Sample records for pathway split ratio

  1. 13C-Labeled Gluconate Tracing as a Direct and Accurate Method for Determining the Pentose Phosphate Pathway Split Ratio in Penicillium chrysogenum

    PubMed Central

    Kleijn, Roelco J.; van Winden, Wouter A.; Ras, Cor; van Gulik, Walter M.; Schipper, Dick; Heijnen, Joseph J.

    2006-01-01

    In this study we developed a new method for accurately determining the pentose phosphate pathway (PPP) split ratio, an important metabolic parameter in the primary metabolism of a cell. This method is based on simultaneous feeding of unlabeled glucose and trace amounts of [U-13C]gluconate, followed by measurement of the mass isotopomers of the intracellular metabolites surrounding the 6-phosphogluconate node. The gluconate tracer method was used with a penicillin G-producing chemostat culture of the filamentous fungus Penicillium chrysogenum. For comparison, a 13C-labeling-based metabolic flux analysis (MFA) was performed for glycolysis and the PPP of P. chrysogenum. For the first time mass isotopomer measurements of 13C-labeled primary metabolites are reported for P. chrysogenum and used for a 13C-based MFA. Estimation of the PPP split ratio of P. chrysogenum at a growth rate of 0.02 h−1 yielded comparable values for the gluconate tracer method and the 13C-based MFA method, 51.8% and 51.1%, respectively. A sensitivity analysis of the estimated PPP split ratios showed that the 95% confidence interval was almost threefold smaller for the gluconate tracer method than for the 13C-based MFA method (40.0 to 63.5% and 46.0 to 56.5%, respectively). From these results we concluded that the gluconate tracer method permits accurate determination of the PPP split ratio but provides no information about the remaining cellular metabolism, while the 13C-based MFA method permits estimation of multiple fluxes but provides a less accurate estimate of the PPP split ratio. PMID:16820467

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dernotte, Jeremie; Dec, John E.; Ji, Chunsheng

    A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), onmore » the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. Furthermore, the various methods are evaluated in order to validate the trends.« less

  3. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains.

    PubMed

    Sánchez, Ailen M; Bennett, George N; San, Ka-Yiu

    2006-05-01

    This study presents an in-depth analysis of the anaerobic metabolic fluxes of various mutant strains of Escherichia coli overexpressing the Lactococcus lactis pyruvate carboxylase (PYC) for the production of succinate. Previously, a metabolic network design that includes an active glyoxylate pathway implemented in vivo increased succinate yield from glucose in an E. coli mutant to 1.6 mol/mol under fully anaerobic conditions. The design consists of a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has a lower NADH requirement). Mutant strains previously constructed during the development of high-yield succinate-producing strains were selected for further characterization to understand their metabolic response as a result of several genetic manipulations and to determine the significance of the fermentative and the glyoxylate pathways in the production of succinate. Measured fluxes obtained under batch cultivation conditions were used to estimate intracellular fluxes and identify critical branch point flux split ratios. The comparison of changes in branch point flux split ratios to the glyoxylate pathway and the fermentative pathway at the oxaloacetate (OAA) node as a result of different mutations revealed the sensitivity of succinate yield to these manipulations. The most favorable split ratio to obtain the highest succinate yield was the fractional partition of OAA to glyoxylate of 0.32 and 0.68 to the fermentative pathway obtained in strains SBS550MG (pHL413) and SBS990MG (pHL413). The succinate yields achieved in these two strains were 1.6 and 1.7 mol/mol, respectively. In addition, an active glyoxylate pathway in an ldhA, adhE, ack-pta mutant strain is shown to be responsible for the high succinate yields achieved anaerobically. Furthermore, in vitro activity measurements of seven crucial enzymes involved in the pathways studied and intracellular measurements of key intermediate metabolite pools provided additional insights on the physiological perturbations caused by these mutations. The characterization of these recombinant mutant strains in terms of flux distribution pattern, in vitro enzyme activity and intracellular metabolite pools provides useful information for the rational modification of metabolic fluxes to improve succinate production.

  4. Energy distribution analysis in boosted HCCI-like / LTGC engines – Understanding the trade-offs to maximize the thermal efficiency

    DOE PAGES

    Dernotte, Jeremie; Dec, John E.; Ji, Chunsheng

    2015-04-14

    A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), onmore » the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. Furthermore, the various methods are evaluated in order to validate the trends.« less

  5. Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation.

    PubMed

    Chung, Hung-Pin; Huang, Kuang-Hsu; Wang, Kai; Yang, Sung-Lin; Yang, Shih-Yuan; Sung, Chun-I; Solntsev, Alexander S; Sukhorukov, Andrey A; Neshev, Dragomir N; Chen, Yen-Hung

    2017-12-04

    Spontaneous parametric down-conversion (SPDC) is a widely used method to generate entangled photons, enabling a range of applications from secure communication to tests of quantum physics. Integrating SPDC on a chip provides interferometric stability, allows to reduce a physical footprint, and opens a pathway to true scalability. However, dealing with different photon polarizations and wavelengths on a chip presents a number of challenging problems. In this work, we demonstrate an on-chip polarization beam-splitter based on z-cut titanium-diffused lithium niobate asymmetric adiabatic couplers (AAC) designed for integration with a type-II SPDC source. Our experimental measurements reveal unique polarization beam-splitting regime with the ability to tune the splitting ratios based on wavelength. In particular, we measured a splitting ratio of 17 dB over broadband regions (>60 nm) for both H- and V-polarized lights and a specific 50%/50% splitting ratio for a cross-polarized photon pair from the AAC. The results show that such a system can be used for preparing different quantum polarization-path states that are controllable by changing the phase-matching conditions in the SPDC over a broad band. Furthermore, we propose a fully integrated electro-optically tunable type-II SPDC polarization-path-entangled state preparation circuit on a single lithium niobate photonic chip.

  6. Comparative 13C Metabolic Flux Analysis of Pyruvate Dehydrogenase Complex-Deficient, l-Valine-Producing Corynebacterium glutamicum▿†

    PubMed Central

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J.; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-01-01

    l-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by 13C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an l-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for l-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP. PMID:21784914

  7. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles?

    PubMed

    Zhang, Hong; Kumar, Abhishek; Kothari, Mohit; Luo, Xiaoping; Trulsson, Mats; Svensson, Krister G; Svensson, Peter

    2016-07-01

    The aim was to test the hypothesis that short-term oral sensorimotor training of the jaw muscles would increase the precision of task performance and induce neuroplastic changes in the corticomotor pathways, related to the masseter muscle. Fifteen healthy volunteers performed six series with ten trials of an oral sensorimotor task. The task was to manipulate and position a spherical chocolate candy in between the anterior teeth and split it into two equal halves. The precision of the task performance was evaluated by comparing the ratio between the two split halves. A series of "hold-and-split" tasks was also performed before and after the training. The hold force and split force along with the electromyographic (EMG) activity of jaw muscles were recorded. Motor-evoked potentials and cortical motor maps of the right masseter muscle were evoked by transcranial magnetic stimulation. There was a significant effect of series on the precision of the task performance during the short-term oral sensorimotor training (P < 0.002). The hold force during the "hold-and-split" task was significantly lower after training than before the short-term training (P = 0.011). However, there was no change in the split force and the EMG activity of the jaw muscles before and after the training. Further, there was a significant increase in the amplitude of the motor-evoked potentials (P < 0.016) and in the motor cortex map areas (P = 0.033), after the short-term oral sensorimotor training. Therefore, short-term oral sensorimotor task training increased the precision of task performance and induced signs of neuroplastic changes in the corticomotor pathways, related to the masseter muscle.

  8. Analysis of selected volatile organic compounds in split and nonsplit swiss cheese samples using selected-ion flow tube mass spectrometry (SIFT-MS).

    PubMed

    Castada, Hardy Z; Wick, Cheryl; Taylor, Kaitlyn; Harper, W James

    2014-04-01

    Splits/cracks are recurring product defects that negatively affect the Swiss cheese industry. Investigations to understand the biophysicochemical aspects of these defects, and thus determine preventive measures against their occurrence, are underway. In this study, selected-ion, flow tube mass spectrometry was employed to determine the volatile organic compound (VOC) profiles present in the headspace of split compared with nonsplit cheeses. Two sampling methodologies were employed: split compared with nonsplit cheese vat pair blocks; and comparison of blind, eye, and split segments within cheese blocks. The variability in VOC profiles was examined to evaluate the potential biochemical pathway chemistry differences within and between cheese samples. VOC profile inhomogeneity was most evident in cheeses between factories. Evaluation of biochemical pathways leading to the formation of key VOCs differentiating the split from the blind and eye segments within factories indicated release of additional carbon dioxide by-product. These results suggest a factory-dependent cause of split formation that could develop from varied fermentation pathways in the blind, eye, and split areas within a cheese block. The variability of VOC profiles within and between factories exhibit varied biochemical fermentation pathways that could conceivably be traced back in the making process to identify parameters responsible for split defect. © 2014 Institute of Food Technologists®

  9. A MEMS and agile optics-based dual-mode variable optical power splitter with no moving parts

    NASA Astrophysics Data System (ADS)

    Khwaja, Tariq S.; Suleman, Hamid; Reza, Syed Azer

    2017-06-01

    In this paper, we present a novel design of an optical power splitter. Owing to the inherent variable power split ratios that the proposed design delivers, it is ideal for use in communications, sensing and signal processing applications where variable power splitting is often quintessential. The proposed power splitter module is dual mode as it combines the use of a Micro-Electro-Mechanical Systems (MEMS) based Digital Micro-mirror Device (DMD) and an Electronically Controlled Tunable Lens (ECTL) to split the power of an input optical signal between two output ports - the designated port and the surplus port. The use of a reflective Digital Spatial Light Modulator (DSLM) such as the DMD provides a motion-free digital control of the split ratio between the two output ports. Although the digital step between two possible successive split ratios can be fairly minimal with the use of a high resolution DMD but it is a challenge to correctly ascertain the exact image pattern on the DMD to obtain any desired specific split ratio. To counter this challenge, we propose the synchronized use of a circular pattern on the DMD, which serves as a circular clear aperture with a tunable radius, and an ECTL. The radius of the circular pattern on the DMD provides a digital control of the split ratio between the two ports whereas the ECTL, depending on its controller, can provide either an analog or a digital control by altering the beam radius which is incident at the DMD circular pattern. The radius of the circular pattern on the DMD can be minimally changed by one micro-pixel thickness. Setting the radius of the circular pattern on the DMD to an appropriate value provides the closest "ball-park" split ratio whereas further tuning the ECTL aids in slightly altering from this digitally set value to obtain the exact desired split ratio in-between any two digitally-set successive split ratios that correspond to any clear aperture radius of the DMD pattern and its incremental minimal allowable change of one micropixel. We provide a detailed scheme to calculate the desired DMD aperture radius as well as the focal length setting of the ECTL to obtain any given split ratio. By setting tolerance limits on the split ratio, we also show that our method affords diversity by providing multiple possible solutions to achieve a desired optical power split ratio within the specified tolerances. We also demonstrate the validation of the proposed concept with initial experimental results and discussions. These experimental results show a repeatable splitter operation and the resulting power split ratios according to the theoretical predictions. With the experimental data, we also demonstrate the effectiveness of the method in obtaining any particular split ratio through different DMD and ECTL configurations with specific split ratio tolerance values.

  10. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans.

    PubMed

    Yokoyama, Hikaru; Sato, Koji; Ogawa, Tetsuya; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Kawashima, Noritaka

    2018-01-01

    The adaptability of human bipedal locomotion has been studied using split-belt treadmill walking. Most of previous studies utilized experimental protocol under remarkably different split ratios (e.g. 1:2, 1:3, or 1:4). While, there is limited research with regard to adaptive process under the small speed ratios. It is important to know the nature of adaptive process under ratio smaller than 1:2, because systematic evaluation of the gait adaptation under small to moderate split ratios would enable us to examine relative contribution of two forms of adaptation (reactive feedback and predictive feedforward control) on gait adaptation. We therefore examined a gait behavior due to on split-belt treadmill adaptation under five belt speed difference conditions (from 1:1.2 to 1:2). Gait parameters related to reactive control (stance time) showed quick adjustments immediately after imposing the split-belt walking in all five speed ratios. Meanwhile, parameters related to predictive control (step length and anterior force) showed a clear pattern of adaptation and subsequent aftereffects except for the 1:1.2 adaptation. Additionally, the 1:1.2 ratio was distinguished from other ratios by cluster analysis based on the relationship between the size of adaptation and the aftereffect. Our findings indicate that the reactive feedback control was involved in all the speed ratios tested and that the extent of reaction was proportionally dependent on the speed ratio of the split-belt. On the contrary, predictive feedforward control was necessary when the ratio of the split-belt was greater. These results enable us to consider how a given split-belt training condition would affect the relative contribution of the two strategies on gait adaptation, which must be considered when developing rehabilitation interventions for stroke patients.

  11. Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits.

    PubMed

    Shang, Kuanping; Pathak, Shibnath; Liu, Guangyao; Feng, Shaoqi; Li, Siwei; Lai, Weicheng; Yoo, S J B

    2017-05-01

    We designed and demonstrated a tri-layer Si3N4/SiO2 photonic integrated circuit capable of vertical interlayer coupling with arbitrary splitting ratios. Based on this multilayer photonic integrated circuit platform with each layer thicknesses of 150 nm, 50 nm, and 150 nm, we designed and simulated the vertical Y-junctions and 3D couplers with arbitrary power splitting ratios between 1:10 and 10:1 and with negligible(< -50 dB) reflection. Based on the design, we fabricated and demonstrated tri-layer vertical Y-junctions with the splitting ratios of 1:1 and 3:2 with excess optical losses of 0.230 dB. Further, we fabricated and demonstrated the 1 × 3 3D couplers with the splitting ratio of 1:1:4 for symmetric structures and variable splitting ratio for asymmetric structures.

  12. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans

    PubMed Central

    Ogawa, Tetsuya; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka

    2018-01-01

    The adaptability of human bipedal locomotion has been studied using split-belt treadmill walking. Most of previous studies utilized experimental protocol under remarkably different split ratios (e.g. 1:2, 1:3, or 1:4). While, there is limited research with regard to adaptive process under the small speed ratios. It is important to know the nature of adaptive process under ratio smaller than 1:2, because systematic evaluation of the gait adaptation under small to moderate split ratios would enable us to examine relative contribution of two forms of adaptation (reactive feedback and predictive feedforward control) on gait adaptation. We therefore examined a gait behavior due to on split-belt treadmill adaptation under five belt speed difference conditions (from 1:1.2 to 1:2). Gait parameters related to reactive control (stance time) showed quick adjustments immediately after imposing the split-belt walking in all five speed ratios. Meanwhile, parameters related to predictive control (step length and anterior force) showed a clear pattern of adaptation and subsequent aftereffects except for the 1:1.2 adaptation. Additionally, the 1:1.2 ratio was distinguished from other ratios by cluster analysis based on the relationship between the size of adaptation and the aftereffect. Our findings indicate that the reactive feedback control was involved in all the speed ratios tested and that the extent of reaction was proportionally dependent on the speed ratio of the split-belt. On the contrary, predictive feedforward control was necessary when the ratio of the split-belt was greater. These results enable us to consider how a given split-belt training condition would affect the relative contribution of the two strategies on gait adaptation, which must be considered when developing rehabilitation interventions for stroke patients. PMID:29694404

  13. Patterns of split sex ratio in ants have multiple evolutionary causes based on different within-colony conflicts

    PubMed Central

    Kümmerli, Rolf; Keller, Laurent

    2009-01-01

    Split sex ratio—a pattern where colonies within a population specialize in either male or queen production—is a widespread phenomenon in ants and other social Hymenoptera. It has often been attributed to variation in colony kin structure, which affects the degree of queen–worker conflict over optimal sex allocation. However, recent findings suggest that split sex ratio is a more diverse phenomenon, which can evolve for multiple reasons. Here, we provide an overview of the main conditions favouring split sex ratio. We show that each split sex-ratio type arises due to a different combination of factors determining colony kin structure, queen or worker control over sex ratio and the type of conflict between colony members. PMID:19457886

  14. Mechano-chemical pathways to H2O and CO2 splitting

    NASA Astrophysics Data System (ADS)

    Vedadi, Mohammad H.; Haas, Stephan

    2011-10-01

    The shock-induced collapse of CO2-filled nanobubbles is investigated using molecular dynamics simulations based on a reactive force field. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water and formation of O2 molecules. The dominant pathways through which splitting of water molecules occur are identified.

  15. Phosphoketolase Pathway for Xylose Catabolism in Clostridium acetobutylicum Revealed by 13C Metabolic Flux Analysis

    PubMed Central

    Liu, Lixia; Zhang, Lei; Tang, Wei; Gu, Yang; Hua, Qiang; Yang, Sheng; Jiang, Weihong

    2012-01-01

    Solvent-producing clostridia are capable of utilizing pentose sugars, including xylose and arabinose; however, little is known about how pentose sugars are catabolized through the metabolic pathways in clostridia. In this study, we identified the xylose catabolic pathways and quantified their fluxes in Clostridium acetobutylicum based on [1-13C]xylose labeling experiments. The phosphoketolase pathway was found to be active, which contributed up to 40% of the xylose catabolic flux in C. acetobutylicum. The split ratio of the phosphoketolase pathway to the pentose phosphate pathway was markedly increased when the xylose concentration in the culture medium was increased from 10 to 20 g liter−1. To our knowledge, this is the first time that the in vivo activity of the phosphoketolase pathway in clostridia has been revealed. A phosphoketolase from C. acetobutylicum was purified and characterized, and its activity with xylulose-5-P was verified. The phosphoketolase was overexpressed in C. acetobutylicum, which resulted in slightly increased xylose consumption rates during the exponential growth phase and a high level of acetate accumulation. PMID:22865845

  16. Multiplex detection of protein-protein interactions using a next generation luciferase reporter.

    PubMed

    Verhoef, Lisette G G C; Mattioli, Michela; Ricci, Fernanda; Li, Yao-Cheng; Wade, Mark

    2016-02-01

    Cell-based assays of protein-protein interactions (PPIs) using split reporter proteins can be used to identify PPI agonists and antagonists. Generally, such assays measure one PPI at a time, and thus counterscreens for on-target activity must be run in parallel or at a subsequent stage; this increases both the cost and time during screening. Split luciferase systems offer advantages over those that use split fluorescent proteins (FPs). This is since split luciferase offers a greater signal:noise ratio and, unlike split FPs, the PPI can be reversed upon small molecule treatment. While multiplexed PPI assays using luciferase have been reported, they suffer from low signal:noise and require fairly complex spectral deconvolution during analysis. Furthermore, the luciferase enzymes used are large, which limits the range of PPIs that can be interrogated due to steric hindrance from the split luciferase fragments. Here, we report a multiplexed PPI assay based on split luciferases from Photinus pyralis (firefly luciferase, FLUC) and the deep-sea shrimp, Oplophorus gracilirostris (NanoLuc, NLUC). Specifically, we show that the binding of the p53 tumor suppressor to its two major negative regulators, MDM2 and MDM4, can be simultaneously measured within the same sample, without the requirement for complex filters or deconvolution. We provide chemical and genetic validation of this system using MDM2-targeted small molecules and mutagenesis, respectively. Combined with the superior signal:noise and smaller size of split NanoLuc, this multiplexed PPI assay format can be exploited to study the induction or disruption of pairwise interactions that are prominent in many cell signaling pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Low-cost ultra-thin broadband terahertz beam-splitter.

    PubMed

    Ung, Benjamin S-Y; Fumeaux, Christophe; Lin, Hungyen; Fischer, Bernd M; Ng, Brian W-H; Abbott, Derek

    2012-02-27

    A low-cost terahertz beam-splitter is fabricated using ultra-thin LDPE plastic sheeting coated with a conducting silver layer. The beam splitting ratio is determined as a function of the thickness of the silver layer--thus any required splitting ratio can be printed on demand with a suitable rapid prototyping technology. The low-cost aspect is a consequence of the fact that ultra-thin LDPE sheeting is readily obtainable, known more commonly as domestic plastic wrap or cling wrap. The proposed beam-splitter has numerous advantages over float zone silicon wafers commonly used within the terahertz frequency range. These advantages include low-cost, ease of handling, ultra-thin thickness, and any required beam splitting ratio can be readily fabricated. Furthermore, as the beam-splitter is ultra-thin, it presents low loss and does not suffer from Fabry-Pérot effects. Measurements performed on manufactured prototypes with different splitting ratios demonstrate a good agreement with our theoretical model in both P and S polarizations, exhibiting nearly frequency-independent splitting ratios in the terahertz frequency range.

  18. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities.

    PubMed

    Peng, Bo; Özdemir, Sahin Kaya; Chen, Weijian; Nori, Franco; Yang, Lan

    2014-10-24

    There has been an increasing interest in all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting. Despite the differences in their underlying physics, both electromagnetically induced transparency and Autler-Townes splitting are quantified by a transparency window in the absorption or transmission spectrum, which often leads to a confusion about its origin. While the transparency window in electromagnetically induced transparency is a result of Fano interference among different transition pathways, in Autler-Townes splitting it is the result of strong field-driven interactions leading to the splitting of energy levels. Being able to tell objectively whether an observed transparency window is because of electromagnetically induced transparency or Autler-Townes splitting is crucial for applications and for clarifying the physics involved. Here we demonstrate the pathways leading to electromagnetically induced transparency, Fano resonances and Autler-Townes splitting in coupled whispering-gallery-mode resonators. Moreover, we report the application of the Akaike Information Criterion discerning between all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting and clarifying the transition between them.

  19. A compact spectrum splitting concentrator for high concentration photovoltaics based on the dispersion of a lens

    NASA Astrophysics Data System (ADS)

    He, J.; Flowers, C. A.; Yao, Y.; Atwater, H. A.; Rockett, A. A.; Nuzzo, R. G.

    2018-06-01

    Photovoltaic devices used in conjunction with functional optical elements for light concentration and spectrum splitting are known to be a viable approach for highly efficient photovoltaics. Conventional designs employ discrete optical elements, each with the task of either performing optical concentration or separating the solar spectrum. In the present work, we examine the performance of a compact photovoltaic architecture in which a single lens plays a dual role as both a concentrator and a spectrum splitter, the latter made possible by exploiting its intrinsic dispersion. A four-terminal two-junction InGaP/GaAs device is prepared to validate the concept and illustrates pathways for improvements. A spectral separation in the visible range is demonstrated at the focal point of a plano-convex lens with a geometric concentration ratio of 1104X with respect to the InGaP subcell.

  20. Modulated-splitting-ratio fiber-optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter A.

    1988-01-01

    A fiber-optic temperature sensor is described, which uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.

  1. Recycling of rare earth particle by mini-hydrocyclones.

    PubMed

    Yu, Jian-Feng; Fu, Jian; Cheng, Hao; Cui, Zhengwei

    2017-03-01

    Mini-hydrocyclones were applied to separate the fine rare earth particles from the suspensions. The effects of the flow rate, split ratio, and feed concentration on the total separation efficiency and grade separation efficiency were studied. The combined effects of the flow rate (1200-1600L/h), split ratio (20-60%) and concentration (0.6-1.0wt%) on the total separation efficiency in mini-hydrocyclones were investigated using a response surface methodology. The optimum operating parameters for a total separation efficiency of 92.5% were: feed flow rate=1406L/h, split ratio=20%, and feed concentration=1wt%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Digital gene expression analysis of corky split vein caused by boron deficiency in 'Newhall' Navel Orange (Citrus sinensis Osbeck) for selecting differentially expressed genes related to vascular hypertrophy.

    PubMed

    Yang, Cheng-Quan; Liu, Yong-Zhong; An, Ji-Cui; Li, Shuang; Jin, Long-Fei; Zhou, Gao-Feng; Wei, Qing-Jiang; Yan, Hui-Qing; Wang, Nan-Nan; Fu, Li-Na; Liu, Xiao; Hu, Xiao-Mei; Yan, Ting-Shuai; Peng, Shu-Ang

    2013-01-01

    Corky split vein caused by boron (B) deficiency in 'Newhall' Navel Orange was studied in the present research. The boron-deficient citrus exhibited a symptom of corky split vein in mature leaves. Morphologic and anatomical surveys at four representative phases of corky split veins showed that the symptom was the result of vascular hypertrophy. Digital gene expression (DGE) analysis was performed based on the Illumina HiSeq™ 2000 platform, which was applied to analyze the gene expression profilings of corky split veins at four morphologic phases. Over 5.3 million clean reads per library were successfully mapped to the reference database and more than 22897 mapped genes per library were simultaneously obtained. Analysis of the differentially expressed genes (DEGs) revealed that the expressions of genes associated with cytokinin signal transduction, cell division, vascular development, lignin biosynthesis and photosynthesis in corky split veins were all affected. The expressions of WOL and ARR12 involved in the cytokinin signal transduction pathway were up-regulated at 1(st) phase of corky split vein development. Furthermore, the expressions of some cell cycle genes, CYCs and CDKB, and vascular development genes, WOX4 and VND7, were up-regulated at the following 2(nd) and 3(rd) phases. These findings indicated that the cytokinin signal transduction pathway may play a role in initiating symptom observed in our study.

  3. Evaluation of Proposed Rocket Engines for Earth-to-Orbit Vehicles

    NASA Technical Reports Server (NTRS)

    Martin, James A.; Kramer, Richard D.

    1990-01-01

    The objective is to evaluate recently analyzed rocket engines for advanced Earth-to-orbit vehicles. The engines evaluated are full-flow staged combustion engines and split expander engines, both at mixture ratios at 6 and above with oxygen and hydrogen propellants. The vehicles considered are single-stage and two-stage fully reusable vehicles and the Space Shuttle with liquid rocket boosters. The results indicate that the split expander engine at a mixture ratio of about 7 is competitive with the full-flow staged combustion engine for all three vehicle concepts. A key factor in this result is the capability to increase the chamber pressure for the split expander as the mixture ratio is increased from 6 to 7.

  4. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Kish, Jules G.

    1993-01-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  5. Comparison of intervention effects in split-mouth and parallel-arm randomized controlled trials: a meta-epidemiological study

    PubMed Central

    2014-01-01

    Background Split-mouth randomized controlled trials (RCTs) are popular in oral health research. Meta-analyses frequently include trials of both split-mouth and parallel-arm designs to derive combined intervention effects. However, carry-over effects may induce bias in split- mouth RCTs. We aimed to assess whether intervention effect estimates differ between split- mouth and parallel-arm RCTs investigating the same questions. Methods We performed a meta-epidemiological study. We systematically reviewed meta- analyses including both split-mouth and parallel-arm RCTs with binary or continuous outcomes published up to February 2013. Two independent authors selected studies and extracted data. We used a two-step approach to quantify the differences between split-mouth and parallel-arm RCTs: for each meta-analysis. First, we derived ratios of odds ratios (ROR) for dichotomous data and differences in standardized mean differences (∆SMD) for continuous data; second, we pooled RORs or ∆SMDs across meta-analyses by random-effects meta-analysis models. Results We selected 18 systematic reviews, for 15 meta-analyses with binary outcomes (28 split-mouth and 28 parallel-arm RCTs) and 19 meta-analyses with continuous outcomes (28 split-mouth and 28 parallel-arm RCTs). Effect estimates did not differ between split-mouth and parallel-arm RCTs (mean ROR, 0.96, 95% confidence interval 0.52–1.80; mean ∆SMD, 0.08, -0.14–0.30). Conclusions Our study did not provide sufficient evidence for a difference in intervention effect estimates derived from split-mouth and parallel-arm RCTs. Authors should consider including split-mouth RCTs in their meta-analyses with suitable and appropriate analysis. PMID:24886043

  6. Efficient photosensitized splitting of the thymine dimer/oxetane unit on its modifying beta-cyclodextrin by a binding electron donor.

    PubMed

    Tang, Wen-Jian; Song, Qin-Hua; Wang, Hong-Bo; Yu, Jing-Yu; Guo, Qing-Xiang

    2006-07-07

    Two modified beta-cyclodextrins (beta-CDs) with a thymine dimer and a thymine oxetane adduct respectively, TD-CD and Ox-CD, have been prepared, and utilized to bind an electron-rich chromophore, indole or N,N-dimethylaniline (DMA), to form a supramolecular complex. We have examined the photosensitized splitting of the dimer/oxetane unit in TD-CD/Ox-CD by indole or DMA via an electron-transfer pathway, and observed high splitting efficiencies of the dimer/oxetane unit. On the basis of measurements of fluorescence spectra and splitting quantum yields, it is suggested that the splitting reaction occurs in a supramolecular complex by an inclusion interaction between the modified beta-CDs and DMA or indole. The back electron transfer, which leads low splitting efficiencies for the covalently-linked chromophore-dimer/oxetane compounds, is suppressed in the non-covalently-bound complex, and the mechanism has been discussed.

  7. Teaching the Toolkit: A Laboratory Series to Demonstrate the Evolutionary Conservation of Metazoan Cell Signaling Pathways

    ERIC Educational Resources Information Center

    LeClair, Elizabeth E.

    2008-01-01

    A major finding of comparative genomics and developmental genetics is that metazoans share certain conserved, embryonically deployed signaling pathways that instruct cells as to their ultimate fate. Because the DNA encoding these pathways predates the evolutionary split of most animal groups, it should in principle be possible to clone…

  8. Numerical investigation on splitting of ferrofluid microdroplets in T-junctions using an asymmetric magnetic field with proposed correlation

    NASA Astrophysics Data System (ADS)

    Aboutalebi, Mohammad; Bijarchi, Mohamad Ali; Shafii, Mohammad Behshad; Kazemzadeh Hannani, Siamak

    2018-02-01

    The studies surrounding the concept of microdroplets have seen a dramatic increase in recent years. Microdroplets have applications in different fields such as chemical synthesis, biology, separation processes and micro-pumps. This study numerically investigates the effect of different parameters such as Capillary number, Length of droplets, and Magnetic Bond number on the splitting process of ferrofluid microdroplets in symmetric T-junctions using an asymmetric magnetic field. The use of said field that is applied asymmetrically to the T-junction center helps us control the splitting of ferrofluid microdroplets. During the process of numerical simulation, a magnetic field with various strengths from a dipole located at a constant distance from the center of the T-junction was applied. The main advantage of this design is its control over the splitting ratio of daughter droplets and reaching various microdroplet sizes in a T-junction by adjusting the magnetic field strength. The results showed that by increasing the strength of the magnetic field, the possibility of asymmetric splitting of microdroplets increases in a way that for high values of field strength, high splitting ratios can be reached. Also, by using the obtained results at various Magnetic Bond numbers and performing curve fitting, a correlation is derived that can be used to accurately predict the borderline between splitting and non-splitting zones of microdroplets flow in micro T-junctions.

  9. Broadband non-polarizing terahertz beam splitters with variable split ratio

    NASA Astrophysics Data System (ADS)

    Wei, Minggui; Xu, Quan; Wang, Qiu; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Tian, Zhen; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-08-01

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  10. Design principles and operating principles: the yin and yang of optimal functioning.

    PubMed

    Voit, Eberhard O

    2003-03-01

    Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.

  11. A new titration system of a novel split-type superconducting magnet NMR spectrometer.

    PubMed

    Kitagawa, Isao; Tanaka, Hideki; Okada, Michiya; Kitaguchi, Hitoshi; Kohzuma, Takamitsu

    2008-12-01

    A new titration system for studying protein-ligand interactions has been developed. In this system, the sample solution is circulated in the route formed by an access path in a split superconducting magnet to maintain a constant protein concentration during the titration experiments. A concentration-control procedure for the ligand/protein ratio is devised, and the ligand/protein ratio is well controlled by this apparatus.

  12. Integrated photonic power divider with arbitrary power ratios.

    PubMed

    Xu, Ke; Liu, Lu; Wen, Xiang; Sun, Wenzhao; Zhang, Nan; Yi, Ningbo; Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-02-15

    Integrated optical power splitters are one of the fundamental building blocks in photonic integrated circuits. Conventional multimode interferometer-based power splitters are widely used as they have reasonable footprints and are easy to fabricate. However, it is challenging to realize arbitrary split ratios, especially for multi-outputs. In this Letter, an ultra-compact power splitter with a QR code-like nanostructure is designed by a nonlinear fast search method. The highly functional structure is composed of a number of freely designed square pixels with the size of 120×120  nm which could be either dielectric or air. The light waves are scattered by a number of etched squares with optimized locations, and the scattered waves superimpose at the outputs with the desired power ratio. We demonstrate 1×2 splitters with 1:1, 1:2, and 1:3 split ratios, and a 1×3 splitter with the ratio of 1:2:1. The footprint for all the devices is only 3.6×3.6  μm. Well-controlled split ratios are measured for all the cases. The measured transmission efficiencies of all the splitters are close to 80% over 30 nm wavelength range.

  13. tortuga refines Notch pathway gene expression in the zebrafish presomitic mesoderm at the post-transcriptional level.

    PubMed

    Dill, Kariena K; Amacher, Sharon L

    2005-11-15

    We have identified the zebrafish tortuga (tor) gene by an ENU-induced mutation that disrupts the presomitic mesoderm (PSM) expression of Notch pathway genes. In tor mutants, Notch pathway gene expression persists in regions of the PSM where expression is normally off in wild type embryos. The expression of hairy/Enhancer of split-related 1 (her1) is affected first, followed by the delta genes deltaC and deltaD, and finally, by another hairy/Enhancer of split-related gene, her7. In situ hybridization with intron-specific probes for her1 and deltaC indicates that transcriptional bursts of expression are normal in tor mutants, suggesting that tor normally functions to refine her1 and deltaC message levels downstream of transcription. Despite the striking defects in Notch pathway gene expression, somite boundaries form normally in tor mutant embryos, although somitic mesoderm defects are apparent later, when cells mature to form muscle fibers. Thus, while the function of Notch pathway genes is required for proper somite formation, the tor mutant phenotype suggests that precise oscillations of Notch pathway transcripts are not essential for establishing segmental pattern in the presomitic mesoderm.

  14. Dioecy and the evolution of sex ratios in ants

    PubMed Central

    Wiernasz, Diane C.; Cole, Blaine J.

    2009-01-01

    Split sex ratios, when some colonies produce only male and others only female reproductives, is a common feature of social insects, especially ants. The most widely accepted explanation for split sex ratios was proposed by Boomsma and Grafen, and is driven by conflicts of interest among colonies that vary in relatedness. The predictions of the Boomsma–Grafen model have been confirmed in many cases, but contradicted in several others. We adapt a model for the evolution of dioecy in plants to make predictions about the evolution of split sex ratios in social insects. Reproductive specialization results from the instability of the evolutionarily stable strategy (ESS) sex ratio, and is independent of variation in relatedness. We test predictions of the model with data from a long-term study of harvester ants, and show that it correctly predicts the intermediate sex ratios we observe in our study species. The dioecy model provides a comprehensive framework for sex allocation that is based on the pay-offs to the colony via production of males and females, and is independent of the genetic variation among colonies. However, in populations where the conditions for the Boomsma–Grafen model hold, kin selection will still lead to an association between sex ratio and relatedness. PMID:19324757

  15. Waveguide couplers with new power splitting ratios made possible by cascading of short multimode interference sections

    NASA Astrophysics Data System (ADS)

    Feng, David J. Y.; Lay, T. S.; Chang, T. Y.

    2007-02-01

    We show that it is possible to obtain 2 x 2 waveguide couplers with new power splitting ratios for cross coupling of 7%, 64%, 80% and 93% by cascading two short MMI sections. These couplers have simple geometry and low loss. They offer valuable new possibilities for designing waveguide power taps, high-Q ring resonators, ladder-structure optical filters, and loop-mirror partial reflectors.

  16. Robust Ordering of Anaphase Events by Adaptive Thresholds and Competing Degradation Pathways.

    PubMed

    Kamenz, Julia; Mihaljev, Tamara; Kubis, Armin; Legewie, Stefan; Hauf, Silke

    2015-11-05

    The splitting of chromosomes in anaphase and their delivery into the daughter cells needs to be accurately executed to maintain genome stability. Chromosome splitting requires the degradation of securin, whereas the distribution of the chromosomes into the daughter cells requires the degradation of cyclin B. We show that cells encounter and tolerate variations in the abundance of securin or cyclin B. This makes the concurrent onset of securin and cyclin B degradation insufficient to guarantee that early anaphase events occur in the correct order. We uncover that the timing of chromosome splitting is not determined by reaching a fixed securin level, but that this level adapts to the securin degradation kinetics. In conjunction with securin and cyclin B competing for degradation during anaphase, this provides robustness to the temporal order of anaphase events. Our work reveals how parallel cell-cycle pathways can be temporally coordinated despite variability in protein concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions

    NASA Astrophysics Data System (ADS)

    Guo, Ya-Fei; Chen, Peng-Hui; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing

    2017-10-01

    Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The impacts of the isoscalar and isovector parts of the momentum dependent interaction on the emissions of isospin particles are explored, i.e., the mass splittings of and (). The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of 112Sn+112Sn and 124Sn+124Sn at incident energies of 50 and 120 MeV/nucleon, respectively. It is found that both the effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). The isospin splitting of nucleon effective mass slightly impacts the double ratio spectra at the energy of 50 MeV/nucleon. A soft symmetry energy with stiffness coefficient of γ s=0.5 is constrained from the experimental data with the Fermi-energy heavy-ion collisions. Supported by Major State Basic Research Development Program in China (2014CB845405, 2015CB856903), National Natural Science Foundation of China (11722546, 11675226, 11675066, U1332207) and Youth Innovation Promotion Association of Chinese Academy of Sciences

  18. Wnt7a interaction with Fzd5 and detection of signaling activation using a split eGFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmon, Kendra S.; Loose, David S.

    2008-04-04

    Wnts are secreted glycoproteins that regulate important cellular processes including proliferation, differentiation, and cell fate. In the {beta}-catenin/canonical pathway, Wnt interacts with Fzd receptors to inhibit degradation of {beta}-catenin and promote its translocation into the nucleus where it regulates transcription of a number of genes. Dysregulation of this pathway has been attributed to a host of diseases including cancer. As a result, components of the {beta}-catenin/canonical pathway have been gaining recognition as promising targets for the discovery of novel therapeutic agents. Here, we show, using an ELISA-based protein-protein binding assay that purified Wnt7a binds to the extracellular cysteine-rich domain ofmore » Fzd5 in the nanomolar range. We have developed a novel split eGFP complementation assay to visually detect Wnt7a-Fzd5 interactions and subsequent pathway activation in cells. These biological tools could help lead to a better understanding of Wnt-Fzd interactions and the identification of new modulators of Wnt signaling.« less

  19. Measurement of the Splitting Function in p p and Pb-Pb Collisions at √{sN N }=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Haitz, D.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Parygin, P.; Philippov, D.; Polikarpov, S.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-04-01

    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in p p and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and p p collisions.. The measurements are compared to various predictions from event generators and analytical calculations.

  20. Measurement of the Splitting Function in p p and Pb-Pb Collisions at s N N = 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at amore » center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions. Furthermore, the measurements are compared to various predictions from event generators and analytical calculations.« less

  1. Measurement of the Splitting Function in p p and Pb-Pb Collisions at s N N = 5.02 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-04-03

    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at amore » center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions. Furthermore, the measurements are compared to various predictions from event generators and analytical calculations.« less

  2. Measurement of the Splitting Function in pp and Pb-Pb Collisions at sqrt[s_{NN}]=5.02  TeV.

    PubMed

    Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Grossmann, J; Hrubec, J; Jeitler, M; König, A; Krammer, N; Krätschmer, I; Liko, D; Madlener, T; Mikulec, I; Pree, E; Rad, N; Rohringer, H; Schieck, J; Schöfbeck, R; Spanring, M; Spitzbart, D; Waltenberger, W; Wittmann, J; Wulz, C-E; Zarucki, M; Chekhovsky, V; Mossolov, V; Suarez Gonzalez, J; De Wolf, E A; Di Croce, D; Janssen, X; Lauwers, J; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Abu Zeid, S; Blekman, F; D'Hondt, J; De Bruyn, I; De Clercq, J; Deroover, K; Flouris, G; Lontkovskyi, D; Lowette, S; Moortgat, S; Moreels, L; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Beghin, D; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Dorney, B; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Starling, E; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Roskas, C; Salva, S; Tytgat, M; Verbeke, W; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caputo, C; Caudron, A; David, P; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Saggio, A; Vidal Marono, M; Wertz, S; Zobec, J; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Coelho, E; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Melo De Almeida, M; Mora Herrera, C; Mundim, L; Nogima, H; Sanchez Rosas, L J; Santoro, A; Sznajder, A; Thiel, M; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Tomei, T R Fernandez Perez; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Misheva, M; Rodozov, M; Shopova, M; Sultanov, G; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Gao, X; Yuan, L; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Jiang, C H; Leggat, D; Liao, H; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Yazgan, E; Zhang, H; Zhang, S; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; González Hernández, C F; Ruiz Alvarez, J D; Courbon, B; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Starodumov, A; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Mohammed, Y; Salama, E; Dewanjee, R K; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Kirschenmann, H; Pekkanen, J; Voutilainen, M; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominen, E; Tuominiemi, J; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Faure, J L; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Leloup, C; Locci, E; Machet, M; Malcles, J; Negro, G; Rander, J; Rosowsky, A; Sahin, M Ö; Titov, M; Abdulsalam, A; Amendola, C; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Charlot, C; Granier de Cassagnac, R; Jo, M; Lisniak, S; Lobanov, A; Martin Blanco, J; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Salerno, R; Sauvan, J B; Sirois, Y; Stahl Leiton, A G; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Jansová, M; Le Bihan, A-C; Tonon, N; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Viret, S; Khvedelidze, A; Tsamalaidze, Z; Autermann, C; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Zhukov, V; Albert, A; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Teyssier, D; Thüer, S; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bermúdez Martínez, A; Bin Anuar, A A; Borras, K; Botta, V; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Guthoff, M; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Leonard, J; Lipka, K; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Raspereza, A; Roland, B; Savitskyi, M; Saxena, P; Shevchenko, R; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wen, Y; Wichmann, K; Wissing, C; Zenaiev, O; Aggleton, R; Bein, S; Blobel, V; Centis Vignali, M; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hinzmann, A; Hoffmann, M; Karavdina, A; Klanner, R; Kogler, R; Kovalchuk, N; Kurz, S; Lapsien, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Sonneveld, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Freund, B; Friese, R; Giffels, M; Haitz, D; Harrendorf, M A; Hartmann, F; Heindl, S M; Husemann, U; Kassel, F; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Karathanasis, G; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Kousouris, K; Evangelou, I; Foudas, C; Kokkas, P; Mallios, S; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Triantis, F A; Csanad, M; Filipovic, N; Pasztor, G; Surányi, O; Veres, G I; Bencze, G; Hajdu, C; Horvath, D; Hunyadi, Á; Sikler, F; Veszpremi, V; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Komaragiri, J R; Bahinipati, S; Bhowmik, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Dhingra, N; Kalsi, A K; Kaur, A; Kaur, M; Kaur, S; Kumar, R; Kumari, P; Mehta, A; Singh, J B; Walia, G; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A; Chauhan, S; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Bhardwaj, R; Bhattacharya, R; Bhattacharya, S; Bhawandeep, U; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Mahakud, B; Mitra, S; Mohanty, G B; Sur, N; Sutar, B; Banerjee, S; Bhattacharya, S; Chatterjee, S; Das, P; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Errico, F; Fiore, L; Iaselli, G; Lezki, S; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Borgonovi, L; Braibant-Giacomelli, S; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Chatterjee, K; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Robutti, E; Tosi, S; Benaglia, A; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pauwels, K; Pedrini, D; Pigazzini, S; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Fienga, F; Iorio, A O M; Khan, W A; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gozzelino, A; Lacaprara, S; Lujan, P; Margoni, M; Meneguzzo, A T; Montecassiano, F; Pozzobon, N; Ronchese, P; Rossin, R; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Ressegotti, M; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Biasini, M; Bilei, G M; Cecchi, C; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Manoni, E; Mantovani, G; Mariani, V; Menichelli, M; Rossi, A; Santocchia, A; Spiga, D; Androsov, K; Azzurri, P; Bagliesi, G; Boccali, T; Borrello, L; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fedi, G; Giannini, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Manca, E; Mandorli, G; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Daci, N; Del Re, D; Di Marco, E; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, J; Lee, S; Lee, S W; Moon, C S; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Moon, D H; Oh, G; Brochero Cifuentes, J A; Goh, J; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Kim, J S; Lee, H; Lee, K; Nam, K; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Choi, Y; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Reyes-Almanza, R; Ramirez-Sanchez, G; Duran-Osuna, M C; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Rabadan-Trejo, R I; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Pyskir, A; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Galinhas, B; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Seixas, J; Strong, G; Toldaiev, O; Vadruccio, D; Varela, J; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Stepennov, A; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Chadeeva, M; Markin, O; Parygin, P; Philippov, D; Polikarpov, S; Rusinov, V; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Demiyanov, A; Ershov, A; Gribushin, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Mandrik, P; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Cerrada, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Moran, D; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Álvarez Fernández, A; de Trocóniz, J F; Missiroli, M; Cuevas, J; Erice, C; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Vischia, P; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chazin Quero, B; Curras, E; Duarte Campderros, J; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Martinez Ruiz Del Arbol, P; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Akgun, B; Auffray, E; Baillon, P; Ball, A H; Barney, D; Bianco, M; Bloch, P; Bocci, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; Chapon, E; Chen, Y; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Deelen, N; Dobson, M; du Pree, T; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fallavollita, F; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gilbert, A; Gill, K; Glege, F; Gulhan, D; Harris, P; Hegeman, J; Innocente, V; Jafari, A; Janot, P; Karacheban, O; Kieseler, J; Knünz, V; Kornmayer, A; Kortelainen, M J; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Mulders, M; Neugebauer, H; Ngadiuba, J; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Rabady, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Selvaggi, M; Sharma, A; Silva, P; Sphicas, P; Stakia, A; Steggemann, J; Stoye, M; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Verweij, M; Zeuner, W D; Bertl, W; Caminada, L; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Backhaus, M; Bäni, L; Berger, P; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Dorfer, C; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Klijnsma, T; Lustermann, W; Mangano, B; Marionneau, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Reichmann, M; Sanz Becerra, D A; Schönenberger, M; Shchutska, L; Tavolaro, V R; Theofilatos, K; Vesterbacka Olsson, M L; Wallny, R; Zhu, D H; Aarrestad, T K; Amsler, C; Canelli, M F; De Cosa, A; Del Burgo, R; Donato, S; Galloni, C; Hreus, T; Kilminster, B; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Schweiger, K; Seitz, C; Takahashi, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Paganis, E; Psallidas, A; Steen, A; Tsai, J F; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Boran, F; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Karapinar, G; Ocalan, K; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Tekten, S; Yetkin, E A; Agaras, M N; Atay, S; Cakir, A; Cankocak, K; Grynyov, B; Levchuk, L; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Davignon, O; Flacher, H; Goldstein, J; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Newbold, D M; Paramesvaran, S; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Auzinger, G; Bainbridge, R; Borg, J; Breeze, S; Buchmuller, O; Bundock, A; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Elwood, A; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Matsushita, T; Nash, J; Nikitenko, A; Palladino, V; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Scott, E; Seez, C; Shtipliyski, A; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wardle, N; Winterbottom, D; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Zahid, S; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Smith, C; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Garabedian, A; Hadley, M; Hakala, J; Heintz, U; Hogan, J M; Kwok, K H M; Laird, E; Landsberg, G; Lee, J; Mao, Z; Narain, M; Pazzini, J; Piperov, S; Sagir, S; Syarif, R; Yu, D; Band, R; Brainerd, C; Burns, D; Calderon De La Barca Sanchez, M; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Stolp, D; Tos, K; Tripathi, M; Wang, Z; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Regnard, S; Saltzberg, D; Schnaible, C; Valuev, V; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Si, W; Wang, L; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cittolin, S; Derdzinski, M; Gerosa, R; Gilbert, D; Hashemi, B; Holzner, A; Klein, D; Kole, G; Krutelyov, V; Letts, J; Macneill, I; Masciovecchio, M; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bendavid, J; Bornheim, A; Lawhorn, J M; Newman, H B; Nguyen, T; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhang, Z; Zhu, R Y; Andrews, M B; Ferguson, T; Mudholkar, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Patterson, J R; Quach, D; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Abdullin, S; Albrow, M; Alyari, M; Apollinari, G; Apresyan, A; Apyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Canepa, A; Cerati, G B; Cheung, H W K; Chlebana, F; Cremonesi, M; Duarte, J; Elvira, V D; Freeman, J; Gecse, Z; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Schneider, B; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Field, R D; Furic, I K; Gleyzer, S V; Joshi, B M; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shi, K; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Joshi, Y R; Linn, S; Markowitz, P; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Hagopian, S; Hagopian, V; Johnson, K F; Kolberg, T; Martinez, G; Perry, T; Prosper, H; Saha, A; Santra, A; Sharma, V; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Cavanaugh, R; Chen, X; Evdokimov, O; Gerber, C E; Hangal, D A; Hofman, D J; Jung, K; Kamin, J; Sandoval Gonzalez, I D; Tonjes, M B; Trauger, H; Varelas, N; Wang, H; Wu, Z; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Royon, C; Sanders, S; Schmitz, E; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Feng, Y; Ferraioli, C; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonwar, S C; Abercrombie, D; Allen, B; Azzolini, V; Barbieri, R; Baty, A; Bi, R; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Gomez Ceballos, G; Goncharov, M; Hsu, D; Hu, M; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Tatar, K; Velicanu, D; Wang, J; Wang, T W; Wyslouch, B; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Hiltbrand, J; Kalafut, S; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Turkewitz, J; Wadud, M A; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Loukas, N; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Higginbotham, S; Lange, D; Luo, J; Marlow, D; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Malik, S; Norberg, S; Barker, A; Barnes, V E; Das, S; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Peng, C C; Qiu, H; Schulte, J F; Sun, J; Wang, F; Xie, W; Cheng, T; Parashar, N; Stupak, J; Adair, A; Chen, Z; Ecklund, K M; Freed, S; Geurts, F J M; Guilbaud, M; Kilpatrick, M; Li, W; Michlin, B; Northup, M; Padley, B P; Roberts, J; Rorie, J; Shi, W; Tu, Z; Zabel, J; Zhang, A; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Ciesielski, R; Goulianos, K; Mesropian, C; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Montalvo, R; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Damgov, J; De Guio, F; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Mengke, T; Muthumuni, S; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Padeken, K; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Hirosky, R; Joyce, M; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Wang, Y; Wolfe, E; Xia, F; Harr, R; Karchin, P E; Poudyal, N; Sturdy, J; Thapa, P; Zaleski, S; Brodski, M; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Hussain, U; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2018-04-06

    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.

  3. Measurement of the Splitting Function in $pp$ and Pb-Pb Collisions at $$\\sqrt{s_{_{\\mathrm{NN}}}} =$$ 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    2018-04-03

    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at amore » center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.« less

  4. Dynamics of a split torque helicopter transmission

    NASA Technical Reports Server (NTRS)

    Rashidi, Majid; Krantz, Timothy

    1992-01-01

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  5. Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb3+-doped silicate, tellurite, germanate, and phosphate glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Liaolin; Xia, Yu; Shen, Xiao; Yang, Runlan; Wei, Wei

    2018-01-01

    In this work, we systematically studied the spectroscopic characteristics of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses. The emission peak beyond 976 nm showed irregular shift from 1001 nm to 1023 nm when Yb3+ in different glass matrices. It was associated with the Stark splitting of 2F7/2 and the emission intensities ratio between the transition from the lowest Stark splitting energy level of 2F5/2 to the Stark splitting energy levels of 2F7/2, e to b and that of e to d. Larger Stark splitting of 2F7/2 results in the red-shift of the near infrared emission band at room temperature and larger ratio results in the blue-shift of emission band. The fluorescence lifetimes of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses were measured to be 0.94, 0.82, 1.51, and 0.66 ms, respectively. The fluorescence lifetime was associated with the reabsorption of Yb3+, which larger absorption cross section at the emission band results in larger reabsorption, then leads to the shorter near infrared fluorescence lifetime.

  6. Seismic anisotropy and its precursory change before eruptions at Piton de la Fournaise volcano, La Réunion

    NASA Astrophysics Data System (ADS)

    Savage, M. K.; Ferrazzini, V.; Peltier, A.; Rivemale, E.; Mayor, J.; Schmid, A.; Brenguier, F.; Massin, F.; Got, J.-L.; Battaglia, J.; DiMuro, A.; Staudacher, T.; Rivet, D.; Taisne, B.; Shelley, A.

    2015-05-01

    The Piton de la Fournaise volcano exhibits frequent eruptions preceded by seismic swarms and is a good target to test hypotheses about magmatically induced variations in seismic wave properties. We use a permanent station network and a portable broadband network to compare seismic anisotropy measured via shear wave splitting with geodetic displacements, ratios of compressional to shear velocity (Vp/Vs), earthquake focal mechanisms, and ambient noise correlation analysis of surface wave velocities and to examine velocity and stress changes from 2000 through 2012. Fast directions align radially to the central cone and parallel to surface cracks and fissures, suggesting stress-controlled cracks. High Vp/Vs ratios under the summit compared with low ratios under the flank suggest spatial variations in the proportion of fluid-filled versus gas-filled cracks. Secular variations of fast directions (ϕ) and delay times (dt) between split shear waves are interpreted to sense changing crack densities and pressure. Delay times tend to increase while surface wave velocity decreases before eruptions. Rotations of ϕ may be caused by changes in either stress direction or fluid pressure. These changes usually correlate with GPS baseline changes. Changes in shear wave splitting measurements made on multiplets yield several populations with characteristic delay times, measured incoming polarizations, and fast directions, which change their proportion as a function of time. An eruption sequence on 14 October 2010 yielded over 2000 shear wave splitting measurements in a 14 h period, allowing high time resolution measurements to characterize the sequence. Stress directions from a propagating dike model qualitatively fit the temporal change in splitting.

  7. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajaldini, Mehdi; Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft; Jafri, Mohd Zubir Mat

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used asmore » the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.« less

  8. Harmonics added to a flickering light can upset the balance between ON and OFF pathways to produce illusory colors.

    PubMed

    Rider, Andrew T; Henning, G Bruce; Eskew, Rhea T; Stockman, Andrew

    2018-04-24

    The neural signals generated by the light-sensitive photoreceptors in the human eye are substantially processed and recoded in the retina before being transmitted to the brain via the optic nerve. A key aspect of this recoding is the splitting of the signals within the two major cone-driven visual pathways into distinct ON and OFF branches that transmit information about increases and decreases in the neural signal around its mean level. While this separation is clearly important physiologically, its effect on perception is unclear. We have developed a model of the ON and OFF pathways in early color processing. Using this model as a guide, we can produce imbalances in the ON and OFF pathways by changing the shapes of time-varying stimulus waveforms and thus make reliable and predictable alterations to the perceived average color of the stimulus-although the physical mean of the waveforms does not change. The key components in the model are the early half-wave rectifying synapses that split retinal photoreceptor outputs into the ON and OFF pathways and later sigmoidal nonlinearities in each pathway. The ability to systematically vary the waveforms to change a perceptual quality by changing the balance of signals between the ON and OFF visual pathways provides a powerful psychophysical tool for disentangling and investigating the neural workings of human vision. Copyright © 2018 the Author(s). Published by PNAS.

  9. Effect of mixing proportion on the properties of seaweed modified sustainable concrete

    NASA Astrophysics Data System (ADS)

    Siddique, Md Nurul Islam; Wahid, Zularisam bin Abd

    2017-10-01

    Although the application of organic polymer has already been reported in the development of polymer modification process the use of carbohydrate polymer hasn't been reported till date. The effect of mixing ratio of seaweed modified mortar on the properties of sustainable concrete was investigated. A number of mixing ratios of seaweed (gel) with cement, sand and water (such as 0.1; 0.6; 1.1; 6) was studied in this work. In addition, a range of mixing ratios of seaweed (powder) with cement, sand and water (such as 0.1; 0.3; 0.6; 1.1; 2.1, 5.1) was examined. The performance of the seaweed modified sustainable concrete was evaluated by compressive and splitting strength. Results revealed that seaweed modified concrete with mixing ratio (0.6) was optimum. This ratio produced significant compressive and splitting strength of 30 MPa and 5 MPa for 28 days, respectively.

  10. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.

    PubMed

    Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Destgeer, Ghulam; Ahmed, Husnain; Ahmad, Raheel; Sung, Hyung Jin

    2018-01-30

    On-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable. Here, we present a parallel-type acoustofluidic device with a disposable microfluidic chip to address the limitations of previous acoustic droplet splitting devices. In the proposed device, an acoustic field is applied in the direction opposite to the flow direction to achieve multichannel droplet splitting and steering. A disposable polydimethylsiloxane microfluidic chip is employed in the developed device, thereby removing the need for permanent bonding and improving the flexibility of the droplet microfluidic device. We experimentally demonstrated on-demand acoustic droplet bi-splitting and steering with precise control over the droplet splitting ratio, and we investigated the underlying physical mechanisms of droplet splitting and steering based on Laplace pressure and ray acoustics analyses, respectively. We also demonstrated droplet tri-splitting to prove the feasibility of multichannel droplet splitting. The proposed on-demand acoustic droplet splitting device enables on-chip droplet volume control in various droplet-based microfluidic applications.

  11. Improving multiphoton STED nanoscopy with separation of photons by LIfetime Tuning (SPLIT)

    NASA Astrophysics Data System (ADS)

    Coto Hernández, Iván.; Lanzano, Luca; Castello, Marco; Jowett, Nate; Tortarolo, Giorgio; Diaspro, Alberto; Vicidomini, Giuseppe

    2018-02-01

    Stimulated emission depletion (STED) microscopy is a powerful bio-imaging technique since it provides molecular spatial resolution whilst preserving the most important assets of fluorescence microscopy. When combined with twophoton excitation (2PE) microscopy (2PE-STED), the sub-diffraction imaging ability of STED microscopy can be achieved also on thick biological samples. The most straightforward implementation of 2PE-STED microscopy is obtained by introducing a STED beam operating in continuous wave (CW) into a conventional Ti:Sapphire based 2PE microscope (2PE-CW-STED). In this implementation, an effective resolution enhancement is mainly obtained implementing a time-gated detection scheme, which however can drastically reduce the signal-to-noise/background ratio of the final image. Herein, we combine the lifetime tuning (SPLIT) approach with 2PE-CW-STED to overcome this limitation. The SPLIT approach is employed to discard fluorescence photons lacking super-resolution information, by means of a pixel-by-pixel phasor approach. Combining the SPLIT approach with image deconvolution further optimizes the signal-to-noise/background ratio.

  12. Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol.

    PubMed

    Liu, Yiqi; Tu, Xiaohu; Xu, Qin; Bai, Chenxiao; Kong, Chuixing; Liu, Qi; Yu, Jiahui; Peng, Qiangqiang; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2018-01-01

    As a promising one-carbon renewable substrate for industrial biotechnology, methanol has attracted much attention. However, engineering of microorganisms for industrial production of pharmaceuticals using a methanol substrate is still in infancy. In this study, the methylotrophic yeast Pichia pastoris was used to produce anti-hypercholesterolemia pharmaceuticals, lovastatin and its precursor monacolin J, from methanol. The biosynthetic pathways for monacolin J and lovastatin were first assembled and optimized in single strains using single copies of the relevant biosynthetic genes, and yields of 60.0mg/L monacolin J and 14.4mg/L lovastatin were obtained using methanol following pH controlled monoculture. To overcome limitations imposed by accumulation of intermediates and metabolic stress in monoculture, approaches using pathway splitting and co-culture were developed. Two pathway splitting strategies for monacolin J, and four for lovastatin were tested at different metabolic nodes. Biosynthesis of monacolin J and lovastatin was improved by 55% and 71%, respectively, when the upstream and downstream modules were separately accommodated in two different fluorescent strains, split at the metabolic node of dihydromonacolin L. However, pathway distribution at monacolin J blocked lovastatin biosynthesis in all designs, mainly due to its limited ability of crossing cellular membranes. Bioreactor fermentations were tested for the optimal co-culture strategies, and yields of 593.9mg/L monacolin J and 250.8mg/L lovastatin were achieved. This study provides an alternative method for production of monacolin J and lovastatin and reveals the potential of a methylotrophic yeast to produce complicated pharmaceuticals from methanol. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Recent Progress in Metal‐Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting

    PubMed Central

    Wang, Wei; Xu, Xiaomin; Zhou, Wei

    2017-01-01

    The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal‐organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra‐large surface‐to‐volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF‐based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF‐based catalysts for water splitting are proposed. PMID:28435777

  14. A Numerical Analysis of Droplet Breakup in Asymmetric T-Junctions with Different Outlet Pressure Gradients

    NASA Astrophysics Data System (ADS)

    Cheng, Way Lee; Han, Arum; Sadr, Reza

    2016-11-01

    Droplet splitting is the breakup of a parent droplet into two or more daughter droplets of desired sizes. It is done to improve production efficiency and investigational capacity in microfluidic devices. Passive splitting is the breakup of droplets into precise volume ratios at predetermined locations without external power sources. In this study, a 3-D simulation was conducted using the Volume-of-Fluid method to analysis the breakup process of a droplet in asymmetric T-junctions with different outlet arm lengths. The arrangement allows a droplet to be split into two smaller droplets of different sizes, where the volumetric ratio of the daughter droplets depends on the length ratios of the outlet arms. The study identified different breakup regimes such as primary, transition, bubble and non-breakup under different flow conditions and channel configurations. Furthermore, a close analysis to the primary breakup regimes were done to determine the breakup mechanisms at various flow conditions. The analysis show that the breakup mechanisms in asymmetric T-junctions is different than a regular split. A pseudo-phenomenological model for the breakup criteria was presented at the end. The model was an expanded version to a theoretically derived model for the symmetric droplet breakup. The Qatar National Research Fund (a member of the Qatar Founda- tion), under Grant NPRP 5-671-2-278, supported this work.

  15. Investigation in the Langley 19-foot Pressure Tunnel of Two Wings of NACA 65-210 and 64-210 Airfoil Sections with Various Type Flaps

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Spooner, Stanley H

    1949-01-01

    Report presents the results of an investigation conducted in the Langley 19-foot pressure tunnel to determine the maximum lift and stalling characteristics of two thin wings equipped with several types of flaps. Split, single slotted, and double slotted flaps were tested on one wing which had NACA 65-210 airfoil sections and split and double slotted flaps were tested on the other, which had NACA 64-210 airfoil sections. Both wings were zero sweep, an aspect ratio of 9, and a taper ratio of 0.4.

  16. Quantum-splitting oxide-based phosphors and method of producing the same

    DOEpatents

    Setlur, Anant Achyut; Srivastava, Alok Mani

    2003-09-02

    Strontium, calcium, strontium calcium, strontium calcium magnesium, calcium magnesium aluminates, and strontium borates activated with Pr.sup.3+ exhibit characteristics of quantum-splitting phosphors under VUV excitation. A large emission peak at about 405 nm under VUV excitation is used conveniently to identify quantum-splitting phosphors. Improvements may be achieved with addition of fluorides or boric acid as a flux during the preparation of the phosphors. It is also possible to predict improvement in quantum efficiency by observing the ratio of emission intensities at about 480 nm and about 610 nm.

  17. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica.

    PubMed

    Fernandes, Luís A; Grenier, Jason R; Herman, Peter R; Aitchison, J Stewart; Marques, Paulo V S

    2011-06-20

    Integrated polarization beam splitters based on birefringent directional couplers are demonstrated. The devices are fabricated in bulk fused silica glass by femtosecond laser writing (300 fs, 150 nJ at 500 kHz, 522 nm). The birefringence was measured from the spectral splitting of the Bragg grating resonances associated with the vertically and horizontally polarized modes. Polarization splitting directional couplers were designed and demonstrated with 0.5 dB/cm propagation losses and -19 dB and -24 dB extinction ratios for the polarization splitting.

