Vascular basement membranes as pathways for the passage of fluid into and out of the brain.
Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O
2016-05-01
In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.
Albargothy, Nazira J; Johnston, David A; MacGregor-Sharp, Matthew; Weller, Roy O; Verma, Ajay; Hawkes, Cheryl A; Carare, Roxana O
2018-05-12
Tracers injected into CSF pass into the brain alongside arteries and out again. This has been recently termed the "glymphatic system" that proposes tracers enter the brain along periarterial "spaces" and leave the brain along the walls of veins. The object of the present study is to test the hypothesis that: (1) tracers from the CSF enter the cerebral cortex along pial-glial basement membranes as there are no perivascular "spaces" around cortical arteries, (2) tracers leave the brain along smooth muscle cell basement membranes that form the Intramural Peri-Arterial Drainage (IPAD) pathways for the elimination of interstitial fluid and solutes from the brain. 2 μL of 100 μM soluble, fluorescent fixable amyloid β (Aβ) were injected into the CSF of the cisterna magna of 6-10 and 24-30 month-old male mice and their brains were examined 5 and 30 min later. At 5 min, immunocytochemistry and confocal microscopy revealed Aβ on the outer aspects of cortical arteries colocalized with α-2 laminin in the pial-glial basement membranes. At 30 min, Aβ was colocalised with collagen IV in smooth muscle cell basement membranes in the walls of cortical arteries corresponding to the IPAD pathways. No evidence for drainage along the walls of veins was found. Measurements of the depth of penetration of tracer were taken from 11 regions of the brain. Maximum depths of penetration of tracer into the brain were achieved in the pons and caudoputamen. Conclusions drawn from the present study are that tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. The exit route is along IPAD pathways in which Aβ accumulates in cerebral amyloid angiopathy (CAA) in Alzheimer's disease. Results from this study suggest that CSF may be a suitable route for delivery of therapies for neurological diseases, including CAA.
Colorado Potential Geothermal Pathways
Richard E. Zehner
2012-02-01
This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units.
Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms.
Mao, Mao; Alavi, Marcel V; Labelle-Dumais, Cassandre; Gould, Douglas B
2015-01-01
Basement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions. Type IV collagens are a major component of all basement membranes. They evolved along with the earliest multicellular organisms and have been integrated into diverse fundamental biological processes as time and evolution shaped the animal kingdom. The roles of basement membranes in humans are as complex and diverse as their distributions and molecular composition. As a result, basement membrane defects result in multisystem disorders with ambiguous and overlapping boundaries that likely reflect the simultaneous interplay and integration of multiple cellular pathways and processes. Consequently, there will be no single treatment for basement membrane disorders, and therapies are likely to be as varied as the phenotypes. Understanding tissue-specific pathology and the underlying molecular mechanism is the present challenge; personalized medicine will rely upon understanding how a given mutation impacts diverse cellular functions. Copyright © 2015 Elsevier Inc. All rights reserved.
NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy
Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.
2012-01-01
Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. PMID:23109907
Paleohighs and Paleolows in the Basement Rocks of the Eastern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Robinson, D.; Weislogel, A. L.
2017-12-01
The Eastern Gulf of Mexico has topography on the basement rocks composed of igneous and metamorphic rocks as well as some sedimentary rocks underneath a relatively thin salt layer with 3-6 km of topography relief. Paleohighs from south to north include Sarasota Arch, Middle Ground Arch/Southern Platform, Pensacola Arch, Conecuh Ridge Complex, Baldwin High, Wiggins Arch and Choctaw Ridge Complex. Paleolows from south to north include South Florida Basin, Tampa Embayment, Apalachicola Basin/Desoto Canyon Salt Basin, Conecuh Embayment, Manila Embayment and the Mississippi Interior Salt Basin. The topography on the basement is a result of several collisions between Laurentian and Gondwana to produce Pangea with final suturing during Pennsylvanian time and also from extension in Late Triassic to Early Cretaceous time as a result of the opening of the Gulf and rotation of Yucatan. Heterogeneities related to previous collisions may have also factored into producing these paleohighs and paleolows. A series of grabens and half-grabens, trending northeast-southwest from northwest-southeast directed extension and with the sedimentary rocks, exist on the continents and appear to be present in the offshore under the salt. We know the paleolows were depositional pathways to funnel sediments from onshore to offshore via water and wind in Jurassic and maybe Cretaceous times. Many tectonic models call for the paleohighs and paleolows to be structurally controlled; however, finding the faults called upon to control the "horst and graben" structures is challenging. We present data from several seismic studies that questions the idea that these paleohighs and paleolows are the result of horst and graben extension. Half grabens exist in the offshore with graben bounding faults northeast-southwest; however, down is to the north instead of the anticipated down to the south. Instead, the basement paleohighs and paleolows in the offshore Eastern Gulf of Mexico may be the result of preexisting lithologic and structural weaknesses in conjunction with lithospheric thinning. Some of the basement paleohighs and paleolows in the onshore are related to the buried Appalachian fold-thrust belt.
LOFT. Containment and service building (TAN650) basement floor plan. Basement ...
LOFT. Containment and service building (TAN-650) basement floor plan. Basement airlock, shielded roadway, service areas, connection to control building. Kaiser engineers 6413-11-STEP/LOFT-650-A-1. Date: October 1964. INEEL index code no. 036-650-00-416-122213 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, W.J.; Modera, M.P.; Sextro, R.G.
1992-02-01
We describe the experimental approach, structures, and instrumentation of a research project on radon generation and transport in soil and entry into basements. The overall approach is to construct small precisely-fabricated basements in areas of different geology and climate, to control the pressures and ventilation rates in the structures, and to monitor radon concentrations and other relevant parameters over a period of one year or more. Two nearly air-tight structures have been constructed at the first site. The floor of each structure contains adjustable-width slots that serve as the only significant pathway for advective entry of radon. A layer ofmore » gravel underlays the floor of one structure; otherwise they are identical. The structures are instrumented for continuous or periodic monitoring of soil, structural, and meteorological parameters that affect radon entry. The pressure difference that drives advective radon entry can be maintained constant or varied over time. Soil gas and radon entry rates and associated parameters, such as soil gas pressures and radon concentrations, have been monitored for a range of steady-state and time-varying pressure differences between the interior of the structure and the soil. Examples of the experimentally-measured pressure and permeability fields in the soil around a structure are presented and discussed.« less
Fluid Mechanics of the Vascular Basement Membrane in the Brain
NASA Astrophysics Data System (ADS)
Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David
2013-11-01
Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.
Volcanic conduit migration over a basement landslide at Mount Etna (Italy).
Nicolosi, I; Caracciolo, F D'Ajello; Branca, S; Ventura, G; Chiappini, M
2014-06-13
The flanks of volcanoes may slide in response to the loading of the edifice on a weak basement, magma push, and/or to tectonic stress. However, examples of stratovolcanoes emplaced on active landslides are lacking and the possible effects on the volcano dynamics unknown. Here, we use aeromagnetic data to construct a three-dimensional model of the clay-rich basement of Etna volcano (Italy). We provide evidence for a large stratovolcano growing on a pre-existing basement landslide and show that the eastern Etna flank, which slides toward the sea irrespective of volcanic activity, moves coherently with the underlying landslide. The filling of the landslide depression by lava flows through time allows the formation of a stiffness barrier, which is responsible for the long-term migration of the magma pathways from the coast to the present-day Etna summit. These unexpected results provide a new interpretation clue on the causes of the volcanic instability processes and of the mechanisms of deflection and migration of volcanic conduits.
Volcanic conduit migration over a basement landslide at Mount Etna (Italy)
Nicolosi, I.; Caracciolo, F. D'Ajello; Branca, S.; Ventura, G.; Chiappini, M.
2014-01-01
The flanks of volcanoes may slide in response to the loading of the edifice on a weak basement, magma push, and/or to tectonic stress. However, examples of stratovolcanoes emplaced on active landslides are lacking and the possible effects on the volcano dynamics unknown. Here, we use aeromagnetic data to construct a three-dimensional model of the clay-rich basement of Etna volcano (Italy). We provide evidence for a large stratovolcano growing on a pre-existing basement landslide and show that the eastern Etna flank, which slides toward the sea irrespective of volcanic activity, moves coherently with the underlying landslide. The filling of the landslide depression by lava flows through time allows the formation of a stiffness barrier, which is responsible for the long-term migration of the magma pathways from the coast to the present-day Etna summit. These unexpected results provide a new interpretation clue on the causes of the volcanic instability processes and of the mechanisms of deflection and migration of volcanic conduits. PMID:24924784
Skeie, Jessica M; Aldrich, Benjamin T; Goldstein, Andrew S; Schmidt, Gregory A; Reed, Cynthia R; Greiner, Mark A
2018-01-01
The objective of this study was to characterize the proteome of the corneal endothelial cell layer and its basement membrane (Descemet membrane) in humans with various severities of type II diabetes mellitus compared to controls, and identify differentially expressed proteins across a range of diabetic disease severities that may influence corneal endothelial cell health. Endothelium-Descemet membrane complex tissues were peeled from transplant suitable donor corneas. Protein fractions were isolated from each sample and subjected to multidimensional liquid chromatography and tandem mass spectrometry. Peptide spectra were matched to the human proteome, assigned gene ontology, and grouped into protein signaling pathways unique to each of the disease states. We identified an average of 12,472 unique proteins in each of the endothelium-Descemet membrane complex tissue samples. There were 2,409 differentially expressed protein isoforms that included previously known risk factors for type II diabetes mellitus related to metabolic processes, oxidative stress, and inflammation. Gene ontology analysis demonstrated that diabetes progression has many protein footprints related to metabolic processes, binding, and catalysis. The most represented pathways involved in diabetes progression included mitochondrial dysfunction, cell-cell junction structure, and protein synthesis regulation. This proteomic dataset identifies novel corneal endothelial cell and Descemet membrane protein expression in various stages of diabetic disease. These findings give insight into the mechanisms involved in diabetes progression relevant to the corneal endothelium and its basement membrane, prioritize new pathways for therapeutic targeting, and provide insight into potential biomarkers for determining the health of this tissue.
NASA Astrophysics Data System (ADS)
Adabanija, M. A.; Omidiora, E. O.; Olayinka, A. I.
2008-05-01
A linguistic fuzzy logic system (LFLS)-based expert system model has been developed for the assessment of aquifers for the location of productive water boreholes in a crystalline basement complex. The model design employed a multiple input/single output (MISO) approach with geoelectrical parameters and topographic features as input variables and control crisp value as the output. The application of the method to the data acquired in Khondalitic terrain, a basement complex in Vizianagaram District, south India, shows that potential groundwater resource zones that have control output values in the range 0.3295-0.3484 have a yield greater than 6,000 liters per hour (LPH). The range 0.3174-0.3226 gives a yield less than 4,000 LPH. The validation of the control crisp value using data acquired from Oban Massif, a basement complex in southeastern Nigeria, indicates a yield less than 3,000 LPH for control output values in the range 0.2938-0.3065. This validation corroborates the ability of control output values to predict a yield, thereby vindicating the applicability of linguistic fuzzy logic system in siting productive water boreholes in a basement complex.
6. INTERIOR VIEW OF NORTH ENTRANCE TO BASEMENT SHOWING WORKBENCH ...
6. INTERIOR VIEW OF NORTH ENTRANCE TO BASEMENT SHOWING WORKBENCH AT PHOTO LEFT AND ONE OF TWO DOORWAYS TO MAIN BASEMENT AREA AT PHOTO RIGHT. VIEW TO NORTH. - Bishop Creek Hydroelectric System, Control Station, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...
MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Funk, Steven Daniel; Yurdagul, Arif; Green, Jonette M.; Jhaveri, Krishna A.; Schwartz, Martin Alexander; Orr, A. Wayne
2010-01-01
Rationale Atherosclerosis is initiated by blood flow patterns that activate inflammatory pathways in endothelial cells. Activation of inflammatory signaling by fluid shear stress is highly dependent on the composition of the subendothelial extracellular matrix. The basement membrane proteins laminin and collagen found in normal vessels suppress flow-induced p21 activated kinase (PAK) and NF-κB activation. By contrast, the provisional matrix proteins fibronectin and fibrinogen found in wounded or inflamed vessels support flow-induced PAK and NF-κB activation. PAK mediates both flow-induced permeability and matrix-specific activation of NF-κB. Objective To elucidate the mechanisms regulating matrix-specific PAK activation. Methods and Results We now show that matrix composition does not affect the upstream pathway by which flow activates PAK (integrin activation, Rac). Instead basement membrane proteins enhance flow-induced protein kinase A (PKA) activation, which suppresses PAK. Inhibiting PKA restored flow-induced PAK and NF-κB activation in cells on basement membrane proteins, whereas stimulating PKA inhibited flow-induced activation of inflammatory signaling in cells on fibronectin. PKA suppressed inflammatory signaling through PAK inhibition. Activating PKA by injection of the PGI2 analog iloprost reduced PAK activation and inflammatory gene expression at sites of disturbed flow in vivo, whereas inhibiting PKA by PKI injection enhanced PAK activation and inflammatory gene expression. Inhibiting PAK prevented the enhancement of inflammatory gene expression by PKI. Conclusions Basement membrane proteins inhibit inflammatory signaling in endothelial cells via PKA-dependent inhibition of PAK. PMID:20224042
ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.
Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda
2012-01-01
The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.
Benedicto, Ignacio; Lehmann, Guillermo L; Ginsberg, Michael; Nolan, Daniel J; Bareja, Rohan; Elemento, Olivier; Salfati, Zelda; Alam, Nazia M; Prusky, Glen T; Llanos, Pierre; Rabbany, Sina Y; Maminishkis, Arvydas; Miller, Sheldon S; Rafii, Shahin; Rodriguez-Boulan, Enrique
2017-05-19
The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease.
Benedicto, Ignacio; Lehmann, Guillermo L.; Ginsberg, Michael; Nolan, Daniel J.; Bareja, Rohan; Elemento, Olivier; Salfati, Zelda; Alam, Nazia M.; Prusky, Glen T.; Llanos, Pierre; Rabbany, Sina Y.; Maminishkis, Arvydas; Miller, Sheldon S.; Rafii, Shahin; Rodriguez-Boulan, Enrique
2017-01-01
The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease. PMID:28524846
NASA Astrophysics Data System (ADS)
Neely, Thomas G.; Erslev, Eric A.
2009-09-01
Horizontally-shortened, basement-involved foreland orogens commonly exhibit anastomosing networks of bifurcating basement highs (here called arches) whose structural culminations are linked by complex transition zones of diversely-oriented faults and folds. The 3D geometry and kinematics of the southern Beartooth arch transition zone of north-central Wyoming were studied to understand the fold mechanisms and control on basement-involved arches. Data from 1581 slickensided minor faults are consistent with a single regional shortening direction of 065°. Evidence for oblique-slip, vertical axis rotations and stress refraction at anomalously-oriented folds suggests formation over reactivated pre-existing weaknesses. Restorable cross-sections and 3D surfaces, constrained by surface, well, and seismic data, document blind, ENE-directed basement thrusting and associated thin-skinned backthrusting and folding along the Beartooth and Oregon Basin fault systems. Between these systems, the basement-cored Rattlesnake Mountain backthrust followed basement weaknesses and rotated a basement chip toward the basin before the ENE-directed Line Creek fault system broke through and connected the Beartooth and Oregon Basin fault systems. Slip was transferred at the terminations of the Rattlesnake Mountain fault block by pivoting to the north and tear faulting to the south. In summary, unidirectional Laramide compression and pre-existing basement weaknesses combined with fault-propagation and rotational fault-bend folding to create an irregular yet continuous basement arch transition.
Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L
2010-09-01
Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Lelièvre, Sophie; Weaver, Valerie M.; Bissell, Mina J.
2010-01-01
It is well established that cells must interact with their microenvironment and that such interaction is crucial for coordinated function and homeostasis. However, how cells receive and integrate external signals leading to gene regulation is far from understood. It is now appreciated that two classes of cooperative signals are implicated: a soluble class including hormones and growth factors and a class of insoluble signals emanating from the extracellular matrix (ECM) directly through contact with the cell surface. Using 3-dimensional culture systems and transgenic mice, we have been able to identify some of the elements of this ECM-signaling pathway responsible for gene regulation in rodent mammary gland differentiation and involution. Our major observations are 1) the requirement for a laminin-rich basement membrane; 2) the existence of a cooperative signaling pathway between basement membrane and the lactogenic hormone prolactin (PRL); 3) the importance of β1-integrins and bHLH transcription factor(s) and the presence of DNA response elements (exemplified by BCE-1, located on a milk protein gene, β-casein); and 4) the induction of mammary epithelial cell programmed cell death following degradation of basement membrane. We hypothesize that this cooperative signaling between ECM and PRL may be achieved through integrin- and laminin-directed restructuring of the cytoskeleton leading to profound changes in nuclear architecture and transcription factor localization. We postulate that the latter changes allow the prolactin signal to activate transcription of the β-casein gene. To further understand the molecular mechanisms underlying ECM and hormonal cooperative signaling, we are currently investigating ECM regulation of a “solid-state” signaling pathway including ECM fiber proteins, plasma membrane receptors, cytoskeleton, nuclear matrix and chromatin. We further postulate that disruption of such a pathway may be implicated in cell disorders including transformation and carcinogenesis. PMID:8701089
Pericytes of the neurovascular unit: Key functions and signaling pathways
Sweeney, Melanie D.; Ayyadurai, Shiva; Zlokovic, Berislav V.
2017-01-01
Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles, and post-capillary venules. The central nervous system (CNS) pericytes are uniquely positioned within the neurovascular unit between endothelial cells, astrocytes, and neurons. They integrate, coordinate, and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation, and stem cell activity. Here, we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes, and neurons that control neurovascular functions. We also review the role of pericytes in different CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies. PMID:27227366
NASA Astrophysics Data System (ADS)
Neng, Yuan; Xie, Huiwen; Yin, Hongwei; Li, Yong; Wang, Wei
2018-04-01
The Kuqa fold-thrust belt (KFTB) has a complex thrust-system geometry and comprises basement-involved thrusts, décollement thrusts, triangle zones, strike-slip faults, transpressional faults, and pop-up structures. These structures, combined with the effects of Paleogene salt tectonics and Paleozoic basement uplift form a complex structural zone trending E-W. Interpretation and comprehensive analysis of recent high-quality seismic data, field observations, boreholes, and gravity data covering the KFTB has been performed to understand the characteristics and mechanisms of the deformation styles along strike. Regional sections, fold-thrust system maps of the surface and the sub-salt layer, salt and basement structure distribution maps have been created, and a comprehensive analysis of thrust systems performed. The results indicate that the thrust-fold system in Paleogene salt range can be divided into five segments from east to west: the Kela-3, Keshen, Dabei, Bozi, and Awate segments. In the easternmost and westernmost parts of the Paleogene salt range, strike-slip faulting and basement-involved thrusting are the dominant deformation styles, as basement uplift and the limits of the Cenozoic evaporite deposit are the main controls on deformation. Salt-core detachment fold-thrust systems coincide with areas of salt tectonics, and pop-up, imbricate, and duplex structures are associated with the main thrust faults in the sub-salt layer. Distribution maps of thrust systems, basement structures, and salt tectonics show that Paleozoic basement uplift controlled the Paleozoic foreland basin morphology and the distribution of Cenozoic salt in the KFTB, and thus had a strong influence on the segmented structural deformation and evolution of the fold-thrust belt. Three types of transfer zone are identified, based on the characteristics of the salt layer and basement uplift, and the effects of these zones on the fault systems are evaluated. Basement uplift and the boundary of the salt deposit generated strike-slip faults in the sub-salt layer and supra-salt layers at the basin boundary (Model A). When changes in the basement occurred within the salt basin, strike-slip faults controlled the deformation styles in the sub-salt layer and shear-zone dominated in the supra-salt layer (Model B). A homogeneous basement and discontinues salt layer formed different accommodation zones in the sub- and supra-salt layers (Model C). In the sub-salt layer the thrusts form imbricate structures on the basal décollement, whereas the supra-salt layer shows overlapping, discontinuous faults and folds with kinds of salt tectonics, and has greater structural variation than the sub-salt layer.
17. Woodworking Mill (basement): view looking north showing Ames Iron ...
17. Woodworking Mill (basement): view looking north showing Ames Iron Works steam boiler; note turbine control handle in middle right of photo - Ben Thresher's Mill, State Aid No. 1, Barnet, Caledonia County, VT
basement reservoir geometry and properties
NASA Astrophysics Data System (ADS)
Walter, bastien; Geraud, yves; Diraison, marc
2017-04-01
Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre-rift exhumation phases. Macroscopic fracture density is highly dependent on the petrographic nature of the basement, with values up to 80 frac./m in fault damage zones of crystalline rocks. Dense micro-cracks associated to major fault structures can develop porosity and permeability up to 10% and 0.1 D. In some weathered horizons, alteration can develop matrix porosity up to 40% and the permeability reaches up to 1D. This study highlights therefore that basement reservoir properties are the result of the long geodynamic evolution of such formations, and the different fault zone compartments or weathering horizons have to be considered separately for reservoir understanding.
Effects of oxygen toxicity on cuprolinic blue-stained proteoglycans in alveolar basement membranes.
Ferrara, T B; Fox, R B
1992-02-01
Effects of oxygen toxicity on distribution and density of proteoglycans in basement membranes of newborn rat lungs were assessed by electron microscopic analysis of tissues processed with cuprolinic blue, a cationic label that characteristically labels these anionically charged macromolecules. Newborn rats placed in greater than 95% oxygen at birth were killed at weekly intervals for 4 wk, and lung tissues fixed in 2.5% glutaraldehyde with 0.2% cuprolinic blue were processed for electron microscopy. Alveolar basement membranes from oxygen-treated and control animals were compared for differences in thickness and proteoglycan concentration and distribution. Results showed progressive thickening of alveolar basement membranes with increased duration of oxygen exposure. The normal distribution of proteoglycans, which is predominantly in the lamina rara externa of alveolar basement membranes, was frequently lost in thickened membranes found in oxygen-treated animals. Density of proteoglycans in these membranes decreased to 56% of normal by 2 wk of age and remained low with continued oxygen administration. Proteoglycan concentration in basement membranes on the interstitial side of alveolar capillaries in both control and oxygen-treated animals was low compared with proteoglycan concentration in basement membranes that opposed the alveolar air space, and administration of oxygen diminished these differences. These results demonstrate a direct alteration of proteoglycan distribution and density in the developing lung as a result of oxygen toxicity. This could result in decreased cell adhesion, influence the cellular response to lung injury, and contribute to the increased permeability seen with this disorder.
Environmental Impact Assessment of Dumpsite: Case Study from southwestern Saudi Arabia
NASA Astrophysics Data System (ADS)
Alfaifi, H. J.; Alhumidan, S. M.; Kahal, A. Y.; Abdel Rahman, K.; Al-Qadasi, B.
2017-12-01
The dumpsite is underlain by highly fractured Precambrian basement complex of metamorphosed igneous and sedimentary rocks. Minor Tertiary, Quaternary basalts and Quaternary alluvial deposits overlie the basement rocks. Structurally, the area is affected by intersected series of north-to northwest trending faults. Hydrogeological setting of the study area is characterized by shallow groundwater aquifers in the fractured and weathered basement rocks. Moreover, the area exposes heavy rains especially during summer seasons, which may accelerate the transferring of contaminated water to the neighbouring valleys and low land. At present, the residential and Khamis Mushait new industrial zone are situated close to the dumpsite. The main objective of this study is to assess the leachate intrusion and groundwater contamination in the urban area of Khamis Mushait. Geophysical and geochemical techniques have been successfully applied in the assessment of environmental impact of dumpsites globally. Near-surface geophysical investigations such as Seismic refraction tomography, Schlumberger vertical electrical soundings (VES) and ground magnetic survey have been conducted to detect the controlling structures and lithological variation of the dumpsite. In addition, four water samples from hand dug wells and two surface water samples were collected from and around dumpsite. These water samples were analysed geochemically to inspect the presence of heavy metals, salts (sulphates, nitrates and chlorides), radioactive elements and physically to assess pH, TDS, DO, salinity, total hardness, turbidity, electrical conductivity and temperature. Results of VES illustrate low resistivity zones (≤ 30 Ohm-m) due to conductive leachate from dumpsite while seismic models and ground magnetic intensity map delineated fractures beneath the weathered basement layer which may provide pathways for the contaminants. The physico-chemical analysis of the collected groundwater samples revealed that there are considerable impacts of dumpsite leachate in the shallow groundwater. pH values of the representative samples indicate its unsuitability for human consumption. Leachate flow direction is oriented NNW-SSE and follows the similar flow pattern as deduced from hydrogeological investigation.
