reflected by increased volume of the ventricles. PMID:24077433

  14. Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains

    USDA-ARS?s Scientific Manuscript database

    In order to determine the genetic basis for loss of fumonisin B¬2 (FB2) biosynthesis in FB2 non-producing A. niger strains, we developed multiplex PCR primer sets to amplify fragments of eight fumonisin biosynthetic pathway (fum) genes. Fragments of all eight fum genes were amplified in FB2-produci...

  15. JC Virus Mediates Invasion and Migration in Colorectal Metastasis

    PubMed Central

    Link, Alexander; Shin, Sung Kwan; Nagasaka, Takeshi; Balaguer, Francesc; Koi, Minoru; Jung, Barbara; Boland, C. Richard; Goel, Ajay

    2009-01-01

    Introduction JC Virus (JCV), a human polyomavirus, is frequently present in colorectal cancers (CRCs). JCV large T-Ag (T-Ag) expressed in approximately half of all CRC's, however, its functional role in CRC is poorly understood. We hypothesized that JCV T-Ag may mediate metastasis in CRC cells through increased migration and invasion. Material and Methods CRC cell lines (HCT116 and SW837) were stably transfected with JCV early transcript sequences cloned into pCR3 or empty vectors. Migration and invasion assays were performed using Boyden chambers. Global gene expression analysis was performed to identify genetic targets and pathways altered by T-Ag expression. Microarray results were validated by qRT-PCR, protein expression analyses and immunohistochemistry. Matching primary CRCs and liver metastases from 33 patients were analyzed for T-Ag expression by immunohistochemistry. Results T-Ag expressing cell lines showed 2 to 3-fold increase in migration and invasion compared to controls. JCV T-Ag expression resulted in differential expression of several genetic targets, including genes that mediate cell migration and invasion. Pathway analysis suggested a significant involvement of these genes with AKT and MAPK signaling. Treatment with selective PI3K/AKT and MAPK pathway inhibitors resulted in reduced migration and invasion. In support of our in-vitro results, immunohistochemical staining of the advanced stage tumors revealed frequent JCV T-Ag expression in metastatic primary tumors (92%) as well as in their matching liver metastasis (73%). Conclusion These data suggest that JCV T-Ag expression in CRC associates with a metastatic phenotype, which may partly be mediated through the AKT/MAPK signaling pathway. Frequent expression of JCV T-Ag in CRC liver metastasis provides further clues supporting a mechanistic role for JCV as a possible mediator of cellular motility and invasion in CRC. PMID:19997600

  16. The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans.

    PubMed

    Alam, Md Ashiqul; Kamlangdee, Niyom; Kelly, Joan M

    2017-08-01

    Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.

  17. Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid.

    PubMed

    Farré, Gemma; Perez-Fons, Laura; Decourcelle, Mathilde; Breitenbach, Jürgen; Hem, Sonia; Zhu, Changfu; Capell, Teresa; Christou, Paul; Fraser, Paul D; Sandmann, Gerhard

    2016-08-01

    Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid.

  18. BAM 1 and RECEPTOR-LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide-triggered growth inhibition in Arabidopsis root.

    PubMed

    Shimizu, Noriko; Ishida, Takashi; Yamada, Masashi; Shigenobu, Shuji; Tabata, Ryo; Kinoshita, Atsuko; Yamaguchi, Katsushi; Hasebe, Mitsuyasu; Mitsumasu, Kanako; Sawa, Shinichiro

    2015-12-01

    Ligand receptor-based signaling is a means of cell-to-cell communication for coordinating developmental and physiological processes in multicellular organisms. In plants, cell-producing meristems utilize this signaling to regulate their activities and ensure for proper development. Shoot and root systems share common requirements for carrying out this process; however, its molecular basis is largely unclear. It has been suggested that synthetic CLV3/EMBRYO SURROUNDING REGION (CLE) peptide shrinks the root meristem through the actions of CLAVATA2 (CLV2) and the RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) pathway in Arabidopsis thaliana. Our genetic screening for mutations that resist CLE peptide signaling in roots determined that BAM1, which is a member of the leucine-rich repeat receptor-like kinase (LRR-RLK) family, is also involved in this pathway. BAM1 is preferentially expressed in the root tip, including the quiescent center and its surrounding stem cells. Our genetic analysis revealed that BAM1 functions together with RPK2. Using coimmunoprecipitation assay, we showed that BAM1 is capable of forming heteromeric complexes with RPK2. These findings suggest that the BAM1 and RPK2 receptors constitute a signaling pathway that modulates cell proliferation in the root meristem and that related molecules are employed in root and shoot meristems. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Synthetic gene circuits for metabolic control: design trade-offs and constraints

    PubMed Central

    Oyarzún, Diego A.; Stan, Guy-Bart V.

    2013-01-01

    A grand challenge in synthetic biology is to push the design of biomolecular circuits from purely genetic constructs towards systems that interface different levels of the cellular machinery, including signalling networks and metabolic pathways. In this paper, we focus on a genetic circuit for feedback regulation of unbranched metabolic pathways. The objective of this feedback system is to dampen the effect of flux perturbations caused by changes in cellular demands or by engineered pathways consuming metabolic intermediates. We consider a mathematical model for a control circuit with an operon architecture, whereby the expression of all pathway enzymes is transcriptionally repressed by the metabolic product. We address the existence and stability of the steady state, the dynamic response of the network under perturbations, and their dependence on common tuneable knobs such as the promoter characteristic and ribosome binding site (RBS) strengths. Our analysis reveals trade-offs between the steady state of the enzymes and the intermediates, together with a separation principle between promoter and RBS design. We show that enzymatic saturation imposes limits on the parameter design space, which must be satisfied to prevent metabolite accumulation and guarantee the stability of the network. The use of promoters with a broad dynamic range and a small leaky expression enlarges the design space. Simulation results with realistic parameter values also suggest that the control circuit can effectively upregulate enzyme production to compensate flux perturbations. PMID:23054953

  20. Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases.

    PubMed

    Witoelar, Aree; Jansen, Iris E; Wang, Yunpeng; Desikan, Rahul S; Gibbs, J Raphael; Blauwendraat, Cornelis; Thompson, Wesley K; Hernandez, Dena G; Djurovic, Srdjan; Schork, Andrew J; Bettella, Francesco; Ellinghaus, David; Franke, Andre; Lie, Benedicte A; McEvoy, Linda K; Karlsen, Tom H; Lesage, Suzanne; Morris, Huw R; Brice, Alexis; Wood, Nicholas W; Heutink, Peter; Hardy, John; Singleton, Andrew B; Dale, Anders M; Gasser, Thomas; Andreassen, Ole A; Sharma, Manu

    2017-07-01

    Recent genome-wide association studies (GWAS) and pathway analyses supported long-standing observations of an association between immune-mediated diseases and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype analyses between different complex phenotypes. To test the hypothesis that there are common genetic risk variants conveying risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic variants and their pathways by applying a novel statistical framework in a genome-wide approach. Using the conjunction false discovery rate method, this study analyzed GWAS data from a selection of archetypal autoimmune diseases among 138 511 individuals of European ancestry and systemically investigated pleiotropy between PD and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used for replication. The study investigated the biological correlation between the top loci through protein-protein interaction and changes in the gene expression and methylation levels. The dates of the analysis were June 10, 2015, to March 4, 2017. The primary outcome was a list of novel loci and their pathways involved in PD and autoimmune diseases. Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of novel loci was significantly associated with changes in methylation or expression levels of adjacent genes. The study findings provide novel mechanistic insights into PD and autoimmune diseases and identify a common genetic pathway between these phenotypes. The results may have implications for future therapeutic trials involving anti-inflammatory agents.

  1. Axonal guidance signaling pathway interacting with smoking in modifying the risk of pancreatic cancer: a gene- and pathway-based interaction analysis of GWAS data.

    PubMed

    Tang, Hongwei; Wei, Peng; Duell, Eric J; Risch, Harvey A; Olson, Sara H; Bueno-de-Mesquita, H Bas; Gallinger, Steven; Holly, Elizabeth A; Petersen, Gloria; Bracci, Paige M; McWilliams, Robert R; Jenab, Mazda; Riboli, Elio; Tjønneland, Anne; Boutron-Ruault, Marie Christine; Kaaks, Rudolph; Trichopoulos, Dimitrios; Panico, Salvatore; Sund, Malin; Peeters, Petra H M; Khaw, Kay-Tee; Amos, Christopher I; Li, Donghui

    2014-05-01

    Cigarette smoking is the best established modifiable risk factor for pancreatic cancer. Genetic factors that underlie smoking-related pancreatic cancer have previously not been examined at the genome-wide level. Taking advantage of the existing Genome-wide association study (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study in 2028 cases and 2109 controls to examine gene-smoking interactions at pathway/gene/single nucleotide polymorphism (SNP) level. Using the likelihood ratio test nested in logistic regression models and ingenuity pathway analysis (IPA), we examined 172 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, 3 manually curated gene sets, 3 nicotine dependency gene ontology pathways, 17 912 genes and 468 114 SNPs. None of the individual pathway/gene/SNP showed significant interaction with smoking after adjusting for multiple comparisons. Six KEGG pathways showed nominal interactions (P < 0.05) with smoking, and the top two are the pancreatic secretion and salivary secretion pathways (major contributing genes: RAB8A, PLCB and CTRB1). Nine genes, i.e. ZBED2, EXO1, PSG2, SLC36A1, CLSTN1, MTHFSD, FAT2, IL10RB and ATXN2 had P interaction < 0.0005. Five intergenic region SNPs and two SNPs of the EVC and KCNIP4 genes had P interaction < 0.00003. In IPA analysis of genes with nominal interactions with smoking, axonal guidance signaling $$\\left(P=2.12\\times 1{0}^{-7}\\right)$$ and α-adrenergic signaling $$\\left(P=2.52\\times 1{0}^{-5}\\right)$$ genes were significantly overrepresented canonical pathways. Genes contributing to the axon guidance signaling pathway included the SLIT/ROBO signaling genes that were frequently altered in pancreatic cancer. These observations need to be confirmed in additional data set. Once confirmed, it will open a new avenue to unveiling the etiology of smoking-associated pancreatic cancer.