  18. Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Besse, P. A.; Melchior, H.

    1995-10-01

    Overlapping-image multimode interference (MMI) couplers, a new class of devices, permit uniform and nonuniform power splitting. A theoretical description directly relates coupler geometry to image intensities, positions, and phases. Among many possibilities of nonuniform power splitting, examples of 1 \\times 2 couplers with ratios of 15:85 and 28:72 are given. An analysis of uniform power splitters includes the well-known 2 \\times N and 1 \\times N MMI couplers. Applications of MMI couplers include mode filters, mode splitters-combiners, and mode converters.

  19. Stability and migration of large oxygen clusters in UO(2+x): density functional theory calculations.

    PubMed

    Andersson, D A; Espinosa-Faller, F J; Uberuaga, B P; Conradson, S D

    2012-06-21

    Using ab initio molecular dynamics simulations and nudged elastic band calculations we examine the finite temperature stability, transition pathways, and migration mechanisms of large oxygen clusters in UO(2+x). Here we specifically consider the recently proposed split quad-interstitial and cuboctahedral oxygen clusters. It is shown that isolated cuboctahedral clusters may transform into more stable configurations that are closely linked to the split quad-interstitial. The split quad-interstitial is stable with respect to single interstitials occupying the empty octahedral holes of the UO(2) lattice. In order to better understand discrepancies between theory and experiments, the simulated atomic pair distribution functions for the split quad-interstitial structures are analyzed with respect to the distribution function for U(4)O(9) previously obtained from neutron diffraction data. Our nudged elastic band calculations suggest that the split quad-interstitial may migrate by translating one of its constituent di-interstitial clusters via a barrier that is lower than the corresponding barrier for individual interstitials, but higher than the barrier for the most stable di-interstitial cluster.

  20. Application of the Aqueous Porous Pathway Model to Quantify the Effect of Sodium Lauryl Sulfate on Ultrasound-Induced Skin Structural Perturbation

    PubMed Central

    Polat, Baris E.; Seto, Jennifer E.; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    This study investigated the effect of sodium lauryl sulfate (SLS) on skin structural perturbation when utilized simultaneously with low-frequency sonophoresis (LFS). Pig full-thickness skin (FTS) and pig split-thickness skin (STS) treated with LFS/SLS and LFS were analyzed in the context of the aqueous porous pathway model to quantify skin perturbation through changes in skin pore radius and porosity-to-tortuosity ratio (ε/τ). In addition, skin treatment times required to attain specific levels of skin electrical resistivity were analyzed to draw conclusions about the effect of SLS on reproducibility and predictability of skin perturbation. We found that LFS/SLS-treated FTS, LFS/SLS-treated STS, and LFS-treated FTS exhibited similar skin perturbation. However, LFS-treated STS exhibited significantly higher skin perturbation, suggesting greater structural changes to the less robust STS induced by the purely physical enhancement mechanism of LFS. Evaluation of ε/τ values revealed that LFS/SLS-treated FTS and STS have similar transport pathways, while LFS-treated FTS and STS have lower ε/τ values. In addition, LFS/SLS treatment times were much shorter than LFS treatment times for both FTS and STS. Moreover, the simultaneous use of SLS and LFS not only results in synergistic enhancement, as reflected in the shorter skin treatment times, but also in more predictable and reproducible skin perturbation. PMID:20963845

  1. Biochar application mode influences nitrogen leaching and NH3 volatilization losses in a rice paddy soil irrigated with N-rich wastewater.

    PubMed

    Sun, Haijun; Min, Ju; Zhang, Hailin; Feng, Yanfang; Lu, Kouping; Shi, Weiming; Yu, Min; Li, Xuewen

    2017-07-11

    Impacts of biochar application mode on nitrogen (N) leaching, ammonia (NH 3 ) volatilization, rice grain yield and N use efficiency (NUE) are not well understood. Therefore, a field experiment was conducted to evaluate those impacts in a rice paddy soil received 225 kg N ha -1 from either urea or N-rich wastewater. One treatment received 10 t ha -1 biochar with the basal fertilization, and the other received same total amount of biochar but split applied with the three split N applications with same ratio as N fertilizer split ratio (40%, 30% and 30%). Results showed that N leaching loads were 4.20-6.22 kg ha -1 . Biochar one-time application reduced N leaching by 23.1%, and biochar split application further reduced N leaching by 32.4%. Total NH 3 volatilization loss was 15.5-24.5 kg ha -1 . Biochar one-time application did not influence the NH 3 volatilization, but biochar split application stimulated the cumulative NH 3 volatilization by 57.7%. Both biochar treatments had no influence on NUE and rice grain yield. In conclusion, biochar application mode indeed influences the N leaching and NH 3 volatilization in rice paddy soils, and biochar one-time application should be recommended for reducing N leaching without increasing NH 3 volatilization.

  2. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting

    PubMed Central

    Zhang, Guigang; Lan, Zhi-An

    2017-01-01

    Graphitic carbon nitride based polymers, being metal-free, accessible, environmentally benign and sustainable, have been widely investigated for artificial photosynthesis in recent years for the photocatalytic splitting of water to produce hydrogen fuel. However, the photocatalytic stoichiometric splitting of pure water into H2 and O2 with a molecular ratio of 2 : 1 is far from easy, and is usually hindered by the huge activation energy barrier and sluggish surface redox reaction kinetics. Herein, we provide a concise overview of cocatalyst modified graphitic carbon nitride based photocatalysts, with our main focus on the modulation of the water splitting redox reaction kinetics. We believe that a timely and concise review on this promising but challenging research topic will certainly be beneficial for general readers and researchers in order to better understand the property–activity relationship towards overall water splitting, which could also trigger the development of new organic architectures for photocatalytic overall water splitting through the rational control of surface chemistry. PMID:28959425

  3. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.

    PubMed

    O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M

    2014-10-14

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture.

    PubMed

    Miyamoto, Kenji; Kuwano, Shigeru; Terada, Jun; Otaka, Akihiro

    2016-01-25

    We analyze the mobile fronthaul (MFH) bandwidth and the wireless transmission performance in the split-PHY processing (SPP) architecture, which redefines the functional split of centralized/cloud RAN (C-RAN) while preserving high wireless coordinated multi-point (CoMP) transmission/reception performance. The SPP architecture splits the base stations (BS) functions between wireless channel coding/decoding and wireless modulation/demodulation, and employs its own CoMP joint transmission and reception schemes. Simulation results show that the SPP architecture reduces the MFH bandwidth by up to 97% from conventional C-RAN while matching the wireless bit error rate (BER) performance of conventional C-RAN in uplink joint reception with only 2-dB signal to noise ratio (SNR) penalty.

  5. Microbubble transport through a bifurcating vessel network with pulsatile flow.

    PubMed

    Valassis, Doug T; Dodde, Robert E; Esphuniyani, Brijesh; Fowlkes, J Brian; Bull, Joseph L

    2012-02-01

    Motivated by two-phase microfluidics and by the clinical applications of air embolism and a developmental gas embolotherapy technique, experimental and theoretical models of microbubble transport in pulsatile flow are presented. The one-dimensional time-dependent theoretical model is developed from an unsteady Bernoulli equation that has been modified to include viscous and unsteady effects. Results of both experiments and theory show that roll angle (the angle the plane of the bifurcating network makes with the horizontal) is an important contributor to bubble splitting ratio at each bifurcation within the bifurcating network. When compared to corresponding constant flow, pulsatile flow was shown to produce insignificant changes to the overall splitting ratio of the bubble despite the order one Womersley numbers, suggesting that bubble splitting through the vasculature could be modeled adequately with a more modest constant flow model. However, bubble lodging was affected by the flow pulsatility, and the effects of pulsatile flow were evident in the dependence of splitting ratio of bubble length. The ability of bubbles to remain lodged after reaching a steady state in the bifurcations is promising for the effectiveness of gas embolotherapy to occlude blood flow to tumors, and indicates the importance of understanding where lodging will occur in air embolism. The ability to accurately predict the bubble dynamics in unsteady flow within a bifurcating network is demonstrated and suggests the potential for bubbles in microfluidics devices to encode information in both steady and unsteady aspects of their dynamics.

  6. Bad splits in bilateral sagittal split osteotomy: systematic review and meta-analysis of reported risk factors.

    PubMed

    Steenen, S A; van Wijk, A J; Becking, A G

    2016-08-01

    An unfavourable and unanticipated pattern of the bilateral sagittal split osteotomy (BSSO) is generally referred to as a 'bad split'. Patient factors predictive of a bad split reported in the literature are controversial. Suggested risk factors are reviewed in this article. A systematic review was undertaken, yielding a total of 30 studies published between 1971 and 2015 reporting the incidence of bad split and patient age, and/or surgical technique employed, and/or the presence of third molars. These included 22 retrospective cohort studies, six prospective cohort studies, one matched-pair analysis, and one case series. Spearman's rank correlation showed a statistically significant but weak correlation between increasing average age and increasing occurrence of bad splits in 18 studies (ρ=0.229; P<0.01). No comparative studies were found that assessed the incidence of bad split among the different splitting techniques. A meta-analysis pooling the effect sizes of seven cohort studies showed no significant difference in the incidence of bad split between cohorts of patients with third molars present and concomitantly removed during surgery, and patients in whom third molars were removed at least 6 months preoperatively (odds ratio 1.16, 95% confidence interval 0.73-1.85, Z=0.64, P=0.52). In summary, there is no robust evidence to date to show that any risk factor influences the incidence of bad split. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Mixed chimerism and split tolerance

    PubMed Central

    Al-Adra, David P.

    2011-01-01

    Establishing hematopoietic mixed chimerism can lead to donor-specific tolerance to transplanted organs and may eliminate the need for long-term immunosuppressive therapy, while also preventing chronic rejection. In this review, we discuss central and peripheral mechanisms of chimerism induced tolerance. However, even in the long-lasting presence of a donor organ or donor hematopoietic cells, some allogeneic tissues from the same donor can be rejected; a phenomenon known as split tolerance. With the current goal of creating mixed chimeras using clinically feasible amounts of donor bone marrow and with minimal conditioning, split tolerance may become more prevalent and its mechanisms need to be explored. Some predisposing factors that may increase the likelihood of split tolerance are immunogenicity of the graft, certain donor-recipient combinations, prior sensitization, location and type of graft and minimal conditioning chimerism induction protocols. Additionally, split tolerance may occur due to a differential susceptibility of various types of tissues to rejection. The mechanisms involved in a tissue’s differential susceptibility to rejection include the presence of polymorphic tissue-specific antigens and variable sensitivity to indirect pathway effector mechanisms. Finally, we review the clinical attempts at allograft tolerance through the induction of chimerism; studies that are revealing the complex relationship between chimerism and tolerance. This relationship often displays split tolerance, and further research into its mechanisms is warranted. PMID:22509425

  8. Approaches of aroma extraction dilution analysis (AEDA) for headspace solid phase microextraction and gas chromatography-olfactometry (HS-SPME-GC-O): Altering sample amount, diluting the sample or adjusting split ratio?

    PubMed

    Feng, Yunzi; Cai, Yu; Sun-Waterhouse, Dongxiao; Cui, Chun; Su, Guowan; Lin, Lianzhu; Zhao, Mouming

    2015-11-15

    Aroma extract dilution analysis (AEDA) is widely used for the screening of aroma-active compounds in gas chromatography-olfactometry (GC-O). In this study, three aroma dilution methods, (I) using different test sample volumes, (II) diluting samples, and (III) adjusting the GC injector split ratio, were compared for the analysis of volatiles by using HS-SPME-AEDA. Results showed that adjusting the GC injector split ratio (III) was the most desirable approach, based on the linearity relationships between Ln (normalised peak area) and Ln (normalised flavour dilution factors). Thereafter this dilution method was applied in the analysis of aroma-active compounds in Japanese soy sauce and 36 key odorants were found in this study. The most intense aroma-active components in Japanese soy sauce were: ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, ethyl 4-methylpentanoate, 3-(methylthio)propanal, 1-octen-3-ol, 2-methoxyphenol, 4-ethyl-2-methoxyphenol, 2-methoxy-4-vinylphenol, 2-phenylethanol, and 4-hydroxy-5-ethyl-2-methyl-3(2H)-furanone. Copyright © 2015. Published by Elsevier Ltd.

  9. USE OF GC-MS/COMBUSTION/IRMS TO IDENTIFY AND DETERMINE THE STABLE CARBON ISOTOPIC RATIO OF INDIVIDUAL LIPIDS

    EPA Science Inventory

    A system that couples a gas chromatograph (GC) via a split to a quadrapole mass spectrometer (MS) and, through a combustion interface, to an isotope ratio mass spectrometer (IRMS) allows the simultaneous detection of electron impact mass spectra and stable carbon isotope ratio an...

  10. Single photon at a configurable quantum-memory-based beam splitter

    NASA Astrophysics Data System (ADS)

    Guo, Xianxin; Mei, Yefeng; Du, Shengwang

    2018-06-01

    We report the demonstration of a configurable coherent quantum-memory-based beam splitter (BS) for a single-photon wave packet making use of laser-cooled 85Rb atoms and electromagnetically induced transparency. The single-photon wave packet is converted (stored) into a collective atomic spin state and later retrieved (split) into two nearly opposing directions. The storage time, beam-splitting ratio, and relative phase are configurable and can be dynamically controlled. We experimentally confirm that such a BS preserves the quantum particle nature of the single photon and the coherence between the two split wave packets of the single photon.

  11. High-resolution simulations of unstable cylindrical gravity currents undergoing wandering and splitting motions in a rotating system

    NASA Astrophysics Data System (ADS)

    Dai, Albert; Wu, Ching-Sen

    2018-02-01

    High-resolution simulations of unstable cylindrical gravity currents when wandering and splitting motions occur in a rotating system are reported. In this study, our attention is focused on the situation of unstable rotating cylindrical gravity currents when the ratio of Coriolis to inertia forces is larger, namely, 0.5 ≤ C ≤ 2.0, in comparison to the stable ones when C ≤ 0.3 as investigated previously by the authors. The simulations reproduce the major features of the unstable rotating cylindrical gravity currents observed in the laboratory, i.e., vortex-wandering or vortex-splitting following the contraction-relaxation motion, and good agreement is found when compared with the experimental results on the outrush radius of the advancing front and on the number of bulges. Furthermore, the simulations provide energy budget information which could not be attained in the laboratory. After the heavy fluid is released, the heavy fluid collapses and a contraction-relaxation motion is at work for approximately 2-3 revolutions of the system. During the contraction-relaxation motion of the heavy fluid, the unstable rotating cylindrical gravity currents behave similar to the stable ones. Towards the end of the contraction-relaxation motion, the dissipation rate in the system reaches a local minimum and a quasi-geostrophic equilibrium state is reached. After the quasi-geostrophic equilibrium state, vortex-wandering or vortex-splitting may occur depending on the ratio of Coriolis to inertia forces. The vortex-splitting process begins with non-axisymmetric bulges and, as the bulges grow, the kinetic energy increases at the expense of decreasing potential energy in the system. The completion of vortex-splitting is accompanied by a local maximum of dissipation rate and a local maximum of kinetic energy in the system. A striking feature of the unstable rotating cylindrical gravity currents is the persistent upwelling and downwelling motions, which are observed for both the vortex-wandering and vortex-splitting motions and were not previously documented for such flows. Depending on the Reynolds number, the bulges around the circumference of the unstable rotating cylindrical gravity currents may or may not develop into cutoff distinct circulations. The number of bulges is seen to be dependent on the ratio of Coriolis to inertia forces but independent of the Reynolds number for the range of Reynolds number considered in this study.

  12. Splitting of the weak hypercharge quantum

    NASA Astrophysics Data System (ADS)

    Nielsen, H. B.; Brene, N.

    1991-08-01

    The ratio between the weak hypercharge quantum for particles having no coupling to the gauge bosons corresponding to the semi-simple component of the gauge group and the smallest hypercharge quantum for particles that do have such couplings is exceptionally large for the standard model, considering its rank. To compare groups with respect to this property we propose a quantity χ which depends on the rank of the group and the splitting ratio of the hypercharge(s) to be found in the group. The quantity χ has maximal value for the gauge group of the standard model. This suggests that the hypercharge splitting may play an important rôle either in the origin of the gauge symmetry at a fundamental scale or in some kind of selection mechanism at a scale perhaps nearer to the experimental scale. Such a selection mechanism might be what we have called confusion which removes groups with many (so-called generalized) automorphisms. The quantity χ tends to be large for groups with few generalized automorphisms.

  13. On the occurrence of false positives in tests of migration under an isolation with migration model

    PubMed Central

    Hey, Jody; Chung, Yujin; Sethuraman, Arun

    2015-01-01

    The population genetic study of divergence is often done using a Bayesian genealogy sampler, like those implemented in IMa2 and related programs, and these analyses frequently include a likelihood-ratio test of the null hypothesis of no migration between populations. Cruickshank and Hahn (2014, Molecular Ecology, 23, 3133–3157) recently reported a high rate of false positive test results with IMa2 for data simulated with small numbers of loci under models with no migration and recent splitting times. We confirm these findings and discover that they are caused by a failure of the assumptions underlying likelihood ratio tests that arises when using marginal likelihoods for a subset of model parameters. We also show that for small data sets, with little divergence between samples from two populations, an excellent fit can often be found by a model with a low migration rate and recent splitting time and a model with a high migration rate and a deep splitting time. PMID:26456794

  14. Measurement of kT splitting scales in W→ℓν events at [Formula: see text] with the ATLAS detector.

    PubMed

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartsch, V; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behar Harpaz, S; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Bernlochner, F U; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besjes, G J; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brown, G; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Chow, B K B; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Colas, J; Cole, S; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Courneyea, L; Cowan, G; Cox, B E; Cranmer, K; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Darmora, S; Dassoulas, J A; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Doi, Y; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dressnandt, N; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Duerdoth, I P; Duflot, L; Dufour, M-A; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Duxfield, R; Dwuznik, M; Ebenstein, W L; Ebke, J; Eckweiler, S; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Engelmann, R; Engl, A; Epp, B; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Facini, G; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fowler, A J; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gandrajula, R P; Gao, Y S; Gaponenko, A; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Göpfert, T; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gunther, J; Guo, B; Guo, J; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hajduk, Z; Hakobyan, H; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayakawa, T; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jeske, C; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joram, C; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karagounis, M; Karakostas, K; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Kenyon, M; Keoshkerian, H; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Krejci, F; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, M K; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, D; Liu, J B; Liu, L; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Lukas, W; Luminari, L; Lund, E; Lundberg, B; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lundquist, J; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Madaras, R J; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martinez Outschoorn, V; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Meguro, T; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Moles-Valls, R; Molfetas, A; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Möser, N; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Muenstermann, D; Müller, T A; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poblaguev, A; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quilty, D; Raas, M; Radeka, V; Radescu, V; Radloff, P; Ragusa, F; Rahal, G; Rahimi, A M; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinsch, A; Reisinger, I; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Ritsch, E; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarrazin, B; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, S W; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A; South, D; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahlen, H; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Williams, S; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Ye, J; Ye, S; Yen, A L; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, L; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zibell, A; Zieminska, D; Zimin, N I; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Živković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zutshi, V; Zwalinski, L

    A measurement of splitting scales, as defined by the k T clustering algorithm, is presented for final states containing a W boson produced in proton-proton collisions at a centre-of-mass energy of 7 TeV. The measurement is based on the full 2010 data sample corresponding to an integrated luminosity of 36 pb -1 which was collected using the ATLAS detector at the CERN Large Hadron Collider. Cluster splitting scales are measured in events containing W bosons decaying to electrons or muons. The measurement comprises the four hardest splitting scales in a k T cluster sequence of the hadronic activity accompanying the W boson, and ratios of these splitting scales. Backgrounds such as multi-jet and top-quark-pair production are subtracted and the results are corrected for detector effects. Predictions from various Monte Carlo event generators at particle level are compared to the data. Overall, reasonable agreement is found with all generators, but larger deviations between the predictions and the data are evident in the soft regions of the splitting scales.

  15. Time series evaluation of an intervention to increase statin tablet splitting by general practitioners.

    PubMed

    Polinski, Jennifer M; Schneeweiss, Sebastian; Maclure, Malcolm; Marshall, Blair; Ramsden, Samuel; Dormuth, Colin

    2011-02-01

    Tablet splitting, in which a higher-dose tablet is split to get 2 doses, reduces patients' drug costs. Statins can be split safely. General practitioners (GPs) may not direct their patients to split statins because of safety concerns or unawareness of costs. Medical chart inserts provide cost-effective education to physicians. The aim of this study was to assess whether providing GPs with statin-splitting chart inserts would increase splitting rates, and to identify predictors of splitting. In 2005 and 2006, we faxed a statin chart insert to British Columbia GPs with a request for a telephone interview. Consenting GPs were mailed 3 statin chart inserts and interviewed by phone (the intervention). In an interrupted time series, we compared monthly rates of statin-splitting prescriptions among intervention and nonintervention GPs before, during, and after the intervention. In multivariate logistic regressions accounting for patient clustering, predictors of splitting included physician and patient demographics and the specific statin prescribed. Of 5051 GPs reached, 282 (6%) agreed to the intervention. Before the intervention, GPs' splitting rate was 2.6%; after intervention, GPs' splitting rate was 7.5%. The rate for the nonintervention GPs was 4.4%. Intervention GPs were 1.68 (95% CI, 1.12-2.53) times more likely to prescribe splitting after the intervention than were nonintervention GPs. Other predictors were a patient's female sex (odds ratio [OR] = 1.26; 95% CI, 1.18-1.34), lower patient income (OR = 1.33; 95% CI, 1.18-1.34), and a lack of drug insurance (OR = 1.89; 95% CI, 1.69-2.04). An inexpensive intervention was effective in producing a sustained increase in GPs' splitting rate during 22 months of observed follow-up. Expanding statin-splitting education to all GPs might reduce prescription costs for many patients and payors. Copyright © 2011 Elsevier HS Journals, Inc. All rights reserved.

  16. Continuous Aspirin Use Does Not Increase Bleeding Risk of Split-Thickness Skin Transplantation Repair to Chronic Wounds.

    PubMed

    Sun, Yanwei; Wang, Yibing; Li, Liang; Zhang, Zheng; Wang, Ning; Wu, Dan

    Discontinuation of aspirin therapy before cutaneous surgery may cause serious complications. The aim of this prospective study was to evaluate the bleeding risk of split-thickness skin transplantation repair to chronic wounds in patients on aspirin therapy. A total of 97 patients who underwent split-thickness skin transplantation surgery of chronic wounds during a 2-year period were enrolled. They were categorized on the basis of aspirin therapies. The primary outcome was postoperative bleeding and bleeding complications. Univariate analysis was performed to examine the association between aspirin and bleeding complications. Among the 26 patients taking aspirin continuously in group A, there were 5 bleeding complications (19.23%). Among the 55 nonusers in group B, there were 10 bleeding complications (18.18%). Among the 16 discontinuous patients in group C, there were 3 bleeding complications (18.75%). No statistical differences were found among the groups ( P = .956). Univariate analysis showed that continuous aspirin use was not significantly associated with bleeding complications (odds ratio, 0.933; 95% confidence interval, 0.283-3.074; P = .910 in the aspirin and control groups) and that discontinuous aspirin use was not significantly associated with bleeding complications (odds ratio, 0.963; 95% confidence interval, 0.230-4.025; P = .959 in the aspirin and control groups; odds ratio, 0.969; 95% confidence interval, 0.198-4.752; P = .969 in the aspirin and discontinuous groups). Continuous aspirin use does not produce an additional bleeding risk in patients who undergo split-thickness skin transplantation repair of chronic wounds.

  17. Changes of strength characteristics of pervious concrete due to variations in water to cement ratio

    NASA Astrophysics Data System (ADS)

    Kovac, M.; Sicakova, A.

    2017-10-01

    Pervious concrete is considered to be a sustainable pavement material due to high water permeability. The experiment presented in this paper was aimed at study the influence of water to cement ratio on both the compressive and splitting tensile strength of pervious concrete. Typically, less water content in concrete mixture leads to less porosity of cement paste and thus it provides desirable mechanical properties. In case of conventional dense concrete, the lower is the water to cement ratio, the higher or better is the strength, density and durability of concrete. This behaviour is not quite clear in case of pervious concrete because of low amount of cement paste present. Results of compressive and splitting tensile strength of pervious concrete are discussed in the paper while taking into account values measured after 2 and 28 days of hardening and variations in water to cement ratio. The results showed that changes of water to cement ratio from 0.25 to 0.35 caused only slight differences in strength characteristics, and this applied to both types of tested strength.

  18. Effect of twist on single-mode fiber-optic 3 × 3 couplers

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Ji, Minning; Peng, Lei

    2018-01-01

    In the fabricating process of a 3 × 3 fused tapered coupler, the three fibers are usually twisted to be close-contact. The effect of twist on 3 × 3 fused tapered couplers is investigated in this paper. It is found that though a linear 3 × 3 coupler may realize equal power splitting ratio theoretically by twisting a special angle, it is hard to be fabricated actually because the twist angle and the coupler's length must be determined in advance. While an equilateral 3 × 3 coupler can not only realize approximate equal power splitting ratio theoretically but can also be fabricated just by controlling the elongation length. The effect of twist on the equilateral 3 × 3 coupler lies in the relationship between the equal ratio error and the twist angle. The more the twist angle is, the larger the equal ratio error may be. The twist angle usually should be no larger than 90° on one coupling period length in order to keep the equal ratio error small enough. The simulation results agree well with the experimental data.

  19. Application of the aqueous porous pathway model to quantify the effect of sodium lauryl sulfate on ultrasound-induced skin structural perturbation.

    PubMed

    Polat, Baris E; Seto, Jennifer E; Blankschtein, Daniel; Langer, Robert

    2011-04-01

    This study investigated the effect of sodium lauryl sulfate (SLS) on skin structural perturbation when utilized simultaneously with low-frequency sonophoresis (LFS). Pig full-thickness skin (FTS) and pig split-thickness skin (STS) treated with LFS/SLS and LFS were analyzed in the context of the aqueous porous pathway model to quantify skin perturbation through changes in skin pore radius and porosity-to-tortuosity ratio (ε/τ). In addition, skin treatment times required to attain specific levels of skin electrical resistivity were analyzed to draw conclusions about the effect of SLS on reproducibility and predictability of skin perturbation. We found that LFS/SLS-treated FTS, LFS/SLS-treated STS, and LFS-treated FTS exhibited similar skin perturbation. However, LFS-treated STS exhibited significantly higher skin perturbation, suggesting greater structural changes to the less robust STS induced by the purely physical enhancement mechanism of LFS. Evaluation of ε/τ values revealed that LFS/SLS-treated FTS and STS have similar transport pathways, whereas LFS-treated FTS and STS have lower ε/τ values. In addition, LFS/SLS treatment times were much shorter than LFS treatment times for both FTS and STS. Moreover, the simultaneous use of SLS and LFS not only results in synergistic enhancement, as reflected in the shorter skin treatment times, but also in more predictable and reproducible skin perturbation. Copyright © 2010 Wiley-Liss, Inc.

  20. Layer Splitting in a Complex Plasma

    NASA Astrophysics Data System (ADS)

    Smith, Bernard; Hyde, Truell; Matthews, Lorin; Johnson, Megan; Cook, Mike; Schmoke, Jimmy

    2009-11-01

    Dust particle clouds are found in most plasma processing environments and many astrophysical environments. Dust particles suspended within such plasmas often acquire an electric charge from collisions with free electrons in the plasma. Depending upon the ratio of interparticle potential energy to average kinetic energy, charged dust particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. An interesting facet of complex plasma behavior is that particle layers appear to split as the DC bias is increased. This splitting of layers points to a phase transition differing from the normal phase transitions found in two-dimensional solids. In 1993, Dubin noted that as the charged particle density of an initially two-dimensional Coulomb crystal increases the system's layers split at specific charge densities. This work modeled ions in a Paul or Penning trap, but may be applicable to dusty plasma systems as well. This work will discuss this possibility along with splitting observed in the CASPER GEC rf Reference Cell at specific pressures and powers.

  1. Evaluation of Euler fluxes by a high-order CFD scheme: shock instability

    NASA Astrophysics Data System (ADS)

    Tu, Guohua; Zhao, Xiaohui; Mao, Meiliang; Chen, Jianqiang; Deng, Xiaogang; Liu, Huayong

    2014-05-01

    The construction of Euler fluxes is an important step in shock-capturing/upwind schemes. It is well known that unsuitable fluxes are responsible for many shock anomalies, such as the carbuncle phenomenon. Three kinds of flux vector splittings (FVSs) as well as three kinds of flux difference splittings (FDSs) are evaluated for the shock instability by a fifth-order weighted compact nonlinear scheme. The three FVSs are Steger-Warming splitting, van Leer splitting and kinetic flux vector splitting (KFVS). The three FDSs are Roe's splitting, advection upstream splitting method (AUSM) type splitting and Harten-Lax-van Leer (HLL) type splitting. Numerical results indicate that FVSs and high dissipative FDSs undergo a relative lower risk on the shock instability than that of low dissipative FDSs. However, none of the fluxes evaluated in the present study can entirely avoid the shock instability. Generally, the shock instability may be caused by any of the following factors: low dissipation, high Mach number, unsuitable grid distribution, large grid aspect ratio, and the relative shock-internal flow state (or position) between upstream and downstream shock waves. It comes out that the most important factor is the relative shock-internal state. If the shock-internal state is closer to the downstream state, the computation is at higher susceptibility to the shock instability. Wall-normal grid distribution has a greater influence on the shock instability than wall-azimuthal grid distribution because wall-normal grids directly impact on the shock-internal position. High shock intensity poses a high risk on the shock instability, but its influence is not as much as the shock-internal state. Large grid aspect ratio is also a source of the shock instability. Some results of a second-order scheme and a first-order scheme are also given. The comparison between the high-order scheme and the two low-order schemes indicates that high-order schemes are at a higher risk of the shock instability. Adding an entropy fix is very helpful in suppressing the shock instability for the two low-order schemes. When the high-order scheme is used, the entropy fix still works well for Roe's flux, but its effect on the Steger-Warming flux is trivial and not much clear.

  2. Novel Fusion Protein Approach for Efficient High-Throughput Screening of Small Molecule–Mediating Protein-Protein Interactions in Cells and Living Animals

    PubMed Central

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S.

    2014-01-01

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule–mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction–mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGS-FACGSLSCGSF. A 9 ± 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation. PMID:16103094

  3. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.

    PubMed

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S

    2005-08-15

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule-mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction-mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGSFACGSLSCGSF. A 9 +/- 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation.

  4. Ab-initio study of dilute nitride substitutional and split-interstitial impurities in gallium antimonide (N-GaSb)

    NASA Astrophysics Data System (ADS)

    Jadaun, Priyamvada; Nair, Hari P.; Bank, Seth R.; Banerjee, Sanjay K.

    2012-02-01

    We present an ab-initio density functinal theory study of dilute-nitride GaSb. Adding dilute quantities of nitrogen causes rapid reduction in bandgap of GaSb (˜300 meV for 2% N). Due to this rapid reduction in bandgap, dilute-nitrides provide a pathway for extending the emission of GaSb based type-I diode lasers into the mid-infrared wavelength region (3-5 micron). In this study we look at the effect of substitutional N impurity on the electronic properties of our system and compare it with the band-anticrossing model, a phenomenological model, which has been used to explain giant band bowing observed in dilute-nitride alloys. We also study the effect of Sb-N split interstitials which are known to be non-radiative recombination centers. Furthermore we also discuss the stability of the Sb-N split interstitial relative to substitutional nitrogen to determine if the split interstitials can be annihilated using post-growth annealing to improve the radiative lifetime of the material which essential for laser operation.

  5. Split luciferase complementation assay for the analysis of G protein-coupled receptor ligand response in Saccharomyces cerevisiae.

    PubMed

    Fukutani, Yosuke; Ishii, Jun; Kondo, Akihiko; Ozawa, Takeaki; Matsunami, Hiroaki; Yohda, Masafumi

    2017-06-01

    The budding yeast Saccharomyces cerevisiae is equipped with G protein-coupled receptors (GPCR). Because the yeast GPCR signaling mechanism is partly similar to that of the mammalian system, S. cerevisiae can be used for a host of mammalian GPCR expression and ligand-mediated activation assays. However, currently available yeast systems require several hours to observe the responses because they depend on the expression of reporter genes. In this study, we attempted to develop a simple GPCR assay system using split luciferase and β-arrestin, which are independent of the endogenous S. cerevisiae GPCR signaling pathways. We applied the split luciferase complementation assay method to S. cerevisiae and found that it can be used to analyze the ligand response of the human somatostatin receptor in S. cerevisiae. On the contrary, the response of the pheromone receptor Ste2 was not observed by the assay. Thus, the split luciferase complementation should be free from the effect of the endogenous GPCR signaling. Biotechnol. Bioeng. 2017;114: 1354-1361. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Diiridium Bimetallic Complexes Function as a Redox Switch To Directly Split Carbonate into Carbon Monoxide and Oxygen.

    PubMed

    Chen, Tsun-Ren; Wu, Fang-Siou; Lee, Hsiu-Pen; Chen, Kelvin H-C

    2016-03-23

    A pair of diiridium bimetallic complexes exhibit a special type of oxidation-reduction reaction that could directly split carbonate into carbon monoxide and molecular oxygen via a low-energy pathway needing no sacrificial reagent. One of the bimetallic complexes, Ir(III)(μ-Cl)2Ir(III), can catch carbonato group from carbonate and reduce it to CO. The second complex, the rare bimetallic complex Ir(IV)(μ-oxo)2Ir(IV), can react with chlorine to release O2 by the oxidation of oxygen ions with synergistic oxidative effect of iridium ions and chlorine atoms. The activation energy needed for the key reaction is quite low (∼20 kJ/mol), which is far less than the dissociation energy of the C═O bond in CO2 (∼750 kJ/mol). These diiridium bimetallic complexes could be applied as a redox switch to split carbonate or combined with well-known processes in the chemical industry to build up a catalytic system to directly split CO2 into CO and O2.

  7. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields

    PubMed Central

    Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian

    2017-01-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469

  8. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields.

    PubMed

    Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen

    2017-06-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.

  9. Split Bregman multicoil accelerated reconstruction technique: A new framework for rapid reconstruction of cardiac perfusion MRI

    PubMed Central

    Kamesh Iyer, Srikant; Tasdizen, Tolga; Likhite, Devavrat; DiBella, Edward

    2016-01-01

    Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. Results: Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. Conclusions: The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly. PMID:27036592

  10. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants

    PubMed Central

    Shis, David L.; Bennett, Matthew R.

    2013-01-01

    The construction of synthetic gene circuits relies on our ability to engineer regulatory architectures that are orthogonal to the host’s native regulatory pathways. However, as synthetic gene circuits become larger and more complicated, we are limited by the small number of parts, especially transcription factors, that work well in the context of the circuit. The current repertoire of transcription factors consists of a limited selection of activators and repressors, making the implementation of transcriptional logic a complicated and component-intensive process. To address this, we modified bacteriophage T7 RNA polymerase (T7 RNAP) to create a library of transcriptional AND gates for use in Escherichia coli by first splitting the protein and then mutating the DNA recognition domain of the C-terminal fragment to alter its promoter specificity. We first demonstrate that split T7 RNAP is active in vivo and compare it with full-length enzyme. We then create a library of mutant split T7 RNAPs that have a range of activities when used in combination with a complimentary set of altered T7-specific promoters. Finally, we assay the two-input function of both wild-type and mutant split T7 RNAPs and find that regulated expression of the N- and C-terminal fragments of the split T7 RNAPs creates AND logic in each case. This work demonstrates that mutant split T7 RNAP can be used as a transcriptional AND gate and introduces a unique library of components for use in synthetic gene circuits. PMID:23479654

  11. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants.

    PubMed

    Shis, David L; Bennett, Matthew R

    2013-03-26

    The construction of synthetic gene circuits relies on our ability to engineer regulatory architectures that are orthogonal to the host's native regulatory pathways. However, as synthetic gene circuits become larger and more complicated, we are limited by the small number of parts, especially transcription factors, that work well in the context of the circuit. The current repertoire of transcription factors consists of a limited selection of activators and repressors, making the implementation of transcriptional logic a complicated and component-intensive process. To address this, we modified bacteriophage T7 RNA polymerase (T7 RNAP) to create a library of transcriptional AND gates for use in Escherichia coli by first splitting the protein and then mutating the DNA recognition domain of the C-terminal fragment to alter its promoter specificity. We first demonstrate that split T7 RNAP is active in vivo and compare it with full-length enzyme. We then create a library of mutant split T7 RNAPs that have a range of activities when used in combination with a complimentary set of altered T7-specific promoters. Finally, we assay the two-input function of both wild-type and mutant split T7 RNAPs and find that regulated expression of the N- and C-terminal fragments of the split T7 RNAPs creates AND logic in each case. This work demonstrates that mutant split T7 RNAP can be used as a transcriptional AND gate and introduces a unique library of components for use in synthetic gene circuits.

  12. Hund’s rule in superatoms with transition metal impurities

    PubMed Central

    Medel, Victor M.; Reveles, Jose Ulises; Khanna, Shiv N.; Chauhan, Vikas; Sen, Prasenjit; Castleman, A. Welford

    2011-01-01

    The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund’s rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMgn clusters where TM is a 3d atom. The clusters exhibit Hund’s filling, opening the pathway to superatoms with magnetic shells. PMID:21646542

  13. Hund's rule in superatoms with transition metal impurities.

    PubMed

    Medel, Victor M; Reveles, Jose Ulises; Khanna, Shiv N; Chauhan, Vikas; Sen, Prasenjit; Castleman, A Welford

    2011-06-21

    The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund's rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMg(n) clusters where TM is a 3d atom. The clusters exhibit Hund's filling, opening the pathway to superatoms with magnetic shells.

  14. Charge transport through split photoelectrodes in dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.

    2014-04-28

    Charge transport and recombination are relatively ignored parameters while upscaling dye-sensitized solar cells (DSCs). Enhanced photovoltaic parameters are anticipated by merely widening the devices physical dimensions, viz., thickness and area as evident from the device design adopted in reported large area DSCs. These strip designs lead to ≤50% loss in photocurrent compared to the high efficiency lab scale devices. Herein, we report that the key to achieving higher current density (J{sub SC}) is optimized diffusion volume rather than the increased photoelectrode area because kinetics of the devices is strongly influenced by the varied choices of diffusion pathways upon increasing themore » electrode area. For a given electrode area and thickness, we altered the photoelectrode design by splitting the electrode into multiple fractions to restrict the electron diffusion pathways. We observed a correlation between the device physical dimensions and its charge collection efficiency via current-voltage and impedance spectroscopy measurements. The modified electrode designs showed >50% increased J{sub SC} due to shorter transport time, higher recombination resistance and enhanced charge collection efficiency compared to the conventional ones despite their similar active volume (∼3.36 × 10{sup −4} cm{sup 3}). A detailed charge transport characteristic of the split devices and their comparison with single electrode configuration is described in this article.« less

  15. Stacked Transformer for Driver Gain and Receive Signal Splitting

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin R.

    2013-01-01

    In a high-speed signal transmission system that uses transformer coupling, there is a need to provide increased transmitted signal strength without adding active components. This invention uses additional transformers to achieve the needed gain. The prior art uses stronger drivers (which require an IC redesign and a higher power supply voltage), or the addition of another active component (which can decrease reliability, increase power consumption, reduce the beneficial effect of serializer/deserializer preemphasis or deemphasis, and/or interfere with fault containment mechanisms), or uses a different transformer winding ratio (which requires redesign of the transformer and may not be feasible with high-speed signals that require a 1:1 winding ratio). This invention achieves the required gain by connecting the secondaries of multiple transformers in series. The primaries of these transformers are currently either connected in parallel or are connected to multiple drivers. There is also a need to split a receive signal to multiple destinations with minimal signal loss. Additional transformers can achieve the split. The prior art uses impedance-matching series resistors that cause a loss of signal. Instead of causing a loss, most instantiations of this invention would actually provide gain. Multiple transformers are used instead of multiple windings on a single transformer because multiple windings on the same transformer would require a redesign of the transformer, and may not be feasible with high-speed transformers that usually require a bifilar winding with a 1:1 ratio. This invention creates the split by connecting the primaries of multiple transformers in series. The secondary of each transformer is connected to one of the intended destinations without the use of impedance-matching series resistors.

  16. Design of a 50/50 splitting ratio non-polarizing beam splitter based on the modal method with fused-silica transmission gratings

    NASA Astrophysics Data System (ADS)

    Zhao, Huajun; Yuan, Dairong; Ming, Hai

    2011-04-01

    The optical design of a beam splitter that has a 50/50 splitting ratio regardless of the polarization is presented. The non-polarizing beam splitter (NPBS) is based on the fused-silica rectangular transmission gratings with high intensity tolerance. The modal method has been used to estimate the effective index of the modes excited in the grating region for TE and TM polarizations. If a phase difference equals an odd multiples of π/2 for the first two modes (i.e. modes 0 and 1), the incident light will be diffracted into the 0 and -1 orders with about 50% and 50% diffraction efficiency for TM and TE polarizations, respectively.

  17. Prediction of the B{c}{*} mass in full lattice QCD.

    PubMed

    Gregory, E B; Davies, C T H; Follana, E; Gamiz, E; Kendall, I D; Lepage, G P; Na, H; Shigemitsu, J; Wong, K Y

    2010-01-15

    By using the highly improved staggered quark formalism to handle charm, strange, and light valence quarks in full lattice QCD, and NRQCD to handle bottom valence quarks, we are able to determine accurately ratios of the B meson vector-pseudoscalar mass splittings, in particular, [m(B{c}{*})-m(B{c})]/[m(B{s}{*})-m(B{s})]. We find this ratio to be 1.15(15), showing the "light" quark mass dependence of this splitting to be very small. Hence we predict m(B{c}{*})=6.330(7)(2)(6) GeV, where the first two errors are from the lattice calculation and the third from existing experiment. This is the most accurate prediction of a gold-plated hadron mass from lattice QCD to date.

  18. Line shape analysis of the K β transition in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Covita, Daniel S.; Anagnostopoulos, Dimitrios F.; Fuhrmann, Hermann; Gorke, Hubert; Gotta, Detlev; Gruber, Alexander; Hirtl, Albert; Ishiwatari, Tomoichi; Indelicato, Paul; Jensen, Thomas S.; Le Bigot, Eric-Olivier; Markushin, Valeri E.; Nekipelov, Michael; Pomerantsev, Vladimir N.; Popov, Vladimir P.; dos Santos, Joaquim M. F.; Schmid, Philipp; Simons, Leopold M.; Theisen, Marian; Trassinelli, Martino; Veloso, Joao F. C. A.; Zmeskal, Johann

    2018-04-01

    The K β transition in muonic hydrogen was measured with a high-resolution crystal spectrometer. The spectrum is shown to be sensitive to the ground-state hyperfine splitting, the corresponding triplet-to-singlet ratio, and the kinetic energy distribution in the 3 p state. The hyperfine splitting and triplet-to-singlet ratio are found to be consistent with the values expected from theoretical and experimental investigations and, therefore, were fixed accordingly in order to reduce the uncertainties in the further reconstruction of the kinetic energy distribution. The presence of high-energetic components was established and quantified in both a phenomenological, i.e. cascade-model-free fit, and in a direct deconvolution of the Doppler broadening based on the Bayesian method.

  19. Measurement of k T splitting scales in W→ℓν events at $$\\sqrt{s} = 7\\ \\mathrm{TeV}$$ with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abajyan, T.; Abbott, B.

    2013-05-15

    A measurement of splitting scales, as defined by the k T clustering algorithm, is presented for final states containing a W boson produced in proton–proton collisions at a centre-of-mass energy of 7 TeV. The measurement is based on the full 2010 data sample corresponding to an integrated luminosity of 36 pb -1 which was collected using the ATLAS detector at the CERN Large Hadron Collider. Cluster splitting scales are measured in events containing W bosons decaying to electrons or muons. The measurement comprises the four hardest splitting scales in a k T cluster sequence of the hadronic activity accompanying themore » W boson, and ratios of these splitting scales. Backgrounds such as multi-jet and top-quark-pair production are subtracted and the results are corrected for detector effects. Predictions from various Monte Carlo event generators at particle level are compared to the data. Overall, reasonable agreement is found with all generators, but larger deviations between the predictions and the data are evident in the soft regions of the splitting scales.« less

  20. Large area and low power dielectrowetting optical shutter with local deterministic fluid film breakup

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Cumby, B.; Russell, A.; Heikenfeld, J.

    2013-11-01

    A large area (>10 cm2) and low-power (0.1-10 Hz AC voltage, ˜10's μW/cm2) dielectrowetting optical shutter requiring no pixelation is demonstrated. The device consists of 40 μm interdigitated electrodes covered by fluid splitting features and a hydrophobic fluoropolymer. When voltage is removed, the fluid splitting features initiate breakup of the fluid film into small droplets resulting in ˜80% transmission. Both the dielectrowetting and fluid splitting follow theory, allowing prediction of alternate designs and further improved performance. Advantages include scalability, optical polarization independence, high contrast ratio, fast response, and simple construction, which could be of use in switchable windows or transparent digital signage.

  1. Fractal Analysis and Hurst Parameter for Intrapartum Fetal Heart Rate Variability Analysis: A Versatile Alternative to Frequency Bands and LF/HF Ratio

    PubMed Central

    Doret, Muriel; Spilka, Jiří; Chudáček, Václav; Gonçalves, Paulo; Abry, Patrice

    2015-01-01

    Background The fetal heart rate (FHR) is commonly monitored during labor to detect early fetal acidosis. FHR variability is traditionally investigated using Fourier transform, often with adult predefined frequency band powers and the corresponding LF/HF ratio. However, fetal conditions differ from adults and modify spectrum repartition along frequencies. Aims This study questions the arbitrariness definition and relevance of the frequency band splitting procedure, and thus of the calculation of the underlying LF/HF ratio, as efficient tools for characterizing intrapartum FHR variability. Study Design The last 30 minutes before delivery of the intrapartum FHR were analyzed. Subjects Case-control study. A total of 45 singletons divided into two groups based on umbilical cord arterial pH: the Index group with pH ≤ 7.05 (n = 15) and Control group with pH > 7.05 (n = 30). Outcome Measures Frequency band-based LF/HF ratio and Hurst parameter. Results This study shows that the intrapartum FHR is characterized by fractal temporal dynamics and promotes the Hurst parameter as a potential marker of fetal acidosis. This parameter preserves the intuition of a power frequency balance, while avoiding the frequency band splitting procedure and thus the arbitrary choice of a frequency separating bands. The study also shows that extending the frequency range covered by the adult-based bands to higher and lower frequencies permits the Hurst parameter to achieve better performance for identifying fetal acidosis. Conclusions The Hurst parameter provides a robust and versatile tool for quantifying FHR variability, yields better acidosis detection performance compared to the LF/HF ratio, and avoids arbitrariness in spectral band splitting and definitions. PMID:26322889

  2. On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rengstl, U.; Schwartz, M.; Herzog, T.

    2015-07-13

    We present an on-chip beamsplitter operating on a single-photon level by means of a quasi-resonantly driven InGaAs/GaAs quantum dot. The single photons are guided by rib waveguides and split into two arms by an evanescent field coupler. Although the waveguides themselves support the fundamental TE and TM modes, the measured degree of polarization (∼90%) reveals the main excitation and propagation of the TE mode. We observe the preserved single-photon nature of a quasi-resonantly excited quantum dot by performing a cross-correlation measurement on the two output arms of the beamsplitter. Additionally, the same quantum dot is investigated under resonant excitation, wheremore » the same splitting ratio is observed. An autocorrelation measurement with an off-chip beamsplitter on a single output arm reveal the single-photon nature after evanescent coupling inside the on-chip splitter. Due to their robustness, adjustable splitting ratio, and their easy implementation, rib waveguide beamsplitters with embedded quantum dots provide a promising step towards fully integrated quantum circuits.« less

  3. Enhancement of intrinsic optical signal recording with split spectrum optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Thapa, Damber; Wang, Benquan; Lu, Yiming; Son, Taeyoon; Yao, Xincheng

    2017-09-01

    Functional optical coherence tomography (OCT) of stimulus-evoked intrinsic optical signal (IOS) promises to be a new methodology for high-resolution mapping of retinal neural dysfunctions. However, its practical applications for non-invasive examination of retinal function have been hindered by the low signal-to-noise ratio (SNR) and small magnitude of IOSs. Split spectrum amplitude-decorrelation has been demonstrated to improve the image quality of OCT angiography. In this study, we exploited split spectrum strategy to improve the sensitivity of IOS recording. The full OCT spectrum was split into multiple spectral bands and IOSs from each sub-band were calculated separately and then combined to generate a single IOS image sequence. The algorithm was tested on in vivo images of frog retinas. It significantly improved both IOS magnitude and SNR, which are essential for practical applications of functional IOS imaging.

  4. Voltage‐Controlled Switching of Strong Light–Matter Interactions using Liquid Crystals

    PubMed Central

    Hertzog, Manuel; Rudquist, Per; Hutchison, James A.; George, Jino; Ebbesen, Thomas W.

    2017-01-01

    Abstract We experimentally demonstrate a fine control over the coupling strength of vibrational light–matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C−Nstr vibration on the liquid crystal molecule is coupled to a cavity mode, and FT‐IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified. PMID:29155469

  5. Mediator- and co-catalyst-free direct Z-scheme composites of Bi2WO6-Cu3P for solar-water splitting.

    PubMed

    Rauf, Ali; Ma, Ming; Kim, Sungsoon; Sher Shah, Md Selim Arif; Chung, Chan-Hwa; Park, Jong Hyeok; Yoo, Pil J

    2018-02-08

    Exploring new single, active photocatalysts for solar-water splitting is highly desirable to expedite current research on solar-chemical energy conversion. In particular, Z-scheme-based composites (ZBCs) have attracted extensive attention due to their unique charge transfer pathway, broader redox range, and stronger redox power compared to conventional heterostructures. In the present report, we have for the first time explored Cu 3 P, a new, single photocatalyst for solar-water splitting applications. Moreover, a novel ZBC system composed of Bi 2 WO 6 -Cu 3 P was designed employing a simple method of ball-milling complexation. The synthesized materials were examined and further investigated through various microscopic, spectroscopic, and surface area characterization methods, which have confirmed the successful hybridization between Bi 2 WO 6 and Cu 3 P and the formation of a ZBC system that shows the ideal position of energy levels for solar-water splitting. Notably, the ZBC composed of Bi 2 WO 6 -Cu 3 P is a mediator- and co-catalyst-free photocatalyst system. The improved photocatalytic efficiency obtained with this system compared to other ZBC systems assisted by mediators and co-catalysts establishes the critical importance of interfacial solid-solid contact and the well-balanced position of energy levels for solar-water splitting. The promising solar-water splitting under optimum composition conditions highlighted the relationship between effective charge separation and composition.

  6. Effect of Lactobacillus helveticus and Propionibacterium freudenrichii ssp. shermanii combinations on propensity for split defect in Swiss cheese.

    PubMed

    White, S R; Broadbent, J R; Oberg, C J; McMahon, D J

    2003-03-01

    One of the least controlled defects in Swiss cheese is development of splits that appear during refrigerated storage after cheese is removed from the warm room. Such fissures, or cracks, in the body of the cheese can be as short as 1 cm, or long enough to span a 90-kg block. A 2 x 2 x 2 factorial experiment was used to determine the effect of different Lactobacillus helveticus/Propionibacterium freudenreichii ssp. shermanii starter culture combinations on the occurrence of split defect in Swiss cheese. Eights vats of cheese were made in summer and eight in winter. Each 90-kg block of cheese was cut into twenty-four 4-kg blocks and graded based on the presence of splits. Only small variations were found in the composition of cheeses made during the same season. There were no correlations between moisture, pH, fat, protein, calcium, lactose contents, D/L lactate ratio, or protein degradation that could be used to predict splits after 90 d of storage. However, cheese made in the summer had 2% higher moisture content and a greater prevalence of splits. There was a sixfold increase in amount of downgraded cheese between the best and worst culture combinations used during cheese manufacture. After 90-d storage, 14 to 90% of cheese had splits in the summer, and 1 to 6% in the winter. Split formation increased with time from 60 to 120 d of storage and extent of split formation was influenced by both the lactobacilli and propionibacteria cultures used.

  7. Management of the first in vitro fertilization cycle for unexplained infertility: a cost-effectiveness analysis of split in vitro fertilization-intracytoplasmic sperm injection

    PubMed Central

    Vitek, Wendy S.; Galárraga, Omar; Klatsky, Peter C.; Robins, Jared C.; Carson, Sandra A.; Blazar, Andrew S.

    2015-01-01

    Objective To determine the cost-effectiveness of split IVF-intracytoplasmic sperm injection (ICSI) for the treatment of couples with unexplained infertility. Design Adaptive decision model. Setting Academic infertility clinic. Patient(s) A total of 154 couples undergoing a split IVF-ICSI cycle and a computer-simulated cohort of women <35 years old with unexplained infertility undergoing IVF. Intervention(s) Modeling insemination method in the first IVF cycle as all IVF, split IVF-ICSI, or all ICSI, and adapting treatment based on fertilization outcomes. Main Outcome Measure(s) Live birth rate, incremental cost-effectiveness ratio (ICER). Result(s) In a single cycle, all IVF is preferred as the ICER of split IVF-ICSI or all ICSI ($58,766) does not justify the increased live birth rate (3%). If two cycles are needed, split IVF/ICSI is preferred as the increased cumulative live birth rate (3.3%) is gained at an ICER of $29,666. Conclusion(s) In a single cycle, all IVF was preferred as the increased live birth rate with split IVF-ICSI and all ICSI was not justified by the increased cost per live birth. If two IVF cycles are needed, however, split IVF/ICSI becomes the preferred approach, as a result of the higher cumulative live birth rate compared with all IVF and the lesser cost per live birth compared with all ICSI. PMID:23876534

  8. Management of the first in vitro fertilization cycle for unexplained infertility: a cost-effectiveness analysis of split in vitro fertilization-intracytoplasmic sperm injection.

    PubMed

    Vitek, Wendy S; Galárraga, Omar; Klatsky, Peter C; Robins, Jared C; Carson, Sandra A; Blazar, Andrew S

    2013-11-01

    To determine the cost-effectiveness of split IVF-intracytoplasmic sperm injection (ICSI) for the treatment of couples with unexplained infertility. Adaptive decision model. Academic infertility clinic. A total of 154 couples undergoing a split IVF-ICSI cycle and a computer-simulated cohort of women <35 years old with unexplained infertility undergoing IVF. Modeling insemination method in the first IVF cycle as all IVF, split IVF-ICSI, or all ICSI, and adapting treatment based on fertilization outcomes. Live birth rate, incremental cost-effectiveness ratio (ICER). In a single cycle, all IVF is preferred as the ICER of split IVF-ICSI or all ICSI ($58,766) does not justify the increased live birth rate (3%). If two cycles are needed, split IVF/ICSI is preferred as the increased cumulative live birth rate (3.3%) is gained at an ICER of $29,666. In a single cycle, all IVF was preferred as the increased live birth rate with split IVF-ICSI and all ICSI was not justified by the increased cost per live birth. If two IVF cycles are needed, however, split IVF/ICSI becomes the preferred approach, as a result of the higher cumulative live birth rate compared with all IVF and the lesser cost per live birth compared with all ICSI. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Effect of skin graft thickness on scar development in a porcine burn model.

    PubMed

    DeBruler, Danielle M; Blackstone, Britani N; McFarland, Kevin L; Baumann, Molly E; Supp, Dorothy M; Bailey, J Kevin; Powell, Heather M

    2018-06-01

    Animal models provide a way to investigate scar therapies in a controlled environment. It is necessary to produce uniform, reproducible scars with high anatomic and biologic similarity to human scars to better evaluate the efficacy of treatment strategies and to develop new treatments. In this study, scar development and maturation were assessed in a porcine full-thickness burn model with immediate excision and split-thickness autograft coverage. Red Duroc pigs were treated with split-thickness autografts of varying thickness: 0.026in. ("thin") or 0.058in. ("thick"). Additionally, the thin skin grafts were meshed and expanded at 1:1.5 or 1:4 to evaluate the role of skin expansion in scar formation. Overall, the burn-excise-autograft model resulted in thick, raised scars. Treatment with thick split-thickness skin grafts resulted in less contraction and reduced scarring as well as improved biomechanics. Thin skin autograft expansion at a 1:4 ratio tended to result in scars that contracted more with increased scar height compared to the 1:1.5 expansion ratio. All treatment groups showed Matrix Metalloproteinase 2 (MMP2) and Transforming Growth Factor β1 (TGF-β1) expression that increased over time and peaked 4 weeks after grafting. Burns treated with thick split-thickness grafts showed decreased expression of pro-inflammatory genes 1 week after grafting, including insulin-like growth factor 1 (IGF-1) and TGF-β1, compared to wounds treated with thin split-thickness grafts. Overall, the burn-excise-autograft model using split-thickness autograft meshed and expanded to 1:1.5 or 1:4, resulted in thick, raised scars similar in appearance and structure to human hypertrophic scars. This model can be used in future studies to study burn treatment outcomes and new therapies. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  10. A Simple Method for Differentiating Complicated Parapneumonic Effusion/Empyema from Parapneumonic Effusion Using the Split Pleura Sign and the Amount of Pleural Effusion on Thoracic CT.

    PubMed

    Tsujimoto, Naoki; Saraya, Takeshi; Light, Richard W; Tsukahara, Yayoi; Koide, Takashi; Kurai, Daisuke; Ishii, Haruyuki; Kimura, Hirokazu; Goto, Hajime; Takizawa, Hajime

    2015-01-01

    Pleural separation, the "split pleura" sign, has been reported in patients with empyema. However, the diagnostic yield of the split pleura sign for complicated parapneumonic effusion (CPPE)/empyema and its utility for differentiating CPPE/empyema from parapneumonic effusion (PPE) remains unclear. This differentiation is important because CPPE/empyema patients need thoracic drainage. In this regard, the aim of this study was to develop a simple method to distinguish CPPE/empyema from PPE using computed tomography (CT) focusing on the split pleura sign, fluid attenuation values (HU: Hounsfield units), and amount of fluid collection measured on thoracic CT prior to diagnostic thoracentesis. A total of 83 consecutive patients who underwent chest CT and were diagnosed with CPPE (n=18)/empyema (n=18) or PPE (n=47) based on the diagnostic thoracentesis were retrospectively analyzed. On univariate analysis, the split pleura sign (odds ratio (OR), 12.1; p<0.001), total amount of pleural effusion (≥30 mm) (OR, 6.13; p<0.001), HU value≥10 (OR, 5.94; p=0.001), and the presence of septum (OR, 6.43; p=0.018), atelectasis (OR, 6.83; p=0.002), or air (OR, 9.90; p=0.002) in pleural fluid were significantly higher in the CPPE/empyema group than in the PPE group. On multivariate analysis, only the split pleura sign (hazard ratio (HR), 6.70; 95% confidence interval (CI), 1.91-23.5; p=0.003) and total amount of pleural effusion (≥30 mm) on thoracic CT (HR, 7.48; 95%CI, 1.76-31.8; p=0.006) were risk factors for empyema. Sensitivity, specificity, positive predictive value, and negative predictive value of the presence of both split pleura sign and total amount of pleural effusion (≥30 mm) on thoracic CT for CPPE/empyema were 79.4%, 80.9%, 75%, and 84.4%, respectively, with an area under the curve of 0.801 on receiver operating characteristic curve analysis. This study showed a high diagnostic yield of the split pleura sign and total amount of pleural fluid (≥30 mm) on thoracic CT that is useful and simple for discriminating between CPPE/empyema and PPE prior to diagnostic thoracentesis.

  11. A Simple Method for Differentiating Complicated Parapneumonic Effusion/Empyema from Parapneumonic Effusion Using the Split Pleura Sign and the Amount of Pleural Effusion on Thoracic CT

    PubMed Central

    Tsujimoto, Naoki; Saraya, Takeshi; Light, Richard W.; Tsukahara, Yayoi; Koide, Takashi; Kurai, Daisuke; Ishii, Haruyuki; Kimura, Hirokazu; Goto, Hajime; Takizawa, Hajime

    2015-01-01

    Background Pleural separation, the “split pleura” sign, has been reported in patients with empyema. However, the diagnostic yield of the split pleura sign for complicated parapneumonic effusion (CPPE)/empyema and its utility for differentiating CPPE/empyema from parapneumonic effusion (PPE) remains unclear. This differentiation is important because CPPE/empyema patients need thoracic drainage. In this regard, the aim of this study was to develop a simple method to distinguish CPPE/empyema from PPE using computed tomography (CT) focusing on the split pleura sign, fluid attenuation values (HU: Hounsfield units), and amount of fluid collection measured on thoracic CT prior to diagnostic thoracentesis. Methods A total of 83 consecutive patients who underwent chest CT and were diagnosed with CPPE (n=18)/empyema (n=18) or PPE (n=47) based on the diagnostic thoracentesis were retrospectively analyzed. Results On univariate analysis, the split pleura sign (odds ratio (OR), 12.1; p<0.001), total amount of pleural effusion (≥30 mm) (OR, 6.13; p<0.001), HU value≥10 (OR, 5.94; p=0.001), and the presence of septum (OR, 6.43; p=0.018), atelectasis (OR, 6.83; p=0.002), or air (OR, 9.90; p=0.002) in pleural fluid were significantly higher in the CPPE/empyema group than in the PPE group. On multivariate analysis, only the split pleura sign (hazard ratio (HR), 6.70; 95% confidence interval (CI), 1.91-23.5; p=0.003) and total amount of pleural effusion (≥30 mm) on thoracic CT (HR, 7.48; 95%CI, 1.76-31.8; p=0.006) were risk factors for empyema. Sensitivity, specificity, positive predictive value, and negative predictive value of the presence of both split pleura sign and total amount of pleural effusion (≥30 mm) on thoracic CT for CPPE/empyema were 79.4%, 80.9%, 75%, and 84.4%, respectively, with an area under the curve of 0.801 on receiver operating characteristic curve analysis. Conclusion This study showed a high diagnostic yield of the split pleura sign and total amount of pleural fluid (≥30 mm) on thoracic CT that is useful and simple for discriminating between CPPE/empyema and PPE prior to diagnostic thoracentesis. PMID:26076488

  12. Introducing the Hero Complex and the Mythic Iconic Pathway of Problem Gambling

    ERIC Educational Resources Information Center

    Nixon, Gary; Solowoniuk, Jason

    2009-01-01

    Early research into the motivations behind problem gambling reflected separate paradigms of thought splitting our understanding of the gambler into divergent categories. However, over the past 25 years, problem gambling is now best understood to arise from biological, environmental, social, and psychological processes, and is now encapsulated…

  13. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.

    PubMed

    Walter, Heidi-Kristin; Bauer, Jens; Steinmeyer, Jeannine; Kuzuya, Akinori; Niemeyer, Christof M; Wagenknecht, Hans-Achim

    2017-04-12

    A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.