Sethi, Sanjeev; Gamez, Jeffrey D.; Vrana, Julie A.; Theis, Jason D.; Bergen, H. Robert; Zipfel, Peter F.; Dogan, Ahmet; Smith, Richard J. H.
2009-01-01
Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex–mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD. PMID:19177158
NASA Astrophysics Data System (ADS)
Ali, M. Y.; Fairhead, J. D.; Green, C. M.; Noufal, A.
2017-08-01
Gravity and aeromagnetic data covering the whole territory of the United Arab Emirates (UAE) have been used to evaluate both shallow and deep geological structures, in particular the depth to basement since it is not imaged by seismic data anywhere within the UAE. Thus, the aim has been to map the basement so that its structure can help to assess its control on the distribution of hydrocarbons within the UAE. Power spectrum analysis reveals gravity and magnetic signatures to have some similarities, in having two main density/susceptibility interfaces widely separated in depth such that regional-residual anomaly separation could effectively be undertaken. The upper density/susceptibility interface occurs at a depth of about 1.0 km while the deeper interface varies in depth throughout the UAE. For gravity, this deeper interface is assumed to be due to the combined effect of lateral changes in density structures within the sediments and in depth of basement while for magnetics it is assumed the sediments have negligible susceptibility and the anomalies unrelated to the volcanic/magmatic bodies result from only changes in depth to basement. The power spectrum analysis over the suspect volcanic/magmatic bodies indicates they occur at 5 km depth. The finite tilt-depth and finite local wavenumber methods were used to estimate depth to source and only depths that agree to within 10% of each other were used to generate the depth to basement map. This depth to basement map, to the west of the UAE-Oman Mountains, varies in depth from 5 km to in excess of 15 km depth and is able to structurally account for the location of the shear structures, seen in the residual magnetic data, and the location of the volcanic/magmatic centres relative to a set of elongate N-S to NE-SW trending basement highs. The majority of oilfields in the UAE are located within these basement highs. Therefore, the hydrocarbon distribution in the UAE basin appears to be controlled by the location of the basement ridges.
FET. Control and equipment building (TAN630). Basement floor plan. Tunnel ...
FET. Control and equipment building (TAN-630). Basement floor plan. Tunnel to hangar (TAN-629). Electrical and chemical services. Ralph M. Parsons 1229-2 ANP/GE-630-A-1. Date: March 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 036-0630-00-693-107080 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Basement Membrane Defects in Genetic Kidney Diseases
Chew, Christine; Lennon, Rachel
2018-01-01
The glomerular basement membrane (GBM) is a specialized structure with a significant role in maintaining the glomerular filtration barrier. This GBM is formed from the fusion of two basement membranes during development and its function in the filtration barrier is achieved by key extracellular matrix components including type IV collagen, laminins, nidogens, and heparan sulfate proteoglycans. The characteristics of specific matrix isoforms such as laminin-521 (α5β2γ1) and the α3α4α5 chain of type IV collagen are essential for the formation of a mature GBM and the restricted tissue distribution of these isoforms makes the GBM a unique structure. Detailed investigation of the GBM has been driven by the identification of inherited abnormalities in matrix proteins and the need to understand pathogenic mechanisms causing severe glomerular disease. A well-described hereditary GBM disease is Alport syndrome, associated with a progressive glomerular disease, hearing loss, and lens defects due to mutations in the genes COL4A3, COL4A4, or COL4A5. Other proteins associated with inherited diseases of the GBM include laminin β2 in Pierson syndrome and LMX1B in nail patella syndrome. The knowledge of these genetic mutations associated with GBM defects has enhanced our understanding of cell–matrix signaling pathways affected in glomerular disease. This review will address current knowledge of GBM-associated abnormalities and related signaling pathways, as well as discussing the advances toward disease-targeted therapies for patients with glomerular disease. PMID:29435440
Veneranda, M; Prieto-Taboada, N; Fdez-Ortiz de Vallejuelo, S; Maguregui, M; Morillas, H; Marcaida, I; Castro, K; Garcia-Diego, F-J; Osanna, M; Madariaga, J M
2018-05-29
This study aimed at using portable analytical techniques to characterize original and decayed materials from two murals paintings of Ariadne House (archaeological site of Pompeii, Italy) and define the degradation pathways threatening their conservation. The first wall, located in an outdoor environment, has been directly exposed to degradation processes triggered by weathering and atmospheric pollution. The second wall, placed in a basement under the ground floor, has been constantly sheltered from sunlight exposure and drastic temperature fluctuations. The analytical data obtained in-situ by using Raman spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS) correlates the degradation patterns affecting the two surfaces to their environmental context. The deterioration processes detected on the outdoor wall, which entailed the complete loss of the paint layer, were mostly related to leaching and thermal fluctuation phenomena. The mural painting from the basement instead, showed deep degradation issues due to soluble salt infiltration and biological colonization. The results obtained from this unique case of study highlight the indispensable role of in-situ spectroscopic analysis to understand and predict the degradation pathways jeopardizing the cultural heritage and provide to the Archaeological Park of Pompeii important inference to consider in future conservation projects. Copyright © 2018. Published by Elsevier B.V.
17. INTERIOR VIEW, BASEMENT, LOOKING SOUTHWEST AT THE GEAR PIT ...
17. INTERIOR VIEW, BASEMENT, LOOKING SOUTHWEST AT THE GEAR PIT BELOW THE GRINDING STONES, SHOWING WOODEN COGS ATTACHED TO UNDERGROUND TURBINES. FRICTION DRIVE VISIBLE BEHIND CONTROL BAR (LEFT) WHICH OPERATES SMUT MILL - Schech's Mill, Beaver Creek State Park, La Crescent, Houston County, MN
Gardiner, T A; Anderson, H R; Degenhardt, T; Thorpe, S R; Baynes, J W; Archer, D B; Stitt, A W
2003-09-01
To investigate the effect of treatment with the non-steroidal anti-inflammatory drug Sulindac on the early vascular pathology of diabetic retinopathy in the dog, and it's effect on recognised biochemical indices of hyperglycaemia-related pathophysiology. Experimental diabetes (streptozotocin/alloxan) was induced in 22 male beagle dogs and 12 of the animals were assigned at random to receive oral Sulindac (10 mg/kg daily). Age- and sex-matched control animals were maintained as non-diabetic controls. After 4 years, several morphological parameters were quantified in the retinal microvasculature of each animal group using an established stereological method. Also, the following diabetes-associated biochemical parameters were analysed: accumulation of advanced glycation end products (AGEs), red blood cell polyol levels and antioxidant status. Diabetes increased red blood cell sorbitol levels when compared to non-diabetic controls (p< or =0.05), however, there was no difference in sorbitol levels between the untreated and the treated diabetic animals. No significant differences were found in red blood cell myoinositol levels between the three groups of animals. Pentosidine and other AGEs were increased two- to three-fold in the diabetic animals (p< or =0.001) although treatment with Sulindac did not affect their accumulation in diabetic skin collagen or alter diabetes-induced rises in plasma malondialdehyde. Retinal capillary basement membrane volume was significantly increased in the untreated diabetic dogs compared to non-diabetic controls or Sulindac-treated diabetic animals (p< or =0.0001). This study has confirmed the beneficial effect of a non-steroidal anti-inflammatory drug on the early vascular pathology of diabetic retinopathy. However the treatment benefit was not dependent on inhibition of polyol pathway activity, advanced glycation, or oxidative stress.
NASA Astrophysics Data System (ADS)
Horton, B. K.; Fuentes, F.
2015-12-01
Andean deformation and basin evolution in the Malargüe fold-thrust belt of western Argentina (34-36°S) has been dominated by basement faults influenced by pre-existing Mesozoic rift structures of the hydrocarbon-rich Neuquen basin. However, the basement structures diverge from classic inversion structures, and the associated retroarc basin system shows a complex Mesozoic-Cenozoic history of mixed extension and contraction, along with an enigmatic early Cenozoic stratigraphic hiatus. New results from balanced structural cross sections (supported by industry seismic, well data, and surface maps), U-Pb geochronology, and foreland deposystem analyses provide improved resolution to examine the duration and kinematic evolution of Andean mixed-mode deformation. The basement structures form large anticlines with steep forelimbs and up to >5 km of structural relief. Once the propagating tips of the deeper basement faults reached cover strata, they fed slip to shallow thrust systems that were transported in piggyback fashion by newly formed basement structures, producing complex structural relationships. Detrital zircon U-Pb ages for the 5-7 km-thick basin fill succession reveal shifts in sedimentation pathways and accumulation rates consistent with (1) local basement sources during Early-Middle Jurassic back-arc extension, (2) variable cratonic and magmatic arc sources during Late Jurassic-Cretaceous postrift thermal subsidence, and (3) Andean arc and thrust-belt sources during irregular Late Cretaceous-Cenozoic shortening. Although pulses of flexural subsidence can be attributed to periods of fault reactivation (inversion) and geometrically linked thin-skinned thrusting, fully developed foreland basin conditions were only achieved in Late Cretaceous and Neogene time. Separating these two contractional episodes is an Eocene-lower Miocene (roughly 40-20 Ma) depositional hiatus within the Cenozoic succession, potentially signifying forebulge passage or neutral to extensional conditions during a transient retreating-slab configuration along the southwestern margin of South America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, A.D.; Kuuskraa, V.A.; Klawitter, A.L.
Recurrent basement faulting is the primary controlling mechanism for aligning and compartmentalizing upper Cretaceous aged tight gas reservoirs of the San Juan and Piceance Basins. Northwest trending structural lineaments that formed in conjunction with the Uncompahgre Highlands have profoundly influenced sedimentation trends and created boundaries for gas migration; sealing and compartmentalizing sedimentary packages in both basins. Fractures which formed over the structural lineaments provide permeability pathways which allowing gas recovery from otherwise tight gas reservoirs. Structural alignments and associated reservoir compartments have been accurately targeted by integrating advanced remote sensing imagery, high resolution aeromagnetics, seismic interpretation, stratigraphic mapping and dynamicmore » structural modelling. This unifying methodology is a powerful tool for exploration geologists and is also a systematic approach to tight gas resource assessment in frontier basins.« less
Hawkes, Cheryl A; Gatherer, Maureen; Sharp, Matthew M; Dorr, Adrienne; Yuen, Ho Ming; Kalaria, Rajesh; Weller, Roy O; Carare, Roxana O
2013-04-01
Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid-β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age-related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2-, 7-, and 23-month-old mice revealed significant age-related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age-related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howlett, Anthony R; Petersen, Ole W; Steeg, Patricia S
1994-01-01
We have developed a culture system using reconstituted basement membrane components in which normal human mammary epithelial cells exhibit several aspects of the development and differentiation process, including formation of acinar-like structures, production and basal deposition of basement membrane components, and production and apical secretion of sialomucins. Cell lines and cultures from human breast carcinomas failed to recapitulate this process. The data indicate the importance of cellular interactions with the basement membrane in the regulation of normal breast differentiation and, potentially, its loss in neoplasia. Our purpose was to use this assay to investigate the role of the putative metastasismore » suppressor gene nm23-H1 in mammary development and differentiation. The metastatic human breast carcinoma cell line MDA-MB-435, clones transfected with a control pCMVBamneo vector, and clones transfected with pCMVBamneo vector containing nm23-H1 complementary DNA (the latter of which exhibited a substantial reduction in spontaneous metastatic potential in vivo) were cultured within a reconstituted basement membrane. Clones were examined for formation of acinus-like spheres, deposition of basement membrane components, production of sialomucin, polarization, and growth arrest. In contrast to the parental cell line and control transfectants, MDA-MB-435 breast carcinoma cells overexpressing Nm23-H1 protein regained several aspects of the normal phenotype within reconstituted basement membrane. Nm23-H1 protein-positive cells formed organized acinus-like spheres, deposited the basement membrane components type IV collagen and, to some extent, laminin to the outside of the spheres, expressed sialomucin, and growth arrested. Growth arrest of Nm23-H1 protein-positive cells was preceded by and correlated with formation of a basement membrane, suggesting a causal relationship. The data indicate a previously unidentified cause-and-effect relationship between nm23-H1 gene expression and morphological-biosynthetic-growth aspects of breast differentiation in this model system. While the basement membrane microenvironment is capable of directing the differentiation of normal human breast cells, neoplastic transformation abrogates this relationship, suggesting that intrinsic cellular events are also critical to this process. The data identify nm23-H1 gene expression as one of these events, suggesting an important role in the modulation of cellular responsiveness to the microenvironment. The data also identify previously unknown growth inhibitory effects of nm23-H1 gene overexpression.« less
NASA Astrophysics Data System (ADS)
Abu Risha, U. A.; Al Temamy, A. M. M.
2016-05-01
This research presents a clear example of the significant role of basement relief on the formation of aquifers and the impact of geologic structures on groundwater occurrence. A basement relief map was constructed using the depth to basement data acquired from 20 vertical electrical soundings (VESes), 3 land magnetic profiles, and 27 drilled wells tapping the basement rocks in addition to the elevations of the basement outcrops in the area of study. The map shows three basins underlying the area. The geoelectric survey shows that these basins were formed as a result of series of step faults. The largest basin underlies El-Shab area. The medium basin underlies the area of Bir Kiseiba whereas the smallest one underlies Bir Abu El-Hussein area. The Nubian Sandstone aquifer occurs only in El-Shab basin whereas the other basins are filled completely with the confining layer of Kiseiba Formation. The depth to basement in El-Shab basin ranges from 11 m. (ves-20) to 197 m. (ves-1) m.b.g.s. The depth to basement in Kiseiba basin ranges from 20 m. (Bir Kurayim magnetic profile) to 122 m. (ves-13) m.b.g.s. The depth to basement in Abu El-Husein basin ranges from 0 (basement outcrops) to 64 m. (Abu El-Husein magnetic profile) m.b.g.s. The aquifer thickness ranges from 0 m (where the aquitard rests directly on the basement) to 153 m. (El Shab well No. 79). The aquifer is uncoformably overlain by Kiseiba Formation which represents the aquitard layer at Bir El-Shab. The thickness of the aquitard ranges from 0 (in areas covered by the Nubian Sandstone) to 120 m (ves-13). Each of the aquifer and aquitard consist of three layers. Two of the aquitard layers are water-bearing. However, the estimated transmissivity of the aquitard is very low (11.9 m2/d). The groundwater moves vertically into the overlying aquitard at Bir El-Shab and subsequently flows in concentric pattern into the surrounding areas. Faulting controls groundwater occurrence and quality. Some springs lie on the basement high associated with step faulting at the edges of El-Shab basin. An ENE low-salinity zone is associated with the basement high which separates El-Shab basin from Kiseiba basin. Focused groundwater recharge through the faults and fractures from paleo playas could be the mechanism of the formation of this anomaly. The isotope data shows local recharge of the groundwater most likely during the Pleistocene time. Two-dimension (2D) Electrical Resistivity Tomography (ERT) profiles reveal that the evaporation process has the main role in increasing the salinity of some water points. It is highly recommended to delineate the southern boundary of El-Shab basin which is expected to extend into Sudan.
LPT. Low power test (TAN640) interior. Basement level. Camera facing ...
LPT. Low power test (TAN-640) interior. Basement level. Camera facing north. Cable trays and conduit cross tunnel between critical experiment cell and critical experiment control room. Construction 93% complete. Photographer: Jack L. Anderson. Date: October 23, 1957. INEEL negative no. 57-5339 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Fault geometries in basement-induced wrench faulting under different initial stress states
NASA Astrophysics Data System (ADS)
Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.
Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.
Basement control of structure in the Gettysburg rift basin, Pennsylvania and Maryland
NASA Astrophysics Data System (ADS)
Root, Samuel I.
1989-09-01
Jurassic faulting formed the 93 km long Gettysburg basin as an extensional half graben paralleling the basement structural grain. Preserved in the basin are rift-related Carnian to Rhaetian strata that were tilted 20-30° NW into a SE dipping, listric normal fault at the northwest border of the basin. Vertical displacement on the border fault approaches 10 km. The border fault developed parallel to the trend of the terminal Paleozoic Alleghenian South Mountain cleavage of the Blue Ridge basement along 80% of its extent. However, it is only roughly parallel to discordant to dip of the cleavage. Relationship of cleavage and later border faulting may be the result of persistent reactivation of the original Appalachian continental margin. Local complex structures in the half graben are related to reactivation of two subvertical, pre-Mesozoic faults that transect basement structural grain (cleavage) at a large angle. The northern Shippensburg fault was reactivated during basin normal faulting, offsetting the border fault in a right-lateral sense by 3.5 km and forming within the basin a fold and a fault sliver of basement. The southern Carbaugh-Marsh Creek fault was not reactivated, but is the locus of a 20°-30° change of trend of both the basement cleavage and later border fault. However, two large, NW trending, left-lateral wrench faults, antithetic to the Carbaugh-March Creek fault, developed here offsetting the border fault and forming en echelon folds and horst blocks of basement rock within the basin.
NASA Astrophysics Data System (ADS)
O'Neill, J. Michael; Schmidt, Christopher J.; Genovese, Paul W.
1990-11-01
The front of the Cordilleran fold and thrust belt in western Montana follows the disturbed belt in the north, merges with the southwest Montana transverse zone in the west-central part of the region, and in southwestern Montana is marked by a broad zone characterized by complex interaction between thrust belt structures and basement uplifts. The front margin of the thrust belt in Montana reflects mainly thin-skinned tectonic features in the north, an east-trending lateral ramp that curves southwest in the central part into the Dillon cutoff, an oblique-slip, thick-skinned displacement transfer zone that cuts through basement rocks of the Lima recess, and a zone of overlap between thin- and thick-skinned thrusts in extreme southwestern Montana. The transverse ramp and basement-involved thrust faults are controlled by Proterozoic structures.
String Vessel Formation is Increased in the Brain of Parkinson Disease.
Yang, Panzao; Pavlovic, Darja; Waldvogel, Henry; Dragunow, Mike; Synek, Beth; Turner, Clinton; Faull, Richard; Guan, Jian
2015-01-01
String vessels are collapsed basement membrane without endothelium and have no function in circulation. String vessel formation contributes to vascular degeneration in Alzheimer disease. By comparing to age-matched control cases we have recently reported endothelial degeneration in brain capillaries of human Parkinson disease (PD). Current study evaluated changes of basement membrane of capillaries, string vessel formation and their association with astrocytes, blood-brain-barrier integrity and neuronal degeneration in PD. Brain tissue from human cases of PD and age-matched controls was used. Immunohistochemical staining for collagen IV, GFAP, NeuN, tyrosine hydroxylase, fibrinogen and Factor VIII was evaluated by image analysis in the substantia nigra, caudate nucleus and middle frontal gyrus. While the basement-membrane-associated vessel density was similar between the two groups, the density of string vessels was significantly increased in the PD cases, particularly in the substantia nigra. Neuronal degeneration was found in all brain regions. Astrocytes and fibrinogen were increased in the caudate nuclei of PD cases compared with control cases. Endothelial degeneration and preservation of basement membrane result in an increase of string vessel formation in PD. The data may suggest a possible role for cerebral hypoperfusion in the neuronal degeneration characteristic of PD, which needs further investigation. Elevated astrocytosis in the caudate nucleus of PD cases could be associated with disruption of the blood-brain barrier in this brain region.
First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts
NASA Astrophysics Data System (ADS)
Erdős, Zoltán.; Huismans, Ritske S.; van der Beek, Peter
2015-07-01
The first-order characteristics of collisional mountain belts and the potential feedback with surface processes are predicted by critical taper theory. While the feedback between erosion and mountain belt structure has been fairly extensively studied, less attention has been given to the potential role of synorogenic deposition. For thin-skinned fold-and-thrust belts, recent studies indicate a strong control of syntectonic deposition on structure, as sedimentation tends to stabilize the thin-skinned wedge. However, the factors controlling basement deformation below fold-and-thrust belts, as evident, for example, in the Zagros Mountains or in the Swiss Alps, remain largely unknown. Previous work has suggested that such variations in orogenic structure may be explained by the thermotectonic "age" of the deforming lithosphere and hence its rheology. Here we demonstrate that sediment loading of the foreland basin area provides an additional control and may explain the variable basement involvement in orogenic belts. When examining the role of sedimentation, we identify two end-members: (1) sediment-starved orogenic systems with thick-skinned basement deformation in an axial orogenic core and thin-skinned deformation in the bordering forelands and (2) sediment-loaded orogens with thick packages of synorogenic deposits, derived from the axial basement zone, deposited on the surrounding foreland fold-and-thrust belts, and characterized by basement deformation below the foreland. Using high-resolution thermomechanical models, we demonstrate a strong feedback between deposition and crustal-scale thick-skinned deformation. Our results show that the loading effects of syntectonic sediments lead to long crustal-scale thrust sheets beneath the orogenic foreland and explain the contrasting characteristics of sediment-starved and sediment-loaded orogens, showing for the first time how both thin- and thick-skinned crustal deformations are linked to sediment deposition in these orogenic systems. We show that the observed model behavior is consistent with observations from a number of natural orogenic systems.
Li, Jian-sheng; Liu, Ke; Liu, Jing-xia; Wang, Ming-hang; Zhao, Yue-wu; Liu, Zheng-guo
2008-11-01
To study the relationship of cerebro-microvessel basement membrane injury and gelatinase system after cerebral ischemia/reperfusion (I/R) in aged rats. Cerebral I/R injury model was reproduced by intraluminal silk ligature thrombosis of the middle cerebral artery occlusion (MCAO). Rats were divided randomly into sham control and I/R groups in young rats [ischemia 3 hours (I 3 h) and reperfusion 6 hours (I/R 6 h), 12 hours (I/R 12 h), 24 hours (I/R 24 h), 3 days (I/R 3 d), 6 days (I/R 6 d)], and sham control group and I/R group in aged rats (I 3 h and I/R 6 h, I/R 12 h, I/R 24 h , I/R 3 d, I/R 6 d). The change in cerebro-cortex microvessel basement membrane structure, basement membrane type IV collagen (Col IV) and laminin (LN) contents, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression in every group were determined with immunohistochemical method and zymogram analysis. With the increase in age, Col IV and LN contents of the microvessel basement membrane were increased, and MMP-2 and MMP-9 expressions were stronger. With prolongation of I/R, the degradation of microvessel basement membrane components (Col IV and LN) was positively correlated with the duration of cerebral I/R. MMP-2 expression was increased gradually, and MMP-9 and TIMP-1 expression increased at the beginning and decreased subsequently. Col IV(I 3 h, I/R 6 h , I/R 12 h), LN (I 3 h, I/R 6-24 h), MMP-2 (I 3 h, I/R 6 h-6 d) and MMP-9 (I 3 h, I/R 6-24 h) expression level in aged rats with I/R injury were higher, and TIMP-1 (I/R 24 h) expression was lower than those in young rats (P<0.05 or P<0.01). In addition, changes in MMP-2 and MMP-9 contents as determined by zymogram analysis method coincided with their immunoexpression. With the increase of age, alteration in membrane components of cerebro-microvessel basement membrane in rats is related with MMPs and TIMP. Cerebro-microvessel basement membrane injury is more serious in aged rats than that of young rats. Changes in cerebro-microvessel basement membrane injury in aged rats is related with gelatinase system change.
Dykes, Samantha S; Steffan, Joshua J; Cardelli, James A
2017-10-04
Tumor invasion through a basement membrane is one of the earliest steps in metastasis, and growth factors, such as Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF), stimulate this process in a majority of solid tumors. Basement membrane breakdown is one of the hallmarks of invasion; therefore, tumor cells secrete a variety of proteases to aid in this process, including lysosomal proteases. Previous studies demonstrated that peripheral lysosome distribution coincides with the release of lysosomal cathepsins. Immunofluorescence microscopy, western blot, and 2D and 3D cell culture techniques were performed to evaluate the effects of EGF on lysosome trafficking and cell motility and invasion. EGF-mediated lysosome trafficking, protease secretion, and invasion is regulated by the activity of p38 mitogen activated protein kinase (MAPK) and sodium hydrogen exchangers (NHEs). Interestingly, EGF stimulates anterograde lysosome trafficking through a different mechanism than previously reported for HGF, suggesting that there are redundant signaling pathways that control lysosome positioning and trafficking in tumor cells. These data suggest that EGF stimulation induces peripheral (anterograde) lysosome trafficking, which is critical for EGF-mediated invasion and protease release, through the activation of p38 MAPK and NHEs. Taken together, this report demonstrates that anterograde lysosome trafficking is necessary for EGF-mediated tumor invasion and begins to characterize the molecular mechanisms required for EGF-stimulated lysosome trafficking.