  2. Genetic dissection of cardiac growth control pathways

    NASA Technical Reports Server (NTRS)

    MacLellan, W. R.; Schneider, M. D.

    2000-01-01

    Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.

  3. Interferon-related genetic markers of necroinflammatory activity in chronic hepatitis C.

    PubMed

    López-Rodríguez, Rosario; Hernández-Bartolomé, Ángel; Borque, María Jesús; Rodríguez-Muñoz, Yolanda; Martín-Vílchez, Samuel; García-Buey, Luisa; González-Moreno, Leticia; Real-Martínez, Yolanda; Muñoz de Rueda, Paloma; Salmerón, Javier; Vidal-Castiñeira, José Ramón; López-Larrea, Carlos; Rodrigo, Luis; Moreno-Otero, Ricardo; Sanz-Cameno, Paloma

    2017-01-01

    Chronic hepatitis C (CHC) is a major cause of liver disease worldwide which often leads to progressive liver inflammation, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). CHC displays heterogeneous progression depending on a broad set of factors, some of them intrinsic to each individual such as the patient's genetic profile. This study aims to evaluate the contribution of certain genetic variants of crucial interferon alpha and lambda signaling pathways to the hepatic necroinflammatory activity (NIA) grade of CHC patients. NIA was evaluated in 119 CHC patients by METAVIR scale and classified as low (NIA = 0-2, n = 80) or high grade (NIA = 3, n = 39). In a candidate gene approach, 64 SNPs located in 30 different genes related to interferon pathways (IL-28B, IFNAR1-2, JAK-STAT and OAS1-3, among others) were genotyped using the Illumina GoldenGate® Genotyping Assay. Statistical association was determined by logistic regression and expressed as OR and 95% CI. Those SNPs significantly associated were further adjusted by other covariates. Seven SNPs located in IL-28B (rs12979860), JAK1 (rs11576173 and rs1497056), TYK2 (rs280519), OAS1 (rs2057778), SOCS1 (rs33932899) and RNASEL (rs3738579) genes were significantly related to severe NIA grade (p<0.05). Regarding to clinical variables, elevated NIA was notably associated with aspartate aminotransferase (AST) serum levels >40 IU/L (p<0.05) but not with other clinical factors. Multivariate logistic regression analysis of these factors reflected that AST (>40 IU/L), TYK2 rs280519 (G allele) and RNASEL rs3738579 (G allele) were factors independently associated with elevated NIA (p<0.05). AST concentration showed a moderate AUC value (AUC = 0.63), similar to TYK2 (rs280519) and RNASEL (rs3738579) SNPs (AUC = 0.61, both) in the ROC_AUC analysis. Interestingly, the model including all significant variables reached a considerable predictive value (AUC = 0.74). The identified genetic variants in interferon signaling pathways may constitute useful prognostic markers of CHC progression. Further validation in larger cohorts of patients is needed.

  4. Age-Related Differences and Heritability of the Perisylvian Language Networks.

    PubMed

    Budisavljevic, Sanja; Dell'Acqua, Flavio; Rijsdijk, Frühling V; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M; Murphy, Declan G; Craig, Michael C; Catani, Marco

    2015-09-16

    Acquisition of language skills depends on the progressive maturation of specialized brain networks that are usually lateralized in adult population. However, how genetic and environmental factors relate to the age-related differences in lateralization of these language pathways is still not known. We recruited 101 healthy right-handed subjects aged 9-40 years to investigate age-related differences in the anatomy of perisylvian language pathways and 86 adult twins (52 monozygotic and 34 dizygotic) to understand how heritability factors influence language anatomy. Diffusion tractography was used to dissect and extract indirect volume measures from the three segments of the arcuate fasciculus connecting Wernicke's to Broca's region (i.e., long segment), Broca's to Geschwind's region (i.e., anterior segment), and Wernicke's to Geschwind's region (i.e., posterior segment). We found that the long and anterior arcuate segments are lateralized before adolescence and their lateralization remains stable throughout adolescence and early adulthood. Conversely, the posterior segment shows right lateralization in childhood but becomes progressively bilateral during adolescence, driven by a reduction in volume in the right hemisphere. Analysis of the twin sample showed that genetic and shared environmental factors influence the anatomy of those segments that lateralize earlier, whereas specific environmental effects drive the variability in the volume of the posterior segment that continues to change in adolescence and adulthood. Our results suggest that the age-related differences in the lateralization of the language perisylvian pathways are related to the relative contribution of genetic and environmental effects specific to each segment. Our study shows that, by early childhood, frontotemporal (long segment) and frontoparietal (anterior segment) connections of the arcuate fasciculus are left and right lateralized, respectively, and remain lateralized throughout adolescence and early adulthood. In contrast, temporoparietal (posterior segment) connections are right lateralized in childhood, but become progressively bilateral during adolescence. Preliminary twin analysis suggested that lateralization of the arcuate fasciculus is a heterogeneous process that depends on the interplay between genetic and environment factors specific to each segment. Tracts that exhibit higher age effects later in life (i.e., posterior segment) appear to be influenced more by specific environmental factors. Copyright © 2015 Budisavljevic et al.

  5. Age-Related Differences and Heritability of the Perisylvian Language Networks

    PubMed Central

    Dell'Acqua, Flavio; Rijsdijk, Frühling V.; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M.; Murphy, Declan G.; Craig, Michael C.

    2015-01-01

    Acquisition of language skills depends on the progressive maturation of specialized brain networks that are usually lateralized in adult population. However, how genetic and environmental factors relate to the age-related differences in lateralization of these language pathways is still not known. We recruited 101 healthy right-handed subjects aged 9–40 years to investigate age-related differences in the anatomy of perisylvian language pathways and 86 adult twins (52 monozygotic and 34 dizygotic) to understand how heritability factors influence language anatomy. Diffusion tractography was used to dissect and extract indirect volume measures from the three segments of the arcuate fasciculus connecting Wernicke's to Broca's region (i.e., long segment), Broca's to Geschwind's region (i.e., anterior segment), and Wernicke's to Geschwind's region (i.e., posterior segment). We found that the long and anterior arcuate segments are lateralized before adolescence and their lateralization remains stable throughout adolescence and early adulthood. Conversely, the posterior segment shows right lateralization in childhood but becomes progressively bilateral during adolescence, driven by a reduction in volume in the right hemisphere. Analysis of the twin sample showed that genetic and shared environmental factors influence the anatomy of those segments that lateralize earlier, whereas specific environmental effects drive the variability in the volume of the posterior segment that continues to change in adolescence and adulthood. Our results suggest that the age-related differences in the lateralization of the language perisylvian pathways are related to the relative contribution of genetic and environmental effects specific to each segment. SIGNIFICANCE STATEMENT Our study shows that, by early childhood, frontotemporal (long segment) and frontoparietal (anterior segment) connections of the arcuate fasciculus are left and right lateralized, respectively, and remain lateralized throughout adolescence and early adulthood. In contrast, temporoparietal (posterior segment) connections are right lateralized in childhood, but become progressively bilateral during adolescence. Preliminary twin analysis suggested that lateralization of the arcuate fasciculus is a heterogeneous process that depends on the interplay between genetic and environment factors specific to each segment. Tracts that exhibit higher age effects later in life (i.e., posterior segment) appear to be influenced more by specific environmental factors. PMID:26377454

  6. Overrepresentation of glutamate signaling in Alzheimer's disease: network-based pathway enrichment using meta-analysis of genome-wide association studies.

    PubMed

    Pérez-Palma, Eduardo; Bustos, Bernabé I; Villamán, Camilo F; Alarcón, Marcelo A; Avila, Miguel E; Ugarte, Giorgia D; Reyes, Ariel E; Opazo, Carlos; De Ferrari, Giancarlo V

    2014-01-01

    Genome-wide association studies (GWAS) have successfully identified several risk loci for Alzheimer's disease (AD). Nonetheless, these loci do not explain the entire susceptibility of the disease, suggesting that other genetic contributions remain to be identified. Here, we performed a meta-analysis combining data of 4,569 individuals (2,540 cases and 2,029 healthy controls) derived from three publicly available GWAS in AD and replicated a broad genomic region (>248,000 bp) associated with the disease near the APOE/TOMM40 locus in chromosome 19. To detect minor effect size contributions that could help to explain the remaining genetic risk, we conducted network-based pathway analyses either by extracting gene-wise p-values (GW), defined as the single strongest association signal within a gene, or calculated a more stringent gene-based association p-value using the extended Simes (GATES) procedure. Comparison of these strategies revealed that ontological sub-networks (SNs) involved in glutamate signaling were significantly overrepresented in AD (p<2.7×10(-11), p<1.9×10(-11); GW and GATES, respectively). Notably, glutamate signaling SNs were also found to be significantly overrepresented (p<5.1×10(-8)) in the Alzheimer's disease Neuroimaging Initiative (ADNI) study, which was used as a targeted replication sample. Interestingly, components of the glutamate signaling SNs are coordinately expressed in disease-related tissues, which are tightly related to known pathological hallmarks of AD. Our findings suggest that genetic variation within glutamate signaling contributes to the remaining genetic risk of AD and support the notion that functional biological networks should be targeted in future therapies aimed to prevent or treat this devastating neurological disorder.

  7. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases

    PubMed Central

    Bettencourt, Conceição; Hensman‐Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas‐Gómez, Petra; García‐Velázquez, Lizbeth Esmeralda; Alonso‐Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J.