  14. Effect on signal-to-noise ratio of splitting the continuous contacts of cuff electrodes into smaller recording areas

    PubMed Central

    2013-01-01

    Background Cuff electrodes have been widely used chronically in different clinical applications. This neural interface has been dominantly used for nerve stimulation while interfering noise is the major issue when employed for recording purposes. Advancements have been made in rejecting extra-neural interference by using continuous ring contacts in tripolar topologies. Ring contacts provide an average of the neural activity, and thus reduce the information retrieved. Splitting these contacts into smaller recording areas could potentially increase the information content. In this study, we investigate the impact of such discretization on the Signal-to-Noise Ratio (SNR). The effect of contacts positioning and an additional short circuited pair of electrodes were also addressed. Methods Different recording configurations using ring, dot, and a mixed of both contacts were studied in vitro in a frog model. An interfering signal was induced in the medium to simulate myoelectric noise. The experimental setup was design in such a way that the only difference between recordings was the configuration used. The inter-session experimental differences were taken care of by a common configuration that allowed normalization between electrode designs. Results It was found that splitting all contacts into small recording areas had negative effects on noise rejection. However, if this is only applied to the central contact creating a mixed tripole configuration, a considerable and statistically significant improvement was observed. Moreover, the signal to noise ratio was equal or larger than what can be achieved with the best known configuration, namely the short circuited tripole. This suggests that for recording purposes, any tripole topology would benefit from splitting the central contact into one or more discrete contacts. Conclusions Our results showed that a mixed tripole configuration performs better than the configuration including only ring contacts. Therefore, splitting the central ring contact of a cuff electrode into a number of dot contacts not only provides additional information but also an improved SNR. In addition, the effect of an additional pair of short circuited electrodes and the “end effect” observed with the presented method are in line with previous findings by other authors. PMID:23433089

  15. Performance of the split-symbol moments SNR estimator in the presence of inter-symbol interference

    NASA Technical Reports Server (NTRS)

    Shah, B.; Hinedi, S.

    1989-01-01

    The Split-Symbol Moments Estimator (SSME) is an algorithm that is designed to estimate symbol signal-to-noise ratio (SNR) in the presence of additive white Gaussian noise (AWGN). The performance of the SSME algorithm in band-limited channels is examined. The effects of the resulting inter-symbol interference (ISI) are quantified. All results obtained are in closed form and can be easily evaluated numerically for performance prediction purposes. Furthermore, they are validated through digital simulations.

  16. Membrane receptor-dependent Notch1/Hes1 activation by melatonin protects against myocardial ischemia-reperfusion injury: in vivo and in vitro studies.

    PubMed

    Yu, Liming; Liang, Hongliang; Lu, Zhihong; Zhao, Guolong; Zhai, Mengen; Yang, Yang; Yang, Jian; Yi, Dinghua; Chen, Wensheng; Wang, Xiaowu; Duan, Weixun; Jin, Zhenxiao; Yu, Shiqiang

    2015-11-01

    Melatonin confers profound protective effect against myocardial ischemia-reperfusion injury (MI/RI). Activation of Notch1/Hairy and enhancer of split 1 (Hes1) signaling also ameliorates MI/RI. We hypothesize that melatonin attenuates MI/RI-induced oxidative damage by activating Notch1/Hes1 signaling pathway with phosphatase and tensin homolog deleted on chromosome 10 (Pten)/Akt acting as the downstream signaling pathway in a melatonin membrane receptor-dependent manner. Male Sprague Dawley rats were treated with melatonin (10 mg/kg/day) for 4 wk and then subjected to MI/R surgery. Melatonin significantly improved cardiac function and decreased myocardial apoptosis and oxidative damage. Furthermore, in cultured H9C2 cardiomyocytes, melatonin (100 μmol/L) attenuated simulated ischemia-reperfusion (SIR)-induced myocardial apoptosis and oxidative damage. Both in vivo and in vitro study demonstrated that melatonin treatment increased Notch1, Notch1 intracellular domain (NICD), Hes1, Bcl-2 expressions, and p-Akt/Akt ratio and decreased Pten, Bax, and caspase-3 expressions. However, these protective effects conferred by melatonin were blocked by DAPT (the specific inhibitor of Notch1 signaling), luzindole (the antagonist of melatonin membrane receptors), Notch1 siRNA, or Hes1 siRNA administration. In summary, our study demonstrates that melatonin treatment protects against MI/RI by modulating Notch1/Hes1 signaling in a receptor-dependent manner and Pten/Akt signaling pathways are key downstream mediators. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Design and analysis of unequal split Bagley power dividers

    NASA Astrophysics Data System (ADS)

    Abu-Alnadi, Omar; Dib, Nihad; Al-Shamaileh, Khair; Sheta, Abdelfattah

    2015-03-01

    In this article, we propose a general design procedure to develop unequal split Bagley power dividers (BPDs). Based on the mathematical approach carried out in the insight of simple circuit and transmission line theories, exact design equations for 3-way and 5-way BPDs are derived. Utilising the developed equations leads to power dividers with the ability of offering different output power ratios through a suitable choice of the characteristic impedances of the interconnecting transmission lines. For verification purposes, a 1:2:1 3-way, 1:2:1:2:1 5-way and 1:3:1:3:1 5-way BPDs are designed and fabricated. The experimental and full-wave simulation results prove the validity of the designed unequal split BPDs.

  18. Numerical Simulation on the Dynamic Splitting Tensile Test of reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuan; Jia, Haokai; Jing, Lin

    2018-03-01

    The research for crack resistance was of RC was based on the split Hopkinson bar and numerical simulate software LS-DYNA3D. In the research, the difference of dynamic splitting failure modes between plane concrete and reinforced concrete were completed, and the change rule of tensile stress distribution with reinforcement ratio was studied; also the effect rule with the strain rate and the crack resistance was also discussed by the radial tensile stress time history curve of RC specimen under different loading speeds. The results shows that the reinforcement in the concrete can impede the crack extension, defer the failure time of concrete, increase the tension intensity of concrete; with strain rate of concrete increased, the crack resistance of RC increased.

  19. A novel theoretical probe of the SrTiO3 surface under water-splitting conditions

    NASA Astrophysics Data System (ADS)

    Letchworth-Weaver, Kendra; Gunceler, Deniz; Arias, Tomás; Plaza, Manuel; Huang, Xin; Brock, Joel; Rodriguez-López, Joaquin; Abruña, Hector

    2014-03-01

    Understanding the reaction mechanisms required to generate hydrogen fuel by photoelectrolysis of water is essential to energy conversion research. These reaction pathways are strongly influenced by the geometry and electronic structure of the electrode surface under water-splitting conditions. Electrochemical microscopy has demonstrated that biasing a SrTiO3 (001) surface can lead to an increase in water-splitting activity. In operando X-ray reflectivity measurements at the Cornell High Energy Synchrotron Source (CHESS) correlate this increase in activity to a significant reorganization in the surface structure but are unable to determine the exact nature of this change. Joint Density-Functional Theory (JDFT), a rigorous yet computationally efficient alternative to molecular dynamics, provides a quantum-mechanical description of an electrode surface in contact with an aqueous environment, and a microscopically detailed description of the interfacial liquid structure. Our JDFT calculations determine the structure of the activated SrTiO3 surface and explore why it is correlated with higher activity for water splitting. With no empirical parameters whatsoever, we predict the X-ray crystal truncation rods for SrTiO3, finding excellent agreement with experiment. Funded by the Energy Materials Center at Cornell (EMC2).

  20. Plasmonic resonance in planer split ring trimer

    NASA Astrophysics Data System (ADS)

    Xu, Haiqing; Li, Hongjian; Xiao, Gang

    2014-12-01

    We have numerically investigated the plasmon properties supported by asymmetry planer split ring trimer structures. We investigate the modification of gap distance, thickness and gap width on the transmission properties of the weak coupling model (g is larger than or equal to 120 nm, d=48 nm, t is larger than 30 nm, w1=200 nm, and w2=40 nm), as the coupling becomes weaker, the first peak sharply attenuates, the second peak slightly decreases, the transmission dip in the near-infrared region becomes shallow, and they are very sensitive to the gap distance between two small split ring pairs and the thickness and gap width of the big split ring. We also study the change of gap distance on the strong coupling model (g is smaller than or equal to 40 nm, d=24 nm, t=10 nm, w1=80 nm, and w2=20 nm), there exists a new Fano resonance peak, the strongest peak in visible region becomes symmetry, while the peak in near-infrared region becomes asymmetry. The resonator design strategy opens up a rich pathway for the implementation of optimized optical properties for specific applications.

  1. The Effects of High-lift Devices on the Low-speed Stability of a Tapered 37.5 Degree Sweptback Wing of Aspect Ratio 3 in Straight and Rolling Flow

    NASA Technical Reports Server (NTRS)

    Queijo, M J; Lichtenstein, Jacob H

    1948-01-01

    Contains results of tunnel tests to determine effects of various combinations of split flaps, slats, and nose slats on the stability characteristics of a tapered 37.5 degree sweptback wing of aspect ratio 3 in straight and rolling flow.

  2. Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Liu, Yonggang; Peng, Zenghui; Yang, Qingyun; Meng, Haoran; Yao, Lishuang; Xuan, Li

    2012-08-13

    A waveband-splitting method is proposed for open-loop liquid crystal adaptive optics systems (LC AOSs). The proposed method extends the working waveband, splits energy flexibly, and improves detection capability. Simulated analysis is performed for a waveband in the range of 350 nm to 950 nm. The results show that the optimal energy split is 7:3 for the wavefront sensor (WFS) and for the imaging camera with the waveband split into 350 nm to 700 nm and 700 nm to 950 nm, respectively. A validation experiment is conducted by measuring the signal-to-noise ratio (SNR) of the WFS and the imaging camera. The results indicate that for the waveband-splitting method, the SNR of WFS is approximately equal to that of the imaging camera with a variation in the intensity. On the other hand, the SNR of the WFS is significantly different from that of the imaging camera for the polarized beam splitter energy splitting scheme. Therefore, the waveband-splitting method is more suitable for an open-loop LC AOS. An adaptive correction experiment is also performed on a 1.2-meter telescope. A star with a visual magnitude of 4.45 is observed and corrected and an angular resolution ability of 0.31″ is achieved. A double star with a combined visual magnitude of 4.3 is observed as well, and its two components are resolved after correction. The results indicate that the proposed method can significantly improve the detection capability of an open-loop LC AOS.

  3. COMPARISON OF IMPLICIT SCHEMES TO SOLVE EQUATIONS OF RADIATION HYDRODYNAMICS WITH A FLUX-LIMITED DIFFUSION APPROXIMATION: NEWTON–RAPHSON, OPERATOR SPLITTING, AND LINEARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetsu, Hiroyuki; Nakamoto, Taishi, E-mail: h.tetsu@geo.titech.ac.jp

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme,more » we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.« less

  4. Droplet Breakup in Asymmetric T-Junctions at Intermediate to Large Capillary Numbers

    NASA Astrophysics Data System (ADS)

    Sadr, Reza; Cheng, Way Lee

    2017-11-01

    Splitting of a parent droplet into multiple daughter droplets of desired sizes is usually desired to enhance production and investigational efficiency in microfluidic devices. This can be done in an active or passive mode depending on whether an external power sources is used or not. In this study, three-dimensional simulations were done using the Volume-of-Fluid (VOF) method to analyze droplet splitting in asymmetric T-junctions with different outlet lengths. The parent droplet is divided into two uneven portions the volumetric ratio of the daughter droplets, in theory, depends on the length ratios of the outlet branches. The study identified various breakup modes such as primary, transition, bubble and non-breakup under various flow conditions and the configuration of the T-junctions. In addition, an analysis with the primary breakup regimes were conducted to study the breakup mechanisms. The results show that the way the droplet splits in an asymmetric T-junction is different than the process in a symmetric T-junction. A model for the asymmetric breakup criteria at intermediate or large Capillary number is presented. The proposed model is an expanded version to a theoretically derived model for the symmetric droplet breakup under similar flow conditions.

  5. Detecting primordial gravitational waves with circular polarization of the redshifted 21 cm line. I. Formalism

    NASA Astrophysics Data System (ADS)

    Hirata, Christopher M.; Mishra, Abhilash; Venumadhav, Tejaswi

    2018-05-01

    We propose a new method to measure the tensor-to-scalar ratio r using the circular polarization of the 21 cm radiation from the pre-reionization epoch. Our method relies on the splitting of the F =1 hyperfine level of neutral hydrogen due to the quadrupole moment of the cosmic microwave background (CMB). We show that unlike the Zeeman effect, where MF=±1 have opposite energy shifts, the CMB quadrupole shifts MF=±1 together relative to MF=0 . This splitting leads to a small circular polarization of the emitted 21 cm radiation. In this paper (Paper I in a series on this effect), we present calculations on the microphysics behind this effect, accounting for all processes that affect the hyperfine transition. We conclude with an analytic formula for the circular polarization from the Dark Ages as a function of pre-reionization parameters and the value of the remote quadrupole of the CMB. We also calculate the splitting of the F =1 hyperfine level due to other anisotropic radiation sources and show that they are not dominant. In a companion paper (Paper II) we make forecasts for measuring the tensor-to-scalar ratio r using future radio arrays.

  6. Relative motions of fragments of the split comets. I - A new approach

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1977-01-01

    A hypothesis is proposed which interprets the relative motion of two fragments of a split comet in terms of a slight difference between their effective solar attraction rather than in terms of the impulse imparted to them at separation. A quantitative version of this hypothesis is formulated by assuming that the difference in effective solar attraction varies with heliocentric distance in direct proportion to the actual solar attraction so that the ratio of the two forces is constant and equal to a measure of the relative effect between the two fragments under consideration. Results obtained using this formulation are compared with observational evidence on the split comets P/Biela, Liais 1860 I, 1882 II, P/Brooks 2 1889 V, Swift 1899 I, Kopff 1905 IV, Mellish 1915 II, Taylor 1916 I, 1947 XII, Wirtanen 1957 VI, Ikeya-Seki 1965 VIII, Kohoutek 1970 III, and West 1975n. The hypothesis is found to fail only in the case of comet Wirtanen 1957 VI. Some unusual phenomena associated with split comets are examined.

  7. Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photo-Electrochemical Water Splitting.

    PubMed

    Li, Chengcheng; Luo, Zhibin; Wang, Tuo; Gong, Jinlong

    2018-05-11

    Collecting and storing solar energy to hydrogen fuel through a photo-electrochemical (PEC) cell provides a clean and renewable pathway for future energy demands. Having earth-abundance, low biotoxicity, robustness, and an ideal n-type band position, hematite (α-Fe 2 O 3 ), the most common natural form of iron oxide, has occupied the research hotspot for decades. Here, a close look into recent progress of hematite photoanodes for PEC water splitting is provided. Effective approaches are introduced, such as cocatalysts loading and surface passivation layer deposition, to improve the hematite surface reaction in thermodynamics and kinetics. Second, typical methods for enhancing light absorption and accelerating charge transport in hematite bulk are reviewed, concentrating upon doping and nanostructuring. Third, the back contact between hematite and substrate, which affects interface states and electron transfer, is deliberated. In addition, perspectives on the key challenges and future prospects for the development of hematite photoelectrodes for PEC water splitting are given. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanisms of mineral membrane fouling growth modulated by pulsed modes of current during electrodialysis: evidences of water splitting implications in the appearance of the amorphous phases of magnesium hydroxide and calcium carbonate.

    PubMed

    Cifuentes-Araya, Nicolás; Astudillo-Castro, Carolina; Bazinet, Laurent

    2014-07-15

    Experiments revealed the fouling nature evolutions along different electrodialysis (ED) trials, and how it disappears when current pulsation acts repetitively on the interfaces of ion-exchange membranes (IEMs). Fouling was totally controlled on the diluate side of cation-exchange membrane (CEM) by the repetitive pulsation frequency of the higher on-duty ratios applied. They created steady water splitting proton-barriers that neutralized OH(-) leakage through the membrane, decreasing the interfacial pH, and fouling of the concentrate side. The anion-exchange membrane (AEM) on the diluate side was similarly protected, but it was fouled once water splitting OH(-) generation became either intense enough or excessively weak. Interestingly, amorphous magnesium hydroxide (AMH) stemmed on the CEM-diluate side from brucite under intense water splitting OH(-) generation, and/or strong OH(-) leakage electromigration through the membrane. Water dissociation and overlimiting current regimes triggered drastic water molecule removal from crystal lattices through an accelerated cascade water splitting reaction. Also, amorphous calcium carbonate (ACC) appeared on CEM under intense water splitting reaction, and disappeared once intense OH(-) leakage was allowed by the water splitting proton-barrier dissipation. Our findings have implications for membrane fouling control, as well as for the understanding of the growth behavior of CaCO3 and Mg(OH)2 species on electromembrane interfaces. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Coherent and dynamic beam splitting based on light storage in cold atoms

    PubMed Central

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457

  10. Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Aneesh, Mohammad; Kamakshi; Ansari, J. A.

    2017-11-01

    In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.

  11. Two mirror X-ray pulse split and delay instrument for femtosecond time resolved investigations at the LCLS free electron laser facility

    DOE PAGES

    Berrah, Nora; Fang, Li; Murphy, Brendan F.; ...

    2016-05-20

    We built a two-mirror based X-ray split and delay (XRSD) device for soft X-rays at the Linac Coherent Light Source free electron laser facility. The instrument is based on an edge-polished mirror design covering an energy range of 250 eV-1800 eV and producing a delay between the two split pulses variable up to 400 femtoseconds with a sub-100 attosecond resolution. We present experimental and simulation results regarding molecular dissociation dynamics in CH3I and CO probed by the XRSD device. In conclusion, we observed ion kinetic energy and branching ratio dependence on the delay times which were reliably produced by themore » XRSD instrument.« less

  12. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

    PubMed Central

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue

    2015-01-01

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting. PMID:26174201

  13. Serum and urinary thioredoxin concentrations are associated with severity of children hydronephrosis.

    PubMed

    Xu, Zhe-Ming; Li, Min-Ju; Tao, Chang

    2017-03-01

    Ureteropelvic junction obstruction (UPJO) is the most common cause of hydronephrosis in children. This study was to assess the relationship between serum thioredoxin (S-Trx) and urinary thioredoxin (U-Trx) concentrations and severity of children hydronephrosis caused by UPJO. This study included 156 hydronephrosis children with unilateral UPJO and 80 healthy children. S-Trx and U-Trx concentrations were measured using enzyme-linked immunosorbent assay. U-Trx/creatinine (cr) ratio was calculated. S-Trx and U-Trx concentrations and U-Trx/cr ratio were significantly higher in hydronephrosis children than in healthy children. They were significantly correlated with split renal function, anterior-posterior diameter and Society for Fetal Urology classification, as well as were independently related to the split renal function <39.2%, anterior-posterior diameter>30mm and Society for Fetal Urology grade IV. Under receiver operating characteristic curves, U-Trx/cr ratio showed the higher predictive value compared to S-Trx and U-Trx concentrations. Increased S-Trx and U-Trx concentrations, especially U-Trx/cr ratio, are closely associated with the severity of children hydronephrosis, substantializing Trx as a promising biomarker for the progression of children hydronephrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter.

    PubMed

    Suzuki, Keijiro; Cong, Guangwei; Tanizawa, Ken; Kim, Sang-Hun; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi

    2015-04-06

    We demonstrate a record-high extinction-ratio of 50.4 dB in a 2 × 2 silicon Mach-Zehnder switch equipped with a variable splitter as the front 3-dB splitter. The variable splitter is adjusted to compensate for the splitting-ratio mismatch between the front and rear 3-dB splitters. The high extinction ratio does not rely on waveguide crossings and meets a strong demand in applications to multiport circuit switches. Large fabrication tolerance will make the high extinction ratio compatible with a volume production with standard complementary metal-oxide semiconductor fabrication facilities.

  15. Physics of the infrared spectrum

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Jennings, Donald E.; Jefferies, John; Lindsey, Charles

    1991-01-01

    The IR bandpass is attractive for solar magnetic field studies in virtue of the proportionality to wavelength of the ratio of Zeeman splitting to line width. The large Zeeman splitting and optical thinness of the 12-micron observations render them especially useful for vector magnetic field derivations. The IR continuum, and many IR spectral lines, are formed in LTE and are useful in studies of the temperature structure of the solar atmosphere from the deepest observable photospheric layers to chromospheric altitudes. The far-IR continuum is an excellent thermometer for the upper photosphere and chromosphere.

  16. Method for resonant measurement

    DOEpatents

    Rhodes, George W.; Migliori, Albert; Dixon, Raymond D.

    1996-01-01

    A method of measurement of objects to determine object flaws, Poisson's ratio (.sigma.) and shear modulus (.mu.) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson's ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson's ratio using other modes dependent on both the shear modulus and Poisson's ratio.

  17. Pantomime to visual presentation of objects: left hand dyspraxia in patients with complete callosotomy.

    PubMed

    Lausberg, Hedda; Cruz, Robyn F; Kita, Sotaro; Zaidel, Eran; Ptito, Alain

    2003-02-01

    Investigations of left hand praxis in imitation and object use in patients with callosal disconnection have yielded divergent results, inducing a debate between two theoretical positions. Whereas Liepmann suggested that the left hemisphere is motor dominant, others maintain that both hemispheres have equal motor competences and propose that left hand apraxia in patients with callosal disconnection is secondary to left hemispheric specialization for language or other task modalities. The present study aims to gain further insight into the motor competence of the right hemisphere by investigating pantomime of object use in split-brain patients. Three patients with complete callosotomy and, as control groups, five patients with partial callosotomy and nine healthy subjects were examined for their ability to pantomime object use to visual object presentation and demonstrate object manipulation. In each condition, 11 objects were presented to the subjects who pantomimed or demonstrated the object use with either hand. In addition, six object pairs were presented to test bimanual coordination. Two independent raters evaluated the videotaped movement demonstrations. While object use demonstrations were perfect in all three groups, the split-brain patients displayed apraxic errors only with their left hands in the pantomime condition. The movement analysis of concept and execution errors included the examination of ipsilateral versus contralateral motor control. As the right hand/left hemisphere performances demonstrated retrieval of the correct movement concepts, concept errors by the left hand were taken as evidence for right hemisphere control. Several types of execution errors reflected a lack of distal motor control indicating the use of ipsilateral pathways. While one split-brain patient controlled his left hand predominantly by ipsilateral pathways in the pantomime condition, the error profile in the other two split-brain patients suggested that the right hemisphere controlled their left hands. In the object use condition, in all three split-brain patients fine-graded distal movements in the left hand indicated right hemispheric control. Our data show left hand apraxia in split-brain patients is not limited to verbal commands, but also occurs in pantomime to visual presentation of objects. As the demonstration with object in hand was unimpaired in either hand, both hemispheres must contain movement concepts for object use. However, the disconnected right hemisphere is impaired in retrieving the movement concept in response to visual object presentation, presumably because of a deficit in associating perceptual object representation with the movement concepts.

  18. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  19. New insights into electrocatalytic ozone generation via splitting of water over PbO2 electrode: A DFT study

    NASA Astrophysics Data System (ADS)

    Gibson, Gregory; Morgan, Ashley; Hu, P.; Lin, Wen-Feng

    2016-06-01

    The viable mechanisms for O3 generation via the electrocatalytic splitting of H2O over β-PbO2 catalyst were identified through Density Functional Theory calculations. H2O adsorbed onto the surface was oxidized to form OH then O; the latter reacted with a surface bridging O to form O2 which in turn reacted with another surface O to form O3. The final step of the mechanisms occurs via an Eley-Rideal style interaction where surface O2 desorbs and then attacks the surface bridging oxygen, forming O3. A different reaction pathway via an O3H intermediate was found less favoured both thermodynamically and kinetically.

  20. Chapter 4: Small Commercial and Residential Unitary and Split System HVAC Heating and Cooling Equipment-Efficiency Upgrade Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Jacobson, David; Metoyer, Jarred

    The specific measure described here involves improving the overall efficiency in air-conditioning systems as a whole (compressor, evaporator, condenser, and supply fan). The efficiency rating is expressed as the energy efficiency ratio (EER), seasonal energy efficiency ratio (SEER), and integrated energy efficiency ratio (IEER). The higher the EER, SEER or IEER, the more efficient the unit is.

  1. Wireless Energy Harvesting Two-Way Relay Networks with Hardware Impairments.

    PubMed

    Peng, Chunling; Li, Fangwei; Liu, Huaping

    2017-11-13

    This paper considers a wireless energy harvesting two-way relay (TWR) network where the relay has energy-harvesting abilities and the effects of practical hardware impairments are taken into consideration. In particular, power splitting (PS) receiver is adopted at relay to harvests the power it needs for relaying the information between the source nodes from the signals transmitted by the source nodes, and hardware impairments is assumed suffered by each node. We analyze the effect of hardware impairments [-20]on both decode-and-forward (DF) relaying and amplify-and-forward (AF) relaying networks. By utilizing the obtained new expressions of signal-to-noise-plus-distortion ratios, the exact analytical expressions of the achievable sum rate and ergodic capacities for both DF and AF relaying protocols are derived. Additionally, the optimal power splitting (OPS) ratio that maximizes the instantaneous achievable sum rate is formulated and solved for both protocols. The performances of DF and AF protocols are evaluated via numerical results, which also show the effects of various network parameters on the system performance and on the OPS ratio design.

  2. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter.

    PubMed

    Reichel, Kimberly S; Mendis, Rajind; Mittleman, Daniel M

    2016-06-29

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  3. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    PubMed Central

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-01-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting. PMID:27352772

  4. Carotid dual-energy CT angiography: Evaluation of low keV calculated monoenergetic datasets by means of a frequency-split approach for noise reduction at low keV levels.

    PubMed

    Riffel, Philipp; Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Morelli, John N; Schmidt, Bernhard; Schoenberg, Stefan O; Henzler, Thomas

    2016-04-01

    Calculated monoenergetic ultra-low keV datasets did not lead to improved contrast-to-noise ratio (CNR) due to the dramatic increase in image noise. The aim of the present study was to evaluate the objective image quality of ultra-low keV monoenergetic images (MEIs) calculated from carotid DECT angiography data with a new monoenergetic imaging algorithm using a frequency-split technique. 20 patients (12 male; mean age 53±17 years) were retrospectively analyzed. MEIs from 40 to 120 keV were reconstructed using the monoenergetic split frequency approach (MFSA). Additionally MEIs were reconstructed for 40 and 50 keV using a conventional monoenergetic (CM) software application. Signal intensity, noise, signal-to-noise ratio (SNR) and CNR were assessed in the basilar, common, internal carotid arteries. Ultra-low keV MEIs at 40 keV and 50 keV demonstrated highest vessel attenuation, significantly greater than those of the polyenergetic images (PEI) (all p-values <0.05). The highest SNR level and CNR level was found at 40 keV and 50 keV (all p-values <0.05). MEIs with MFSA showed significantly lower noise levels than those processed with CM (all p-values <0.05) and no significant differences in vessel attenuation (p>0.05). Thus MEIs with MFSA showed significantly higher SNR and CNR compared to MEIs with CM. Combining the lower spatial frequency stack for contrast at low keV levels with the high spatial frequency stack for noise at high keV levels (frequency-split technique) leads to improved image quality of ultra-low keV monoenergetic DECT datasets when compared to previous monoenergetic reconstruction techniques without the frequency-split technique. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors, part 8

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Clemmons, D. R.

    1974-01-01

    An experimental investigation was conducted with an 0.8 hub/tip ratio, single-stage, axial flow compressor to determine the potential of tandem-airfoil blading for improving the efficiency and stable operating range of compressor stages. The investigation included testing of a baseline stage with single-airfoil blading and two tandem-blade stages. The overall performance of the baseline stage and the tandem-blade stage with a 20-80% loading split was considerably below the design prediction. The other tandem-blade stage, which had a rotor with a 50-50% loading split, came within 4.5% of the design pressure rise (delta P(bar)/P(bar) sub 1) and matched the design stage efficiency. The baseline stage with single-airfoil blading, which was designed to account for the actual rotor inlet velocity profile and the effects of axial velocity ratio and secondary flow, achieved the design predicted performance. The corresponding tandem-blade stage (50-50% loading split in both blade rows) slightly exceeded the design pressure rise but was 1.5 percentage points low in efficiency. The tandem rotors tested during both phases demonstrated higher pressure rise and efficiency than the corresponding single-airfoil rotor, with identical inlet and exit airfoil angles.

  6. Distinct lateral inhibitory circuits drive parallel processing of sensory information in the mammalian olfactory bulb

    PubMed Central

    Geramita, Matthew A; Burton, Shawn D; Urban, Nathan N

    2016-01-01

    Splitting sensory information into parallel pathways is a common strategy in sensory systems. Yet, how circuits in these parallel pathways are composed to maintain or even enhance the encoding of specific stimulus features is poorly understood. Here, we have investigated the parallel pathways formed by mitral and tufted cells of the olfactory system in mice and characterized the emergence of feature selectivity in these cell types via distinct lateral inhibitory circuits. We find differences in activity-dependent lateral inhibition between mitral and tufted cells that likely reflect newly described differences in the activation of deep and superficial granule cells. Simulations show that these circuit-level differences allow mitral and tufted cells to best discriminate odors in separate concentration ranges, indicating that segregating information about different ranges of stimulus intensity may be an important function of these parallel sensory pathways. DOI: http://dx.doi.org/10.7554/eLife.16039.001 PMID:27351103

  7. Optimizing the combination insulin bolus split for a high-fat, high-protein meal in children and adolescents using insulin pump therapy.

    PubMed

    Lopez, P E; Smart, C E; McElduff, P; Foskett, D C; Price, D A; Paterson, M A; King, B R

    2017-10-01

    To determine the optimum combination bolus split to maintain postprandial glycaemia with a high-fat and high-protein meal in young people with Type 1 diabetes. A total of 19 young people (mean age 12.9 ± 6.7 years) participated in a randomized, repeated-measures trial comparing postprandial glycaemic control across six study conditions after a high-fat and high-protein meal. A standard bolus and five different combination boluses were delivered over 2 h in the following splits: 70/30 = 70% standard /30% extended bolus; 60/40=60% standard/40% extended bolus; 50/50=50% standard/50% extended bolus; 40/60=40% standard/60% extended bolus; and 30/70=30% standard/70% extended bolus. Insulin dose was determined using the participant's optimized insulin:carbohydrate ratio. Continuous glucose monitoring was used to assess glucose excursions for 6 h after the test meal. Standard bolus and combination boluses 70/30 and 60/40 controlled the glucose excursion up to 120 min. From 240 to 300 min after the meal, the glucose area under the curve was significantly lower for combination bolus 30/70 compared with standard bolus (P=0.004). High-fat and high-protein meals require a ≥60% insulin:carbohydrate ratio as a standard bolus to control the initial postprandial rise. Additional insulin at an insulin:carbohydrate ratio of up to 70% is needed in the extended bolus for a high fat and protein meal to prevent delayed hyperglycaemia. © 2017 Diabetes UK.

  8. Flat-top MZI filters: a novel robust design based on MMI splitters

    NASA Astrophysics Data System (ADS)

    Cherchi, Matteo; Harjanne, Mikko; Ylinen, Sami; Kapulainen, Markku; Vehmas, Tapani; Aalto, Timo

    2016-03-01

    Multimode Interferometers (MMIs) are an attractive alternative to directional couplers, ensuring more relaxed tolerances to fabrication errors and broader operation bandwidth. The drawback is that only a limited discrete set of splitting ratios is achievable with MMIs of constant cross section. This issue clearly limits their use in flat-top interferometric filters, which design requires, in general, free choice of the splitting ratios. Here we show for the first time that it is possible to design 4-stage flat-top interferometers using only standard MMIs with 50:50 and 85:15 splitting ratios. The design approach is based on the representation of the system on the Bloch sphere. Flat-top interleavers with different free spectral ranges have been designed and fabricated on the silicon photonics platform of VTT, based on 3 μm thick rib and strip waveguides. Two different layouts have been explored: one where all components are collinear and a more compact one which elements have been folded in a spiral shape. All interleavers have been designed for TE polarization, and they work in a wavelength range comparable with the 100 nm bandwidth of the MMI splitters. Even though fabrication imperfections and non-ideal behaviour of both waveguide bends and MMIs led to reduced extinction compared to simulations, most devices show in-band extinction exceeding 15 dB. The in-band losses of the most central channels did not exceed 1.5 dB compared to the reference straight waveguide. The designed interleavers can be employed in cascaded configurations to achieve broadband and fabrication tolerant flat-top wavelength (de)multiplexers.

  9. A novel passive micromixer based on unbalanced splits and collisions of fluid streams

    NASA Astrophysics Data System (ADS)

    Ansari, Mubashshir Ahmad; Kim, Kwang-Yong; Anwar, Khalid; Kim, Sun Min

    2010-05-01

    A new passive micromixer based on the concept of unbalanced splits and cross-collisions of fluid streams is designed and fabricated. Experimental and numerical studies have been carried out on the micromixer at Reynolds numbers ranging from 10 to 80. The three-dimensional Navier-Stokes equations have been used to analyze the mixing and flow behavior of the micromixer, which is composed of two sub-channels of unequal widths which repeatedly undergo splitting and recombination. The difference between the mass flow rates in the two sub-channels creates an unbalanced collision of the two fluid streams. Mixing is mainly due to the combined effect of unbalanced collisions of the fluid streams and Dean vortices. The micromixer shows interesting mixing behavior for different ratios of the widths of the two split sub-channels. The sub-channels wherein the major sub-channel is twice as wide as the minor sub-channel exhibit the highest mixing performance at Reynolds numbers larger than 40. The results show the lowest mixing performance for the case of uniform width, where balanced collisions occur.

  10. Upper Mantle Dynamics of Bangladesh by Splitting Analyzes of Core Refracted SKS and SKKS Waves

    NASA Astrophysics Data System (ADS)

    Tiwari, A. K.; Bhushan, K.; Eken, T.; Singh, A.

    2017-12-01

    New shear wave splitting measurements are obtained from hitherto less studied Bengal Basin using core refracted SKS and SKKS phases. Splitting parameters, time delays (δt) and fast polarization directions (Φ) were estimated through analysis of 64 high-quality waveforms (≥ 2.5 signal to noise ratio) from 29 earthquakes with magnitude ≥5.5 recorded at eight seismic stations deployed over Bangladesh. We found no evidence of splitting which indicates azimuthal isotropy beneath the region. Null measurements can be explained by near vertical axis of anisotropy or by the presence of multiple anisotropic layers with different fast polarization directions, where combined effect results in null. We consider that the presence of partial melts within the upper mantle due to Kerguelen mantle plume activities may be the potential geodynamic cause for observed null measurements. It locally perturbed mantle convection flow beneath the region and reoriented the lattice preferred orientation of the upper mantle mineral mainly olivine as this disabled the core refracted SKS and SKKS phases to scan the anisotropic characteristics of the region, and hence null measurements are obtained.

  11. Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon Arthur

    Epsilon-near-zero (ENZ) modes provide a new path for tailoring light–matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes.more » In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. As a result, this approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode.« less

  12. Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers

    DOE PAGES

    Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon Arthur; ...

    2016-01-14

    Epsilon-near-zero (ENZ) modes provide a new path for tailoring light–matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes.more » In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. As a result, this approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode.« less

  13. Upper mantle dynamics of Bangladesh by splitting analysis of core-mantle refracted SKS, PKS, and SKKS phases

    NASA Astrophysics Data System (ADS)

    Tiwari, Ashwani Kant; Bhushan, Kirti; Eken, Tuna; Singh, Arun

    2018-06-01

    New shear wave splitting measurements are obtained from the Bengal Basin using core-mantle refracted SKS, PKS, and SKKS phases. The splitting parameters, namely time delays (δ t) and fast polarization directions (ϕ), were estimated through analysis of 54 high-quality waveforms (⩾ 2.5 signal to noise ratio) from 30 earthquakes with magnitude ⩾ 5.5 recorded at ten seismic stations deployed over Bangladesh. No evidence of splitting was found, which indicates azimuthal isotropy beneath the region. These null measurements can be explained by either vertically dipping anisotropic fast axes or by the presence of multiple horizontal anisotropic layers with different fast polarization directions, where the combined effect results in a null characterization. The anisotropic fabric preserved from rifting episodes of Antarctica and India, subduction-related dynamics of the Indo-Burmese convergence zone, and northward movement of the Indian plate creating shear at the base of the lithosphere can explain the observed null measurements. The combined effect of all these most likely results in a strong vertical anisotropic heterogeneity, creating the observed null results.

  14. Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality

    PubMed Central

    Mori, Matteo; Ponce-de-León, Miguel; Peretó, Juli; Montero, Francisco

    2016-01-01

    Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhibition and large permeabilities are needed. In the light of these results, we then consider the patterns found in the case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid Cinara cedri. Using in-silico computed physicochemical properties of metabolites of this and other biosynthetic pathways, we verified that the splitting point of the pathway corresponds to the most permeable intermediate. PMID:27774085

  15. Insights into the origin and evolution of the plant hormone signaling machinery.

    PubMed

    Wang, Chunyang; Liu, Yang; Li, Si-Shen; Han, Guan-Zhu

    2015-03-01

    Plant hormones modulate plant growth, development, and defense. However, many aspects of the origin and evolution of plant hormone signaling pathways remain obscure. Here, we use a comparative genomic and phylogenetic approach to investigate the origin and evolution of nine major plant hormone (abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonate, salicylic acid, and strigolactone) signaling pathways. Our multispecies genome-wide analysis reveals that: (1) auxin, cytokinin, and strigolactone signaling pathways originated in charophyte lineages; (2) abscisic acid, jasmonate, and salicylic acid signaling pathways arose in the last common ancestor of land plants; (3) gibberellin signaling evolved after the divergence of bryophytes from land plants; (4) the canonical brassinosteroid signaling originated before the emergence of angiosperms but likely after the split of gymnosperms and angiosperms; and (5) the origin of the canonical ethylene signaling pathway postdates shortly the emergence of angiosperms. Our findings might have important implications in understanding the molecular mechanisms underlying the emergence of land plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. Method for resonant measurement

    DOEpatents

    Rhodes, G.W.; Migliori, A.; Dixon, R.D.

    1996-03-05

    A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.

  17. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits.

    PubMed

    Liu, Liu; Ding, Yunhong; Yvind, Kresten; Hvam, Jørn M

    2011-06-20

    A compact and efficient polarization splitting and rotating device built on the silicon-on-insulator platform is introduced, which can be readily used for the interface section of a polarization diversity circuit. The device is compact, with a total length of a few tens of microns. It is also simple, consisting of only two parallel silicon-on-insulator wire waveguides with different widths, and thus requiring no additional and nonstandard fabrication steps. A total insertion loss of -0.6 dB and an extinction ratio of 12 dB have been obtained experimentally in the whole C-band.

  18. Shot noise limits to sensitivity of optical interferometry

    NASA Technical Reports Server (NTRS)

    Prasad, Sudhakar

    1992-01-01

    By arguing that the limiting noise is the photoelectron shot noise, we show that the sensitivity of image synthesis by an ideal optical interferometer is independent of the details of beam-splitting and recombination. The signal-to-noise ratio of the synthesized image is proportional to the square root of the total number of photoelectrons detected by the entire array. For non-ideal interferometers, which are forced to employ a closure-phase method of indirect inference of the visibility data, essentially the same result holds for strong sources, but at weak light levels beam-splitting degrades sensitivity.

  19. Molecular imaging of drug-modulated protein-protein interactions in living subjects.

    PubMed

    Paulmurugan, Ramasamy; Massoud, Tarik F; Huang, Jing; Gambhir, Sanjiv S

    2004-03-15

    Networks of protein interactions mediate cellular responses to environmental stimuli and direct the execution of many different cellular functional pathways. Small molecules synthesized within cells or recruited from the external environment mediate many protein interactions. The study of small molecule-mediated interactions of proteins is important to understand abnormal signal transduction pathways in cancer and in drug development and validation. In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin. The concentration of rapamycin required for efficient dimerization and that of its competitive binder ascomycin required for dimerization inhibition were studied in cell lines. The system was dually modulated in cell culture at the transcription level, by controlling nuclear factor kappaB promoter/enhancer elements using tumor necrosis factor alpha, and at the interaction level, by controlling the concentration of the dimerizer rapamycin. The rapamycin-mediated dimerization of FRB and FKBP12 also was studied in living mice by locating, quantifying, and timing the hRLUC complementation-based bioluminescence imaging signal using a cooled charged coupled device camera. This split reporter system can be used to efficiently screen small molecule drugs that modulate protein-protein interactions and also to assess drugs in living animals. Both are essential steps in the preclinical evaluation of candidate pharmaceutical agents targeting protein-protein interactions, including signaling pathways in cancer cells.

  20. Effects of forage-to-concentrate ratio and dietary fiber manipulation on gas emissions and olfactometry from manure of Holstein heifers

    USDA-ARS?s Scientific Manuscript database

    The objective of this experiment was to determine the effects of differing ratios of forage to concentrate (F:C) and fiber levels on odor and gas emissions from manure. Eight Holstein dairy heifers (362.45 ± 4.53 d of age and 335.6 ± 7.41 kg of body weight) were randomly assigned to a split-plot, 4 ...

  1. Responses of soybean to ammonium and nitrate supplied in combination to the whole root system or separately in a split-root system

    NASA Technical Reports Server (NTRS)

    Chaillou, S.; Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    To address the questions of whether allocation of carbohydrates to roots is influenced by ionic form of nitrogen absorbed and whether allocation of carbohydrates to roots in turn influences proportionality between NH4+ and NO3- uptake from mixed sources, NH4+ and NO3- were supplied separately to halves of a split-root hydroponic system and were supplied in combination to a whole-root system. Dry matter accumulation in the split-root system was 18% less in the NH4(+)-fed axis than in the NO3(-)-fed axis. This, however, does not indicate that partitioning of carbohydrate between the two axes was different. Most of the reduction in dry matter accumulation in the NH4(+)-fed axis can be accounted for by the retransport of CH2O equivalents from the root back to the shoot with amino acids produced by NH4+ assimilation. Uptake of NH4+ or NO3- by the respective halves of the split-root system was proportional to the estimated allocation of carbohydrate to that half. When NH4+ and NO3- were supplied to separate halves of the split-root system, the cumulative NH4+ to NO3- uptake ratio was 0.81. When supplied in combination to the whole-root system, the cumulative NH4+ to NO3- uptake ratio was 1.67. Thus, while the shoot may affect total nitrogen uptake through the export of carbohydrates to roots, the shoot (common for halves of the split-root system) apparently does not exert a direct effect on proportionality of NH4+ and NO3- uptake by roots. For whole roots supplied with both NH4+ and NO3-, the restriction in uptake of NO3- may involve a stimulation of NO3- efflux rather than an inhibition of NO3- influx. While only the net uptake of NH4+ and NO3- was measured by ion chromatography, monitoring at approximately hourly intervals during the first 3 days of treatment revealed irregularly occurring intervals of both depletion (net influx) and enrichment (net efflux) in solutions. In the case of NH4+, numbers of net efflux events were similar (21 to 24 out of 65 sequential sampling intervals) whether NH4+ was supplied with NO3- to whole-root systems or separately to an axis of the split-root system. In the case of NO3-, however, the number of net efflux events increased from 8 when NO3- was supplied to a separate axis of the split-root system to between 19 and 24 when NO3- was supplied with NH4+ to whole-root systems.

  2. Purifying selection and genetic drift shaped Pleistocene evolution of the mitochondrial genome in an endangered Australian freshwater fish.

    PubMed

    Pavlova, A; Gan, H M; Lee, Y P; Austin, C M; Gilligan, D M; Lintermans, M; Sunnucks, P

    2017-05-01

    Genetic variation in mitochondrial genes could underlie metabolic adaptations because mitochondrially encoded proteins are directly involved in a pathway supplying energy to metabolism. Macquarie perch from river basins exposed to different climates differ in size and growth rate, suggesting potential presence of adaptive metabolic differences. We used complete mitochondrial genome sequences to build a phylogeny, estimate lineage divergence times and identify signatures of purifying and positive selection acting on mitochondrial genes for 25 Macquarie perch from three basins: Murray-Darling Basin (MDB), Hawkesbury-Nepean Basin (HNB) and Shoalhaven Basin (SB). Phylogenetic analysis resolved basin-level clades, supporting incipient speciation previously inferred from differentiation in allozymes, microsatellites and mitochondrial control region. The estimated time of lineage divergence suggested an early- to mid-Pleistocene split between SB and the common ancestor of HNB+MDB, followed by mid-to-late Pleistocene splitting between HNB and MDB. These divergence estimates are more recent than previous ones. Our analyses suggested that evolutionary drivers differed between inland MDB and coastal HNB. In the cooler and more climatically variable MDB, mitogenomes evolved under strong purifying selection, whereas in the warmer and more climatically stable HNB, purifying selection was relaxed. Evidence for relaxed selection in the HNB includes elevated transfer RNA and 16S ribosomal RNA polymorphism, presence of potentially mildly deleterious mutations and a codon (ATP6 113 ) displaying signatures of positive selection (ratio of nonsynonymous to synonymous substitution rates (dN/dS) >1, radical change of an amino-acid property and phylogenetic conservation across the Percichthyidae). In addition, the difference could be because of stronger genetic drift in the smaller and historically more subdivided HNB with low per-population effective population sizes.

  3. Dissecting the role of isoprene and stress-related hormones (ABA and ethylene) in Populus nigra exposed to unequal root zone water stress.

    PubMed

    Marino, Giovanni; Brunetti, Cecilia; Tattini, Massimiliano; Romano, Andrea; Biasioli, Franco; Tognetti, Roberto; Loreto, Francesco; Ferrini, Francesco; Centritto, Mauro

    2017-12-01

    Isoprene is synthesized through the 2-C-methylerythritol-5-phosphate (MEP) pathway that also produces abscisic acid (ABA). Increases in foliar free ABA concentration during drought induce stomatal closure and may also alter ethylene biosynthesis. We hypothesized a role of isoprene biosynthesis in protecting plants challenged by increasing water deficit, by influencing ABA production and ethylene evolution. We performed a split-root experiment on Populus nigra L. subjected to three water treatments: well-watered (WW) plants with both root sectors kept at pot capacity, plants with both root compartments allowed to dry for 5 days (DD) and plants with one-half of the roots irrigated to pot capacity, while the other half did not receive water (WD). WD and WW plants were similar in photosynthesis, water relations, foliar ABA concentration and isoprene emission, whereas these parameters were significantly affected in DD plants: leaf isoprene emission increased despite the fact that photosynthesis declined by 85% and the ABA-glucoside/free ABA ratio decreased significantly. Enhanced isoprene biosynthesis in water-stressed poplars may have contributed to sustaining leaf ABA biosynthesis by keeping the MEP pathway active. However, this enhancement in ABA was accompanied by no change in ethylene biosynthesis, likely confirming the antagonistic role between ABA and ethylene. These results may indicate a potential cross-talk among isoprene, ABA and ethylene under drought. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry.

    PubMed

    Wittmann, C; Heinzle, E

    2001-04-01

    Experimental design of (13)C-tracer studies for metabolic flux analysis with mass spectrometric determination of labeling patterns was performed for the central metabolism of Corynebacterium glutamicum comprising various flux scenarios. Ratio measurement of mass isotopomer pools of Corynebacterium products lysine, alanine, and trehalose is sufficient to quantify the flux partitioning ratios (i) between glycolysis and pentose phosphate pathways (Phi(PPP)), (ii) between the split pathways in the lysine biosynthesis (Phi(DH)), (iii) at the pyruvate node (Phi(PC)), and reversibilities of (iv) glucose 6-phosphate isomerase (zeta(PGI)), (v) at the pyruvate node (zeta(PC/PEPCK)), and (vi) of transaldolase and transketolases in the PPP. Weighted sensitivities for flux parameters were derived from partial derivatives to quantitatively evaluate experimental approaches and predict precision for estimated flux parameters. Deviation of intensity ratios from ideal values of 1 was used as weighting function. Weighted flux sensitivities can be used to identify optimal type and degree of tracer labeling or potential intensity ratios to be measured. Experimental design for lysine-producing strain C. glutamicum MH 20-22B (Marx et al., Biotechnol. Bioeng. 49, 111-129, 1996) and various potential mutants with different alterations in the flux pattern showed that specific tracer labelings are optimal to quantify a certain flux parameter uninfluenced by the overall flux situation. Identified substrates of choice are [1-(13)C]glucose for the estimation of Phi(PPP) and zeta(PGI) and a 1 : 1 mixture of [U-(12)C/U-(13)C]glucose for the determination of zeta(PC/PEPCK). Phi(PC) can be quantified by feeding [4-(13)C]glucose or [U-(12)C/U-(13)C]glucose (1 : 1), whereas Phi(DH) is accessible via [4-(13)C]glucose. The sensitivity for the quantification of a certain flux parameter can be influenced by superposition through other flux parameters in the network, but substrate and measured mass isotopomers of choice remain the same. In special cases, reduced labeling degree of the tracer substrate can increase the precision of flux analysis. Enhanced precision and flux information can be achieved via multiply labeled substrates. The presented approach can be applied for effective experimental design of (13)C tracer studies for metabolic flux analysis. Intensity ratios of other products such as glutamate, valine, phenylalanine, and riboflavin also sensitively reflect flux parameters, which underlines the great potential of mass spectrometry for flux analysis. Copyright 2001 Academic Press.

  5. Chemistry-split techniques for viscous reactive blunt body flow computations

    NASA Technical Reports Server (NTRS)

    Li, C. P.

    1987-01-01

    The weak-coupling structure between the fluid and species equations has been exploited and resulted in three, closely related, time-iterative implicit techniques. While the primitive variables are solved in two separated groups and each by an Alternating Direction Implicit (ADI) factorization scheme, the rate-species Jacobian can be treated in either full or diagonal matrix form, or simply ignored. The latter two versions render the split technique to solving for species as scalar rather than vector variables. The solution is completed at the end of each iteration after determining temperature and pressure from the flow density, energy and species concentrations. Numerical experimentation has shown that the split scalar technique, using partial rate Jacobian, yields the best overall stability and consistency. Satisfactory viscous solutions were obtained for an ellipsoidal body of axis ratio 3:1 at Mach 35 and an angle of attack of 20 degrees.

  6. Gas-liquid flow splitting in T-junction with inclined lateral arm

    NASA Astrophysics Data System (ADS)

    Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu

    2018-02-01

    This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.

  7. Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Chen, Lie-Wen

    2015-04-01

    The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the spacetime nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of proto-neutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent years in addressing these issues. There are different kinds of nucleon effective masses. In this mini-review, we focus on the total effective masses often used in the non-relativistic description of nuclear dynamics. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross-sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.

  8. Metamaterial for Radar Frequencies

    DTIC Science & Technology

    2012-09-01

    Circuit Board RAM Radar Absorbing Material RCS Radar Cross Section SNR Signal-to-Noise Ratio SNG Single-Negative SRR Split Ring Resonator...although some can be single-negative ( SNG ). DNG refers to material with simultaneous negative real parts of the permittivity r  and permeability

  9. A unified bond theory, probabilistic meso-scale modeling, and experimental validation of deformed steel rebar in normal strength concrete

    NASA Astrophysics Data System (ADS)

    Wu, Chenglin

    Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (< 6% error) and crack spacing (< 6% error). The validated bond model is applied to derive various interrelations among concrete crushing, concrete splitting, interfacial behavior, and the rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.

  10. Split liver transplantation: a reliable approach to expand donor pool.

    PubMed

    Yan, Ji-Qi; Becker, Thomas; Peng, Cheng-Hong; Li, Hong-Wei; Klempnauer, Juergen

    2005-08-01

    Orthotopic liver transplantation as a successful treatment of end-stage liver disease is hampered by a persistent lack of cadaveric organs. Split liver transplantation, which was first successfully performed by Medical School of Hannover in 1988, has become a mature surgical technique to expand the donor pool. Between 1993 and 1999, split liver transplantation activities have increased in Europe from 1.2% to 10.4% in all performed liver transplantations. Current data have strongly supported that the survival rate of patients after split liver transplantation is not significantly different from that of patients after whole-size orthotopic liver transplantation. The most important step of donor graft selection is surgeon's observation judged by the experience of individual transplant center. The paper aims to provide the guideline of donor selection, hepatic graft splitting, and recipient management as well. Medical School of Hannover has accumulated plentiful experience of split liver transplantation for more than 10 cases ever since 1998. Besides that, we also reviewed a variety of literatures from other famous European and American centers specialized in this field for many years. According to our experience combined with the view points of others, the donor should meet the following criteria as well: (1) age less than 50 years; (2) hemodynamics stable; (3) ICU less than 5 days; (4) Na less than 170 mmol/L or better if less than 150 mmol/L. In 1996 and 1997, the Hamburg group and the UCLA group separately introduced a breakthrough technique performing split liver transplantation in situ. Evidently, the in situ technique has been limited by prolonged time of donor organ procurement, coordination with other organ procurement teams, and even extra burden on donor hospital. Some groups, therefore, have restored the ex situ or bench splitting technique, and fortunately the transplant outcomes of the ex situ technique are equivalent to those of the in situ one. Recently some new techniques have been introduced to split the liver for two adult patients, including the split-cava technique. It is clear that the most important factor for determining the prognosis of the patient is the time of receiving liver transplantation, not the type of liver transplantation. We still need to pay close attention to the graft to recipient weight ratio (GRWR) and the UNOS classification or MELD score before the patient is subjected to split liver transplantation.

  11. Superior In Vitro Stimulation of Human CD8+ T-Cells by Whole Virus versus Split Virus Influenza Vaccines

    PubMed Central

    Distler, Eva; Dass, Martin; Wagner, Eva M.; Plachter, Bodo; Probst, Hans Christian; Strand, Dennis; Hartwig, Udo F.; Karner, Anita; Aichinger, Gerald; Kistner, Otfried; Landfester, Katharina; Herr, Wolfgang

    2014-01-01

    Pandemic and seasonal influenza viruses cause considerable morbidity and mortality in the general human population. Protection from severe disease may result from vaccines that activate antigen-presenting DC for effective stimulation of influenza-specific memory T cells. Special attention is paid to vaccine-induced CD8+ T-cell responses, because they are mainly directed against conserved internal influenza proteins thereby presumably mediating cross-protection against circulating seasonal as well as emerging pandemic virus strains. Our study showed that influenza whole virus vaccines of major seasonal A and B strains activated DC more efficiently than those of pandemic swine-origin H1N1 and pandemic-like avian H5N1 strains. In contrast, influenza split virus vaccines had a low ability to activate DC, regardless which strain was investigated. We also observed that whole virus vaccines stimulated virus-specific CD8+ memory T cells much stronger compared to split virus counterparts, whereas both vaccine formats activated CD4+ Th cell responses similarly. Moreover, our data showed that whole virus vaccine material is delivered into the cytosolic pathway of DC for effective activation of virus-specific CD8+ T cells. We conclude that vaccines against seasonal and pandemic (-like) influenza strains that aim to stimulate cross-reacting CD8+ T cells should include whole virus rather than split virus formulations. PMID:25072749

  12. An observation related to directional attenuation of SKS waves propagating in anisotropic media

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xue, Mei

    2015-04-01

    Azimuthal anisotropy of attenuation is a physical phenomenon related to the directional change of attenuation. This study examines the frequency properties and directional attenuation of SKS waves. The directional frequency-dependent characteristics of SKS waves are investigated in the frequency band of 0.02-0.5 Hz using data from 53 permanent seismic stations located throughout the northern Yangtze Craton, the southern North China Craton and adjacent areas. In addition to normal splitting behavior, the analysis reveals that many SKS splitting measurements exhibit a lemniscate shape, reflecting frequency differences along fast and slow polarization directions. Frequency analysis shows that spectral ratios between fast/slow components of the lemniscate-type splitting results fluctuate strongly in a higher frequency band of 0.2-0.5 Hz, and fluctuate less within the main frequency band of 0.02-0.2 Hz. For each station, the ratio of the peak amplitude of the fast/slow components can be represented as a cotangential function of event backazimuth multiplying with a constant = 0.42 ± 0.10. This transformation shows that the regional average angles consistently fall within the relatively narrow range of -46.5 ± 3° with respect to the north, suggesting that a regional tectonic controlling factor dictates the relatively uniform directional attenuation of SKS waves within the frequency band of 0.02-0.2 Hz. Further analysis is performed by projecting the SKS waves onto the components along and perpendicular to the regional average angles. The calculation also shows that, in the 0.02-0.2 Hz band, the relationship between amplitude ratio and event backazimuth matches a cotangential functions with the same best matching angles and constant a < 1. Synthetic calculations demonstrate that although different filters influence the splitting parameters, attenuation anisotropy cannot be explained by elastic anisotropic media, including multilayer anisotropy and anisotropy with a tilting symmetrical axis. This observed behavior of the SKS wave may arise from the combined effects of frequency-dependent attenuation anisotropy and small-scale heterogeneities in the crust and the upper mantle.

  13. Design-Parameters Setup for Power-Split Dual-Regime IVT

    NASA Astrophysics Data System (ADS)

    Preda, Ion; Ciolan, Gheorghe; Covaciu, Dinu

    2017-10-01

    To analyze the working possibilities of power-split infinitely variable transmissions (IVTs) it is necessary to follow a systematic approach. The method proposed in this paper consists of generating a block diagram of the transmission and then, based on this diagram, to derive the kinematics and dynamics equations of the transmission. For an actual numerical case, the derived equations are used to find characteristic values of the transmission components (gear and chain drives, planetary units) necessary to calculate the speed ratios, the speeds, torques and powers acting on the shafts and coupling (control) elements, and even to estimate the overall efficiency of the transmission.

  14. Composition of legume soaking water and emulsifying properties in gluten-free bread.

    PubMed

    Huang, San; Liu, Yuling; Zhang, Weihan; Dale, Kylie J; Liu, Silu; Zhu, Jingnan; Serventi, Luca

    2018-04-01

    Soaking of legumes results in the loss of macronutrients, micronutrients and phytochemicals. Fibre, protein and phytochemicals found in legumes exert emulsifying activity that may improve the structure and texture of gluten-free bread. The legume soaking water of haricot beans, garbanzo chickpeas, whole green lentils, split yellow peas and yellow soybeans were tested in this study for functional properties and use as food ingredients. Composition, physicochemical properties and effect on the quality of gluten-free bread were determined for each legume soaking water. Haricot beans and split yellow peas released the highest amount of solids in the legume soaking water: 1.89 and 2.38 g/100 g, respectively. Insoluble fibre was the main constituent of haricot beans legume soaking water, while water-soluble carbohydrates and protein were the major fraction of split yellow peas. High quantities of phenolics (∼400 µg/g) and saponins (∼3 mg/g) were found in the legume soaking water of haricot beans, whole green lentils and split yellow peas. High emulsifying activity (46 and 50%) was found for the legume soaking water of garbanzo chickpeas and split yellow peas, probably due to their protein content and high ratio of water-soluble carbohydrates to dry matter. Such activity resulted in softer texture of the gluten-free bread. A homogeneous structure of crumb pores was found for split yellow peas, opposing that of whole green lentils. A balance between the contents of yeast nutrients and antinutrients was the likely basis of the different appearances.

  15. More symmetrical gait after split-belt treadmill walking does not modify dynamic and postural balance in individuals post-stroke.

    PubMed

    Miéville, Carole; Lauzière, Séléna; Betschart, Martina; Nadeau, Sylvie; Duclos, Cyril

    2018-04-24

    Spontaneous gait is often asymmetrical in individuals post-stroke, despite their ability to walk more symmetrically on demand. Given the sensorimotor deficits in the paretic limb, this asymmetrical gait may facilitate balance maintenance. We used a split-belt walking protocol to alter gait asymmetry and determine the effects on dynamic and postural balance. Twenty individuals post-stroke walked on a split-belt treadmill. In two separate periods, the effects of walking with the non-paretic leg, and then the paretic one, on the faster belt on spatio-temporal symmetry and balance were compared before and after these perturbation periods. Kinematic and kinetic data were collected using a motion analysis system and an instrumented treadmill to determine symmetry ratios of spatiotemporal parameters and dynamic and postural balance. Balance, quantified by the concepts of stabilizing and destabilizing forces, was compared before and after split-belt walking for subgroups of participants who improved and worsened their symmetry. The side on the slow belt during split-belt walking, but not the changes in asymmetry, affected balance. Difficulty in maintaining balance was higher during stance phase of the leg that was on the slow belt and lower on the contralateral side after split-belt walking, mostly because the center of pressure was closer (higher difficulty) or further (lower difficulty) from the limit of the base of support, respectively. Changes in spatiotemporal parameters may be sought without additional alteration of balance during gait post-stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A Brief Study of the Speed Reduction of Overtaking Airplanes by Means of Air Brakes, Special Report

    NASA Technical Reports Server (NTRS)

    Pearson, H. A.; Amderspm. R. F.

    1942-01-01

    As an aid to airplane designers interested in providing pursuit airplanes with decelerating devices intended to increase the firing time when overtaking another airplane, formulas are given relating the pertinent distances and speeds in horizontal flight to the drag increase required. Charts are given for a representative parasite-drag coefficient from which the drag increase, the time gained, and the closing distance may be found. The charts are made up for three values of the ratio of the final speed of the pursuing airplane to the speed of the pursued airplane and for several values of the ratio of the speed of the pursued airplane to the initial speed of the pursuing airplane. Charts are also given indicating the drag increases obtainable with double split flaps and with conventional propellers. The use of the charts is illustrated by an example in which it is indicated that either double split flaps or, under certain ideal conditions, reversible propellers should provide the speed reductions required.

  17. Protein Stable Isotope Fingerprinting (P-SIF): A New Tool to Understand Natural Isotopic Heterogeneity of Mixed Microbial Ecosystems

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Mohr, W.; Tang, T.; Sattin, S.; Bovee, R.

    2014-12-01

    Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between identity and function in microbial ecosystems by (i) determining the ratios of 13C/12C (values of δ13C) for different taxonomic divisions, and (ii) using those values as clues to the metabolic pathways employed by the respective organisms, while (iii) not perturbing the system, i.e., not adding exogenous substrates or isotope labels. To accomplish this, we employ two-dimensional HPLC to resolve a sample containing ca. 5-10 mg of mixed proteins into 960-1440 fractions. Each fraction then is split in two aliquots: The first is digested with trypsin for peptide sequencing, while the second is measured in triplicate using an isotope-ratio mass spectrometer interfaced with a spooling wire microcombustion device. Data from pure cultures show that bacteria have a narrow distribution of protein δ13C values within individual taxa (±0.7-1.2‰, 1σ). This is moderately larger than the mean precision of the triplicate isotope measurements (±0.5‰, 1σ) and may reflect heterogeneous distribution of 13C among the amino acids. When cells from different species are mixed together prior to protein extraction and separation, the results can predict accurately (to within ±1σ) the δ13C values of the original taxa. The number of data points required for this endmember prediction is ≥20/taxon, yielding a theoretical resolution of ca. 10 taxonomic units/sample. Initial tests on environmental samples suggest the approach will be useful to determine the overall trophic breadth of mixed microbial ecosystems.

  18. Search for temporal changes in shear-wave splitting associated with the 2012 Te Maari Eruptions at Mount Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Godfrey, Holly J.; Shelley, Adrian; Savage, Martha K.

    2014-10-01

    We investigate changes in shear wave splitting and VP/VS ratios of local earthquakes from the GeoNet catalogue during a 16 month period beginning a year before the first Te Maari eruption at Mount Tongariro on August 6, 2012, focusing on four permanent seismographs located in proximity to the volcano. We identify four time periods bounded by sharp transitions that comprise the study period, during which moving averages of the shear-wave splitting parameters, Φ (fast direction) and δt (delay time), are fairly constant. At all stations, VP/VS is steady throughout most of the study period at 1.75. Small variations occur during the earthquake swarm at the volcano, which started a month before the first eruption, and for some low magnitude events occurring after a change in earthquake location method. Analysis of data sets in which epicentre location, hypocentre depth and event magnitude are restricted illustrates that observed temporal changes in shear-wave splitting parameters are likely due to the spatial variation of paths. This in turn is governed by the spatial distribution of seismicity and measurement quality. We think the short term variation in VP/VS ratios is due to event origin time uncertainty of low magnitude earthquakes or incorrect S-phase arrival timing for events in the Tongariro swarm. These results suggest that any volcanic processes able to cause changes in shear-wave splitting or VP/VS associated with the two eruptions during our study period were too localised to Te Maari to be observed at the seismographs studied using our methods. Dominant Φ observed during the study period are oriented approximately tangential to the Tongariro/Ngauruhoe massif at all four stations. We suggest that this may result from gravitational loading of Tongariro and Ngauruhoe mountains inducing fracturing or dilatation of tangentially oriented microcracks. There may also be some effect from layered material causing horizontal propagating rays yielding faster speed SH waves than SV at station NGZ. Measurements from shallow earthquakes in immediate proximity to the seismographs indicate the potential presence of a shallow, highly anisotropic body in the volcano.