Torricelli, Andre A. M.; Singh, Vivek; Agrawal, Vandana; Santhiago, Marcony R.; Wilson, Steven E.
2013-01-01
Purpose. To assess the ultrastructure of the epithelial basement membrane using transmission electron microscopy (TEM) in rabbit corneas with and without subepithelial stroma opacity (haze). Methods. Two groups of eight rabbits each were included in this study. Photorefractive keratectomy (PRK) was performed using an excimer laser. The first group had −4.5-diopter (−4.5D) PRK and the second group had −9.0D PRK. Contralateral eyes were unwounded controls. Rabbits were sacrificed at 4 weeks after surgery. Immunohistochemical analysis was performed to detect the myofibroblast marker α-smooth muscle actin (SMA). TEM was performed to analyze the ultrastructure of the epithelial basement membrane and stroma. Results. At 4 weeks after PRK, α-SMA+ myofibroblasts were present at high density in the subepithelial stroma of rabbit eyes that had −9.0D PRK, along with prominent disorganized extracellular matrix, whereas few myofibroblasts and little disorganized extracellular matrix were noted in eyes that had −4.5D PRK. The epithelial basement membrane was irregular and discontinuous and lacking typical morphology in all corneas at 1 month after −9D PRK compared to corneas at 1 month in the −4.5D PRK group. Conclusions. The epithelial basement membrane acts as a critical modulator of corneal wound healing. Structural and functional defects in the epithelial basement membrane correlate to both stromal myofibroblast development from precursor cells and continued myofibroblast viability, likely through the modulation of epithelial–stromal interactions mediated by cytokines. Prolonged stromal haze in the cornea is associated with abnormal regeneration of the epithelial basement membrane. PMID:23696606
Yamamoto, T.; Wilson, C. B.
1987-01-01
A possible causal relationship has been suggested between hydrocarbon (gasoline, solvents, etc.) exposure and development of anti-basement membrane antibody-associated Goodpasture's syndrome in man. The authors evaluated the effect of hydrocarbons on pulmonary capillary permeability and binding of heterologous anti-basement membrane antibodies in the lungs after intratracheal instillation of minute amounts of unleaded gasoline into rabbits. The anti-glomerular basement membrane (GBM) antibodies used reacted with the alveolar basement membrane (ABM) in vitro by indirect immunofluorescence. The gasoline treatment altered pulmonary capillary permeability, judging from the increased accumulation of systemically administered radioiodinated bovine serum albumin in the alveolar and extravascular spaces of lungs; it also induced focal macroscopic and microscopic pulmonary histologic lesions. The gasoline caused focal in vivo binding of the anti-GBM antibodies to the ABM detectable by immunofluorescence microscopy. No binding was observed in lungs from control rabbits given saline instillations when assayed by immunofluorescence. The paired label radioisotope technique confirmed the increased antibody binding to lungs injured with gasoline (1.08 +/- 0.03 micrograms) versus 0.37 +/- 0.07 microgram after saline (P less than 0.001). These results indicate that gasoline exposure damages a pulmonary barrier that normally prevents binding of anti-GBM/ABM antibody to ABM and suggest that hydrocarbon exposure may be one of perhaps several pneumotoxic events that contribute to the episodic pulmonary hemorrhage in Goodpasture's syndrome by temporarily allowing ABM binding of anti-basement membrane antibodies. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3548409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, K.C.; Kendrick, R.D.; Crowhurst, P.V.
1996-01-01
Most models for the tectonic evolution of New Guinea involve Early and Late Miocene arc-continent collisions, creating an orogenic belt. Structural trends and prospectivity are then analyzed in terms of belts across the country; the Fold Belt (with the discovered oil and gas fields), the Mobile Belt and the accreted arcs. This model inhibits realistic assessment of prospectivity. It now appears the Mobile Belt formed by Oligocene compression then by Early Miocene extension, related to slab-rollback, that unroofed metamorphic core complexes adjacent to starved half-grabens. The grabens filled in the Middle Miocene and were largely transported intact during the Pliocenemore » arc-collision. Early Miocene reefs and hypothesized starved basin source rocks create a viable play throughout northern New Guinea as in the Salawati Basin. The Pliocene clastic section is locally prospective due to overthrusting and deep burial. Within the Fold Belt, the site and types of oil and gas fields are largely controlled by the basement architecture. This controlled the transfer zones and depocentres during Mesozoic extension and the location of major basement uplifts during compression. In PNG, the Bosavi lineament separates an oil province from a gas province. In Irian Jaya the transition from a relatively competent sequence to a rifted sequence west of [approx]139[degrees]E may also be a gas-oil province boundary. Understanding, in detail, the compartmentalization of inverted blocks and areas of thin-skinned thrusting, controlled by the basement architecture, will help constrain hydrocarbon prospectivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, K.C.; Kendrick, R.D.; Crowhurst, P.V.
1996-12-31
Most models for the tectonic evolution of New Guinea involve Early and Late Miocene arc-continent collisions, creating an orogenic belt. Structural trends and prospectivity are then analyzed in terms of belts across the country; the Fold Belt (with the discovered oil and gas fields), the Mobile Belt and the accreted arcs. This model inhibits realistic assessment of prospectivity. It now appears the Mobile Belt formed by Oligocene compression then by Early Miocene extension, related to slab-rollback, that unroofed metamorphic core complexes adjacent to starved half-grabens. The grabens filled in the Middle Miocene and were largely transported intact during the Pliocenemore » arc-collision. Early Miocene reefs and hypothesized starved basin source rocks create a viable play throughout northern New Guinea as in the Salawati Basin. The Pliocene clastic section is locally prospective due to overthrusting and deep burial. Within the Fold Belt, the site and types of oil and gas fields are largely controlled by the basement architecture. This controlled the transfer zones and depocentres during Mesozoic extension and the location of major basement uplifts during compression. In PNG, the Bosavi lineament separates an oil province from a gas province. In Irian Jaya the transition from a relatively competent sequence to a rifted sequence west of {approx}139{degrees}E may also be a gas-oil province boundary. Understanding, in detail, the compartmentalization of inverted blocks and areas of thin-skinned thrusting, controlled by the basement architecture, will help constrain hydrocarbon prospectivity.« less
Sequential development of structural heterogeneity in the Granny Creek oil field of West Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, T.H.; Zheng, L.; Shumaker, R.C.
1993-08-01
Analysis of Vibroseis and weight-drop seismic data over the Granny Creek oil field in the Appalachian foreland of West Virginia indicates that the field's development has been effected by episodic Paleozoic reactivation of fault blocks rooted in the Precambrian crystalline basement. The imprint of structures associated with the Rome trough penetrates the overlying Paleozoic sedimentary cover. Reactivation histories of individual fault blocks vary considerably throughout the Paleozoic. In general, the relative displacement of these basement fault blocks decrease exponentially during the Paleozoic; however, this pattern is interrupted by periods of increased tectonic activity and relative inversion of offsets along somemore » faults. The distribution of late-stage detached structures during the Alleghenian orogeny also appears, in part, to be controlled by mechanical anisotrophy within the detached section related to the reactivation of deeper structures in the crystalline basement. The net effect is a complex time-variable pattern of structures that partly controls the location of the reservoir and heterogeneity within the geometric framework of the reservoir. Structural heterogeneity in the Granny Creek area is subdivided on the basis of scale into structures associated with variations of oil production within the reservoir. Variations of production within the field are related, in part, to small detached structures and reactivated basement faults.« less
NASA Astrophysics Data System (ADS)
Fekkak, A.; Ouanaimi, H.; Michard, A.; Soulaimani, A.; Ettachfini, E. M.; Berrada, I.; El Arabi, H.; Lagnaoui, A.; Saddiqi, O.
2018-04-01
Most of the structural studies of the intracontinental High Atlas belt of Morocco have dealt with the central part of the belt, whose basement does not crop out. Here we study the Alpine deformation of the North Subatlas Zone, which is the part of the Western High Atlas (WHA) Paleozoic Massif that involves both Paleozoic basement units and remnants of their Mesozoic-Cenozoic cover formations. Our aim is to better constrain the geometry and kinematics of the basement faults during the Alpine shortening. Based on detail mapping, satellite imagery and field observations, we describe an array of sub-equatorial, transverse and oblique faults between the WHA Axial Zone and the Haouz Neogene basin. They define a mosaic of basement blocks pushed upon one another and upon the Haouz basement along the North Atlas Fault (NAF). The Axial Zone makes up the hanging-wall of the Adassil-Medinet Fault (AMF) south of this mosaic. The faults generally presents flat-ramp-flat geometry linked to the activation of multiple décollement levels, either within the basement where its foliation is subhorizontal or within favourable cover formations (Jurassic evaporites, Lower Cretaceous silty red beds, Upper Cretaceous evaporitic marls, Neogene basal argillites). The occurrence of the North Atlas detachment (NAD) allowed folded pop-up units to develop in front of the propagating NAF. Shortening began as early as the Campanian-Maastrichtian along the AMF. The direction of the maximum horizontal stress rotated from NNE-SSW to NNW-SSE from the Maastrichtian-Paleocene to the Neogene. The amount of shortening reaches 20% in the Azegour transect. This compares with the shortening amount published for the central-eastern High Atlas, suggesting that similar structures characterize the Paleozoic basement all along the belt. The WHA thick-skinned tectonics evokes that of the frontal Sevier belt and of the external Western Alps, although with a much minor pre-inversion burial.
NASA Astrophysics Data System (ADS)
Brudzinski, M.; Skoumal, R.; Currie, B.
2016-12-01
Over the past decade, the dramatic rise in seismicity in the central and eastern US has been attributed to industry operations associated with wastewater injection and hydraulic fracturing. While most of the observed seismicity has occurred in sedimentary basins that have experienced overall increases in oil and gas development (e.g. the Anadarko and Ft. Worth basins), other basins with similar activity (e.g. the Williston and northern Appalachian basins) have experienced very little, if any, induced seismicity. While hydro-geomechanical modeling indicates that induced seismicity may be related to the proximity of critically stressed faults in the crystalline basement, recent studies have found fluid injection rate to be the dominant factor controlling induced seismicity. To test these interpretations we evaluated water disposal and well completion records from the Appalachian, Illinois, and Williston basins, and compared them with induced seismic sequences identified through seismic template matching of all cataloged earthquakes in these regions. Our results indicate a strong correspondence between induced seismic events and the proximity of subsurface wastewater injection/hydraulic fracturing targets to crystalline basement rocks. For example, in the northern Appalachian Basin, of the >20 identified induced seismic sequences, all but two were associated with injection/completion targets located at depths within 1 km of the basement. In parts of the basin where target intervals are at depths >1 km from basement, induced events have been recorded only in proximity to basement-involved faults. In addition, in the Williston Basin most disposal interval/hydraulic fracturing targets are >1 km above the crystalline basement which may explain the lack of induced seismic events in the region despite high rate fluid injection. Collectively, the results of our investigation suggest that proximity to basement is an important variable in considering the likelihood of induced seismicity associated with wastewater disposal and hydraulic fracturing. This has important implications regarding induced-seismic risk assessment related to the siting of new disposal wells and/or the production of hydrocarbon from near-basement reservoirs.
NASA Astrophysics Data System (ADS)
Osinowo, Olawale O.; Akanji, Adesoji O.; Olayinka, Abel I.
2014-11-01
The discovery of hydrocarbon in commercial quantity in the Niger Delta, southern Nigeria, has since the early fifties shifted the attention of exploration/active geological studies from the Dahomey basin and the adjacent basement terrain in south-western Nigeria towards the south and this has left some gaps in information required for the discovery and exploitation of the economic potential of the region. This study mapped the Siluko transition zone in south-western Nigeria in terms of structures, geometry and basement topography with the object of providing requisite geological information that will engender interest in the exploration and exploitation of the numerous economic potentials of south-western part of Nigeria. Acquired high resolution aeromagnetic data were filtered, processed and enhanced, the resultant data were subjected to qualitative and quantitative magnetic interpretation, depth weighting analyses and modelling to generate the subsurface basement topography across the study area. The obtained results indicate regions of high and low magnetic anomalies with residual magnetic intensity values ranging from -100.8 nT to 100.9 nT. Euler Deconvolution indicates generally undulating basement topography with depth range of 125-1812 m. The basement relief is generally gentle and flat lying within the basement terrain with depth ranging from 125 to 500 m. However the sedimentary terrain is undulating and generally steeps south, down the basin with depth range of 300-1812 m. A basement topography model of the magnetic data constrained by Euler solutions correlate positively with the geology of the study area and indicates a generally increasing sedimentary deposits' thickness southward toward the western part of Dahomey basin. The revealed basement topography and structures as well as the delineated direction of continuous increase in thickness of sedimentary deposit provide insight to the controlling factor responsible for tar sand deposit and bitumen/oil shows associated with the study area. The results also point to the southern and south-western part of the basin as the appropriate direction to focus at for meaningful hydrocarbon potential development.
Kask, Keiu; Tikker, Laura; Ruisu, Katrin; Lulla, Sirje; Oja, Eva-Maria; Meier, Riho; Raid, Raivo; Velling, Teet; Tõnissoo, Tambet; Pooga, Margus
2018-04-01
Autosomal recessive disorders such as Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and the muscle-eye-brain disease are characterized by defects in the development of patient's brain, eyes, and skeletal muscles. These syndromes are accompanied by brain malformations like type II lissencephaly in the cerebral cortex with characteristic overmigrations of neurons through the breaches of the pial basement membrane. The signaling pathways activated by laminin receptors, dystroglycan and integrins, control the integrity of the basement membrane, and their malfunctioning may underlie the pathologies found in the rise of defects reminiscent of these syndromes. Similar defects in corticogenesis and neuromuscular disorders were found in mice when RIC8A was specifically removed from neural precursor cells. RIC8A regulates a subset of G-protein α subunits and in several model organisms, it has been reported to participate in the control of cell division, signaling, and migration. Here, we studied the role of RIC8A in the development of the brain, muscles, and eyes of the neural precursor-specific conditional Ric8a knockout mice. The absence of RIC8A severely affected the attachment and positioning of radial glial processes, Cajal-Retzius' cells, and the arachnoid trabeculae, and these mice displayed additional defects in the lens, skeletal muscles, and heart development. All the discovered defects might be linked to aberrancies in cell adhesion and migration, suggesting that RIC8A has a crucial role in the regulation of cell-extracellular matrix interactions and that its removal leads to the phenotype characteristic to type II lissencephaly-associated diseases. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 374-390, 2018. © 2018 Wiley Periodicals, Inc.
Rush, Demaretta; Hyjek, Elizabeth; Baergen, Rebecca N; Ellenson, Lora H; Pirog, Edyta C
2005-06-01
Identification of early invasion in vulvar intraepithelial neoplasia 3 (VIN 3) and cervical intraepithelial neoplasia 3 (CIN 3) may be difficult with the use of routine hematoxylin-eosin staining. Presence of obscuring inflammation and tangential tissue sectioning are the most common diagnostic pitfalls. To examine the utility of double immunostaining for cytokeratin-collagen IV or cytokeratin-laminin in the detection of early invasion in VIN 3 and CIN 3. The study group consisted of 10 cases of "VIN 3, suspicious for invasion" and 10 cases of "CIN 3, suspicious for invasion." The negative control group consisted of VIN 3 (n = 15) and CIN 3 (n = 10). The positive control group consisted of cases of invasive vulvar carcinoma (n = 11) and invasive cervical carcinoma (n = 25). All cases were double immunostained for cytokeratin and collagen IV and, in a separate reaction, for cytokeratin and laminin. The continuity of the basement membrane and the presence of stromal invasion were assessed in the stained sections. The staining for collagen IV and laminin yielded identical results. A well-defined, continuous basement membrane was visualized in all cases of VIN 3 and CIN 3. A discontinuous or absent basement membrane was observed around the malignant cells on the invasive tumor front in all cases of vulvar and cervical carcinoma. In 2 of 10 cases of VIN 3, suspicious for invasion and in 4 of 10 cases of CIN 3, suspicious for invasion definitive foci of microinvasion were identified with the use of double immunostaining. A well-defined, continuous basement membrane was present in the remaining cases "suspicious for invasion." Double immunostaining for cytokeratin- collagen IV or cytokeratin-laminin is useful for evaluation of early invasion in equivocal cases of VIN 3 and CIN 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoak, T.E.; Klawitter, A.L.
Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau,more » Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.« less
Laminin-111 and the Level of Nuclear Actin Regulate Epithelial Quiescence via Exportin-6.
Fiore, Ana Paula Zen Petisco; Spencer, Virginia A; Mori, Hidetoshi; Carvalho, Hernandes F; Bissell, Mina J; Bruni-Cardoso, Alexandre
2017-06-06
Nuclear actin (N-actin) is known to participate in the regulation of gene expression. We showed previously that N-actin levels mediate the growth and quiescence of mouse epithelial cells in response to laminin-111 (LN1), a component of the mammary basement membrane (BM). We know that BM is defective in malignant cells, and we show here that it is the LN1/N-actin pathway that is aberrant in human breast cancer cells, leading to continuous growth. Photobleaching assays revealed that N-actin exit in nonmalignant cells begins as early as 30 min after LN1 treatment. LN1 attenuates the PI3K pathway leading to upregulation of exportin-6 (XPO6) activity and shuttles actin out of the nucleus. Silencing XPO6 prevents quiescence. Malignant cells are impervious to LN1 signaling. These results shed light on the crucial role of LN1 in quiescence and differentiation and how defects in the LN1/PI3K/XPO6/N-actin axis explain the loss of tissue homeostasis and growth control that contributes to malignant progression. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
McNamara, David; Milicich, Sarah; Massiot, Cécile
2017-04-01
Borehole imaging has been used worldwide since the 1950's to capture vital geological information on the lithology, structure, and stress conditions of the Earth's subsurface. In New Zealand both acoustic and resistivity based borehole image logs are utilised to explore the geological nature of the basement and volcanic rocks that contain the country's unique geothermal reservoirs. Borehole image logs in wells from three geothermal fields in the Taupo Volcanic Zone (TVZ) provide the first, direct, subsurface, structural orientation measurements in New Zealand geothermal reservoir lithologies. While showing an overall structural pattern aligned to the regional tectonic trend, heterogeneities are observed that provide insight into the complexity of the structurally controlled, geothermal, fluid flow pathways. Analysis of imaged stress induced features informs us that the stress field orientation in the TVZ is also not homogenous, but is variable at a local scale.
NASA Astrophysics Data System (ADS)
Lai, Steven Yueh Jen; Hsiao, Yung-Tai; Wu, Fu-Chun
2017-12-01
Deltas form over basements of various slope configurations. While the morphodynamics of prograding deltas over single-slope basements have been studied previously, our understanding of delta progradation over segmented basements is still limited. Here we use experimental and analytical approaches to investigate the deltaic morphologies developing over two-slope basements with unequal subaerial and subaqueous slopes. For each case considered, the scaled profiles of the evolving delta collapse to a single profile for constant water and sediment influxes, allowing us to use the analytical self-similar profiles to investigate the individual effects of subaerial/subaqueous slopes. Individually varying the subaerial/subaqueous slopes exerts asymmetric effects on the morphologies. Increasing the subaerial slope advances the entire delta; increasing the subaqueous slope advances the upstream boundary of the topset yet causes the downstream boundary to retreat. The delta front exhibits a first-retreat-then-advance migrating trend with increasing subaqueous slope. A decrease in subaerial topset length is always accompanied by an increase in subaqueous volume fraction, no matter which segment is steepened. Applications are presented for estimating shoreline retreat caused by steepening of basement slopes, and estimating subaqueous volume and delta front using the observed topset length. The results may have implications for real-world delta systems subjected to upstream tectonic uplift and/or downstream subsidence. Both scenarios would exhibit reduced topset lengths, which are indicative of the accompanied increases in subaqueous volume and signal tectonic uplift and/or subsidence that are at play. We highlight herein the importance of geometric controls on partitioning of sediment between subaerial and subaqueous delta components.
p63 in skin development and ectodermal dysplasias
Koster, Maranke I.
2010-01-01
The transcription factor p63 is critically important for skin development and maintenance. Processes that require p63 include epidermal lineage commitment, epidermal differentiation, cell adhesion, and basement membrane formation. Not surprisingly, alterations in the p63 pathway underlie a subset of ectodermal dysplasias, developmental syndromes in which the skin and skin appendages do not develop normally. This review summarizes the current understanding of the role of p63 in normal development and ectodermal dysplasias. PMID:20445549
NASA Astrophysics Data System (ADS)
Bush, Meredith A.; Horton, Brian K.; Murphy, Michael A.; Stockli, Daniel F.
2016-09-01
New geochronological constraints on upper crustal exhumation in the southern Rocky Mountains help delineate the latest Cretaceous-Paleogene history of drainage reorganization and landscape evolution during Laramide flat-slab subduction beneath western North America. Detrital zircon U-Pb results for the Raton basin of southern Colorado and northern New Mexico define the inception of coarse-grained siliciclastic sedimentation and a distinctive shift in provenance, from distal to proximal sources, that recorded shortening-related uplift and unroofing along the Laramide deformation front of the northern Sangre de Cristo Mountains. This Maastrichtian-early Paleocene ( 70-65 Ma) change—from distal foreland accumulation of sediment derived from the thin-skinned Cordilleran (Sevier) fold-thrust belt to coarse-grained sedimentation proximal to a Laramide basement block uplift—reflects cratonward (eastward) deformation advance and reorganization of drainage systems that supplied a large volume of Paleocene-lower Eocene sediments to the Gulf of Mexico. The timing of unroofing along the eastern deformation front is synchronous with basement-involved shortening across the interior of the Laramide province, suggesting abrupt wholesale uplift rather than a systematic inboard advance of deformation. The growth and infilling of broken foreland basins within the interior and margins of the Laramide province had a significant impact on continental-scale drainage systems, as several ponded/axial Laramide basins trapped large volumes of sediment and induced reorganization of major source-to-sink sediment pathways.
Immunogold localisation of laminin in normal and exfoliative iris.
Konstas, A. G.; Marshall, G. E.; Lee, W. R.
1990-01-01
Immunoelectron microscopic studies of exfoliative iris tissue (seven specimens) revealed the presence of laminin in the fibrillar component of exfoliation material. The immunogold label was uniformly distributed on the exfoliation fibres. Deposition of laminin labelled exfoliation material in the dilator muscle was a noteworthy feature, as was an apparent depletion of laminin in the basement membranes of ostensibly unaffected vessels. In control iris tissue (five enucleated eyes) laminin was identified in the basement membrane round vascular contractile cells, but not beneath the endothelium. Images PMID:2390517
Precambrian crystalline basement map of Idaho-an interpretation of aeromagnetic anomalies
Sims, P.K.; Lund, Karen; Anderson, E.
2005-01-01
Idaho lies within the northern sector of the U.S. Cordillera astride the boundary between the Proterozoic continent (Laurentia) to the east and the Permian to Jurassic accreted terranes to the west. The continental basement is mostly covered by relatively undeformed Mesoproterozoic metasedimentary rocks and intruded or covered by Phanerozoic igneous rocks; accordingly, knowledge of the basement geology is poorly constrained. Incremental knowledge gained since the pioneering studies by W. Lindgren, C.P. Ross, A.L. Anderson, A. Hietanen, and others during the early- and mid-1900's has greatly advanced our understanding of the general geology of Idaho. However, knowledge of the basement geology remains relatively poor, partly because of the remoteness of much of the region plus the lack of a stimulus to decipher the complex assemblage of high-grade gneisses and migmatite of central Idaho. The availability of an updated aeromagnetic anomaly map of Idaho (North American Magnetic Anomaly Group, 2002) provides a means to determine the regional Precambrian geologic framework of the State. The combined geologic and aeromagnetic data permit identification of previously unrecognized crystalline basement terranes, assigned to Archean and Paleoproterozoic ages, and the delineation of major shear zones, which are expressed in the aeromagnetic data as linear negative anomalies (Finn and Sims, 2004). Limited geochronologic data on exposed crystalline basement aided by isotopic studies of zircon inheritance, particularly Bickford and others (1981) and Mueller and others (1995), provide much of the geologic background for our interpretation of the basement geology. In northwestern United States, inhomogeneities in the basement inherited from Precambrian tectogenesis controlled many large-scale tectonic features that developed during the Phanerozoic. Two basement structures, in particular, provided zones of weakness that were repeatedly rejuvenated: (1) northeast-trending ductile shear zones developed on the northwest margin of the Archean Wyoming province during the Paleoproterozoic Trans-Montana orogeny (Sims and others, 2004), and (2) northwest-trending intra-continental faults of the Mesoproterozoic Trans-Rocky Mountain strike-slip fault system (Sims, unpub. data, 2003). In this report, geologic ages are reported in millions of years (Ma) and generalized ages are given in billions of years (Ga). The subdivision of Precambrian rocks used herein is the time classification recommended by the International Union of Geological Sciences (Plumb, 1991).