    2016-01-01

    Objective The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome‐wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. Methods We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single‐nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. Results In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10–5). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10–5) and all SCAs (p = 2.22 × 10–4) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10–5), all in the same direction as in the HD GWAS. Interpretation We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983–990 PMID:27044000

  8. Overrepresentation of Glutamate Signaling in Alzheimer's Disease: Network-Based Pathway Enrichment Using Meta-Analysis of Genome-Wide Association Studies

    PubMed Central

    Villamán, Camilo F.; Alarcón, Marcelo A.; Avila, Miguel E.; Ugarte, Giorgia D.; Reyes, Ariel E.; Opazo, Carlos; De Ferrari, Giancarlo V.

    2014-01-01

    Genome-wide association studies (GWAS) have successfully identified several risk loci for Alzheimer's disease (AD). Nonetheless, these loci do not explain the entire susceptibility of the disease, suggesting that other genetic contributions remain to be identified. Here, we performed a meta-analysis combining data of 4,569 individuals (2,540 cases and 2,029 healthy controls) derived from three publicly available GWAS in AD and replicated a broad genomic region (>248,000 bp) associated with the disease near the APOE/TOMM40 locus in chromosome 19. To detect minor effect size contributions that could help to explain the remaining genetic risk, we conducted network-based pathway analyses either by extracting gene-wise p-values (GW), defined as the single strongest association signal within a gene, or calculated a more stringent gene-based association p-value using the extended Simes (GATES) procedure. Comparison of these strategies revealed that ontological sub-networks (SNs) involved in glutamate signaling were significantly overrepresented in AD (p<2.7×10−11, p<1.9×10−11; GW and GATES, respectively). Notably, glutamate signaling SNs were also found to be significantly overrepresented (p<5.1×10−8) in the Alzheimer's disease Neuroimaging Initiative (ADNI) study, which was used as a targeted replication sample. Interestingly, components of the glutamate signaling SNs are coordinately expressed in disease-related tissues, which are tightly related to known pathological hallmarks of AD. Our findings suggest that genetic variation within glutamate signaling contributes to the remaining genetic risk of AD and support the notion that functional biological networks should be targeted in future therapies aimed to prevent or treat this devastating neurological disorder. PMID:24755620

  9. Genome-Wide Association Study among Four Horse Breeds Identifies a Common Haplotype Associated with In Vitro CD3+ T Cell Susceptibility/Resistance to Equine Arteritis Virus Infection ▿

    PubMed Central

    Go, Yun Young; Bailey, Ernest; Cook, Deborah G.; Coleman, Stephen J.; MacLeod, James N.; Chen, Kuey-Chu; Timoney, Peter J.; Balasuriya, Udeni B. R.

    2011-01-01

    Previously, we have shown that horses could be divided into susceptible and resistant groups based on an in vitro assay using dual-color flow cytometric analysis of CD3+ T cells infected with equine arteritis virus (EAV). Here, we demonstrate that the differences in in vitro susceptibility of equine CD3+ T lymphocytes to EAV infection have a genetic basis. To investigate the possible hereditary basis for this trait, we conducted a genome-wide association study (GWAS) to compare susceptible and resistant phenotypes. Testing of 267 DNA samples from four horse breeds that had a susceptible or a resistant CD3+ T lymphocyte phenotype using both Illumina Equine SNP50 BeadChip and Sequenom's MassARRAY system identified a common, genetically dominant haplotype associated with the susceptible phenotype in a region of equine chromosome 11 (ECA11), positions 49572804 to 49643932. The presence of a common haplotype indicates that the trait occurred in a common ancestor of all four breeds, suggesting that it may be segregated among other modern horse breeds. Biological pathway analysis revealed several cellular genes within this region of ECA11 encoding proteins associated with virus attachment and entry, cytoskeletal organization, and NF-κB pathways that may be associated with the trait responsible for the in vitro susceptibility/resistance of CD3+ T lymphocytes to EAV infection. The data presented in this study demonstrated a strong association of genetic markers with the trait, representing de facto proof that the trait is under genetic control. To our knowledge, this is the first GWAS of an equine infectious disease and the first GWAS of equine viral arteritis. PMID:21994447

  10. Depressive Symptoms and Heart Rate Variability: Evidence for a Shared Genetic Substrate in a Study of Twins

    PubMed Central

    Vaccarino, Viola; Lampert, Rachel; Bremner, J. Douglas; Lee, Forrester; Su, Shaoyong; Maisano, Carisa; Murrah, Nancy V.; Jones, Linda; Jawed, Farhan; Afzal, Nadeem; Ashraf, Ali; Goldberg, Jack

    2018-01-01

    Objective To clarify the relationship between depression and heart rate variability (HRV) in a sample of twins. Reduced HRV, a measure of autonomic dysfunction, has been linked to depression but many studies have inadequately controlled for familial and environmental factors. Furthermore, little is known about whether depression and HRV share common genetic pathways. Methods We performed power spectral analysis on 24-hour ambulatory electrocardiograms in 288 middle-aged male twins. Log-normalized ultra low, very low, low, high frequency, and total power were calculated. A lifetime history of major depressive disorder (MDD) was determined, using the Structured Clinical Interview for Psychiatry Disorders, and current depressive symptoms were measured with the Beck Depression Inventory. Mixed-effect regression models were used to account for intrapair variability and estimate within-pair effects at the same time controlling for potential confounders. Results Both current depressive symptoms and a history of MDD were significantly associated with lower HRV. There was a graded effect, and power in each frequency band was 29% to 36% lower in the lowest band compared with the highest BDI category. All HRV measures except high frequency remained significantly associated with current depressive symptoms in multivariable analysis, but not with lifetime history of MDD. When analyses were stratified by zygosity, a significant within-pair association between BDI score and HRV was found in the dizygotic but not in the monozygotic twins, suggesting a genetic influence on the association. Conclusions A shared, genetically influenced biological pathway underlies the association between depression and lower HRV. These two phenotypes may be the expression of a generalized neurobiological perturbation. PMID:18606724

  11. Genetic Analysis Reveals a Hierarchy of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function during Left-Right Determination

    PubMed Central

    Grimes, Daniel T.; Keynton, Jennifer L.; Buenavista, Maria T.; Jin, Xingjian; Patel, Saloni H.; Kyosuke, Shinohara; Williams, Debbie J.; Hamada, Hiroshi; Hussain, Rohanah; Nauli, Surya M.; Norris, Dominic P.

    2016-01-01

    During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo. PMID:27272319

  12. Recent developments in the genetics of ADHD.

    PubMed

    Grimm, Oliver; Kittel-Schneider, Sarah; Reif, Andreas

    2018-05-02

    Attention deficit hyperactivity disorder (ADHD) is a developmental psychiatric disorder which affects children and adults. ADHD is one of the psychiatric disorders with the strongest genetic basis according to familial, twin and SNP-based epidemiological studies. In this review, we provide an update of recent insights in the genetic basis of ADHD. We discuss recent progress from genome-wide association studies (GWAS) looking at common variants as well as rare copy number variations (CNVs). New analysis of gene groups, so-called functional ontologies, provide some insight into the gene networks afflicted, pointing to the role of neurodevelopmentally expressed gene-networks. Bioinformatic methods such as functional enrichment analysis and protein-protein network analysis are used to highlight biological processes of likely relevance to the aetiology of ADHD. Additionally, CNVs seem to map on important pathways implicated in synaptic signalling and neurodevelopment. While some candidate gene associations of e.g. neurotransmitter receptors and signalling have been replicated, they do not seem to explain significant variance in recent GWAS. We discuss insights from recent case-control SNP-GWAS which gave whole-genome significant SNPs in ADHD. This article is protected by copyright. All rights reserved.

  13. Progress and prospects in pharmacogenetics of antidepressant drugs.

    PubMed

    Fabbri, Chiara; Crisafulli, Concetta; Calabrò, Marco; Spina, Edoardo; Serretti, Alessandro

    2016-10-01

    Depression is responsible for the most part of the personal and socio-economic burden due to psychiatric disorders. Since antidepressant response clusters in families, pharmacogenetics represents a meaningful tool to provide tailored treatments and improve the prognosis of depression. This review aims to summarize and discuss the pharmacogenetics of antidepressant drugs in major depressive disorder, with a focus on the most replicated genes, genome-wide association studies (GWAS), but also on the findings provided by new and promising analysis methods. In particular, multimarker tests such as pathway analysis and polygenic risk scores increase the power of detecting associations compared to the analysis of individual polymorphisms. Since genetic variants are not necessarily associated with a change in protein level, gene expression studies may provide complementary information to genetic studies. Finally, the pharmacogenetic tests that have been investigated for clinical application are discussed. Despite the lack of widespread clinical applications, preliminary results suggest that pharmacogenetics may be useful to guide antidepressant treatment. The US Food and Drug Administration included pharmacogenetic indications in the labeling of several antidepressants. This represented an important official recognition of the clinical relevance of genetic polymorphisms in antidepressant treatment.