  19. Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.

    2018-03-01

    Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).

  20. A new metabolomic assay to examine inflammation and redox pathways following LPS challenge

    PubMed Central

    2012-01-01

    Background Shifts in intracellular arginine (Arg) and sulfur amino acid (SAA) redox metabolism modulate macrophage activation, polarization and phenotype. Despite their importance in inflammation and redox regulatory pathways, comprehensive analysis of these metabolic networks was not previously possible with existing analytical methods. Methods The Arg/thiol redox LC-MS/MS metabolomics assay permits simultaneous assessment of amino acids and derivative products generated from Arg and SAA metabolism. Using this assay, LPS-induced changes in macrophage amino acid metabolism were monitored to identify pathway shifts during activation and their linkage to cellular redox regulation. Results Metabolite concentrations most significantly changed after treatment of a macrophage-like cell line (RAW) with LPS for 24 hrs were citrulline (Cit) (48-fold increase), ornithine (Orn) (8.5-fold increase), arginine (Arg) (66% decrease), and aspartic acid (Asp) (73% decrease). The ratio Cit + Orn/Arg + Asp (CO/AA) was more sensitive to LPS stimulation than other amino acid ratios commonly used to measure LPS-dependent inflammation (e.g., SAM/SAH, GSH/GSSG) and total media NOx. The CO/AA ratio was also the first ratio to change significantly after LPS treatment (4 hrs). Changes in the overall metabolomic profile over time indicated that metabolic pathways shifted from Arg catabolism to thiol oxidation. Conclusions Simultaneous quantification of Arg and SAA metabolic pathway shifts following LPS challenge of macrophage indicate that, in this system, the Arg-Citrulline/NO cycle and arginase pathways are the amino acid metabolic pathways most sensitive to LPS-challenge. The cellular (Cit + Orn)/(Arg + Asp) ratio, which summarizes this pathway, was more responsive to lower concentrations of LPS and responded earlier than other metabolic biomarkers of macrophage activation including GSH redox. It is suggested that the CO/AA ratio is a redox- independent early biomarker of macrophage activation. The ability to measure both the CO/AA and GSH-redox ratios simultaneously permits quantification of the relative effects of LPS challenge on macrophage inflammation and oxidative stress pathways. The use of this assay in humans is discussed, as are clinical implications. PMID:23036094

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This paper reports on the country's limited oil reserves which are almost exhausted meaning difficult times in the future. New terms for an offer of 11 offshore blocks allow for a negotiable split of cost oil and profit oil linked to either daily production or the ratio between accumulated net revenues and accumulated revenue.

  2. Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.

  3. Fourier transform infrared characterization of the acidic phosphoric extractant system containing lanthanide

    NASA Astrophysics Data System (ADS)

    Shen, Y.-H.; Yao, S.-K.; Wang, D.-J.; Zhou, Weijin; Li, Ying Xue; Peng, Q.; Wu, JinGuang; Xu, Guang-Xian

    1994-01-01

    The aggregation states and FTIR spectra of the extractive organic phases of saponified HDEHP [di(2-ethylhexyl) phosphoric acid] (1). DMHPA [di(1-methylheptyl) phosphoric acid] (2) and (HDEHP + DMHPA) (3) containing lanthanides were studied, respectively. Transparent solution formed in system (1) while transparent gel formed in system (2) when the loading of lanthanides was more than 50%. The aggregation state of system (3) depends on the molar ratio of HDEHP:DMHPA and the loading percentage of lanthanide. From their FTIR spectra, it can be seen that the P equals O band of gel split into 1164, 1199, and 1232 cm-1, and the P-O-C band split into 1015, 1076, and 1083 cm-1 as well. The results suggested that the aggregation state of lanthanide complex changes considerably in the three systems, and multiple coordination states of p equals o with lanthanide result in the band split. Multiple interactions between P equals O, P-O-C and lanthanide ions form 3-D network in the gel.

  4. Full-custom design of split-set data weighted averaging with output register for jitter suppression

    NASA Astrophysics Data System (ADS)

    Jubay, M. C.; Gerasta, O. J.

    2015-06-01

    A full-custom design of an element selection algorithm, named as Split-set Data Weighted Averaging (SDWA) is implemented in 90nm CMOS Technology Synopsys Library. SDWA is applied in seven unit elements (3-bit) using a thermometer-coded input. Split-set DWA is an improved DWA algorithm which caters the requirement for randomization along with long-term equal element usage. Randomization and equal element-usage improve the spectral response of the unit elements due to higher Spurious-free dynamic range (SFDR) and without significantly degrading signal-to-noise ratio (SNR). Since a full-custom, the design is brought to transistor-level and the chip custom layout is also provided, having a total area of 0.3mm2, a power consumption of 0.566 mW, and simulated at 50MHz clock frequency. On this implementation, SDWA is successfully derived and improved by introducing a register at the output that suppresses the jitter introduced at the final stage due to switching loops and successive delays.

  5. Seismic detection of increased degassing before Kīlauea's 2008 summit explosion.

    PubMed

    Johnson, Jessica H; Poland, Michael P

    2013-01-01

    The 2008 explosion that started a new eruption at the summit of Kīlauea Volcano, Hawai'i, was not preceded by a dramatic increase in earthquakes nor inflation, but was associated with increases in SO2 emissions and seismic tremor. Here we perform shear wave splitting analysis on local earthquakes spanning the onset of the eruption. Shear wave splitting measures seismic anisotropy and is traditionally used to infer changes in crustal stress over time. We show that shear wave splitting may also vary due to changes in volcanic degassing. The orientation of fast shear waves at Kīlauea is usually controlled by structure, but in 2008 showed changes with increased SO2 emissions preceding the start of the summit eruption. This interpretation for changing anisotropy is supported by corresponding decreases in Vp/Vs ratio. Our result demonstrates a novel method for detecting changes in gas flux using seismic observations and provides a new tool for monitoring under-instrumented volcanoes.

  6. Seismic detection of increased degassing before Kīlauea's 2008 summit explosion

    USGS Publications Warehouse

    Johnson, Jessica H.; Poland, Michael P.

    2013-01-01

    The 2008 explosion that started a new eruption at the summit of Kīlauea Volcano, Hawai‘i, was not preceded by a dramatic increase in earthquakes nor inflation, but was associated with increases in SO2 emissions and seismic tremor. Here we perform shear wave splitting analysis on local earthquakes spanning the onset of the eruption. Shear wave splitting measures seismic anisotropy and is traditionally used to infer changes in crustal stress over time. We show that shear wave splitting may also vary due to changes in volcanic degassing. The orientation of fast shear waves at Kīlauea is usually controlled by structure, but in 2008 showed changes with increased SO2 emissions preceding the start of the summit eruption. This interpretation for changing anisotropy is supported by corresponding decreases in Vp/Vs ratio. Our result demonstrates a novel method for detecting changes in gas flux using seismic observations and provides a new tool for monitoring under-instrumented volcanoes.

  7. Mechanical Properties of Misers Bluff Sand.

    DTIC Science & Technology

    1986-09-01

    in Chapter 4. 4 .7 Y~ e -~1 % CHAPTER 2 LABORATORY TESTS 2.1 CONVENTIONAL SOIL TESTS Samples of MB sand were split from the available supply of...air Va , and void ratio e (the ratio of void volume to solid volume). These composition data are listed in Table 2.1 for each test. 5 2.3 MECHANICAL...and diameter changes are made. The data can be plotted as principal stress difference versus axial strain, the slope of which is Young’s modulus E

  8. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications.

    PubMed

    Sam, Somarith; Lim, Sungjoon

    2013-04-01

    This paper presents the modeling, design, fabrication, and measurement of an ultra-wideband tunable twoport resonator in which the substrate-integrated waveguide, complementary split-ring resonators (CSRRs), and varactors are embedded on the same planar platform. The tuning of the passband frequency is generated by a simple single dc voltage of 0 to 36 V, which is applied to each varactor on the CSRRs. Different capacitance values and resonant frequencies are produced while a nearly constant absolute bandwidth is maintained. The resonant frequency is varied between 0.83 and 1.58 GHz and has a wide tuning ratio of 90%.

  9. Introducing an experimental split-cylinder to study flows with geophysical interest: First steps and first results

    NASA Astrophysics Data System (ADS)

    Rodriguez-Garcia, Jesus O.; Burguete, Javier

    2017-11-01

    A new experimental setup has been developed in order to study rotating flows. Our research is derived from the experiments carried out in our group relating to this kind of flows, and the setup is inspired by the simulations performed by Lopez & Gutierrez-Castillo using a split-cylinder flow. In their work they study the different bifurcations taking place into the flow, among others, finding inertial waves in different configurations of the movement of the split-cylinder. Our setup consists in a split-cylinder in which each half can move in co-rotation or in counter-rotation. Moreover, we can set the rotation velocity of each half independently in order to study these different configurations of the flow. The aspect ratio defined as Γ = H / R can be modified, where H is the internal length of the cylinder and R is its radius. With this setup, we study the flow developed inside the split-cylinder depending on the Reynolds number like the different symmetry-breaking that should appear according to Lopez & Gutierrez-Castillo. To obtain the experimental data we use both laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques. The firsts results got are in the co-rotation case rotating one half faster than the other. We acknowledge support from Spanish Government Grant FIS 2014-54101-P. Jesús O. Rodríguez-García acknowledge research Grant from Asociación de Amigos de la Universidad de Navarra.

  10. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency

    PubMed Central

    Pihosh, Yuriy; Turkevych, Ivan; Mawatari, Kazuma; Uemura, Jin; Kazoe, Yutaka; Kosar, Sonya; Makita, Kikuo; Sugaya, Takeyoshi; Matsui, Takuya; Fujita, Daisuke; Tosa, Masahiro; Kondo, Michio; Kitamori, Takehiko

    2015-01-01

    Efficient photocatalytic water splitting requires effective generation, separation and transfer of photo-induced charge carriers that can hardly be achieved simultaneously in a single material. Here we show that the effectiveness of each process can be separately maximized in a nanostructured heterojunction with extremely thin absorber layer. We demonstrate this concept on WO3/BiVO4+CoPi core-shell nanostructured photoanode that achieves near theoretical water splitting efficiency. BiVO4 is characterized by a high recombination rate of photogenerated carriers that have much shorter diffusion length than the thickness required for sufficient light absorption. This issue can be resolved by the combination of BiVO4 with more conductive WO3 nanorods in a form of core-shell heterojunction, where the BiVO4 absorber layer is thinner than the carrier diffusion length while it’s optical thickness is reestablished by light trapping in high aspect ratio nanostructures. Our photoanode demonstrates ultimate water splitting photocurrent of 6.72 mA cm−2 under 1 sun illumination at 1.23 VRHE that corresponds to ~90% of the theoretically possible value for BiVO4. We also demonstrate a self-biased operation of the photoanode in tandem with a double-junction GaAs/InGaAsP photovoltaic cell with stable water splitting photocurrent of 6.56 mA cm−2 that corresponds to the solar to hydrogen generation efficiency of 8.1%. PMID:26053164

  11. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency

    NASA Astrophysics Data System (ADS)

    Pihosh, Yuriy; Turkevych, Ivan; Mawatari, Kazuma; Uemura, Jin; Kazoe, Yutaka; Kosar, Sonya; Makita, Kikuo; Sugaya, Takeyoshi; Matsui, Takuya; Fujita, Daisuke; Tosa, Masahiro; Kondo, Michio; Kitamori, Takehiko

    2015-06-01

    Efficient photocatalytic water splitting requires effective generation, separation and transfer of photo-induced charge carriers that can hardly be achieved simultaneously in a single material. Here we show that the effectiveness of each process can be separately maximized in a nanostructured heterojunction with extremely thin absorber layer. We demonstrate this concept on WO3/BiVO4+CoPi core-shell nanostructured photoanode that achieves near theoretical water splitting efficiency. BiVO4 is characterized by a high recombination rate of photogenerated carriers that have much shorter diffusion length than the thickness required for sufficient light absorption. This issue can be resolved by the combination of BiVO4 with more conductive WO3 nanorods in a form of core-shell heterojunction, where the BiVO4 absorber layer is thinner than the carrier diffusion length while it’s optical thickness is reestablished by light trapping in high aspect ratio nanostructures. Our photoanode demonstrates ultimate water splitting photocurrent of 6.72 mA cm-2 under 1 sun illumination at 1.23 VRHE that corresponds to ~90% of the theoretically possible value for BiVO4. We also demonstrate a self-biased operation of the photoanode in tandem with a double-junction GaAs/InGaAsP photovoltaic cell with stable water splitting photocurrent of 6.56 mA cm-2 that corresponds to the solar to hydrogen generation efficiency of 8.1%.

  12. A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system

    PubMed Central

    Shinomiya, Kazunori; Takemura, Shin-ya; Rivlin, Patricia K.; Plaza, Stephen M.; Scheffer, Louis K.; Meinertzhagen, Ian A.

    2015-01-01

    Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing—the internal chiasma—arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin. PMID:26217193

  13. Correlation of Visuospatial Ability and EEG Slowing in Patients with Parkinson's Disease

    PubMed Central

    Meyer, Antonia; Chaturvedi, Menorca; Hatz, Florian; Gschwandtner, Ute

    2017-01-01

    Background. Visuospatial dysfunction is among the first cognitive symptoms in Parkinson's disease (PD) and is often predictive for PD-dementia. Furthermore, cognitive status in PD-patients correlates with quantitative EEG. This cross-sectional study aimed to investigate the correlation between EEG slowing and visuospatial ability in nondemented PD-patients. Methods. Fifty-seven nondemented PD-patients (17 females/40 males) were evaluated with a comprehensive neuropsychological test battery and a high-resolution 256-channel EEG was recorded. A median split was performed for each cognitive test dividing the patients sample into either a normal or lower performance group. The electrodes were split into five areas: frontal, central, temporal, parietal, and occipital. A linear mixed effects model (LME) was used for correlational analyses and to control for confounding factors. Results. Subsequently, for the lower performance, LME analysis showed a significant positive correlation between ROCF score and parietal alpha/theta ratio (b = .59, p = .012) and occipital alpha/theta ratio (b = 0.50, p = .030). No correlations were found in the group of patients with normal visuospatial abilities. Conclusion. We conclude that a reduction of the parietal alpha/theta ratio is related to visuospatial impairments in PD-patients. These findings indicate that visuospatial impairment in PD-patients could be influenced by parietal dysfunction. PMID:28348918

  14. Parallel independent evolution of pathogenicity within the genus Yersinia

    PubMed Central

    Reuter, Sandra; Connor, Thomas R.; Barquist, Lars; Walker, Danielle; Feltwell, Theresa; Harris, Simon R.; Fookes, Maria; Hall, Miquette E.; Petty, Nicola K.; Fuchs, Thilo M.; Corander, Jukka; Dufour, Muriel; Ringwood, Tamara; Savin, Cyril; Bouchier, Christiane; Martin, Liliane; Miettinen, Minna; Shubin, Mikhail; Riehm, Julia M.; Laukkanen-Ninios, Riikka; Sihvonen, Leila M.; Siitonen, Anja; Skurnik, Mikael; Falcão, Juliana Pfrimer; Fukushima, Hiroshi; Scholz, Holger C.; Prentice, Michael B.; Wren, Brendan W.; Parkhill, Julian; Carniel, Elisabeth; Achtman, Mark; McNally, Alan; Thomson, Nicholas R.

    2014-01-01

    The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens. PMID:24753568

  15. Direct Mapping of Band Positions in Doped and Undoped Hematite during Photoelectrochemical Water Splitting

    DOE PAGES

    Shavorskiy, Andrey; Ye, Xiaofei; Karslgolu, Osman; ...

    2017-10-30

    Photoelectrochemical water splitting is a promising pathway for the direct conversion of renewable solar energy to easy to store and use chemical energy. The performance of a photoelectrochemical device is determined in large part by the heterogeneous interface between the photoanode and the electrolyte, which we here characterize directly under operating conditions using interface-specific probes. Utilizing X-ray photoelectron spectroscopy as a noncontact probe of local electrical potentials, we demonstrate direct measurements of the band alignment at the semiconductor/electrolyte interface of an operating hematite/KOH photoelectrochemical cell as a function of solar illumination, applied potential, and doping. Here, we provide evidence formore » the absence of in-gap states in this system, which is contrary to previous measurements using indirect methods, and give a comprehensive description of shifts in the band positions and limiting processes during the photoelectrochemical reaction.« less

  16. Field-induced spin splitting and anomalous photoluminescence circular polarization in C H3N H3Pb I3 films at high magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy

    2018-04-01

    The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.

  17. Stripline split-ring resonator with integrated optogalvanic sample cell

    NASA Astrophysics Data System (ADS)

    Persson, Anders; Berglund, Martin; Thornell, Greger; Possnert, Göran; Salehpour, Mehran

    2014-04-01

    Intracavity optogalvanic spectroscopy (ICOGS) has been proposed as a method for unambiguous detection of rare isotopes. Of particular interest is 14C, where detection of extremely low concentrations in the 1:1015 range (14C: 12C), is of interest in, e.g., radiocarbon dating and pharmaceutical sciences. However, recent reports show that ICOGS suffers from substantial problems with reproducibility. To qualify ICOGS as an analytical method, more stable and reliable plasma generation and signal detection are needed. In our proposed setup, critical parameters have been improved. We have utilized a stripline split-ring resonator microwave-induced microplasma source to excite and sustain the plasma. Such a microplasma source offers several advantages over conventional ICOGS plasma sources. For example, the stripline split-ring resonator concept employs separated plasma generation and signal detection, which enables sensitive detection at stable plasma conditions. The concept also permits in situ observation of the discharge conditions, which was found to improve reproducibility. Unique to the stripline split-ring resonator microplasma source in this study, is that the optogalvanic sample cell has been embedded in the device itself. This integration enables improved temperature control and more stable and accurate signal detection. Significant improvements are demonstrated, including reproducibility, signal-to-noise ratio, and precision.

  18. Impact of split completeness on future liver remnant hypertrophy in associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) in hepatocellular carcinoma: Complete-ALPPS versus partial-ALPPS.

    PubMed

    Chan, Albert C Y; Chok, Kenneth; Dai, Jeff W C; Lo, Chung Mau

    2017-02-01

    Recent evidence suggested that associating liver partition and portal vein ligation for staged hepatectomy with a partial split could effectively induce the same degree of future liver remnant hypertrophy as a complete split in non-cirrhotic and non-cholestatic livers with better postoperative safety profiles. Our aim was to evaluate if the same phenomenon could be applied to hepatitis-related chronic liver diseases. In the study, 25 patients who underwent associating liver partition and portal vein ligation for staged hepatectomy from October 2013 to January 2016 for hepatocellular carcinoma were analyzed. Partial-associating liver partition and portal vein ligation for staged hepatectomy (n = 12) was defined as 50-80% of the transection surface split and complete-associating liver partition and portal vein ligation for staged hepatectomy (n = 13) was split down to inferior vena cava. Perioperative outcomes stratified by split completeness were evaluated. There was no significant difference in operating times and blood loss for stage I and II operations between complete-associating liver partition and portal vein ligation for staged hepatectomy and partial-associating liver partition and portal vein ligation for staged hepatectomy. All patients underwent stage II operation without any inter-stage complications. Complete split induced greater future liver remnant hypertrophy than partial split (hypertrophy rate: 31.2 vs 17.5 mL/day, P = .022) with more pronounced effect in chronic hepatitis (P = .007) than cirrhosis (P = .283). Complete-associating liver partition and portal vein ligation for staged hepatectomy was more likely to attain a future liver remnant/estimated standard liver volume ratio >35% within 10 days (76.9% vs 33.3%, P = .024) and proceed to stage II within 14 days after stage I (100% vs 58.4%, P = .009). The overall postoperative morbidity (≥grade 3a) after stage II was 16% (complete versus partial split: 7.7% vs 25%, P = .238) and hospital mortality after stage II was 8% (complete versus partial split: 0% vs 16.7%, P = .125). Complete-associating liver partition and portal vein ligation for staged hepatectomy induced more rapid future liver remnant hypertrophy than partial-associating liver partition and portal vein ligation for staged hepatectomy without increased perioperative risk in chronic liver diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A pathway of nanocrystallite fabrication by photo-assisted growth in pure water

    NASA Astrophysics Data System (ADS)

    Jeem, Melbert; Bin Julaihi, Muhammad Rafiq Mirza; Ishioka, Junya; Yatsu, Shigeo; Okamoto, Kazumasa; Shibayama, Tamaki; Iwasaki, Tomio; Kato, Takahiko; Watanabe, Seiichi

    2015-06-01

    We report a new production pathway for a variety of metal oxide nanocrystallites via submerged illumination in water: submerged photosynthesis of crystallites (SPSC). Similar to the growth of green plants by photosynthesis, nanocrystallites shaped as nanoflowers and nanorods are hereby shown to grow at the protruded surfaces via illumination in pure, neutral water. The process is photocatalytic, accompanied with hydroxyl radical generation via water splitting; hydrogen gas is generated in some cases, which indicates potential for application in green technologies. Together with the aid of ab initio calculation, it turns out that the nanobumped surface, as well as aqueous ambience and illumination are essential for the SPSC method. Therefore, SPSC is a surfactant-free, low-temperature technique for metal oxide nanocrystallites fabrication.

  20. 30 CFR 936.30 - State-Federal Cooperative Agreement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and (c) provide uniform and effective application of the Program on all non-Indian lands in Oklahoma... administration and enforcement activities of the Program on non-Federal and non-Indian lands during the same time period. The ratio or cost split of Federal to non-Federal dollars allocated under this Agreement will be...

  1. 30 CFR 936.30 - State-Federal Cooperative Agreement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and (c) provide uniform and effective application of the Program on all non-Indian lands in Oklahoma... administration and enforcement activities of the Program on non-Federal and non-Indian lands during the same time period. The ratio or cost split of Federal to non-Federal dollars allocated under this Agreement will be...

  2. 30 CFR 936.30 - State-Federal Cooperative Agreement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and (c) provide uniform and effective application of the Program on all non-Indian lands in Oklahoma... administration and enforcement activities of the Program on non-Federal and non-Indian lands during the same time period. The ratio or cost split of Federal to non-Federal dollars allocated under this Agreement will be...

  3. 30 CFR 936.30 - State-Federal Cooperative Agreement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and (c) provide uniform and effective application of the Program on all non-Indian lands in Oklahoma... administration and enforcement activities of the Program on non-Federal and non-Indian lands during the same time period. The ratio or cost split of Federal to non-Federal dollars allocated under this Agreement will be...

  4. Turning Fiction Into Non-fiction for Signal-to-Noise Ratio Estimation -- The Time-Multiplexed and Adaptive Split-Symbol Moments Estimator

    NASA Astrophysics Data System (ADS)

    Simon, M.; Dolinar, S.

    2005-08-01

    A means is proposed for realizing the generalized split-symbol moments estimator (SSME) of signal-to-noise ratio (SNR), i.e., one whose implementation on the average allows for a number of subdivisions (observables), 2L, per symbol beyond the conventional value of two, with other than an integer value of L. In theory, the generalized SSME was previously shown to yield optimum performance for a given true SNR, R, when L=R/sqrt(2) and thus, in general, the resulting estimator was referred to as the fictitious SSME. Here we present a time-multiplexed version of the SSME that allows it to achieve its optimum value of L as above (to the extent that it can be computed as the average of a sum of integers) at each value of SNR and as such turns fiction into non-fiction. Also proposed is an adaptive algorithm that allows the SSME to rapidly converge to its optimum value of L when in fact one has no a priori information about the true value of SNR.

  5. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    PubMed Central

    Bobek, Michael M.; Stehle, Richard C.; Hahn, David W.

    2012-01-01

    A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  6. Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full-thickness and split-thickness pig and human skin

    PubMed Central

    Seto, Jennifer E.; Polat, Baris E.; Lopez, Renata F.V.; Blankschtein, Daniel; Langer, Robert

    2010-01-01

    The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700-μm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules. PMID:20346994

  7. Interlimb Coordination in Body-Weight Supported Locomotion: A Pilot Study

    PubMed Central

    Seiterle, Stefan; Susko, Tyler; Artemiadis, Panagiotis K.; Riener, Robert; Krebs, Hermano Igo

    2015-01-01

    Locomotion involves complex neural networks responsible for automatic and volitional actions. During locomotion, motor strategies can rapidly compensate for any obstruction or perturbation that could interfere with forward progression. In this pilot study, we examined the contribution of interlimb pathways for evoking muscle activation patterns in the contralateral limb when a unilateral perturbation was applied and in the case where body weight was externally supported. In particular, the latency of neuromuscular responses was measured, while the stimulus to afferent feedback was limited. The pilot experiment was conducted with six healthy young subjects. It employed the MIT-Skywalker (beta-prototype), a novel device intended for gait therapy. Subjects were asked to walk on the split-belt treadmill, while a fast unilateral perturbation was applied mid-stance by unexpectedly lowering one side of the split-treadmill walking surfaces. Subject's weight was externally supported via the body-weight support system consisting of an underneath bicycle seat and the torso was stabilized via a loosely fitted chest harness. Both the weight support and the chest harness limited the afferent feedback. The unilateral perturbations evoked changes in the electromyographic activity of the non-perturbed contralateral leg. The latency of all muscle responses exceeded 100 ms, which precludes the conjecture that spinal cord alone is responsible for the perturbation response. It suggests the role of supraspinal or midbrain level pathways at the inter-leg coordination during gait. PMID:25990210

  8. Amplification and Demultiplexing in Insulin-regulated Akt Protein Kinase Pathway in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Ng, Yvonne; Meoli, Christopher C.; Kumar, Ansu; Khoo, Poh-Sim; Fazakerley, Daniel J.; Junutula, Jagath R.; Vali, Shireen; James, David E.; Stöckli, Jacqueline

    2012-01-01

    Akt plays a major role in insulin regulation of metabolism in muscle, fat, and liver. Here, we show that in 3T3-L1 adipocytes, Akt operates optimally over a limited dynamic range. This indicates that Akt is a highly sensitive amplification step in the pathway. With robust insulin stimulation, substantial changes in Akt phosphorylation using either pharmacologic or genetic manipulations had relatively little effect on Akt activity. By integrating these data we observed that half-maximal Akt activity was achieved at a threshold level of Akt phosphorylation corresponding to 5–22% of its full dynamic range. This behavior was also associated with lack of concordance or demultiplexing in the behavior of downstream components. Most notably, FoxO1 phosphorylation was more sensitive to insulin and did not exhibit a change in its rate of phosphorylation between 1 and 100 nm insulin compared with other substrates (AS160, TSC2, GSK3). Similar differences were observed between various insulin-regulated pathways such as GLUT4 translocation and protein synthesis. These data indicate that Akt itself is a major amplification switch in the insulin signaling pathway and that features of the pathway enable the insulin signal to be split or demultiplexed into discrete outputs. This has important implications for the role of this pathway in disease. PMID:22207758

  9. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    NASA Astrophysics Data System (ADS)

    Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping

    2018-03-01

    In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  10. Hadronic vacuum polarization in true muonium

    NASA Astrophysics Data System (ADS)

    Lamm, Henry

    2017-01-01

    In order to reduce the theoretical uncertainty in the prediction, the leading-order hadronic vacuum polarization contribution to the hyperfine splitting of true muonium is reevaluated in two ways. A more complex pionic form factor and better estimates of the perturbative QCD contributions are used to study the model dependence of the previous calculation. The second, more accurate method directly integrates the Drell ratio R (s ) to obtain C1 ,HVP=-0.04874 (9 ) . This corresponds to an energy shift in the hyperfine splitting (HFS) of Δ EHFS,HVP μ=-8202 (16 ) MHz and represents a factor-of-50 reduction in the theoretical uncertainty from hadronic sources. We also compute the contribution in positronium, which is too small at present to detect.

  11. Stimulated neutrino transformation through turbulence

    DOE PAGES

    Patton, Kelly M.; Kneller, James P.; McLaughlin, Gail C.

    2014-04-30

    We derive an analytical solution for the flavor evolution of a neutrino through a turbulent density profile which is found to accurately predict the amplitude and transition wavelength of numerical solutions on a case-by-case basis. The evolution is seen to strongly depend upon those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Transitions are strongly enhanced by those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Lastly, we also find a suppression of transitions due to the long wavelength modes when the ratio ofmore » their amplitude and the wavenumber is of order, or greater than, the first root of the Bessel function J 0.« less

  12. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.

    PubMed

    Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing

    2018-01-01

    The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 3D FTO/FTO-Nanocrystal/TiO2 Composite Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Wang, Zhiwei; Li, Xianglin; Ling, Han; Tan, Chiew Kei; Yeo, Loo Pin; Grimsdale, Andrew Clive; Tok, Alfred Iing Yoong

    2018-05-01

    A 3D fluorine-doped SnO 2 (FTO)/FTO-nanocrystal (NC)/TiO 2 inverse opal (IO) structure is designed and fabricated as a new "host and guest" type of composite photoanode for efficient photoelectrochemical (PEC) water splitting. In this novel photoanode design, the highly conductive and porous FTO/FTO-NC IO acts as the "host" skeleton, which provides direct pathways for faster electron transport, while the conformally coated TiO 2 layer acts as the "guest" absorber layer. The unique composite IO structure is fabricated through self-assembly of colloidal spheres template, a hydrothermal method and atomic layer deposition (ALD). Owing to its large surface area and efficient charge collection, the FTO/FTO-NC/TiO 2 composite IO photoanode shows excellent photocatalytic properties for PEC water splitting. With optimized dimensions of the SnO 2 nanocrystals and the thickness of the ALD TiO 2 absorber layers, the 3D FTO/FTO-NC/TiO 2 composite IO photoanode yields a photocurrent density of 1.0 mA cm -2 at 1.23 V versus reversible hydrogen electrode (RHE) under AM 1.5 illumination, which is four times higher than that of the FTO/TiO 2 IO reference photoanode. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    PubMed

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  15. Oriented epitaxial TiO2 nanowires for water splitting

    NASA Astrophysics Data System (ADS)

    Hou, Wenting; Cortez, Pablo; Wuhrer, Richard; Macartney, Sam; Bozhilov, Krassimir N.; Liu, Rong; Sheppard, Leigh R.; Kisailus, David

    2017-06-01

    Highly oriented epitaxial rutile titanium dioxide (TiO2) nanowire arrays have been hydrothermally grown on polycrystalline TiO2 templates with their orientation dependent on the underlying TiO2 grain. Both the diameter and areal density of the nanowires were tuned by controlling the precursor concentration, and the template surface energy and roughness. Nanowire tip sharpness was influenced by precursor solubility and diffusivity. A new secondary ion mass spectrometer technique has been developed to install additional nucleation sites in single crystal TiO2 templates and the effect on nanowire growth was probed. Using the acquired TiO2 nanowire synthesis knowhow, an assortment of nanowire arrays were installed upon the surface of undoped TiO2 photo-electrodes and assessed for their photo-electrochemical water splitting performance. The key result obtained was that the presence of short and dispersed nanowire arrays significantly improved the photocurrent when the illumination intensity was increased from 100 to 200 mW cm-2. This is attributed to the alignment of the homoepitaxially grown nanowires to the [001] direction, which provides the fastest charge transport in TiO2 and an improved pathway for photo-holes to find water molecules and undertake oxidation. This result lays a foundation for achieving efficient water splitting under conditions of concentrated solar illumination.

  16. Split thickness skin graft meshing ratio indications and common practices.

    PubMed

    Pripotnev, Stahs; Papp, Anthony

    2017-12-01

    Split thickness skin grafting is a commonly used technique in burn surgery for resurfacing wounds that are unlikely to heal without scarring. Meshing and expanding skin grafts allow for reconstruction of larger wounds with smaller donor sites. A retrospective chart review was performed of 210 patients with burns equal to or greater than 20% total body surface area admitted to Vancouver General Hospital between 1998 and 2014. Charts were reviewed to collect data on patient and burn demographics. A survey was sent to Canadian plastic surgeons registered with the CSPS to collect data on common practices in burn surgery nationwide. The patients that received 3:1 or higher meshed grafts were all flame burns, had a significantly higher average TBSA (51.89%±14.87 vs 29.13%±9.48, p=0.001), and a significantly higher full thickness burn TBSA (25.76%±21.97 vs 6.20%±9.04, p=0.001). We found no significant differences in gender, age, or burn location between the less than 2:1 and 3:1 or greater meshing ratio groups. The survey of plastic surgeons performing burn surgery in Canada revealed that 60% of responders had experience with skin grafts using meshing ratios of 3:1 or higher. Of these surgeons, 100% felt that burn size and 36% felt that burn location would influence their decision to use a 3:1 or higher meshing ratio. A larger burn size is the major influencing factor for the use of higher skin graft meshing ratios by Canadian burn surgeons. Furthermore, burn location determines the choice of donor and recipient sites in these cases. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  17. Soft tissue profile changes after bilateral sagittal split osteotomy for mandibular advancement: a systematic review.

    PubMed

    Joss, Christof Urs; Joss-Vassalli, Isabella Maria; Kiliaridis, Stavros; Kuijpers-Jagtman, Anne Marie

    2010-06-01

    The purpose of the present systematic review was to evaluate the soft tissue/hard tissue ratio in bilateral sagittal split advancement osteotomy (BSSO) with rigid internal fixation (RIF) or wire fixation (WF). The databases PubMed, Medline, CINAHL, Web of Science, Cochrane Library, and Google Scholar Beta were searched. From the original 711 articles identified, 12 were finally included. Only 3 studies were prospective and 9 were retrospective. The postoperative follow-up ranged from 3 months to 12.7 years for RIF and 6 months to 5 years for WF. The short- and long-term ratios for the lower lip to lower incisor for BSSO with RIF or WF were 50%. No difference between the short- and long-term ratios for the mentolabial-fold to point B and soft tissue pogonion to pogonion could be observed. It was a 1:1 ratio. One exception was seen for the long-term results of the soft tissue pogonion to pogonion in BSSO with RIF; they tended to be greater than a 1:1 ratio. The upper lip mainly showed retrusion but with high variability. Despite a large number of studies on the short- and long-term effects of mandibular advancement by BSSO, the results of the present systematic review have shown that evidence-based conclusions on soft tissue changes are still unknown. This is mostly because of the inherent problems of retrospective studies, inferior study designs, and the lack of standardized outcome measures. Well-designed prospective studies with sufficient sample sizes that have excluded patients undergoing additional surgery (ie, genioplasty or maxillary surgery) are needed. 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.

    PubMed

    Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu

    2015-01-01

    Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Probing the edge of the West African Craton: A first seismic glimpse from Niger

    NASA Astrophysics Data System (ADS)

    Di Leo, Jeanette F.; Wookey, James; Kendall, J.-Michael; Selby, Neil D.

    2015-03-01

    Constraints on crustal and mantle structure of the Eastern part of the West African Craton have to date been scarce. Here we present results of P receiver function and SK(K)S wave splitting analyses of data recorded at International Monitoring System array TORD in SW Niger. Despite lacking in lateral coverage, our measurements sharply constrain crustal thickness (˜41 km), VP/VS ratio (1.69 ± 0.03), mantle transition zone (MTZ) thickness (˜247 km), and a midlithospheric discontinuity at ˜67 km depth. Splitting delay times are low with an average of 0.63 ± 0.01 s. Fast directions follow the regional surface geological trend with an average of 57 ± 1°. We suggest that splitting is due to fossil anisotropic fabrics in the crust and lithosphere, incurred during the Paleoproterozoic Eburnean Orogeny, with possible contributions from the later Pan-African Orogeny and present-day mantle flow. The MTZ appears to be unperturbed, despite the proximity of the sampled region to the deep cratonic root.

  20. Simultaneous determination of mebeverine hydrochloride and chlordiazepoxide in their binary mixture using novel univariate spectrophotometric methods via different manipulation pathways.

    PubMed

    Lotfy, Hayam M; Fayez, Yasmin M; Michael, Adel M; Nessim, Christine K

    2016-02-15

    Smart, sensitive, simple and accurate spectrophotometric methods were developed and validated for the quantitative determination of a binary mixture of mebeverine hydrochloride (MVH) and chlordiazepoxide (CDZ) without prior separation steps via different manipulating pathways. These pathways were applied either on zero order absorption spectra namely, absorbance subtraction (AS) or based on the recovered zero order absorption spectra via a decoding technique namely, derivative transformation (DT) or via ratio spectra namely, ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), spectrum subtraction (SS), constant multiplication (CM) and constant value (CV) methods. The manipulation steps applied on the ratio spectra are namely, ratio difference (RD) and amplitude modulation (AM) methods or applying a derivative to these ratio spectra namely, derivative ratio (DD(1)) or second derivative (D(2)). Finally, the pathway based on the ratio spectra of derivative spectra is namely, derivative subtraction (DS). The specificity of the developed methods was investigated by analyzing the laboratory mixtures and was successfully applied for their combined dosage form. The proposed methods were validated according to ICH guidelines. These methods exhibited linearity in the range of 2-28μg/mL for mebeverine hydrochloride and 1-12μg/mL for chlordiazepoxide. The obtained results were statistically compared with those of the official methods using Student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Simultaneous determination of mebeverine hydrochloride and chlordiazepoxide in their binary mixture using novel univariate spectrophotometric methods via different manipulation pathways

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Fayez, Yasmin M.; Michael, Adel M.; Nessim, Christine K.

    2016-02-01

    Smart, sensitive, simple and accurate spectrophotometric methods were developed and validated for the quantitative determination of a binary mixture of mebeverine hydrochloride (MVH) and chlordiazepoxide (CDZ) without prior separation steps via different manipulating pathways. These pathways were applied either on zero order absorption spectra namely, absorbance subtraction (AS) or based on the recovered zero order absorption spectra via a decoding technique namely, derivative transformation (DT) or via ratio spectra namely, ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), spectrum subtraction (SS), constant multiplication (CM) and constant value (CV) methods. The manipulation steps applied on the ratio spectra are namely, ratio difference (RD) and amplitude modulation (AM) methods or applying a derivative to these ratio spectra namely, derivative ratio (DD1) or second derivative (D2). Finally, the pathway based on the ratio spectra of derivative spectra is namely, derivative subtraction (DS). The specificity of the developed methods was investigated by analyzing the laboratory mixtures and was successfully applied for their combined dosage form. The proposed methods were validated according to ICH guidelines. These methods exhibited linearity in the range of 2-28 μg/mL for mebeverine hydrochloride and 1-12 μg/mL for chlordiazepoxide. The obtained results were statistically compared with those of the official methods using Student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision.

  2. A Robust Waveguide Millimeter-Wave Noise Source

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Piepmeier, Jeffrey R.; Solly, Michael; Macmurphy, Shawn; Lucey, Jared; Wollack, Edward

    2015-01-01

    This paper presents the design, fabrication, and characterization of a millimeter-wave noise source for the 160- 210 GHz frequency range. The noise source has been implemented in an E-split-block waveguide package and the internal circuitry was developed on a quartz substrate. The measured excess noise ratio at 200 GHz is 9.6 dB.

  3. Improved silica-PLC Mach-Zehnder interferometer type optical switches with error dependence compensation of directional coupler

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yi, Jia; Guo, Lijun; Liu, Peng; Hall, Trevor J.; Sun, DeGui

    2017-03-01

    For the most popular structure of planer lightwave circuit (PLC) 2×2 thermo-optic switches, Mach-Zehnder interferometer (MZI), a full range of splitting ratio errors of directional coupler (DC) are investigated. All the parameters determining the splitting ratio are the dimensions and the refractive indices of the waveguide core and cladding layers. In this work, the coherent relationships between the waveguide size and the refractive indices are analyzed and then the error compensation between the width and the refractive index of waveguide core, and the controllable effect of over clad layer refractive index error upon the MZI-type optical switch are all discovered with numerical calculation and BPM simulations. Then, an MZI-type 2×2 thermo-optic switch having a higher error tolerance is established with the efficient optimizations of all the 3 dB-DC parameters. As a result, for the symmetric MZI switch, an insertion loss of 1.5 dB and optical extinction ratio of over 20 dB are realized for the average tolerance of±5.0%. An asymmetric arm optical phase and unequal arm lengths is also employed to improve the uniformities of insertion loss. The agreements between the designs and the experiments are recognized, leading to a wide adoption of practical silica-PLC optical switch products.

  4. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.

    PubMed

    Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang

    2014-07-15

    Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero.

  5. A study on crustal shear wave splitting in the western part of the Banda arc-continent collision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syuhada, E-mail: hadda9@gmail.com; Research Centre for Physics - Indonesian Institute of Sciences; Hananto, Nugroho D.

    2016-03-11

    We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with themore » earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.« less

  6. High-Fat Diet and Voluntary Chronic Aerobic Exercise Recover Altered Levels of Aging-Related Tryptophan Metabolites along the Kynurenine Pathway

    PubMed Central

    Lee, Keon-Joo; Cho, Joo-Youn; Lee, Soon-Tae; Kim, Hwa Suk; Shim, Jun Hwa; Lee, Sang Kun; Kim, Manho

    2017-01-01

    Tryptophan metabolites regulate a variety of physiological processes, and their downstream metabolites enter the kynurenine pathway. Age-related changes of metabolites and activities of associated enzymes in this pathway are suggestable and would be potential intervention targets. Blood levels of serum tryptophan metabolites in C57BL/6 mice of different ages, ranging from 6 weeks to 10 months, were assessed using high-performance liquid chromatography, and the enzyme activities for each metabolic step were estimated using the ratio of appropriate metabolite levels. Mice were subjected to voluntary chronic aerobic exercise or high-fat diet to assess their ability to rescue age-related alterations in the kynurenine pathway. The ratio of serum kynurenic acid (KYNA) to 3-hydroxylkynurenine (3-HK) decreased with advancing age. Voluntary chronic aerobic exercise and high-fat diet rescued the decreased KYNA/3-HK ratio in the 6-month-old and 8-month-old mice groups. Tryptophan metabolites and their associated enzyme activities were significantly altered during aging, and the KYNA/3-HK ratio was a meaningful indicator of aging. Exercise and high-fat diet could potentially recover the reduction of the KYNA/3-HK ratio in the elderly. PMID:28680298

  7. Semi-analytical and Numerical Studies on the Flattened Brazilian Splitting Test Used for Measuring the Indirect Tensile Strength of Rocks

    NASA Astrophysics Data System (ADS)

    Huang, Y. G.; Wang, L. G.; Lu, Y. L.; Chen, J. R.; Zhang, J. H.

    2015-09-01

    Based on the two-dimensional elasticity theory, this study established a mechanical model under chordally opposing distributed compressive loads, in order to perfect the theoretical foundation of the flattened Brazilian splitting test used for measuring the indirect tensile strength of rocks. The stress superposition method was used to obtain the approximate analytic solutions of stress components inside the flattened Brazilian disk. These analytic solutions were then verified through a comparison with the numerical results of the finite element method (FEM). Based on the theoretical derivation, this research carried out a contrastive study on the effect of the flattened loading angles on the stress value and stress concentration degree inside the disk. The results showed that the stress concentration degree near the loading point and the ratio of compressive/tensile stress inside the disk dramatically decreased as the flattened loading angle increased, avoiding the crushing failure near-loading point of Brazilian disk specimens. However, only the tensile stress value and the tensile region were slightly reduced with the increase of the flattened loading angle. Furthermore, this study found that the optimal flattened loading angle was 20°-30°; flattened load angles that were too large or too small made it difficult to guarantee the central tensile splitting failure principle of the Brazilian splitting test. According to the Griffith strength failure criterion, the calculative formula of the indirect tensile strength of rocks was derived theoretically. This study obtained a theoretical indirect tensile strength that closely coincided with existing and experimental results. Finally, this paper simulated the fracture evolution process of rocks under different loading angles through the use of the finite element numerical software ANSYS. The modeling results showed that the Flattened Brazilian Splitting Test using the optimal loading angle could guarantee the tensile splitting failure initiated by a central crack.

  8. Using seismic reflection data to reveal high-resolution structure and pathway of the upper Western Boundary Undercurrent core at Eirik Drift

    NASA Astrophysics Data System (ADS)

    Müller-Michaelis, Antje; Uenzelmann-Neben, Gabriele

    2015-12-01

    The method of seismic oceanography was applied to identify fine structure and pathways of the Western Boundary Undercurrent (WBUC) at Eirik Drift, 200 km south of Greenland. Three high-velocity cores of the WBUC were distinguished: a deep core in depths >2600 m which carries Denmark Strait Overflow Water, an upper core in depths between ~1900 and 3000 m transporting Iceland-Scotland Overflow Water, and a split-off of this upper core, which crosses the main crest of Eirik Drift at depths between ~1900 and 2400 m. For the upper WBUC core a detailed analysis of the structure was conducted. The WBUC core has as a domed structure, which changes in style, width and height above seafloor along the lines of the changing topography. We proved not only the influence of the topography on pathway and structure of the WBUC core but also that this information cannot be gained by measuring the overflow waters with discrete CTD stations.

  9. Hey Factors at the Crossroad of Tumorigenesis and Clinical Therapeutic Modulation of Hey for Anticancer Treatment.

    PubMed

    Liu, Zihao; Sanders, Andrew J; Liang, Gehao; Song, Erwei; Jiang, Wen G; Gong, Chang

    2017-05-01

    Hairy and Enhancer-of-split related with YRPW motif (Hey) transcription factors are important regulators of stem cell embryogenesis. Clinical relevance shows that they are also highly expressed in malignant carcinoma. Recent studies have highlighted functions for the Hey factors in tumor metastasis, the maintenance of cancer cell self-renewal, as well as proliferation and the promotion of tumor angiogenesis. Pathways that regulate Hey gene expression, such as Notch and TGFβ signaling, are frequently aberrant in numerous cancers. In addition, Hey factors control downstream targets via recruitment of histone deacetylases (HDAC). Targeting these signaling pathways or HDACs may reverse tumor progression and provide clinical benefit for cancer patients. Thus, some small molecular inhibitors or monoclonal antibodies of each of these signaling pathways have been studied in clinical trials. This review focuses on the involvement of Hey proteins in malignant carcinoma progression and provides valuable therapeutic information for anticancer treatment. Mol Cancer Ther; 16(5); 775-86. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. An experimental verification of metamaterial coupled enhanced transmission for antenna applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushpakaran, Sarin V.; Raj, Rohith K.; Pradeep, Anju

    2014-02-10

    Inspired by the work of Bethe on electromagnetic transmission through subwavelength hole, there has been immense interest on the extraordinary transmission through subwavelength slot/slit on metal plates. The invention of metamaterials has boosted the extra ordinary transmission through subwavelength slots. We examine computationally and experimentally the concept of metamaterial cover using an array of split ring resonators (SRRs), for enhancing the transmission in a stacked dipole antenna working in the S band. The front to back ratio is considerably improved by enhancing the magnetic resonant strength in close proximity of the slit of the upper parasitic dipole. The effect ofmore » stacking height of the SRR monolayer on the resonant characteristics of the split ring resonators and its effect on antenna radiation characteristics has been studied.« less

  11. Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging.

    PubMed

    Fu, Ling; Gu, Min

    2006-05-15

    A 1 x 2 double-clad photonic crystal fiber coupler is fabricated by the fused tapered method, showing a low excess loss of 1.1 dB and a splitting ratio of 97/3 over the entire visible and near-infrared wavelength range. In addition to the property of splitting the laser power, the double-clad feature of the coupler facilitates the separation of a near-infrared single-mode beam from a visible multimode beam, which is ideal for nonlinear optical microscopy imaging. In conjunction with a gradient-index lens, this coupler is used to construct a miniaturized microscope based on two-photon fluorescence and second-harmonic generation. Three-dimensional nonlinear optical images demonstrate potential applications of the coupler to compact all-fiber and nonlinear optical microscopy and endoscopy.

  12. Relative contributions of four exposure pathways to influenza infection risk.

    PubMed

    Nicas, Mark; Jones, Rachael M

    2009-09-01

    The relative contribution of four influenza virus exposure pathways-(1) virus-contaminated hand contact with facial membranes, (2) inhalation of respirable cough particles, (3) inhalation of inspirable cough particles, and (4) spray of cough droplets onto facial membranes-must be quantified to determine the potential efficacy of nonpharmaceutical interventions of transmission. We used a mathematical model to estimate the relative contributions of the four pathways to infection risk in the context of a person attending a bed-ridden family member ill with influenza. Considering the uncertainties in the sparse human subject influenza dose-response data, we assumed alternative ratios of 3,200:1 and 1:1 for the infectivity of inhaled respirable virus to intranasally instilled virus. For the 3,200:1 ratio, pathways (1), (2), and (4) contribute substantially to influenza risk: at a virus saliva concentration of 10(6) mL(-1), pathways (1), (2), (3), and (4) contribute, respectively, 31%, 17%, 0.52%, and 52% of the infection risk. With increasing virus concentrations, pathway (2) increases in importance, while pathway (4) decreases in importance. In contrast, for the 1:1 infectivity ratio, pathway (1) is the most important overall: at a virus saliva concentration of 10(6) mL(-1), pathways (1), (2), (3), and (4) contribute, respectively, 93%, 0.037%, 3.3%, and 3.7% of the infection risk. With increasing virus concentrations, pathway (3) increases in importance, while pathway (4) decreases in importance. Given the sparse knowledge concerning influenza dose and infectivity via different exposure pathways, nonpharmaceutical interventions for influenza should simultaneously address potential exposure via hand contact to the face, inhalation, and droplet spray.

  13. Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO 2 fixation cycle in extremely thermoacidophilic archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loder, Andrew J.; Han, Yejun; Hawkins, Aaron B.

    Here, the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO 2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase). The model correctly predicted previously observed features of the cycle: the 35%–65% split of carbon flux throughmore » the acetyl-CoA and succinate branches, the high abundance and relative ratio of acetyl-CoA/propionyl-CoA carboxylase (ACC) and MCR, and the significance of ACC and hydroxybutyryl-CoA synthetase (HBCS) as regulated control points for the cycle. The model was then used to assess metabolic engineering strategies for incorporating CO 2 into chemical intermediates and products of biotechnological importance: acetyl-CoA, succinate, and 3-hydroxyproprionate.« less

  14. Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO 2 fixation cycle in extremely thermoacidophilic archaea

    DOE PAGES

    Loder, Andrew J.; Han, Yejun; Hawkins, Aaron B.; ...

    2016-10-19

    Here, the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO 2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase). The model correctly predicted previously observed features of the cycle: the 35%–65% split of carbon flux throughmore » the acetyl-CoA and succinate branches, the high abundance and relative ratio of acetyl-CoA/propionyl-CoA carboxylase (ACC) and MCR, and the significance of ACC and hydroxybutyryl-CoA synthetase (HBCS) as regulated control points for the cycle. The model was then used to assess metabolic engineering strategies for incorporating CO 2 into chemical intermediates and products of biotechnological importance: acetyl-CoA, succinate, and 3-hydroxyproprionate.« less

  15. How exciton-vibrational coherences control charge separation in the photosystem II reaction center.

    PubMed

    Novoderezhkin, Vladimir I; Romero, Elisabet; van Grondelle, Rienk

    2015-12-14

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-vibrational coherences observed in 2D photon echo of the photosystem II reaction center (PSII-RC). We find that the vibrations resonant with the exciton splittings can modify the delocalization of the exciton states and produce additional states, thus promoting directed energy transfer and allowing a switch between the two charge separation pathways. We conclude that the coincidence of the frequencies of the most intense vibrations with the splittings within the manifold of exciton and charge-transfer states in the PSII-RC is not occurring by chance, but reflects a fundamental principle of how energy conversion in photosynthesis was optimized.

  16. Training and retaining community pharmacy leaders: Career pathways after completing a PGY1 community pharmacy residency affiliated with a large supermarket chain.

    PubMed

    Hohmeier, Kenneth C; Borja-Hart, Nancy; Cooper, Maureen; Kirby, James; Fisher, Cindy

    To determine pharmacist career paths and resident perceptions after completion of a PGY1 community pharmacy residency with a national supermarket pharmacy chain. Cross-sectional nationwide survey. Overall, 65% (n = 24) of residents who responded accepted a position with Kroger immediately after graduation. When asked about the degree of value the residency had on obtaining the resident's ideal position, 29 (76%) reported that it was "very valuable" and the remaining 9 (24%) reported that it was "somewhat valuable." Positions that these pharmacists held immediately after residency completion were: clinical pharmacist (clinical coordinators, patient care specialists, or patient care managers; 54%), staff pharmacist (21%), split/mixed (mixed clinical and staffing components; 21%), and pharmacy manager (4%). Residency trained pharmacists were retained by the pharmacy chain where they practiced, and the majority of those pharmacists held split or full-time clinical pharmacist roles within the chain supermarket pharmacy. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Origin of the Two Bands in the B800 Ring and Their Involvement in the Energy Transfer Network of Allochromatium vinosum.

    PubMed

    Schröter, Marco; Alcocer, Marcelo J P; Cogdell, Richard J; Kühn, Oliver; Zigmantas, Donatas

    2018-03-15

    Bacterial photosynthesis features robust and adaptable energy-harvesting processes in which light-harvesting proteins play a crucial role. The peripheral light-harvesting complex of the purple bacterium Allochromatium vinosum is particularly distinct, featuring a double peak structure in its B800 absorption band. Two hypotheses-not necessarily mutually exclusive-concerning the origin of this splitting have been proposed; either two distinct B800 bacteriochlorophyll site energies are involved, or an excitonic dimerization of bacteriochlorophylls within the B800 ring takes place. Through the use of two-dimensional electronic spectroscopy, we present unambiguous evidence that excitonic interaction shapes the split band. We further identify and characterize all of the energy transfer pathways within this complex by using a global kinetic fitting procedure. Our approach demonstrates how the combination of two-dimensional spectral resolution and self-consistent fitting allows for extraction of information on light-harvesting processes, which would otherwise be inaccessible due to signal congestion.

  18. Divergent Pathways Involving 1,3-Dipolar Addition and N-N Bond Splitting of an Organic Azide across a Zirconium Methylidene.

    PubMed

    Kurogi, Takashi; Mane, Manoj V; Zheng, Shuai; Carroll, Patrick J; Baik, Mu-Hyun; Mindiola, Daniel J

    2018-02-12

    The zirconium methylidene (PNP)Zr=CH 2 (OAr) (1) reacts with N 3 Ad to give two products (PNP)Zr=NAd(OAr) (2) and (PNP)Zr(η 2 -N=NAd)(N=CH 2 )(OAr) (3), both resulting from a common cycloaddition intermediate (PNP)Zr(CH 2 N 3 Ad)(OAr) (A). Using a series of control experiments in combination with DFT calculations, it was found that 2 results from a nitrene by a carbene metathesis reaction in which N 2 acts as a delivery vehicle and forms N 2 CH 2 as a side product. In the case of 3, N-N bond splitting of the azide at the α-position allowed the isolation of a rare example of a parent ketimide complex of zirconium. Isotopic labeling studies and solid-state X-ray analysis are presented for 2 and 3, in addition to an independent synthesis for the former. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Energy efficient engine: Fan test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.

    1980-01-01

    A single stage fan and quarter stage booster were designed for the energy efficient engine. The fan has an inlet radius ratio of 0.342 and a specific flow rate of 208.9 Kg/S sq m (42.8 lbm/sec sq ft). The fan rotor has 32 medium aspect ratio (2.597) titanium blades with a partspan shroud at 55% blade height. The design corrected fan tip speed is 411.5 M/S (1350 ft/sec). The quarter stage island splits the total fan flow with approximately 22% of the flow being supercharged by the quarter stage rotor. The fan bypass ratio is 6.8. The core flow total pressure ratio is 1.67 and the fan bypass pressure ratio is 1.65. The design details of the fan and booster blading, and the fan frame and static structure for the fan configuration are presented.

  20. Computational fluid dynamics study of the variable-pitch split-blade fan concept

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Elmquist, A. R.; Davis, R. L.

    1992-01-01

    A computational fluid dynamics study was conducted to evaluate the feasibility of the variable-pitch split-blade supersonic fan concept. This fan configuration was conceived as a means to enable a supersonic fan to switch from the supersonic through-flow type of operation at high speeds to a conventional fan with subsonic inflow and outflow at low speeds. During this off-design, low-speed mode of operation, the fan would operate with a substantial static pressure rise across the blade row like a conventional transonic fan; the front (variable-pitch) blade would be aligned with the incoming flow, and the aft blade would remain fixed in the position set by the supersonic design conditions. Because of these geometrical features, this low speed configuration would inherently have a large amount of turning and, thereby, would have the potential for a large total pressure increase in a single stage. Such a high-turning blade configuration is prone to flow separation; it was hoped that the channeling of the flow between the blades would act like a slotted wing and help alleviate this problem. A total of 20 blade configurations representing various supersonic and transonic configurations were evaluated using a Navier Stokes CFD program called ADAPTNS because of its adaptive grid features. The flow fields generated by this computational procedure were processed by another data reduction program which calculated average flow properties and simulated fan performance. These results were employed to make quantitative comparisons and evaluations of blade performance. The supersonic split-blade configurations generated performance comparable to a single-blade supersonic, through-flow fan configuration. Simulated rotor total pressure ratios of the order of 2.5 or better were achieved for Mach 2.0 inflow conditions. The corresponding fan efficiencies were approximately 75 percent or better. The transonic split-blade configurations having large amounts of turning were able to generate large amounts of total turning and achieve simulated total pressure ratios of 3.0 or better with subsonic inflow conditions. These configurations had large losses and low fan efficiencies in the 70's percent. They had large separated regions and low velocity wakes. Additional turning and diffusion of this flow in a subsequent stator row would probably be very inefficient. The high total pressure ratios indicated by the rotor performance would be substantially reduced by the stators, and the stage efficiency would be substantially lower. Such performance leaves this dual-mode fan concept less attractive than originally postulated.

  1. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park.

    PubMed

    Podar, Mircea; Makarova, Kira S; Graham, David E; Wolf, Yuri I; Koonin, Eugene V; Reysenbach, Anna-Louise

    2013-04-22

    A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes. The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships. This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia.

  2. Characterising hydrothermal fluid pathways beneath Aluto volcano, Main Ethiopian Rift, using shear wave splitting

    NASA Astrophysics Data System (ADS)

    Nowacki, Andy; Wilks, Matthew; Kendall, J.-Michael; Biggs, Juliet; Ayele, Atalay

    2018-05-01

    Geothermal resources are frequently associated with silicic calderas which show evidence of geologically-recent activity. Hence development of geothermal sites requires both an understanding of the hydrothermal system of these volcanoes, as well as the deeper magmatic processes which drive them. Here we use shear wave splitting to investigate the hydrothermal system at the silicic peralkaline volcano Aluto in the Main Ethiopian Rift, which has experienced repeated uplift and subsidence since at least 2004. We make over 370 robust observations of splitting, showing that anisotropy is confined mainly to the top ∼3 km of the volcanic edifice. We find up to 10% shear wave anisotropy (SWA) is present with a maximum centred at the geothermal reservoir. Fast shear wave orientations away from the reservoir align NNE-SSW, parallel to the present-day minimum compressive stress. Orientations on the edifice, however, are rotated NE-SW in a manner we predict from field observations of faults at the surface, providing fluid pressures are sufficient to hold two fracture sets open. These fracture sets may be due to the repeated deformation experienced at Aluto and initiated in caldera formation. We therefore attribute the observed anisotropy to aligned cracks held open by over-pressurised gas-rich fluids within and above the reservoir. This study demonstrates that shear wave splitting can be used to map the extent and style of fracturing in volcanic hydrothermal systems. It also lends support to the hypothesis that deformation at Aluto arises from variations of fluid pressures in the hydrothermal system. These constraints will be crucial for future characterisation of other volcanic and geothermal systems, in rift systems and elsewhere.

  3. Interfacial coupling induced direct Z scheme water splitting in metal-free photocatalyst: C3N/g-C3N4 heterojunctions.

    PubMed

    Wang, Jiajun; Li, Xiaoting; You, Ya; Xintong, Yang; Wang, Ying; Li, Qunxiang

    2018-06-21

    Mimicking the natural photosynthesis in green plants, artificial Z-scheme photocatalysis enables more efficient utilization of solar energy for photocatalytic water splitting. Most currently designed g-C3N4-based Z-scheme heterojunctions are usually based on metal-containing semiconductor photocatalysts, thus exploiting metal-free photocatalysts for Z-scheme water splitting is of huge interest. Herein, we propose two metal-free C3N/g-C3N4 heterojunctions with the C3N monolayer covering g-C3N4 sheet (monolayer or bilayer) and systematically explore their electronic structures, charge distributions and photocatalytic properties by performing extensive hybrid density functional calculations. We clearly reveal that the relative strong built-in electric fields around their respective interface regions, caused by the charge transfer from C3N monolayer to g-C3N4 monolayer or bilayer, result in the bands bending, renders the transfer of photogenerated carriers in these two heterojunctions following the Z-scheme instead of the type-II pathway. Moreover, the photogenerated electrons and holes in these two C3N/g-C3N4 heterojunctions not only can be efficiently separated, but also have strong redox abilities for water oxidation and reduction. Compared with the isolated g-C3N4 sheets, the light absorption in visible to near-infrared region are significantly enhanced in these proposed heterojunctions. These theoretical findings suggest that these proposed metal-free C3N/g-C3N4 heterojunctions are promising direct Z-scheme photocatalysts for solar water splitting. © 2018 IOP Publishing Ltd.

  4. EUO-Based Multifunctional Heterostructures

    DTIC Science & Technology

    2015-06-06

    magnetoresistance and the metal -insulator transition resistance ratios of doped EuO by interfacing this semiconductor with niobium; the observed effect is...general and may be applied to any metal /semiconductor interface where the semiconductor shows large Zeeman splitting under magnetic field, (2...understanding the changes in electronic structure and Fermi-surface reconstruction that occur as doped EuO progresses through the ferromagnetic metal

  5. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    USDA-ARS?s Scientific Manuscript database

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  6. Polarization splitting phenomenon of photonic crystals constructed by two-fold rotationally symmetric unit-cells

    NASA Astrophysics Data System (ADS)

    Yasa, U. G.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-09-01

    We present an intrinsic polarization splitting characteristic of low-symmetric photonic crystals (PCs) formed by unit-cells with C 2 rotational symmetry. This behavior emerges from the polarization sensitive self-collimation effect for both transverse-magnetic (TM) and transverse-electric (TE) modes depending on the rotational orientations of the unit-cell elements. Numerical analyzes are performed in both frequency and time domains for different types of square lattice two-fold rotational symmetric PC structures. At incident wavelength of λ = 1550 nm, high polarization extinction ratios with ˜26 dB (for TE polarization) and ˜22 dB (for TM polarization) are obtained with an operating bandwidth of 59 nm. Moreover, fabrication feasibilities of the designed structure are analyzed to evaluate their robustness in terms of the unit-cell orientation: for the selected PC unit-cell composition, corresponding extinction ratios for both polarizations still remain to be over 18 dB for the unit-cell rotation interval of θ = [40°-55°]. Taking all these advantages, two-fold rotationally symmetric PCs could be considered as an essential component in photonic integrated circuits for polarization control of light.

  7. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    NASA Astrophysics Data System (ADS)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  8. Heat Transport Enhancement of Turbulent Thermal Convection by Inserted Channels

    NASA Astrophysics Data System (ADS)

    Xia, Ke-Qing; Zhang, Lu

    2017-11-01

    We report an experimental study on the heat transport properties of turbulent Rayleigh Benard Convection (RBC) in a rectangular cell with two types of 3D-printed structures inserted inside. The first one splits the original rectangular cell into 60 identical sub cells whose aspect ratio is 1:1:10 (length, width, height). The second one splits the cell into 30 sub cells, each with a 1:2:10 aspect ratio and a baffle in the center. We find that for large Rayleigh numbers (Ra), the Nusselt numbers (Nu) of both structures increase compared with that of the empty rectangular cell. An enhancement in Nu as much as 20% is found for the second type of insertion at Rayleigh number 2 ×109 . Moreover, the Nu-Ra scaling shows a transition with both geometries. The particle image velocimetry (PIV) measurement within a single sub unit indicates that the transition may be related to the laminar to turbulent transition in flow field. Direct numerical simulations (DNS) confirm the experimental results. Our results demonstrate the potential in using insertions to enhance passive heat transfer. This work was supported by the Research Grants Council (RGC) of HKSAR (Nos. CUHK404513 and CUHK14301115).