NASA Astrophysics Data System (ADS)
Collanega, L.; Jackson, C. A. L.; Bell, R. E.; Lenhart, A.; Coleman, A. J.; Breda, A.; Massironi, M.
2017-12-01
Intrabasement structures are often envisaged to have acted as structural templates for normal fault growth in the overlying sedimentary cover during rifting (e.g. East African Rift; NE Brazilian Margin; Norwegian North Sea). However, in some settings, the geometry of rift-related faults is apparently unaffected by pre-existing basement fabric (Måløy Slope and Lofoten Ridge, offshore Norway). Understanding the nucleation and propagation of normal faults in the presence of basement structures may elucidate how and under what conditions basement fabric can exert an influence on rifting. Here, we investigate the 3D geometry of a series of normal faults and intrabasement structures from the Taranaki Basin, offshore New Zealand to understand how normal faults grow in the presence of basement heterogeneities. The Taranaki Basin is an ideal setting because the basement structures, related to the Mesozoic compressional tectonics, are shallow and well-imaged on 3D seismic reflection data, and the relatively thin and stratigraphically simple sedimentary cover is only affected by mild Pliocene extension. Our kinematic analysis highlights two classes of normal faults affecting different vertical intervals of the sedimentary cover. Deep faults, just above the basement, strike NW-SE to NE-SW, reflecting the trend of underlying intrabasement structures. In contrast, shallow faults strike according to the NE-SW to NNE-SSW Pliocene trend and are not generally affected by intrabasement structures at distances >500 m above the basement. Deep and shallow faults are only linked when they strike similarly, and are located above strong intrabasement reflections. We infer that cover deformation is significantly influenced by intrabasement structures within the 500 m interval above the crystalline basement, whereas shallower faults are optimally aligned to the Pliocene regional stress field. Since we do not observe an extensional reactivation of intrabasement structures during Pliocene rifting, we suspect that the key factor controlling cover fault nucleation and growth are local stress perturbations due to intrabasement structures. We conclude that intrabasement structures may provide a structural template for subsequent rift episodes, but only when these structures are proximal to newly forming faults.
de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues
2007-10-01
The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.
The Pawnee Sequence: Poroelastic Effects from Injection in Osage County, Oklahoma
NASA Astrophysics Data System (ADS)
Barbour, A. J.; Rubinstein, J. L.
2016-12-01
Aggregate multi-year records of wastewater injection in Oklahoma show that the strongest change in injection within 20 km of the 2016 M5.8 Pawnee strike-slip earthquake was in Osage County, where injection rates increased rapidly in late-2012 by nearly a factor of three above previous levels. After this increase, rates there declined steadily over two years to an average rate characteristic of all other injection wells in Pawnee and Noble Counties, remaining relatively constant until the beginning of the earthquake sequence. Here we test if poroelastic effects associated with this injection-rate transient can help explain the relative timing between peak injection rates and the beginning of the Pawnee sequence. Although the alternative hypothesis that regional-scale faults and fractures in critically stressed rock serve as fast-pathways for fluid diffusion cannot be ruled out, it appears to be difficult to reconcile based solely on injection data and space-time patterns for this seismic sequence. We simulate the cylindrically symmetric, transient strain and pore pressure fields for an injection-source time function emulating the injection history in a layered half-space in accordance with linear poroelasticity. In the simulation domain, injection occurs at depths of 1300 - 1900 m, into a homogeneous basal sedimentary reservoir representing the Arbuckle Group, overlying a semi-infinite layer representing granitic basement; we determined the hydraulic, elastic, and poroelastic properties of these layers from published literature. At the mainshock hypocenter, this numerical model predicts a delay between peak injection rates and pore pressure increase that is strongly dependent on hydraulic diffusivity; however, the duration is also controlled by the bulk elastic properties and the undrained Skempton's coefficient of the rock. Furthermore, because of fluid-strain coupling, pore pressures in the basement rock decrease during this delay period, which would tend to stabilize temporarily a critically stressed fault. Even though pore pressure diffusion is the dominant mechanism at play, poroelastic effects do affect the relative timing assuming a reasonable set of material parameters, even though strain rates in the basement are relatively low compared to rates in the Arbuckle layer (and above).
Collective cell behavior on basement membranes floating in space
NASA Astrophysics Data System (ADS)
Ellison, Sarah; Bhattacharjee, Tapomoy; Morley, Cameron; Sawyer, W.; Angelini, Thomas
The basement membrane is an essential part of the polarity of endothelial and epithelial tissues. In tissue culture and organ-on-chip devices, monolayer polarity can be established by coating flat surfaces with extracellular matrix proteins and tuning the trans-substrate permeability. In epithelial 3D culture, spheroids spontaneously establish inside-out polarity, morphing into hollow shell-like structures called acini, generating their own basement membrane on the inner radius of the shell. However, 3D culture approaches generally lack the high degree of control provided by the 2D culture plate or organ-on-chip devices, making it difficult to create more faithful in vitro tissue models with complex surface curvature and morphology. Here we present a method for 3D printing complex basement membranes covered in cells. We 3D print collagen-I and Matrigel into a 3D growth medium made from jammed microgels. This soft, yielding material allows extracellular matrix to be formed as complex surfaces and shapes, floating in space. We then distribute MCF10A epithelial cells across the polymerized surface. We envision employing this strategy to study 3D collective cell behavior in numerous model tissue layers, beyond this simple epithelial model.
Pana, D.
2006-01-01
Re-examination of selected MVT outcrops and cores in the Interior Plains and Rocky Moun-tains of Alberta, corroborated with previous paragenetic, isotopic and structural data, suggests Laramide structural channelling of dolomitizing and mineralizing fluids into strained carbonate rocks. At Pine Point, extensional faults underlying the trends of MVT ore bodies and brittle faults overprinting the Great Slave Lake Shear Zone define apinnate fault geometry and appear to be kinematically linked. Chemical and isotopic characteristics of MVT parental fluids are consistent with seawater and brine convection within fault-confined verticalaquifers, strong water-basement rock interaction, metalleaching from the basement, and focused release of hydrothermal fluids within linear zones of strained carbonate caprocks. Zones of recurrent strain in the basement and a cap of carbonate strata constitute the critical criteria for MVTexploration target selection in the WCSB.
NASA Astrophysics Data System (ADS)
Marcaillou, B.; Klingelhoefer, F.; Laurencin, M.; Biari, Y.; Graindorge, D.; Jean-Frederic, L.; Laigle, M.; Lallemand, S.
2017-12-01
Multichannel and wide-angle seismic data as well as heat-flow measurements (ANTITHESIS cruise, 2016) reveal a 200x200km patch of magma-poor oceanic basement in the trench and beneath the outer fore-arc offshore of Antigua to Saint Martin in the Northern Lesser Antilles. These data highlight an oceanic basement with the following features: 1/ Absence of any reflection at typical Moho depth and layer2/layer3 limit depths. 2/ High Velocity Vp at the top (>5.5 km/s), low velocity gradient with depth (<0.3 s-1) and no significant velocity change at theoretical Moho depth. 3/ Anomalously low heat-flow (40±15mW.m-2) compared to the central Antilles and to theoretical values for an 80 Myr-old oceanic plate suggesting the influence of deep hydrothermal circulation. 4/ Two sets of reflections dipping toward the paleo mid-Atlantic ridge and toward the Vidal Transform Fault Zone respectively. These highly reflective planes sometimes fracture the top of the basement, deforming the interplate contact and extend downward to 20km depth with a 20° angle. We thus propose that a large patch of mantle rocks, exhumed and serpentinized at the slow-spreading mid-Atlantic Ridge 80 Myr ago, is currently subducting beneath the Northern Lesser Antilles. During the exhumation, early extension triggers penetrative shear zones sub-parallel to the ridge and to the transform fault. Eventually, this early extension generates sliding along the so-called detachment fault, while the other proto-detachment abort. Approaching the trench, the plate bending reactivates these weak zones in normal faults and fluid pathways promoting deep serpentinisation and localizing tectonic deformation at the plate interface. These subducting fluid-rich mechanically weak mantle rocks rise questions about their relation to the faster slab deepening, the lower seismic activity and the pervasive tectonic partitioning in this margin segment.
The vascular basement membrane in the healthy and pathological brain.
Thomsen, Maj S; Routhe, Lisa J; Moos, Torben
2017-10-01
The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.
Priyadarsini, Shrestha; McKay, Tina B; Sarker-Nag, Akhee; Allegood, Jeremy; Chalfant, Charles; Ma, Jian-Xing; Karamichos, Dimitrios
2016-01-01
Prolonged hyperglycemia during diabetes mellitus can cause severe ophthalmic complications affecting both the anterior and posterior ocular segments leading to impaired vision or blindness. Diabetes-induced corneal pathologies are associated with decreased wound healing capacity, corneal edema, and altered epithelial basement membrane. The mechanism by which diabetes modulates structure and function within the corneal stroma are unknown. In our study, we characterized the effects of diabetes on extracellular matrix, lipid transport, and cellular metabolism by defining the entire metabolome and lipidome of Type 1 and Type 2 human diabetic corneal stroma. Significant increases in Collagen I and III were found in diabetic corneas suggesting that diabetes promotes defects in matrix structure leading to scarring. Furthermore, increased lipid content, including sphingosine-1-phosphate and dihydrosphingosine, in diabetic corneas compared to healthy controls were measured suggesting altered lipid retention. Metabolomics analysis identified elevated tryptophan metabolites, independent of glucose metabolism, which correlated with upregulation of the Kynurenine pathway in diabetic corneas. We also found significant upregulation of novel biomarkers aminoadipic acid, D,L-pipecolic acid, and dihydroorotate. Our study links aberrant tryptophan metabolism to end-stage pathologies associated with diabetes indicating the potential of the Kynurenine pathway as a therapeutic target for inhibiting diabetes-associated defects in the eye. PMID:27742548
Distribution of endogenous albumin in the glomerular wall of proteinuric patients.
Russo, P. A.; Bendayan, M.
1990-01-01
Glomerular proteinuria seems to be related, in part, to loss or impairment of the normal barrier function of the glomerular capillary wall. To investigate the functional properties of this barrier, endogenous albumin was revealed in the glomerular wall of proteinuric patients and compared with a nonproteinuric control by immunoelectron microscopy using the protein A-gold method. In the control biopsy, peaks of albumin accumulation were noted in the subendothelial area and in the inner portion of the lamina densa, with gradual tapering of the distribution toward the epithelial side of the basement membrane. The urinary space and epithelial cells were weakly labeled. In tissues from proteinuric patients, albumin was distributed throughout the entire width of the glomerular basement membrane, although the pattern of accumulation varied between patients. The urinary space showed significant labeling associated with some flocculent material. Mesangial areas were heavily labeled in tissues from both control and proteinuric patients. In the latter, lysozomes in glomerular and tubular epithelial cells also accumulated albumin, which is evidence of reabsorption. These results reveal the existence, in normal conditions, of a barrier located in the subendothelial area of the glomerular basement membrane, the loss of which, as in the idiopathic nephrotic syndrome, leads to diffuse distribution of albumin in the glomerular capillary wall. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2260634
Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria
NASA Astrophysics Data System (ADS)
Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.
2018-03-01
Basement aquifers, which occur within the weathered and fractured zones of crystalline bedrocks, are important groundwater resources in tropical and subtropical regions. The development of basement aquifers is complex owing to their high spatial variability. Geophysical techniques are used to obtain information about the hydrologic characteristics of the weathered and fractured zones of the crystalline basement rocks, which relates to the occurrence of groundwater in the zones. The spatial distributions of these hydrologic characteristics are then used to map the spatial variability of the basement aquifers. Thus, knowledge of the spatial variability of basement aquifers is useful in siting wells and boreholes for optimal and perennial yield. Geoelectrical resistivity is one of the most widely used geophysical methods for assessing the spatial variability of the weathered and fractured zones in groundwater exploration efforts in basement complex terrains. The presented study focuses on combining vertical electrical sounding with two-dimensional (2D) geoelectrical resistivity imaging to characterise the weathered and fractured zones in a crystalline basement complex terrain in southwestern Nigeria. The basement aquifer was delineated, and the nature, extent and spatial variability of the delineated basement aquifer were assessed based on the spatial variability of the weathered and fractured zones. The study shows that a multiple-gradient array for 2D resistivity imaging is sensitive to vertical and near-surface stratigraphic features, which have hydrological implications. The integration of resistivity sounding with 2D geoelectrical resistivity imaging is efficient and enhances near-surface characterisation in basement complex terrain.
Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik
2015-01-01
The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.
Emsbo, P.; Groves, D.I.; Hofstra, A.H.; Bierlein, F.P.
2006-01-01
Northern Nevada hosts the only province that contains multiple world-class Carlin-type gold deposits. The first-order control on the uniqueness of this province is its anomalous far back-arc tectonic setting over the rifted North American paleocontinental margin that separates Precambrian from Phanerozoic subcontinental lithospheric mantle. Globally, most other significant gold provinces form in volcanic arcs and accreted terranes proximal to convergent margins. In northern Nevada, periodic reactivation of basement faults along this margin focused and amplified subsequent geological events. Early basement faults localized Devonian synsedimentary extension and normal faulting. These controlled the geometry of the Devonian sedimentary basin architecture and focused the discharge of basinal brines that deposited syngenetic gold along the basin margins. Inversion of these basins and faults during subsequent contraction produced the complex elongate structural culminations that characterize the anomalous mineral deposit "trends." Subsequently, these features localized repeated episodes of shallow magmatic and hydrothermal activity that also deposited some gold. During a pulse of Eocene extension, these faults focused advection of Carlin-type fluids, which had the opportunity to leach gold from gold-enriched sequences and deposit it in reactive miogeoclinal host rocks below the hydrologic seal at the Roberts Mountain thrust contact. Hence, the vast endowment of the Carlin province resulted from the conjunction of spatially superposed events localized by long-lived basement structures in a highly anomalous tectonic setting, rather than by the sole operation of special magmatic or fluid-related processes. An important indicator of the longevity of this basement control is the superposition of different gold deposit types (e.g., Sedex, porphyry, Carlin-type, epithermal, and hot spring deposits) that formed repeatedly between the Devonian and Miocene time along the trends. Interestingly, the large Cretaceous Alaska-Yukon intrusion-related gold deposits (e.g., Fort Knox) are associated with the northern extension of the same lithospheric margin in the Selwyn basin, which experienced an analogous series of geologic events. ?? Springer-Verlag 2006.
Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK
NASA Astrophysics Data System (ADS)
Parnell, John; Baba, Mas'ud; Bowden, Stephen; Muirhead, David
2017-04-01
Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK. John Parnell, Mas'ud Baba, Stephen Bowden, David Muirhead Subsurface biodegradation in current oil reservoirs is well established, but there are few examples of fossil subsurface degradation. Biomarker compositions of viscous and solid oil residues ('bitumen') in fractured Precambrian and other basement rocks below the Carboniferous cover in Shropshire, UK, show that they are variably biodegraded. High levels of 25-norhopanes imply that degradation occurred in the subsurface. Lower levels of 25-norhopanes occur in active seepages. Liquid oil trapped in fluid inclusions in mineral veins in the fractured basement confirm that the oil was emplaced fresh before subsurface degradation. A Triassic age for the veins implies a 200 million year history of hydrocarbon migration in the basement rocks. The data record microbial colonization of a fractured basement reservoir, and add to evidence in modern basement aquifers for microbial activity in deep fracture systems. Buried basement highs may be especially favourable to colonization, through channelling fluid flow to shallow depths and relatively low temperatures
NASA Astrophysics Data System (ADS)
Koyi, Hemin; Nilfouroushan, Faramarz; Hessami, Khaled
2015-04-01
A series of scaled analogue models are run to study the degree of coupling between basement block kinematics and cover deformation. In these models, rigid basal blocks were rotated about vertical axis in a "bookshelf" fashion, which caused strike-slip faulting along the blocks and, to some degrees, in the overlying cover units of loose sand. Three different combinations of cover basement deformations are modeled; cover shortening prior to basement fault movement; basement fault movement prior to shortening of cover units; and simultaneous cover shortening with basement fault movement. Model results show that the effect of basement strike-slip faults depends on the timing of their reactivation during the orogenic process. Pre- and syn-orogen basement strike-slip faults have a significant impact on the structural pattern of the cover units, whereas post-orogenic basement strike-slip faults have less influence on the thickened hinterland of the overlying fold-and-thrust belt. The interaction of basement faulting and cover shortening results in formation of rhomb features. In models with pre- and syn-orogen basement strike-slip faults, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strike-slip faulting. These rhombic blocks, which have resemblance to flower structures, differ in kinematics, genesis and structural extent. They are bounded by strike-slip faults on two opposite sides and thrusts on the other two sides. In the models, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strke-slip faulting. Such rhomb features are recognized in the Alborz and Zagros fold-and-thrust belts where cover units are shortened simultaneously with strike-slip faulting in the basement. Model results are also compared with geodetic results obtained from combination of all available GPS velocities in the Zagros and Alborz FTBs. Geodetic results indicate domains of clockwise and anticlockwise rotation in these two FTBs. The typical pattern of structures and their spatial distributions are used to suggest clockwise block rotation of basement blocks about vertical axes and their associated strike-slip faulting in both west-central Alborz and the southeastern part of the Zagros fold-and-thrust belt.
Air exchange rates and migration of VOCs in basements and residences
Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Rowe, Zachary; Chin, Jo-Yu
2015-01-01
Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multi-tracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walkthrough survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52 h−1, respectively, and had strong and opposite seasonal trends, e.g., AERs were highest in residences during the summer, and highest in basements during the winter. Air flows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, e.g., 90th percentile benzene, toluene, naphthalene and limonene concentrations were 4.0, 19.1, 20.3 and 51.0 μg m−3, respectively; maximum concentrations were 54, 888, 1117 and 134 μg m−3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. PMID:25601281
Inherited weaknesses control deformation in the flat slab region of Central Argentina
NASA Astrophysics Data System (ADS)
Stevens, A.; Carrapa, B.; Larrovere, M.; Aciar, R. H.
2015-12-01
The Sierras Pampeanas region of west-central Argentina has long been considered a geologic type-area for flat-slab induced thick-skinned deformation. Frictional coupling between the horizontal subducting plate and South American lithosphere from ~12 Ma to the present provides an obvious causal mechanism for the basement block uplifts that characterize this region. New low temperature thermochronometry data show basement rocks from the central Sierras Pampeanas (~ longitude 66 ̊ W) including Sierras Cadena de Paiman, Velasco and Mazan retain a cooling history of Paleozoic - Mesozoic tectonics events. Results from this study indicate that less than 2 km of basement has been exhumed since at least the Mesozoic. These trends recorded by both apatite fission track (AFT) and apatite helium (AHe) thermochronometry suggest that recent Mio-Pliocene thick-skinned deformation associated with flat-slab subduction follow inherited zones of weakness from Paleozoic terrane sutures and shear zones and Mesozoic rifting. If a Cenozoic foreland basin exisited in this region, its thickness was minimal and was controlled by paleotopography. Pre-Cenozoic cooling ages in these ranges that now reach as high as 4 km imply significant exhumation of basement rocks before the advent of flat slab subduction in the mid-late Miocene. It also suggests that thick-skinned deformation associated with flat slab subduction may at least be facilitated by inherited crustal-scale weaknesses. At the most, pre-existing zones of weakness may be required in regions of thick-skinned deformation. Although flat-slab subduction plays an important role in the exhumation of the Sierras Pampeanas, it is likely not the sole mechanism responsible for thick-skinned deformation in this region. This insight sheds light on the interpretation of modern and ancient regions of thick-skinned deformation in Cordilleran systems.
Dodson, R Blair; Powers, Kyle N; Gien, Jason; Rozance, Paul J; Seedorf, Gregory J; Astling, David; Jones, Kenneth Lloyd; Crombleholme, Timothy M; Abman, Steven H; Alvira, Cristina M
2018-05-03
Intrauterine growth restriction (IUGR) in premature newborns increases the risk for bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by disrupted pulmonary angiogenesis and alveolarization. We previously showed that experimental IUGR impairs angiogenesis, however, mechanisms that impair pulmonary artery endothelial cell (PAEC) function are uncertain. The nuclear factor-kappa-B (NFκB) pathway promotes vascular growth in the developing mouse lung, and we hypothesized that IUGR disrupts NFκB-regulated pro-angiogenic targets in fetal PAEC. PAECs were isolated from lungs of control fetal sheep and sheep with experimental IUGR from an established model of chronic placental insufficiency. Microarray analysis identified suppression of NFκB signaling and significant alterations in extracellular matrix (ECM) pathways in IUGR PAEC, including decreases in collagen 4α1 and laminin α4, components of the basement membrane and putative NFκB targets. In comparison with controls: (i) immunostaining of active NFκB complexes; (ii) NFκB-DNA binding; (iii) baseline expression of NFκB subunits, p65 and p50; and (iv) LPS-mediated inducible activation of NFκB signaling were decreased in IUGR PAEC. Although pharmacologic NFκB inhibition did not affect angiogenic function in IUGR PAEC, angiogenic function of control PAEC was reduced to a similar degree as that observed in IUGR PAEC. These data identify reductions in endothelial NFκB signaling as central to the disrupted angiogenesis observed in IUGR, likely by impairing both intrinsic PAEC angiogenic function and NFκB-mediated regulation of ECM components necessary for vascular development. These data further suggest that strategies that preserve endothelial NFκB activation may be useful in lung diseases marked by disrupted angiogenesis such as IUGR.
NASA Astrophysics Data System (ADS)
Worthington, L. L.; Christeson, G. L.; van Avendonk, H. J.; Gulick, S. P.
2009-12-01
We present results of a 2008 marine seismic reflection/refraction survey acquired as part of the St. Elias Erosion and Tectonics Project (STEEP), a multi-disciplinary NSF-Continental Dynamics project aimed at tectonic-climate interaction, structural evolution and geodynamics in the Chugach-St. Elias orogen. The Chugach-St.Elias orogen is the result of flat-slab subduction and collision of the Yakutat (YAK) microplate with North Amercian (NA) on the southern Alaska margin during the last ~10Ma. A fundamental goal of STEEP is to address controversy related to the deep crustal structure of the YAK block itself, describe its offshore structural relationships and constrain its buoyancy in order to understand the orogenic driver. Marine seismic reflection profiles acquired across the offshore YAK microplate provide the first regional images of the top of the subducting YAK basement. The basement reflector is observed near the seafloor at the Dangerous River Zone (DRZ) and is overlain by up to 12 km of sediments near Kayak Island, resulting in a basement dip of ~3° in the direction of subduction. The basement reflector also shallows near the shelf-edge adjacent to the Transition Fault, the YAK-Pacific boundary. These observations are indicative of an overall regional basement tilt towards the NA continent. Two coincident wide-angle refraction profiles constrain YAK crustal thickness between 30-35km, >20km thicker than normal oceanic crust, and lower crustal velocities potentially >7km/s. Crustal velocity and thickness are comparable to the Kerguelen oceanic plateau and the Siletz terrane. These results are the first direct observations in support of the oceanic plateau theory for the origin of the YAK microplate. Crustal velocity and structure are continuous across the DRZ on the YAK shelf, which is historically described as a vertical boundary between continental crust on the east and oceanic basement on the west. Instead, we observe a gradual shallowing of elevated crustal velocities associated with the aforementioned basement high near DRZ. Interestingly, observed Moho arrivals across the profile do not mimic the dipping trajectory of the basement reflector, indicating that the YAK slab may be slightly wedge-shaped, thinning in the direction of subduction. If true, the following implications for the YAK-NA collision must be considered: first, that uplift and deformation have intensified through time as thicker, more buoyant YAK crust attempts to subduct; second, migration of intense uplift from west to east across the orogen is partly controlled by underlying slab structure at depth.