  14. Transcriptomic Profiling of Fruit Development in Black Raspberry Rubus coreanus

    PubMed Central

    Hu, Yaodong

    2018-01-01

    The wild Rubus species R. coreanus, which is widely distributed in southwest China, shows great promise as a genetic resource for breeding. One of its outstanding properties is adaptation to high temperature and humidity. To facilitate its use in selection and breeding programs, we assembled de novo 179,738,287 R. coreanus reads (125 bp in length) generated by RNA sequencing from fruits at three representative developmental stages. We also used the recently released draft genome of R. occidentalis to perform reference-guided assembly. We inferred a final 95,845-transcript reference for R. coreanus. Of these genetic resources, 66,597 (69.5%) were annotated. Based on these results, we carried out a comprehensive analysis of differentially expressed genes. Flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, and cutin, suberin, and wax biosynthesis pathways were significantly enriched throughout the ripening process. We identified 23 transcripts involved in the flavonoid biosynthesis pathway whose expression perfectly paralleled changes in the metabolites. Additionally, we identified 119 nucleotide-binding site leucine-rich repeat (NBS-LRR) protein-coding genes, involved in pathogen resistance, of which 74 were in the completely conserved domain. These results provide, for the first time, genome-wide genetic information for understanding developmental regulation of R. coreanus fruits. They have the potential for use in breeding through functional genetic approaches in the near future. PMID:29805970

  15. Waveband specific transcriptional control of select genetic pathways in vertebrate skin (Xiphophorus maculatus).

    PubMed

    Walter, Ronald B; Boswell, Mikki; Chang, Jordan; Boswell, William T; Lu, Yuan; Navarro, Kaela; Walter, Sean M; Walter, Dylan J; Salinas, Raquel; Savage, Markita

    2018-05-10

    Evolution occurred exclusively under the full spectrum of sunlight. Conscription of narrow regions of the solar spectrum by specific photoreceptors suggests a common strategy for regulation of genetic pathways. Fluorescent light (FL) does not possess the complexity of the solar spectrum and has only been in service for about 60 years. If vertebrates evolved specific genetic responses regulated by light wavelengths representing the entire solar spectrum, there may be genetic consequences to reducing the spectral complexity of light. We utilized RNA-Seq to assess changes in the transcriptional profiles of Xiphophorus maculatus skin after exposure to FL ("cool white"), or narrow wavelength regions of light between 350 and 600 nm (i.e., 50 nm or 10 nm regions, herein termed "wavebands"). Exposure to each 50 nm waveband identified sets of genes representing discrete pathways that showed waveband specific transcriptional modulation. For example, 350-400 or 450-500 nm waveband exposures resulted in opposite regulation of gene sets marking necrosis and apoptosis (i.e., 350-400 nm; necrosis suppression, apoptosis activation, while 450-500 nm; apoptosis suppression, necrosis activation). Further investigation of specific transcriptional modulation employing successive 10 nm waveband exposures between 500 and 550 nm showed; (a) greater numbers of genes may be transcriptionally modulated after 10 nm exposures, than observed for 50 nm or FL exposures, (b) the 10 nm wavebands induced gene sets showing greater functional specificity than 50 nm or FL exposures, and (c) the genetic effects of FL are primarily due to 30 nm between 500 and 530 nm. Interestingly, many genetic pathways exhibited completely opposite transcriptional effects after different waveband exposures. For example, the epidermal growth factor (EGF) pathway exhibits transcriptional suppression after FL exposure, becomes highly active after 450-500 nm waveband exposure, and again, exhibits strong transcriptional suppression after exposure to the 520-530 nm waveband. Collectively, these results suggest one may manipulate transcription of specific genetic pathways in skin by exposure of the intact animal to specific wavebands of light. In addition, we identify genes transcriptionally modulated in a predictable manner by specific waveband exposures. Such genes, and their regulatory elements, may represent valuable tools for genetic engineering and gene therapy protocols.

  16. Genetics and the Placebo Effect: the Placebome

    PubMed Central

    Hall, Kathryn T.; Loscalzo, Joseph; Kaptchuk, Ted J.

    2015-01-01

    Placebos are indispensable controls in randomized clinical trials (RCTs), and placebo responses significantly contribute to routine clinical outcomes. Recent neurophysiological studies reveal neurotransmitter pathways that mediate placebo effects. Evidence that genetic variations in these pathways can modify placebo effects raises the possibility of using genetic screening to identify placebo responders and thereby increase RCT efficacy and improve therapeutic care. Furthermore, the possibility of interaction between placebo and drug molecular pathways warrants consideration in RCT design. The study of genomic effects on placebo response, “the placebome”, is in its infancy. Here, we review evidence from placebo studies and RCTs to identify putative genes in the placebome, examine evidence for placebo-drug interactions, and discuss implications for RCTs and clinical care. PMID:25883069

  17. Chemical genetics and regeneration.

    PubMed

    Sengupta, Sumitra; Zhang, Liyun; Mumm, Jeff S

    2015-01-01

    Regeneration involves interactions between multiple signaling pathways acting in a spatially and temporally complex manner. As signaling pathways are highly conserved, understanding how regeneration is controlled in animal models exhibiting robust regenerative capacities should aid efforts to stimulate repair in humans. One way to discover molecular regulators of regeneration is to alter gene/protein function and quantify effect(s) on the regenerative process: dedifferentiation/reprograming, stem/progenitor proliferation, migration/remodeling, progenitor cell differentiation and resolution. A powerful approach for applying this strategy to regenerative biology is chemical genetics, the use of small-molecule modulators of specific targets or signaling pathways. Here, we review advances that have been made using chemical genetics for hypothesis-focused and discovery-driven studies aimed at furthering understanding of how regeneration is controlled.

  18. Harsh Parenting and Adolescent Health: A Longitudinal Analysis with Genetic Moderation

    PubMed Central

    Brody, Gene H.; Yu, Tianyi; Beach, Steven R. H.; Kogan, Steven M.; Windle, Michael; Philibert, Robert A.

    2015-01-01

    Objective This study was designed to examine the prospective relations of harsh parenting during preadolescence, anger across adolescence, and a health phenotype at late adolescence among African American youths living in the rural South. A second purpose was to determine whether, for genetic reasons, some youths will be more sensitive than others to a harsh parenting to anger to poor health pathway. Methods Participants were 368 youths (age 11.2 at the first assessment) who provided data on receipt of harsh parenting during preadolescence (ages 11 to 13), anger across adolescence (ages 16 to 18), and a health phenotype consisting of C Reactive Protein, depressive symptoms, and health problems at age 19. Youths were genotyped at the 5-HTTLPR at age 16. Results The data analysis revealed that (a) harsher parenting was associated positively across time with anger and poor health, (b) anger across adolescence also was associated positively across time with poor health, (c) anger served as a mediator connecting harsh parenting and poor health, and (d) the harsh parenting to anger to poor health pathway was significant only for youths carrying one or two copies of a short allele at the 5-HTTLPR. Conclusions These findings are consistent with the hypothesis that harsh parent-child interactions presage health through effects on emotion regulation, particularly anger. This mediational pathway pertained only to youths carrying a gene that confers sensitivity and reactivity to harsh family processes and the negative emotional states they occasion. PMID:23668852

  19. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization.

    PubMed

    Randles, Michael J; Woolf, Adrian S; Huang, Jennifer L; Byron, Adam; Humphries, Jonathan D; Price, Karen L; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J; Long, David A; Lennon, Rachel

    2015-12-01

    Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. Copyright © 2015 by the American Society of Nephrology.

  20. Harsh parenting and adolescent health: a longitudinal analysis with genetic moderation.

    PubMed

    Brody, Gene H; Yu, Tianyi; Beach, Steven R H; Kogan, Steven M; Windle, Michael; Philibert, Robert A

    2014-05-01

    This study was designed to examine the prospective relations of harsh parenting during preadolescence, anger across adolescence, and a health phenotype at late adolescence among African American youths living in the rural South. A second purpose was to determine whether, for genetic reasons, some youths will be more sensitive than others to a harsh parenting to anger to poor health pathway. Participants were 368 youths (age 11.2 at the first assessment) who provided data on receipt of harsh parenting during preadolescence (ages 11 to 13), anger across adolescence (ages 16 to 18), and a health phenotype consisting of C Reactive Protein, depressive symptoms, and health problems at age 19. Youths were genotyped at the 5-HTTLPR at age 16. The data analysis revealed that (a) harsher parenting was associated positively across time with anger and poor health, (b) anger across adolescence also was associated positively across time with poor health, (c) anger served as a mediator connecting harsh parenting and poor health, and (d) the harsh parenting to anger to poor health pathway was significant only for youths carrying one or two copies of a short allele at the 5-HTTLPR. These findings are consistent with the hypothesis that harsh parent-child interactions presage health through effects on emotion regulation, particularly anger. This mediational pathway pertained only to youths carrying a gene that confers sensitivity and reactivity to harsh family processes and the negative emotional states they occasion. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Genetic engineering of Escherichia coli to improve L-phenylalanine production.

    PubMed

    Liu, Yongfei; Xu, Yiran; Ding, Dongqin; Wen, Jianping; Zhu, Beiwei; Zhang, Dawei

    2018-01-30

    L-phenylalanine (L-Phe) is an essential amino acid for mammals and applications expand into human health and nutritional products. In this study, a system level engineering was conducted to enhance L-Phe biosynthesis in Escherichia coli. We inactivated the PTS system and recruited glucose uptake via combinatorial modulation of galP and glk to increase PEP supply in the Xllp01 strain. In addition, the HTH domain of the transcription factor TyrR was engineered to decrease the repression on the transcriptional levels of L-Phe pathway enzymes. Finally, proteomics analysis demonstrated the third step of the SHIK pathway (catalyzed via AroD) as the rate-limiting step for L-Phe production. After optimization of the aroD promoter strength, the titer of L-Phe increased by 13.3%. Analysis of the transcriptional level of genes involved in the central metabolic pathways and L-Phe biosynthesis via RT-PCR showed that the recombinant L-Phe producer exhibited a great capability in the glucose utilization and precursor (PEP and E4P) generation. Via systems level engineering, the L-Phe titer of Xllp21 strain reached 72.9 g/L in a 5 L fermenter under the non-optimized fermentation conditions, which was 1.62-times that of the original strain Xllp01. The metabolic engineering strategy reported here can be broadly employed for developing genetically defined organisms for the efficient production of other aromatic amino acids and derived compounds.

  2. Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems.