  9. Bare Proton Contribution to the d / u Ratio in the Proton Sea

    NASA Astrophysics Data System (ADS)

    Fish, Aaron

    2017-09-01

    From perturbative processes, such as gluon splitting, we expect there to be symmetric distributions of d and u partons in the proton. partons in the proton. However, experiment has shown an excess of d over u . This has been qualitatively explained by the Meson Cloud Model (MCM), in which the non-perturbative processes of proton fluctuations into meson-baryon pairs, allowed by the Heisenberg uncertainty principle, create the flavor asymmetry. The x dependence of d and u in the nucleon sea is determined from a convolution of meson-baryon splitting functions and the parton distribution functions (pdfs) of the mesons and baryons in the cloud, as well as a contribution from the leading term in the MCM, the ``bare proton.'' We use a statistical model to calculate pdfs for the hadrons in the cloud, but modify the model for the bare proton in order to avoid double counting. We evolved our distributions in Q2 for comparison to experimental data from the Fermilab E866/NuSea experiment. We present predictions for the d / u ratio that is currently being examined by Fermilab's SeaQuest experiment, E906. This work is supported in part by the National Science Foundation under Grant No.1516105.

  10. Visible light water splitting using dye-sensitized oxide semiconductors.

    PubMed

    Youngblood, W Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko; Mallouk, Thomas E

    2009-12-21

    Researchers are intensively investigating photochemical water splitting as a means of converting solar to chemical energy in the form of fuels. Hydrogen is a key solar fuel because it can be used directly in combustion engines or fuel cells, or combined catalytically with CO(2) to make carbon containing fuels. Different approaches to solar water splitting include semiconductor particles as photocatalysts and photoelectrodes, molecular donor-acceptor systems linked to catalysts for hydrogen and oxygen evolution, and photovoltaic cells coupled directly or indirectly to electrocatalysts. Despite several decades of research, solar hydrogen generation is efficient only in systems that use expensive photovoltaic cells to power water electrolysis. Direct photocatalytic water splitting is a challenging problem because the reaction is thermodynamically uphill. Light absorption results in the formation of energetic charge-separated states in both molecular donor-acceptor systems and semiconductor particles. Unfortunately, energetically favorable charge recombination reactions tend to be much faster than the slow multielectron processes of water oxidation and reduction. Consequently, visible light water splitting has only recently been achieved in semiconductor-based photocatalytic systems and remains an inefficient process. This Account describes our approach to two problems in solar water splitting: the organization of molecules into assemblies that promote long-lived charge separation, and catalysis of the electrolysis reactions, in particular the four-electron oxidation of water. The building blocks of our artificial photosynthetic systems are wide band gap semiconductor particles, photosensitizer and electron relay molecules, and nanoparticle catalysts. We intercalate layered metal oxide semiconductors with metal nanoparticles. These intercalation compounds, when sensitized with [Ru(bpy)(3)](2+) derivatives, catalyze the photoproduction of hydrogen from sacrificial electron donors (EDTA(2-)) or non-sacrificial donors (I(-)). Through exfoliation of layered metal oxide semiconductors, we construct multilayer electron donor-acceptor thin films or sensitized colloids in which individual nanosheets mediate light-driven electron transfer reactions. When sensitizer molecules are "wired" to IrO(2).nH(2)O nanoparticles, a dye-sensitized TiO(2) electrode becomes the photoanode of a water-splitting photoelectrochemical cell. Although this system is an interesting proof-of-concept, the performance of these cells is still poor (approximately 1% quantum yield) and the dye photodegrades rapidly. We can understand the quantum efficiency and degradation in terms of competing kinetic pathways for water oxidation, back electron transfer, and decomposition of the oxidized dye molecules. Laser flash photolysis experiments allow us to measure these competing rates and, in principle, to improve the performance of the cell by changing the architecture of the electron transfer chain.

  11. Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full-thickness and split-thickness pig and human skin.

    PubMed

    Seto, Jennifer E; Polat, Baris E; Lopez, Renata F V; Blankschtein, Daniel; Langer, Robert

    2010-07-01

    The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700microm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules. 2010 Elsevier B.V. All rights reserved.

  12. Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced L-lactic acid production capacity.

    PubMed

    Sun, Liang; Lu, Zhilong; Li, Jianxiu; Sun, Feifei; Huang, Ribo

    2018-02-01

    Mechanisms for high L-lactic acid production remain unclear in many bacteria. Lactobacillus rhamnosus SCT-10-10-60 was previously obtained from L. rhamnosus ATCC 11443 via mutagenesis and showed improved L-lactic acid production. In this study, the genomes of strains SCT-10-10-60 and ATCC 11443 were sequenced. Both genomes are a circular chromosome, 2.99 Mb in length with a GC content of approximately 46.8%. Eight split genes were identified in strain SCT-10-10-60, including two LytR family transcriptional regulators, two Rex redox-sensing transcriptional repressors, and four ABC transporters. In total, 60 significantly up-regulated genes (log 2 fold-change ≥ 2) and 39 significantly down-regulated genes (log 2 fold-change ≤ - 2) were identified by a transcriptome comparison between strains SCT-10-10-60 and ATCC 11443. KEGG pathway enrichment analysis revealed that "pyruvate metabolism" was significantly different (P < 0.05) between the two strains. The split genes and the differentially expressed genes involved in the "pyruvate metabolism" pathway are probably responsible for the increased L-lactic acid production by SCT-10-10-60. The genome and transcriptome sequencing information and comparison of SCT-10-10-60 with ATCC 11443 provide insights into the anabolism of L-lactic acid and a reference for improving L-lactic acid production using genetic engineering.

  13. Conceptual Design, Feasibility and Payoff Analysis of a Third Stage for EELV (Briefing Charts)

    DTIC Science & Technology

    2014-07-30

    performance capability – Hydrazine, N2O4/MMH, LOX/RP, H2O2/RP, LOX/CH4, LOX/ LH2 (MR of 6), and LOX/ LH2 (MR of 10) • Propulsion system split into multiple...area ratio attainable within length envelope – Use of four chambers allows area ratios >150 – LOX/ LH2 (MR=6) is highest performing propellant...combination •Due to LOX/ LH2 (MR=6) low bulk density it is not possible to store as much propellant within stage – Resulting in the lowest total

  14. Two-Stage Fan I: Aerodynamic and Mechanical Design

    NASA Technical Reports Server (NTRS)

    Messenger, H. E.; Kennedy, E. E.

    1972-01-01

    A two-stage, highly-loaded fan was designed to deliver an overall pressure ratio of 2.8 with an adiabatic efficiency of 83.9 percent. At the first rotor inlet, design flow per unit annulus area is 42 lbm/sec/sq ft (205 kg/sec/sq m), hub/tip ratio is 0.4 with a tip diameter of 31 inches (0.787 m), and design tip speed is 1450 ft/sec (441.96 m/sec). Other features include use of multiple-circular-arc airfoils, resettable stators, and split casings over the rotor tip sections for casing treatment tests.

  15. Design and analysis of all-dielectric broadband nonpolarizing parallel-plate beam splitters.

    PubMed

    Wang, Wenliang; Xiong, Shengming; Zhang, Yundong

    2007-06-01

    Past research on the all-dielectric nonpolarizing beam splitter is reviewed. With the aid of the needle thin-film synthesis method and the conjugate graduate refine method, three different split ratio nonpolarizing parallel-plate beam splitters over a 200 nm spectral range centered at 550 nm with incidence angles of 45 degrees are designed. The chosen materials component and the initial stack are based on the Costich and Thelen theories. The results of design and analysis show that the designs maintain a very low polarization ratio in the working range of the spectrum and has a reasonable angular field.

  16. All-dielectric broadband non-polarizing parallel plate beam splitter operating between 450-650nm

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Xiong, Shenming; Zhang, Yundong

    2007-12-01

    Past research on all-dielectric non-polarizing beam splitter is reviewed. With the aid of needle thin film synthesis method and conjugate graduate refining method, three non-polarizing parallel plate beam splitters with different split ratios over a 200nm spectral range centered at 550nm with incidence angle 45° are designed. Selection of material components and initial stack are based on Costich and Thelen's theory. The results of design and analysis show that it maintains a very low polarization ratio in the working range of spectrum and has a reasonable angular field.

  17. Extracellular Vesicle Injection Improves Myocardial Function and Increases Angiogenesis in a Swine Model of Chronic Ischemia.

    PubMed

    Potz, Brittany A; Scrimgeour, Laura A; Pavlov, Vasile I; Sodha, Neel R; Abid, M Ruhul; Sellke, Frank W

    2018-06-12

    Mesenchymal stem cell-derived extracellular vesicles (EVs) are believed to be cardioprotective in myocardial infarct. The objective of this study was to examine the effects of human mesenchymal cell-derived EV injection on cardiac function, myocardial blood flow, and vessel density in the setting of chronic myocardial ischemia. Twenty-three Yorkshire swine underwent placement of an ameroid constrictor on their left circumflex artery. Two weeks later, the animals were split into 2 groups: the control group (CON; n=7) and the EV myocardial injection group (MVM; n=10). The MVM group underwent myocardial injection of 50 μg of EVs in 2 mL 0.9% saline into the ischemic myocardium. Five weeks later, the pigs underwent a harvest procedure, and the left ventricular myocardium was analyzed. Absolute blood flow and the ischemic/nonischemic myocardial perfusion ratio were increased in the ischemic myocardium in the MVM group compared with the CON group. Pigs in the MVM group had increased capillary and arteriolar density in the ischemic myocardial tissue compared with CON pigs. There was an increase in expression of the phospho-mitogen-activated protein kinase/mitogen-activated protein kinase ratio, the phospho-endothelial nitric oxide synthase/endothelial nitric oxide synthase ratio, and total protein kinase B in the MVM group compared with CON. There was an increase in cardiac output and stroke volume in the MVM group compared with CON. In the setting of chronic myocardial ischemia, myocardial injection of human mesenchymal cell-derived EVs increases blood flow to ischemic myocardial tissue by induction of capillary and arteriolar growth via activation of the protein kinase B/endothelial nitric oxide synthase and mitogen-activated protein kinase signaling pathways resulting in increased cardiac output and stroke volume. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  18. Architectural properties of the neuromuscular compartments in selected forearm skeletal muscles

    PubMed Central

    Liu, An-Tang; Liu, Ben-Li; Lu, Li-Xuan; Chen, Gang; Yu, Da-Zhi; Zhu, Lie; Guo, Rong; Dang, Rui-Shan; Jiang, Hua

    2014-01-01

    The purposes f this study were to (i) explore the possibility of splitting the selected forearm muscles into separate compartments in human subjects; (ii) quantify the architectural properties of each neuromuscular compartment; and (iii) discuss the implication of these properties in split tendon transfer procedures. Twenty upper limbs from 10 fresh human cadavers were used in this study. Ten limbs of five cadavers were used for intramuscular nerve study by modified Sihler's staining technique, which confirmed the neuromuscular compartments. The other 10 limbs were included for architectural analysis of neuromuscular compartments. The architectural features of the compartments including muscle weight, muscle length, fiber length, pennation angle, and sarcomere length were determined. Physiological cross-sectional area and fiber length/muscle length ratio were calculated. Five of the selected forearm muscles were ideal candidates for splitting, including flexor carpi ulnaris, flexor carpi radials, extensor carpi radialis brevis, extensor carpi ulnaris and pronator teres. The humeral head of pronator teres contained the longest fiber length (6.23 ± 0.31 cm), and the radial compartment of extensor carpi ulnaris contained the shortest (2.90 ± 0.28 cm). The ulnar compartment of flexor carpi ulnaris had the largest physiological cross-sectional area (5.17 ± 0.59 cm2), and the ulnar head of pronator teres had the smallest (0.67 ± 0.06 cm2). Fiber length/muscle length ratios of the neuromuscular compartments were relatively low (average 0.27 ± 0.09, range 0.18–0.39) except for the ulnar head of pronator teres, which had the highest one (0.72 ± 0.05). Using modified Sihler's technique, this research demonstrated that each compartment of these selected forearm muscles has its own neurovascular supply after being split along its central tendon. Data of the architectural properties of each neuromuscular compartment provide insight into the ‘design’ of their functional capability. In addition to improving our understanding of muscle anatomy and function, elucidation of forearm neuromuscular compartments architecture may ultimately provide information useful for selection of muscle subdivisions used in tendon transfer. PMID:24836406

  19. SU-G-TeP2-11: Initial Evaluation of a Novel Split-Filter Dual-Energy CT for Use in Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J; Huang, J; Szczykutowicz, T

    2016-06-15

    Purpose: To perform an initial evaluation of a novel split-filter dual-energy CT (DECT) system with the goal of understanding the clinical utility and limitations of the system for radiation therapy. Methods: Several phantoms were imaged using the split-filter DECT technique on the Siemens Edge CT scanner using a range of clinically-relevant doses. The optimum-contrast reconstruction, the mixed reconstruction, and the monoenergetic reconstructions (ranging from 40 keV to 190 keV) were evaluated. Each image was analyzed for CT number accuracy, uniformity, noise, low-contrast visibility (LCV), spatial resolution and geometric distortion. For comparison purposes, all parameters were evaluated on 120 kVp single-energymore » CT (SECT) scans used for treatment planning, as well as, a sequential-scan DECT technique for corresponding doses. Results: For all DECT reconstructions no observable geometric distortion was found. Both the optimal-contrast and mixed images demonstrated slight improvements in LCV and noise when compared to the SECT, and slight reductions in CT number accuracy and spatial resolution. The CT numbers trended as expected for the monoenergetic reconstructions, with CT number accuracy within 50 HU for materials of density <2 g/cm3. Spatial resolution increased with energy, and for monoenergetic reconstructions >70 keV the spatial resolution exceeded that of the SECT. The noise in the monoenergetic reconstructions increased with decreasing energy. Thus, the image uniformity, signal-to-noise ratio and LCV were diminished at lower energies (70 keV). Applying iterative reconstruction techniques to the low-energy images reduced noise and improved LCV. The signal-to-noise ratio was stable for energies >100 keV. Conclusion: The initial commissioning of the novel split-filter DECT technology demonstrated favorable results for clinical implementation. The mixed reconstruction showed potential as a replacement for the treatment planning SECT. The image parameters for the monoenergetic reconstructions varied appropriately with energy. This work provides an initial understanding of the limitations and potential applications for monoenergetic imaging.« less

  20. Amphiastral Mitotic Spindle Assembly in Vertebrate Cells Lacking Centrosomes

    PubMed Central

    Hornick, Jessica E.; Mader, Christopher C.; Tribble, Emily K.; Bagne, Cydney C.; Vaughan, Kevin T.; Shaw, Sidney L.; Hinchcliffe, Edward H.

    2011-01-01

    Summary The role of centrosomes/centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles [1, 2, 3]. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays – termed an amphiaster (“a star on both sides” [4]) – that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB) [5]. Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC re-assembled, and prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split/separate before NEB, and these entered mitosis with persistent monastral spindles. The chromatin-mediated RAN-GTP pathway could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but in its absence, the fidelity of bipolar spindle assembly is highly compromised. PMID:21439826

  1. Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3-xO4) for water splitting: a mini-review

    NASA Astrophysics Data System (ADS)

    Taffa, Dereje H.; Dillert, Ralf; Ulpe, Anna C.; Bauerfeind, Katharina C. L.; Bredow, Thomas; Bahnemann, Detlef W.; Wark, Michael

    2017-01-01

    Solar-assisted water splitting using photoelectrochemical cells (PECs) is one of the promising pathways for the production of hydrogen for renewable energy storage. The nature of the semiconductor material is the primary factor that controls the overall energy conversion efficiency. Finding semiconductor materials with appropriate semiconducting properties (stability, efficient charge separation and transport, abundant, visible light absorption) is still a challenge for developing materials for solar water splitting. Owing to the suitable bandgap for visible light harvesting and the abundance of iron-based oxide semiconductors, they are promising candidates for PECs and have received much research attention. Spinel ferrites are subclasses of iron oxides derived from the classical magnetite (FeIIFe2IIIO4) in which the FeII is replaced by one (some cases two) additional divalent metals. They are generally denoted as MxFe3-xO4 (M=Ca, Mg, Zn, Co, Ni, Mn, and so on) and mostly crystallize in spinel or inverse spinel structures. In this mini review, we present the current state of research in spinel ferrites as photoelectrode materials for PECs application. Strategies to improve energy conversion efficiency (nanostructuring, surface modification, and heterostructuring) will be presented. Furthermore, theoretical findings related to the electronic structure, bandgap, and magnetic properties will be presented and compared with experimental results.

  2. Oscillations and patterns in a model of simultaneous CO and C2H2 oxidation and NO(x) reduction in a cross-flow reactor.

    PubMed

    Hadač, Otto; Kohout, Martin; Havlica, Jaromír; Schreiber, Igor

    2015-03-07

    A model describing simultaneous catalytic oxidation of CO and C2H2 and reduction of NOx in a cross-flow tubular reactor is explored with the aim of relating spatiotemporal patterns to specific pathways in the mechanism. For that purpose, a detailed mechanism proposed for three-way catalytic converters is split into two subsystems, (i) simultaneous oxidation of CO and C2H2, and (ii) oxidation of CO combined with NOx reduction. The ability of these two subsystems to display mechanism-specific dynamical effects is studied initially by neglecting transport phenomena and applying stoichiometric network and bifurcation analyses. We obtain inlet temperature - inlet oxygen concentration bifurcation diagrams, where each region possessing specific dynamics - oscillatory, bistable and excitable - is associated with a dominant reaction pathway. Next, the spatiotemporal behaviour due to reaction kinetics combined with transport processes is studied. The observed spatiotemporal patterns include phase waves, travelling fronts, pulse waves and spatiotemporal chaos. Although these types of pattern occur generally when the kinetic scheme possesses autocatalysis, we find that some of their properties depend on the underlying dominant reaction pathway. The relation of patterns to specific reaction pathways is discussed.

  3. Two stage low noise advanced technology fan. 1: Aerodynamic, structural, and acoustic design

    NASA Technical Reports Server (NTRS)

    Messenger, H. E.; Ruschak, J. T.; Sofrin, T. G.

    1974-01-01

    A two-stage fan was designed to reduce noise 20 db below current requirements. The first-stage rotor has a design tip speed of 365.8 m/sec and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency of 85.3 percent at a specific inlet corrected flow of 209.2kg/sec/sq m. Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the proper ratio of blades and vanes. Multiple-circular-arc rotor airfoils, resettable stators, split outer casings, and capability to go to close blade-row spacing are also included.

  4. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    PubMed

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  5. Evaluation of A Novel Split-Feeding Anaerobic/Oxic Baffled Reactor (A/OBR) For Foodwaste Anaerobic Digestate: Performance, Modeling and Bacterial Community

    PubMed Central

    Wang, Shaojie; Peng, Liyu; Jiang, Yixin; Gikas, Petros; Zhu, Baoning; Su, Haijia

    2016-01-01

    To enhance the treatment efficiency from an anaerobic digester, a novel six-compartment anaerobic/oxic baffled reactor (A/OBR) was employed. Two kinds of split-feeding A/OBRs R2 and R3, with influent fed in the 1st, 3rd and 5th compartment of the reactor simultaneously at the respective ratios of 6:3:1 and 6:2:2, were compared with the regular-feeding reactor R1 when all influent was fed in the 1st compartment (control). Three aspects, the COD removal, the hydraulic characteristics and the bacterial community, were systematically investigated, compared and evaluated. The results indicated that R2 and R3 had similar tolerance to loading shock, but the R2 had the highest COD removal of 91.6% with a final effluent of 345 mg/L. The mixing patterns in both split-feeding reactors were intermediate between plug-flow and completely-mixed, with dead spaces between 8.17% and 8.35% compared with a 31.9% dead space in R1. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that the split-feeding strategy provided a higher bacterial diversity and more stable bacterial community than that in the regular-feeding strategy. Further analysis indicated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant bacteria, among which Firmicutes and Bacteroidetes might be responsible for organic matter degradation and Proteobacteria for nitrification and denitrification. PMID:27708368

  6. Evaluation of a New 1H/31P Dual-Tuned Birdcage Coil for 31P Spectroscopy

    PubMed Central

    Potter, WM; Wang, L; McCully, KK; Zhao, Q

    2013-01-01

    We introduce a new dual-tuned Hydrogen/Phosphorus (1H/31P) birdcage coil, referred to as split birdcage coil, and evaluate its performance using both simulations and magnetic resonance (MR) experiments on a 3 T MR scanner. The proposed coil simplifies the practical matters of tuning and matching, which makes the coil easily reproducible. Simulations were run with the Finite Difference in Time Domain (FDTD) method to evaluate the sensitivity and homogeneity of the magnetic field generated by the proposed 1H coils. Following simulations, MR experiments were conducted using both a phantom and human thigh to compare the proposed design with a currently available commercial dual-tuned flexible surface coil, referred to as flex surface coil, for signal to noise ratio (SNR) as well as homogeneity for the 31P coil. At regions deep within the human thigh, the split birdcage coil was able to acquire spectroscopic signal with a higher average SNR than the flex surface coil. For all regions except those close to the flex surface coil, the split birdcage coil matched or exceeded the performance of the flex surface coil. PMID:24039555

  7. Transparent thin shield for radio frequency transmit coils.

    PubMed

    Rivera, Debra S; Schulz, Jessica; Siegert, Thomas; Zuber, Verena; Turner, Robert

    2015-02-01

    To identify a shielding material compatible with optical head-motion tracking for prospective motion correction and which minimizes radio frequency (RF) radiation losses at 7 T without sacrificing line-of-sight to an imaging target. We evaluated a polyamide mesh coated with silver. The thickness of the coating was approximated from the composition ratio provided by the material vendor and validated by an estimate derived from electrical conductivity and light transmission measurements. The performance of the shield is compared to a split-copper shield in the context of a four-channel transmit-only loop array. The mesh contains less than a skin-depth of silver coating (300 MHz) and attenuates light by 15 %. Elements of the array vary less in the presence of the mesh shield as compared to the split-copper shield indicating that the array behaves more symmetrically with the mesh shield. No degradation of transmit efficiency was observed for the mesh as compared to the split-copper shield. We present a shield compatible with future integration of camera-based motion-tracking systems. Based on transmit performance and eddy-current evaluations the mesh shield is appropriate for use at 7 T.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on November 15, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, andmore » the results are compared using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER {<=} 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report does not specify the confidence level of reported uncertainties (NFS 2012). Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. In conclusion, all DER values were less than 3 and results are consistent with low (e.g., background) concentrations.« less

  9. Three junction holographic micro-scale PV system

    NASA Astrophysics Data System (ADS)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Kostuk, Raymond K.

    2016-09-01

    In this work a spectrum splitting micro-scale concentrating PV system is evaluated to increase the conversion efficiency of flat panel PV systems. In this approach, the dispersed spectrum splitting concentration systems is scaled down to a small size and structured in an array. The spectrum splitting configuration allows the use of separate single bandgap PV cells that increase spectral overlap with the incident solar spectrum. This results in an overall increase in the spectral conversion efficiency of the resulting system. In addition other benefits of the micro-scale PV system are retained such reduced PV cell material requirements, more versatile interconnect configurations, and lower heat rejection requirements that can lead to a lower cost system. The system proposed in this work consists of two cascaded off-axis holograms in combination with a micro lens array, and three types of PV cells. An aspherical lens design is made to minimize the dispersion so that higher concentration ratios can be achieved for a three-junction system. An analysis methodology is also developed to determine the optical efficiency of the resulting system, the characteristics of the dispersed spectrum, and the overall system conversion efficiency for a combination of three types of PV cells.

  10. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks

    PubMed Central

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng

    2017-01-01

    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement. PMID:28677636

  11. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks.

    PubMed

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng

    2017-07-04

    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.

  12. Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces

    NASA Astrophysics Data System (ADS)

    Gao, Xi; Yu, Xing-Yang; Cao, Wei-Ping; Jiang, Yan-Nan; Yu, Xin-Hua

    2016-12-01

    An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic (EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm (in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 dB. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61461016 and 61661012), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFAA118366, 2014GXNSFAA118283, and 2015jjBB7002), and the Innovation Project of Graduate Education of Guilin University of Electronic Technology, China (Grant No. 2016YJCX82).

  13. Radiative transfer of HCN: interpreting observations of hyperfine anomalies

    NASA Astrophysics Data System (ADS)

    Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.

    2016-07-01

    Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.

  14. Application of Face-Gear Drives in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.

    1992-01-01

    The use of face gears in helicopter transmissions was explored. A light-weight, split torque transmission design utilizing face gears was described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. Analytical study of transmission error showed face-gear drives were relatively insensitive to gear misalignment, but tooth contact was affected by misalignment. A method of localizing bearing contact to compensate for misalignment was explored. The proper choice of shaft support stiffness enabled good load sharing in the split torque transmission design. Face-gear experimental studies were also included and the feasibility of face gears in high-speed, high-load applications such as helicopter transmissions was demonstrated.

  15. Bose-Fermi symmetry in the odd-even gold isotopes

    NASA Astrophysics Data System (ADS)

    Thomas, T.; Régis, J.-M.; Jolie, J.; Heinze, S.; Albers, M.; Bernards, C.; Fransen, C.; Radeck, D.

    2014-05-01

    In this work the results of an in-beam experiment on 195Au are presented, yielding new spins, multipole mixing ratios, and new low-lying states essential for the understanding of this nucleus. The positive-parity states from this work together with compiled data from the available literature for 185-199Au are compared to Interacting Boson Fermion Model calculations employing the Spin(6) Bose-Fermi symmetry. The evolution of the parameters for the τ splitting and the J splitting reveals a smooth behavior. Thereby, a common description based on the Bose-Fermi symmetry is found for 189-199Au. Furthermore, the calculated E2 transition strengths are compared to experimental values with fixed effective boson and fermion charges for all odd-even gold isotopes, emphasizing that the Spin(6) Bose-Fermi symmetry is valid for the gold isotopes.

  16. Parity doublet structures in doubly-odd 216Fr

    NASA Astrophysics Data System (ADS)

    Pragati, Â.; Deo, A. Y.; Tandel, S. K.; Bhattacharjee, S. S.; Chakraborty, S.; Rai, S.; Wahid, S. G.; Kumar, S.; Muralithar, S.; Singh, R. P.; Bala, Indu; Garg, Ritika; Jain, A. K.

    2018-04-01

    Parity doublet structures are established in 216Fr, which lies at the lower boundary of enhanced octupole collectivity in the trans-lead region. The newly identified levels are established as the simplex partner of a previously reported band leading to parity doublets with small (˜55 keV) average energy splitting, a feature typical of nuclei with near-static octupole deformation. The observed levels do not follow a regular pattern of rotational bands, indicating low quadrupole collectivity. However, enhanced octupole correlations are evident from the small energy splitting and large B(E1)/B(E2) values. Staggering in E1 transition energies and B(E1)/B(E2) ratios is noted. The enhancement of octupole correlations in 216Fr is attributed to the availability of a neutron orbital with a K = 3/2 component.

  17. Upper Mantle Seismic Anisotropy Beneath West Antarctica from Shear Wave Splitting Analysis of POLENET/ANET Data

    NASA Astrophysics Data System (ADS)

    Accardo, N.; Wiens, D. A.; Hernandez, S.; Aster, R. C.; Nyblade, A.; Anandakrishnan, S.; Huerta, A. D.; Wilson, T. J.

    2011-12-01

    We constrain azimuthal anisotropy in the Antarctic upper mantle using shear wave splitting parameters obtained from teleseismic SKS, SKKS, and PKS phases recorded at 30 broad-band seismometers deployed in West Antarctica, and the Transantarctic Mountains as a part of POLENET/ANET. The first seismometers were deployed in late 2007 and additional seismometers were deployed in 2008 and 2009. The seismometers generally operate year-round using solar power, insulated boxes, and either rechargeable AGM or primary lithium batteries. We used an eigenvalue technique to linearize the rotated and shifted shear wave particle motions and determine the best splitting parameters. Robust windows around the individual phases were chosen using the Teanby cluster-analysis algorithm. We visually inspected all results and assigned a quality rating based on factors including signal-to-noise ratios, particle motions, and error contours. The best results for each station were then stacked to get an average splitting direction and delay time. The delay times range from 0.33 to 1.33 s, but generally average about 1 s. We conclude that the splitting results from anisotropy in the upper mantle, since the large splitting times cannot be accumulated in the relatively thin crust (20-30 km) of the region. Overall, fast directions in West Antarctica are at large angles to the direction of Antarctic absolute plate motion in either hotspot or no-net rotation frameworks, showing that the anisotropic fabric does not result from shear associated with the motion of Antarctica over the mantle. The West Antarctic fast directions are also much different than those found in East Antarctica by previous studies. We suggest that the East Antarctic splitting results from anisotropy frozen into the cold cratonic continental lithosphere, whereas West Antarctic splitting is related to Cenozoic tectonism. Stations within the West Antarctic Rift System (WARS), a region of Cenozoic extension, show fast directions subparallel to the inferred WARS extension direction. Stations located in the Ellsworth-Whitmore Mountains (EWM) show fast directions parallel to those found within WARS. Furthermore, results from WARS and from EWM all show relatively large splitting times of 0.6 - 1.33 s. These results suggest upper mantle anisotropy that results from mantle flow and deformation related to the extensional deformation of the region. Two stations were installed in the Pensacola Mountains which are located grid-north of the EWM. The results from this region deviate from the dominant fast orientation seen in WARS but appear to be approximately perpendicular to the strike of the mountain range. Stations in Marie Byrd Land (MBL) show inconsistent fast directions and a wide range of delay times (0.3 - 0.9 s), perhaps as a result of complex mantle fabric related to a possible MBL hotspot.

  18. A comparison of freeze-drying and oven-drying preparation methods for bulk and compound-specific carbon stable isotope analyses: examples using the benthic macroinvertebrates Stenopsyche marmorata and Epeorus latifolium.

    PubMed

    Akamatsu, Fumikazu; Suzuki, Yaeko; Kato, Yoshikazu; Yoshimizu, Chikage; Tayasu, Ichiro

    2016-01-15

    Carbon stable isotope analysis of bulk samples and fatty acids is an established method for tracing carbon flow pathways and reconstructing trophic interactions, but there is no consensus on which sample drying method should be used for sample preparation. The aim of this study was to determine if freeze-drying and oven-drying treatments used to prepare samples of the benthic macroinvertebrates Stenopsyche marmorata and Epeorus latifolium for bulk and fatty-acid-specific carbon stable isotope analysis yield different isotopic ratio values. Five individuals each from two species were split in half; one half was freeze-dried and the other half was oven-dried. The samples were ground and the δ(13)C values of the bulk samples and eight fatty acids were measured following combustion using an isotope ratio mass spectrometer coupled to an elemental analyzer or gas chromatography system. The mean difference in the bulk and fatty acid δ(13)C values between freeze-dried and oven-dried samples was small (≤0.1‰ in both cases), although relatively large variations were observed in individual fatty-acid-specific δ(13)C values (maximum of ≤0.9 ‰). There were no significant differences in either bulk sample or fatty-acid-specific δ(13)C values between freeze-dried or oven-dried samples of the same species. Freeze-drying and oven-drying are equally acceptable methods for preparing freshly caught S. marmorata and E. latifolium samples for bulk and fatty-acid-specific carbon stable isotope analyses. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education (19th, Recife, Brazil, July 22-27, 1995), Volume 1.

    ERIC Educational Resources Information Center

    Meira, Luciano, Ed.; Carraher, David, Ed.

    This proceedings of the annual conference of the International Group for the Psychology of Mathematics Education (PME) includes the following plenary papers and lectures: "Student Voice in Examining 'Splitting' as an Approach to Ratio, Proportions and Fractions" (J. Confrey); "Spontaneous and Scientific Concepts in Mathematics: A Vygotskian…

  20. Effect of gravity on liquid plug transport through an airway bifurcation model.

    PubMed

    Zheng, Y; Anderson, J C; Suresh, V; Grotberg, J B

    2005-10-01

    Many medical therapies require liquid plugs to be instilled into and delivered throughout the pulmonary airways. Improving these treatments requires a better understanding of how liquid distributes throughout these airways. In this study, gravitational and surface mechanisms determining the distribution of instilled liquids are examined experimentally using a bench-top model of a symmetrically bifurcating airway. A liquid plug was instilled into the parent tube and driven through the bifurcation by a syringe pump. The effect of gravity was adjusted by changing the roll angle (phi) and pitch angle (gamma) of the bifurcation (phi = gamma =0 deg was isogravitational). Phi determines the relative gravitational orientation of the two daughter tubes: when phi not equal to 0 deg, one daughter tube was lower (gravitationally favored) compared to the other. Gamma determines the component of gravity acting along the axial direction of the parent tube: when gamma not equal to 0 deg, a nonzero component of gravity acts along the axial direction of the parent tube. A splitting ratio Rs, is defined as the ratio of the liquid volume in the upper daughter to the lower just after plug splitting. We measured the splitting ratio, Rs, as a function of: the parent-tube capillary number (Cap); the Bond number (Bo); phi; gamma; and the presence of pre-existing plugs initially blocking either daughter tube. A critical capillary number (Cac) was found to exist below which no liquid entered the upper daughter (Rs = 0), and above which Rs increased and leveled off with Cap. Cac increased while Rs decreased with increasing phi, gamma, and Bo for blocked and unblocked cases at a given Cap > Ca,. Compared to the nonblockage cases, Rs decreased (increased) at a given Cap while Cac increased (decreased) with an upper (lower) liquid blockage. More liquid entered the unblocked daughter with a blockage in one daughter tube, and this effect was larger with larger gravity effect. A simple theoretical model that predicts Rs and Cac is in qualitative agreement with the experiments over a wide range of parameters.

  1. High quantum-yield phosphors via quantum splitting and upconversion

    NASA Astrophysics Data System (ADS)

    Jeong, Joayoung

    The Gd3+ ion has been used to induce quantum splitting in luminescent materials by using cross-relaxation energy transfer (CRET). In Nd:LiGdF4, quantum splitting results from a two-step CRET between Gd3+ and Nd3+, first involving a transition 6G→6I on Gd3+ and an excitation within the 4f3 configuration of Nd3+ followed by a second CRET that brings Gd3+ to 6P7/2. The excited Nd3+ ion rapidly relaxes nonradiatively to the emitting 4F3/2. The excited Gd3+ ion then transfers its energy back to Nd3+, which gives rise to the second photon. The result is a quantum yield of 1.05 +/- 0.35 with emission in the NIR following excitation at 175 nm. GdF3:Pr3+, Eu 3+ also exhibits quantum splitting, but only at very low concentration of Pr3+ (0.3%) and Eu3+ (0.2%), resulting in a quantum yield of approximately 20% under 160-nm excitation. Host intrinsic emission via a self-trapped exciton (STE) was also examined as a means to sensitize Gd3+ emission. The material ScPO4:Gd 3+ exhibits a high absolute quantum yield of 0.9 +/- 0.2 under 170-nm excitation, demonstrating a potentially new and efficient pathway for exciting quantum splitting phosphors. Single crystals of the material GdZrF7 were grown, and its structure was established via single-crystal X-ray diffraction methods. Doped samples of GdZrF7:Yb3+, Er3+ exhibit bright up-conversion luminescence with light output that is up to twice that of a commercial material based on the host Gd2O2S. When doped with Eu3+, the fluoride also emits a nearly white color under vacuum ultraviolet excitation with an absolute quantum yield near 0.9. The new compound Gd4.67(SiO4)3S was synthesized and studied. The structure was established via single-crystal X-ray methods, and the luminescence of Tb3+ samples was investigated.

  2. SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra

    NASA Astrophysics Data System (ADS)

    Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.

    2017-03-01

    We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O II]λλ3726, 3729, [O III]λ5007, [N II]λλ6549, 6584, and [S II]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, I.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O II] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H II regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H II regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N II]/Hα and [O II]/Hα ratios between the disk and the halo. SDSS IV.

  3. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J; Szczykutowicz, T; Bayouth, J

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between themore » acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials necessitate consideration for radiation therapy treatment planning.« less

  4. Computer code for single-point thermodynamic analysis of hydrogen/oxygen expander-cycle rocket engines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Jones, Scott M.

    1991-01-01

    This analysis and this computer code apply to full, split, and dual expander cycles. Heat regeneration from the turbine exhaust to the pump exhaust is allowed. The combustion process is modeled as one of chemical equilibrium in an infinite-area or a finite-area combustor. Gas composition in the nozzle may be either equilibrium or frozen during expansion. This report, which serves as a users guide for the computer code, describes the system, the analysis methodology, and the program input and output. Sample calculations are included to show effects of key variables such as nozzle area ratio and oxidizer-to-fuel mass ratio.

  5. Targeting death receptors to fight cancer: from biological rational to clinical implementation.

    PubMed

    Mocellin, S

    2010-01-01

    Considering that most currently available chemotherapeutic drugs work by inducing cell apoptosis, it is not surprising that many expectations in cancer research come from the therapeutic exploitation of the naturally occurring death pathways. Receptor mediated apoptosis depends upon the engagement of specific ligands with their respective membrane receptors and - within the frame of complex regulatory networks - modulates some key physiological and pathological processes such as lymphocyte survival, inflammation and infectious diseases. A pivotal observation was that some of these pathways may be over activated in cancer under particular circumstances, which opened the avenue for tumor-specific therapeutic interventions. Although one death-related ligand (e.g., tumor necrosis factor, TNF) is currently the basis of effective anticancer regimens in the clinical setting, the systemic toxicity is hampering its wide therapeutic exploitation. However, strategies to split the therapeutic from the toxic TNF activity are being devised. Furthermore, other death receptor pathways (e.g., Fas/FasL, TRAIL/TRAIL receptor) are being intensively investigated in order to therapeutically exploit their activity against cancer. This article summarizes the current knowledge on the molecular features of death receptor pathways that make them an attractive target for anticancer therapeutics. In addition, the results so far obtained in the clinical oncology setting as well as the issues to be faced while interfering with these pathways for therapeutic purposes will be overviewed.

  6. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade. Part 2:; Simulation Results

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Bunker, Ronald S.

    2002-01-01

    A combined experimental and numerical study to investigate the heat transfer distribution in a complex blade trailing edge passage was conducted. The geometry consists of a two pass serpentine passage with taper toward the trailing edge, as well as from hub to tip. The upflow channel has an average aspect ratio of roughly 14:1, while the exit passage aspect ratio is about 5:1. The upflow channel is split in an interrupted way and is smooth on the trailing edge side of the split and turbulated on the other side. A turning vane is placed near the tip of the upflow channel. Reynolds numbers in the range of 31,000 to 61,000, based on inlet conditions, were simulated numerically. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-omega turbulence model. A structured multi-block grid is used with approximately 4.5 million cells and average y+ values on the order of unity. Pressure and heat transfer distributions are presented with comparison to the experimental data. While there are some regions with discrepancies, in general the agreement is very good for both pressure and heat transfer.

  7. Spectroscopy of the 1/2 2S → 3/2 2P transition in Yb ii: Isotope shifts, hyperfine splitting, and branching ratios

    NASA Astrophysics Data System (ADS)

    Feldker, T.; Fürst, H.; Ewald, N. V.; Joger, J.; Gerritsma, R.

    2018-03-01

    We report on spectroscopic results on the 1/2 2S → 3/2 2P transition in single trapped Yb+ ions. We measure the isotope shifts for all stable Yb+ isotopes except +173Yb, as well as the hyperfine splitting of the 3/2 2P state in +171Yb. Our results are in agreement with previous measurements but are a factor of 5-9 more precise. For the hyperfine constant A (3/2 2P)=875.4 (10 )MHz our results also agree with previous measurements but deviate significantly from theoretical predictions. We present experimental results on the branching ratios for the decay of the 3/2 2P state. We find branching fractions for the decay to the 3/2 2D state and 5/2 2D state of 0.17(1)% and 1.08(5)%, respectively, in rough agreement with theoretical predictions. Furthermore, we measured the isotope shifts of the 7/2 2F →1D[5/2 ] 5 /2 transition and determine the hyperfine structure constant for the 1D[5/2 ] 5 /2 state in +171Yb to be A (1D[5/2 ] 5 /2)=-107 (6 ) MHz .

  8. Anomalous phosphine sensitivity coefficients as probes for a possible variation of the proton-to-electron mass ratio

    NASA Astrophysics Data System (ADS)

    Owens, A.; Yurchenko, S. N.; Špirko, V.

    2018-02-01

    A robust variational approach is used to investigate the sensitivity of the rotation-vibration spectrum of phosphine (PH3) to a possible cosmological variation of the proton-to-electron mass ratio, μ. Whilst the majority of computed sensitivity coefficients, T, involving the low-lying vibrational states acquire the expected values of T ≈ -1 and T ≈ -1/2 for rotational and ro-vibrational transitions, respectively, anomalous sensitivities are uncovered for the A1 - A2 splittings in the ν2/ν4, ν1/ν3 and 2ν _4^{ℓ=0}/2ν _4^{ℓ=2} manifolds of PH3. A pronounced Coriolis interaction between these states in conjunction with accidentally degenerate A1 and A2 energy levels produces a series of enhanced sensitivity coefficients. Phosphine is expected to occur in a number of different astrophysical environments and has potential for investigating a drifting constant. Furthermore, the displayed behaviour hints at a wider trend in molecules of C_{3v}(M) symmetry, thus demonstrating that the splittings induced by higher-order ro-vibrational interactions are well suited for probing μ in other symmetric top molecules in space, since these low-frequency transitions can be straightforwardly detected by radio telescopes.

  9. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle

    PubMed Central

    Zhang, Youjun; Beard, Katherine F. M.; Swart, Corné; Bergmann, Susan; Krahnert, Ina; Nikoloski, Zoran; Graf, Alexander; Ratcliffe, R. George; Sweetlove, Lee J.; Fernie, Alisdair R.; Obata, Toshihiro

    2017-01-01

    Protein complexes of sequential metabolic enzymes, often termed metabolons, may permit direct channelling of metabolites between the enzymes, providing increased control over metabolic pathway fluxes. Experimental evidence supporting their existence in vivo remains fragmentary. In the present study, we test binary interactions of the proteins constituting the plant tricarboxylic acid (TCA) cycle. We integrate (semi-)quantitative results from affinity purification-mass spectrometry, split-luciferase and yeast-two-hybrid assays to generate a single reliability score for assessing protein–protein interactions. By this approach, we identify 158 interactions including those between catalytic subunits of sequential enzymes and between subunits of enzymes mediating non-adjacent reactions. We reveal channelling of citrate and fumarate in isolated potato mitochondria by isotope dilution experiments. These results provide evidence for a functional TCA cycle metabolon in plants, which we discuss in the context of contemporary understanding of this pathway in other kingdoms. PMID:28508886

  10. Origin and function of myofibroblasts in kidney fibrosis.

    PubMed

    LeBleu, Valerie S; Taduri, Gangadhar; O'Connell, Joyce; Teng, Yingqi; Cooke, Vesselina G; Woda, Craig; Sugimoto, Hikaru; Kalluri, Raghu

    2013-08-01

    Myofibroblasts are associated with organ fibrosis, but their precise origin and functional role remain unknown. We used multiple genetically engineered mice to track, fate map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Through this comprehensive analysis, we identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts through proliferation. The nonproliferating myofibroblasts derive through differentiation from bone marrow (35%), the endothelial-to-mesenchymal transition program (10%) and the epithelial-to-mesenchymal transition program (5%). Specific deletion of Tgfbr2 in α-smooth muscle actin (αSMA)(+) cells revealed the importance of this pathway in the recruitment of myofibroblasts through differentiation. Using genetic mouse models and a fate-mapping strategy, we determined that vascular pericytes probably do not contribute to the emergence of myofibroblasts or fibrosis. Our data suggest that targeting diverse pathways is required to substantially inhibit the composite accumulation of myofibroblasts in kidney fibrosis.

  11. Origin and Function of Myofibroblasts in Kidney Fibrosis

    PubMed Central

    LeBleu, Valerie S.; Taduri, Gangadhar; O’Connell, Joyce; Teng, Yingqi; Cooke, Vesselina G.; Woda, Craig; Sugimoto, Hikaru; Kalluri, Raghu

    2014-01-01

    Myofibroblasts are associated with organ fibrosis but their precise origin and functional role remain unknown. We employed multiple genetically engineered mice to track, fate-map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Such comprehensive analysis identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts via proliferation. The non-proliferating myofibroblasts derive via differentiation from bone marrow (35%), endothelial to mesenchymal transition (EndMT) program (10%) and epithelial to mesenchymal transition (EMT) program (5%). Specific deletion of Tgfbr2 in αSMA+ cells revealed the importance of this pathway in recruitment of myofibroblasts via differentiation. Using genetic mouse models and fate-mapping strategy we determined that vascular pericytes likely do not contribute to the emergence of myofibroblasts or fibrosis. This study suggests that targeting diverse pathways is required to significantly inhibit composite accumulation of myofibroblasts in kidney fibrosis. PMID:23817022

  12. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Wolin laboratory has recently moved to the National Cancer Institute as part of a new initiative in RNA Biology. A fully funded postdoctoral position is available in the areas of noncoding RNA function, RNA surveillance pathways, and the mechanisms by which defects in RNA decay pathways contribute to diseases such as cancer and autoimmunity. We use mammalian cells and bacteria as complementary systems, and projects in both systems are available. Our group is part of the newly formed RNA Biology Laboratory in the Center for Cancer Research. We are part of the Center of Cancer Research’s RNA Initiative, which includes more than 50 laboratories evenly split between the Frederick and Bethesda campuses of the National Cancer Institute. The environment is highly collaborative and collegial, with the ability to interact with a wide range of scientists. The position is ideal for motivated candidates who are seeking additional training in RNA biology.

  13. High Sulfation and a High Molecular Weight Are Important for Anti-hepcidin Activity of Heparin

    PubMed Central

    Asperti, Michela; Naggi, Annamaria; Esposito, Emiliano; Ruzzenenti, Paola; Di Somma, Margherita; Gryzik, Magdalena; Arosio, Paolo; Poli, Maura

    2016-01-01

    Heparins are efficient inhibitors of hepcidin expression even in vivo, where they induce an increase of systemic iron availability. Heparins seem to act by interfering with BMP6 signaling pathways that control the expression of liver hepcidin, causing the suppression of SMAD1/5/8 phosphorylation. The anti-hepcidin activity persists also when the heparin anticoagulant property is abolished or reduced by chemical reactions of oxidation/reduction (glycol-split, Gs-Heparins) or by high sulfation (SS-Heparins), but the structural characteristics needed to optimize this inhibitory activity have not been studied in detail. To this aim we analyzed three different heparins (Mucosal Heparin, the Glycol split RO-82, the partially desulfated glycol-split RO-68 and the oversulfated SSLMWH) and separated them in fractions of molecular weight in the range 4–16 kD. Since the distribution of the negative charges in heparins contributes to the activity, we produced 2-O- and 6-O-desulfated heparins. These derivatives were analyzed for the capacity to inhibit hepcidin expression in hepatic HepG2 cells and in mice. The two approaches produced consistent results and showed that the anti-hepcidin activity strongly decreases with molecular weight below 7 kD, with high N-acetylation and after 2-O and 6-O desulfation. The high sulfation and high molecular weight properties for efficient anti-hepcidin activity suggest that heparin is involved in multiple binding sites. PMID:26955355

  14. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  15. SU(5) unification with TeV-scale leptoquarks

    DOE PAGES

    Cox, Peter; Kusenko, Alexander; Sumensari, Olcyr; ...

    2017-03-07

    It has previously been noted that SU(5) unification can be achieved via the simple addition of light scalar leptoquarks from two split 10 multiplets. We explore the parameter space of this model in detail and find that unification requires at least one leptoquark to have mass below ≈ 16 TeV. We point out that introducing splitting of the 24 allows the unification scale to be raised beyond 10 16 GeV, while a U(1) PQ symmetry can be imposed to forbid dangerous proton decay mediated by the light leptoquarks. The latest bounds from LHC searches are combined and we find thatmore » a leptoquark as light as 400 GeV is still permitted. Finally, we discuss the interesting possibility that the leptoquarks required for unification could also be responsible for the 2.6σ deviation observed in the ratio R K at LHCb.« less

  16. Electric field gradient in FeTiO3 by nuclear magnetic resonance and ab initio calculations.

    PubMed

    Procházka, V; Stěpánková, H; Chlan, V; Tuček, J; Cuda, J; Kouřil, K; Filip, J; Zbořil, R

    2011-05-25

    Temperature dependence of nuclear magnetic resonance (NMR) spectra of (47)Ti and (49)Ti in polycrystalline ilmenite FeTiO(3) was measured in the range from 5 to 300 K under an external magnetic field of 9.401 T. NMR spectra collected between 300 and 77 K exhibit a resolved quadrupole splitting. The electric field gradient (EFG) tensor was evaluated for Ti nuclei and the ratio of (47)Ti and (49)Ti nuclear quadrupole moments was refined during the fitting procedure. Below 77 K, the fine structure of quadrupole splitting disappears due to the enormous increase of anisotropy. As a counterpart, ab initio calculations were performed using full potential augmented plane waves + local orbitals. The calculated EFG tensors for Ti and Fe were compared to the experimental ones evaluated from NMR and the Mössbauer spectroscopy experiments.

  17. Advanced Rotorcraft Transmission (ART) program summary

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Kish, J. G.

    1992-01-01

    The Advanced Rotorcraft Transmission (ART) Program was initiated to advance the state of the art for rotorcraft transmissions. The goal of the ART Program was to develop and demonstrate the technologies needed to reduce transmission weight by 25 pct. and reduce noise by 10 dB while obtaining a 5000 hr 'mean time between failure'. The research done under the ART Program is summarized. A split path design was selected as best able to meet the program goals. Key part technologies needed for this design were identified, studied, and developed. Two of these technologies are discussed in detail: the load sharing of split path designs including the use of a compliant elastomeric torque splitter and the application of a high ratio, low pitch line velocity gear mesh. Development of an angular contact spherical roller bearing, transmission error analysis, and fretting fatigue testing are discussed. The technologies for a light weight, quiet, and reliable rotorcraft transmission were demonstrated.

  18. Method of orthogonally splitting imaging pose measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  19. Optimal preparation-to-colonoscopy interval in split-dose PEG bowel preparation determines satisfactory bowel preparation quality: an observational prospective study.

    PubMed

    Seo, Eun Hee; Kim, Tae Oh; Park, Min Jae; Joo, Hee Rin; Heo, Nae Yun; Park, Jongha; Park, Seung Ha; Yang, Sung Yeon; Moon, Young Soo

    2012-03-01

    Several factors influence bowel preparation quality. Recent studies have indicated that the time interval between bowel preparation and the start of colonoscopy is also important in determining bowel preparation quality. To evaluate the influence of the preparation-to-colonoscopy (PC) interval (the interval of time between the last polyethylene glycol dose ingestion and the start of the colonoscopy) on bowel preparation quality in the split-dose method for colonoscopy. Prospective observational study. University medical center. A total of 366 consecutive outpatients undergoing colonoscopy. Split-dose bowel preparation and colonoscopy. The quality of bowel preparation was assessed by using the Ottawa Bowel Preparation Scale according to the PC interval, and other factors that might influence bowel preparation quality were analyzed. Colonoscopies with a PC interval of 3 to 5 hours had the best bowel preparation quality score in the whole, right, mid, and rectosigmoid colon according to the Ottawa Bowel Preparation Scale. In multivariate analysis, the PC interval (odds ratio [OR] 1.85; 95% CI, 1.18-2.86), the amount of PEG ingested (OR 4.34; 95% CI, 1.08-16.66), and compliance with diet instructions (OR 2.22l 95% CI, 1.33-3.70) were significant contributors to satisfactory bowel preparation. Nonrandomized controlled, single-center trial. The optimal time interval between the last dose of the agent and the start of colonoscopy is one of the important factors to determine satisfactory bowel preparation quality in split-dose polyethylene glycol bowel preparation. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  20. Ultra-strong coupling with spin-split heavyhole cyclotron resonances in sGe QWs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keller, Janine; Scalari, Giacomo; Maissen, Curdin; Paravicini-Bagliani, Gian Lorenzo; Haase, Johannes; Failla, Michele; Myronov, Maksym; Leadley, David R.; Lloyd-Hughes, James; Faist, Jérôme

    2017-02-01

    We study the ultra-strong coupling (USC) of Landau level transitions in strained Germanium quantum wells (sGe QW) to THz metasurfaces. The spin-splitting of the heavy-hole cyclotron resonance in sGe QWs due to the Rashba spin-orbit interaction in magnetic field offers an excellent platform to investigate ultra-strong coupling to a non-parabolic system. THz split ring resonators can be tuned to coincide with the single cyclotron transition (around 0.4 THz and a magnetic field of 1.5 T) or the spin-resolved transitions of the sGe QWs (at 1.3 THz and 4.5 T). Coupling to the single cyclotron yields a normalized USC rate of 25%, resulting from fitting with a Hopfield-like Hamiltonian model. Coupling to two or three cyclotron resonances in sGe QWs lead to the observation of multiple polaritons branches, one polariton branch for each oscillator involved in the system. An adaption of the theory allows to also describe this multiple-oscillator system and to determine the coupling strengths. The different Rabi-splittings for the multiple cyclotrons coupling to the same resonator mode relate to the underlying differences in the material. Furthermore, the visibility of an additional transition, possibly a light hole transition with very low carrier density, is strongly enhanced due to the coupling to the LC-resonance with a normalized strong coupling ratio of 4.7%. Future perspectives include controlling spin-flip transitions in USC and studying the impact of non-parabolicity on the ultra-strong coupling physics.

  1. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar

    DOE PAGES

    Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; ...

    2016-03-28

    Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip andmore » twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.« less

  2. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Yanhong; Liu, Mei; Gao, Li; Mao, Liqun; Fan, Zeyun; Shangguan, Wenfeng

    2018-06-01

    Non-noble metal Co were loaded on CdS for enhancing photocatalytic activity of water splitting by a simple and efficient in situ photodeposition method. The Co particles with diameter ca. 5 nm were photoreduced and then loaded on the surface of CdS. The loading of Co can not only effectively promote the separation of electrons and holes photoexcited by CdS, but reduce the overpotential of hydrogen evolution as well, thus enhancing photocatalytic activity of water splitting. The highest photocatalytic H2 evolution rate of Co/CdS reaches up to 1299 μmol h-1 under visible light irradiation(λ > 420 nm) when the amount of loading is 1.0 wt%, which is 17 times of that of pure CdS and achieves 80% of that of 0.5 wt%Pt/CdS. This work not only exhibits a pathway to obtain photocatalysts with high photocatalytic activity for hydrogen production, but provides a possibility for the utilization of low cost Co as a substitute for noble metals in photocatalytic hydrogen production.

  3. Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites

    NASA Astrophysics Data System (ADS)

    El-Bery, Haitham M.; Matsushita, Yoshihisa; Abdel-moneim, Ahmed

    2017-11-01

    A facile one-step synthesis approach of M/TiO2/RGO (M = Au or Pt) ternary composite by hydrothermal treatment for hydrogen generation via water-splitting was investigated. Photocurrent response measurements revealed that TiO2 (P25) nanoparticles anchored on the reduced graphene oxide (RGO) surface exhibited a p-n heterojunction interface by changing the photocurrent direction with the applied bias from reverse to forward potential. H2 evolution rate of TiO2/RGO (5 wt.%) composite was substantially enhanced by 12-fold in comparison to bare TiO2 under simulated solar light irradiation. Cyclic volatmmetry measurements manifested, that the optimized 0.3 wt.% of platinum metal loaded on TiO2/RGO composite was the most active catalytic reduction sites for hydrogen generation reaction with an initial hydrogen rate of 670 μmol h-1. This study sheds the light on the tunable semiconductor type of TiO2/RGO composite fabricated by solution mixing pathway and its merits to improve the photocatalytic activity.

  4. Anomalous Rashba spin-orbit interaction in electrically controlled topological insulator based on InN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Łepkowski, Sławomir P.; Bardyszewski, Witold

    2017-05-01

    We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the 2D band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.

  5. Anomalous Rashba spin-orbit interaction in electrically controlled topological insulator based on InN/GaN quantum wells.

    PubMed

    Łepkowski, Sławomir P; Bardyszewski, Witold

    2017-05-17

    We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the 2D band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King, CHP, PMP

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 22, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses. Themore » comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ≤ 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty. The NFS split sample report does not specify the confidence level of reported uncertainties. Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. A comparison of split sample results, using the DER equation, indicates one set with a DER greater than 3. A DER of 3.1 is calculated for gross alpha results from ORAU sample 5198W0003 and NFS sample MCU-310212003. The ORAU result is 0.98 ± 0.30 pCi/L (value ± 2 sigma) compared to the NFS result of -0.08 ± 0.60 pCi/L. Relatively high DER values are not unexpected for low (e.g., background) analyte concentrations analyzed by separate laboratories, as is the case here. It is noted, however, NFS uncertainties are at least twice the ORAU uncertainties, which contributes to the elevated DER value. Differences in ORAU and NFS minimum detectable activities are even more pronounced. comparison of ORAU and NFS split samples produces reasonably consistent results for low (e.g., background) concentrations.« less

  7. GEM: a dynamic tracking model for mesoscale eddies in the ocean

    NASA Astrophysics Data System (ADS)

    Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu

    2016-12-01

    The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  8. Comparative studies on different nanofiber photocatalysts for water splitting

    NASA Astrophysics Data System (ADS)

    Alharbi, Abdulaziz; Alarifi, Ibrahim M.; Khan, Waseem S.; Asmatulu, Ramazan

    2016-04-01

    Water splitting using photocatalyst has become a topic of recent investigation since it has the potential of producing hydrogen for clean energy from sunlight. An extensive number of solid photocatalysts have been studied for overall water splitting in recent years. In this study, two methods were employed to synthesize two different photocatalysts for water splitting. The first method describes the synthesis of nickel oxide-loaded strontium titanate (NiO-SrTiO3) particles on electrospun polyacrylonitrile (PAN) nanofibers incorporated with graphene nanoplatelets for water splitting. The electrospun PAN fibers were first oxidized at 270°C for two hours and subsequently immersed in a solution containing ethanol, titanium (IV)-isopropoxide [C12H28O4Ti] and strontium nitrate [Sr(NO3)2]. This solution was then treated with NiO nanoparticles dispersed in toluene. The surface treated PAN fibers were annealed at 600°C in air for 1 hour to transform fibers into a crystalline form for improved photocatalyst performance. In the second method, coaxial electrospinning process was used to produce core/shell strontium titanate/nickel oxide (SrTiO3-NiO) nanofibers. In coaxial method, poly (vinyl pyrrolidone) (PVP) was dissolved in deionized (DI) water, and then titanium (IV) isopropoxide [C12H28O4Ti] and strontium nitrate [Sr(NO3)2] were added into the solution to form the inner (core) layer. For outer (shell) solution, polyacrylonitrile (PAN) polymer was dissolved in dimethylformamide (DMF) at a weight ratio of 10:90 and then nickel oxide was mixed with the solution. Ultraviolet (UV) spectrophotometry and static contact angle measurement techniques were employed to characterize the structural properties of photocatalysts produced by both methods and a comparison was made between the two photocatalysts. The morphology and diameter of the nanofibers were observed by scanning electron microscopy (SEM). The structure and crystallinity of the calcined nanofibers were also observed by means of X-ray diffraction (XRD).

  9. [IL-23 promotes invasion of esophageal squamous cell carcinoma cells by activating DLL4/Notch1 signaling pathway].

    PubMed

    Li, Wei; Zhou, Yuepeng; Su, Yuting; Ouyang, Yibo; Xie, Xiaodong; Wu, Yingying; Mao, Chaoming; Chen, Deyu

    2015-06-01

    To investigate the role of interlukin-23 (IL-23) in the invasion of human esophageal squamous cell carcinoma (ESCC) cells and the related mechanism. IL-23 expression in tumor and adjacent tissues from 10 ESCC patients were detected by immunohistochemistry. Real-time fluorescent PCR was used to examine the expressions of Notch1 and Foxn4 mRNAs in different concentration IL-23-treated TE-1 cells. After Notch pathway was blocked with γ-secretase inhibitor DAPT, expressions of Notch intracellular domain (NICD), Delta-like 4 (DLL4), hairy enhancer of split 1 (Hes1), matrix metalloproteinase 9 (MMP-9) in IL-23-treated TE-1 cells were measured by Western blotting. And the migration of IL-23-treated TE-1 cells was studied by TranswellTM migration assay. Compared with adjacent tissues, IL-23 was highly expressed in ESCC tissues. IL-23 treatment up-regulated significantly the expressions of NICD, DLL4, Hes1 and MMP-9 in TE-1 cells. The blockade of Notch1 pathway inhibited the expressions induced by IL-23. Migration assay revealed that IL-23 treatment significantly enhanced the migration of TE-1 cells. IL-23 could promote migration of human ESCC cells by activating DLL4/Notch1 signaling pathway.

  10. Preliminary study of urine metabolism in type two diabetic patients based on GC-MS

    PubMed Central

    Zhang, Ning; Geng, Fang; Hu, Zhong-Hua; Liu, Bin; Wang, Ye-Qiu; Liu, Jun-Cen; Qi, Yong-Hua; Li, Li-Jing

    2016-01-01

    Objective: Comparative study of type 2 diabetes and healthy controls by metabolomics methods to explore the pathogenesis of Type II diabetes. Methods: Gas chromatography - mass spectrometry (GC-MS) with a variety of multivariate statistical analysis methods to the healthy control group 58 cases, 68 cases of Type II diabetes group were analyzed. Chromatographic conditions: DB-5MS column; the carrier gas He; flow rate of 1 mL·min-1, the injection volume 1 uL; split ratio is 100: 1. MS conditions: electron impact (EI) ion source, an auxiliary temperature of 280°C, the ion source 230°C, quadrupole 150°C; mass scan range 30~600 mAu. Results: Established analytical method based on urine metabolomics GC-MS of Type II diabetes, determine the urine succinic acid, L-leucine, L-isoleucine, tyrosine, slanine, acetoace acid, mannose, L-isoleucine, L-threonine, Phenylalanine, fructose, D-glucose, palmi acid, oleic acid and arachidonic acid were significantly were significantly changed. Conclusion: Based on metabolomics of GC-MS detection and analysis metabolites can be found differences between type 2 diabetes and healthy control group, PCA diagram can effectively distinguish Type II diabetes and healthy control group, with load diagrams and PLS-DA VIP value metabolite screening, the resulting differences in metabolic pathways involved metabolites, including amino acid metabolism, lipid metabolism, glucose metabolism and energy metabolism. PMID:27508010

  11. Regulatory Tasks of the Phosphoenolpyruvate-Phosphotransferase System of Pseudomonas putida in Central Carbon Metabolism

    PubMed Central

    Chavarría, Max; Kleijn, Roelco J.; Sauer, Uwe; Pflüger-Grau, Katharina; de Lorenzo, Víctor

    2012-01-01

    ABSTRACT Two branches of the phosphoenolpyruvate-phosphotransferase system (PTS) operate in the soil bacterium Pseudomonas putida KT2440. One branch encompasses a complete set of enzymes for fructose intake (PTSFru), while the other (N-related PTS, or PTSNtr) controls various cellular functions unrelated to the transport of carbohydrates. The potential of these two systems for regulating central carbon catabolism has been investigated by measuring the metabolic fluxes of isogenic strains bearing nonpolar mutations in PTSFru or PTSNtr genes and grown on either fructose (a PTS substrate) or glucose, the transport of which is not governed by the PTS in this bacterium. The flow of carbon from each sugar was distinctly split between the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways in a ratio that was maintained in each of the PTS mutants examined. However, strains lacking PtsN (EIIANtr) displayed significantly higher fluxes in the reactions of the pyruvate shunt, which bypasses malate dehydrogenase in the TCA cycle. This was consistent with the increased activity of the malic enzyme and the pyruvate carboxylase found in the corresponding PTS mutants. Genetic evidence suggested that such a metabolic effect of PtsN required the transfer of high-energy phosphate through the system. The EIIANtr protein of the PTSNtr thus helps adjust central metabolic fluxes to satisfy the anabolic and energetic demands of the overall cell physiology. PMID:22434849

  12. Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample.