A Simulation Model of Periarterial Clearance of Amyloid-β from the Brain
Diem, Alexandra K.; Tan, Mingyi; Bressloff, Neil W.; Hawkes, Cheryl; Morris, Alan W. J.; Weller, Roy O.; Carare, Roxana O.
2016-01-01
The accumulation of soluble and insoluble amyloid-β (Aβ) in the brain indicates failure of elimination of Aβ from the brain with age and Alzheimer's disease (AD). There is a variety of mechanisms for elimination of Aβ from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of Aβ into the blood and periarterial lymphatic drainage of Aβ. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as Aβ, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of Aβ in the walls of human arteries with age and AD as cerebral amyloid angiopathy (CAA). Initially, Aβ diffuses through the extracellular spaces of gray matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterized, the exact mechanism whereby perivascular elimination of Aβ occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy. PMID:26903861
NASA Astrophysics Data System (ADS)
Gernigon, L.; Broenner, M.; Dumais, M. A.; Gradmann, S.; Grønlie, A.; Nasuti, A.; Roberts, D.
2017-12-01
The tectonic evolution of the former `grey zone' between Russia and Norway has so far remained poorly constrained due to a lack of geophysical data. In 2014, we carried out a new aeromagnetic survey (BASAR-14) in the southern part of the new Norwegian offshore territory. Caledonian and Timanian structures, highlighted by the new potential field data, dominate the basement patterns and have exerted a strong influence on the structure and development of the overlying basins and basement highs. Clearly associated with NW-SE-oriented Timanian trends, the Tiddlybanken Basin represents an atypical sag basin that developed at the southern edge of the Fedynsky High. Regional extension and rapid sedimentation initiated the salt tectonics in the Barents Sea in the Early Triassic. Some of the pillows became diapiric during the Early Triassic and rejuvenated during subsequent Jurassic-Tertiary episodes of regional extension and/or compression. At present, quite a few large diapiric salt domes along the Nordkapp and Tiddlybanken basins are relatively shallow, locally reaching the seabed and thus show a clear bathymetric and magnetic signature. Quantitative modelling along 2D seismic transects was also carried out to constrain the structural and basement composition of the study area. The predominant NE-SW Mesozoic trend of the Nordkapp Basin represents a major crustal hinge zone between the Finnmark Platform, poorly affected by major crustal deformation, and the Bjarmeland Platform where Late Palaeozoic rifting controlled the widespread accumulation of salt deposits in Late Carboniferous-Early Permian time. The entire structure and segmentation of the Nordkapp Basin have been influenced by the inherited basement configuration highlighted by the new aeromagnetic data. Both the Nordkapp and the Tiddlybanken basins appear to lie at the edge of a peculiar thick and rigid crustal feature that coincides with a highly magnetic region. The abrupt termination of the eastern Nordkapp Basin at the edge of this magnetic domain suggests the presence of an old and thick Precambrian continental block. This magnetic and tectonic buffer controlled the Late Palaeozoic-Mesozoic rifting and the salt tectonic development of the southeastern Barents Sea.
NASA Astrophysics Data System (ADS)
2014-12-01
The crystalline basement rocks of Ethiopia were traditionally described as one system of regional aquiclude. This attribution was made disregarding variations in groundwater occurrence and potential which often times is promising in some geologic settings. Systematic studies addressing their genesis and spatial variations are lacking. Based on a thorough review of existing data and field observations, this work has shown that the genesis of basement aquifers is the result of complex interplay between the present/past climate and geomorphic processes which are tectonically controlled. It thus follows that the groundwater occurrence and the type of aquifer exhibit important contrasts on the surfaces of crystalline basement terrains of Ethiopia. Three coherent zones have been identified in this work based on their genesis, thickness of regolith, mechanisms of flow and storage properties: (a) in Western Ethiopia the aquifer is characterized by a vertical profile of fractured low to high grade bedrocks mantled by thick weathering profiles leading to high groundwater storage but low hydraulic conductance, (b) in Northern Ethiopia the weathered mantle is stripped to negligible thickness; groundwater occurs in high conducting but low storage fractured low grade bedrocks, (c) in the Borena lowlands (the southern basement region, the occurrence of groundwater is associated with wadi beds. The orientations of wadi beds follow regional fractures. These fractures control groundwater flow regime and enhance preferential weathering of bedrocks. The presence of alluvial sediments (mostly derived from gneiss and inselbergs of gneisses and granites) over the weathered mantle, facilitates infiltration into the weathered mantle and fractured bedrocks underneath. This enhances groundwater storage and movement both in the regolith and fractured bedrock. Elsewhere outside the wadi beds, duri crusts limit vertical recharge and groundwater availability to the bedrock; aquifers are of intermediate type with regard to hydraulic properties. Potential remnants of weathered mantle are still visible but contribute little to groundwater flow. It is therefore suggested here that more comprehension about groundwater in crystalline basement rocks of Ethiopia could be gained given the comparison is made based on the genesis of the aquifers as related to tectonics and climate induced stripping and deep weathering history.
Mezzoiuso, Angelo Giosué; Gola, Marco; Rebecchi, Andrea; Riccò, Matteo; Capolongo, Stefano; Buffoli, Maddalena; Tirani, Marcello; Odone, Anna; Signorelli, Carlo
2017-10-23
A new law approved in March 2017 in the Lombardy Region makes it possible to live in basements. Basements are defined as buildings partly below curb level but with at least one-half of its height above the curb. Basements' features and structural characteristics might pose risks to human health. In this paper we adopt a multidisciplinary approach to assess the potential health effects of living in basements. In particular, we define a conceptual framework to describe basements' structural characteristics which are risk factors, as well as the mechanisms through which they impact on human health. We also conduct a systematic review on the scientific databases PubMed,Embase, DOAJ, Proquest and EBSCO to retrieve, pool and critically analyze all available research that quantified the risk of living in basements for different health outcomes. Available evidence suggests living in basements increases the risk of respiratory diseases (asthma and allergic disorders); more heterogeneous data are available for cancers and cardiovascular diseases. As more quantitative data need to be prospectively retrieved to assess and monitor the risk of living in basements for human health, clear minimum requirements for light, air, sanitation and egress are to be defined by technical experts and enforced by policy makers.
Correlated alterations in prostate basal cell layer and basement membrane
Liu, Aijun; Wei, Lixin; Gardner, William A.; Deng, Chu-Xia; Man, Yan-Gao
2009-01-01
Our recent studies revealed that focal basal cell layer disruption (FBCLD) induced auto-immunoreactions represented a contributing factor for human prostate tumor progression and invasion. As the basement membrane surrounds and attaches to the basal cell layer, our current study assessed whether FBCLD would impact the physical integrity of the associated basement membrane. Paraffin sections from 25-human prostate tumors were subjected to double immunohistochemistry to simultaneously elucidate the basal cell layer and the basement membrane with corresponding biomarkers. The physical integrity of the basement membrane overlying FBCLD was examined to determine the extent of correlated alterations. Of a total of 89 FBCLD encountered, 76 (85 %) showed correlated alterations in the overlying basement membrane, which included distinct focal disruptions or fragmentations. In the remaining 13 (15%) FBCLD, the overlying basement membrane showed significant attenuation or reduction of the immunostaining intensity. The basement membrane in all or nearly all ducts or acini with p63 positive basal cells was substantially thicker and more uniform than that in ducts or acini without p63 positive basal cells, and also, a vast majority of the focal disruptions occurred near basal cells that lack p63 expression. These findings suggest that focal disruptions in the basal cell layer and alterations in the basement membrane are correlated events and that the physical and functional status of the basal cells could significantly impact the physical integrity of the overlying basement membrane. As the degradation of both the basal cell layer and the basement membrane is a pre-requisite for prostate tumor invasion or progression, ducts or acini with focally disrupted basal cell layer and basement membrane are likely at greater risk to develop invasive lesions. Thus, further elucidation of the specific molecules and mechanism associated with these events may lead to the development of a more effective alternative for repeat biopsy to monitor tumor progression and invasion. PMID:19343113
31. DETAIL OF CONTROLS, ELECTRIC MOTOR, AND LOWER SHEAVES OF ...
31. DETAIL OF CONTROLS, ELECTRIC MOTOR, AND LOWER SHEAVES OF OTIS PASSENGER ELEVATOR ADDED IN 1921, BASEMENT. The original equipment, shown here, operated on direct current from the Massachusetts Avenue trolley line, abandoned in 1961. - Woodrow Wilson House, 2340 South S Street, Northwest, Washington, District of Columbia, DC
7. VIEW OF BASEMENT, LOOKING NORTH ALONG EAST BASEMENT WALL ...
7. VIEW OF BASEMENT, LOOKING NORTH ALONG EAST BASEMENT WALL TOWARD TURBINES. AT RIGHT IS A WATER-POWERED EAR CORN CRUSHER (manufacturer unknown), WHICH PERFORMED THE INITIAL COARSE GRINDING OF EAR CORN Photographer: Jet T. Lowe, 1985 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH
NASA Astrophysics Data System (ADS)
McDowell, Robin John
1997-01-01
The Tendoy Mountains contain the easternmost thin-skinned thrust sheets in the Cordilleran fold-thrust belt of southwestern Montana, and are in the zone of tectonic overlap between the Rocky Mountain foreland and the Cordilleran fold-thrust belt. The three frontal thrust sheets of the Tendoy Mountains are from north to south, the Armstead, McKenzie, and Tendoy sheets. Near the southeastern terminus of the Tendoy thrust sheet is a lateral ramp in which the Tendoy thrust climbs along strike from the Upper Mississippian Lombard Limestone to lower Cretaceous rocks. This ramp coincides with the southeastern side of the Paleozoic Snowcrest trough and projection of the range-flanking basement thrust of the Blacktail-Snowcrest uplift, suggesting either basement or stratigraphic control on location of the lateral ramp. Axes of major folds on the southern part of the Tendoy thrust sheet are parallel to the direction of thrust transport and to the trend of the Snowcrest Range. They are a result of: (1) Pre-thrust folding above basement faults; (2) Passive transportation of the folds from a down-plunge position; (3) Minor reactivation of basement faults; and (4) Emplacement of blind, sub-Tendoy, thin-skinned thrust faults. The Tendoy sheet also contains a major out-of-sequence thrust fault that formed in thick Upper Mississippian shales and created large, overturned, foreland-verging folds in Upper Mississippian to Triassic rocks. The out-of-sequence fault can be identified where stratigraphic section is omitted, and by a stratigraphic separation diagram that shows it cutting down section in the direction of transport. The prominent lateral ramp at the southern terminus of the Tendoy thrust sheet is a result of fault propagation through strata folded over the edge of the Blacktail-Snowcrest uplift.
Diverse ages and origins of basement complexes, Luzon, Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geary, E.E.; Harrison, T.M.; Heizler, M.
1988-04-01
Geological field investigations and /sup 40/Ar//sup 39/Ar ages from two basement complexes in southeast Luzon document the first known occurrences of pre-Late Cretaceous age rocks in the eastern Philippines. However, individual components within the two complexes vary in age from Late Jurassic (Caramoan basement complex) to Early Cretaceous and early Miocene (Camarines Norte-Calaguas Islands basement complex). These and other data show that southeast Luzon basement complexes are genetically diverse, and they indicate that the concept of an old, autochthonous basement in the Philippines is open to question. This supports the hypothesis that the Philippine Archipelago is an amalgamation of allochthonousmore » Mesozoic and Cenozoic island-arc, ocean-basin, and continental fragments that were assembled during the Tertiary.« less
Primary cellular meningeal defects cause neocortical dysplasia and dyslamination
Hecht, Jonathan H.; Siegenthaler, Julie A.; Patterson, Katelin P.; Pleasure, Samuel J.
2010-01-01
Objective Cortical malformations are important causes of neurological morbidity, but in many cases their etiology is poorly understood. Mice with Foxc1 mutations have cellular defects in meningeal development. We use hypomorphic and null alleles of Foxc1 to study the effect of meningeal defects on neocortical organization. Methods Embryos with loss of Foxc1 activity were generated using the hypomorphic Foxc1hith allele and the null Foxc1lacZ allele. Immunohistologic analysis was used to assess cerebral basement membrane integrity, marginal zone heterotopia formation, neuronal overmigration, meningeal defects, and changes in basement membrane composition. Dysplasia severity was quantified using two measures. Results Cortical dysplasia resembling cobblestone cortex, with basement membrane breakdown and lamination defects, is seen in Foxc1 mutants. As Foxc1 activity was reduced, abnormalities in basement membrane integrity, heterotopia formation, neuronal overmigration, and meningeal development appeared earlier in gestation and were more severe. Surprisingly, the basement membrane appeared intact at early stages of development in the face of severe deficits in meningeal development. Prominent defects in basement membrane integrity appeared as development proceeded. Molecular analysis of basement membrane laminin subunits demonstrated that loss of the meninges led to changes in basement membrane composition. Interpretation Cortical dysplasia can be caused by cellular defects in the meninges. The meninges are not required for basement membrane establishment but are needed for remodeling as the brain expands. Specific changes in basement membrane composition may contribute to subsequent breakdown. Our study raises the possibility that primary meningeal defects may cortical dysplasia in some cases. PMID:20976766
Bekins, B.A.; Spivack, A.J.; Davis, E.E.; Mayer, L.A.
2007-01-01
Recent observations indicate that curious closed depressions in carbonate sediments overlying basement edifices are widespread in the equatorial Pacific. A possible mechanism for their creation is dissolution by fluids exiting basement vents from off-axis hydrothermal flow. Quantitative analysis based on the retrograde solubility of calcium carbonate and cooling of basement fluids during ascent provides an estimate for the dissolution capacity of the venting fluids. Comparison of the dissolution capacity and fluid flux with typical equatorial Pacific carbonate mass accumulation rates shows that this mechanism is feasible. By maintaining sediment-free basement outcrops, the process may promote widespread circulation of relatively unaltered seawater in the basement in an area where average sediment thicknesses are 300-500 m. The enhanced ventilation can explain several previously puzzling observations in this region, including anomalously low heat flux, relatively unaltered seawater in the basement, and aerobic and nitrate-reducing microbial activity at the base of the sediments. ?? 2007 The Geological Society of America.
Kellogg, K.S.; Schmidt, C.J.; Young, S.W.
1995-01-01
Two major Laramide fault systems converge in the northwestern Madison Range: the northwest-striking, southwest-vergent Spanish Peaks reverse fault and the north-striking, east-vergent Hilgard thrust system. Analysis of foliation attitudes in basement gneiss north and south of the Spanish Peaks fault indicates that the basement in thrusted blocks of the Hilgard thrust system have been rotated by an amount similar to that of the basement-cover contact. Steeply dipping, north-striking breccia zones enclosing domains of relatively undeformed basement may have permitted domino-style rotation of basement blocks during simple shear between pairs of thrusts. No hydrocarbon discoveries have been made in this unique structural province. However, petroleum exploration here has focused on basement-cored anticlines, both surface and subthrust, related to the two major Laramide fault systems and on the fault-bounded blocks of Tertiary rocks within the post-Laramide extensional basins. -from Authors
Sims, Paul K.; Saltus, Richard W.; Anderson, Eric D.
2008-01-01
The Precambrian basement rocks of the continental United States are largely covered by younger sedimentary and volcanic rocks, and the availability of updated aeromagnetic data (NAMAG, 2002) provides a means to infer major regional basement structures and tie together the scattered, but locally abundant, geologic information. Precambrian basement structures in the continental United States have strongly influenced later Proterozoic and Phanerozoic tectonism within the continent, and there is a growing awareness of the utility of these structures in deciphering major younger tectonic and related episodes. Interest in the role of basement structures in the evolution of continents has been recently stimulated, particularly by publications of the Geological Society of London (Holdsworth and others, 1998; Holdsworth and others, 2001). These publications, as well as others, stress the importance of reactivation of basement structures in guiding the subsequent evolution of continents. Knowledge of basement structures is an important key to understanding the geology of continental interiors.
NASA Astrophysics Data System (ADS)
Lenhart, Antje; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon; Gawthorpe, Robert L.
2016-04-01
Numerous rifts form above crystalline basement containing pervasive faults and shear zones. However, the compositional and mechanical heterogeneity within crystalline basement and the geometry and kinematics of discrete and pervasive basement fabrics are poorly understood. Furthermore, the interpretation of intra-crustal structures beneath sedimentary basins is often complicated by limitations in the depth of conventional seismic imaging, the commonly acoustically transparent nature of basement, limited well penetrations, and complex overprinting of multiple tectonic events. Yet, a detailed knowledge of the structural and lithological complexity of crystalline basement rocks is crucial to improve our understanding of how rifts evolve. Potential field methods are a powerful but perhaps underutilised regional tool that can decrease interpretational uncertainty based solely on seismic reflection data. We use petrophysical data, high-resolution 3D reflection seismic volumes, gridded gravity and magnetic data, and 2D gravity and magnetic modelling to constrain the structure of crystalline basement offshore western Norway. Intra-basement structures are well-imaged on seismic data due to relatively shallow burial of the basement beneath a thin (<3.5 km) sedimentary cover. Variations in basement composition were interpreted from detailed seismic facies analysis and mapping of discrete intra-basement reflections. A variety of data filtering and isolation techniques were applied to the original gravity and magnetic data in order to enhance small-scale field variations, to accentuate formation boundaries and discrete linear trends, and to isolate shallow and deep crustal anomalies. In addition, 2D gravity and magnetic data modelling was used to verify the seismic interpretation and to further constrain the configuration of the upper and lower crust. Our analysis shows that the basement offshore western Norway is predominantly composed of Caledonian allochthonous nappes overlying large-scale anticlines of Proterozoic rocks of the Western Gneiss Region. Major Devonian extensional brittle faults, detachments and shear zones transect those tectono-stratigraphic units. Results from structural analysis of enhanced gravity and magnetic data indicate the presence of distinct intra-basement bodies and structural lineaments at different scales and depth levels which correlate with our seismic data interpretation and can be linked to their onshore counterparts exposed on mainland Norway. 2D forward models of gravity and magnetic data further support our interpretation and quantitatively constrain variations in magnetic and density properties of principal basement units. We conclude that: i) enhanced gravity and magnetic data are a powerful tool to constrain the geometry of individual intra-basement bodies and to detect structural lineaments not imaged in seismic data; ii) insights from this study can be used to evaluate the role of pre-existing basement structures on the evolution of rift basins; and iii) the integration of a range of geophysical datasets is crucial to improve our understanding of the deep subsurface.
22. VIEW OF THE BASEMENT FLOOR PLAN. THE BASEMENT TUNNELS ...
22. VIEW OF THE BASEMENT FLOOR PLAN. THE BASEMENT TUNNELS WERE DESIGNED AS FALLOUT SHELTERS AND USED FOR STORAGE. THE ORIGINAL DRAWING HAS BEEN ARCHIVED ON MICROFILM. THE DRAWING WAS REPRODUCED AT THE BEST QUALITY POSSIBLE. LETTERS AND NUMBERS IN THE CIRCLES INDICATE FOOTER AND/OR COLUMN LOCATIONS. - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
Mak, Ki M; Mei, Rena
2017-08-01
Basement membranes provide structural support to epithelium, endothelium, muscles, fat cells, Schwann cells, and axons. Basement membranes are multifunctional: they modulate cellular behavior, regulate organogenesis, promote tissue repair, form a barrier to filtration and tumor metastasis, bind growth factors, and mediate angiogenesis. All basement membranes contain type IV collagen (Col IV), laminin, nidogen, and perlecan. Col IV and laminin self-assemble into two independent supramolecular networks that are linked to nidogen and perlecan to form a morphological discernable basement membrane/basal lamina. The triple helical region, 7S domain and NCI domain of Col IV, laminin and laminin fragment P1 have been evaluated as noninvasive fibrosis biomarkers of alcoholic liver disease, viral hepatitis, and nonalcoholic fatty liver disease. Elevated serum Col IV and laminin are related to degrees of fibrosis and severity of hepatitis, and may reflect hepatic basement membrane metabolism. But the serum assays have not been linked to disclosing the anatomical sites and lobular distribution of perisinusoidal basement membrane formation in the liver. Hepatic sinusoids normally lack a basement membrane, although Col IV is a normal matrix component of the space of Disse. In liver disease, laminin deposits in the space of Disse and codistributes with Col IV, forming a perisinusoidal basement membrane. Concomitantly, the sinusoidal endothelium loses its fenestrae and is transformed into vascular type endothelium. These changes lead to capillarization of hepatic sinusoids, a significant pathology that impairs hepatic function. Accordingly, codistribution of Col IV and laminin serves as histochemical marker of perisinusoidal basement membrane formation in liver disease. Anat Rec, 300:1371-1390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
U.S. Geological Survey Headwaters Province Project Team Edited by Lund, Karen
2007-01-01
The USGS Headwaters Province project in western Montana and northern and central Idaho was designed to provide geoscience data and interpretations to Federal Land Management Agencies and to respond to specific concerns of USDA Forest Service Regions 1 and 4. The project has emphasized development of digital geoscience data, GIS analyses, topical studies, and new geologic interpretations. Studies were designed to more completely map lithologic units and determine controls of deformation, magmatism, and mineralizing processes. Topical studies of geologic basement control on these processes include study of regional metallogenic patterns and their relation to the composition and architecture of underlying, unexposed basement; timing of igneous and hydrothermal systems, to identify regionally important metallogenic magmatism; and the geologic setting of Proterozoic strata, to better understand how their sedimentary basins developed and to define the origin of sediment-hosted mineral deposits. Interrelated products of the project are at complementary scales.
Origins and Driving Mechanisms for Shallow Methane Accumulations on the Svyatogor Ridge, Fram Strait
NASA Astrophysics Data System (ADS)
Waghorn, K. A.; Bunz, S.; Plaza-Faverola, A. A.; Westvig, I. M.; Johnson, J. E.
2015-12-01
The Svyatogor Ridge, located west of the Knipovich Spreading Ridge (KR) and south of the Molloy Transform Fault (MTF), is hypothesized to have once been the south tip of Vestnesa Ridge; a large sediment drift that was offset during the last 2 Ma along the MTF. The sedimentary cover across Svyatogor Ridge is limited, compared to Vestnesa Ridge, and basement outcrops are identified ~850 mbsf on the apex of the ridge. Despite the limited sedimentation, and its unique location at the intersection between the KR and MTF, Svyatogor Ridge has evidence of shallow gas accumulations; a strong BSR indicating a gas hydrate and underlying free gas system, and fluid flow pathways to the seafloor culminating in pockmarks. Using a high-resolution P-Cable 3D seismic survey, 2D seismic, and multibeam bathymetry data, we investigate how tectonic and sedimentary regimes have influenced the formation of a well-developed gas hydrate system. Sedimentation related with the Vestnesa drift on Svyatogor Ridge is interpreted to have begun ~2-3 Ma. The young age of the underlying oceanic crust, and subsequent synrift sediments below drift strata, suggests gas production from early Miocene aged hydrocarbon source identified in ODP Site 909 to the west, is unlikely in this region. Additionally, given the ultra-slow, magma limited spreading regime of the KR, we do not expect significant thermogenic methane generation from shallow magmatic sources. Therefore, in addition to some microbial gas production, Johnson et al. (2015) hypothesize a contribution from an abiotic source may explain the well-developed gas hydrate system. Large-scale basement faults identified in the seismic data are interpreted as detachment faults, which have exhumed relatively young ultramafic rocks. These detachment faults act as conduits for fluid flow, allowing circulation of seawater to drive serpentinization and subsequently act as pathways for fluids and abiotic methane to reach the shallow subsurface. This work aims to constrain the sedimentary and tectonic history of Svyatogor Ridge to determine 1) the relative interactions between basement detachment faults and overlying faults in the sedimentary cover, 2) the potential role of these faults as gas/fluid conduits and 3) how the underlying structural evolution has influenced the evolution of the gas hydrate system.
ETR BASEMENT, TRA642, INTERIOR. BASEMENT. CUBICLE INTERIOR (SEE PHOTOS ID33G101 ...