    PubMed

    Saha, Tanusree; Chatterjee, Mahasweta; Verma, Deepak; Ray, Anirban; Sinha, Swagata; Rajamma, Usha; Mukhopadhyay, Kanchan

    2018-06-08

    An etiologically complex disorder, Attention Deficit Hyperactivity Disorder (ADHD), is often associated with various levels of cognitive deficit. Folate/vitamin B 9 is crucial for numerous biochemical pathways including neural stem cell proliferation and differentiation, regulation of gene expression, neurotransmitter synthesis, myelin synthesis and repair, etc. and a scarcity has often been linked to cognitive deficit. Our pilot study in the field revealed significant association of few genetic variants with ADHD. Mild hyperhomocysteinemia and vitamin B 12 deficiency was also noticed in the probands. In the present study additional genetic variants, folate and vitamin B 6 , which may affect folate-homocysteine metabolic pathway, were investigated in 866 individuals including nuclear families with ADHD probands (N=221) and ethnically matched controls (N=286) to find out whether ADHD associated traits are affected by these factors. Population based analysis revealed significant over representation of MTRR rs1801394 "G" allele and "GG" genotype in all as well as male probands. Stratified analysis showed significantly higher frequency of RFC1 rs1051266 and BHMT rs3733890 "AG" genotypes in full term and prematurely delivered ADHD probands respectively. Probands with rs1801394 "GG" genotype and BHMT rs3733890 "G" allele showed association with hyperhomocysteinemia. MTHFR rs1801131, MTR rs1805087 and BHMT rs3733890 also showed association with ADHD index. While rs1051266, rs1801131, and rs1805087 showed association with behavioral problems, rs3733890 was associated with ODD score. Conduct problem exhibited association with RFC1 rs1051266, MTHFR rs1801133 and MTRR rs1801394. Gene-gene interaction analysis revealed positive synergistic interactions between rs1051266, rs1801131 and rs1801394 in the probands as compared to the controls. It can be inferred from the data obtained that folate system genetic variants and mild hyperhomocysteimenia may affect ADHD associated traits by attenuating folate metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Global expression analysis of gene regulatory pathways during endocrine pancreatic development.

    PubMed

    Gu, Guoqiang; Wells, James M; Dombkowski, David; Preffer, Fred; Aronow, Bruce; Melton, Douglas A

    2004-01-01

    To define genetic pathways that regulate development of the endocrine pancreas, we generated transcriptional profiles of enriched cells isolated from four biologically significant stages of endocrine pancreas development: endoderm before pancreas specification, early pancreatic progenitor cells, endocrine progenitor cells and adult islets of Langerhans. These analyses implicate new signaling pathways in endocrine pancreas development, and identified sets of known and novel genes that are temporally regulated, as well as genes that spatially define developing endocrine cells from their neighbors. The differential expression of several genes from each time point was verified by RT-PCR and in situ hybridization. Moreover, we present preliminary functional evidence suggesting that one transcription factor encoding gene (Myt1), which was identified in our screen, is expressed in endocrine progenitors and may regulate alpha, beta and delta cell development. In addition to identifying new genes that regulate endocrine cell fate, this global gene expression analysis has uncovered informative biological trends that occur during endocrine differentiation.

  4. Genetic analysis of chromosomal operons involved in degradation of aromatic hydrocarbons in Pseudomonas putida TMB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polissi, A.; Bestetti, G.; Bertoni, G.

    1990-11-01

    The catabolic pathway for the degradation of aromatic hydrocarbons encoded by Pseudomonas putida TMB differs from the TOL plasmid-encoded pathway as far as regulation of the upper pathway is concerned. We found, by analyzing Tn5-induced mutants and by Southern blot hybridization with appropriate probes derived from the TOL plasmid pWWO, that the catabolic genes of strain TMB were located on the bacterial chromosome and not on the 84-kb plasmid harbored by this strain. The catabolic genes of TMB and pWWO had sequence homology, as shown by Southern blot hybridization, but different significantly in their restriction patterns. The analysis of themore » mutants suggests that a regulatory mechanism similar to that present in pWWO coexists in TMB with a second mode of regulation which is epistatic on the former and that the chromosomal region carrying the catabolic genes is prone to rearrangements and deletions.« less

  5. MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis.

    PubMed

    Lee, Dong-Yup; Yun, Hongsoek; Park, Sunwon; Lee, Sang Yup

    2003-11-01

    MetaFluxNet is a program package for managing information on the metabolic reaction network and for quantitatively analyzing metabolic fluxes in an interactive and customized way. It allows users to interpret and examine metabolic behavior in response to genetic and/or environmental modifications. As a result, quantitative in silico simulations of metabolic pathways can be carried out to understand the metabolic status and to design the metabolic engineering strategies. The main features of the program include a well-developed model construction environment, user-friendly interface for metabolic flux analysis (MFA), comparative MFA of strains having different genotypes under various environmental conditions, and automated pathway layout creation. http://mbel.kaist.ac.kr/ A manual for MetaFluxNet is available as PDF file.

  6. Genetics Home Reference: prekallikrein deficiency

    MedlinePlus

    ... a role in a process called the intrinsic coagulation pathway (also called the contact activation pathway). This ... functional plasma kallikrein, which likely impairs the intrinsic coagulation pathway. Researchers suggest that this lack (deficiency) of ...

  7. Coordinated Activation of VEGF/VEGFR-2 and PPARδ Pathways by a Multi-Component Chinese Medicine DHI Accelerated Recovery from Peripheral Arterial Disease in Type 2 Diabetic Mice

    PubMed Central

    He, Shuang; Zhao, Tiechan; Guo, Hao; Meng, Yanzhi; Qin, Gangjian; Goukassian, David A.; Han, Jihong; Gao, Xuimei; Zhu, Yan

    2016-01-01

    Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways. PMID:27930695

  8. Coordinated Activation of VEGF/VEGFR-2 and PPARδ Pathways by a Multi-Component Chinese Medicine DHI Accelerated Recovery from Peripheral Arterial Disease in Type 2 Diabetic Mice.

    PubMed

    He, Shuang; Zhao, Tiechan; Guo, Hao; Meng, Yanzhi; Qin, Gangjian; Goukassian, David A; Han, Jihong; Gao, Xuimei; Zhu, Yan

    2016-01-01

    Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways.

  9. Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins[W

    PubMed Central

    Carelli, Maria; Biazzi, Elisa; Panara, Francesco; Tava, Aldo; Scaramelli, Laura; Porceddu, Andrea; Graham, Neil; Odoardi, Miriam; Piano, Efisio; Arcioni, Sergio; May, Sean; Scotti, Carla; Calderini, Ornella

    2011-01-01

    Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis. PMID:21821776

  10. Genomic atlas of the human plasma proteome.

    PubMed

    Sun, Benjamin B; Maranville, Joseph C; Peters, James E; Stacey, David; Staley, James R; Blackshaw, James; Burgess, Stephen; Jiang, Tao; Paige, Ellie; Surendran, Praveen; Oliver-Williams, Clare; Kamat, Mihir A; Prins, Bram P; Wilcox, Sheri K; Zimmerman, Erik S; Chi, An; Bansal, Narinder; Spain, Sarah L; Wood, Angela M; Morrell, Nicholas W; Bradley, John R; Janjic, Nebojsa; Roberts, David J; Ouwehand, Willem H; Todd, John A; Soranzo, Nicole; Suhre, Karsten; Paul, Dirk S; Fox, Caroline S; Plenge, Robert M; Danesh, John; Runz, Heiko; Butterworth, Adam S

    2018-06-01

    Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.

  11. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    PubMed Central

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura ME; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher RK; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David CM; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Olde Loohuis, Loes M; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein MJ; Van Eijk, Kristel R; Van Erp, Theo GM; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco JC; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald HH; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, WT; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda WJH; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Valdés Hernández, Maria C; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic JA; Van Duijn, Cornelia M; Van Haren, Neeltje EM; Van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton JM; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth. PMID:27694991

  12. Integrating physical and genetic maps: from genomes to interaction networks

    PubMed Central

    Beyer, Andreas; Bandyopadhyay, Sourav; Ideker, Trey

    2009-01-01

    Physical and genetic mapping data have become as important to network biology as they once were to the Human Genome Project. Integrating physical and genetic networks currently faces several challenges: increasing the coverage of each type of network; establishing methods to assemble individual interaction measurements into contiguous pathway models; and annotating these pathways with detailed functional information. A particular challenge involves reconciling the wide variety of interaction types that are currently available. For this purpose, recent studies have sought to classify genetic and physical interactions along several complementary dimensions, such as ordered versus unordered, alleviating versus aggravating, and first versus second degree. PMID:17703239

  13. INVOLVEMENT OF MULTIPLE MOLECULAR PATHWAYS IN THE GENETICS OF OCULAR REFRACTION AND MYOPIA.

    PubMed

    Wojciechowski, Robert; Cheng, Ching-Yu

    2018-01-01

    The prevalence of myopia has increased dramatically worldwide within the last three decades. Recent studies have shown that refractive development is influenced by environmental, behavioral, and inherited factors. This review aims to analyze recent progress in the genetics of refractive error and myopia. A comprehensive literature search of PubMed and OMIM was conducted to identify relevant articles in the genetics of refractive error. Genome-wide association and sequencing studies have increased our understanding of the genetics involved in refractive error. These studies have identified interesting candidate genes. All genetic loci discovered to date indicate that refractive development is a heterogeneous process mediated by a number of overlapping biological processes. The exact mechanisms by which these biological networks regulate eye growth are poorly understood. Although several individual genes and/or molecular pathways have been investigated in animal models, a systematic network-based approach in modeling human refractive development is necessary to understand the complex interplay between genes and environment in refractive error. New biomedical technologies and better-designed studies will continue to refine our understanding of the genetics and molecular pathways of refractive error, and may lead to preventative and therapeutic measures to combat the myopia epidemic.