  13. Respiratory Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Grotberg, James

    2005-11-01

    This brief overview of our groups activities includes liquid plug propagation in single and bifurcating tubes, a subject which pertains to surfactant delivery, liquid ventilation, pulmonary edema, and drowning. As the plug propagates, a variety of flow patterns may emerge depending on the parameters. It splits unevenly at airway bifurcations and can rupture, which reopens the airway to gas flow. Both propagation and rupture may damage the underlying airway wall cells. Another topic is surfactant dynamics and flow in a model of an oscillating alveolus. The analysis shows a nontrivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns particularly depend on the ratio of inspiration to expiration time periods and the sorption parameter. Vortices, single and multiple, may be achieved, as well as a saddle point configuration. Potential applications are pulmonary drug administration, cell-cell signaling pathways, and gene therapy. Finally, capillary instabilities which cause airway closure, and strategies for stabilization, will be presented. This involves the core-annular flow of a liquid-lined tube, where the core (air) is forced to oscillate axially. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge, from the Rayleigh instability, back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stroke and shear turn around.

  14. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Pravinraj, T.; Patrikar, Rajendra

    2017-07-01

    Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains the temporal behaviour of droplet during the spreading, recoiling and translation along with tracking of contact angle hysteresis phenomenon.

  15. A Study on the Performance of the Split Reaction Water Turbine with Guide Ribs

    NASA Astrophysics Data System (ADS)

    Allen, Deuel H.; Villanueva, Eliseo P.

    2015-09-01

    The development of technologies that make use of renewable energy is of great significance presently. A new kind of turbine called Split Reaction Water Turbine (SRWT) using PVC pipes as material is a major contribution towards harnessing the energy potentials of small stream low head water resources. SRWTs of diameter to height ratio (D/H = 110 cm/160 cm) were tested at the MSU-IIT College of Engineering Fluid Engineering Laboratory. Data on volumetric flow and pressure head at the turbine inlet of the SRWT were recorded using National Instrument Data Processing System using LabView software. In later experiments, guide ribs were installed at the vane of the exit nozzles in order to determine the difference in the performance of the ribbed and the non-ribbed SRWT. Simulations of the running SRWT were conducted using SOLIDWORKS software. Results of the simulations aided in the thorough analyses of the data from the experimental runs. A comparison of data from the ribbed and non-ribbed SRWT shows that guide ribs were effective in directing the momentum of the exiting water to improve the speed of rotation. In this study, the increase in the speed of the Split Reaction Water Turbine was as much as 46%.

  16. Ammonium as sole N source improves grain quality in wheat.

    PubMed

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M

    2013-07-01

    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  17. Compound-Specific Isotopic Analysis of Meteoritic Amino Acids as a Tool for Evaluating Potential Formation Pathways

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.

  18. Immunogenicity and safety of a quadrivalent inactivated influenza virus vaccine compared with a comparator quadrivalent inactivated influenza vaccine in a pediatric population: A phase 3, randomized noninferiority study.

    PubMed

    Airey, Jolanta; Albano, Frank R; Sawlwin, Daphne C; Jones, Alison Graves; Formica, Neil; Matassa, Vince; Leong, Jane

    2017-05-09

    Seqirus 2010 Southern Hemisphere split-virion trivalent inactivated influenza vaccine (IIV3) was associated with increased febrile reactions in children. Studies in vitro concluded that increasing concentrations of splitting agent decreased residual lipids and attenuated proinflammatory cytokine signals associated with fever. We assessed immunogenicity and safety of a quadrivalent inactivated influenza vaccine (IIV4; produced using higher concentration of splitting agent) versus a United States-licensed comparator IIV4 in healthy children aged 5-17years. Participants (N=2278) were randomized 3:1 and stratified by age (5-8years; 9-17years) to receive IIV4 (n=1709) or comparator IIV4 (n=569). Primary objective was to demonstrate noninferiority of IIV4 versus comparator IIV4 as assessed by hemagglutination inhibition (HI) geometric mean titer (GMT) ratio (upper bound of two-sided 95% confidence interval [CI]≤1.5) and difference in seroconversion rate (upper bound of two-sided 95% CI≤10%) for all four vaccine strains. HI antibody titers were assessed at baseline and 28days postvaccination. Solicited and unsolicited adverse events were assessed during each 7- and 28-day postvaccination period, respectively. IIV4 met immunogenicity criteria for noninferiority. Adjusted GMT ratios (comparator IIV4/IIV4) for A/H1N1, A/H3N2, B/Yamagata, and B/Victoria strains were 1.01 (95% CI; 0.93, 1.09), 1.05 (0.96, 1.15), 0.89 (0.81, 0.98), and 0.92 (0.83, 1.02), respectively. Corresponding values for differences (95% CI) in seroconversion rates (comparator IIV4 minus IIV4) were -3.1 (-8.0, 1.8), 0.4 (-4.5, 5.3), -3.4 (-8.3, 1.5), and -2.0 (-6.9, 2.9). Fever rates were numerically higher, but not statistically different, with IIV4 versus comparator IIV4. No new safety signals were reported. IIV4 demonstrated immunological noninferiority to the comparator IIV4 with a clinically acceptable safety profile in children aged 5-17years. Increased levels of virus splitting agent seem to have reduced fever rates observed in children with Seqirus IIV3, particularly those aged 5-8years. Seqirus Pty Ltd; Clinicaltrials.gov identifier: NCT02545543. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park

    PubMed Central

    2013-01-01

    Background A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes. Results The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. Conclusions Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships. Reviewers This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia PMID:23607440

  20. Rifting an Archaean Craton: Insights from Seismic Anisotropy Patterns in E. Africa

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Tiberi, C.; Currie, C. A.; van Wijk, J.; Albaric, J.

    2016-12-01

    Few places worldwide offer opportunities to study active deformation of deeply-keeled cratonic lithosphere. The magma-rich Eastern rift transects the eastern edge of the Archaean Tanzania craton in northeastern Tanzania, which has been affected by a large-scale mantle upwelling. Abundant xenolith locales offer constraints on mantle age, composition, and physical properties. Our aim is to evaluate models for magmatic fluid-alteration (metasomatism) and deformation of mantle lithosphere along the edge of cratons by considering spatial variations in the direction and magnitude of seismic anisotropy, which is strongly influenced by mantle flow patterns along lithosphere-asthenosphere topography, fluid-filled cracks (e.g., dikes), and pre-existing mantle lithosphere strain fabrics. Waveforms of teleseismic earthquakes (SKS, SKKS) recorded on the 39-station CRAFTI-CoLiBREA broadband array in southern Kenya and northern Tanzania are used to determine the azimuth and amount of shear-wave splitting accrued as seismic waves pass through the uppermost mantle and lithosphere at the craton edge. Lower crustal earthquakes enable evaluation of seismic anisotropy throughout the crust along the rift flanks and beneath the heavily intruded Magadi and Natron basins, and the weakly intruded Manyara basin. Our results and those of earlier studies show a consistent N50E splitting direction within the craton, with delay times of ca. 1.5 s, and similar direction east of the rift in thinner Pan-African lithosphere. Stations within the rift zone are rotated to a N15-35E splitting, with the largest delay times of 2.5 s at the margin of the heavily intruded Magadi basin. The short length scale of variations and rift-parallel splitting directions are similar to patterns in the Main Ethiopian rift attributed to melt-filled cracks or oriented pockets rising from the base of the lithosphere. The widespread evidence for mantle metasomatism and magma intrusion to mid-crustal levels suggests that LAB topography enhances melt production and guides fluid pathways, destabilizing cratonic edges.

  1. Digit ratio (2D : 4D) moderates the impact of sexual cues on men's decisions in ultimatum games

    PubMed Central

    Van den Bergh, Bram; Dewitte, Siegfried

    2006-01-01

    Three experimental studies demonstrate that ‘sex-related cues’ impact human decision-making in ultimatum games. In the ultimatum game, two individuals divide a sum of money. The proposer offers a portion of the money to the other player, the responder. If the responder accepts the offer, the money is distributed in agreement with the proposer's offer. If the responder rejects the offer, neither player receives anything. Our studies show that exposure to pictures of sexy women or lingerie increases the likelihood of accepting unfair offers. Digit ratios of responders are reliably associated with their behaviour: males with lower digit ratios are more likely to reject an unfair split in neutral contexts, but more likely to accept unfair offers in sex-related contexts. PMID:16846918

  2. Whole-Brain In-vivo Measurements of the Axonal G-Ratio in a Group of 37 Healthy Volunteers

    PubMed Central

    Mohammadi, Siawoosh; Carey, Daniel; Dick, Fred; Diedrichsen, Joern; Sereno, Martin I.; Reisert, Marco; Callaghan, Martina F.; Weiskopf, Nikolaus

    2015-01-01

    The g-ratio, quantifying the ratio between the inner and outer diameters of a fiber, is an important microstructural characteristic of fiber pathways and is functionally related to conduction velocity. We introduce a novel method for estimating the MR g-ratio non-invasively across the whole brain using high-fidelity magnetization transfer (MT) imaging and single-shell diffusion MRI. These methods enabled us to map the MR g-ratio in vivo across the brain's prominent fiber pathways in a group of 37 healthy volunteers and to estimate the inter-subject variability. Effective correction of susceptibility-related distortion artifacts was essential before combining the MT and diffusion data, in order to reduce partial volume and edge artifacts. The MR g-ratio is in good qualitative agreement with histological findings despite the different resolution and spatial coverage of MRI and histology. The MR g-ratio holds promise as an important non-invasive biomarker due to its microstructural and functional relevance in neurodegeneration. PMID:26640427

  3. Down-regulation of Notch signaling pathway reverses the Th1/Th2 imbalance in tuberculosis patients.

    PubMed

    Li, Qifeng; Zhang, Hui; Yu, Liang; Wu, Chao; Luo, Xinhui; Sun, He; Ding, Jianbing

    2018-01-01

    Th1/Th2 imbalance to Th2 is of significance in the peripheral immune responses in Tuberculosis (TB) development. However, the mechanisms for Th1/Th2 imbalance are still not well determined. Notch signaling pathway is involved in the peripheral T cell activation and effector cell differentiation. However, whether it affects Th1/Th2 imbalance in TB patients is still not known. Here, we used γ-secretase inhibitor (DAPT) to treat the peripheral blood mononuclear cells (PBMCs) from healthy people or individuals with latent or active TB infection in vitro, respectively. Then, the Th1/Th2 ratios were determined by flow cytometry, and cytokines of IFN-γ, IL-4, IL-10 in the culture supernatant were measured by CBA method. The Notch signal pathway associated proteins Hes1, GATA3 and T-bet were quantitated by real-time PCR or immunoblotting. Our results showed that DAPT effectively inhibited the protein level of Hes1. In TB patients, the Th2 ratio increased in the PBMCs, alone with the high expression of GATA3 and IL-4, resulting in the high ratios of Th2/Th1 and GATA3/T-bet in TB patients. However, Th2 cells ratio decreased after blocking the Notch signaling pathway by DAPT and the Th2/Th1 ratio in TB patients were DAPT dose-dependent, accompanied by the decrease of IL-4 and GATA3. But, its influence on Th1 ratio and Th1 related T-bet and IFN-γ levels were not significant. In conclusion, our results suggest that blocking Notch signaling by DAPT could inhibit Th2 responses and restore Th1/Th2 imbalance in TB patients. Copyright © 2017. Published by Elsevier B.V.

  4. Compact beam splitters with deep gratings for miniature photonic integrated circuits: design and implementation aspects.

    PubMed

    Chen, Chin-Hui; Klamkin, Jonathan; Nicholes, Steven C; Johansson, Leif A; Bowers, John E; Coldren, Larry A

    2009-09-01

    We present an extensive study of an ultracompact grating-based beam splitter suitable for photonic integrated circuits (PICs) that have stringent density requirements. The 10 microm long beam splitter exhibits equal splitting, low insertion loss, and also provides a high extinction ratio in an integrated coherent balanced receiver. We further present the design strategies for avoiding mode distortion in the beam splitter and discuss optimization of the widths of the detectors to improve insertion loss and extinction ratio of the coherent receiver circuit. In our study, we show that the grating-based beam splitter is a competitive technology having low fabrication complexity for ultracompact PICs.

  5. Kinetic theory analysis of rarefied gas flow through finite length slots

    NASA Technical Reports Server (NTRS)

    Raghuraman, P.

    1972-01-01

    An analytic study is made of the flow a rarefied monatomic gas through a two dimensional slot. The parameters of the problem are the ratios of downstream to upstream pressures, the Knudsen number at the high pressure end (based on slot half width) and the length to slot half width ratio. A moment method of solution is used by assuming a discontinuous distribution function consisting of four Maxwellians split equally in angular space. Numerical solutions are obtained for the resulting equations. The characteristics of the transition regime are portrayed. The solutions in the free molecule limit are systematically lower than the results obtained in that limit by more accurate numerical methods.

  6. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula

    PubMed Central

    Watts-Williams, Stephanie J.; Jakobsen, Iver; Cavagnaro, Timothy R.; Grønlund, Mette

    2015-01-01

    Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with 33P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake. PMID:25944927

  7. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria.

    PubMed

    Xiong, Wei; Lee, Tai-Chi; Rommelfanger, Sarah; Gjersing, Erica; Cano, Melissa; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

    2015-12-07

    Central carbon metabolism in cyanobacteria comprises the Calvin-Benson-Bassham (CBB) cycle, glycolysis, the pentose phosphate (PP) pathway and the tricarboxylic acid (TCA) cycle. Redundancy in this complex metabolic network renders the rational engineering of cyanobacterial metabolism for the generation of biomass, biofuels and chemicals a challenge. Here we report the presence of a functional phosphoketolase pathway, which splits xylulose-5-phosphate (or fructose-6-phosphate) to acetate precursor acetyl phosphate, in an engineered strain of the model cyanobacterium Synechocystis (ΔglgC/xylAB), in which glycogen synthesis is blocked, and xylose catabolism enabled through the introduction of xylose isomerase and xylulokinase. We show that this mutant strain is able to metabolise xylose to acetate on nitrogen starvation. To see whether acetate production in the mutant is linked to the activity of phosphoketolase, we disrupted a putative phosphoketolase gene (slr0453) in the ΔglgC/xylAB strain, and monitored metabolic flux using (13)C labelling; acetate and 2-oxoglutarate production was reduced in the light. A metabolic flux analysis, based on isotopic data, suggests that the phosphoketolase pathway metabolises over 30% of the carbon consumed by ΔglgC/xylAB during photomixotrophic growth on xylose and CO2. Disruption of the putative phosphoketolase gene in wild-type Synechocystis also led to a deficiency in acetate production in the dark, indicative of a contribution of the phosphoketolase pathway to heterotrophic metabolism. We suggest that the phosphoketolase pathway, previously uncharacterized in photosynthetic organisms, confers flexibility in energy and carbon metabolism in cyanobacteria, and could be exploited to increase the efficiency of cyanobacterial carbon metabolism and photosynthetic productivity.

  8. Live Donor Renal Anatomic Asymmetry and Posttransplant Renal Function.

    PubMed

    Tanriover, Bekir; Fernandez, Sonalis; Campenot, Eric S; Newhouse, Jeffrey H; Oyfe, Irina; Mohan, Prince; Sandikci, Burhaneddin; Radhakrishnan, Jai; Wexler, Jennifer J; Carroll, Maureen A; Sharif, Sairah; Cohen, David J; Ratner, Lloyd E; Hardy, Mark A

    2015-08-01

    Relationship between live donor renal anatomic asymmetry and posttransplant recipient function has not been studied extensively. We analyzed 96 live kidney donors, who had anatomical asymmetry (>10% renal length and/or volume difference calculated from computerized tomography angiograms) and their matching recipients. Split function differences (SFD) were quantified with technetium-dimercaptosuccinic acid renography. Implantation biopsies at time 0 were semiquantitatively scored. A comprehensive model using donor renal volume adjusted to recipient weight (Vol/Wgt), SFD, and biopsy score was used to predict recipient estimated glomerular filtration rate (eGFR) at 1 year. Primary analysis consisted of a logistic regression model of outcome (odds of developing eGFR>60 mL/min/1.73 m(2) at 1 year), a linear regression model of outcome (predicting recipient eGFR at one-year, using the chronic kidney disease-epidemiology collaboration formula), and a Monte Carlo simulation based on the linear regression model (N=10,000 iterations). In the study cohort, the mean Vol/Wgt and eGFR at 1 year were 2.04 mL/kg and 60.4 mL/min/1.73 m(2), respectively. Volume and split ratios between 2 donor kidneys were strongly correlated (r = 0.79, P < 0.001). The biopsy scores among SFD categories (<5%, 5%-10%, >10%) were not different (P = 0.190). On multivariate models, only Vol/Wgt was significantly associated with higher odds of having eGFR > 60 mL/min/1.73 m (odds ratio, 8.94, 95% CI 2.47-32.25, P = 0.001) and had a strong discriminatory power in predicting the risk of eGFR less than 60 mL/min/1.73 m(2) at 1 year [receiver operating curve (ROC curve), 0.78, 95% CI, 0.68-0.89]. In the presence of donor renal anatomic asymmetry, Vol/Wgt appears to be a major determinant of recipient renal function at 1 year after transplantation. Renography can be replaced with CT volume calculation in estimating split renal function.

  9. Pathway fraction of bromate formation during O₃ and O₃/H₂O₂ processes in drinking water treatment.

    PubMed

    Qi, Shengqi; Mao, Yuqin; Lv, Miao; Sun, Lili; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F

    2016-02-01

    Ozone process has been widely used for drinking water treatment recently. In the oxidation process, bromate is formed by three pathways, i.e., the direct pathway, the direct-indirect pathway and the indirect-direct pathway. This study developed a method to calculate the percentage of these three pathways for bromate formation during O3 process and O3/H2O2 process. Two kinds of water, distilled water containing bromide (DW) and surface water from the Yellow River (SW) were selected as raw rater. The result showed that in natural water systems, the direct-indirect pathway was dominant for bromate formation during the oxidation process. When 3 mg L(-1) O3 was used as the only oxidant, nearly 26% of bromide ion was transferred into bromate in two kinds of water after 80 min. The dominant pathway in DW was the direct pathway (48.5%) and the direct-indirect pathway (46.5%), while that was the direct-indirect pathway (68.9%) in SW. When O3/H2O2 were used as oxidants, as the H2O2 dosage increased, the fractions of bromate formation by direct pathway and direct-indirect pathway decreased, while that by indirect-direct pathway increased. The conversion ratio from bromide to bromate first kept stable or increased, then decreased and reached its minimum when [H2O2]/[O3] ratio was 1.0 in DW and 1.5 in SW. Under this condition the indirect-direct pathway took the largest fraction of 70.7% in DW and 64.0% in SW, respectively. Copyright © 2015. Published by Elsevier Ltd.

  10. Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects.

    PubMed

    Dowling, Daniel; Pauli, Thomas; Donath, Alexander; Meusemann, Karen; Podsiadlowski, Lars; Petersen, Malte; Peters, Ralph S; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Misof, Bernhard; Niehuis, Oliver

    2016-12-01

    RNA interference (RNAi) refers to the set of molecular processes found in eukaryotic organisms in which small RNA molecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect Transcriptome Evolution) project as well as other resources such as i5K (5000 Insect Genome Project). Specifically, we traced the origin of the double stranded RNA binding protein R2D2 to the last common ancestor of winged insects (Pterygota), the loss of Sid-1/Tag-130 orthologs in Antliophora (fleas, flies and relatives, and scorpionflies in a broad sense), and confirm previous evidence for the splitting of the Argonaute proteins Aubergine and Piwi in Brachyceran flies (Diptera, Brachycera). Our study offers new reference points for future experimental research on RNAi-related pathway genes in insects. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Implementation of a Total Hip Arthroplasty Care Pathway at a High-Volume Health System: Effect on Length of Stay, Discharge Disposition, and 90-Day Complications.

    PubMed

    Featherall, Joseph; Brigati, David P; Faour, Mhamad; Messner, William; Higuera, Carlos A

    2018-06-01

    Standardized care pathways are evidence-based algorithms for optimizing an episode of care. Despite the theoretical promise of care pathways, there is an inconsistent literature demonstrating improvements in patient care. The authors hypothesized that implementing a care pathway, across 11 hospitals, would decrease hospital length of stay (LOS), decrease postoperative complications at 90 days, and increase discharges to home. A multidisciplinary team developed an evidence-based care pathway for total hip arthroplasty (THA) perioperative care. All patients receiving THA in 2013 (pre-protocol, historical control), 2014 (transition), and 2015 (full protocol implementation) were included in the analysis. Multivariable regression assessed the relationship of the care pathway to 90-day postoperative complications, LOS, and discharge disposition. Cost savings were estimated using previously published postarthroplasty episode and per diem hospital costs. A total of 6090 primary THAs were conducted during the study period. After adjusting for the covariates, the full protocol implementation was associated with a decrease in LOS (mean ratio, 0.747; 95% confidence interval [CI; 0.727, 0.767]) and an increase in discharges to home (odds ratio, 2.079; 95% CI [1.762, 2.456]). The full protocol implementation was not associated with a change in 90-day complications (odds ratio, 1.023; 95% CI [0.841, 1.245]). Payer-perspective-calculated theoretical cost savings, including both index admission and postdischarge costs, were $2533 per patient. The THA care pathway implementation was successful in reducing LOS and increasing discharges to home. The care pathway was not associated with a change in 90-day complications; further targeted interventions in this area are needed. Despite care standardization efforts, high-volume hospitals and surgeons had higher performance. Extrapolation of theoretical cost savings indicates that widespread THA care pathway adoption could lead to national healthcare savings of $1.2 billion annually. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Comprehensive analysis of the tryptophan metabolome in urine of patients with acute intermittent porphyria.

    PubMed

    Gomez-Gomez, Alex; Marcos, Josep; Aguilera, Paula; To-Figueras, Jordi; Pozo, Oscar J

    2017-08-15

    Acute intermittent porphyria (AIP) is a rare metabolic disorder due to a deficiency of porphobilinogen deaminase, the third enzyme of the heme biosynthetic pathway. This low enzymatic activity may predispose to the appearance of acute neurological attacks. Seminal studies suggested that AIP was associated with changes in tryptophan homeostasis with inconclusive results. Therefore, the aim of this study was to analyze the urinary metabolome of AIP patients focusing on tryptophan metabolism using state-of-the-art technology. This was a case-control study including a group of 25 AIP patients with active biochemical disease and increased excretion of heme-precursors and 25 healthy controls. Tryptophan and related compounds and metabolites including: large neutral amino acids (LNAAs), serotonin, kynurenine, kynurenic acid and anthranilic acid were quantified in urine by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Twenty-nine biological markers (including metabolic ratios and absolute concentrations) were compared between patients and controls. Significant differences were found in the tryptophan-kynurenine metabolic pathway. Compared to controls, AIP patients showed: (a) increased urinary excretion of kynurenine and anthranilic acid (P<0.005); (b): elevation of the kynurenine/tryptophan ratio (P<0.001) and (c): decrease of the kynurenic acid/kynurenine ratio (P=0.001). In contrast, no differences were found in the serotonin metabolic pathway independently of the markers and ratios used. The results of the study demonstrate that there is an imbalance in the kynurenine metabolic pathway in AIP patients, with an increase of the kynurenine/tryptophan ratio in urine and a reduction of the kynurenic acid/kynurenine ratio. The modified ratios suggest induction of indoleamine 2,3-deoxygenase and decreased activity of kynurenine aminotransferase in the liver. The results confirm that LC-MS/MS is useful for the characterization of the urinary metabolome of hepatic porphyrias. Copyright © 2017. Published by Elsevier B.V.

  13. The effectiveness of computer reminders versus postal reminders for improving quality assessment for point-of-care testing in primary care: a randomized controlled trial.

    PubMed

    Siersma, Volkert; Kousgaard, Marius Brostrøm; Reventlow, Susanne; Ertmann, Ruth; Felding, Peter; Waldorff, Frans Boch

    2015-02-01

    This study aimed to evaluate the relative effectiveness of electronic and postal reminders for increasing adherence to the quality assurance programme for the international normalized ratio (INR) point-of-care testing (POCT) device in primary care. All 213 family practices that use the Elective Laboratory of the Capital Region, Denmark, and regularly conduct INR POCT were randomly allocated into two similarly sized groups. During the 4-month intervention, these practices were sent either computer reminders (ComRem) or computer-generated postal reminders (Postal) if they did not perform a split test to check the quality of their INR POCT for each calendar month. The adherence of the practices was tracked during the subsequent 8 months subdivided into two 4-month periods both without intervention. Outcomes were measures of split test procedure adherence. Both interventions were associated with an increase in adherence to the split test procedure - a factor 6.00 [95% confidence interval (CI) 4.46-7.72] and 8.22 [95% CI 5.87-11.52] for ComRem and Postal, respectively - but there is no evidence that one of the interventions was more effective than the other. In the ComRem group, the expected number of split tests (out of four) was 2.54 (95% CI 2.33-2.76) versus 2.44 (95% CI 2.24-2.65) in the Postal group, P = 0.14. There was a slight decrease in adherence over the two follow-ups, but neither intervention was better than the other in achieving a lasting improvement in adherence. Computer reminders are as efficient as postal reminders in increasing adherence to a quality assurance programme for the INR POCT device in primary care. © 2014 John Wiley & Sons, Ltd.

  14. Vessel calibre and flow splitting relationships at the internal carotid artery terminal bifurcation.

    PubMed

    Chnafa, C; Bouillot, P; Brina, O; Delattre, B M A; Vargas, M I; Lovblad, K O; Pereira, V M; Steinman, D A

    2017-11-01

    Vessel lumen calibres and flow rates are thought to be related by mathematical power laws, reflecting the optimization of cardiac versus metabolic work. While these laws have been confirmed indirectly via measurement of branch calibres, there is little data confirming power law relationships of flow distribution to branch calibres at individual bifurcations. Flow rates and diameters of parent and daughter vessels of the internal carotid artery terminal bifurcation were determined, via robust and automated methods, from 4D phase-contrast magnetic resonance imaging and 3D rotational angiography of 31 patients. Junction exponents were 2.06  ±  0.44 for relating parent to daughter branch diameters (geometrical exponent), and 2.45  ±  0.75 for relating daughter branch diameters to their flow division (flow split exponent). These exponents were not significantly different, but showed large inter- and intra-individual variations, and with confidence intervals excluding the theoretical optimum of 3. Power law fits of flow split versus diameter ratio and pooled flow rates versus diameters showed exponents of 2.17 and 1.96, respectively. A significant negative correlation was found between age and the geometrical exponent (r  =  -0.55, p  =  0.003) but not the flow split exponent. We also found a dependence of our results on how lumen diameter is measured, possibly explaining some of the variability in the literature. Our study confirms that, on average, division of flow to the middle and anterior cerebral arteries is related to these vessels' relative calibres via a power law, but it is closer to a square law than a cube law as commonly assumed.

  15. Parametric effects on pinch-off modes in liquid/liquid jet systems

    NASA Astrophysics Data System (ADS)

    Milosevic, Ilija N.

    Many industries rely on liquid/liquid extraction systems, where jet pinch off occurs on a regular basis. Inherent short time and length scales make analytical and numerical simulation of the process very challenging. A main objective of this work was to document the details of various pinch-off modes at different length scales using Laser Induced Fluorescence and Particle Image Velocimetry. A water glycerine mixture was injected into ambient either silicone oil or 1-octanol. The resultant viscosity ratios, inner to outer fluid, were 1.6 and 2.8, respectively. Ohnesorge numbers were 0.013 for ambient silicone oil and 0.08 for ambient 1-octanol. Reynolds and Strouhal numbers ranged from 30 to 100 and 0.5 to 3.5, respectively. Decreasing the Strouhal number increased the number of drops formed per forcing. Increasing the Reynolds number suppressed satellite formation, and in some cases the number of drops decreased from two to one per cycle. Increasing the Ohnesorge number to 0.08 suppressed the pinch off yielding a longer jet with three-dimensional threads. At Ohnesorge number 0.013, increasing the forcing amplitude shortened the jet, and eventually led to a dripping mode. High-resolution measurements of pinch-off angles were compared to results from similarity theory. Two modes were investigated: drops breaking from the jet (jet/drop) and, one drop splitting into two (splitting drop). The jet/drop mode angle measurements agreed with similarity predictions. The splitting drop mode converged towards smaller angles. Scaling analysis showed that a Stokesian similarity regime applied for a neck radius of 6 microns or less. The smallest radius observed in experiments was 15 microns. Therefore, it is not known whether splitting drop mode might still converge to same behavior.

  16. A three-pathway pore model describes extensive transport data from Mammalian microvascular beds and frog microvessels.

    PubMed

    Wolf, Matthew B

    2002-12-01

    To show that a three-pathway pore model can describe extensive transport data in cat and rat skeletal muscle microvascular beds and in frog mesenteric microvessels. A three-pathway pore model was used to predict transport data measured in various microcirculatory preparations. The pathways consist of 4- and 24-nm radii pore systems with a 2.5:1 ratio of hydraulic conductivities and a water-only pathway of variable conductivity. The pore sizes and relative hydraulic conductivities of the small- and large-pore systems were derived from a model fit to reflection coefficient (sigma) data in the cat hindlimb. The fraction (alpha(w)) of total hydraulic conductivity (L(p)) or hydraulic capacity (L(p)S) contributed by the water-only pathway was uniquely determined for each preparation by a fit of the three-pathway model (parameters fixed as above) to sigma data measured in that preparation. These parameter values were unchanged when the model was used to predict diffusion capacity (permeability-surface area product, P(d)S) data in the cat or rat preparations or diffusional permeability (P(d)) data in frog microvessels. The values for L(p) or L(p)S used to predict diffusional data in each preparation were taken from the literature. Predictions of P(d) ratios for solute pairs were also compared with experimental data. The three-pathway model closely predicted the trend of P(d)S or P(d) experimental data in all three preparations; in general, predicted P(d) ratios for paired solutes were quite similar to experimental data. For these comparisons, the only parameter varied between these preparations was alpha(w). It varied considerably, from 7 to 16 to 41% of total in frog, rat, and cat preparations. Individual P(d)S or P(d) experimental data were closely predicted in the cat but somewhat overestimated in the frog and rat. This result could be due the use of L(p) or L(p)S values in the model that were affected by methodological problems. Calculated hydraulic conductivities of the water-only pathway in the three preparations were quite similar. : These results support the hypothesis of a common structure of the transmembrane pathways in these three, very different, microcirculatory preparations. What varies considerably between them is the total number of solute-conducting pathways, but not their dimensions, nor the hydraulic conductivities of their water-only pathways. Because of the wide variation of alpha(w) among these preparations, the ratio of P(d) to L(p) for any solute is not constant, but the deviation from constancy may not be detectable because of errors in the experimental data.

  17. Structural hierarchy as a key to complex phase selection in Al-Sm

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Zhang, F.; Sun, Y.; Nguyen, M. C.; Zhou, S. H.; Zhou, L.; Meng, F.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z. J.; Mendelev, M. I.; Wang, C. Z.; Napolitano, R. E.; Ho, K. M.

    2017-10-01

    Investigating the unknown structure of the complex cubic phase, previously observed to crystallize from melt-spun amorphous Al-10 at.% Sm alloy, we determine the structure in full site-occupancy detail, highlighting several critical structural features that govern the far-from-equilibrium phase selection pathway. Using an efficient genetic algorithm combining molecular dynamics, density functional theory, and x-ray diffraction, the structure is clearly identified as body-centered cubic I m 3 ¯m (No. 229) with ˜140 atoms per cubic unit cell and a lattice parameter of 1.4 nm. The complex structure is further refined to elucidate the detailed site occupancy, revealing full Sm occupancy on 6b sites and split Sm/Al occupancy on 16f sites. Based on the refined site occupancy associated with the experimentally observed phase, we term this phase ɛ -A l60S m11 (bcc), corresponding to the limiting situation when all 16f sites are occupied by Sm. However, it should be recognized that the range of solubility enabled by split occupancy at Sm sites is an important feature in phase selection under experimental conditions, permitting an avenue for transition with little or no chemical partitioning. Our analysis shows that the ɛ -A l60S m11 (bcc) exhibits a "3-6-6-1" first-shell packing around Sm centers on 16f sites, the same dominant motif exhibited by the undercooled liquid. The coincident motif supports the notion that liquid/glass ordering at high undercooling may give rise to topological invariants between the noncrystalline and crystalline states that provide kinetic pathways to metastable phases that are not accessible during near-equilibrium processing.

  18. The Molybdenum Cofactor Biosynthesis Network: In vivo Protein-Protein Interactions of an Actin Associated Multi-Protein Complex.

    PubMed

    Kaufholdt, David; Baillie, Christin-Kirsty; Meinen, Rieke; Mendel, Ralf R; Hänsch, Robert

    2017-01-01

    Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.

  19. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.

    PubMed

    Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A

    2017-01-25

    With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.

  20. Radial fingering under arbitrary viscosity and density ratios

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Dias, Eduardo O.; Miranda, José A.

    2017-08-01

    We study viscous fingering formation in radial Hele-Shaw cell geometry considering the combined action of capillary and inertial effects for arbitrary values of viscosity and density ratios. We tackle the problem by employing a perturbative mode-coupling approach and focus our attention on weakly nonlinear stages of the dynamics. If inertial effects are neglected, our theoretical results indicate that the shape of the resulting interfacial patterns is significantly affected by changes in the viscosity ratio. Under such conditions, the growing fingers tend to proliferate through a repeated ramification process (e.g., by finger bifurcation, quadrifurcation, etc.) as the capillary number is increased. Nevertheless, we find that this scenario is dramatically altered when inertia is taken into account. When inertia is relevant, the conventional finger splitting morphologies are replaced by three-lobed structures, characterized by the occurrence of sidebranching phenomena. We verify that slightly different types of sidebranched patterns arise, presenting either wide or sharp fingertips, for a range of capillary numbers and density ratios.

  1. Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios.

    PubMed

    Albano, C; Camacho, N; Hernández, M; Matheus, A; Gutiérrez, A

    2009-10-01

    The goal of this work was to study the mechanical behavior of concrete with recycled Polyethylene Therephtalate (PET), varying the water/cement ratio (0.50 and 0.60), PET content (10 and 20 vol%) and the particle size. Also, the influence of the thermal degradation of PET in the concrete was studied, when the blends were exposed to different temperatures (200, 400, 600 degrees C). Results indicate that PET-filled concrete, when volume proportion and particle size of PET increased, showed a decrease in compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity; however, the water absorption increased. On the other hand, the flexural strength of concrete-PET when exposed to a heat source was strongly dependent on the temperature, water/cement ratio, as well as on the PET content and particle size. Moreover, the activation energy was affected by the temperature, PET particles location on the slabs and water/cement ratio.

  2. Short linear motif acquisition, exon formation and alternative splicing determine a pathway to diversity for NCoR-family co-repressors

    PubMed Central

    Short, Stephen; Peterkin, Tessa; Guille, Matthew; Patient, Roger; Sharpe, Colin

    2015-01-01

    Vertebrate NCoR-family co-repressors play central roles in the timing of embryo and stem cell differentiation by repressing the activity of a range of transcription factors. They interact with nuclear receptors using short linear motifs (SLiMs) termed co-repressor for nuclear receptor (CoRNR) boxes. Here, we identify the pathway leading to increasing co-repressor diversity across the deuterostomes. The final complement of CoRNR boxes arose in an ancestral cephalochordate, and was encoded in one large exon; the urochordates and vertebrates then split this region between 10 and 12 exons. In Xenopus, alternative splicing is prevalent in NCoR2, but absent in NCoR1. We show for one NCoR1 exon that alternative splicing can be recovered by a single point mutation, suggesting NCoR1 lost the capacity for alternative splicing. Analyses in Xenopus and zebrafish identify that cellular context, rather than gene sequence, predominantly determines species differences in alternative splicing. We identify a pathway to diversity for the NCoR family beginning with the addition of a SLiM, followed by gene duplication, the generation of alternatively spliced isoforms and their differential deployment. PMID:26289800

  3. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    PubMed

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  4. Dynamic circuitry for updating spatial representations. II. Physiological evidence for interhemispheric transfer in area LIP of the split-brain macaque.

    PubMed

    Heiser, Laura M; Berman, Rebecca A; Saunders, Richard C; Colby, Carol L

    2005-11-01

    With each eye movement, a new image impinges on the retina, yet we do not notice any shift in visual perception. This perceptual stability indicates that the brain must be able to update visual representations to take our eye movements into account. Neurons in the lateral intraparietal area (LIP) update visual representations when the eyes move. The circuitry that supports these updated representations remains unknown, however. In this experiment, we asked whether the forebrain commissures are necessary for updating in area LIP when stimulus representations must be updated from one visual hemifield to the other. We addressed this question by recording from LIP neurons in split-brain monkeys during two conditions: stimulus traces were updated either across or within hemifields. Our expectation was that across-hemifield updating activity in LIP would be reduced or abolished after transection of the forebrain commissures. Our principal finding is that LIP neurons can update stimulus traces from one hemifield to the other even in the absence of the forebrain commissures. This finding provides the first evidence that representations in parietal cortex can be updated without the use of direct cortico-cortical links. The second main finding is that updating activity in LIP is modified in the split-brain monkey: across-hemifield signals are reduced in magnitude and delayed in onset compared with within-hemifield signals, which indicates that the pathways for across-hemifield updating are less effective in the absence of the forebrain commissures. Together these findings reveal a dynamic circuit that contributes to updating spatial representations.

  5. Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Keying; Liu, Zhifeng; Han, Jianhua; Zhang, Xueqi; Li, Yajun; Hong, Tiantian; Zhou, Cailou

    2015-07-01

    This paper describes a novel design of high-efficiency photoelectrochemical water splitting electrode, i.e., ordered TiO2 nanorod arrays (NRs) sensitized simultaneously with noble metal (Ag), binary metal sulfides (Ag2S) and ternary metal sulfides (Ag3CuS2) multiple photosensitizers for the first time. The TiO2/Ag/Ag2S/Ag3CuS2 NRs heterostructure is successfully synthesized through successive ion layer adsorption and reaction (SILAR) and a simple ion-exchange process based on ionic reaction mechanism. On the basis of an optimal quantity of Ag, Ag2S and Ag3CuS2 nanoparticles, such TiO2/Ag/Ag2S/Ag3CuS2 NRs exhibit a higher photoelectrochemical activity ever reported for TiO2-based nanoarrays in PEC water splitting, the photocurrent density is up to 9.82 mA cm-2 at 0.47 V versus Ag/AgCl, respectively. This novel architecture is able to increase electron collection efficiency and suppress carrier recombination via (i) a higher efficiency of light-harvesting through these multiple photosensitizers (Ag, Ag2S and Ag3CuS2); (ii) the efficient separation of photo-induced electrons and holes due to the direct electrical pathways; (iii) the surface plasmon resonance (SPR) effect of Ag nanoparticles, which enhances the efficient charge separation and high carrier mobility. This work is useful to explore feasible routes to further enhance the performance of oxide semiconductors for PEC water splitting to produce clean H2 energy.

  6. 2014 CRL Blood Pressure Study of Life Insurance Applicants.

    PubMed

    Fulks, Michael; Dolan, Vera F; Stout, Robert L

    2015-01-01

    Objective .- Define the relative mortality risk by systolic (SBP) and diastolic blood pressure (DBP) in a relatively healthy cohort split by age and sex with adjustment for smoking status, other findings and admitted heart disease history. Method .- Blood pressure (BP in mm Hg), build, laboratory studies and limited medical history are collected when people apply for individual life insurance. Information on 2,472,706 applicants tested by Clinical Reference Laboratory from 1993 to 2007 was utilized with follow-up for vital status using the September 2011 Social Security Death Master File identifying 31,033 deaths. Data was analyzed by SBP and DBP split by age and sex accounting for smoking and for BMI, urine protein/creatinine ratio and history of heart disease in a Cox multivariate survival analysis. Separate analysis by admitted hypertension history was also conducted. Results are presented by SBP and DBP for 4 age-sex groups with and without added covariates beyond age and smoking status. Results .- Relative mortality progressively increased by SBP level from the 90 to 119 band (down to 80 in younger women) upward with little additional impact by DBP. Addition of covariates beyond age and smoking resulted in a 5% to 10% reduction in relative risk. Although high DBP had limited impact, a pulse pressure/SBP ratio >½ identified 1% of applicants at high mortality risk, with little difference in risk for ratios ≤½. Hypertension history with current BP control was associated with a 10% to 25% increase in relative mortality risk as compared to those with similar BP but no such history. Conclusion .- Increasing SBP is closely associated with increasing relative mortality, starting from the lowest SBP. Increasing DBP has little additional impact, but a pulse pressure/SBP ratio >½ is a potent marker of increased risk as well. Accounting for build and other laboratory findings reduces risk modestly. A history of hypertension with current control increases risk.

  7. A Comparison of Mandibular Transverse Dimensions of a Class I Normal and Class II Patient Population using Anterior to Posterior Measurement Ratios

    DTIC Science & Technology

    2012-04-13

    orthodontic and surgical options for intra-arch corrections. Instability of the mandible when expanded with removable appliances has been described by... orthodontic fields within the last ten years. This technique requires a surgical split at the symphysis followed by slow expansion, which allows hard...often viewed with much skepticism from the orthodontic and surgical communities. Indeed, there are definite limitations to corrections in this

  8. Rotor Aerodynamics in Ground Effect at Low Advance Ratios.

    DTIC Science & Technology

    1982-07-27

    the rotor wake flows entirely downstream. At test conditions were the recirculating flow or ground vortex is present there are marked departures...ILLUSTRATIONS Figure Page 1 Cross Section of Test Facilty 12 2 Overall View of Test Facility and Rotor Model 13 3 Flow Pattern in Ground Vortex Regime, (v...entirely flowing downstream splits and a portion of the rotor wake flows forward (upstream) and then recirculates through the rotor or forms a vortex or

  9. Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima

    2018-03-01

    In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.

  10. Geometric effects on mixing performance in a novel passive micromixer with trapezoidal-zigzag channels

    NASA Astrophysics Data System (ADS)

    Le The, Hai; Ta, Bao Quoc; Le Thanh, Hoa; Dong, Tao; Nguyen Thoi, Trung; Karlsen, Frank

    2015-09-01

    A novel passive micromixer, called a trapezoidal-zigzag micromixer (TZM), is reported. A TZM is composed of trapezoidal channels in a zigzag and split-recombine arrangement that enables multiple mixing mechanisms, including splitting-recombining, twisting, transversal flows, vortices, and chaotic advection. The effects of geometric parameters of the TZM on mixing performance are systematically investigated by the Taguchi method and numerical simulations in COMSOL Multiphysics. The number of mixing units, the slope angle of the trapezoidal channel, the height of the constriction element, and the width ratio between the middle-trapezoidal channel and the side-trapezoidal channel are the four parameters under study. The mixing performance of the TZM is investigated at three different Reynolds number (Re) values of 0.5, 5, and 50. The results showed that a TZM with six mixing units, a trapezoidal slope angle of 75°, a constricting height of 100 µm, and a width ratio of 0.5 has the highest mixing efficiency. This optimal TZM has a mixing efficiency greater than 85% for Re values from 0.1 to 80. In particular, for Re  ⩽  0.9 and Re  ⩾  20, the mixing efficiency of the optimal TZM is greater than 90%. The proposed TZM has a higher mixing efficiency and a smaller footprint than previously reported micromixers.

  11. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  12. Shear wave anisotropy from aligned inclusions: ultrasonic frequency dependence of velocity and attenuation

    NASA Astrophysics Data System (ADS)

    de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.

    2013-04-01

    To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.

  13. Multigene interactions and the prediction of depression in the Wisconsin Longitudinal Study

    PubMed Central

    Roetker, Nicholas S; Yonker, James A; Lee, Chee; Chang, Vicky; Basson, Jacob J; Roan, Carol L; Hauser, Taissa S; Hauser, Robert M

    2012-01-01

    Objectives Single genetic loci offer little predictive power for the identification of depression. This study examined whether an analysis of gene–gene (G × G) interactions of 78 single nucleotide polymorphisms (SNPs) in genes associated with depression and age-related diseases would identify significant interactions with increased predictive power for depression. Design A retrospective cohort study. Setting A survey of participants in the Wisconsin Longitudinal Study. Participants A total of 4811 persons (2464 women and 2347 men) who provided saliva for genotyping; the group comes from a randomly selected sample of Wisconsin high school graduates from the class of 1957 as well as a randomly selected sibling, almost all of whom are non-Hispanic white. Primary outcome measure Depression as determine by the Composite International Diagnostic Interview–Short-Form. Results Using a classification tree approach (recursive partitioning (RP)), the authors identified a number of candidate G × G interactions associated with depression. The primary SNP splits revealed by RP (ANKK1 rs1800497 (also known as DRD2 Taq1A) in men and DRD2 rs224592 in women) were found to be significant as single factors by logistic regression (LR) after controlling for multiple testing (p=0.001 for both). Without considering interaction effects, only one of the five subsequent RP splits reached nominal significance in LR (FTO rs1421085 in women, p=0.008). However, after controlling for G × G interactions by running LR on RP-specific subsets, every split became significant and grew larger in magnitude (OR (before) → (after): men: GNRH1 novel SNP: (1.43 → 1.57); women: APOC3 rs2854116: (1.28 → 1.55), ACVR2B rs3749386: (1.11 → 2.17), FTO rs1421085: (1.32 → 1.65), IL6 rs1800795: (1.12 → 1.85)). Conclusions The results suggest that examining G × G interactions improves the identification of genetic associations predictive of depression. 4 of the SNPs identified in these interactions were located in two pathways well known to impact depression: neurotransmitter (ANKK1 and DRD2) and neuroendocrine (GNRH1 and ACVR2B) signalling. This study demonstrates the utility of RP analysis as an efficient and powerful exploratory analysis technique for uncovering genetic and molecular pathway interactions associated with disease aetiology. PMID:22761283

  14. Failure mechanism of hollow tree trunks due to cross-sectional flattening

    PubMed Central

    Huang, Yan-San; Hsu, Fu-Lan; Lee, Chin-Mei

    2017-01-01

    Failure of hollow trees in urban areas is a worldwide concern, and it can be caused by different mechanisms, i.e. bending stresses or flattening-related failures. Here we derive a new analytical expression for predicting the bending moment for tangential cracking, and compare the breaking moment of various failure modes, including Brazier buckling, tangential cracking, shear failure and conventional bending failure, as a function of t/R ratio, where t and R are the trunk wall thickness and trunk radius, respectively, of a hollow tree. We use Taiwan red cypress as an example and show that its failure modes and the corresponding t/R ratios are: Brazier buckling (Mode I), tangential cracking followed by longitudinal splitting (Mode II) and conventional bending failure (Mode III) for 0 < t/R < 0.06, 0.06 < t/R < 0.27 and 0.27 < t/R < 1, respectively. The exact values of those ratios may vary within and among species, but the variation is much smaller than individual mechanical properties. Also, shear failure, another type of cracking due to maximum shear stress near the neutral axis of the tree trunk, is unlikely to occur since it requires much larger bending moments. Hence, we conclude that tangential cracking due to cross-sectional flattening, followed by longitudinal splitting, is dominant for hollow trunks. Our equations are applicable to analyse straight hollow tree trunks and plant stems, but are not applicable to those with side openings or those with only heart decay. Our findings provide insights for those managing trees in urban situations and those managing for conservation of hollow-dependent fauna in both urban and rural settings. PMID:28484616

  15. Feasibility of Percutaneous Intrahepatic Split by Microwave Ablation (PISA) After Portal Vein Embolization for Hypertrophy of Future Liver Remnant: The Radiological Stage-1 ALPPS.

    PubMed

    Lunardi, Alessandro; Cervelli, Rosa; Volterrani, Duccio; Vitali, Saverio; Lombardo, Carlo; Lorenzoni, Giulia; Crocetti, Laura; Bargellini, Irene; Campani, Daniela; Pollina, Luca Emanuele; Cioni, Roberto; Caramella, Davide; Boggi, Ugo

    2018-05-01

    To assess the feasibility of radiological stage-1 ALPPS, associating liver partition and portal vein ligation for staged hepatectomy, by combining portal vein embolization (PVE) with percutaneous intrahepatic split by ablation (PISA). Three patients (mean age 65.0 ± 7.3 years) underwent PVE and PISA. PISA was performed 21 days after PVE by microwave ablation to create a continuous intrahepatic cutting plane. Abdominal CT examinations were performed before and after PVE and PISA. The future liver remnant (FLR) volume was calculated by semiautomatic segmentation, and increase was reported as a percentage of the pre-procedural volume. The FLR/body weight (FLR/BW) ratio was calculated; a ratio greater than 0.8% was considered sufficient for guaranteeing adequate liver function after surgery. The liver function before and after PISA was also evaluated by 99mTc-mebrofenin hepatobiliary scintigraphy. Patients' laboratory tests, performance status, ability to walk were assessed before and after PVE and PISA procedures. No procedure-related complications were recorded. The FLR volume increase in each patient was 42.0, 33.1 and 30.4% within 21 days of PVE and 109.3, 68.1 and 71.7% within 10 days after PISA. The FLR/BW ratios were 0.76, 0.66, 0.63% and 1.13, 0.83, 0.83% after PVE and PISA procedures, respectively. Two patients underwent successful right hepatectomy; in one patient, despite 1.13% FLR/BW, surgery was not performed because of the absolute rejection of blood transfusion due to the patient's religious convictions. Radiological stage-1 ALPPS is a feasible, minimally invasive option to be further investigated to become an effective alternative to surgical stage-1 ALPPS.

  16. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    NASA Astrophysics Data System (ADS)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  17. Polarization splitter based on interference effects in all-solid photonic crystal fibers.

    PubMed

    Mao, Dong; Guan, Chunying; Yuan, Libo

    2010-07-01

    We propose a novel kind of polarization splitter in all-solid photonic crystal fibers based on the mode interference effects. Both the full-vector finite-element method and the semi-vector three-dimensional beam propagation method are employed to design and analyze the characteristics of the splitter. Numerical simulations show that x-polarized and y-polarized modes are split entirely along with 6.8 mm long propagation. An extinction ratio of more than 20 dB and a crosstalk of less than -20 dB are obtained within the wavelength range of 1.541-1.556 microm. The extinction ratio and the crosstalk at 1.55 microm are 28.9 and -29.0 dB for x polarization, while the extinction ratio and the crosstalk at 1.55 microm are 29.9 and -29.8 dB for y polarization, respectively.

  18. Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-09-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α-H, α-NH2 amino acids that correspond to predictions made for formation via Strecker-cyanohydrin synthesis. We also observe light δ13C signatures for β-alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ω-amino acids). Higher deuterium enrichments are observed in α-methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent-body chemistry.

  19. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  20. Estrogen metabolism and breast cancer risk among postmenopausal women: a case–cohort study within B~FIT

    PubMed Central

    Dallal, Cher M.

    2014-01-01

    Although elevated circulating estrogens are associated with increased postmenopausal breast cancer risk, less is known regarding the role of estrogen metabolism in breast carcinogenesis. We conducted a case–cohort study within the Breast and Bone Follow-up to the Fracture Intervention Trial to assess serum estrogens and estrogen metabolites (EMs) in 407 incident breast cancer cases diagnosed during follow-up and a subcohort of 496 women. In 1992–93, women completed a baseline questionnaire and provided blood samples. Hazard ratios (HRs) and 95% confidence intervals (CIs), adjusted for geography and trial participation status, were estimated using Cox proportional hazard regression. Serum concentrations of EMs were measured by liquid chromatography–tandem mass spectrometry. EMs (quintiles, Q) were analyzed individually, as metabolic pathways (C-2, -4 or -16) and as ratios. Elevated circulating estradiol was associated with increased breast cancer risk (HRQ5vsQ1 = 1.86; 95% CI: 1.19–2.90; P trend = 0.04). An elevated ratio of the 2-hydroxylation pathway (HRQ5vsQ1 = 0.69; 95% CI: 0.46–1.05; P trend = 0.01) and 4-hydroxylation pathway (HRQ5vsQ1 = 0.61; 95% CI: 0.40–0.93; P trend = 0.004) to parent estrogens (estradiol and estrone) was inversely associated with risk. A higher ratio of the 2/16-hydroxylation pathways was associated with reduced risk (HRQ5vsQ1 = 0.60; 95% CI: 0.40–0.90; P trend = 0.002). Increased 2- or 4-hydroxylation of parent estrogens may lower risk of postmenopausal breast cancer. Analyses of metabolic pathways may help elucidate the role of estrogen metabolism in breast carcinogenesis. PMID:24213602

  1. Cathepsin L plays a major role in cholecystokinin production in mouse brain cortex and in pituitary AtT-20 cells: protease gene knockout and inhibitor studies.

    PubMed

    Beinfeld, Margery C; Funkelstein, Lydiane; Foulon, Thierry; Cadel, Sandrine; Kitagawa, Kouki; Toneff, Thomas; Reinheckel, Thomas; Peters, Christoph; Hook, Vivian

    2009-10-01

    Cholecystokinin (CCK) is a peptide neurotransmitter whose production requires proteolytic processing of the proCCK precursor to generate active CCK8 neuropeptide in brain. This study demonstrates the significant role of the cysteine protease cathepsin L for CCK8 production. In cathepsin L knockout (KO) mice, CCK8 levels were substantially reduced in brain cortex by an average of 75%. To evaluate the role of cathepsin L in producing CCK in the regulated secretory pathway of neuroendocrine cells, pituitary AtT-20 cells that stably produce CCK were treated with the specific cathepsin L inhibitor, CLIK-148. CLIK-148 inhibitor treatment resulted in decreased amounts of CCK secreted from the regulated secretory pathway of AtT-20 cells. CLIK-148 also reduced cellular levels of CCK9 (Arg-CCK8), consistent with CCK9 as an intermediate product of cathepsin L, shown by the decreased ratio of CCK9/CCK8. The decreased CCK9/CCK8 ratio also suggests a shift in the production to CCK8 over CCK9 during inhibition of cathepsin L. During reduction of the PC1/3 processing enzyme by siRNA, the ratio of CCK9/CCK8 was increased, suggesting a shift to the cathepsin L pathway for the production of CCK9. The changes in ratios of CCK9 compared to CCK8 are consistent with dual roles of the cathepsin L protease pathway that includes aminopeptidase B to remove NH2-terminal Arg or Lys, and the PC1/3 protease pathway. These results suggest that cathepsin L functions as a major protease responsible for CCK8 production in mouse brain cortex, and participates with PC1/3 for CCK8 production in pituitary cells.

  2. An experimental study of fuel injection strategies in CAI gasoline engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunicz, J.; Kordos, P.

    2011-01-15

    Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuelmore » mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)« less

  3. Organic and inorganic fertilizer effect on soil CO2 flux, microbial biomass, and growth of Nigella sativa L.

    NASA Astrophysics Data System (ADS)

    Salehi, Aliyeh; Fallah, Seyfollah; Sourki, Ali Abasi

    2017-01-01

    Cattle manure has a high carbon/nitrogen ratio and may not decompose; therefore, full-dose application of urea fertilizer might improve biological properties by increasing manure decomposition. This study aimed to investigate the effect of combining cattle manure and urea fertilizer on soil CO2 flux, microbial biomass carbon, and dry matter accumulation during Nigella sativa L. (black cumin) growth under field conditions. The treatments were control, cattle manure, urea, different levels of split and full-dose integrated fertilizer. The results showed that integrated application of cattle manure and chemical fertilizer significantly increased microbial biomass carbon by 10%, soil organic carbon by 2.45%, total N by 3.27%, mineral N at the flowering stage by 7.57%, and CO2 flux by 9% over solitary urea application. Integrated application increased microbial biomass carbon by 10% over the solitary application and the full-dose application by 5% over the split application. The soil properties and growth parameters of N. sativa L. benefited more from the full-dose application than the split application of urea. Cattle manure combined with chemical fertilizer and the full-dose application of urea increased fertilizer efficiency and improved biological soil parameters and plant growth. This method decreased the cost of top dressing urea fertilizer and proved beneficial for the environment and medicinal plant health.

  4. Anaerobic treatment of landfill leachate by sulfate reduction.

    PubMed

    Henry, J G; Prasad, D

    2000-01-01

    The present study was conducted to investigate the effectiveness of the sulphate-reduction pathway in the anaerobic treatment of landfill leachate. The effects of several COD/SO4 ratios (keeping COD constant) and loadings on anaerobic filter performance were studied and compared with the results from anaerobic filters which followed the methanogenic pathway. Results indicated that the treatability of leachate by sulphate reducing bacteria (SRB) was dependent upon the leachate strength. With high strength leachate (COD = 15,000 mg/L) from the Keele Valley Landfill, it was found that at lower COD/SO4 ratios (< or = 1.6) toxic conditions developed in the system that were more inhibitory to the SRB than to the methane producing bacteria (MPB). As the COD/SO4 ratio increased, methanogenesis predominated. No predominance of SRB occurred at any COD/SO4 ratio with high strength leachate. The highest COD removal achieved was about 70% of which 20% was accomplished by the SRB at a COD/SO4 ratio of 1.6 and an organic loading rate (OLR) of 4 kg COD/m3.d. With low strength leachate (COD = 1500-3300 mg/L) from the Brock West Landfill, and a COD/SO4 ratio < or = 1, SRB became predominant. In these anaerobic filters in which SRB were predominant, the SRB reduced the COD as well as the MPB could. Sulphide inhibition did not take place at any loading in units treating low strength leachate. Consequently, both SRB and MPB should function at COD/SO4 ratios between 1 and 3. About 60% COD removal was achieved at a loading of 2.8 kg COD/m3.d and a COD/SO4 ratio of 1.0. However at a loading of 6 kg COD/m3.d only 27% COD removal was achieved, all of it through the sulphate-reduction pathway. These OLR values are comparable to those applied in systems where methanogenesis was dominant. It was also observed that once the methanogens were established in the units, it was not possible to displace them completely. However, where methanogenesis had not been previously established, it was found that sulphate-reduction could be the sole pathway for COD removal. From this study, it can be concluded that there is no advantage to the sulphate-reduction pathway in the anaerobic treatment of landfill leachate. The other options for increasing the loadings, i.e. the use of high surface/volume filter media (to achieve higher biomass concentrations) or high rate systems are likely to be more successful.

  5. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.

    PubMed

    Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong

    2014-10-08

    One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.

  6. Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes.

    PubMed

    Kockal, Niyazi Ugur; Ozturan, Turan

    2010-07-15

    Influence of different lightweight fly ash aggregates on the behavior of concrete mixtures was discussed. The performance characteristics of lightweight concretes (LWCs) and normalweight concrete (NWC) were investigated through compressive strength, modulus of elasticity and splitting tensile strength representing the mechanical behavior; through rapid chloride permeability representing the transport properties and through rapid freezing and thawing cycling representing the durability of concrete. In order to investigate the aggregate-cement paste interfacial transition zone (ITZ), SEM observations were performed. Regression and graphical analysis of the experimental data obtained were also performed. An increase in compressive strength was observed with the increase in oven-dry density. The ratios of splitting tensile strength to compressive strength of lightweight aggregate concretes were found to be similar to that of normalweight concrete. All the 28- and 56-day concrete specimens had a durability factor greater than 85 and 90, respectively, which met the requirement for freezing and thawing durability. 2010 Elsevier B.V. All rights reserved.

  7. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials

    PubMed Central

    Lin, Wei-Ting; Wu, Yuan-Chieh; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2014-01-01

    This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result. PMID:28788256

  8. 1×3 optical drop splitter in a rod-type silicon photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhuang, Dongxia; Chen, Xiyao; Li, Junjun; Lin, Guimin; Qiang, Zexuan; Qiu, Yishen; Li, Hui

    2011-12-01

    We report an 1×3 optical drop splitter (ODS) based on a self-collimation ring resonator (SCRR) in a rod-type silicon photonic crystal. The proposed 1×3 ODS consists of four beam splitters which are formed by changing the radius of one row of silicon rods. When the self-collimated light with resonance frequency is launched into the ODS, the light beam can be split into three parts come out from three drop ports while no light coming out from the through port. The splitting ratio of the three drop beams can be controlled by tuning the radii of the beam splitters. The FDTD method is employed to calculate the transmission of the 1×3 ODS. For the drop wavelength of 1550 nm, the free spectral range is 28.7 nm, which almost covers the whole optical communication C-band window. This 1×3 ODS may have applications in photonic integrated circuits.

  9. Cardiovascular microbubble transport in vessel bifurcations with pulsatile flow: experimental model and theory

    NASA Astrophysics Data System (ADS)

    Valassis, Doug; Dodde, Robert; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph

    2008-11-01

    The behavior of long gas bubbles suspended in liquid flowing through successive bifurcations was investigated experimentally and theoretically as a model of cardiovascular bubble transport in gas embolotherapy. In this developmental cancer therapy, perflurocarbon droplets are vaporized in the vasculature and travel through a bifurcating network of vessels before lodging. The homogeneity of tumor necrosis is directly correlated with the transport and lodging of the emboli. An experimental model was used to explore the effects of flow pulsatility, frequency, gravity, and bifurcation roll angle on bubble splitting and lodging. At a bifurcation roll angle of 45-degrees, the most distinct difference in splitting ratios between three physiologic frequencies (1, 1.5, 2 Hz) was observed. As roll angle increased, lodged bubble volume in the first generation channel increased while bubble volume beyond the second bifurcation proportionately decreased. A corresponding time-dependent one-dimensional theoretical model was also developed. The results elucidate the effects of pulsatile flow and suggest the potential of gas embolotherapy to occlude blood flow to tumors.

  10. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    PubMed

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  11. Face-gear drives: Design, analysis, and testing for helicopter transmission applications

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.

    1992-01-01

    The use of face-gears in helicopter transmissions was explored. A light-weight, split-torque transmission design utilizing face-gears is described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, grinding, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. An analytical study showed that the face-gear drive is relatively insensitive to gear misalignment with respect to transmission errors, but the tooth contact is affected by misalignment. A method of localizing the bearing contact to permit operation with misalignment was explored. Two new methods for grinding of the face-gear tooth surfaces were also investigated. The proper choice of shaft stiffness enabled good load sharing in the split-torque transmission design. Face-gear experimental studies were also conducted. These tests demonstrated the feasibility of face-gears in high-speed, high-load applications such as helicopter transmissions.

  12. Electromagnetic wave energy flow control with a tunable and reconfigurable coupled plasma split-ring resonator metamaterial: A study of basic conditions and configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kourtzanidis, Konstantinos, E-mail: kkourt@utexas.edu; Pederson, Dylan M.; Raja, Laxminarayan L.