ETR BASEMENT, TRA-642, INTERIOR. BASEMENT. CUBICLE INTERIOR (SEE PHOTOS ID-33-G-101 AND ID-33-G-102) WITH TANK AND SODIUM-RELATED APPARATUS. CAMERA STANDS BEFORE ROLL-UP DOOR SHOWN IN PHOTO ID-33-G-101. INL NEGATIVE NO. HD24-3-3. Mike Crane, Photographer, 11/2000 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Ferrell, Nicholas; Cameron, Kathleen O; Groszek, Joseph J; Hofmann, Christina L; Li, Lingyan; Smith, Ross A; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L; Fissell, William H
2013-04-02
Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Effect of Hedera helix on lung histopathology in chronic asthma.
Hocaoglu, Arzu Babayigit; Karaman, Ozkan; Erge, Duygu Olmez; Erbil, Guven; Yilmaz, Osman; Kivcak, Bijen; Bagriyanik, H Alper; Uzuner, Nevin
2012-12-01
Hedera helix is widely used to treat bronchial asthma for many years. However, effects of this herb on lung histopathology is still far from clear. We aimed to determine the effect of oral administration of Hedera helix on lung histopathology in a murine model of chronic asthma.BALB/c mice were divided into four groups; I (Placebo), II (Hedera helix), III (Dexamethasone) and IV (Control). All mice except controls were sensitized and challenged with ovalbumin. Then, mice in group I received saline, group II 100 mg/kg Hedera helix and group III 1 mg/kg dexamethasone via orogastic gavage once daily for one week. Airway histopathology was evaluated by using light and electron microscopy in all groups.Goblet cell numbers and thicknesses of basement membrane were found significantly lower in group II, but there was no statistically significant difference in terms of number of mast cells, thicknesses of epithelium and subepithelial smooth muscle layers between group I and II. When Hedera helix and dexamethasone groups were compared with each other, thickness of epithelium, subepithelial muscle layers, number of mast cells and goblet cells of group III were significantly ameliorated when compared with the group II. Although Hedera helix administration reduced only goblet cell counts and the thicknesses of basement membrane in the asthmatic airways, dexamethasone ameliorated all histopathologic parameters except thickness of basement membrane better than Hedera helix.
Epidemiologic study of deaths and injuries due to tornadoes.
Carter, A O; Millson, M E; Allen, D E
1989-12-01
A case-control study, using both matched and unmatched controls, was carried out on individuals who were injured or killed by a series of tornadoes that passed through Ontario, Canada, on May 31, 1985. Many serious injuries (25%) and almost all (83%) deaths were the result of becoming airborne, while most minor injuries (94%) were due to being struck by objects. Head injury was the most common injury type. Few (21%) of those in buildings chose the recommended location, and most (61%) were not in the least damaged part. Most (91%) had less than one minute's warning, and only 47% had a functioning radio at the time the tornado hit. The following risk factors for injury and death were identified: poor building anchorage; location other than in a basement, especially outdoors; age over 70 years; and high wind strength. These findings support previous findings and point to measures which have potential for preventing death or serious injury in future tornadoes: adequate warning systems and public education to ensure that individuals understand the warning and respond by seeking appropriate shelter. Those in adequately anchored buildings should shelter in an interior room or basement. Those who are outdoors, in poorly anchored buildings, mobile homes, or portable classrooms require access to an adequately anchored building, preferably with a basement, during severe storm warnings. This should be arranged by local authorities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culotta, R.; Latham, T.; Oliver, J.
1992-02-01
This COCORP deep seismic survey provides a comprehensive image of the southeast-Texas part of the Gulf passive margin and its accreted Ouachita arc foundation. Beneath the updip limit of the Cenozoic sediment wedge, a prominent antiformal structure is imaged within the interior zone of the buried late Paleozoic Ouachita orogen. The structure appears to involve Precambrian Grenville basement. The crest of the antiform is coincident with the Cretaceous-Tertiary Luling-Mexia-Talco fault zone. Some of these faults dip to the northwest, counter to the general regional pattern of down-to-the-basin faulting, and appear to sole into the top of the antiform, suggesting thatmore » the Ouachita structure has been reactivated as a hingeline to the subsiding passive margin. The antiform may be tied via this fault system and the Ouachita gravity gradient to the similar Devils River, Waco, and Benton uplifts, interpreted as Precambrian basement-cored massifs. Above the Paleozoic sequence, a possible rift-related graben is imaged near the updip limit of Jurassic salt. Paleoshelf edges of the major Tertiary depositional sequences are marked by expanded sections disrupted by growth faults and shale diapirs. Within the Wilcox Formation, the transect crosses the mouth of the 900-m-deep Yoakum Canyon, a principal pathway of sediment delivery from the Laramide belt to the Gulf. Beneath the Wilcox, the Comanchean (Lower Cretaceous) shelf edge, capped by the Stuart City reef, is imaged as a pronounced topographic break onlapped by several moundy sediment packages. Because this segment of the line parallels strike, the topographic break may be interpreted as a 2,000-m-deep embayment in the Cretaceous shelf-edge, and possibly a major submarine canyon older and deeper than the Yoakum Canyon.« less
Watt, Janet T.; Ponce, David A.
2007-01-01
A geophysical investigation was undertaken as part of an effort to characterize the geologic framework influencing ground-water resources in east-central Nevada and west-central Utah. New gravity data were combined with existing aeromagnetic, drill-hole, and geologic data to help determine basin geometry, infer structural features, estimate depth to pre-Cenozoic basement rocks, and further constrain the horizontal extents of exposed and buried plutons. In addition, a three-dimensional (3D) geologic model was constructed to help illustrate the often complex geometries of individual basins and aid in assessing the connectivity of adjacent basins. In general, the thirteen major valleys within the study area have axes oriented north-south and frequently contain one or more sub-basins. These basins are often asymmetric and typically reach depths of 2 km. Analysis of gravity data helped delineate geophysical lineaments and accommodation zones. Structural complexities may further compartmentalize ground-water flow within basins and the influence of tectonics on basin sedimentation further complicates their hydrologic properties. The horizontal extent of exposed and, in particular, buried plutons was estimated over the entire study area. The location and subsurface extents of these plutons will be very important for regional water resource assessments, as these features may act as either barriers or pathways for groundwater flow. A previously identified basement gravity low strikes NW within the study area and occurs within a highly extended terrane between the Butte and Confusion synclinoria. Evidence from geophysical, geologic, and seismic reflection data suggests relatively lower density plutonic rocks may extend to moderate crustal depths and rocks of similar composition may be the source of the entire basement gravity anomaly.
Mesozoic evolution of northeast African shelf margin, Libya and Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aadland, R.K.; Schamel, S.
1989-03-01
The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. The 250 km-wide and highly differentiated Mesozoic passive margin in the Western Desert region of Egypt is developed above a broad northwest-trending Late Carboniferous basement arch. In northeastern Libya, in contrast, the passive margin is restricted to just the northernmost Cyrenaica platform, where subsidence was extremely rapid in the Jurassic and Early Cretaceous. The boundary between the Western Desertmore » basin and the Cyrenaica platform is controlled by the western flank of the basement arch. In the middle Cretaceous (100-90 Ma), subsidence accelerated over large areas of the Western desert, further enhancing a pattern of east-west-trending subbasins. This phase of rapid subsidence was abruptly ended about 80 Ma by the onset of structural inversion that uplifted the northern Cyrenaica shelf margin and further differentiated the Western Desert subbasin along a northeasterly trend.« less
NASA Astrophysics Data System (ADS)
Maestro-González, A.; Bárcenas, P.; Vázquez, J. T.; Díaz-Del-Río, V.
2008-02-01
Fractures associated with volcanic rock outcrops on the inner shelf of Alboran Island, Western Mediterranean, were mapped on the basis of a side-scan sonar mosaic. Absolute maximum fracture orientation frequency is NW SE to NNW SSE, with several sub-maxima oriented NNE SSW, NE SW and ENE WSW. The origin of the main fracture systems in Neogene and Quaternary rocks of the Alboran Basin (south Spain) appears to be controlled by older structures, namely NE SW and WNW ESE to NW SE faults which cross-cut the basement. These faults, pre-Tortonian in origin, have been reactivated since the early Neogene in the form of strike-slip and extensional movements linked to the recent stress field in this area. Fracture analysis of volcanic outcrops on the inner continental shelf of Alboran Island suggests that the shelf has been deformed into a narrow shear zone limited by two NE SW-trending, sub-parallel high-angle faults, the main orientation and density of which have been influenced by previous WNW ESE to NW SE basement fractures.
NASA Astrophysics Data System (ADS)
Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic; Lescanne, Marc
2017-04-01
Despite the fact that many studies have investigated mantle exhumation at magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid and thermal evolution of these ultra-distal domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex, however, the processes controlling the morpho-tectonic and magmatic evolution of these domains remain unknown. The aim of this study is to describe the 3D top basement morphology of an exhumed mantle domain, exposed over 200 km2 in the fossil Platta domain in SE Switzerland, and to define the timing and processes controlling its evolution. The examined Platta nappe corresponds to a remnant of the former ultra-distal Adriatic margin of the Alpine Tethys. The rift-structures are relatively well preserved due to the weak Alpine tectonic and metamorphic overprint during the emplacement in the Alpine nappe stack. Detailed mapping of parts of the Platta nappe enabled us to document the top basement architecture of an exhumed mantle domain and to investigate its link to later, rift/oceanic structures, magmatic additions and fluids. Our observations show a polyphase and/or complex: 1) deformation history associated with mantle exhumation along low-angle exhumation faults overprinted by later high-angle normal faults, 2) top basement morphology capped by magmato-sedimentary rocks, 3) tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and 4) fluid history including serpentinization, calcification, hydrothermal vent, rodingitization and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide important information on the temporal and spatial evolution of the tectonic, magmatic and fluid systems controlling the formation of ultra-distal magma-poor rifted margins as well as the processes controlling lithospheric breakup. In this context, our field observations can help to better understand the tectono-magmatic processes associated to these, not yet drilled domains that may form in young, narrow rifted margins (e.g. Red Sea, Gulf of Aden) or may represent the Ocean-Continent Transition in more mature, magma-poor Atlantic type systems.
The role of basal cells in adhesion of columnar epithelium to airway basement membrane.
Evans, M J; Plopper, C G
1988-08-01
In this report, we present a new concept of the role of the basal cell in airway epithelium. Previously, the basal cell was thought to be the progenitor cell for the columnar epithelium. However, several studies have shown that this concept may not be correct. The morphologic aspects of the basal cell suggest that it could play a role in adhesion of the columnar epithelium to the basement membrane. Basal cells form attachments with columnar cells (desmosomes) and with the basement membrane (hemidesmosomes). Columnar cells do not form hemidesmosome attachments with the basement membrane. Basal cells could strengthen the adhesion of columnar cells to the basement membrane by forming hemidesmosome attachments to the basement membrane and desmosome attachments with adjacent columnar cells. Incidental evidence from 2 existing publications concerning airway microanatomy support this concept. As columnar cells grow taller, the proportion of the cell surface in contact with the basement membrane becomes progressively smaller, and thus the cell surface area related to adhesion also becomes smaller. It was found that the number of basal cells per millimeter of basement membrane was closely related to the height of the columnar cell epithelium (r = 0.98), but not to the number of columnar cells (r = 0.42). The consistency of the relationship between increased columnar cell height (and thus decreased surface area for adhesion) and the number of basal cells present (r = 0.98) supports the concept that the basal cell plays a role in adhesion of columnar cells to the basement membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Influence of rock strength variations on interpretation of thermochronologic data
NASA Astrophysics Data System (ADS)
Flowers, Rebecca; Ehlers, Todd
2017-04-01
Low temperature thermochronologic datasets are the primary means for estimating the timing, magnitude, and rates of erosion over extended (10s to 100s of Ma) timescales. Typically, abrupt shifts in cooling rates recorded by thermochronologic data are interpreted as changes in erosion rates caused by shifts in uplift rates, drainage patterns, or climate. However, recent work shows that different rock types vary in strength and erodibility by as much as several orders of magnitude, therefore implying that lithology should be an important control on how landscapes change through time and the thermochronometer record of erosion histories. Attention in the surface processes community has begun to focus on rock strength as a critical control on short-term (Ka to Ma) landscape evolution, but there has been less consideration of the influence of this factor on landscapes over longer intervals. If intrinsic lithologic variability can strongly modify erosion rates without changes in external factors, this result would have important implications for how thermochronologic datasets are interpreted. Here we evaluate the importance of rock strength for interpreting thermochronologic datasets by examining erosion rates and total denudation magnitudes across sedimentary rock-crystalline basement rock interfaces. We particularly focus on the 'Great Unconformity', a global stratigraphic surface between Phanerozoic sedimentary rocks and Precambrian crystalline basement, which based on rock strength studies marks a dramatic rock erodibility contrast across which erosion rates should decelerate. In the Rocky Mountain basement uplifts of the western U.S., thermochronologic data and geologic observations indicate that erosion rates were high during latest Cretaceous-early Tertiary denudation of the sedimentary cover (3-4 km over 10 m.y., 300-400 m/m.y.) but dramatically decelerated when less erodible basement rocks were encountered (0.1-0.5 km over 55 m.y., 2-9 m/m.y.). Similarly, the western Canadian shield underwent multiple Phanerozoic episodes of substantial (1-4 km) sedimentary rock burial and erosion, but total Phanerozoic erosion of the crystalline basement below the Great Unconformity was no more than a few hundred meters. We use published low temperature thermochronologic dates, the LandLab landscape evolution model, and 1D thermokinematic and erosion (Pecube) models to assess whether the observed deceleration of erosion can be explained by measured variations in rock strength alone. We use these results to consider the extent to which rock strength can change the cooling history recorded by thermochronologic datasets.
Basement Fracturing and Weathering On- and Offshore Norway - Genesis, Age, and Landscape Development
NASA Astrophysics Data System (ADS)
Knies, J.; van der Lelij, R.; Faust, J.; Scheiber, T.; Broenner, M.; Fredin, O.; Mueller, A.; Viola, G.
2014-12-01
Saprolite remnants onshore Scandinavia have been investigated only sporadically. The nature and age of the deeply weathered material thus remains only loosely constrained. The type and degree of weathering of in situ weathered soils are indicative of the environmental conditions during their formation. When external forcing changes, properties related to previous weathering conditions are usually preserved, for example in clay mineral assemblages. By constraining the age and rate of weathering onshore and by isotopically dating selected faults determined to be intimately linked to weathered basement blocks, the influence of climate development, brittle deformation and landscape processes on weathering can be quantified. The "BASE" project aims to establish a temporal and conceptual framework for brittle tectonics, weathering patterns and landscape evolution affecting the basement onshore and offshore Norway. We will study the formation of saprolite in pre-Quaternary times, the influence of deep weathering on landscape development and establish a conceptual structural template of the evolution of the brittle deformational features that are exposed on onshore (weathered) basement blocks. Moreover, saprolitic material may have been eroded and preserved along the Norwegian continental margin during Cenozoic times. By studying both the onshore remnants and offshore erosional products deposited during periods of extreme changes of climate and tectonic boundary conditions (e..g Miocene-Pliocene), new inferences on the timing and controlling mechanisms of denudation, and on the relevance of deep weathering on Late Cenozoic global cooling can be drawn.
Aunapuu, Marina; Arend, Andres; Kolts, Ivo; Egerbacher, Monika; Ots, Mai
2004-04-01
The effect of low-dose irradiation on laminin distribution and urine protein excretion in the remnant rat kidney has been studied. The rat remnant kidney formed after 5/6 nephrectomy is an experimental model of chronic renal failure. In the remnant kidney, focal segmental glomerulosclerosis is developed characterized by focal or segmental sclerosis in glomeruli, alterations in the tubules and thickening of the glomerular basement membrane. Low dose irradiation has been presumed to suppress sclerotic processes. In this study 24 male Wistar rats were subdivided into the nephrectomized group, nephrectomized and irradiated groups (1 or 3 Grey), and healthy control group. Animals were sacrificed at 2, 4 and 8 weeks after beginning the experiment. Laminin immunohistochemical staining was found along the tubular and glomerular basement membranes in all experimental groups, but with varying intensity. Laminin content in the basement membranes was decreased in early stages (week 2), especially after irradiation followed by increase during the later stages with relatively high levels at the end of the experiment (week 8). Irradiation at a dose of 3 Grey decreased protein excretion compared to the nephrectomized rats at all stages, while 1 Grey dose was ineffective. Based on decreased proteinuria we conclude that moderate low-dose irradiation has beneficial effects on the rat remnant kidney and that laminin in basement membranes is probably not the most crucial component in regulating membrane permeability.
Rossi, Angela; Wistlich, Laura; Heffels, Karl-Heinz; Walles, Heike; Groll, Jürgen
2016-08-01
In addition to dividing tissues into compartments, basement membranes are crucial as cell substrates and to regulate cellular behavior. The development of artificial basement membranes is indispensable for the ultimate formation of functional engineered tissues; however, pose a challenge due to their complex structure. Herein, biodegradable electrospun polyester meshes are presented, exhibiting isotropic or bipolar bioactivation as a biomimetic and biofunctional model of the natural basement membrane. In a one-step preparation process, reactive star-shaped prepolymer additives, which generate a hydrophilic fiber surface, are electrospun with cell-adhesion-mediating peptides, derived from major components of the basement membrane. Human skin cells adhere to the functionalized meshes, and long-term co-culture experiments confirm that the artificial basement membranes recapitulate and preserve tissue specific functions. Several layers of immortalized human keratinocytes grow on the membranes, differentiating toward the surface and expressing typical epithelial markers. Fibroblasts migrate into the reticular lamina mimicking part of the mesh. Both cells types begin to produce extracellular matrix proteins and to remodel the initial membrane. It is shown at the example of skin that the artificial basement membrane design provokes biomimetic responses of different cell types and can thus be used as basis for the future development of basement membrane containing tissues. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brody, Sarah; Anilkumar, Thapasimuthu; Liliensiek, Sara; Last, Julie A; Murphy, Christopher J; Pandit, Abhay
2006-02-01
A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane.
BRODY, SARAH; ANILKUMAR, THAPASIMUTHU; LILIENSIEK, SARA; LAST, JULIE A.; MURPHY, CHRISTOPHER J.; PANDIT, ABHAY
2016-01-01
A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane. PMID:16548699
NASA Astrophysics Data System (ADS)
Kumar, R.; Bansal, A. R.; Anand, S. P.; Rao, V. K.; Singh, U. K.
2016-12-01
The central India region is having complex geology covering various geological units e.g., Precambrian Bastar Craton (including Proterozoic Chhattisgarh Basin, granitic intrusions etc.) and Eastern Ghat Mobile Belt, Gondwana Godavari and Mahanadi Grabens, Late Cretaceous Deccan Traps etc. The central India is well covered by reconnaissance scale aeromagnetic data. We analyzed this data for mapping the basement by dividing into143 overlapping blocks of 100×100km using least square nonlinear inversion method for fractal distribution of sources. The scaling exponents and depth values are optimized using grid search method. We interpreted estimated depths of anomalous sources as magnetic basement and shallow anomalous magnetic sources. The shallow magnetic anomalies are found to vary from 1 to 3km whereas magnetic basement depths are found to vary from 2km to 7km. The shallowest basement depth of 2km found corresponding to Kanker granites a part of Bastar Craton whereas deepest basement depth of 7km is associated with Godavari Graben and south eastern part of Eastern Ghat Mobile Belts near the Parvatipuram Bobbili fault. The variation of magnetic basement, shallow depths and scaling exponent in the region indicate complex tectonic, heterogeneity and intrusive bodies at different depths which is due to different tectonic processes in the region. The detailed basement depth of central India is presented in this study.
Diffusion of radon through concrete block walls: A significant source of indoor radon
Lively, R.S.; Goldberg, L.F.
1999-01-01
Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.
Sheridan, R.E.; Maguire, T.J.; Feigenson, M.D.; Patino, L.C.; Volkert, R.A.
1999-01-01
The Chesapeake terrane of the U.S. mid-Atlantic Coastal Plain basement is bounded on the northwest by the Salisbury positive gravity and magnetic anomaly and extends to the southeast as far as the Atlantic coast. It underlies the Coastal Plain of Virginia, Maryland, Delaware and southern New Jersey. Rubidium/Strontium dating of the Chesapeake terrane basement yields an age of 1.025 ?? 0.036 Ga. This age is typical of Grenville province rocks of the Middle to Late Proterozoic Laurentian continent. The basement lithologies are similar to some exposed Grenville-age rocks of the Appalachians. The TiO2 and Zr/P2O5 composition of the metagabbro from the Chesapeake terrane basement is overlapped by those of the Proterozoic mafic dikes in the New Jersey Highlands. These new findings support the interpretation that Laurentian basement extends southeast as far as the continental shelf in the U.S. mid-Atlantic region. The subcrop of Laurentian crust under the mid-Atlantic Coastal Plain implies unroofing by erosion of the younger Carolina (Avalon) supracrustal terrane. Dextral-transpression fault duplexes may have caused excessive uplift in the Salisbury Embayment area during the Alleghanian orogeny. This extra uplift in the Salisbury area may have caused the subsequent greater subsidence of the Coastal Plain basement in the embayment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delhal, J.; Lay, C.; Ledent, D.
Ten Sr/Rb apparent ages obtained on minerals separated from rocks of the Kasai (South Congo) basement are interpreted as giving the age of three major events of the geological history of this basement. From North to South the area studied can be subdivised into three major portions: the Dibaya-type basement, the intermediate region, and the Luiza-type basement. A first metamorphism in the Luiza basement appears to be at least 3,300 m.y. old. It is followed by a charnockitization and a migmatitization. The latter phenomenon appears to be identical with the granitization of the Dibaya basement which occurred at circa 2,700more » m.y. Later, an important cataclasis with pegmatitic intrusions affected the Dibaya basement. The pegmatites are dated at circa 2,100 m.y. This is also the age of the metamorphism and orogeny of the Luiza metasedimentary series which forms part of the intermediate region. This orogeny is therefore considered responsible for the above mentioned widespread cataclasis and activity. Three dated orogenic cycles are therefore superposed in this part of the Kasai basement; at least one younger, undated, cycle (the Lulua cycle) is recognized in the same general area. These preliminary results will be used as a foundation for a more complete dating program based not only on further Sr/Rb ages but also on ages obtained by other methods. An adequate nomenclature will be adopted as a result of the planned detailed studies. (auth)« less
Frictional Behavior of Altered Basement Approaching the Nankai Trough
NASA Astrophysics Data System (ADS)
Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.
2017-12-01
The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in intact rock-on-rock experiments. Our results show that basement alteration tends to reduce the tendency for unstable slip, but that the altered Nankai basement may still exhibit seismogenic behavior in the case of localized slip in competent rock.
26. EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, ...
26. EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ARCHED ENTRY INTO BASEMENT UNDER FRONT ENTRY IN BACKGROUND, LOOKING NORTH (NOTE GALLETING IN BRICK FOUNDATION) - Belair, Tulip Grove Drive, Belair-at-Bowie, Bowie, Prince George's County, MD
The opposing roles of laminin-binding integrins in cancer.
Ramovs, Veronika; Te Molder, Lisa; Sonnenberg, Arnoud
2017-01-01
Integrins play an important role in cell adhesion by linking the cytoskeleton of cells to components in the extracellular matrix. In this capacity, integrins cooperate with different cell surface receptors, including growth factor receptors and G-protein coupled receptors, to regulate intracellular signaling pathways that control cell polarization, spreading, migration, survival, and gene expression. A distinct subfamily of molecules in the integrin family of adhesion receptors is formed by receptors that mediate cell adhesion to laminins, major components of the basement membrane that lie under clusters of cells or surround them, separating them from other cells and/or adjacent connective tissue. During the past decades, many studies have provided evidence for a role of laminin-binding integrins in tumorigenesis, and both tumor-promoting and suppressive activities have been identified. In this review we discuss the dual role of the laminin-binding integrins α3β1 and α6β4 in tumor development and progression, and examine the factors and mechanisms involved in these opposing effects. Copyright © 2016 Elsevier B.V. All rights reserved.
13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL ...
13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL TO COLD CALIBRATION TEST STAND BASEMENT, SHOWING HARD WIRE CONNECTION (INSTRUMENTATION AND CONTROL). - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen
2006-09-21
A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significantmore » improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.« less
NASA Astrophysics Data System (ADS)
MacAlister, E.; Skalbeck, J.; Stewart, E.