  14. A global interaction network maps a wiring diagram of cellular function

    PubMed Central

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles

    2017-01-01

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008

  15. Insights from human genetic studies of lung and organ fibrosis.

    PubMed

    Garcia, Christine Kim

    2018-01-02

    Genetic investigations of fibrotic diseases, including those of late onset, often yield unanticipated insights into disease pathogenesis. This Review focuses on pathways underlying lung fibrosis that are generalizable to other organs. Herein, we discuss genetic variants subdivided into those that shorten telomeres, activate the DNA damage response, change resident protein expression or function, or affect organelle activity. Genetic studies provide a window into the downstream cascade of maladaptive responses and pathways that lead to tissue fibrosis. In addition, these studies reveal interactions between genetic variants, environmental factors, and age that influence the phenotypic spectrum of disease. The discovery of forces counterbalancing inherited risk alleles identifies potential therapeutic targets, thus providing hope for future prevention or reversal of fibrosis.

  16. Transcriptome Sequencing of Dianthus spiculifolius and Analysis of the Genes Involved in Responses to Combined Cold and Drought Stress.

    PubMed

    Zhou, Aimin; Ma, Hongping; Liu, Enhui; Jiang, Tongtong; Feng, Shuang; Gong, Shufang; Wang, Jingang

    2017-04-17

    Dianthus spiculifolius , a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation.

  17. Transcriptome Sequencing of Dianthus spiculifolius and Analysis of the Genes Involved in Responses to Combined Cold and Drought Stress

    PubMed Central

    Zhou, Aimin; Ma, Hongping; Liu, Enhui; Jiang, Tongtong; Feng, Shuang; Gong, Shufang; Wang, Jingang

    2017-01-01

    Dianthus spiculifolius, a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation. PMID:28420173

  18. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways.

    PubMed

    Chin, Chen-Shan; Chubukov, Victor; Jolly, Emmitt R; DeRisi, Joe; Li, Hao

    2008-06-17

    The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point-the intermediate metabolite alpha-isopropylmalate (alphaIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when alphaIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture.

  19. The Translational Apparatus of Plastids and Its Role in Plant Development

    PubMed Central

    Tiller, Nadine; Bock, Ralph

    2014-01-01

    Chloroplasts (plastids) possess a genome and their own machinery to express it. Translation in plastids occurs on bacterial-type 70S ribosomes utilizing a set of tRNAs that is entirely encoded in the plastid genome. In recent years, the components of the chloroplast translational apparatus have been intensely studied by proteomic approaches and by reverse genetics in the model systems tobacco (plastid-encoded components) and Arabidopsis (nucleus-encoded components). This work has provided important new insights into the structure, function, and biogenesis of chloroplast ribosomes, and also has shed fresh light on the molecular mechanisms of the translation process in plastids. In addition, mutants affected in plastid translation have yielded strong genetic evidence for chloroplast genes and gene products influencing plant development at various levels, presumably via retrograde signaling pathway(s). In this review, we describe recent progress with the functional analysis of components of the chloroplast translational machinery and discuss the currently available evidence that supports a significant impact of plastid translational activity on plant anatomy and morphology. PMID:24589494

  20. Identification of Autophagosome-associated Proteins and Regulators by Quantitative Proteomic Analysis and Genetic Screens*

    PubMed Central

    Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria O.; Eisenberg, Tobias; Harder, Lea M.; Schandorff, Søren; Farkas, Thomas; Kirkegaard, Thomas; Becker, Andrea C.; Schroeder, Sabrina; Vanselow, Katja; Lundberg, Emma; Nielsen, Mogens M.; Kristensen, Anders R.; Akimov, Vyacheslav; Bunkenborg, Jakob; Madeo, Frank; Jäättelä, Marja; Andersen, Jens S.

    2012-01-01

    Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection. PMID:22311637

  1. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease.

    PubMed

    Astle, William J; Elding, Heather; Jiang, Tao; Allen, Dave; Ruklisa, Dace; Mann, Alice L; Mead, Daniel; Bouman, Heleen; Riveros-Mckay, Fernando; Kostadima, Myrto A; Lambourne, John J; Sivapalaratnam, Suthesh; Downes, Kate; Kundu, Kousik; Bomba, Lorenzo; Berentsen, Kim; Bradley, John R; Daugherty, Louise C; Delaneau, Olivier; Freson, Kathleen; Garner, Stephen F; Grassi, Luigi; Guerrero, Jose; Haimel, Matthias; Janssen-Megens, Eva M; Kaan, Anita; Kamat, Mihir; Kim, Bowon; Mandoli, Amit; Marchini, Jonathan; Martens, Joost H A; Meacham, Stuart; Megy, Karyn; O'Connell, Jared; Petersen, Romina; Sharifi, Nilofar; Sheard, Simon M; Staley, James R; Tuna, Salih; van der Ent, Martijn; Walter, Klaudia; Wang, Shuang-Yin; Wheeler, Eleanor; Wilder, Steven P; Iotchkova, Valentina; Moore, Carmel; Sambrook, Jennifer; Stunnenberg, Hendrik G; Di Angelantonio, Emanuele; Kaptoge, Stephen; Kuijpers, Taco W; Carrillo-de-Santa-Pau, Enrique; Juan, David; Rico, Daniel; Valencia, Alfonso; Chen, Lu; Ge, Bing; Vasquez, Louella; Kwan, Tony; Garrido-Martín, Diego; Watt, Stephen; Yang, Ying; Guigo, Roderic; Beck, Stephan; Paul, Dirk S; Pastinen, Tomi; Bujold, David; Bourque, Guillaume; Frontini, Mattia; Danesh, John; Roberts, David J; Ouwehand, Willem H; Butterworth, Adam S; Soranzo, Nicole

    2016-11-17

    Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Gene expression profile of Musculus longissimus dorsi in bulls of a Charolais × Holstein F2-cross with divergent intramuscular fat content.

    PubMed

    Komolka, Katrin; Ponsuksili, Siriluck; Albrecht, Elke; Kühn, Christa; Wimmers, Klaus; Maak, Steffen

    2016-03-01

    Transcriptomes of Musculus longissimus dorsi (MLD) were compared between bulls from a F2-cross derived from Charolais and Holstein Friesian. Two groups of 10 bulls were selected which differed significantly in intramuscular fat (IMF) deposition despite standardized husbandry and feeding conditions and identical sires in both groups. Consequently, genetic factors underlying the different capability of IMF deposition should be identified. A total of 32 differentially expressed genes (DEGs) were found of which 11 were up-regulated and 21 were down-regulated in the high IMF group. Ingenuity Pathway Analysis (IPA) identified a gene network comprising DEGs with functions in carbohydrate metabolism, lipid metabolism and molecular transport. The data from this study were deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE75347. We provide here a dataset which is of potential value to dissect molecular pathways influencing differences in IMF deposition in crossbred cattle with standardized genetic background.

  3. Identification of homogeneous genetic architecture of multiple genetically correlated traits by block clustering of genome-wide associations.

    PubMed

    Gupta, Mayetri; Cheung, Ching-Lung; Hsu, Yi-Hsiang; Demissie, Serkalem; Cupples, L Adrienne; Kiel, Douglas P; Karasik, David

    2011-06-01

    Genome-wide association studies (GWAS) using high-density genotyping platforms offer an unbiased strategy to identify new candidate genes for osteoporosis. It is imperative to be able to clearly distinguish signal from noise by focusing on the best phenotype in a genetic study. We performed GWAS of multiple phenotypes associated with fractures [bone mineral density (BMD), bone quantitative ultrasound (QUS), bone geometry, and muscle mass] with approximately 433,000 single-nucleotide polymorphisms (SNPs) and created a database of resulting associations. We performed analysis of GWAS data from 23 phenotypes by a novel modification of a block clustering algorithm followed by gene-set enrichment analysis. A data matrix of standardized regression coefficients was partitioned along both axes--SNPs and phenotypes. Each partition represents a distinct cluster of SNPs that have similar effects over a particular set of phenotypes. Application of this method to our data shows several SNP-phenotype connections. We found a strong cluster of association coefficients of high magnitude for 10 traits (BMD at several skeletal sites, ultrasound measures, cross-sectional bone area, and section modulus of femoral neck and shaft). These clustered traits were highly genetically correlated. Gene-set enrichment analyses indicated the augmentation of genes that cluster with the 10 osteoporosis-related traits in pathways such as aldosterone signaling in epithelial cells, role of osteoblasts, osteoclasts, and chondrocytes in rheumatoid arthritis, and Parkinson signaling. In addition to several known candidate genes, we also identified PRKCH and SCNN1B as potential candidate genes for multiple bone traits. In conclusion, our mining of GWAS results revealed the similarity of association results between bone strength phenotypes that may be attributed to pleiotropic effects of genes. This knowledge may prove helpful in identifying novel genes and pathways that underlie several correlated phenotypes, as well as in deciphering genetic and phenotypic modularity underlying osteoporosis risk. Copyright © 2011 American Society for Bone and Mineral Research.