    2016-05-28

    We propose and study numerically a tunable and reconfigurable metamaterial based on coupled split-ring resonators (SRRs) and plasma discharges. The metamaterial couples the magnetic-electric response of the SRR structure with the electric response of a controllable plasma slab discharge that occupies a volume of the metamaterial. Because the electric response of a plasma depends on its constitutive parameters (electron density and collision frequency), the plasma-based metamaterial is tunable and active. Using three-dimensional numerical simulations, we analyze the coupled plasma-SRR metamaterial in terms of transmittance, performing parametric studies on the effects of electron density, collisional frequency, and the position of themore » plasma slab with respect to the SRR array. We find that the resonance frequency can be controlled by the plasma position or the plasma-to-collision frequency ratio, while transmittance is highly dependent on the latter.« less

  13. Helical Face Gear Development Under the Enhanced Rotorcraft Drive System Program

    NASA Technical Reports Server (NTRS)

    Heath, Gregory F.; Slaughter, Stephen C.; Fisher, David J.; Lewicki, David G.; Fetty, Jason

    2011-01-01

    U.S. Army goals for the Enhanced Rotorcraft Drive System Program are to achieve a 40 percent increase in horsepower to weight ratio, a 15 dB reduction in drive system generated noise, 30 percent reduction in drive system operating, support, and acquisition cost, and 75 percent automatic detection of critical mechanical component failures. Boeing s technology transition goals are that the operational endurance level of the helical face gearing and related split-torque designs be validated to a TRL 6, and that analytical and manufacturing tools be validated. Helical face gear technology is being developed in this project to augment, and transition into, a Boeing AH-64 Block III split-torque face gear main transmission stage, to yield increased power density and reduced noise. To date, helical face gear grinding development on Northstar s new face gear grinding machine and pattern-development tests at the NASA Glenn/U.S. Army Research Laboratory have been completed and are described.

  14. Symmetries and mass splittings QCD 2 coupled to adjoint fermions

    NASA Astrophysics Data System (ADS)

    Boorstein, Joshua; Kutasov, David

    1994-06-01

    Two-dimensional QCD coupled to fermions in the adjoint representation of the gauge group SU( N), a useful toy model of QCD strings, is supersymmetric for a certain ratio of quark mass and gauge coupling constant. Here we study the theory in the vicinity of the supersymmetric point; in particular we exhibit the algebraic structure of the model and show that the mass splittings as one moves away from the supersymmetric point obey a universal relation of the form Mi2(B)- Mi2(F) = Miδm + O( δm3). We discuss the connection of this relation to string and quark model expectations and verify it numerically for large N. At least for low lying states the O( δm3) corrections are extremely small. We also discuss a natural generalization of QCD 2 with an infinite number of couplings, which preserves SUSY. This leads to a Landau-Ginzburg description of the theory, and may be useful for defining a scaling limit in which smooth worldsheets appear.

  15. Joint Resource Optimization for Cognitive Sensor Networks with SWIPT-Enabled Relay.

    PubMed

    Lu, Weidang; Lin, Yuanrong; Peng, Hong; Nan, Tian; Liu, Xin

    2017-09-13

    Energy-constrained wireless networks, such as wireless sensor networks (WSNs), are usually powered by fixed energy supplies (e.g., batteries), which limits the operation time of networks. Simultaneous wireless information and power transfer (SWIPT) is a promising technique to prolong the lifetime of energy-constrained wireless networks. This paper investigates the performance of an underlay cognitive sensor network (CSN) with SWIPT-enabled relay node. In the CSN, the amplify-and-forward (AF) relay sensor node harvests energy from the ambient radio-frequency (RF) signals using power splitting-based relaying (PSR) protocol. Then, it helps forward the signal of source sensor node (SSN) to the destination sensor node (DSN) by using the harvested energy. We study the joint resource optimization including the transmit power and power splitting ratio to maximize CSN's achievable rate with the constraint that the interference caused by the CSN to the primary users (PUs) is within the permissible threshold. Simulation results show that the performance of our proposed joint resource optimization can be significantly improved.

  16. The 3600 hp split-torque helicopter transmission

    NASA Technical Reports Server (NTRS)

    White, G.

    1985-01-01

    Final design details of a helicopter transmission that is powered by GE twin T 700 engines each rated at 1800 hp are presented. It is demonstrated that in comparison with conventional helicopter transmission arrangements the split torque design offers: weight reduction of 15%; reduction in drive train losses of 9%; and improved reliability resulting from redundant drive paths between the two engines and the main shaft. The transmission fits within the NASA LeRC 3000 hp Test Stand and accepts the existing positions for engine inputs, main shaft, connecting drive shafts, and the cradle attachment points. One necessary change to the test stand involved gear trains of different ratio in the tail drive gearbox. Progressive uprating of engine input power from 3600 to 4500 hp twin engine rating is allowed for in the design. In this way the test transmission will provide a base for several years of analytical, research, and component development effort targeted at improving the performance and reliability of helicopter transmission.

  17. An electronic beam splitter realized with crossed graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Sanchez-Portal, Daniel

    Graphene nanoribbons (GNRs) are promising components in future nanoelectronics. We have explored a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50 % and with almost negligible back-reflection. The splitted electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy of an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. FP7-FET-ICT PAMS (610446), MAT2013-46593-C6-2-P, IT-756-13.

  18. Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics.

    PubMed

    Languy, Fabian; Habraken, Serge

    2011-07-15

    Solar concentrators made of a single refractive primary optics are limited to a concentration ratio of about 1000× [Opt. Express 19, A280 (2011)], due only to longitudinal chromatic aberration, while mirrors are limited to ∼46,000× by the angular size of the Sun. To reduce the chromatic aberration while keeping cost-effective systems for concentrated photovoltaics, a study of four different kinds of flat Fresnel doublets made of polycarbonates and polymethyl methacrylate is presented. It reveals that Fresnel doublets may have fewer optical losses than non-Fresnel doublets, with a lower lateral chromatic split allowing for even higher concentration ratio. © 2011 Optical Society of America

  19. Selection of Two-Phase Flow Patterns at a Simple Junction in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Engl, W.; Ohata, K.; Guillot, P.; Colin, A.; Panizza, P.

    2006-04-01

    We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.

  20. Splitting nodes and linking channels: A method for assembling biocircuits from stochastic elementary units

    NASA Astrophysics Data System (ADS)

    Ferwerda, Cameron; Lipan, Ovidiu

    2016-11-01

    Akin to electric circuits, we construct biocircuits that are manipulated by cutting and assembling channels through which stochastic information flows. This diagrammatic manipulation allows us to create a method which constructs networks by joining building blocks selected so that (a) they cover only basic processes; (b) it is scalable to large networks; (c) the mean and variance-covariance from the Pauli master equation form a closed system; and (d) given the initial probability distribution, no special boundary conditions are necessary to solve the master equation. The method aims to help with both designing new synthetic signaling pathways and quantifying naturally existing regulatory networks.

  1. Splitting the mind within the individual, nation and economy: reflections on the struggle for integration in post-war Germany.

    PubMed

    Plänkers, Tomas

    2015-02-01

    With respect to theorisations of psychical splitting, this paper explores the psychical mechanisms that underlie different forms of social splitting. The paper first outlines Freud's and Kleins different theorisations of the psychical mechanisms of splitting, where the good is split from the bad, the inside split from the outside, and the painful disavowed. I then consider the psychical mechanisms of splitting that underlie ideological supports of certain social systems, specifically that of National Socialist Germany, East Germany during the Cold War period, and neoliberal capitalism. Here, I consider ideological splits between good and evil, the relation between external and internal splits, the relation between geographical, social and internal splitting, as well as splitting as disavowal of the other. Copyright © 2015 Institute of Psychoanalysis.

  2. Bipolarization and Poleward Flux Correlate during Xenopus Extract Spindle AssemblyV⃞

    PubMed Central

    Mitchison, T.J.; Maddox, P.; Groen, A.; Cameron, L.; Perlman, Z.; Ohi, R.; Desai, A.; Salmon, E.D.; Kapoor, T.M.

    2004-01-01

    We investigated the mechanism by which meiotic spindles become bipolar and the correlation between bipolarity and poleward flux, using Xenopus egg extracts. By speckle microscopy and computational alignment, we find that monopolar sperm asters do not show evidence for flux, partially contradicting previous work. We account for the discrepancy by describing spontaneous bipolarization of sperm asters that was missed previously. During spontaneous bipolarization, onset of flux correlated with onset of bipolarity, implying that antiparallel microtubule organization may be required for flux. Using a probe for TPX2 in addition to tubulin, we describe two pathways that lead to spontaneous bipolarization, new pole assembly near chromatin, and pole splitting. By inhibiting the Ran pathway with excess importin-alpha, we establish a role for chromatin-derived, antiparallel overlap bundles in generating the sliding force for flux, and we examine these bundles by electron microscopy. Our results highlight the importance of two processes, chromatin-initiated microtubule nucleation, and sliding forces generated between antiparallel microtubules, in self-organization of spindle bipolarity and poleward flux. PMID:15385629

  3. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part II: Mesoscale features and freshwater transport pathways

    NASA Astrophysics Data System (ADS)

    Lips, Urmas; Zhurbas, Victor; Skudra, Maris; Väli, Germo

    2016-03-01

    A regional eddy-resolving model is developed to study mesoscale processes in the Gulf of Riga in relation to river runoff, saltwater inflow, and atmospheric forcing. A number of mesoscale phenomena are simulated and discussed, such as meandering of coastal buoyant plume/current of riverine waters and formation and splitting of cyclonic eddies related to the saltwater inflow. It is shown that the Daugava River discharge forms a surface-advected plume (Yankovsky and Chapman, 1997) consisting of an anticyclonic bulge and coastal buoyant jet. In case of no saltwater inflow and no atmospheric forcing, the river runoff is distributed between the growing anticyclonic bulge and the coastal current in proportion of about 7:6. In the summer season, a substantial fraction of freshwater from the anticyclonic bulge can be transported to the north by the anticyclonic whole-basin circulation gyre leading to the bimodal transport pathways of the Daugava River plume.

  4. Identification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells

    PubMed Central

    Monfort, Asun; Di Minin, Giulio; Postlmayr, Andreas; Freimann, Remo; Arieti, Fabiana; Thore, Stéphane; Wutz, Anton

    2015-01-01

    Summary In mammals, the noncoding Xist RNA triggers transcriptional silencing of one of the two X chromosomes in female cells. Here, we report a genetic screen for silencing factors in X chromosome inactivation using haploid mouse embryonic stem cells (ESCs) that carry an engineered selectable reporter system. This system was able to identify several candidate factors that are genetically required for chromosomal repression by Xist. Among the list of candidates, we identify the RNA-binding protein Spen, the homolog of split ends. Independent validation through gene deletion in ESCs confirms that Spen is required for gene repression by Xist. However, Spen is not required for Xist RNA localization and the recruitment of chromatin modifications, including Polycomb protein Ezh2. The identification of Spen opens avenues for further investigation into the gene-silencing pathway of Xist and shows the usefulness of haploid ESCs for genetic screening of epigenetic pathways. PMID:26190100

  5. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders

    PubMed Central

    2014-01-01

    Prostaglandin E2 (PGE2) is a natural lipid-derived molecule that is involved in important physiological functions. Abnormal PGE2 signalling has been associated with pathologies of the nervous system. Previous studies provide evidence for the interaction of PGE2 and canonical Wnt signalling pathways in non-neuronal cells. Since the Wnt pathway is crucial in the development and organization of the brain, the main goal of this study is to determine whether collaboration between these pathways exists in neuronal cell types. We report that PGE2 interacts with canonical Wnt signalling through PKA and PI-3K in neuroectodermal (NE-4C) stem cells. We used time-lapse microscopy to determine that PGE2 increases the final distance from origin, path length travelled, and the average speed of migration in Wnt-activated cells. Furthermore, PGE2 alters distinct cellular phenotypes that are characteristic of Wnt-induced NE-4C cells, which corresponds to the modified splitting behaviour of the cells. We also found that in Wnt-induced cells the level of β-catenin protein was increased and the expression levels of Wnt-target genes (Ctnnb1, Ptgs2, Ccnd1, Mmp9) was significantly upregulated in response to PGE2 treatment. This confirms that PGE2 activated the canonical Wnt signalling pathway. Furthermore, the upregulated genes have been previously associated with ASD. Our findings show, for the first time, evidence for cross-talk between PGE2 and Wnt signalling in neuronal cells, where PKA and PI-3K might act as mediators between the two pathways. Given the importance of PGE2 and Wnt signalling in prenatal development of the nervous system, our study provides insight into how interaction between these two pathways may influence neurodevelopment. PMID:24656144

  6. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders.

    PubMed

    Wong, Christine T; Ahmad, Eizaaz; Li, Hongyan; Crawford, Dorota A

    2014-03-23

    Prostaglandin E2 (PGE2) is a natural lipid-derived molecule that is involved in important physiological functions. Abnormal PGE2 signalling has been associated with pathologies of the nervous system. Previous studies provide evidence for the interaction of PGE2 and canonical Wnt signalling pathways in non-neuronal cells. Since the Wnt pathway is crucial in the development and organization of the brain, the main goal of this study is to determine whether collaboration between these pathways exists in neuronal cell types. We report that PGE2 interacts with canonical Wnt signalling through PKA and PI-3K in neuroectodermal (NE-4C) stem cells. We used time-lapse microscopy to determine that PGE2 increases the final distance from origin, path length travelled, and the average speed of migration in Wnt-activated cells. Furthermore, PGE2 alters distinct cellular phenotypes that are characteristic of Wnt-induced NE-4C cells, which corresponds to the modified splitting behaviour of the cells. We also found that in Wnt-induced cells the level of β-catenin protein was increased and the expression levels of Wnt-target genes (Ctnnb1, Ptgs2, Ccnd1, Mmp9) was significantly upregulated in response to PGE2 treatment. This confirms that PGE2 activated the canonical Wnt signalling pathway. Furthermore, the upregulated genes have been previously associated with ASD. Our findings show, for the first time, evidence for cross-talk between PGE2 and Wnt signalling in neuronal cells, where PKA and PI-3K might act as mediators between the two pathways. Given the importance of PGE2 and Wnt signalling in prenatal development of the nervous system, our study provides insight into how interaction between these two pathways may influence neurodevelopment.

  7. Genetic variations and patient-reported quality of life among patients with lung cancer.

    PubMed

    Sloan, Jeff A; de Andrade, Mariza; Decker, Paul; Wampfler, Jason; Oswold, Curtis; Clark, Matthew; Yang, Ping

    2012-05-10

    Recent evidence has suggested a relationship between the baseline quality of life (QOL) self-reported by patients with cancer and genetic disposition. We report an analysis exploring relationships among baseline QOL assessments and candidate genetic variations in a large cohort of patients with lung cancer. QOL data were provided by 1,299 patients with non-small-cell lung cancer observed at the Mayo Clinic between 1997 and 2007. Overall QOL and subdomains were assessed by either Lung Cancer Symptom Scale or Linear Analog Self Assessment measures; scores were transformed to a scale of 0 to 10, with higher scores representing better status. Baseline QOL scores assessed within 1 year of diagnosis were dichotomized as clinically deficient (CD) or not. A total of 470 single nucleotide polymorphisms (SNPs) in 56 genes of three biologic pathways were assessed for association with QOL measures. Logistic regression with training/validation samples was used to test the association of SNPs with CD QOL. Six SNPs on four genes were replicated using our split schemes. Three SNPs in the MGMT gene (adjusted analysis, rs3858300; unadjusted analysis, rs10741191 and rs3852507) from DNA repair pathway were associated with overall QOL. Two SNPs (rs2287396 [GSTZ1] and rs9524885 [ABCC4]) from glutathione metabolic pathway were associated with fatigue in unadjusted analysis. In adjusted analysis, two SNPs (rs2756109 [ABCC2] and rs9524885 [ABCC4]) from glutathione metabolic pathway were associated with pain. We identified three SNPs in three glutathione metabolic pathway genes and three SNPs in two DNA repair pathway genes associated with QOL measures in patients with non-small-cell lung cancer.

  8. Automatic tracking of dynamical evolutions of oceanic mesoscale eddies with satellite observation data

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Li, Qiu-Yang

    2017-04-01

    The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for satellite-based observational data but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  9. Investigating evidence for different black hole accretion modes since redshift z ˜ 1

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Pérez-González, P. G.; Fanidakis, N.; Salvato, M.; Aird, J.; Messias, H.; Lotz, J. M.; Barro, G.; Hsu, Li-Ting; Nandra, K.; Rosario, D.; Cooper, M. C.; Kocevski, D. D.; Newman, J. A.

    2014-05-01

    Chandra data in the COSMOS, AEGIS-XD and 4 Ms Chandra Deep Field South are combined with multiwavelength photometry available in those fields to determine the rest-frame U - V versus V - J colours of X-ray AGN hosts in the redshift intervals 0.1 < z < 0.6 (mean overline{z}=0.40) and 0.6 < z < 1.2 (mean overline{z}=0.85). This combination of colours provides an effective and least model-dependent means of separating quiescent from star-forming, including dust reddened, galaxies. Morphological information emphasizes differences between AGN populations split by their U - V versus V - J colours. AGN in quiescent galaxies consist almost exclusively of bulges, while star-forming hosts are equally split between early- and late-type hosts. The position of AGN hosts on the U - V versus V - J diagram is then used to set limits on the accretion density of the Universe associated with evolved and star-forming systems independent of dust induced biases. It is found that most of the black hole growth at z ≈ 0.40 and 0.85 is associated with star-forming hosts. Nevertheless, a non-negligible fraction of the X-ray luminosity density, about 15-20 per cent, at both overline{z}=0.40 and 0.85, is taking place in galaxies in the quiescent region of the U - V versus V - J diagram. For the low-redshift sub-sample, 0.1 < z < 0.6, we also find tentative evidence, significant at the 2σ level, that AGN split by their U - V and V - J colours have different Eddington ratio distributions. AGN in blue star-forming hosts dominate at relatively high Eddington ratios. In contrast, AGN in red quiescent hosts become increasingly important as a fraction of the total population towards low Eddington ratios. At higher redshift, z > 0.6, such differences are significant at the 2σ level only for sources with Eddington ratios ≳ 10- 3. These findings are consistent with scenarios in which diverse accretion modes are responsible for the build-up of supermassive black holes at the centres of galaxies. We compare these results with the predictions of the GALFORM semi-analytic model for the cosmological evolution of AGN and galaxies. This model postulates two black hole fuelling modes, the first is linked to star formation events and the second takes place in passive galaxies. GALFORM predicts that a substantial fraction of the black hole growth at z < 1 is associated with quiescent galaxies, in apparent conflict with the observations. Relaxing the strong assumption of the model that passive AGN hosts have zero star formation rate could bring those predictions in better agreement with the data.

  10. Refractive index sensor based on optical fiber end face using pulse reference-based compensation technique

    NASA Astrophysics Data System (ADS)

    Bian, Qiang; Song, Zhangqi; Zhang, Xueliang; Yu, Yang; Chen, Yuzhong

    2018-03-01

    We proposed a refractive index sensor based on optical fiber end face using pulse reference-based compensation technique. With good compensation effect of this compensation technique, the power fluctuation of light source, the change of optic components transmission loss and coupler splitting ratio can be compensated, which largely reduces the background noise. The refractive index resolutions can achieve 3.8 × 10-6 RIU and1.6 × 10-6 RIU in different refractive index regions.

  11. Influence of detector noise and background noise on detection-system

    NASA Astrophysics Data System (ADS)

    Song, Yiheng; Wang, Zhiyong

    2018-02-01

    Study the noise by detectors and background light ,we find that the influence of background noise on the detection is more than that of itself. Therefore, base on the fiber coupled beam splitting technique, the small area detector is used to replace the large area detector. It can achieve high signal-to-noise ratio (SNR) and reduce the speckle interference of the background light. This technique is expected to solve the bottleneck of large field of view and high sensitivity.

  12. Light Quark Mass Ratios (mu:md:ms) from Meson and Baryon Mass Splittings

    NASA Astrophysics Data System (ADS)

    Minkowski, Peter

    2013-08-01

    The basis of the material discussed is our work in collaboration with Arnulfo Zepeda from 1979 [Nucl. Phys. B164, 25 (1980)]. The ingredients and consequences of this work will be presented, and compared with results obtained from QCD sum rules and lattice simulations of QCD in accordance with chiral expansions. An up-to-date conclusion will not be possible in this paper, but some comments towards such goal will be given in a concluding section.

  13. Spectrophotovoltaic orbital power generation, phase 2

    NASA Technical Reports Server (NTRS)

    Lo, S. K.; Stoltzman, D.; Knowles, G.; Lin, R.

    1981-01-01

    A subscale model of the spectral splitting concentrator system with 10" aperture is defined and designed. The model is basically a scaled down version of Phase 1 design with an effective concentration ratio up to 1000:1. The system performance is predicted to be 21.5% for the 2 cell GaAs/Si system, and 20% for Si/GaAs at AM2 using realistic component efficiencies. Component cost of the model is projected in the $50K range. Component and system test plans are also detailed.

  14. A numerical study of the contrarotating vortex pair associated with a jet in a crossflow

    NASA Technical Reports Server (NTRS)

    Roth, Karlin R.; Fearn, Richard L.; Thakur, Siddharth S.

    1989-01-01

    An implicit two-factor partially flux split solver for the thin-layer Navier-Stokes equations is used to solve the aerodynamic/propulsive interaction between a subsonic jet exhausting perpendicularly through a flat plat plate into a crossflow. The algorithm is applied to flows with a range of jet to crossflow velocity ratios between 4 and 8. The computed velocity field is analyzed and comparisons are made with experimentally determined properties of the contrarotating vortex pair.

  15. StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab

    NASA Astrophysics Data System (ADS)

    Grund, Michael

    2017-04-01

    The SplitLab package (Wüstefeld et al., Computers and Geosciences, 2008), written in MATLAB, is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to seaside or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure.

  16. Splitting of IVP bovine blastocyst affects morphology and gene expression of resulting demi-embryos during in vitro culture and in vivo elongation.

    PubMed

    Velasquez, Alejandra E; Castro, Fidel O; Veraguas, Daniel; Cox, Jose F; Lara, Evelyn; Briones, Mario; Rodriguez-Alvarez, Lleretny

    2016-02-01

    Embryo splitting might be used to increase offspring yield and for molecular analysis of embryo competence. How splitting affects developmental potential of embryos is unknown. This research aimed to study the effect of bovine blastocyst splitting on morphological and gene expression homogeneity of demi-embryos and on embryo competence during elongation. Grade I bovine blastocyst produced in vitro were split into halves and distributed in nine groups (3 × 3 setting according to age and stage before splitting; age: days 7-9; stage: early, expanded and hatched blastocysts). Homogeneity and survival rate in vitro after splitting (12 h, days 10 and 13) and the effect of splitting on embryo development at elongation after embryo transfer (day 17) were assessed morphologically and by RT-qPCR. The genes analysed were OCT4, SOX2, NANOG, CDX2, TP1, TKDP1, EOMES, and BAX. Approximately 90% of split embryos had a well conserved defined inner cell mass (ICM), 70% of the halves had similar size with no differences in gene expression 12 h after splitting. Split embryos cultured further conserved normal and comparable morphology at day 10 of development; this situation changes at day 13 when embryo morphology and gene expression differed markedly among demi-embryos. Split and non-split blastocysts were transferred to recipient cows and were recovered at day 17. Fifty per cent of non-split embryos were larger than 100 mm (33% for split embryos). OCT4, SOX2, TP1 and EOMES levels were down-regulated in elongated embryos derived from split blastocysts. In conclusion, splitting day-8 blastocysts yields homogenous demi-embryos in terms of developmental capability and gene expression, but the initiation of the filamentous stage seems to be affected by the splitting.

  17. Genetic control of the alternative pathway of complement in humans and age-related macular degeneration

    PubMed Central

    Hecker, Laura A.; Edwards, Albert O.; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H.; Brown, William L.; Issa, Peter Charbel; Scholl, Hendrik P.; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E.; Bailey, Kent R.; Oppermann, Martin

    2010-01-01

    Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues. PMID:19825847

  18. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  19. Correlated cone noise decreases rod signal contributions to the post-receptoral pathways.

    PubMed

    Hathibelagal, Amithavikram R; Feigl, Beatrix; Zele, Andrew J

    2018-04-01

    This study investigated how invisible extrinsic temporal white noise that correlates with the activity of one of the three [magnocellular (MC), parvocellular (PC), or koniocellular (KC)] post-receptoral pathways alters mesopic rod signaling. A four-primary photostimulator provided independent control of the rod and three cone photoreceptor excitations. The rod contributions to the three post-receptoral pathways were estimated by perceptually matching a 20% contrast rod pulse by independently varying the LMS (MC pathway), +L-M (PC pathway), and S-cone (KC pathway) excitations. We show that extrinsic cone noise caused a predominant decrease in the overall magnitude and ratio of the rod contributions to each pathway. Thus, the relative cone activity in the post-receptoral pathways determines the relative mesopic rod inputs to each pathway.

  20. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com; Department of Mathematics, Heze University, Heze, Shandong 274015; Jiang, Ziwu

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  1. Chemical characterization of the early evolutionary phases of high-mass star-forming regions

    NASA Astrophysics Data System (ADS)

    Gerner, Thomas

    2014-10-01

    The formation of high-mass stars is a very complex process and up to date no comprehensive theory about it exists. This thesis studies the early stages of high-mass star-forming regions and employs astrochemistry as a tool to probe their different physical conditions. We split the evolutionary sequence into four observationally motivated stages that are based on a classification proposed in the literature. The sequence is characterized by an increase of the temperatures and densities that strongly influences the chemistry in the different stages. We observed a sample of 59 high-mass star-forming regions that cover the whole sequence and statistically characterized the chemical compositions of the different stages. We determined average column densities of 18 different molecular species and found generally increasing abundances with stage. We fitted them for each stage with a 1D model, such that the result of the best fit to the previous stage was used as new input for the following. This is a unique approach and allowed us to infer physical properties like the temperature and density structure and yielded a typical chemical lifetime for the high-mass star-formation process of 1e5 years. The 18 analyzed molecular species also included four deuterated molecules whose chemistry is particularly sensitive to thermal history and thus is a promising tool to infer chemical ages. We found decreasing trends of the D/H ratios with evolutionary stage for 3 of the 4 molecular species and that the D/H ratio depends more on the fraction of warm and cold gas than on the total amount of gas. That indicates different chemical pathways for the different molecules and confirms the potential use of deuterated species as chemical age indicators. In addition, we mapped a low-mass star forming region in order to study the cosmic ray ionization rate, which is an important parameter in chemical models. While in chemical models it is commonly fixed, we found that it ! strongly varies with environment.

  2. Influence of the large-small split effect on strategy choice in complex subtraction.

    PubMed

    Xiang, Yan Hui; Wu, Hao; Shang, Rui Hong; Chao, Xiaomei; Ren, Ting Ting; Zheng, Li Ling; Mo, Lei

    2018-04-01

    Two main theories have been used to explain the arithmetic split effect: decision-making process theory and strategy choice theory. Using the inequality paradigm, previous studies have confirmed that individuals tend to adopt a plausibility-checking strategy and a whole-calculation strategy to solve large and small split problems in complex addition arithmetic, respectively. This supports strategy choice theory, but it is unknown whether this theory also explains performance in solving different split problems in complex subtraction arithmetic. This study used small, intermediate and large split sizes, with each split condition being further divided into problems requiring and not requiring borrowing. The reaction times (RTs) for large and intermediate splits were significantly shorter than those for small splits, while accuracy was significantly higher for large and middle splits than for small splits, reflecting no speed-accuracy trade-off. Further, RTs and accuracy differed significantly between the borrow and no-borrow conditions only for small splits. This study indicates that strategy choice theory is suitable to explain the split effect in complex subtraction arithmetic. That is, individuals tend to choose the plausibility-checking strategy or the whole-calculation strategy according to the split size. © 2016 International Union of Psychological Science.

  3. StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab

    NASA Astrophysics Data System (ADS)

    Grund, Michael

    2017-08-01

    SplitLab is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to the noisy seaside, ocean bottom or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure which is based on MATLAB. The effectiveness and use of this plugin is demonstrated with data examples of a long running seismological recording station in Finland.

  4. Immunogenicity, protective efficacy and mechanism of novel CCS adjuvanted influenza vaccine.

    PubMed

    Even-Or, Orli; Samira, Sarit; Rochlin, Eli; Balasingam, Shobana; Mann, Alex J; Lambkin-Williams, Rob; Spira, Jack; Goldwaser, Itzhak; Ellis, Ronald; Barenholz, Yechezkel

    2010-09-07

    We optimized the immunogenicity of adjuvanted seasonal influenza vaccine based on commercial split influenza virus as an antigen (hemagglutinin = HA) and on a novel polycationic liposome as a potent adjuvant and efficient antigen carrier (CCS/C-HA vaccine). The vaccine was characterized physicochemically, and the mechanism of action of CCS/C as antigen carrier and adjuvant was studied. The optimized CCS/C-HA split virus vaccine, when administered intramuscularly (i.m.), is significantly more immunogenic in mice, rats and ferrets than split virus HA vaccine alone, and it provides for protective immunity in ferrets and mice against live virus challenge that exceeds the degree of efficacy of the split virus vaccine. Similar adjuvant effects of optimized CCS/C are also observed in mice for H1N1 swine influenza antigen. The CCS/C-HA vaccine enhances immune responses via the Th1 and Th2 pathways, and it increases both the humoral responses and the production of IL-2 and IFN-γ but not of the pro-inflammatory factor TNFα. In mice, levels of CD4(+) and CD8(+) T-cells and of MHC II and CD40 co-stimulatory molecules are also elevated. Structure-function relationship studies of the CCS molecule as an adjuvant/carrier show that replacing the saturated palmitoyl acyl chain with the mono-unsaturated oleoyl (C18:1) chain affects neither size distribution and zeta potential nor immune responses in mice. However, replacing the polyalkylamine head group spermine (having two secondary amines) with spermidine (having only one secondary amine) reduces the enhancement of the immune response by ∼ 50%, while polyalkylamines by themselves are ineffective in improving the immunogenicity over the commercial HA vaccine. This highlights the importance of the particulate nature of the carrier and the polyalkylamine secondary amines in the enhancement of the immune responses against seasonal influenza. Altogether, our results suggest that the CCS/C polycationic liposomes combine the activities of a potent adjuvant and efficient carrier of seasonal and swine flu vaccines and support further development of the CCS/C-HA vaccine. Copyright © 2010. Published by Elsevier Ltd.

  5. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based catalysts, methanol oxidation suffers from high overpotential and catalyst poisoning by high concentration of substrates, so current nickel-based catalysts are more suitable to be used as oxygen evolution catalysts. A photoanode design that applies nickel oxides to a semiconductor that is incorporated with surface-plasmonic metal electrodes to do solar water oxidation with visible light is proposed.

  6. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.

    PubMed

    Walczak, Karl; Chen, Yikai; Karp, Christoph; Beeman, Jeffrey W; Shaner, Matthew; Spurgeon, Joshua; Sharp, Ian D; Amashukeli, Xenia; West, William; Jin, Jian; Lewis, Nathan S; Xiang, Chengxiang

    2015-02-01

    A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of photoelectrochemical assemblies, and can provide an approach to significantly higher solar conversion efficiencies as new and improved materials become available. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An algorithm for variational data assimilation of contact concentration measurements for atmospheric chemistry models

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Penenko, Vladimir

    2014-05-01

    Contact concentration measurement data assimilation problem is considered for convection-diffusion-reaction models originating from the atmospheric chemistry study. High dimensionality of models imposes strict requirements on the computational efficiency of the algorithms. Data assimilation is carried out within the variation approach on a single time step of the approximated model. A control function is introduced into the source term of the model to provide flexibility for data assimilation. This function is evaluated as the minimum of the target functional that connects its norm to a misfit between measured and model-simulated data. In the case mathematical model acts as a natural Tikhonov regularizer for the ill-posed measurement data inversion problem. This provides flow-dependent and physically-plausible structure of the resulting analysis and reduces a need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. The advantage comes at the cost of the adjoint problem solution. This issue is solved within the frameworks of splitting-based realization of the basic convection-diffusion-reaction model. The model is split with respect to physical processes and spatial variables. A contact measurement data is assimilated on each one-dimensional convection-diffusion splitting stage. In this case a computationally-efficient direct scheme for both direct and adjoint problem solution can be constructed based on the matrix sweep method. Data assimilation (or regularization) parameter that regulates ratio between model and data in the resulting analysis is obtained with Morozov discrepancy principle. For the proper performance the algorithm takes measurement noise estimation. In the case of Gaussian errors the probability that the used Chi-squared-based estimate is the upper one acts as the assimilation parameter. A solution obtained can be used as the initial guess for data assimilation algorithms that assimilate outside the splitting stages and involve iterations. Splitting method stage that is responsible for chemical transformation processes is realized with the explicit discrete-analytical scheme with respect to time. The scheme is based on analytical extraction of the exponential terms from the solution. This provides unconditional positive sign for the evaluated concentrations. Splitting-based structure of the algorithm provides means for efficient parallel realization. The work is partially supported by the Programs No 4 of Presidium RAS and No 3 of Mathematical Department of RAS, by RFBR project 11-01-00187 and Integrating projects of SD RAS No 8 and 35. Our studies are in the line with the goals of COST Action ES1004.

  8. Effect of piston profile on performance and emission characteristics of a GDI engine with split injection strategy - A CFD study

    NASA Astrophysics Data System (ADS)

    Karaya, Y.; Mallikarjuna, J. M.

    2017-09-01

    Gasoline direct injection (GDI) engines have gained popularity in the recent times because of lower fuel consumption and exhaust emissions. But in these engines, the mixture preparation plays an important role which affects combustion, performance and emission characteristics. The mixture preparation in turn depends mainly upon combustion chamber geometry. Therefore, in this study, an attempt has been made to understand the effect of piston profile on the performance and emission characteristics in a GDI engine. The analysis is carried out on a four-stroke wall guided GDI engine using computational fluid dynamics (CFD). The spray breakup model used is validated with the available experimental results from the literature to the extent possible. The analysis is carried out for four piston profiles viz., offset pentroof with offset bowl (OPOB), flat piston with offset bowl (FPOB), offset pentroof with offset scoop (OPOS) and inclined piston with offset bowl (IPOB) fitted in an engine equipped with a six-hole injector with the split injection ratio of 30:70. All the CFD simulations are carried out at the engine speed of 2000 rev/min., with the overall equivalence ratio of about 0.65±0.05. The performance and emission characteristics of the engine are compared while using the above piston profiles. It is found that, the OPOB piston is preferred compared to that of the other pistons because it has better in-cylinder flow, IMEP and lower HC emissions compared to that of other pistons.

  9. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.

    PubMed

    Chowdhury, S; Maniar, A; Suganya, O M

    2015-11-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  10. A Fiber-Based Ratiometric Optical Cardiac Mapping Channel Using a Diffraction Grating and Split Detector

    PubMed Central

    Brown, Ninita H.; Dobrovolny, Hana M.; Gauthier, Daniel J.; Wolf, Patrick D.

    2007-01-01

    Optical fiber-based mapping systems are used to record the cardiac action potential (AP) throughout the myocardium. The optical AP contains a contraction-induced motion artifact (MA), which makes it difficult to accurately measure the action potential duration (APD). MA is removed by preventing contraction with electrical-mechanical uncoupling drugs, such as 2,3-butanedione monoxime (BDM). We designed a novel fiber-based ratiometric optical channel using a blue light emitting diode, a diffraction grating, and a split photodetector that can accurately measure the cardiac AP without the need for BDM. The channel was designed based on simulations using the optical design software ZEMAX. The channel has an electrical bandwidth of 150 Hz and an root mean-square dark noise of 742 μV. The channel successfully recorded the cardiac AP from the wall of five rabbit heart preparations without the use of BDM. After 20-point median filtering, the mean signal/noise ratio was 25.3 V/V. The APD measured from the base of a rabbit heart was 134 ± 8.4 ms, compared to 137.6 ± 3.3 ms from simultaneous microelectrode recordings. This difference was not statistically significant (p-value = 0.3). The quantity of MA removed was also measured using the motion ratio. The reduction in MA was significant (p-value = 0.0001). This fiber-based system is the first of its kind to enable optical APD measurements in the beating heart wall without the use of BDM. PMID:17416627

  11. Impact parameter smearing effects on isospin sensitive observables in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Yingxun; Li, Zhuxia; Wang, Nan; Cui, Ying; Winkelbauer, Jack

    2018-04-01

    The validity of impact parameter estimation from the multiplicity of charged particles at low-intermediate energies is checked within the framework of the improved quantum molecular dynamics model. The simulations show that the multiplicity of charged particles cannot estimate the impact parameter of heavy ion collisions very well, especially for central collisions at the beam energies lower than ˜70 MeV/u due to the large fluctuations of the multiplicity of charged particles. The simulation results for the central collisions defined by the charged particle multiplicity are compared to those by using impact parameter b =2 fm and it shows that the charge distribution for 112Sn+112Sn at the beam energy of 50 MeV/u is different evidently for two cases; and the chosen isospin sensitive observable, the coalescence invariant single neutron to proton yield ratio, reduces less than 15% for neutron-rich systems Sn,132124+124Sn at Ebeam=50 MeV/u, while the coalescence invariant double neutron to proton yield ratio does not have obvious difference. The sensitivity of the chosen isospin sensitive observables to effective mass splitting is studied for central collisions defined by the multiplicity of charged particles. Our results show that the sensitivity is enhanced for 132Sn+124Sn relative to that for 124Sn+124Sn , and this reaction system should be measured in future experiments to study the effective mass splitting by heavy ion collisions.

  12. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    PubMed Central

    Chowdhury, S.; Maniar, A.; Suganya, O.M.

    2014-01-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper. PMID:26644928

  13. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant.

    PubMed

    Kurumbang, Nagendra Prasad; Dvorak, Pavel; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri

    2014-03-21

    Anthropogenic halogenated compounds were unknown to nature until the industrial revolution, and microorganisms have not had sufficient time to evolve enzymes for their degradation. The lack of efficient enzymes and natural pathways can be addressed through a combination of protein and metabolic engineering. We have assembled a synthetic route for conversion of the highly toxic and recalcitrant 1,2,3-trichloropropane to glycerol in Escherichia coli, and used it for a systematic study of pathway bottlenecks. Optimal ratios of enzymes for the maximal production of glycerol, and minimal toxicity of metabolites were predicted using a mathematical model. The strains containing the expected optimal ratios of enzymes were constructed and characterized for their viability and degradation efficiency. Excellent agreement between predicted and experimental data was observed. The validated model was used to quantitatively describe the kinetic limitations of currently available enzyme variants and predict improvements required for further pathway optimization. This highlights the potential of forward engineering of microorganisms for the degradation of toxic anthropogenic compounds.

  14. Whole-genome sequencing revealed novel prognostic biomarkers and promising targets for therapy of ovarian clear cell carcinoma.

    PubMed

    Itamochi, Hiroaki; Oishi, Tetsuro; Oumi, Nao; Takeuchi, Satoshi; Yoshihara, Kosuke; Mikami, Mikio; Yaegashi, Nobuo; Terao, Yasuhisa; Takehara, Kazuhiro; Ushijima, Kimio; Watari, Hidemichi; Aoki, Daisuke; Kimura, Tadashi; Nakamura, Toshiaki; Yokoyama, Yoshihito; Kigawa, Junzo; Sugiyama, Toru

    2017-08-22

    Ovarian clear cell carcinoma (OCCC) is mostly resistant to standard chemotherapy that results in poor patient survival. To understand the genetic background of these tumours, we performed whole-genome sequencing of OCCC tumours. Tumour tissue samples and matched blood samples were obtained from 55 Japanese women diagnosed with OCCC. Whole-genome sequencing was performed using the Illumina HiSeq platform according to standard protocols. Alterations to the switch/sucrose non-fermentable (SWI/SNF) subunit, the phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway, and the receptor tyrosine kinase (RTK)/Ras signalling pathway were found in 51%, 42%, and 29% of OCCC tumours, respectively. The 3-year overall survival (OS) rate for patients with an activated PI3K/Akt signalling pathway was significantly higher than that for those with inactive pathway (91 vs 40%, hazard ratio 0.24 (95% confidence interval (CI) 0.10-0.56), P=0.0010). Similarly, the OS was significantly higher in patients with the activated RTK/Ras signalling pathway than in those with the inactive pathway (91 vs 53%, hazard ratio 0.35 (95% CI 0.13-0.94), P=0.0373). Multivariable analysis revealed that activation of the PI3K/Akt and RTK/Ras signalling pathways was an independent prognostic factor for patients with OCCC. The PI3K/Akt and RTK/Ras signalling pathways may be potential prognostic biomarkers for OCCC patients. Furthermore, our whole-genome sequencing data highlight important pathways for molecular and biological characterisations and potential therapeutic targeting in OCCC.

  15. Molecular Signatures Discriminating the Male and the Female Sexual Pathways in the Pearl Oyster Pinctada margaritifera

    PubMed Central

    Teaniniuraitemoana, Vaihiti; Huvet, Arnaud; Levy, Peva; Gaertner-Mazouni, Nabila; Gueguen, Yannick; Le Moullac, Gilles

    2015-01-01

    The genomics of economically important marine bivalves is studied to provide better understanding of the molecular mechanisms underlying their different reproductive strategies. The recently available gonad transcriptome of the black-lip pearl oyster Pinctada margaritifera is a novel and powerful resource to study these mechanisms in marine mollusks displaying hermaphroditic features. In this study, RNAseq quantification data of the P. margaritifera gonad transcriptome were analyzed to identify candidate genes in histologically-characterized gonad samples to provide molecular signatures of the female and male sexual pathway in this pearl oyster. Based on the RNAseq data set, stringent expression analysis identified 1,937 contigs that were differentially expressed between the gonad histological categories. From the hierarchical clustering analysis, a new reproduction model is proposed, based on a dual histo-molecular analytical approach. Nine candidate genes were identified as markers of the sexual pathway: 7 for the female pathway and 2 for the male one. Their mRNA levels were assayed by real-time PCR on a new set of gonadic samples. A clustering method revealed four principal expression patterns based on the relative gene expression ratio. A multivariate regression tree realized on these new samples and validated on the previously analyzed RNAseq samples showed that the sexual pathway of P. margaritifera can be predicted by a 3-gene-pair expression ratio model of 4 different genes: pmarg-43476, pmarg-foxl2, pmarg-54338 and pmarg-fem1-like. This 3-gene-pair expression ratio model strongly suggests only the implication of pmarg-foxl2 and pmarg-fem1-like in the sex inversion of P. margaritifera. This work provides the first histo-molecular model of P. margaritifera reproduction and a gene expression signature of its sexual pathway discriminating the male and female pathways. These represent useful tools for understanding and studying sex inversion, sex differentiation and sex determinism in this species and other related species for aquaculture purposes such as genetic selection programs. PMID:25815473

  16. MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis

    PubMed Central

    Tang, Kai; Zhang, Huiming; Mangrauthia, Satendra K.; Lei, Mingguang; Hsu, Chuan-Chih; Hou, Yueh-Ju; Wang, Chunguo; Li, Yan; Tao, W. Andy; Zhu, Jian-Kang

    2015-01-01

    DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation. PMID:26492035

  17. Novel Luciferase-Based Reporter System to Monitor Activation of ErbB2/Her2/neu Pathway Noninvasively During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Frank; Li Wenrong; Li Fang

    2011-01-01

    Purpose: To develop a split-luciferase-based reporter system that allows for noninvasive monitoring of activation of the Her2/neu pathway in vivo in a quantitative and sensitive manner. Methods and Materials: Fusion proteins of the ErbB2/Her2/neu receptor to the N-terminal fragment of luciferase and of its downstream binding partner Shc to the C-terminal fragment of luciferase have been engineered owing to the rationale that on activation and binding of the Her2 receptor molecule to Shc, luciferase function will be reconstituted. Thus, the resulting bioluminescence signals can serve as a surrogate measure of receptor activation. Results: We have shown that our reporter systemsmore » functions well in vitro in breast cancer cells and in vivo in xenograft tumors. In particular, the activities of Her2/neu in xenograft tumors could be monitored serially for an extended period after radiotherapy. Conclusions: We believe that the novel ErbB2/Her2/neu reporter we have presented is a powerful tool to study the biology of the Her2-neu pathway in vitro and in vivo. It should also facilitate the development and rapid evaluation of new Her2/neu-targeted therapeutic agents.« less

  18. Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway.

    PubMed

    Yang, Rong-Hua; Qi, Shao-Hai; Shu, Bin; Ruan, Shu-Bin; Lin, Ze-Peng; Lin, Yan; Shen, Rui; Zhang, Feng-Gang; Chen, Xiao-Dong; Xie, Ju-Lin

    2016-08-01

    Chronic, non-healing wounds are a major complication of diabetes. Recently, various cell therapies have been reported for promotion of diabetic wound healing. Epidermal stem cells (ESCs) are considered a powerful tool for tissue therapy. However, the effect and the mechanism of the therapeutic properties of ESCs in the diabetic wound healing are unclear. Herein, to determine the ability of ESCs to diabetic wound healing, a dorsal skin defect in a streptozotocin (STZ)-induced diabetes mellitus (DM) mouse model was used. ESCs were isolated from mouse skin. We found that both the mRNA and protein levels of a Notch ligand Jagged1 (Jag1), Notch1 and Notch target gene Hairy Enhancer of Split-1 (Hes1) were significantly increased at the wound margins. In addition, we observed that Jag1 was high expressed in ESCs. Overexpression of Jag1 promotes ESCs migration, whereas knockdown Jag1 resulted in a significant reduction in ESCs migration in vitro Importantly, Jag1 overexpression improves diabetic wound healing in vivo These results provide evidence that ESCs accelerate diabetic wound healing via the Notch signalling pathway, and provide a promising potential for activation of the Notch pathway for the treatment of diabetic wound. © 2016 The Author(s).

  19. Terahertz wave polarization beam splitter using a cascaded multimode interference structure.

    PubMed

    Li, Jiu-sheng; Liu, Han; Zhang, Le

    2014-08-01

    A terahertz wave polarization beam splitter, based on two cascaded multimode interference structures with different widths, is designed and numerically demonstrated. The numerical calculation results show that the designed polarization beam splitter can split transverse-electric (TE) and transverse-magnetic (TM)-polarized terahertz waves into different propagation directions with high efficiency over a frequency range from 6.40 to 6.50 THz. This polarization beam splitter shows more than a 22.06 dB extinction ratio for TE-polarization and a 31.65 dB extinction ratio for TM-polarization. Using such a polarization beam splitter, the whole length of the polarization beam splitter is reduced to about 1/12 that of a conventional design. This enables the polarization beam splitter to be used in terahertz wave integrated circuit fields.

  20. The structure of geopolymers - Theoretical studies

    NASA Astrophysics Data System (ADS)

    Koleżyński, Andrzej; Król, Magdalena; Żychowicz, Mikołaj

    2018-07-01

    This work presents the results of DFT and classical mechanics' calculations and theoretical analysis of geopolymer structure. The calculations were carried out using a bottom-up approach (from small oligomers to clusters with increasing size) for various Si:Al ratio. For all model structures after geometry optimization, respective IR spectra were simulated and compared with the experimental ones. The obtained results show that the concordance of simulated spectra with the experiment, for a given Si:Al ratio, increases with the size of the cluster and increasing local order. Moreover, the increase of the level of local disorder (structure "openness") results in significant band splitting, not observable in real geopolymers. This suggest that, in the case of real geopolymeric structures one can expect the presence of reasonably big, ordered structural fragments, analogous to zeolites.

  1. Quantifying the percentage of methane formation via acetoclastic and syntrophic acetate oxidation pathways in anaerobic digesters.

    PubMed

    Jiang, Ying; Banks, Charles; Zhang, Yue; Heaven, Sonia; Longhurst, Philip

    2018-01-01

    Ammonia concentration is one of the key factors influencing the methanogenic community composition and dominant methanogenic pathway in anaerobic digesters. This study adopted a radiolabelling technique using [2- 14 C] acetate to investigate the relationship between total ammonia nitrogen (TAN) and the methanogenic pathway. The radiolabelling experiments determined the ratio of 14 CO 2 and 14 CH 4 in the biogas which was used to quantitatively determine the percentage of CH 4 derived from acetoclastic and syntrophic acetate oxidation routes, respectively. This technique was performed on a selection of mesophilic digesters representing samples of low to high TAN concentrations (0.2-11.1gkg -1 wet weight). In high TAN digesters, the ratio between 14 CO 2 and 14 CH 4 was in the range 2.1-3.0; indicating 68-75% of methane was produced via the hydrogenotrophic route; whereas in low ammonia samples the ratio was 0.1-0.3, indicating 9-23% of methane was produced by the hydrogenotrophic route. These findings have been confirmed further by phylogenetic studies. Copyright © 2017. Published by Elsevier Ltd.

  2. Fano-like resonances in split concentric nanoshell dimers in designing negative-index metamaterials for biological-chemical sensing and spectroscopic purposes.

    PubMed

    Ahmadivand, Arash; Karabiyik, Mustafa; Pala, Nezih

    2015-05-01

    In this study, we investigated numerically the plasmon response of a dimer configuration composed of a couple of split and concentric Au nanoshells in a complex orientation. We showed that an isolated composition of two concentric split nanoshells could be tailored to support strong plasmon resonant modes in the visible wavelengths. After determining the accurate geometric dimensions for the presented antisymmetric nanostructure, we designed a dimer array that shows complex behavior during exposure to different incident polarizations. We verified that the examined dimer was able to support destructive interference between dark and bright plasmon modes, which resulted in a pronounced Fano-like dip. Observation of a Fano minimum in such a simple molecular orientation of subwavelength particles opens new avenues for employing this structure in designing various practical plasmonic devices. Depositing the final dimer in a strong coupling condition on a semiconductor metasurface and measuring the effective refractive index at certain wavelengths, we demonstrate that each one of dimer units can be considered a meta-atom due to the high aspect ratio in the geometric parameters. Using this method, by extending the number of dimers periodically and illuminating the structure, we examined the isotropic, polarization-dependent, and transmission behavior of the metamaterial configuration. Using numerical methods and calculating the effective refractive indices, we computed and sketched corresponding figure of merit over the transmission window, where the maximum value obtained was 42.3 for Si and 54.6 for gallium phosphide (GaP) substrates.

  3. Simultaneous dual contrast weighting using double echo rapid acquisition with relaxation enhancement (RARE) imaging.

    PubMed

    Fuchs, Katharina; Hezel, Fabian; Klix, Sabrina; Mekle, Ralf; Wuerfel, Jens; Niendorf, Thoralf

    2014-12-01

    This work proposes a dual contrast rapid acquisition with relaxation enhancement (RARE) variant (2in1-RARE), which provides simultaneous proton density (PD) and T2 * contrast in a single acquisition. The underlying concept of 2in1-RARE is the strict separation of spin echoes and stimulated echoes. This approach offers independent weighting of spin echoes and stimulated echoes. 2in1-RARE was evaluated in phantoms including signal-to-noise ratio (SNR) and point spread function assessment. 2in1-RARE was benchmarked versus coherent RARE and a split-echo RARE variant. The applicability of 2in1-RARE for brain imaging was demonstrated in a small cohort of healthy subjects (n = 10) and, exemplary, a multiple sclerosis patient at 3 Tesla as a precursor to a broader clinical study. 2in1-RARE enables the simultaneous acquisition of dual contrast weighted images without any significant image degradation and without sacrificing SNR versus split-echo RARE. This translates into a factor of two speed gain over multi-contrast, sequential split-echo RARE. A 15% broadening of the point spread function was observed in 2in1-RARE. T1 relaxation effects during the mixing time can be neglected for brain tissue. 2in1-RARE offers simultaneous acquisition of images of anatomical (PD) and functional (T2 *) contrast. It presents an alternative to address scan time constraints frequently encountered during sequential acquisition of T2 * or PD-weighted RARE. © 2013 Wiley Periodicals, Inc.

  4. Evaluation of the split cantilever beam for Mode 3 delamination testing

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.

    1989-01-01

    A test rig for testing a thick split cantilever beam for scissoring delamination (mode 3) fracture toughness was developed. A 3-D finite element analysis was conducted on the test specimen to determine the strain energy release rate, G, distribution along the delamination front. The virtual crack closure technique was used to calculate the G components resulting from interlaminar tension, GI, interlaminar sliding shear, GII, and interlaminar tearing shear, GIII. The finite element analysis showed that at the delamination front no GI component existed, but a GII component was present in addition to a GIII component. Furthermore, near the free edges, the GII component was significantly higher than the GIII component. The GII/GIII ratio was found to increase with delamination length but was insensitive to the beam depth. The presence of GII at the delamination front was verified experimentally by examination of the failure surfaces. At the center of the beam, where the failure was in mode 3, there was significant fiber bridging. However, at the edges of the beam where the failure was in mode 3, there was no fiber bridging and mode 2 shear hackles were observed. Therefore, it was concluded that the split cantilever beam configuration does not represent a pure mode 3 test. The experimental work showed that the mode 2 fracture toughness, GIIc, must be less than the mode 3 fracture toughness, GIIIc. Therefore, a conservative approach to characterizing mode 3 delamination is to equate GIIIc to GIIc.

  5. Mantle seismic anisotropy beneath NE China and implications for the lithospheric delamination hypothesis beneath the southern Great Xing'an range

    NASA Astrophysics Data System (ADS)

    Chen, Haichao; Niu, Fenglin; Obayashi, Masayuki; Grand, Stephen P.; Kawakatsu, Hitoshi; John Chen, Y.; Ning, Jieyuan; Tanaka, Satoru

    2017-08-01

    We measured shear wave splitting from SKS data recorded by the transcontinental NECESSArray in NE China to constrain lithosphere deformation and sublithospheric flows beneath the area. We selected several hundreds of high quality SKS/SKKS waveforms from 32 teleseismic earthquakes occurring between 09/01/2009 and 08/31/2011 recorded by 125 broadband stations. These stations cover a variety of tectonic terranes, including the Songliao basin, the Changbaishan mountain range and Zhangguancai range in the east, the Great Xing'an range in the west and the Yanshan orogenic belt in the southwest. We assumed each station is underlaid by a single anisotropic layer and employed a signal-to-noise ratio (SNR) weighted multi-event stacking method to estimate the two splitting parameters (the fast polarization direction φ, and delay time, δt) that gives the best fit to all the SKS/SKKS waveforms recorded at each station. Overall, the measured fast polarization direction lies more or less along the NW-SE direction, which significantly differs from the absolute plate motion direction, but is roughly consistent with the regional extension direction. This suggests that lithosphere deformation is likely the general cause of the observed seismic anisotropy. The most complicated anisotropic structure is observed beneath the southern Great Xing'an range and southwest Songliao basin. The observed large variations in splitting parameters and the seismic tomographic images of the area are consistent with ongoing lithospheric delamination beneath this region.

  6. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3−/NO2− reduction pathways in Shewanella loihica strain PV-4

    PubMed Central

    Yoon, Sukhwan; Cruz-García, Claribel; Sanford, Robert; Ritalahti, Kirsti M; Löffler, Frank E

    2015-01-01

    Denitrification and respiratory ammonification are two competing, energy-conserving NO3−/NO2− reduction pathways that have major biogeochemical consequences for N retention, plant growth and climate. Batch and continuous culture experiments using Shewanella loihica strain PV-4, a bacterium possessing both the denitrification and respiratory ammonification pathways, revealed factors that determine NO3−/NO2− fate. Denitrification dominated at low carbon-to-nitrogen (C/N) ratios (that is, electron donor-limiting growth conditions), whereas ammonium was the predominant product at high C/N ratios (that is, electron acceptor-limiting growth conditions). pH and temperature also affected NO3−/NO2− fate, and incubation above pH 7.0 and temperatures of 30 °C favored ammonium formation. Reverse-transcriptase real-time quantitative PCR analyses correlated the phenotypic observations with nirK and nosZ transcript abundances that decreased up to 1600-fold and 27-fold, respectively, under conditions favoring respiratory ammonification. Of the two nrfA genes encoded on the strain PV-4 genome, nrfA0844 transcription decreased only when the chemostat reactor received medium with the lowest C/N ratio of 1.5, whereas nrfA0505 transcription occurred at low levels (≤3.4 × 10−2 transcripts per cell) under all growth conditions. At intermediate C/N ratios, denitrification and respiratory ammonification occurred concomitantly, and both nrfA0844 (5.5 transcripts per cell) and nirK (0.88 transcripts per cell) were transcribed. Recent findings suggest that organisms with both the denitrification and respiratory ammonification pathways are not uncommon in soil and sediment ecosystems, and strain PV-4 offers a tractable experimental system to explore regulation of dissimilatory NO3−/NO2− reduction pathways. PMID:25350157

  7. Energy dependence of p¯/p ratio in p+p collisions

    NASA Astrophysics Data System (ADS)

    Singha, Subhash; Netrakanti, Pawan Kumar; Kumar, Lokesh; Mohanty, Bedangadas

    2010-10-01

    We compiled the experimentally measured p¯/p ratio at midrapidity in p+p collisions from s=23 to 7000 GeV and compared it to various mechanisms of baryon production as implemented in the pythia, phojet, and Heavy Ion Jet Interaction Generator (HIJING)/B-B¯ models. For the models studied with default settings, phojet has the best agreement with the measurements, pythia gives a higher value for s<200 GeV, and the ratios from HIJING/B-B¯ are consistently lower for all the s studied. A comparison of the data to different mechanisms of baryon production as implemented in pythia shows that through a suitable tuning of the suppression of diquark-antidiquark pair production in the color field relative to quark-antiquark production and allowing the diquarks to split according to the popcorn scheme, a fairly reasonable description of the measured p¯/p ratio for s<200 GeV is given. A comparison of the beam energy dependence of the p¯/p ratio in p+p and nucleus-nucleus (A + A) collisions at midrapidity shows that the baryon production is significantly more for A + A collisions relative to p+p collisions for s<200 GeV. We also carry out a phenomenological fit to the ybeam dependence of the p¯/p ratio.

  8. A simple integrated system for electrophysiologic recordings in animals

    PubMed Central

    Slater, Bernard J.; Miller, Neil R.; Bernstein, Steven L.; Flower, Robert W.

    2009-01-01

    This technical note describes a modification to a fundus camera that permits simultaneous recording of pattern electroretinograms (pERGs) and pattern visual evoked potentials (pVEPs). The modification consists of placing an organic light-emitting diode (OLED) in the split-viewer pathway of a fundus camera, in a plane conjugate to the subject’s pupil. In this way, a focused image of the OLED can be delivered to a precisely known location on the retina. The advantage of using an OLED is that it can achieve high luminance while maintaining high contrast, and with minimal degradation over time. This system is particularly useful for animal studies, especially when precise retinal positioning is required. PMID:19137347

  9. Materials for solar fuels and chemicals.

    PubMed

    Montoya, Joseph H; Seitz, Linsey C; Chakthranont, Pongkarn; Vojvodic, Aleksandra; Jaramillo, Thomas F; Nørskov, Jens K

    2016-12-20

    The conversion of sunlight into fuels and chemicals is an attractive prospect for the storage of renewable energy, and photoelectrocatalytic technologies represent a pathway by which solar fuels might be realized. However, there are numerous scientific challenges in developing these technologies. These include finding suitable materials for the absorption of incident photons, developing more efficient catalysts for both water splitting and the production of fuels, and understanding how interfaces between catalysts, photoabsorbers and electrolytes can be designed to minimize losses and resist degradation. In this Review, we highlight recent milestones in these areas and some key scientific challenges remaining between the current state of the art and a technology that can effectively convert sunlight into fuels and chemicals.

  10. Using histograms to introduce randomization in the generation of ensembles of decision trees

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick; Littau, David

    2005-02-22

    A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.

  11. [Metabolic disturbance of tryptophan-nicotinamide conversion pathway by putative endocrine disruptors, bisphenol A and styrene monomer].

    PubMed

    Fukuwatari, Tsutomu; Toriochi, Mai; Ohta, Mari; Sasaki, Ryuzo; Shibata, Katsumi

    2004-02-01

    Bisphenol A, a monomer of polycarbonate plastics, disturbed the conversion pathway of the amino acid tryptophan to the vitamin nicotinamide. The conversion ratio of tryptophan to nicotinamide was reduced to 1/15 by feeding a diet containing 1% bisphenol A. A putative disturbing reaction is kynurenine-->3-hydroxykynurenine, which is catalyzed by kynurenine monohydroxylase. This is an FAD-enzyme and requires NADPH as a coenzyme. Styrene monomer (1% addition to a normal diet) did not affect the food intake or the body weight, but slightly reduced the conversion ratio of tryptophan-nicotinamide.

  12. Do adjuvants add to the efficacy and tolerance of bowel preparations? A meta-analysis of randomized trials.

    PubMed

    Restellini, Sophie; Kherad, Omar; Menard, Charles; Martel, Myriam; Barkun, Alan N

    2018-02-01

    BACKGROUND AND STUDY AIMS : Recommendations on adjuvant use with bowel preparations remain disparate. We performed a meta-analysis determining the clinical impact of adding an adjuvant to polyethylene glycol (PEG), sodium phosphate, picosulfate (PICO), or oral sulfate solutions (OSS)-based regimens.  Systematic searches were made of MEDLINE, EMBASE, Scopus, CENTRAL and ISI Web of knowledge for randomized trials from January 1980 to April 2016 that assessed preparations with or without adjuvants, given in split and non-split dosing, and PEG high- (> 3 L) or low-dose (≤ 2 L) regimens. Bowel cleansing efficacy was the primary outcome. Secondary outcomes included patient willingness to repeat the procedure, and polyp and adenoma detection rates.  Of 3093 citations, 77 trials fulfilled the inclusion criteria. Overall, addition of an adjuvant compared with no adjuvant, irrespective of the type of preparation and mode of administration, yielded improvements in bowel cleanliness (odds ratio [OR] 1.23 [1.01 - 1.51]) without greater willingness to repeat (OR 1.40 [0.91 - 2.15]). Adjuvants combined with high-dose PEG significantly improved colon cleansing (OR 1.96 [1.32 - 2.94]). The odds for achieving adequate preparation with low-dose PEG with an adjuvant were not different to high-dose PEG alone (OR 0.95 [0.73 - 1.22]), but yielded improved tolerance (OR 3.22 [1.85 - 5.55]). However, split high-dose PEG yielded superior cleanliness to low-dose PEG with adjuvants (OR 2.53 [1.25 - 5.13]). No differences were noted for OSS and PICO comparisons, or for any products regarding polyp or adenoma detection rates.  Critical heterogeneity precludes firm conclusion on the impact of adjuvants with existing bowel preparations. Additional research is required to better characterize the methods of administration and resulting roles of adjuvants in an era of split-dosing. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Fracture patterns after bilateral sagittal split osteotomy of the mandibular ramus according to the Obwegeser/Dal Pont and Hunsuck/Epker modifications.

    PubMed

    Möhlhenrich, Stephan Christian; Kniha, Kristian; Peters, Florian; Ayoub, Nassim; Goloborodko, Evgeny; Hölzle, Frank; Fritz, Ulrike; Modabber, Ali

    2017-05-01

    The aim of this study was to compare the fracture patterns after sagittal split osteotomy according to Obwegeser/Dal Pont (ODP) and Hunsuck/Epker (HE), as well as to investigate the relationship between lateral bone cut ending or angle and the incidence of unfavorable/bad splits. Postoperative cone-beam computed tomograms of 124 splits according to ODP and 60 according to HE were analyzed. ODP led to 75.8% and HE led to 60% lingual fractures with mandibular foramen contact. Horizontal fractures were found in 9.7% and 6.7%, respectively, and unfavorable/bad splits were found in 11.3% and 10%, respectively. The lateral osteotomy angle was 106.22° (SD 12.03)° for bad splits and 106.6° (SD 13.12)° for favorable splits. Correlations were found between favorable fracture patterns and split modifications and between buccal ending of the lateral bone cut and bad splits (p < 0.001). No relationship was observed between split modifications (p = 0.792) or the osteotomy angle (p = 0.937) and the incidence of unfavorable/bad splits. Split modifications had no influence on the incidence of unfavorable/bad splits, but the buccal ending of the lateral bone cut did have an influence. More lingual fractures with mandibular foramen contact are expected with the ODP modification. The osteotomy angle did not differ between favorable and bad splits. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Clinical application of calculated split renal volume using computed tomography-based renal volumetry after partial nephrectomy: Correlation with technetium-99m dimercaptosuccinic acid renal scan data.