2016-12-01
Since the late 1800's, geologic studies have been completed in Wisconsin in pursuit of understanding the basement topography and locating economically viable mineral resources. The doubly plunging Baraboo Syncline located in Columbia and Sauk Counties provides a classic record of Precambrian deformation. A similar buried structure is thought to exist in adjacent Dodge County based on a prominent aeromagnetic anomaly. For this study, 3-D modeling of gravity and aeromagnetic survey data was used to approximate the structure of the Precambrian basement topography beneath Dodge County, Wisconsin. The aim of the research was to determine a suitable basement topography grid using potential field data and then use this grid as the base for groundwater flow models. Geosoft Oasis Montaj GM-SYS 3D modeling software was used to build grids of subsurface layers and the model was constrained by well records of basement rock elevations located throughout the county. The study demonstrated that there is a complex network of crystalline basement structures that have been folded through tectonic activity during the Precambrian. A thick layer of iron rich sedimentary material was deposited on top of the basement rocks, causing a distinct magnetic signature that outlined the basement structure in the magnetic survey. Preliminary results reveal an iron layer with a density of 3.7 g/cm3 and magnetic susceptibility of 8000 x 10-6 cgs that is approximately 500 feet thick and ranges between elevations of -300 meters below and 400 meters above sea level. The 3-D model depths are consistent with depths from recent core drilling operations performed by the Wisconsin Geological and Natural History Survey. Knowing the depth to and structure of basement rock throughout Dodge County and Wisconsin plays an important role in understanding the geologic history of the region. Also, better resolution of the basement topography can enhance the accuracy of future groundwater flow models.
3D depth-to-basement and density contrast estimates using gravity and borehole data
NASA Astrophysics Data System (ADS)
Barbosa, V. C.; Martins, C. M.; Silva, J. B.
2009-05-01
We present a gravity inversion method for simultaneously estimating the 3D basement relief of a sedimentary basin and the parameters defining the parabolic decay of the density contrast with depth in a sedimentary pack assuming the prior knowledge about the basement depth at a few points. The sedimentary pack is approximated by a grid of 3D vertical prisms juxtaposed in both horizontal directions, x and y, of a right-handed coordinate system. The prisms' thicknesses represent the depths to the basement and are the parameters to be estimated from the gravity data. To produce stable depth-to-basement estimates we impose smoothness on the basement depths through minimization of the spatial derivatives of the parameters in the x and y directions. To estimate the parameters defining the parabolic decay of the density contrast with depth we mapped a functional containing prior information about the basement depths at a few points. We apply our method to synthetic data from a simulated complex 3D basement relief with two sedimentary sections having distinct parabolic laws describing the density contrast variation with depth. Our method retrieves the true parameters of the parabolic law of density contrast decay with depth and produces good estimates of the basement relief if the number and the distribution of boreholes are sufficient. We also applied our method to real gravity data from the onshore and part of the shallow offshore Almada Basin, on Brazil's northeastern coast. The estimated 3D Almada's basement shows geologic structures that cannot be easily inferred just from the inspection of the gravity anomaly. The estimated Almada relief presents steep borders evidencing the presence of gravity faults. Also, we note the existence of three terraces separating two local subbasins. These geologic features are consistent with Almada's geodynamic origin (the Mesozoic breakup of Gondwana and the opening of the South Atlantic Ocean) and they are important in understanding the basin evolution and in detecting structural oil traps.
Occupant radon exposure in houses with basements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, E.M.; Fuoss, S.
1995-12-31
This study compares basement and main-level radon exposure based on bi-level week-long radon measurements, occupancy and activity data collected in normal use during heating and non-heating seasons in a geographically-stratified random sample of about 600 Minnesota homes, in response to critiques of radon measurement protocol. Basement radon (RN1) (M=4.5, SD=4.5) and main level (Rn2)(M=2.9, SD=3.4) correlation was 0.8 (p=.00), including seasonal variation. In a 101-house subsample where Rn1 >=4.0 pCi/L and Rn2 <=3.9 pCi/L, maximum household exposure in basements was 1162 pCiHrs (M=120, Sd=207), main-level 2486 pCiHrs (M-434, SD=421). In same households, persons with most basement-time maxed 100 hrs (M=13,SD=23),more » persons with most main-level time maxed 160 hrs (M=79, SD=39). Basement activities show two patterns, (1) member used it for personal domain, e.g. sleeping, and (2) household used it for general activities, e.g. TV or children`s play. Basement occupancy justifies measurement of radon in the lowest livable housing level.« less
Bunkhouse basement interior showing storage area and a conveyor belt ...
Bunkhouse basement interior showing storage area and a conveyor belt (circa 1936) used to unload dry goods into the basement through an opening on the east side of the bunkhouse. - Sespe Ranch, Bunkhouse, 2896 Telegraph Road, Fillmore, Ventura County, CA
3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER ...
3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER CONSTRUCTION. THE BASEMENT HOUSES HEATING, VENTILATION, AND AIR CONDITIONING EQUIPMENT AND MECHANICAL UTILITIES, THE UPPER PART OF THE PLUTONIUM STORAGE VAULT AND MAINTENANCE BAY, AND SMALL PLUTONIUM PROCESSING AREAS. THE BASEMENT LEVEL IS DIVIDED INTO NEARLY EQUAL NORTH AND SOUTH PARTS BY THE UPPER PORTION OF THE PLUTONIUM STORAGE VAULT. (10/7/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO
20. VIEW OF THE BASEMENT FLOOR PLAN. THE BASEMENT AREA ...
20. VIEW OF THE BASEMENT FLOOR PLAN. THE BASEMENT AREA INCLUDES A UTILITY ROOM, PROCESS WASTE STORAGE AND MAINTENANCE AREAS, AND THE ENTRANCE TO AN UNDERGROUND TUNNEL LEADING TO BUILDING 881. THE ORIGINAL DRAWING HAS BEEN ARCHIVED ON MICROFILM. THE DRAWING WAS REPRODUCED AT THE BEST QUALITY POSSIBLE. LETTERS AND NUMBERS IN THE CIRCLES INDICATE FOOTER AND/OR COLUMN LOCATIONS. - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO
NASA Astrophysics Data System (ADS)
Olurin, Oluwaseun Tolutope
2017-12-01
Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30'-8°00'N and longitudes 4°30'-5°00'E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from -77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from -500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.
Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis
NASA Astrophysics Data System (ADS)
Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.
2013-12-01
Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.
NATURAL BASEMENT VENTILATION AS A RADON MITIGATION TECHNIQUE
The report documents a study of natural basement ventilation in two research houses during both the summer cooling season and the winter heating season. NOTE: Natural basement ventilation has always been recommended as a way to reduce radon levels in houses. However, its efficacy...
The Fiber Grating Sensors Applied in the Deformation Measurement of Shipborne Antenna Basement
NASA Astrophysics Data System (ADS)
Liu, Yong; Chen, Jiahong; Zhao, Wenhua
2016-02-01
The optical fiber grating sensor is a novel fibre-optical passive device, its reflecting optical spectrum is linearly related with strain. It is broadly applied in the structural monitoring industry. Shipborne antenna basement is the basic supporting structure for the radar tracking movement. The bending deformation of the basement caused by ship attitude changing influences the antenna tracking precision, According to the structure of shipborne antenna basement, a distributed strain testing method based on the fibre grating sensor is approved to measure the bending deformation under the bending force. The strain-angle model is built. The regularity of the strain distribution is obtained. The finite element method is used to analyze the deformation of the antenna basement. The measuring experiment on the contractible basement mould is carried out to verify the availability of the method. The result of the experiment proves that the model is effective to apply in the deformation measurement. It provides an optimized method for the distribution of the fiber grating sensor in the actual measuring process.
Jacoby, Arie S.; Busch-Nentwich, Elisabeth; Bryson-Richardson, Robert J.; Hall, Thomas E.; Berger, Joachim; Berger, Silke; Sonntag, Carmen; Sachs, Caroline; Geisler, Robert; Stemple, Derek L.; Currie, Peter D.
2009-01-01
Summary The skeletal muscle basement membrane fulfils several crucial functions during development and in the mature myotome and defects in its composition underlie certain forms of muscular dystrophy. A major component of this extracellular structure is the laminin polymer, which assembles into a resilient meshwork that protects the sarcolemma during contraction. Here we describe a zebrafish mutant, softy, which displays severe embryonic muscle degeneration as a result of initial basement membrane failure. The softy phenotype is caused by a mutation in the lamb2 gene, identifying laminin β2 as an essential component of this basement membrane. Uniquely, softy homozygotes are able to recover and survive to adulthood despite the loss of myofibre adhesion. We identify the formation of ectopic, stable basement membrane attachments as a novel means by which detached fibres are able to maintain viability. This demonstration of a muscular dystrophy model possessing innate fibre viability following muscle detachment suggests basement membrane augmentation as a therapeutic strategy to inhibit myofibre loss. PMID:19736328
NASA Astrophysics Data System (ADS)
Mousavi, Naeim; Ebbing, Jörg
2018-04-01
We present a study on the depth to basement and magnetic crustal domains beneath the Iranian Plateau by modeling aeromagnetic and gravity data. First, field processing of the aeromagnetic data was undertaken to estimate the general characteristics of the magnetic basement. Afterwards, inverse modeling of aeromagnetic data was carried out to estimate the depth to basement. The obtained model of basement was refined using combined gravity and magnetic forward modeling. Hereby, we were able to distinguish different magnetic domains in the uppermost crust (10-20 km depths) influencing the medium to long wavelength trends of the magnetic anomalies. Magnetic basement mapping shows that prominent shallow magnetic features are furthermore located in the volcanic areas, e.g. the Urumieh Dokhtar Magmatic Assemblage. The presence of ophiolite outcrops in SE Iran implies that shallow oceanic crust (with high magnetization) is the main source of one of the biggest magnetic anomalies in entire Iran area located north of the Makran.
Langenheim, V.E.; Jachens, Robert C.; Buesch, David C.
2014-01-01
Aeromagnetic data help provide the underpinnings of a hydrogeologic framework for Fort Irwin by locating inferred structural features or grain that influence groundwater flow. Magnetization boundaries defined by horizontal-gradient analyses coincide locally with Cenozoic faults and can be used to extend these faults beneath cover. These boundaries also highlight the structural grain within the crystalline rocks and may serve as a proxy for fracturing, an important source of permeability within the generally impermeable basement rocks, thus mapping potential groundwater pathways through and along the mountain ranges in the study area.
Ultrastructural study of the human neurohypophysis. III. Vascular and perivascular structures.
Seyama, S; Pearl, G S; Takei, Y
1980-01-01
The vascular and perivascular regions of the human neurohypophysis were studied electron microscopically. The abluminal basement membrane, perivascular space, luminal basement membrane and endothelium are interposed between the neural parenchyma and the blood stream. The capillaries are fenestrated, with pores measuring 30 to 50 nm in diameter. The perivascular and intercellular spaces form prominent networks that penetrate between rows of neurohypophysial parenchymal cells. The perivascular space contains pericytes, histiocytes, fibroblasts and mast cells, with ultrastructural features typical of each cell type. No transitional forms between histiocytes and pericytes were observed. A schema for the extracellular flow of neurohypophysial hormones through the sinusoidal and perivascular spaces is proposed, suggesting an important role for the pituicytes and their intercellular junctions in the control of hormone release.
As part of an exploratory study, three houses were monitored for moisture indicators, radon levels, building operations, and other environmental parameters while ASD systems were cycled on and off. December 6, 2007, Revised 3/10/08.
South west corner of Bunkhouse showing the door to the ...
South west corner of Bunkhouse showing the door to the basement, electric panels and the hinged door to the basement used for unloading items into the basement. A small ranch hand's house sits adjacent to the west. - Sespe Ranch, Bunkhouse, 2896 Telegraph Road, Fillmore, Ventura County, CA
NASA Astrophysics Data System (ADS)
Straub, S. M.; Kelemen, P. B.
2016-12-01
The remarkable compositional similarities of andesitic crust at modern convergent margins and the continental crust has long evoked the hypothesis of similar origins. Key to understanding either genesis is understanding the mode of silica enrichment. Silicic crust cannot be directly extracted from the upper mantle. Hence, in modern arcs, numerous studies - observant of the pervasive and irrefutable evidence of melt mixing - proposed that arc andesites formed by mixing of mantle-derived basaltic melts and fusible silicic material from the overlying crust. Mass balance requires the amount of silicic crust in such hybrid andesites to be on the order to tens of percent, implying that their composition to be perceptibly influenced by the various crustal basements. In order to test this hypothesis, major and trace element compositions of mafic and silicic arc magmas with arc-typical low Ce/Pb< 10 of Northern Pacific arcs (Marianas through Mexico) were combined with Pb isotope ratios. Pb isotope ratios are considered highly sensitive to crustal contamination, and hence should reflect the variable composition of the oceanic and continental basement on which these arcs are constructed. In particular, in thick-crust continental arcs where the basement is isotopically different from the mantle and crustal assimilation thought to be most prevalent, silicic magmas must be expected to be distinct from those of the associated mafic melts. However, in a given arc, the Pb isotope ratios are constant with increasing melt silica regardless of the nature of the basement. This observation argues against a melt origin of silicic melts from the crustal basement and suggest them to be controlled by the same slab flux as their co-eval mafic counterparts. This inference is validated by the spatial and temporal pattern of arc Pb isotope ratios along the Northern Pacific margins and throughout the 50 million years of Cenozoic evolution of the Izu Bonin Mariana arc/trench system that are can be related to with systematic, `real-time' changes in the composition of the slab flux with no role of the crustal basement. In summary, these data suggest that that silicic melts are ultimately genetically linked to the mafic co-eval series from the mantle, by such mechanisms as fractional crystallization, or melt-rock reactions, or a combination of both.
Core-shell hydrogel beads with extracellular matrix for tumor spheroid formation.
Yu, L; Grist, S M; Nasseri, S S; Cheng, E; Hwang, Y-C E; Ni, C; Cheung, K C
2015-03-01
Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since they may provide a better model of the tumor than conventional monolayer culture. Moreover, tumor cell interaction with the extracellular matrix can determine cell organization and behavior. In this work, a microfluidic system was used to form cell-laden core-shell beads which incorporate elements of the extracellular matrix and support the formation of multicellular spheroids. The bead core (comprising a mixture of alginate, collagen, and reconstituted basement membrane, with gelation by temperature control) and shell (comprising alginate hydrogel, with gelation by ionic crosslinking) were simultaneously formed through flow focusing using a cooled flow path into the microfluidic chip. During droplet gelation, the alginate acts as a fast-gelling shell which aids in preventing droplet coalescence and in maintaining spherical droplet geometry during the slower gelation of the collagen and reconstituted basement membrane components as the beads warm up. After droplet gelation, the encapsulated MCF-7 cells proliferated to form uniform spheroids when the beads contained all three components: alginate, collagen, and reconstituted basement membrane. The dose-dependent response of the MCF-7 cell tumor spheroids to two anticancer drugs, docetaxel and tamoxifen, was compared to conventional monolayer culture.
Fault zone characteristics and basin complexity in the southern Salton Trough, California
Persaud, Patricia; Ma, Yiran; Stock, Joann M.; Hole, John A.; Fuis, Gary S.; Han, Liang
2016-01-01
Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A VP = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.
STREET SURFACE STORAGE FOR CONTROL OF COMBINED SEWER SURCHARGE
One type of Best Management Practices (BMPs) available is the use of street storage systems to prevent combined sewer surcharging and to mitigate basement flooding. A case study approach, based primarily on two largely implemented street storage systems, will be used to explain ...
NASA Astrophysics Data System (ADS)
Saravanavel, J.; Ramasamy, S. M.
2014-11-01
The study area falls in the southern part of the Indian Peninsular comprising hard crystalline rocks of Archaeozoic and Proterozoic Era. In the present study, the GIS based 3D visualizations of gravity, magnetic, resistivity and topographic datasets were made and therefrom the basement lineaments, shallow subsurface lineaments and surface lineaments/faults were interpreted. These lineaments were classified as category-1 i.e. exclusively surface lineaments, category-2 i.e. surface lineaments having connectivity with shallow subsurface lineaments and category-3 i.e. surface lineaments having connectivity with shallow subsurface lineaments and basement lineaments. These three classified lineaments were analyzed in conjunction with known mineral occurrences and historical seismicity of the study area in GIS environment. The study revealed that the category-3 NNE-SSW to NE-SW lineaments have greater control over the mineral occurrences and the N-S, NNE-SSW and NE-SW, faults/lineaments control the seismicities in the study area.
NASA Astrophysics Data System (ADS)
Evans, S. C.; Hamilton, M.; Hardwick, J.; Terrell, C.; Elmore, R. D.
2017-12-01
The chacterization of the lower Paleozoic sedimentary rock and the underlying Precambrian basement in northern Oklahoma is currently the subject of research to better understand induced seismicity in Oklahoma. We are investigating approximately 140 meters of igneous basement and over 300 meters of Ordovician Arbuckle Group carbonates and underlying sandstone in the Amoco SHADS No. 4 drill core from Rogers Co., Oklahoma, to better understand the nature, origin, and timing of fluid alteration and the relationship between fluid flow in the Arbuckle Group and the basement. Preliminary attempts to orient the core using the viscous remanent magnetization (VRM) method were unsuccessful, probably due to a steep drilling-induced component. The dolomitized Arbuckle Group contains a characteristic remanent magnetization (ChRM) with shallow inclinations (-5°) and variable declinations that, based on unblocking temperatures, is interpreted to reside in magnetite. This ChRM is interpreted as a chemical remanent magnetization (CRM) acquired in the Permian based on the shallow inclinations. The CRM could be related to hydrothermal fluids which migrated into the rocks in the late Paleozoic, as other studies in northern Oklahoma have reported. The Arbuckle Group dolomites are porous and extensively altered and consist of several generations of dolomite, including baroque dolomite. The basement rock is andesitic to trachytic ignimbrite that exhibits extensive alteration. There are many near-vertical fractures mineralized with epidote that are cross cut by calcite-filled fractures. Anisotropy of magnetic susceptibility (AMS) measurements indicate an oblate fabric in the top of the basement and the overlying sandstones. At greater depths, the AMS is variable and may include both alteration and primary fabrics. Demagnetization of the basement rocks is in the initial stages. We are currently investigating if and how far the alteration in the Arbuckle Group extended into the basement. The results suggest basement and sedimentary rock in the core were altered by multiple fluids, and the pervasive fracturing in the igneous section could provide conduits for fluids to get from the porous Arbuckle Group into the basement.
Cellular Interaction of Integrin α3β1 with Laminin 5 Promotes Gap Junctional Communication
Lampe, Paul D.; Nguyen, Beth P.; Gil, Susana; Usui, Marcia; Olerud, John; Takada, Yoshikazu; Carter, William G.
1998-01-01
Wounding of skin activates epidermal cell migration over exposed dermal collagen and fibronectin and over laminin 5 secreted into the provisional basement membrane. Gap junctional intercellular communication (GJIC) has been proposed to integrate the individual motile cells into a synchronized colony. We found that outgrowths of human keratinocytes in wounds or epibole cultures display parallel changes in the expression of laminin 5, integrin α3β1, E-cadherin, and the gap junctional protein connexin 43. Adhesion of keratinocytes on laminin 5, collagen, and fibronectin was found to differentially regulate GJIC. When keratinocytes were adhered on laminin 5, both structural (assembly of connexin 43 in gap junctions) and functional (dye transfer) assays showed a two- to threefold increase compared with collagen and five- to eightfold over fibronectin. Based on studies with immobilized integrin antibody and integrin-transfected Chinese hamster ovary cells, the interaction of integrin α3β1 with laminin 5 was sufficient to promote GJIC. Mapping of intermediate steps in the pathway linking α3β1–laminin 5 interactions to GJIC indicated that protein trafficking and Rho signaling were both required. We suggest that adhesion of epithelial cells to laminin 5 in the basement membrane via α3β1 promotes GJIC that integrates individual cells into synchronized epiboles. PMID:9852164
Regional differences in the expression of laminin isoforms during mouse neural tube development
Copp, Andrew J.; Carvalho, Rita; Wallace, Adam; Sorokin, Lydia; Sasaki, Takako; Greene, Nicholas D.E.; Ybot-Gonzalez, Patricia
2013-01-01
Many significant human birth defects originate around the time of neural tube closure or early during post-closure nervous system development. For example, failure of the neural tube to close generates anencephaly and spina bifida, faulty cell cycle progression is implicated in primary microcephaly, while defective migration of neuroblasts can lead to neuronal migration disorders such as lissencephaly. At the stage of neural tube closure, basement membranes are becoming organised around the neuroepithelium, and beneath the adjacent non-neural surface ectoderm. While there is circumstantial evidence to implicate basement membrane dynamics in neural tube and surface ectodermal development, we have an incomplete understanding of the molecular composition of basement membranes at this stage. In the present study, we examined the developing basement membranes of the mouse embryo at mid-gestation (embryonic day 9.5), with particular reference to laminin composition. We performed in situ hybridization to detect the mRNAs of all eleven individual laminin chains, and immunohistochemistry to identify which laminin chains are present in the basement membranes. From this information, we inferred the likely laminin variants and their tissues of origin: that is, whether a given basement membrane laminin is contributed by epithelium, mesenchyme, or both. Our findings reveal major differences in basement composition along the body axis, with the rostral neural tube (at mandibular arch and heart levels) exhibiting many distinct laminin variants, while the lumbar level where the neural tube is just closing shows a much simpler laminin profile. Moreover, there appears to be a marked difference in the extent to which the mesenchyme contributes laminin variants to the basement membrane, with potential contribution of several laminins rostrally, but no contribution caudally. This information paves the way towards a mechanistic analysis of basement membrane laminin function during early neural tube development in mammals. PMID:21524702
Inoue, S; Osmond, D G
2001-11-01
Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the exceptionally large quantity of CSPG may represent a reservoir of CD44 receptor for use in hemopoiesis. Copyright 2001 Wiley-Liss, Inc.
SSOAP - A USEPA TOOLBOX FOR SSO ANALYSIS AND CONTROL PLANNING
Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...
NASA Astrophysics Data System (ADS)
Baines, G.; Giles, D.; Betts, P. G.; Backé, G.
2007-12-01
Multiple intraplate orogenic events have deformed Neoproterozoic to Carboniferous sedimentary sequences that cover the Archean to Mesoproterozoic basement of the northern Gawler Craton, Australia. These intraplate orogenies reactivated north-dipping basement penetrating faults that are imaged on seismic reflection profiles. These north-dipping structures pre-date Neoproterozoic deposition but their relationships to significant linear magnetic and gravity anomalies that delineate unexposed Archean to Early Mesoproterozoic basement terranes are unclear. The north-dipping structures are either terrane boundaries that formed during continental amalgamation or later faults, which formed during a mid- to late-Mesoproterozoic transpressional orogeny and cross-cut the original lithological terrane boundaries. We model magnetic and gravity data to determine the 3D structure of the unexposed basement of the northern Gawler Craton. These models are constrained by drill hole and surface observations, seismic reflection profiles and petrophysical data, such that geologically reasonable models that can satisfy the data are limited. The basement structures revealed by this modelling approach constrain the origin and significance of the north-dipping structures that were active during the later intraplate Petermann, Delamerian and Alice Springs Orogenies. These results have bearing on which structures are likely to be active during present-day intraplate deformation in other areas, including, for example, current seismic activity along similar basement structures in the Adelaide "Geosyncline".
NASA Astrophysics Data System (ADS)
Velez, C. C.; McLaughlin, P. P.; McGeary, S.