  4. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes

    PubMed Central

    Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Gingras, Marie-Claude; Muthuswamy, Lakshmi B.; Johns, Amber L.; Miller, David K.; Wilson, Peter J.; Patch, Ann-Marie; Wu, Jianmin; Chang, David K.; Cowley, Mark J.; Gardiner, Brooke B.; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J.; Gill, Anthony J.; Pinho, Andreia V.; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J. Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R. Scott; Humphris, Jeremy L.; Kaplan, Warren; Jones, Marc D.; Colvin, Emily K.; Nagrial, Adnan M.; Humphrey, Emily S.; Chou, Angela; Chin, Venessa T.; Chantrill, Lorraine A.; Mawson, Amanda; Samra, Jaswinder S.; Kench, James G.; Lovell, Jessica A.; Daly, Roger J.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M.; Fisher, William E.; Brunicardi, F. Charles; Hodges, Sally E.; Reid, Jeffrey G.; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R.; Dinh, Huyen; Buhay, Christian J.; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E.; Yung, Christina K.; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Gallinger, Steven; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Schulick, Richard D.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A.; Mann, Karen M.; Jenkins, Nancy A.; Perez-Mancera, Pedro A.; Adams, David J.; Largaespada, David A.; Wessels, Lodewyk F. A.; Rust, Alistair G.; Stein, Lincoln D.; Tuveson, David A.; Copeland, Neal G.; Musgrove, Elizabeth A.; Scarpa, Aldo; Eshleman, James R.; Hudson, Thomas J.; Sutherland, Robert L.; Wheeler, David A.; Pearson, John V.; McPherson, John D.; Gibbs, Richard A.; Grimmond, Sean M.

    2012-01-01

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis. PMID:23103869

  5. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    PubMed

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  6. Microarray pathway analysis indicated that mitogen-activated protein kinase/extracellular signal-regulated kinase and insulin growth factor 1 signaling pathways were inhibited by small interfering RNA against AT-rich interactive domain 1A in endometrial cancer

    PubMed Central

    Yang, Ye; Bao, Wei; Sang, Zhengyu; Yang, Yongbing; Lu, Meng; Xi, Xiaowei

    2018-01-01

    Mutations in the gene encoding AT-rich interactive domain 1A (ARID1A) are frequently observed in endometrial cancer (EC) but the molecular mechanisms linking the genetic changes remain to be fully understood. The present study aimed to elucidate the influence of ARID1A mutations on signaling pathways. Missense, synonymous and nonsense heterozygous ARID1A mutations in the EC HEC-1-A cell line were verified by Sanger sequencing. Mutated ARID1A small interfering RNA was transfected into HEC-1-A cells. Biochemical microarray analysis revealed 13 upregulated pathways, 17 downregulated pathways, 14 significantly affected disease states and functions, 662 upstream and 512 downstream genes in mutated ARID1A-depleted HEC-1-A cells, among which the mitogen-activated protein kinase/extracellular signal-regulated kinase and insulin-like growth factor-1 (IGF1) signaling pathways were the 2 most downregulated pathways. Furthermore, the forkhead box protein O1 pathway was upregulated, while the IGF1 receptor, insulin receptor substrate 1 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit b pathways were downregulated. Carcinoma tumorigenesis, tumor cell mitosis and tumor cell death were significantly upregulated disease states and functions, while cell proliferation and tumor growth were significantly downregulated. The results of the present study suggested that ARID1A may be a potential prognostic and therapeutic molecular drug target for the prevention of EC progression. PMID:29399196

  7. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia.

    PubMed

    de Jong, Simone; Vidler, Lewis R; Mokrab, Younes; Collier, David A; Breen, Gerome

    2016-08-01

    Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected p<0.05), highly ranked gene-sets reaching suggestive significance including the dopamine receptor antagonists metoclopramide and trifluoperazine and the tyrosine kinase inhibitor neratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy. © The Author(s) 2016.

  8. Rapid Genetic Analysis of Epithelial-Mesenchymal Signaling During Hair Regeneration

    PubMed Central

    Zhen, Hanson H.; Oro, Anthony E.

    2013-01-01

    Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models. PMID:23486463

  9. Personalised Medicine: Genome Maintenance Lessons Learned from Studies in Yeast as a Model Organism.

    PubMed

    Abugable, Arwa A; Awwad, Dahlia A; Fleifel, Dalia; Ali, Mohamed M; El-Khamisy, Sherif; Elserafy, Menattallah

    2017-01-01

    Yeast research has been tremendously contributing to the understanding of a variety of molecular pathways due to the ease of its genetic manipulation, fast doubling time as well as being cost-effective. The understanding of these pathways did not only help scientists learn more about the cellular functions but also assisted in deciphering the genetic and cellular defects behind multiple diseases. Hence, yeast research not only opened the doors for transforming basic research into applied research, but also paved the roads for improving diagnosis and innovating personalized therapy of different diseases. In this chapter, we discuss how yeast research has contributed to understanding major genome maintenance pathways such as the S-phase checkpoint activation pathways, repair via homologous recombination and non-homologous end joining as well as topoisomerases-induced protein linked DNA breaks repair. Defects in these pathways lead to neurodegenerative diseases and cancer. Thus, the understanding of the exact genetic defects underlying these diseases allowed the development of personalized medicine, improving the diagnosis and treatment and overcoming the detriments of current conventional therapies such as the side effects, toxicity as well as drug resistance.

  10. Weak sharing of genetic association signals in three lung cancer subtypes: evidence at the SNP, gene, regulation, and pathway levels.

    PubMed

    O'Brien, Timothy D; Jia, Peilin; Caporaso, Neil E; Landi, Maria Teresa; Zhao, Zhongming

    2018-02-27

    There are two main types of lung cancer: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC has many subtypes, but the two most common are lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). These subtypes are mainly classified by physiological and pathological characteristics, although there is increasing evidence of genetic and molecular differences as well. Although some work has been done at the somatic level to explore the genetic and biological differences among subtypes, little work has been done that interrogates these differences at the germline level to characterize the unique and shared susceptibility genes for each subtype. We used single-nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) of European samples to interrogate the similarity of the subtypes at the SNP, gene, pathway, and regulatory levels. We expanded these genotyped SNPs to include all SNPs in linkage disequilibrium (LD) using data from the 1000 Genomes Project. We mapped these SNPs to several lung tissue expression quantitative trait loci (eQTL) and enhancer datasets to identify regulatory SNPs and their target genes. We used these genes to perform a biological pathway analysis for each subtype. We identified 8295, 8734, and 8361 SNPs with moderate association signals for LUAD, LUSC, and SCLC, respectively. Those SNPs had p < 1 × 10 - 3 in the original GWAS or were within LD (r 2 > 0.8, Europeans) to the genotyped SNPs. We identified 215, 320, and 172 disease-associated genes for LUAD, LUSC, and SCLC, respectively. Only five genes (CHRNA5, IDH3A, PSMA4, RP11-650 L12.2, and TBC1D2B) overlapped all subtypes. Furthermore, we observed only two pathways from the Kyoto Encyclopedia of Genes and Genomes shared by all subtypes. At the regulatory level, only three eQTL target genes and two enhancer target genes overlapped between all subtypes. Our results suggest that the three lung cancer subtypes do not share much genetic signal at the SNP, gene, pathway, or regulatory level, which differs from the common subtype classification based upon histology. However, three (CHRNA5, IDH3A, and PSMA4) of the five genes shared between the subtypes are well-known lung cancer genes that may act as general lung cancer genes regardless of subtype.

  11. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.

    PubMed

    Kang, Zhen; Huang, Hao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian

    2017-01-01

    Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.

  12. Insights to the Genetics of Diabetic Nephropathy through a Genome-wide Association Study of the GoKinD Collection

    PubMed Central

    Pezzolesi, Marcus G.; Skupien, Jan; Krolewski, Andrzej S.

    2010-01-01

    The Genetics of Kidneys in Diabetes (GoKinD) study was initiated to facilitate research aimed at identifying genes involved in diabetic nephropathy (DN) in type 1 diabetes (T1D). In this review, we present on overview of this study and the various reports that have utilized its collection. At the forefront of these efforts is the recent genome-wide association (GWA) scan implemented on the GoKinD collection. We highlight the results from our analysis of these data and describe compelling evidence from animal models that further support the potential role of associated loci in the susceptibility of DN. To enhance our analysis of genetic associations in GoKinD, using genome-wide imputation (GWI), we expanded our analysis of this collection to include genotype data from more than 2.4 million common SNPs. We illustrate the added utility of this enhanced dataset through the comprehensive fine-mapping of candidate genomic regions previously linked with DN and the targeted investigation of genes involved in candidate pathway implicated in its pathogenesis. Collectively, GWA and GWI data from the GoKinD collection will serve as a springboard for future investigations into the genetic basis of DN in T1D. PMID:20347642

  13. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    PubMed Central

    Nana-Djeunga, Hugues C.; Kengne-Ouafo, Jonas A.; Pion, Sébastien D. S.; Bopda, Jean; Kamgno, Joseph; Wanji, Samuel; Che, Hua; Kuesel, Annette C.; Walker, Martin; Basáñez, Maria-Gloria; Boakye, Daniel A.; Osei-Atweneboana, Mike Y.; Boussinesq, Michel; Prichard, Roger K.; Grant, Warwick N.

    2017-01-01

    Background Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana—exposed to more than a decade of regular ivermectin treatment—have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread. Methodology/Principal findings Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR. Conclusions/Significance This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations. PMID:28746337

  14. Systematic analysis of Ca2+ homeostasis in Saccharomyces cerevisiae based on chemical-genetic interaction profiles

    PubMed Central

    Ghanegolmohammadi, Farzan; Yoshida, Mitsunori; Ohnuki, Shinsuke; Sukegawa, Yuko; Okada, Hiroki; Obara, Keisuke; Kihara, Akio; Suzuki, Kuninori; Kojima, Tetsuya; Yachie, Nozomu; Hirata, Dai; Ohya, Yoshikazu

    2017-01-01

    We investigated the global landscape of Ca2+ homeostasis in budding yeast based on high-dimensional chemical-genetic interaction profiles. The morphological responses of 62 Ca2+-sensitive (cls) mutants were quantitatively analyzed with the image processing program CalMorph after exposure to a high concentration of Ca2+. After a generalized linear model was applied, an analysis of covariance model was used to detect significant Ca2+–cls interactions. We found that high-dimensional, morphological Ca2+–cls interactions were mixed with positive (86%) and negative (14%) chemical-genetic interactions, whereas one-dimensional fitness Ca2+–cls interactions were all negative in principle. Clustering analysis with the interaction profiles revealed nine distinct gene groups, six of which were functionally associated. In addition, characterization of Ca2+–cls interactions revealed that morphology-based negative interactions are unique signatures of sensitized cellular processes and pathways. Principal component analysis was used to discriminate between suppression and enhancement of the Ca2+-sensitive phenotypes triggered by inactivation of calcineurin, a Ca2+-dependent phosphatase. Finally, similarity of the interaction profiles was used to reveal a connected network among the Ca2+ homeostasis units acting in different cellular compartments. Our analyses of high-dimensional chemical-genetic interaction profiles provide novel insights into the intracellular network of yeast Ca2+ homeostasis. PMID:28566553

  15. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.