    PubMed

    Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo

    2017-06-01

    To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.

  15. Shape-Dependent Photocatalytic Activity of Hydrothermally Synthesized Cadmium Sulfide Nanostructures.

    PubMed

    Kundu, Joyjit; Khilari, Santimoy; Pradhan, Debabrata

    2017-03-22

    The effective surface area of the nanostructured materials is known to play a prime role in catalysis. Here we demonstrate that the shape of the nanostructured materials plays an equally important role in their catalytic activity. Hierarchical CdS microstructures with different morphologies such as microspheres assembled of nanoplates, nanorods, nanoparticles, and nanobelts are synthesized using a simple hydrothermal method by tuning the volume ratio of solvents, i.e., water or ethylenediamine (en). With an optimum solvent ratio of 3:1 water:en, the roles of other synthesis parameters such as precursor's ratio, temperature, and precursor combinations are also explored and reported here. Four selected CdS microstructures are used as photocatalysts for the degradation of methylene blue and photoelectrochemical water splitting for hydrogen generation. In spite of smaller effective surface area of CdS nanoneedles/nanorods than that of CdS nanowires network, the former exhibits higher catalytic activity under visible light irradiation which is ascribed to the reduced charge recombination as confirmed from the photoluminescence study.

  16. Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.

    PubMed

    Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua

    2012-05-01

    We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.

  17. New Insights into the Formation of the Blue Main Sequence in NGC 1850

    NASA Astrophysics Data System (ADS)

    Yang, Yujiao; Li, Chengyuan; Deng, Licai; de Grijs, Richard; Milone, Antonino P.

    2018-06-01

    Recent discoveries of bimodal main sequences (MSs) associated with young clusters (with ages ≲1 Gyr) in the Magellanic Clouds have drawn a lot of attention. One of the prevailing formation scenarios attributes these split MSs to a bimodal distribution in stellar rotation rates, with most stars belonging to a rapidly rotating population. In this scenario, only a small fraction of stars populating a secondary blue sequence are slowly or non-rotating stars. Here, we focus on the blue MS in the young cluster NGC 1850. We compare the cumulative number fraction of the observed blue-MS stars to that of the high-mass-ratio binary systems at different radii. The cumulative distributions of both populations exhibit a clear anti-correlation, characterized by a highly significant Pearson coefficient of ‑0.97. Our observations are consistent with the possibility that blue-MS stars are low-mass-ratio binaries, and therefore their dynamical disruption is still ongoing. High-mass-ratio binaries, on the other hand, are more centrally concentrated.

  18. Methanation process utilizing split cold gas recycle

    DOEpatents

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  19. Silicon photonic integrated circuit for fast and precise dual-comb distance metrology.

    PubMed

    Weimann, C; Lauermann, M; Hoeller, F; Freude, W; Koos, C

    2017-11-27

    We demonstrate an optical distance sensor integrated on a silicon photonic chip with a footprint of well below 1 mm 2 . The integrated system comprises a heterodyne receiver structure with tunable power splitting ratio and on-chip photodetectors. The functionality of the device is demonstrated in a synthetic-wavelength interferometry experiment using frequency combs as optical sources. We obtain accurate and fast distance measurements with an unambiguity range of 3.75 mm, a root-mean-square error of 3.4 µm and acquisition times of 14 µs.

  20. Twist-induced tuning in tapered fiber couplers.

    PubMed

    Birks, T A

    1989-10-01

    The power-splitting ratio of fused tapered single-mode fiber couplers can be reversibly tuned by axial twisting without affecting loss. The twist-tuning behavior of a range of different tapered couplers is described. A simple expression for twist-tuning can be derived by representing the effects of twist by a change in the refractive index profile. Good agreement between this expression and experimental results is demonstrated. Repeated tuning over tens of thousands of cycles is found not to degrade coupler performance, and a number of practical applications, including a freely tunable tapered coupler, are described.

  1. Equation of state and phase transformations study of Nd at ultra-high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akella, J.; Smith, G.S.; Weir, S.

    1991-10-01

    Neodymium was investigated to 96.0 GPa pressure in a diamond-anvil ell at room temperature. The observed structural sequence as a function of pressure is dhcp-fcc- six layered'' structure. In the diffraction pattern hexagonal doublets; notably 102, 006 and 100, 108; appear as single reflection when the c/a ratio is 4.899. However, when cc/a approaches 4.7, the splitting is clear. So far in this study, no monoclinic phase or tetragonal phase were observed. 1 fig., 18 refs.

  2. An Efficient Energy Management Strategy, Unique Power Split & Energy Distribution, Based on Calculated Vehicle Road Loads

    DTIC Science & Technology

    2012-08-01

    HMMWV for the current given inputs based on the current vehicle speed, acceleration pedal , and brake pedal . From this driver requested power at the...HMMWV engine, b) base HMMWV gear ratios of the 4 speed transmission, c) acceleration and brake pedal pressed for the hybrid vehicle and d) Torque...coefficient. µb: Threshold for detecting brake pedal pressed ? 2 tanE4FGH 2 tanE4 I [K ρ: Air mass density, ρ = ma/Va where ma is mass of air

  3. Optical signal splitting and chirping device modeling

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.

    2017-04-01

    This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.

  4. Fee Splitting among General Practitioners: A Cross-Sectional Study in Iran.

    PubMed

    Parsa, Mojtaba; Larijani, Bagher; Aramesh, Kiarash; Nedjat, Saharnaz; Fotouhi, Akbar; Yekaninejad, Mir Saeed; Ebrahimian, Nejatollah; Kandi, Mohamad Jafar

    2016-12-01

    Fee splitting is a process whereby a physician refers a patient to another physician or a healthcare facility and receives a portion of the charge in return. This survey was conducted to study general practitioners' (GPs) attitudes toward fee splitting as well as the prevalence, causes, and consequences of this process. This is a cross-sectional study on 223 general practitioners in 2013. Concerning the causes and consequences of fee splitting, an unpublished qualitative study was conducted by interviewing a number of GPs and specialists and the questionnaire options were the results of the information obtained from this study. Of the total 320 GPs, 247 returned the questionnaires. The response rate was 77.18%. Of the 247 returned questionnaires, 223 fulfilled the inclusion criteria. Among the participants, 69.1% considered fee splitting completely wrong and 23.2% (frequently or rarely) practiced fee splitting. The present study showed that the prevalence of fee splitting among physicians who had positive attitudes toward fee splitting was 4.63 times higher than those who had negative attitudes. In addition, this study showed that, compared to private hospitals, fee splitting is less practiced in public hospitals. The major cause of fee splitting was found to be unrealistic/unfair tariffs and the main consequence of fee splitting was thought to be an increase in the number of unnecessary patient referrals. Fee splitting is an unethical act, contradicts the goals of the medical profession, and undermines patient's best interest. In Iran, there is no code of ethics on fee splitting, but in this study, it was found that the majority of GPs considered it unethical. However, among those who had negative attitudes toward fee splitting, there were physicians who did practice fee splitting. The results of the study showed that physicians who had a positive attitude toward fee splitting practiced it more than others. Therefore, if physicians consider fee splitting unethical, its rate will certainly decrease. The study claims that to decrease such practice, the healthcare system has to revise the tariffs.

  5. Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format

    PubMed Central

    2014-01-01

    Background The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. Results A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. Conclusions A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome. PMID:24987490

  6. Update 2014: advances to optimize 6-mercaptopurine and azathioprine to reduce toxicity and improve efficacy in the management of IBD.

    PubMed

    Amin, Jaimin; Huang, Brian; Yoon, Jessica; Shih, David Q

    2015-02-01

    The thiopurine drugs, 6-mercaptopurine (6-MP) and azathioprine (AZA), remain as a mainstay therapy in inflammatory bowel disease (IBD). Differences in metabolism of these drugs lead to individual variation in thiopurine metabolite levels that can determine its therapeutic efficacy and development of adverse reactions. In this update, we will review thiopurine metabolic pathway along with the up-to-date approaches in administering thiopurine medications based on the current literature. A search of the PubMed database by 2 independent reviewers identifying 98 articles evaluating thiopurine metabolism and IBD management. Monitoring thiopurine metabolites can assist physicians in optimizing 6-MP and AZA therapy in treating patients with IBD. Of the dosing strategies reviewed, we found evidence for monitoring thiopurine metabolite level, use of allopurinol with thiopurine, use of mesalamine with thiopurine, combination therapy with thiopurine and anti-tumor necrosis factor agents, and split dosing of AZA or 6-MP to optimize thiopurine therapy and minimize adverse effects in IBD. Based on the currently available literature, various dosing strategies to improve therapeutic response and reduce adverse reactions can be considered, including use of allopurinol with thiopurine, use of mesalamine with thiopurine, combination therapy with thiopurine and anti-tumor necrosis factor agents, and split dosing of thiopurine.

  7. Insights into archaeal evolution and symbiosis from the genomes of a Nanoarchaeon and its crenarchaeal host from Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podar, Mircea; Graham, David E; Reysenbach, Anna-Louise

    A hyperthemophilic member of the Nanoarchaeota from Obsidian Pool, a thermal feature in Yellowstone National Park was characterized using single cell isolation and sequencing, together with its putative host, a Sulfolobales archaeon. This first representative of a non-marine Nanoarchaeota (Nst1) resembles Nanoarchaeum equitans by lacking most biosynthetic capabilities, the two forming a deep-branching archaeal lineage. However, the Nst1 genome is over 20% larger, encodes a complete gluconeogenesis pathway and a full complement of archaeal flagellum proteins. Comparison of the two genomes suggests that the marine and terrestrial Nanoarchaeota lineages share a common ancestor that was already a symbiont of anothermore » archaeon. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. The two distinct Nanoarchaeota-host genomic data sets offer insights into the evolution of archaeal symbiosis and parasitism and will further enable studies of the cellular and molecular mechanisms of these relationships.« less

  8. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous stable isotope measurement and chemical composition analysis LASS-ICP-MS in combination with MC-ICP-MS is the method of choice. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Pathways to Adolescents' Flourishing: Linking Self-Control Skills and Positivity Ratio through Social Support

    ERIC Educational Resources Information Center

    Orkibi, Hod; Hamama, Liat; Gavriel-Fried, Belle; Ronen, Tammie

    2018-01-01

    This study focused on the ability to experience a high ratio of positive to negative emotions in 807 Israeli adolescents aged 12 to 15 years (50% girls). While considering possible gender differences, we tested a model positing that adolescents' self-control skills would link to their positivity ratio and indirectly through perceived social…

  10. Pathway governing nitrogen removal in artificially aerated constructed wetlands: Impact of aeration mode and influent chemical oxygen demand to nitrogen ratios.

    PubMed

    Hou, Jie; Wang, Xin; Wang, Jie; Xia, Ling; Zhang, Yiqing; Li, Dapeng; Ma, Xufa

    2018-06-01

    This study aimed at assessing the influence of aeration mode and influent COD/N ratio on nitrogen removal in constructed wetlands (CWs). The results showed that a simultaneous partial nitrification, anammox and denitrification (SNAD) process was established in the intermittent aerated V1. While nitrogen removal pathway gradually changed from partial nitrification-denitrification to complete nitrification-denitrification along with reducing COD/N ratio in the continuous limited aerated V2. Effective inhibition of NOBs under intermittent aeration conditions, good retention of anammox bacteria biomass and much faster depletion of COD prior to substantial NH 4 + -N conversion jointly led to the successful achievement of stable SNDA process with elevated influent COD/N ratios in V1. Furthermore, the presence of SNAD ensured a robust ammonium (84-92%) and TN (80-91%) removal efficiency in V1 under varying COD loading rates. In contrast, the TN removal efficiency decreased rapidly along with the reducing influent COD/N ratios in V2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Photocatalytic water splitting over titania supported copper and nickel oxide in photoelectrochemical cell; optimization of photoconversion efficiency

    NASA Astrophysics Data System (ADS)

    Muti Mohamed, Norani; Bashiri, Robabeh; Kait, Chong Fai; Sufian, Suriati

    2018-04-01

    we investigated the influence of fluctuating the preparation variables of TiO2 on the efficiency of photocatalytic water splitting in photoelectrochemical (PEC) cell. Hydrothermal associated sol-gel technique was applied to synthesis modified TiO2 with nickel and copper oxide. The variation of water (mL), acid (mL) and total metal loading (%) were mathematically modelled using central composite design (CCD) from the response surface method (RSM) to explore the single and combined effects of parameters on the system performance. The experimental data were fitted using quadratic polynomial regression model from analysis of variance (ANOVA). The coefficient of determination value of 98% confirms the linear relationship between the experimental and predicted values. The amount of water had maximum effect on the photoconversion efficiency due to a direct effect on the crystalline and the number of defects on the surface of photocatalyst. The optimal parameter ratios with maximum photoconversion efficiency were 16 mL, 3 mL and 5 % for water, acid and total metal loading, respectively.

  12. Overall water splitting on (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution photocatalyst: relationship between physical properties and photocatalytic activity.

    PubMed

    Maeda, Kazuhiko; Teramura, Kentaro; Takata, Tsuyoshi; Hara, Michikazu; Saito, Nobuo; Toda, Kenji; Inoue, Yasunobu; Kobayashi, Hisayoshi; Domen, Kazunari

    2005-11-03

    The physical and photocatalytic properties of a novel solid solution between GaN and ZnO, (Ga(1-x)Zn(x))(N(1-x)O(x)), are investigated. Nitridation of a mixture of Ga(2)O(3) and ZnO at 1123 K for 5-30 h under NH(3) flow results in the formation of a (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution with x = 0.05-0.22. With increasing nitridation time, the zinc and oxygen concentrations decrease due to reduction of ZnO and volatilization of zinc, and the crystallinity and band gap energy of the product increase. The highest activity for overall water splitting is obtained for (Ga(1-x)Zn(x))(N(1-x)O(x)) with x = 0.12 after nitridation for 15 h. The crystallinity of the catalyst is also found to increase with increasing the ratio of ZnO to Ga(2)O(3) in the starting material, resulting in an increase in activity.

  13. Singlet-triplet splittings and their relevance to the spin-dependent exciton formation in light-emitting polymers: an EOM/CCSD study.

    PubMed

    Chen, Liping; Zhu, Lingyun; Shuai, Zhigang

    2006-12-21

    By employing the coupled-cluster equation of motion method (EOM/CCSD) for excited-state structures, we have investigated the structure dependence of the singlet and triplet exciton splittings, through extensive calculations for polythiophene (PT), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(thienylenevinylene) (PTV), polyparaphenylene vinylene (PPV), MEHPPV, polyparaphenylene ethylene (PPE), polyfluorene (PFO), and ladder-type polyparaphenylene (mLPPP). The results for the polymer are extrapolated through computations for the oligomers with increasing length. Recent investigations have been quite controversial about whether the internal quantum efficiency of electroluminescence could be higher than the 25% spin statistics limit or not in polymeric materials. Using a simple relationship between the exciton formation rate and the excitation energy level, we have discussed the material-dependent ratios of singlet and triplet exciton formation, which are in good agreement with the magnetic-field resonance detected transient spectroscopy measurement by Wohlgenannt et al. for a series of electronic polymers. This provides another piece of evidence to support the view that the internal quantum efficiency for conjugated polymers can exceed the 25% limit.

  14. Image splitting and remapping method for radiological image compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.

    1990-07-01

    A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.

  15. Photocatalytic Water Splitting for O2 Production under Visible Light Irradiation Using NdVO4-V2O5 Hybrid Powders

    PubMed Central

    Chiang, Tzu Hsuan; Chen, Tso-Ming

    2017-01-01

    The study investigated photocatalytic water splitting for O2 production under visible light irradiation using neodymium vanadium oxide (NdVO4) and vanadium oxide (V2O5) hybrid powders. The results in a sacrificial agent of 0.01 M AgNO3 solution were obtained, and the highest photocatalytic O2 evolution was 2.63 μmol/h, when the hybrid powders were prepared by mixing Nd and V at a volume ratio of 1:3 at a calcination temperature of 350 °C for 1 h. The hybrid powders were synthesized by neodymium nitrate and ammonium metavanadate using the glycothermal method in ethylene glycol at 120 °C for 1 h. The hybrid powders consisted of two shapes, NdVO4 nanoparticles and the cylindrical V2O5 particles, and they possessed the ability for photocatalytic oxygen (O2) evolution during irradiation with visible light. The band gaps and structures of the hybrid powders were analyzed using UV-visible spectroscopy and transmission electron microscopy. PMID:28772692

  16. An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1982-01-01

    The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.

  17. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Zhang, Limu; Xing, Hongguang; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-07-01

    Highly-compact devices capable of beam splitting are intriguing for a broad range of photonic applications. In this work, we report on the fabrication of optical waveguide splitters with rectangular cladding geometry in a Ti:Sapphire crystal by femtosecond laser inscription. Y-splitters are fabricated with 30 μm × 15 μm and 50 μm × 25 μm input ends, corresponding to two 15 μm × 15 μm and 25 μm × 25 μm output ends, respectively. The full branching angle θ between the two output arms are changing from 0.5° to 2°. The performances of the splitters are characterized at 632.8 nm and 1064 nm, showing very good properties including symmetrical output ends, single-mode guidance, equalized splitting ratios, all-angle-polarization light transmission and intact luminescence features in the waveguide cores. The realization of these waveguide splitters with good performances demonstrates the potential of such promising devices in complex monolithic photonic circuits and active optical devices such as miniature tunable lasers.

  18. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications

    NASA Astrophysics Data System (ADS)

    Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2017-06-01

    We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.

  19. Insight into the split and asymmetry of charge distribution in biased M-structure superlattice

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Bi, Han; Zhao, Yunhao; Zhao, Xuebing; Han, Xi; Wang, Guowei; Xu, Yingqiang; Li, Yuesheng; Che, Renchao

    2017-07-01

    The charge distribution in real space of an insertion variant based on an InAs/GaSb superlattice for an infrared detector is illustrated by in situ electron microscopy. The localization split of positive charge can be directly observed in the InAs/GaSb/AlSb/GaSb superlattice (M-structure) rather than in the InAs/GaSb superlattice. With the applied bias increasing from 0 to 4.5 V, the double peaks of positive charge density become asymmetrical gradually, with the peak integral ratio ranging from 1.13 to 2.54. Simultaneously, the negative charges move along the direction of the negative electric field. Without inserting the AlSb layer, the charge inversion occurs in both the hole wells and the electron wells of the InAs/GaSb superlattice under high bias. Such a discrepancy between the M-structure superlattice and the traditional superlattice suggests an effective reduction of tunneling probability of the M-structure design. Our result is of great help to understand the carrier immigration mechanism of the superlattice-based infrared detector.

  20. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses.

    PubMed

    Azizan, Kamalrul Azlan; Ressom, Habtom W; Mendoza, Eduardo R; Baharum, Syarul Nataqain

    2017-01-01

    Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13 C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis ( r ) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis , in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis . Overall, the integration of systematic analysis of amino acids and flux ratio analysis provides a systems-level understanding of how L. lactis regulates central metabolism under various conditions.

  1. Ab initio elastic properties of talc from 0 to 12 GPa: Interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure

    NASA Astrophysics Data System (ADS)

    Mainprice, David; Le Page, Yvon; Rodgers, John; Jouanna, Paul

    2008-10-01

    Talc is a hydrous magnesium rich layered silicate that is widely disseminated in the Earth from the seafloor to over 100 km depth, in ultra-high pressure metamorphism of oceanic crust. In this paper we determine the single crystal elastic constants at pressures from 0 to 12 GPa of talc triclinic ( C 1¯) and monoclinic (C2/ c) polytypes using ab initio methods. We find that talc has an extraordinarily high elastic anisotropy at zero pressure that reduces with increasing pressure. The exceptional anisotropy is complemented by a negative Poisson's ratio for many directions in crystal space. Calculations show that talc is not only one of very few common minerals to exhibit auxetic behaviour, but the magnitude of this effect may be the largest reported so far for a mineral. The compression (Vp) and shear (Vs) wave velocity anisotropy is 80% and 85% for the triclinic polytype. At pressures where talc is known be stable in the Earth (up to 5 GPa) the Vp and Vs anisotropy is reduced to about 40% for both velocities, which is still a very high value. Vp is slow parallel to the c-axis and fast perpendicular to it. This remains unchanged with increasing pressure and is observed in both polytypes. The shear wave splitting (difference between fast and slow S-wave velocities) at low pressure has high values in the plane normal to the c-axis, with a maximum near the a*-axis in the triclinic and the b-axis in the monoclinic polytype. The c-axis is the direction of minimum splitting. The pattern of shear wave splitting does not change significantly with pressure. The volume fraction of talc varies between 11 and 41% for hydrated mantle rocks, but the lack of data on the crystallographic preferred orientation (CPO) precludes a detailed analysis of the impact of talc on seismic anisotropy in subduction zones. However, it is highly likely that CPO can easily develop in zones of deformation due to the platy habit of talc crystals. For random aggregates of talc, the isotropic Vp, Vs and Vp/Vs ratio have significantly lower values than those of antigorite and may explain low-velocity regions in the mantle wedge. Vp/Vs ratios are more complex in anisotropic media because there are fast and slow S-waves, resulting in Vp/Vs1 and Vp/Vs2 ratios for every propagation direction, making interpretation difficult in deformed polycrystalline talc with a CPO. Talc on the subduction plate boundary can strongly influence guided wave velocity as CPO would develop in this region of intense shearing. The very low coefficient of friction (< 0.1) of talc above 100 °C could also explain silent earthquakes at shallow depths ( ca 30 km) along the subduction plate boundaries, frequently responsible for tsunami.

  2. Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root

    NASA Astrophysics Data System (ADS)

    Virginie, Baptiste; Andrea, Tommasi

    2014-05-01

    We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities within the cratonic mantle. The fastest P and S2 waves propagation direction and the polarization of fast split shear wave (S1) are always subparallel to olivine [100] axes maximum concentration, which marks the lineation (fossil flow direction). Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P-wave azimuthal anisotropy (AVp) ranges between 2.5 and 10.2% and the maximum S-wave polarization anisotropy (AVs), between 2.7 and 8%. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns, mainly in the apparent isotropy directions for shear wave splitting. Seismic properties averaged over 20 km thick depth sections are, therefore, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh (SV) and Love (SH) waves for 5 end-member orientations of the foliation and lineation. Comparison to seismic anisotropy data in the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies and the low azimuthal anisotropy with SH faster than SV measured using surface waves are best explained by a homogeneously dipping (45°) foliation and lineation in the cratonic mantle lithosphere. Laterally or vertically varying foliation and lineation orientations with a dominantly NW-SE trend might also explain the low measured anisotropies, but this model should also result in backazimuthal variability of the SKS splitting data, not reported in the seismological data. The strong compositional heterogeneity of the Kaapvaal peridotite xenoliths results in up to 3% variation in density and in up to 2.3% variation of Vp, Vs, and Vp/Vs ratio. Fe depletion by melt extraction increases Vp and Vs, but decreases the Vp/Vs ratio and density. Orthopyroxene enrichment due to metasomatism decreases the density and Vp, strongly reducing the Vp/Vs ratio. Garnet enrichment, which was also attributed to metasomatism, increases the density, and in a lesser extent Vp and the Vp/Vs ratio. Comparison of density and seismic velocity profiles calculated using the xenoliths' compositions and equilibration conditions to seismological data in the Kaapvaal highlights that: (i) the thickness of the craton is underestimated in some seismic studies and reaches at least 180 km, (ii) the deep sheared peridotites represent very local modifications caused and oversampled by kimberlites, and (iii) seismological models probably underestimate the compositional heterogeneity in the Kaapvaal mantle root, which occurs at a scale much smaller than the one that may be sampled seismologically.

  3. Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root

    NASA Astrophysics Data System (ADS)

    Baptiste, V.; Tommasi, A.

    2014-01-01

    We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal-preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities within the cratonic mantle. The fastest P and S2 wave propagation directions and the polarization of fast split shear waves (S1) are always subparallel to olivine [100] axes of maximum concentration, which marks the lineation (fossil flow direction). Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P wave azimuthal anisotropy (AVp) ranges between 2.5 and 10.2% and the maximum S wave polarization anisotropy (AVs), between 2.7 and 8%. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns, mainly in the apparent isotropy directions for shear wave splitting. Seismic properties averaged over 20 km-thick depth sections are, therefore, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh (SV) and Love (SH) waves for five endmember orientations of the foliation and lineation. Comparison to seismic anisotropy data from the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies, and the low azimuthal anisotropy with with the horizontally polarized S waves (SH) faster than the vertically polarized S wave (SV) measured using surface waves are best explained by homogeneously dipping (45°) foliations and lineations in the cratonic mantle lithosphere. Laterally or vertically varying foliation and lineation orientations with a dominantly NW-SE trend might also explain the low measured anisotropies, but this model should also result in backazimuthal variability of the SKS splitting data, not reported in the seismological data. The strong compositional heterogeneity of the Kaapvaal peridotite xenoliths results in up to 3% variation in density and in up to 2.3% variation of Vp, Vs, and Vp / Vs ratio. Fe depletion by melt extraction increases Vp and Vs, but decreases the Vp / Vs ratio and density. Orthopyroxene enrichment due to metasomatism decreases the density and Vp, strongly reducing the Vp / Vs ratio. Garnet enrichment, which was also attributed to metasomatism, increases the density, and in a lesser extent Vp and the Vp / Vs ratio. Comparison of density and seismic velocity profiles calculated using the xenoliths' compositions and equilibration conditions to seismological data in the Kaapvaal highlights that (i) the thickness of the craton is underestimated in some seismic studies and reaches at least 180 km, (ii) the deep sheared peridotites represent very local modifications caused and oversampled by kimberlites, and (iii) seismological models probably underestimate the compositional heterogeneity in the Kaapvaal mantle root, which occurs at a scale much smaller than the one that may be sampled seismologically.

  4. Pharmaceutical counselling about different types of tablet-splitting methods based on the results of weighing tests and mechanical development of splitting devices.

    PubMed

    Somogyi, O; Meskó, A; Csorba, L; Szabó, P; Zelkó, R

    2017-08-30

    The division of tablets and adequate methods of splitting them are a complex problem in all sectors of health care. Although tablet-splitting is often required, this procedure can be difficult for patients. Four tablets were investigated with different external features (shape, score-line, film-coat and size). The influencing effect of these features and the splitting methods was investigated according to the precision and "weight loss" of splitting techniques. All four types of tablets were halved by four methods: by hand, with a kitchen knife, with an original manufactured splitting device and with a modified tablet splitter based on a self-developed mechanical model. The mechanical parameters (harness and friability) of the products were measured during the study. The "weight loss" and precision of splitting methods were determined and compared by statistical analysis. On the basis of the results, the external features (geometry), the mechanical parameters of tablets and the mechanical structure of splitting devices can influence the "weight loss" and precision of tablet-splitting. Accordingly, a new decision-making scheme was developed for the selection of splitting methods. In addition, the skills of patients and the specialties of therapy should be considered so that pharmaceutical counselling can be more effective regarding tablet-splitting. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Changes in estrogen receptor signaling alters the timekeeping system in male mice.

    PubMed

    Blattner, Margaret S; Mahoney, Megan M

    2015-11-01

    Circadian rhythms are modulated by steroid hormones; however, the mechanisms of this action are not fully understood, particularly in males. In females estradiol regulates activity level, pattern of expression, and free running period (tau). We tested the hypothesis that activity level and distribution in male mice includes both classical and "non-classical" actions of estrogens at the estrogen receptor subtype 1 (ESR1). We used transgenic mice with mutations in their estrogen response pathways: ESR1 knock-out (ERKO) mice lack the ability to respond to estrogens via ESR1. "Non-classical" estrogen receptor knock-in (NERKI) mice have an inserted ESR1 receptor with a mutation in the estrogen-response-element binding domain, allowing activation via non-genomic and second messenger pathways. Gonadectomized male NERKI, ERKO, and wildtype (WT) littermates were given oil, or low or high dose estradiol and daily activity parameters were quantified. Estradiol shortened the ratio of activity in the light relative to dark (LD ratio), shortened tau, advanced the time of activity onset, and altered responsiveness to light cues administered in the late subjective night, suggesting modulation by an ESR1-independent mechanism. Estradiol treatment in NERKI but not WT males altered the timing of activity onset, LD ratio, and the behavioral response to light cues. These results may represent disruptions in the balance of genomic/nongenomic or ESR1/ESR2 signaling pathways. We also found a significant genotype effect on total activity, LD ratio, tau, and activity duration. These data provide new information about the role of ESR1-dependent and independent signaling pathways on the timekeeping system in male mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Time series evaluation of an intervention to increase statin tablet splitting by general practitioners

    PubMed Central

    Polinski, Jennifer M.; Schneeweiss, Sebastian; Maclure, Malcolm; Marshall, Blair; Ramsden, Samuel; Dormuth, Colin

    2011-01-01

    Background Tablet splitting, in which a higher-dose tablet is split to get two doses, reduces patients’ drug costs. Statins can be split safely. General practitioners (GPs) may not direct their patients to split statins because of safety concerns or unawareness of costs. Medical chart inserts provide cost-effective education to physicians. We evaluated whether providing GPs with statin splitting chart inserts would increase splitting rates and identified predictors of splitting. Methods In 2005–2006, we faxed a statin chart insert to British Columbia GPs with a request for a telephone interview. Consenting GPs were mailed 3 statin chart inserts and interviewed by phone (the intervention). In an interrupted time series, we compared monthly rates of statin splitting prescriptions among intervention and non-intervention GPs before, during, and after the intervention. In multivariate logistic regressions accounting for patient clustering, predictors of splitting included physician and patient demographics and the specific statin prescribed. Results Of 5,051 GPs reached, 282 (6%) agreed to the intervention. Before the intervention, GPs’ splitting rate was 2.6%; after, intervention GPs’ splitting rate was 7.5%, non-intervention GPs’ was 4.4%. Intervention GPs were 1.68 (95% CI 1.12–2.53) times more likely to prescribe splitting after the intervention than were non-intervention GPs. Other predictors were a patient’s female sex (OR=1.26, 95% CI 1.18–1.34), lower patient income (OR=1.33, 95% CI 1.18–1.34), and no drug insurance (OR=1.89, 95% CI 1.69–2.04). Interpretation An inexpensive intervention was effective in producing a sustained increase in GPs’ splitting rate during 22 months of observed follow-up. Expanding statin splitting education to all GPs could reduce prescription costs for many patients and payors. PMID:21497707

  7. Generalized field-splitting algorithms for optimal IMRT delivery efficiency.

    PubMed

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Ranka, Sanjay; Palta, Jatinder

    2007-09-21

    Intensity-modulated radiation therapy (IMRT) uses radiation beams of varying intensities to deliver varying doses of radiation to different areas of the tissue. The use of IMRT has allowed the delivery of higher doses of radiation to the tumor and lower doses to the surrounding healthy tissue. It is not uncommon for head and neck tumors, for example, to have large treatment widths that are not deliverable using a single field. In such cases, the intensity matrix generated by the optimizer needs to be split into two or three matrices, each of which may be delivered using a single field. Existing field-splitting algorithms used the pre-specified arbitrary split line or region where the intensity matrix is split along a column, i.e., all rows of the matrix are split along the same column (with or without the overlapping of split fields, i.e., feathering). If three fields result, then the two splits are along the same two columns for all rows. In this paper we study the problem of splitting a large field into two or three subfields with the field width as the only constraint, allowing for an arbitrary overlap of the split fields, so that the total MU efficiency of delivering the split fields is maximized. Proof of optimality is provided for the proposed algorithm. An average decrease of 18.8% is found in the total MUs when compared to the split generated by a commercial treatment planning system and that of 10% is found in the total MUs when compared to the split generated by our previously published algorithm.

  8. Alignment, vibronic level splitting, and coherent coupling effects on the pump-probe polarization anisotropy.

    PubMed

    Smith, Eric R; Jonas, David M

    2011-04-28

    The pump-probe polarization anisotropy is computed for molecules with a nondegenerate ground state, two degenerate or nearly degenerate excited states with perpendicular transition dipoles, and no resonant excited-state absorption. Including finite pulse effects, the initial polarization anisotropy at zero pump-probe delay is predicted to be r(0) = 3/10 with coherent excitation. During pulse overlap, it is shown that the four-wave mixing classification of signal pathways as ground or excited state is not useful for pump-probe signals. Therefore, a reclassification useful for pump-probe experiments is proposed, and the coherent anisotropy is discussed in terms of a more general transition dipole and molecular axis alignment instead of experiment-dependent ground- versus excited-state pathways. Although coherent excitation enhances alignment of the transition dipole, the molecular axes are less aligned than for a single dipole transition, lowering the initial anisotropy. As the splitting between excited states increases beyond the laser bandwidth and absorption line width, the initial anisotropy increases from 3/10 to 4/10. Asymmetric vibrational coordinates that lift the degeneracy control the electronic energy gap and off-diagonal coupling between electronic states. These vibrations dephase coherence and equilibrate the populations of the (nearly) degenerate states, causing the anisotropy to decay (possibly with oscillations) to 1/10. Small amounts of asymmetric inhomogeneity (2 cm(-1)) cause rapid (130 fs) suppression of both vibrational and electronic anisotropy beats on the excited state, but not vibrational beats on the ground electronic state. Recent measurements of conical intersection dynamics in a silicon napthalocyanine revealed anisotropic quantum beats that had to be assigned to asymmetric vibrations on the ground electronic state only [Farrow, D. A.; J. Chem. Phys. 2008, 128, 144510]. Small environmental asymmetries likely explain the observed absence of excited-state asymmetric vibrations in those experiments.

  9. Unraveling the Nature of Active Sites in Ethanol Electro-oxidation by Site-Specific Marking of a Pt Catalyst with Isotope-Labeled 13CO.

    PubMed

    Farias, Manuel J S; Cheuquepán, William; Tanaka, Auro A; Feliu, Juan M

    2018-03-15

    This works deals with the identification of preferential site-specific activation at a model Pt surface during a multiproduct reaction. The (110)-type steps of a Pt(332) surface were selectively marked by attaching isotope-labeled 13 CO molecules to them, and ethanol oxidation was probed by in situ Foureir transfrom infrared spectroscopy in order to precisely determine the specific sites at which CO 2 , acetic acid, and acetaldehyde were preferentially formed. The (110) steps were active for splitting the C-C bond, but unexpectedly, we provide evidence that the pathway of CO 2 formation was preferentially activated at (111) terraces, rather than at (110) steps. Acetaldehyde was formed at (111) terraces at potentials comparable to those for CO 2 formation also at (111) terraces, while the acetic acid formation pathway became active only when the (110) steps were released by the oxidation of adsorbed 13 CO, at potentials higher than for the formation of CO 2 at (111) terraces of the stepped surface.

  10. Induction of the SHARP-2 mRNA level by insulin is mediated by multiple signaling pathways.

    PubMed

    Kanai, Yukiko; Asano, Kosuke; Komatsu, Yoshiko; Takagi, Katsuhiro; Ono, Moe; Tanaka, Takashi; Tomita, Koji; Haneishi, Ayumi; Tsukada, Akiko; Yamada, Kazuya

    2017-02-01

    The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor which represses transcription of the rat phosphoenolpyruvate carboxykinase gene. In this study, a regulatory mechanism of the SHARP-2 mRNA level by insulin was analyzed. Insulin rapidly induced the level of SHARP-2 mRNA. This induction was blocked by inhibitors for phosphoinositide 3-kinase (PI 3-K), protein kinase C (PKC), and mammalian target of rapamycin (mTOR), actinomycin D, and cycloheximide. Whereas an adenovirus infection expressing a dominant negative form of atypical PKC lambda (aPKCλ) blocked the insulin-induction of the SHARP-2 mRNA level, insulin rapidly activated the mTOR. Insulin did not enhance transcriptional activity from a 3.7 kb upstream region of the rat SHARP-2 gene. Thus, we conclude that insulin induces the expression of the rat SHARP-2 gene at the transcription level via both a PI 3-K/aPKCλ- and a PI 3-K/mTOR- pathways and that protein synthesis is required for this induction.

  11. Stable-Carbon Isotopic Composition of Maple Sap and Foliage 1

    PubMed Central

    Leavitt, Steven W.; Long, Austin

    1985-01-01

    The 13C/12C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and 13C/12C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the 13C/12C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose→glucose→cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The 13C/12C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season. PMID:16664259

  12. Stable-carbon isotopic composition of maple sap and foliage.

    PubMed

    Leavitt, S W; Long, A

    1985-06-01

    The (13)C/(12)C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and (13)C/(12)C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the (13)C/(12)C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose-->glucose-->cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The (13)C/(12)C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season.

  13. A socio-economic hypothesis for lower birth sex ratios at racial, national and global levels.

    PubMed

    Grech, Victor

    2018-01-01

    The sex ratio at birth may be depressed by a variety of events or conditions due to an excess of male foetal losses. Evidence is accumulating that observed differences in this ratio between races, nations and even at regional global level, may be due to socio-economic stress. This review summarises findings pertaining to Blacks in the United States, and to a global United Nations dataset, as well as to other smaller studies. Extant evidence reinforces the theory that chronic socio-economic stress may be the reason for a lower birth sex ratio at racial, national and global levels. While innate periconceptual and gestational (e.g. hormonal) racial differences have been cited as possible causes for these M/T differences, this may be a mechanism/pathway and not the actual cause for lower M/T. Stress may, however, act by using hormonal pathways to effect the observed M/T disparities. Copyright © 2017. Published by Elsevier B.V.

  14. Sex investment ratios in eusocial Hymenoptera support inclusive fitness theory.

    PubMed

    Bourke, A F G

    2015-11-01

    Inclusive fitness theory predicts that sex investment ratios in eusocial Hymenoptera are a function of the relatedness asymmetry (relative relatedness to females and males) of the individuals controlling sex allocation. In monogynous ants (with one queen per colony), assuming worker control, the theory therefore predicts female-biased sex investment ratios, as found in natural populations. Recently, E.O. Wilson and M.A. Nowak criticized this explanation and presented an alternative hypothesis. The Wilson-Nowak sex ratio hypothesis proposes that, in monogynous ants, there is selection for a 1 : 1 numerical sex ratio to avoid males remaining unmated, which, given queens exceed males in size, results in a female-biased sex investment ratio. The hypothesis also asserts that, contrary to inclusive fitness theory, queens not workers control sex allocation and queen-worker conflict over sex allocation is absent. Here, I argue that the Wilson-Nowak sex ratio hypothesis is flawed because it contradicts Fisher's sex ratio theory, which shows that selection on sex ratio does not maximize the number of mated offspring and that the sex ratio proposed by the hypothesis is not an equilibrium for the queen. In addition, the hypothesis is not supported by empirical evidence, as it fails to explain 'split' (bimodal) sex ratios or data showing queen and worker control and ongoing queen-worker conflict. By contrast, these phenomena match predictions of inclusive fitness theory. Hence, the Wilson-Nowak sex ratio hypothesis fails both as an alternative hypothesis for sex investment ratios in eusocial Hymenoptera and as a critique of inclusive fitness theory. © 2015 The Author. Journal of Evolutionary Biology Published by John Wiley & Sons Ltd on Behalf of European Society for Evolutionary Biology.

  15. Bad split during bilateral sagittal split osteotomy of the mandible with separators: a retrospective study of 427 patients.

    PubMed

    Mensink, Gertjan; Verweij, Jop P; Frank, Michael D; Eelco Bergsma, J; Richard van Merkesteyn, J P

    2013-09-01

    An unfavourable fracture, known as a bad split, is a common operative complication in bilateral sagittal split osteotomy (BSSO). The reported incidence ranges from 0.5 to 5.5%/site. Since 1994 we have used sagittal splitters and separators instead of chisels for BSSO in our clinic in an attempt to prevent postoperative hypoaesthesia. Theoretically an increased percentage of bad splits could be expected with this technique. In this retrospective study we aimed to find out the incidence of bad splits associated with BSSO done with splitters and separators. We also assessed the risk factors for bad splits. The study group comprised 427 consecutive patients among whom the incidence of bad splits was 2.0%/site, which is well within the reported range. The only predictive factor for a bad split was the removal of third molars at the same time as BSSO. There was no significant association between bad splits and age, sex, class of occlusion, or the experience of the surgeon. We think that doing a BSSO with splitters and separators instead of chisels does not increase the risk of a bad split, and is therefore safe with predictable results. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Demonstration of protein-fragment complementation assay using purified firefly luciferase fragments

    PubMed Central

    2013-01-01

    Background Human interactome is predicted to contain 150,000 to 300,000 protein-protein interactions, (PPIs). Protein-fragment complementation assay (PCA) is one of the most widely used methods to detect PPI, as well as Förster resonance energy transfer (FRET). To date, successful applications of firefly luciferase (Fluc)-based PCA have been reported in vivo, in cultured cells and in cell-free lysate, owing to its high sensitivity, high signal-to-background (S/B) ratio, and reversible response. Here we show the assay also works with purified proteins with unexpectedly rapid kinetics. Results Split Fluc fragments both fused with a rapamycin-dependently interacting protein pair were made and expressed in E. coli system, and purified to homogeneity. When the proteins were used for PCA to detect rapamycin-dependent PPI, they enabled a rapid detection (~1 s) of PPI with high S/B ratio. When Fn7-8 domains (7 nm in length) that was shown to abrogate GFP mutant-based FRET was inserted between split Fluc and FKBP12 as a rigid linker, it still showed some response, suggesting less limitation in interacting partner’s size. Finally, the stability of the probe was investigated. Preincubation of the probes at 37 degreeC up to 1 h showed marked decrease of the luminescent signal to 1.5%, showing the limited stability of this system. Conclusion Fluc PCA using purified components will enable a rapid and handy detection of PPIs with high S/B ratio, avoiding the effects of concomitant components. Although the system might not be suitable for large-scale screening due to its limited stability, it can detect an interaction over larger distance than by FRET. This would be the first demonstration of Fluc PCA in vitro, which has a distinct advantage over other PPI assays. Our system enables detection of direct PPIs without risk of perturbation by PPI mediators in the complex cellular milieu. PMID:23536995

  17. The inherent dynamics of a molecular liquid: geodesic pathways through the potential energy landscape of a liquid of linear molecules.

    PubMed

    Jacobson, Daniel; Stratt, Richard M

    2014-05-07

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation-molecules largely thread their way through narrow channels available in the potential energy landscape.

  18. The inherent dynamics of a molecular liquid: Geodesic pathways through the potential energy landscape of a liquid of linear molecules

    NASA Astrophysics Data System (ADS)

    Jacobson, Daniel; Stratt, Richard M.

    2014-05-01

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.

  19. Improved Fast Centralized Retransmission Scheme for High-Layer Functional Split in 5G Network

    NASA Astrophysics Data System (ADS)

    Xu, Sen; Hou, Meng; Fu, Yu; Bian, Honglian; Gao, Cheng

    2018-01-01

    In order to satisfy the varied 5G critical requirements and the virtualization of the RAN hardware, a two-level architecture for 5G RAN has been studied in 3GPP 5G SI stage. The performance of the PDCP-RLC split option and intra-RLC split option, two mainly concerned options for high layer functional split, exist an ongoing debate. This paper firstly gives an overview of CU-DU split study work in 3GPP. By the comparison of implementation complexity, the standardization impact and system performance, our evaluation result shows the PDCP-RLC split Option outperforms the intra-RLC split option. Aiming to how to reduce the retransmission delay during the intra-CU inter-DU handover, the mainly drawback of PDCP-RLC split option, this paper proposes an improved fast centralized retransmission solution with a low implementation complexity. Finally, system level simulations show that the PDCP-RLC split option with the proposed scheme can significantly improve the UE’s experience.

  20. Formation and identification of borane radical anions isolated in solid argon

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Yeh; Huang, Tzu-Ping; Chin, Chih-Hao; Wu, Yu-Jong

    2018-02-01

    The infrared (IR) spectrum of borane(3) anions (BH3-) isolated in solid Ar was recorded; two vibrational modes were observed at 2259.4 and 606.6 cm-1, which were assigned to the BH2 stretching (ν3) and out-of-plane large-amplitude (ν2) modes, respectively. These anions were produced by the electron bombardment of an Ar matrix sample containing a small proportion of B2H6 and H2 during matrix deposition or by the photolysis of single-bridged-B2H5- in an Ar matrix with the selected ultraviolet light. The band positions, relative intensity ratios, isotopic splitting pattern, and isotopic shift ratios of the observed IR features of BH3- are generally in good agreement with those predicted by the B2PLYP/aug-cc-pVTZ method.

  1. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    NASA Astrophysics Data System (ADS)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  2. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single photon ranging precision of 8 cm. The high speed, high throughput data system is capable of recording 22 million time-tagged photon detection events per second. At typical aircraft flight speeds, each of the 16 channels acquires a single photon range every 5 to 15 cm along the four profiles providing a highly sampled measure of surface roughness. The nominal flight altitude is 5 km yielding 10 m spacing between the four beam profiles, providing a measure of surface slope at 10 m length scales. The altitude is currently constrained by the low signal level of the NIR cross-polarized channels. SIMPL’s measurement capabilities provide information about surface elevation, roughness, slope and type of value in characterizing ice sheet surfaces and sea ice, including their melt state. Capabilities will be illustrated using data acquired over Lake Erie ice cover in February, 2009.

  3. The aging process of optical couplers by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Bednarek, Lukas; Marcinka, Ondrej; Perecar, Frantisek; Papes, Martin; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir

    2015-08-01

    Scientists have recently discovered that the ageing process of optical elements is faster than it was originally anticipated. It is mostly due to the multiple increases of the optical power in optical components, the introduction of wavelength division multiplexers and, overall, the increased flow of traffic in optical communications. This article examines the ageing process of optical couplers and it focuses on their performance parameters. It describes the measurement procedure followed by the evaluation of the measurement results. To accelerate the ageing process, gamma irradiation from 60Co was used. The results of the measurements of the optical coupler with one input and eight outputs (1:8) were summarized. The results gained by measuring of the optical coupler with one input and four outputs (1:4) as well as of the optical couplers with one input and two outputs (1:2) with different split ratios were also processed. The optical powers were measured on the input and the outputs of each branch of each optical coupler at the wavelengths of 1310 nm and 1550 nm. The parameters of the optical couplers were subsequently calculated according to the appropriate formulas. These parameters were the insertion loss of the individual branches, split ratio, total losses, homogeneity of the losses and directionalities alias cross-talk between the individual output branches. The gathered data were summarized before and after the first irradiation when the configuration of the couplers was 1:8 and 1:4. The data were summarized after the third irradiation when the configuration of the couplers was 1:2.

  4. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael

    2014-07-01

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ˜ 10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ˜ 25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μ m to 1 μ m, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L i is varied. A splitting ratio of 50:50 is observed for L i ˜ 9 ± 1 μ m and 1 μ m wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  5. Dual-energy imaging using a photon counting detector with electronic spectrum-splitting

    NASA Astrophysics Data System (ADS)

    Bornefalk, Hans; Lundqvist, Mats

    2006-03-01

    This paper presents a dual-energy imaging technique optimized for contrast-enhanced mammography using a photon counting detector. Each photon pulse is processed separately in the detector and the addition of an electronic threshold near the middle of the energy range of the x-ray spectrum allows discrimination of high and low energy photons. This effectively makes the detector energy sensitive, and allows the acquisition of high- and low-energy images simultaneously. These high- and low-energy images can be combined to dual-energy images where the anatomical clutter has been suppressed. By setting the electronic threshold close to 33.2 keV (the k-edge of iodine) the system is optimized for dual-energy contrast-enhanced imaging of breast tumors. Compared to other approaches, this method not only eliminates the need for separate exposures that might lead to motion artifacts, it also eliminates the otherwise deteriorating overlap between high- and low-energy spectra. We present phantom dual-energy images acquired on a prototype system to illustrate that the technique is already operational, albeit in its infancy. We also present a theoretical estimation of the potential gain in tumor signal-difference-to-noise ratio when using this electronic spectrum-splitting method as opposed to acquiring the high- and low-energy images separately with double exposures with separate x-ray spectra. Assuming ideal energy sensitive photon counting detectors, we arrive at the conclusion that the signal-difference-to-noise ratio could be increased by 145% at constant dose. We also illustrate our results on synthetic images.

  6. Spatial and Temporal Control Contribute to Step Length Asymmetry during Split-Belt Adaptation and Hemiparetic Gait

    PubMed Central

    Finley, James M.; Long, Andrew; Bastian, Amy J.; Torres-Oviedo, Gelsy

    2014-01-01

    Background Step length asymmetry (SLA) is a common hallmark of gait post-stroke. Though conventionally viewed as a spatial deficit, SLA can result from differences in where the feet are placed relative to the body (spatial strategy), the timing between foot-strikes (step time strategy), or the velocity of the body relative to the feet (step velocity strategy). Objective The goal of this study was to characterize the relative contributions of each of these strategies to SLA. Methods We developed an analytical model that parses SLA into independent step position, step time, and step velocity contributions. This model was validated by reproducing SLA values for twenty-five healthy participants when their natural symmetric gait was perturbed on a split-belt treadmill moving at either a 2:1 or 3:1 belt-speed ratio. We then applied the validated model to quantify step position, step time, and step velocity contributions to SLA in fifteen stroke survivors while walking at their self-selected speed. Results SLA was predicted precisely by summing the derived contributions, regardless of the belt-speed ratio. Although the contributions to SLA varied considerably across our sample of stroke survivors, the step position contribution tended to oppose the other two – possibly as an attempt to minimize the overall SLA. Conclusions Our results suggest that changes in where the feet are placed or changes in interlimb timing could be used as compensatory strategies to reduce overall SLA in stroke survivors. These results may allow clinicians and researchers to identify patient-specific gait abnormalities and personalize their therapeutic approaches accordingly. PMID:25589580

  7. Volumetric wireless coil based on periodically coupled split-loop resonators for clinical wrist imaging.

    PubMed

    Shchelokova, Alena V; van den Berg, Cornelis A T; Dobrykh, Dmitry A; Glybovski, Stanislav B; Zubkov, Mikhail A; Brui, Ekaterina A; Dmitriev, Dmitry S; Kozachenko, Alexander V; Efimtcev, Alexander Y; Sokolov, Andrey V; Fokin, Vladimir A; Melchakova, Irina V; Belov, Pavel A

    2018-02-09

    Design and characterization of a new inductively driven wireless coil (WLC) for wrist imaging at 1.5 T with high homogeneity operating due to focusing the B 1 field of a birdcage body coil. The WLC design has been proposed based on a volumetric self-resonant periodic structure of inductively coupled split-loop resonators with structural capacitance. The WLC was optimized and studied regarding radiofrequency fields and interaction to the birdcage coil (BC) by electromagnetic simulations. The manufactured WLC was characterized by on-bench measurements and in vivo and phantom study in comparison to a standard cable-connected receive-only coil. The WLC placed into BC gave the measured B1+ increase of the latter by 8.6 times for the same accepted power. The phantom and in vivo wrist imaging showed that the BC in receiving with the WLC inside reached equal or higher signal-to-noise ratio than the conventional clinical setup comprising the transmit-only BC and a commercial receive-only flex-coil and created no artifacts. Simulations and on-bench measurements proved safety in terms of specific absorption rate and reflected transmit power. The results showed that the proposed WLC could be an alternative to standard cable-connected receive coils in clinical magnetic resonance imaging. As an example, with no cable connection, the WLC allowed wrist imaging on a 1.5 T clinical machine using a full-body BC for transmitting and receive with the desired signal-to-noise ratio, image quality, and safety. © 2018 International Society for Magnetic Resonance in Medicine.

  8. Design of a bullet beam pattern of a micro ultrasound transducer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roh, Yongrae; Lee, Seongmin

    2016-04-01

    Ultrasonic imaging transducer is often required to compose a beam pattern of a low sidelobe level and a small beam width over a long focal region to achieve good image resolution. Normal ultrasound transducers have many channels along its azimuth, which allows easy formation of the sound beam into a desired shape. However, micro-array transducers have no control of the beam pattern along their elevation. In this work, a new method is proposed to manipulate the beam pattern by using an acoustic multifocal lens and a shaded electrode on top of the piezoelectric layer. The shading technique split an initial uniform electrode into several segments and combined those segments to compose a desired beam pattern. For a given elevation width and frequency, the optimal pattern of the split electrodes was determined by means of the OptQuest-Nonlinear Program (OQ-NLP) algorithm to achieve the lowest sidelobe level. The requirement to achieve a small beam width with a long focal region was satisfied by employing an acoustic lens of three multiple focuses. Optimal geometry of the multifocal lens such as the radius of curvature and aperture diameter for each focal point was also determined by the OQ-NLP algorithm. For the optimization, a new index was devised to evaluate the on-axis response: focal region ratio = focal region / minimum beam width. The larger was the focal region ratio, the better was the beam pattern. Validity of the design has been verified through fabricating and characterizing an experimental prototype of the transducer.

  9. Fundamental Role of Methylenetetrahydrofolate Reductase 677 C → T Genotype and Flavin Compounds in Biochemical Phenotypes for Schizophrenia and Schizoaffective Psychosis

    PubMed Central

    Fryar-Williams, Stephanie

    2016-01-01

    The Mental Health Biomarker Project (2010–2016) explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly characterized symptomatic cases and 67 gender and age matched control participants were analyzed for methyl tetrahydrofolate reductase (MTHFR) 677C → T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle, and related catecholamine pathways. Urine samples were analyzed for indole-catecholamines, their metabolites, and oxidative-stress marker, hydroxylpyrolline-2-one (HPL). Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression (CGI) score, and Social and Occupational Functioning Assessment Scale (SOFAS). Analysis used Spearman’s correlates, receiver operating characteristics and structural equation modeling (SEM). The correlative pattern of variables in the overall participant sample strongly implicated monoamine oxidase (MAO) enzyme inactivity so the significant role of MAO’s cofactor flavin adenine nucleotide and its precursor flavin adenine mononucleotide (FMN) within the biochemical pathways was investigated and confirmed as 71% on SEM of the total sample. Splitting the data sets for MTHFR 677C → T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild-type-coded pattern. The MTHFR 677C → T-wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The two gene variants and their different biochemical phenotypes govern findings in relationship to case-identification, illness severity, duration of illness, and functional disability in schizophrenia and schizoaffective psychosis, and establish a basis for trials of gene-guided precision treatment for the management of psychosis. PMID:27881965

  10. Fundamental Role of Methylenetetrahydrofolate Reductase 677 C → T Genotype and Flavin Compounds in Biochemical Phenotypes for Schizophrenia and Schizoaffective Psychosis.

    PubMed

    Fryar-Williams, Stephanie

    2016-01-01

    The Mental Health Biomarker Project (2010-2016) explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly characterized symptomatic cases and 67 gender and age matched control participants were analyzed for methyl tetrahydrofolate reductase (MTHFR) 677C → T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle, and related catecholamine pathways. Urine samples were analyzed for indole-catecholamines, their metabolites, and oxidative-stress marker, hydroxylpyrolline-2-one (HPL). Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression (CGI) score, and Social and Occupational Functioning Assessment Scale (SOFAS). Analysis used Spearman's correlates, receiver operating characteristics and structural equation modeling (SEM). The correlative pattern of variables in the overall participant sample strongly implicated monoamine oxidase (MAO) enzyme inactivity so the significant role of MAO's cofactor flavin adenine nucleotide and its precursor flavin adenine mononucleotide (FMN) within the biochemical pathways was investigated and confirmed as 71% on SEM of the total sample. Splitting the data sets for MTHFR 677C → T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild-type-coded pattern. The MTHFR 677C → T-wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The two gene variants and their different biochemical phenotypes govern findings in relationship to case-identification, illness severity, duration of illness, and functional disability in schizophrenia and schizoaffective psychosis, and establish a basis for trials of gene-guided precision treatment for the management of psychosis.

  11. Sugar before bed: a simple dietary risk factor for caries experience.

    PubMed

    Goodwin, M; Patel, D K; Vyas, A; Khan, A J; McGrady, M G; Boothman, N; Pretty, I A

    2017-03-01

    Clinical care pathways have placed renewed emphasis on caries risk assessment and the ability to predict and prevent further disease. With diet considered a key factor in the development of caries, the level of caries risk posed by dietary habits, such as the frequency of intake and timing of free sugars is questioned. To identify reliable and simple dietary risk factors for caries experience. A cross-sectional observational study of a convenience sample with data gained from clinical examinations, questionnaire and a 24 hour dietary-recall interview. 128 subjects aged 11-12 from comprehensive schools in Greater Manchester and Newcastle upon-Tyne, UK. free sugars consumed between meals, before bed and total % of total free sugars consumed were assessed from dietary assessments led by a dietitian. D4-6MFT was generated with a caries threshold of ICDAS stage 4 from clinical examinations. Analysis revealed no significant differences in caries experience when looking specifically at caries into dentine, referred to as the cavity group (split at D4-6MFT), between high and low deprivation, consumption of free sugars between meals and free sugars (%). The consumption of free sugars within the hour before bed revealed a statistically significant difference between the cavity/no cavity groups (p=0.002). Logistic regression analysis on the cavity/no cavity groups revealed an odds ratio of 2.4 (95%CI 1.3,4.4) for free sugars consumption before bedtime. The study suggests that the consumption of free sugars before bedtime may be an important risk factor for adolescent caries into dentine experience. Copyright© 2017 Dennis Barber Ltd.

  12. The effects of isoprene and NOx on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water

    NASA Astrophysics Data System (ADS)

    El-Sayed, Marwa M. H.; Ortiz-Montalvo, Diana L.; Hennigan, Christopher J.

    2018-01-01

    Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles.

  13. Supplementation of H1N1pdm09 split vaccine with heterologous tandem repeat M2e5x virus-like particles confers improved cross-protection in ferrets.

    PubMed

    Music, Nedzad; Reber, Adrian J; Kim, Min-Chul; York, Ian A; Kang, Sang-Moo

    2016-01-20

    Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA) protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity to different strains of influenza. Since influenza A M2 proteins are highly conserved among different strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine. In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine ("Split") alone, influenza split vaccine supplemented with M2e5x VLP ("Split+M2e5x"), M2e5x VLP alone ("M2e5x"), or mock immunized. Vaccine efficacy was measured serologically and by protection against a serologically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addition, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups. Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with split vaccine alone induced no protective effects compared to mock-immunized ferrets. These studies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved cross-protection than split vaccine alone. Published by Elsevier Ltd.

  14. Stress distribution and pressure-bearing capacity of a high-pressure split-cylinder die with prism cavity

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo

    2018-03-01

    A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.

  15. Methotrexate Induces Apoptosis in Organ-Cultured Nasal Polyps Via the Fas Pathway.

    PubMed

    Heo, Kyung Wook; Park, Seong Kook; Lee, Yeo Myeong; Choe, Si Hong; Gu, Pyung Mo; Hong, Tae Ui; Hur, Dae Young

    2017-05-01

    Methotrexate (MTX) is very effective when used to treat chronic inflammatory diseases, and also induces apoptosis in nasal polyps (NPs). Increasing evidence suggests that Fas-Fas ligand (FasL) interactions activate multiple pathways involved in the regulation of immune and inflammatory cell functions. The aim of the present study was to identify pathways activated by Fas signaling when NPs were treated with MTX. Nasal polyps tissues were cultured using an air-liquid interface organ culture method. Cultures were maintained in the absence or presence of MTX (10 or 100 μM) for 24 hours. The authors used the reverse transcription-polymerase chain reaction method and Western blotting to identify pathways activated by Fas when NPs were treated with MTX. The Fas mRNA expression ratio was unchanged upon MTX treatment, but the FasL mRNA expression ratio was significantly higher in MTX-treated than nontreated polyps. In addition, the expression levels of the Fas and FasL proteins were significantly higher in polyps treated with both 10 and 100 μM MTX compared with nontreated polyps. Methotrexate induces apoptosis in NPs via the Fas pathway. Future studies should explore the topical use of MTX for NP control. Methotrexate may be a useful alternative steroid-sparing agent for the treatment of NPs.

  16. NiSe-Ni0.85 Se Heterostructure Nanoflake Arrays on Carbon Paper as Efficient Electrocatalysts for Overall Water Splitting.

    PubMed

    Chen, Yajie; Ren, Zhiyu; Fu, Huiying; Zhang, Xin; Tian, Guohui; Fu, Honggang

    2018-06-01

    Fabricating cost-effective, bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in basic media is critical for renewable energy generation. Here, NiSe/CP, Ni 0.85 Se/CP, and NiSe-Ni 0.85 Se/CP heterostructure catalysts with different phase constitutions are successfully prepared through in situ selenylation of a NiO nanoflake array oriented on carbon paper (CP) by tuning the original Ni/Se molar ratio of the raw materials. The relationship between the crystal phase component and electrocatalytic activity is systematically studied. Benefiting from the synergetic effect of the intrinsic metallic state, facile charge transport, abundant catalytic active sites, and multiple electrolyte transmission paths, the optimized NiSe-Ni 0.85 Se/CP exhibits a remarkably higher catalytic activity for both the HER and OER than single-phase NiSe/CP and Ni 0.85 Se/CP. A current density of 10 mA cm -2 at 1.62 V and a high stability can be obtained by using NiSe-Ni 0.85 Se/CP as both the cathode and anode for overall water splitting under alkaline conditions. Density functional theory calculations confirm that H and OH - can be more easily adsorbed on NiSe-Ni 0.85 Se than on NiSe and Ni 0.85 Se. This study paves the way for enhancing the overall water splitting performance of nickel selenides by fabricating heterophase junctions using nickel selenides with different phases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cost-Effective Mapping of Benthic Habitats in Inland Reservoirs through Split-Beam Sonar, Indicator Kriging, and Historical Geologic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venteris, Erik R.; May, Cassandra

    2014-04-23

    Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locationsmore » did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.« less

  18. Cost-Effective Mapping of Benthic Habitats in Inland Reservoirs through Split-Beam Sonar, Indicator Kriging, and Historical Geologic Data

    PubMed Central

    Venteris, Erik R.; May, Cassandra J.

    2014-01-01

    Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat. PMID:24759834

  19. Cost-effective mapping of benthic habitats in inland reservoirs through split-beam sonar, indicator kriging, and historical geologic data.

    PubMed

    Venteris, Erik R; May, Cassandra J

    2014-01-01

    Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.

  20. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics.

    PubMed

    Doonan, Steven R; Bailey, Ryan C

    2017-04-04

    By rapidly creating libraries of thousands of unique, miniaturized reactors, droplet microfluidics provides a powerful method for automating high-throughput chemical analysis. In order to engineer in-droplet assays, microfluidic devices must add reagents into droplets, remove fluid from droplets, and perform other necessary operations, each typically provided by a unique, specialized geometry. Unfortunately, modifying device performance or changing operations usually requires re-engineering the device among these specialized geometries, a time-consuming and costly process when optimizing in-droplet assays. To address this challenge in implementing droplet chemistry, we have developed the "K-channel," which couples a cross-channel flow to the segmented droplet flow to enable a range of operations on passing droplets. K-channels perform reagent injection (0-100% of droplet volume), fluid extraction (0-50% of droplet volume), and droplet splitting (1:1-1:5 daughter droplet ratio). Instead of modifying device dimensions or channel configuration, adjusting external conditions, such as applied pressure and electric field, selects the K-channel process and tunes its magnitude. Finally, interfacing a device-embedded magnet allows selective capture of 96% of droplet-encapsulated superparamagnetic beads during 1:1 droplet splitting events at ∼400 Hz. Addition of a second K-channel for injection (after the droplet splitting K-channel) enables integrated washing of magnetic beads within rapidly moving droplets. Ultimately, the K-channel provides an exciting opportunity to perform many useful droplet operations across a range of magnitudes without requiring architectural modifications. Therefore, we envision the K-channel as a versatile, easy to use microfluidic component enabling diverse, in-droplet (bio)chemical manipulations.

Top