    PubMed

    Linehan, W Marston; Spellman, Paul T; Ricketts, Christopher J; Creighton, Chad J; Fei, Suzanne S; Davis, Caleb; Wheeler, David A; Murray, Bradley A; Schmidt, Laura; Vocke, Cathy D; Peto, Myron; Al Mamun, Abu Amar M; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W Kimryn; Brooks, Angela N; Hoadley, Katherine A; Robertson, A Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J; Bootwalla, Moiz; Baylin, Stephen B; Laird, Peter W; Cherniack, Andrew D; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B; Akbani, Rehan; Leiserson, Mark D M; Raphael, Benjamin J; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K; Czerniak, Bogdan; Godwin, Andrew K; Hakimi, A Ari; Ho, Thai H; Hsieh, James; Ittmann, Michael; Kim, William Y; Krishnan, Bhavani; Merino, Maria J; Mills Shaw, Kenna R; Reuter, Victor E; Reznik, Ed; Shelley, Carl S; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D; Penny, Robert J; Shelton, Candace; Shelton, W Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T; Bowen, Jay; Gastier-Foster, Julie M; Gerken, Mark; Leraas, Kristen M; Lichtenberg, Tara M; Ramirez, Nilsa C; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A; Felau, Ina; Hutter, Carolyn M; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C; Zhang, Jiashan; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S N; Carlsen, Rebecca; Carter, Scott L; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, Harsha V; Drummond, Jennifer A; Gabriel, Stacey B; Gibbs, Richard A; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D Neil; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven J M; Jones, Corbin D; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A; Moore, Richard A; Morton, Donna; Mose, Lisle E; Mungall, Andrew J; Muzny, Donna; Parker, Joel S; Perou, Charles M; Roach, Jeffrey; Schein, Jacqueline E; Schumacher, Steven E; Shi, Yan; Simons, Janae V; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L; Boice, Lori; Bollag, Roni J; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L; Slaton, Joel; Stanton, Melissa; Thompson, R Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M; Winemiller, Cynthia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-14

    Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).

  16. Genetic Variation in DNA Repair Genes and Prostate Cancer Risk: Results from a Population-Based Study

    PubMed Central

    Agalliu, Ilir; Kwon, Erika M; Salinas, Claudia A.; Koopmeiners, Joseph S.; Ostrander, Elaine A.; Stanford, Janet L.

    2009-01-01

    Objective DNA repair pathways are crucial to prevent accumulation of DNA damage and maintain genomic stability. Alterations of this pathway have been reported in many cancers. An increase in oxidative DNA damage or decrease of DNA repair capacity with aging or due to germline genetic variation may affect prostate cancer risk. Methods Pooled data from two population-based studies (1,457 cases and 1,351 controls) were analyzed to examine associations between 28 SNPs in 9 DNA repair genes (APEX1, BRCA2, ERCC2, ERCC4, MGMT, MUTYH, OGG1, XPC, and XRCC1) and prostate cancer risk. We also explored whether associations varied by smoking, by family history or clinical features of prostate cancer. Results There were no associations between these SNPs and overall risk of prostate cancer. Risks did not vary either by smoking or by family history of prostate cancer. Although, two SNPs in BRCA2 (rs144848, rs1801406) and two SNPs in ERCC2 (rs1799793, rs13181) showed stronger associations with high Gleason score or advanced stage tumors when comparing homozygous men carrying the minor vs. major allele, results were not statistically significantly different between clinically aggressive and non-aggressive tumors. Conclusion Overall this study found no associations between prostate cancer and the SNPs in DNA repair genes. Given the complexity of this pathway and its crucial role in maintenance of genomic stability a pathway-based analysis of all 150 genes in DNA repair pathways, as well as exploration of gene-environment interactions may be warranted. PMID:19902366

  17. Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing.

    PubMed

    Weber, Jakob; Valiante, Vito; Nødvig, Christina S; Mattern, Derek J; Slotkowski, Rebecca A; Mortensen, Uffe H; Brakhage, Axel A

    2017-01-20

    Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.

  18. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.

    PubMed

    Wu, Mengmeng; Zeng, Wanwen; Liu, Wenqiang; Lv, Hairong; Chen, Ting; Jiang, Rui

    2018-06-03

    Genome-wide association studies (GWAS) have successfully discovered a number of disease-associated genetic variants in the past decade, providing an unprecedented opportunity for deciphering genetic basis of human inherited diseases. However, it is still a challenging task to extract biological knowledge from the GWAS data, due to such issues as missing heritability and weak interpretability. Indeed, the fact that the majority of discovered loci fall into noncoding regions without clear links to genes has been preventing the characterization of their functions and appealing for a sophisticated approach to bridge genetic and genomic studies. Towards this problem, network-based prioritization of candidate genes, which performs integrated analysis of gene networks with GWAS data, has emerged as a promising direction and attracted much attention. However, most existing methods overlook the sparse and noisy properties of gene networks and thus may lead to suboptimal performance. Motivated by this understanding, we proposed a novel method called REGENT for integrating multiple gene networks with GWAS data to prioritize candidate genes for complex diseases. We leveraged a technique called the network representation learning to embed a gene network into a compact and robust feature space, and then designed a hierarchical statistical model to integrate features of multiple gene networks with GWAS data for the effective inference of genes associated with a disease of interest. We applied our method to six complex diseases and demonstrated the superior performance of REGENT over existing approaches in recovering known disease-associated genes. We further conducted a pathway analysis and showed that the ability of REGENT to discover disease-associated pathways. We expect to see applications of our method to a broad spectrum of diseases for post-GWAS analysis. REGENT is freely available at https://github.com/wmmthu/REGENT. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A novel microduplication of ARID1B: Clinical, genetic, and proteomic findings.

    PubMed

    Seabra, Catarina M; Szoko, Nicholas; Erdin, Serkan; Ragavendran, Ashok; Stortchevoi, Alexei; Maciel, Patrícia; Lundberg, Kathleen; Schlatzer, Daniela; Smith, Janice; Talkowski, Michael E; Gusella, James F; Natowicz, Marvin R

    2017-09-01

    Genetic alterations of ARID1B have been recently recognized as one of the most common mendelian causes of intellectual disability and are associated with both syndromic and non-syndromic phenotypes. The ARID1B protein, a subunit of the chromatin remodeling complex SWI/SNF-A, is involved in the regulation of transcription and multiple downstream cellular processes. We report here the clinical, genetic, and proteomic phenotypes of an individual with a unique apparent de novo mutation of ARID1B due to an intragenic duplication. His neurodevelopmental phenotype includes a severe speech/language disorder with full scale IQ scores 78-98 and scattered academic skill levels, expanding the phenotypic spectrum of ARID1B mutations. Haploinsufficiency of ARID1B was determined both by RNA sequencing and quantitative RT-PCR. Fluorescence in situ hybridization analysis supported an intragenic localization of the ARID1B copy number gain. Principal component analysis revealed marked differentiation of the subject's lymphoblast proteome from that of controls. Of 3426 proteins quantified, 1014 were significantly up- or down-regulated compared to controls (q < 0.01). Pathway analysis revealed highly significant enrichment for canonical pathways of EIF2 and EIF4 signaling, protein ubiquitination, tRNA charging and chromosomal replication, among others. Network analyses revealed down-regulation of: (1) intracellular components involved in organization of membranes, organelles, and vesicles; (2) aspects of cell cycle control, signal transduction, and nuclear protein export; (3) ubiquitination and proteosomal function; and (4) aspects of mRNA synthesis/splicing. Further studies are needed to determine the detailed molecular and cellular mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic and non-syndromic developmental disabilities. © 2017 Wiley Periodicals, Inc.

  20. Tryptophan–Kynurenine Metabolism as a Common Mediator of Genetic and Environmental Impacts in Major Depressive Disorder: The Serotonin Hypothesis Revisited 40 Years Later

    PubMed Central

    Oxenkrug, Gregory F.

    2011-01-01

    The original 1969 Lancet paper proposed, “in depression the activity of liver tryptophan-pyrrolase is stimulated by raised blood corticosteroids levels, and metabolism of tryptophan is shunted away from serotonin production, and towards kynurenine production.” Discovery of neurotropic activity of kynurenines suggested that up-regulation of the tryptophan-kynurenine pathway not only augmented serotonin deficiency but also underlined depression-associated anxiety, psychosis and cognitive decline. The present review of genetic and hormonal factors regulating kynurenine pathway of tryptophan metabolism suggests that this pathway mediates both genetic and environmental mechanisms of depression. Rate-limiting enzymes of kynurenine formation, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are activated by stress hormones (TDO) and/or by pro-inflammatory cytokines (IDO). Simultaneous presence of high producers alleles of proinflammatory cytokines genes (e.g., interferon-gamma and tumor necrosis factor-alpha) determines the genetic predisposition to depression via up-regulation of IDO while impact of environmental stresses is mediated via hormonal activation of TDO. Tryptophan-kynurenine pathway represents a major meeting point of gene-environment interaction in depression and a new target for pharmacological intervention. PMID:20686200

Top