2008-05-01
A land streamer system, an alternative to conventional seismic acquisition equipment for collecting large amounts of seismic reflection data in urbanized and semi urbanized areas, is being used to conduct a near surface high-resolution seismic experiment in Northern New Castle County, Delaware. The main goal of this project is to provide continuous data of the subsurface in order to improve our understanding on the connectivity of sand bodies and water flow pathways distribution in ancient fluvial deposits, such as those of the Potomac Formation, that were deposited along passive margin, alluvial plain settings. Such understanding is necessary to create accurate models for groundwater flow and to identify groundwater contaminant pathways. The Potomac Formation was deposited during the Albian to early Cenomanian. In northern Delaware, these sediments are entirely fluvial deposits that are thought to onlap Paleozoic basement, and are truncated by an unconformity. McKenna et al. (2004) recognized five facies for this unit in Delaware: amalgamated sands, thick individual sands, thin sands, interlaminated sands, and mottled silts and clays, and described the sands of the unit as being laterally discontinuous, resulting in a "labyrinth style heterogeneity". Benson's (2006) well-log correlations show the depth of the basement ranging from 115 m to 400 m in the study area of this project. A noise test and a 1.2 km long high-resolution seismic reflection line collected using conventional seismic reflection methods during the preliminary phase of the project indicate that seismic methods can be used in this area to image the subsurface as shallow as 18 m and as deep as 315 m, and suggest that the basement is being imaged. During this project, a 30-km seismic dataset and two continuous cores will be collected. Sonic logs collected at the cores will be used to create synthetic seismograms to create depth sections that will be correlated with existing geophysical logs and existing sediment samples to create cross sections, a model of the geometry of the fluvial system, and facies maps. The core samples will be used to determine porosity and permeability which will allow better understanding of the heterogeneity of this unit. This project is important because the methodology to be used will provide a robust 2-D dataset that will allow one to test/revise the existing facies analysis, and stratigraphic correlations that are based in 1-D well data and are actually used for ground water modeling in the state of Delaware where the population depends and benefits from groundwater supply.
Basement radon entry and stack driven moisture infiltration reduced by active soil depressurization
C.R. Boardman; Samuel V. Glass
2015-01-01
This case study presents measurements of radon and moisture infiltration from soil gases into the basement of an unoccupied research house in Madison, Wisconsin, over two full years. The basement floor and exterior walls were constructed with preservative-treated lumber and plywood. In addition to continuous radon monitoring, measurements included building air...
Viruses in the Oceanic Basement.
Nigro, Olivia D; Jungbluth, Sean P; Lin, Huei-Ting; Hsieh, Chih-Chiang; Miranda, Jaclyn A; Schvarcz, Christopher R; Rappé, Michael S; Steward, Grieg F
2017-03-07
Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 10 5 to 2 × 10 5 ml -1 ( n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome. IMPORTANCE The hydrothermally active ocean basement is voluminous and likely provided conditions critical to the origins of life, but the microbiology of this vast habitat is not well understood. Viruses in particular, although integral to the origins, evolution, and ecology of all life on earth, have never been documented in basement fluids. This report provides the first estimate of free virus particles (virions) within fluids circulating through the extrusive basalt of the seafloor and describes the morphological and genetic signatures of basement viruses. These data push the known geographical limits of the virosphere deep into the ocean basement and point to a wealth of novel viral diversity, exploration of which could shed light on the early evolution of viruses. Copyright © 2017 Nigro et al.
Jones, Frances E.; Bailey, Matthew A.; Murray, Lydia S.; Lu, Yinhui; McNeilly, Sarah; Schlötzer-Schrehardt, Ursula; Lennon, Rachel; Sado, Yoshikazu; Brownstein, David G.; Mullins, John J.; Kadler, Karl E.; Van Agtmael, Tom
2016-01-01
ABSTRACT Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies. PMID:26839400
Radon exposures in a Jerusalem public school.
Richter, E D; Neeman, E; Fischer, I; Berdugo, M; Westin, J B; Kleinstern, J; Margaliot, M
1997-01-01
In December 1995, ambient radon levels exceeding 10,000 Bq/m3 were measured in a basement shelter workroom of a multilevel East Talpiot, Jerusalem, public elementary school (six grades, 600 students). The measurements were taken after cancers (breast and multiple myeloma) were diagnosed in two workers who spent their workdays in basement rooms. The school was located on a hill that geologic maps show to be rich in phosphate deposits, which are a recognized source for radon gas and its daughter products. Levels exceeding 1000,000 Bq/m3 were measured at the mouth of a pipe in the basement shelter workroom, the major point of radon entry. The school was closed and charcoal and electret ion chamber detectors were used to carry out repeated 5-day measurements in all rooms in the multilevel building over a period of several months. Radon concentrations were generally higher in rooms in the four levels of the building that were below ground level. There were some ground-level rooms in the building in which levels reached up to 1300 Bq/m3. In rooms above ground level, however, peak levels did not exceed 300 Bq/m3. Exposure control based on sealing and positive pressure ventilation was inadequate. These findings suggested that radon diffused from highly contaminated basement and ground-floor rooms to other areas of the building and that sealing off the source may have led to reaccumulation of radon beneath the building. Later, subslab venting of below-ground radon pockets to the outside air was followed by more sustained reductions in indoor radon levels to levels below 75 Bq/m3. Even so, radon accumulated in certain rooms when the building was closed. This sentinel episode called attention to the need for a national radon policy requiring threshold exposure levels for response and control. A uniform nationwide standard for school buildings below 75 Bq/m3 level was suggested after considering prudent avoidance, the controversies over risk assessment of prolonged low-level exposures in children, and the fact that exposures in most locations in the Talpiot school could be reduced below this level. Proposal of this stringent standard stimulated the search for a strategy of risk control and management based on control at the source. This strategy was more effective and probably more cost effective than one based on suppression of exposure based on sealing and ventilation. Because many Israeli areas and much of the West Bank area of the Palestinian National Authority sit on the same phosphate deposits, regional joint projects for surveillance and control may be indicated. Images Figure 1. Figure 2. PMID:9467053
19. DETAIL TO SOUTHEAST OF EXCITER 1 GIRARD TURBINE, SHOWING ...
19. DETAIL TO SOUTHEAST OF EXCITER 1 GIRARD TURBINE, SHOWING BEVEL-GEARED REGISTER GATE CONTROLS, OLD POWERHOUSE BASEMENT - Trenton Falls Hydroelectric Station, Powerhouse & Substation, On west bank of West Canada Creek, along Trenton Falls Road, 1.25 miles north of New York Route 28, Trenton Falls, Oneida County, NY
Case study : performance of a house built on a treated wood foundation system in a cold climate
Charles G. Carll; Charles R. Boardman; Collin L. Olson
2010-01-01
Performance attributes of a home, constructed in 2001 in Madison, WI, on a treated-wood foundation system were investigated over a multiyear period. Temperature conditions in the basement of the building were, without exception, comfortable, even though the basement was not provided with supply registers for heating or cooling. Basement humidity conditions were...
LPT. Shield test facility (TAN645 and 646). Basement and subbasement ...
LPT. Shield test facility (TAN-645 and -646). Basement and sub-basement plan. Stairway plans and details. Ralph M. Parsons 1229-17 ANP/GE-6-645-A-2. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645/0646-00-693-107348 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Avoid the Wet Basement Blues: Construction Methods Guarantee Success
ERIC Educational Resources Information Center
Domermuth, David
2006-01-01
A damp basement can be a nightmare, especially after mildew creates its eye-watering, nose-offending stench. There are two enemies to overcome: damp air condensing on interior walls and ground water penetrating the exterior. One can address condensation by drying or heating the air in a basement to raise it above the dew point. The simple way to…
Matrix Metalloproteinase Dysregulation in the Stria Vascularis of Mice with Alport Syndrome
Gratton, Michael Anne; Rao, Velidi H.; Meehan, Daniel T.; Askew, Charles; Cosgrove, Dominic
2005-01-01
Alport syndrome results from mutations in genes encoding collagen α3(IV), α4(IV), or α5(IV) and is characterized by progressive glomerular disease associated with a high-frequency sensorineural hearing loss. Earlier studies of a gene knockout mouse model for Alport syndrome noted thickening of strial capillary basement membranes in the cochlea, suggesting that the stria vascularis is the primary site of cochlear pathogenesis. Here we combine a novel cochlear microdissection technique with molecular analyses to illustrate significant quantitative alterations in strial expression of mRNAs encoding matrix metalloproteinases-2, -9, -12, and -14. Gelatin zymography of extracts from the stria vascularis confirmed these findings. Treatment of Alport mice with a small molecule inhibitor of these matrix metalloproteinases exacerbated strial capillary basement membrane thickening, demonstrating that alterations in basement membrane metabolism result in matrix accumulation in the strial capillary basement membranes. This is the first demonstration of true quantitative analysis of specific mRNAs for matrix metalloproteinases in a cochlear microcompartment. Further, these data suggest that the altered basement membrane composition in Alport stria influences the expression of genes involved in basement membrane metabolism. PMID:15855646
Magnetic Basement Depth Inversion in the Space Domain
NASA Astrophysics Data System (ADS)
Nunes, Tiago Mane; Barbosa, Valéria Cristina F.; Silva, João Batista C.
2008-10-01
We present a total-field anomaly inversion method to determine both the basement relief and the magnetization direction (inclination and declination) of a 2D sedimentary basin presuming negligible sediment magnetization. Our method assumes that the magnetic intensity contrast is constant and known. We use a nonspectral approach based on approximating the vertical cross section of the sedimentary basin by a polygon, whose uppermost vertices are forced to coincide with the basin outcrop, which are presumably known. For fixed values of the x coordinates our method estimates the z coordinates of the unknown polygon vertices. To obtain the magnetization direction we assume that besides the total-field anomaly, information about the basement’s outcrops at the basin borders and the basement depths at a few points is available. To obtain stable depth-to-basement estimates we impose overall smoothness and positivity constraints on the parameter estimates. Tests on synthetic data showed that the simultaneous estimation of the irregular basement relief and the magnetization direction yields good estimates for the relief despite the mild instability in the magnetization direction. The inversion of aeromagnetic data from the onshore Almada Basin, Brazil, revealed a shallow, eastward-dipping basement basin.
Pathology versus molecular genetics: (re)defining the spectrum of Alport syndrome
Miner, Jeffrey H.
2014-01-01
Next generation sequencing applied to families with glomerular disease has been instrumental in identifying new genes and pathways involved in podocyte homeostasis. Malone et al. performed sequencing on 70 families with FSGS and discovered that 10% had variants in surprising “old” genes, COL4A3 and COL4A4, which are involved in Alport syndrome and thin basement membrane nephropathy. These data show that a subset of renal manifestations associated with COL4A3 or COL4A4 variants cannot be distinguished from FSGS by clinical data or by histopathology. Thus, a diagnosis of FSGS may sometimes fall within the spectrum of Alport syndrome. PMID:25427084
NASA Astrophysics Data System (ADS)
Zapata, S.; Sobel, E. R.; Del Papa, C.; Jelinek, A. R.; Muruaga, C.
2017-12-01
The Central Andes in NW of Argentina is part of a long-lived subduction zone, active since the Paleozoic. This region experienced several tectonic cycles; each of which created an unique set of structures and may have reactivated preexisting structures. These inherited structures may exert a first-order control over the different foreland deformational styles observed along the strike in the Central Andes. Our study area is located between 26°S and 28°S on the transition between the broken foreland (Santa Barbara system), which expresses a combination of thin-skin and thick-skin styles, and the Sierras Pampeanas, which is deform in a thick-skin style. The Cumbres Calchaquies range and the associated Choromoro Basin are located in the northern part of the study area, and are the southern expression of the Santa Barbara system. Published thermochronology data suggest that the rocks from the basement experienced Late Cretaceous and Late Miocene exhumation; the associated sedimentary rocks within the Choromoro basin experienced Paleogene and Late Miocene deformational phases. In contrast, the Sierra Aconquija range, located immediately south on the transition to the Sierras Pampeanas (thick skin) foreland basin, exhibit larger amounts of Miocene exhumation and lack of Cretaceous exhumation; the associated sedimentary rocks from the Tucuman basin have not been deformed since the Cretaceous. Our goal is to understand the evolution of the structural blocks and the structures responsible for the along strike changes in foreland basin deformational styles and their relation with inherited structures from previous tectonic cycles. We are obtaining new apatite U-Th/He and fission track data to reconstruct the thermal history of the basement, accompanied by U-Pb geochronology and stratigraphy to constrain the evolution of the associated sedimentary basins. Preliminary results combined with published data suggest that inherited structures within the study area have evolved through different tectonic cycles, controlling the thicknes and the geometry of the sediments within the Mesozoic rift basin, the Miocene amount of exhumation in the basement-cored ranges and the deformation style of the associated foreland basins.
NASA Astrophysics Data System (ADS)
Pek, A. A.; Malkovsky, V. I.
2017-05-01
In the global production of uranium, 18% belong to the unconformity-type Canadian deposits localized in the Athabasca Basin. These deposits, which are unique in terms of their ore quality, were primarily studied by Canadian and French scientists. They have elaborated the diagenetic-hydrothermal hypothesis of ore formation, which suggests that (1) the deposits were formed within a sedimentary basin near an unconformity surface dividing the folded Archean-Proterozoic metamorphic basement and a gently dipping sedimentary cover, which is not affected by metamorphism; (2) the spatial accommodation of the deposits is controlled by the rejuvenated faults in the basement at their exit into the overlying sedimentary sequence; the ore bodies are localized above and below the unconformity surface; (3) the occurrence of graphite-bearing rocks is an important factor in controlling the local structural mineralization; (4) the ore bodies are the products of uranium precipitation on a reducing barrier. The mechanism that drives the circulation of ore-forming hydrothermal solutions has remained one of the main unclear questions in the general genetic concept. The ore was deposited above the surface of the unconformity due to the upflow discharge of the solution from the fault zones into the overlying conglomerate and sandstone. The ore formation below this surface is a result of the downflow migration of the solutions along the fault zones from sandstone into the basement rocks. A thermal convective system with the conjugated convection cells in the basement and sedimentary fill of the basin may be a possible explanation of why the hydrotherms circulate in the opposite directions. The results of our computations in the model setting of the free thermal convection of fluids are consistent with the conceptual reasoning about the conditions of the formation of unique uranium deposits in the Athabasca Basin. The calculated rates of the focused solution circulation through the fault zones in the upflow and downflow branches of a convection cell allow us to evaluate the time of ore formation up to the first hundreds of thousands years.
NASA Astrophysics Data System (ADS)
Le Roy, P., Sr.; Le Dantec, N.; Franzetti, M.; Delacourt, C.; Ehrhold, A.
2016-12-01
The recent completion of a coupled seismic and swath bathymetric survey, conducted across the Mer d'Iroise (Atlantic continental shelf, France), provided new data for the study of the long term evolution of deep tidal sand ridges. Three major banner sand ridges composed of biogenic sands were investigated: the Banc du Four, the Haut Fond d'Ouessant and the Banc d'Ar Men. Seismic interpretation reveals a compound internal architecture of these sand ridges with a sedimentary core forming the lower units interpreted to be shoreface deposits and overlain by sandwaves. Sandwave climbing, which combines progradation and accretion, is the major process controlling the growth of the ridges. The elevation of the preserved dune foresets reaches values of about 20 to 30 m and indicate a combination of giant dunes characterized by numerous steep (up to 20°) clinoforms corresponding to a high-energy depositional environment. All of the radiocarbon ages of the biogenic surficial deposits of the Banc du Four range from 10,036 to 2,748 cal years B.P. and suggest it has grown during the last sea-level rise. The apparent absence of recent surface deposits could be caused by a change in benthic biogenic productivity or the non-conservation of recent deposits. The multiphase accretion of the ridge is closely linked to the progressive flooding of the coastal promontories and straits that structured the igneous basement. A comparable evolutionary scheme is observed for the Haut-Fond d'Ouessant where a counter-clock wise migration of dunes characterizes the surface of the ridge. In contrast, the Banc d'Ar Men located above a regular basement displays a simpler structure with a consistent Northwestward migration of steep clinoforms. Therefore, the sand ridges of the Mer d'Iroise should be thought of as a representative example of large-scale high-energy banner banks controlled by interaction of sea-level, basement morphology, biogenic productivity, tidal and wave hydrodynamics.
Cover sequence stratigraphy and structure: Salem Church basement culmination, Georgia Blue Ridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L.; Tull, J.F.
The Salem Church anticline SW of Jasper, Georgia in the western Blue Ridge is roughly an oval shaped structural dome with its long axis trending NE-SW. The anticline is cored by the Grenville age Corbin Gneiss which represents allochthonous North American basement. In debate for decades has been the age and origin of several kilometers of poly-deformed cover sequence rocks which were metamorphosed to greenschist facies and were probably transported over a long distance inland after their deposition. The stratigraphy of the cover sequence exhibits rapid lithofacies changes. At most localities, the basement is overlain by a 500--600 m thickmore » coarse clastic unit sourced from the basement rocks, composed mainly of metaconglomerate, metasandstone and metadiamictite. A thin unit less than 20 m thick of sericite phyllite occurs between the basement and the coarse clastic unit along the SE limb of the anticline but pinches out to the MW. A relatively sharp stratigraphic contact occurs between quartzite unit and overlying dark colored metagreywackes and metadiamictites containing distinctive cobbles and boulders of granitic and gneissic basement rocks up to 1 meter in length. This unit is about 100 m thick in the SW but thins rapidly towards the NE. It grades up into a geographically widespread graphitic phyllite which encircles most of the anticline. Unlike the cover sequence above the corbin basement west of Waleska, Georgia, no carbonate is found in this area.« less
The morphology and nature of the East Arctic ocean acoustic basement
NASA Astrophysics Data System (ADS)
Rekant, Pavel
2017-04-01
As the result of the thorough interpretation and cross-correlation of the large seismic dataset (>150000 km and >600 seismic lines), the depth structure map of the acoustic basement was constrained. Tectonic framework, basement surface morphology and linkage of the deep basin structures with shelves ones, was significantly clarified based on the map. It becomes clear that most morphostructures presently located within deep-water basin are tectonically connected with shelf structures. Acoustic basement contains a number of pre-Cambrian, Caledonian and Mesozoic consolidated blocks. The basement heterogeneity is highlighted by faults framework and basement surface morphology differences, as well thickness and stratigraphy of the sediment cover. The deepest basins of the East Arctic - Hanna Trough, North Chukchi and Podvodnikov Basins form a united mega-depression, wedged between pre-Cambrian continental blocks (Chukchi Borderland - Mendeleev Rise - Toll Saddle) from the north and the Caledonian deformation front from the south. The basement age/origin speculations are consistent with paleontological and U-Pb zircon ages from dredged rock samples. Most of morphological boundaries in the modern Arctic differ considerably from the tectonic framework. Only part of the Arctic morphostructures is constrained by tectonic boundaries. They are: eastern slope of the Lomonosov Ridge, continental slope in the Laptev Sea, upper continental slope in the Podvodnikov Basin, southern slope of the North Chukchi Basin and borders of the Chukchi Borderland. The rest significant part of modern morphological boundaries are caused by sedimentation processes.
The oxalate-carbonate pathway: at the interface between biology and geology
NASA Astrophysics Data System (ADS)
Junier, P.; Cailleau, G.; Martin, G.; Guggiari, M.; Bravo, D.; Clerc, M.; Aragno, M.; Job, D.; Verrecchia, E.
2012-04-01
The formation of calcite in otherwise carbonate-free acidic soils through the biological degradation of oxalate is a mechanism termed oxalate-carbonate pathway. This pathway lies at the interface between biological and geological systems and constitutes an important, although underestimated, soil mineral carbon sink. In this case, atmospheric CO2 is fixed by the photosynthetic activity of oxalogenic plants, which is partly destined to the production of oxalate used for the chelation of metals, and particularly, calcium. Fungi are also able to produce oxalate to cope with elevated concentrations of metals. In spite of its abundance as a substrate, oxalate is a very stable organic anion that can be metabolized only by a group of bacteria that use it as carbon and energy sources. These bacteria close the biological cycle by degrading calcium oxalate, releasing Ca2+ and inducing a change in local soil pH. If parameters are favourable, the geological part of the pathway begins, because this change in pH will indirectly lead to the precipitation of secondary calcium carbonate (calcite) in unexpected geological conditions. Due to the initial acidic soil conditions, and the absence of geological carbonate in the basement, it is unexpected to find C in the form of calcite. The activity of the oxalate-carbonate pathway has now been demonstrated in several places around the world, suggesting that its importance can be even greater than expected. In addition, new roles for each of the biological players of the pathway have been revealed recently forcing us to reconsider a global biogeochemical model for oxalate cycling.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin
2017-04-01
Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in such a broken-foreland context offers a unique opportunity to discuss how thick-skinned tectonics impacts stress distribution in the sedimentary cover.
New Mexico structural zone - An analogue of the Colorado mineral belt
Sims, P.K.; Stein, H.J.; Finn, C.A.
2002-01-01
Updated aeromagnetic maps of New Mexico together with current knowledge of the basement geology in the northern part of the state (Sangre de Cristo and Sandia-Manzano Mountains)-where basement rocks were exposed in Precambrian-cored uplifts-indicate that the northeast-trending Proterozoic shear zones that controlled localization of ore deposits in the Colorado mineral belt extend laterally into New Mexico. The shear zones in New Mexico coincide spatially with known epigenetic precious- and base-metal ore deposits; thus, the mineralized belts in the two states share a common inherited basement tectonic setting. Reactivation of the basement structures in Late Cretaceous-Eocene and Mid-Tertiary times provided zones of weakness for emplacement of magmas and conduits for ore-forming solutions. Ore deposits in the Colorado mineral belt are of both Late Cretaceous-Eocene and Mid-Tertiary age; those in New Mexico are predominantly Mid-Tertiary in age, but include Late Cretaceous porphyry-copper deposits in southwestern New Mexico. The mineralized belt in New Mexico, named the New Mexico structural zone, is 250-km wide. The northwest boundary is the Jemez subzone (or the approximately equivalent Globe belt), and the southeastern boundary was approximately marked by the Santa Rita belt. Three groups (subzones) of mineral deposits characterize the structural zone: (1) Mid-Tertiary porphyry molybdenite and alkaline-precious-metal deposits, in the northeast segment of the Jemez zone; (2) Mid-Tertiary epithermal precious-metal deposits in the Tijeras (intermediate) zone; and (3) Late Cretaceous porphyry-copper deposits in the Santa Rita zone. The structural zone was inferred to extend from New Mexico into adjacent Arizona. The structural zone provides favorable sites for exploration, particularly those parts of the Jemez subzone covered by Neogene volcanic and sedimentary rocks. ?? 2002 Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Harding, M. R.; Rowan, C. J.
2013-12-01
The Upper Silurian Salina Group in Pennsylvania's Appalachian basin consists of several hundred feet of highly deformable and mobile salt that was a significant influence on the tectonic and structural development of the Appalachian Mountains during the late Paleozoic. Understanding how halokinesis and décollement thrusting of the Salina Group has contributed to the present-day structure of the Appalachian Basin is of intense current interest due to the energy resource potential of the overlying Marcellus Shale and underlying Utica Shale. Seismic data suggest that halokinesis of the Salina Group in the Appalachian Basin might be strongly influenced by the presence of preexisting faults in the underlying Neoproterozoic basement, which suggests that these structures may have interacted with the Salina Group or its interior during deformation. We examine these apparent interactions in more detail using high-resolution 3D seismic data from the Appalachian Basin of NE Pennsylvania to identify and characterize salt tectonic-related structures developed above and within the Salina Group during orogenesis, verify their geographic association with major basement faults, and document how reactivation of these preexisting faults might have influenced later deformation within and above the salt units. We also present the results of sandbox modelling of thin-skinned thrusting in a salt-analogue décollement. Multiple runs in the presence and absence of preexisting basement structures provide insight into how the modern structures observed in the seismic data initiated and evolved during progressively more intense orogenesis, and better constrain the physical processes that control the structural linkage through the Salina décollement.
Northward expansion of Tibet beyond the Altyn Tagh Fault
NASA Astrophysics Data System (ADS)
Cunningham, D.; Zhang, J.; Yanfeng, L.; Vernon, R.
2017-12-01
For many tectonicists, the evolution of northern Tibet stops at the Altyn Tagh Fault (ATF). This study challenges that assumption. Structural field observations and remote sensing analysis indicate that the Sanweishan and Nanjieshan basement-cored ridges of the Archean Dunhuang Block, which interrupt the north Tibetan foreland directly north of the ATF, are bound and cut by an array of strike-slip, thrust and oblique-slip faults that have been active in the Quaternary and remain potentially active. The Sanweishan is essentially a SE-tilted block that is bound on its NW margin by a steep south-dipping thrust fault that has also accommodated sinistral strike-slip displacements. The Nanjieshan consists of parallel, but offset basement ridges that record NNW and SSE thrust displacements and sinistral strike-slip. Regional folds characterize the extreme eastern Nanjieshan perhaps above blind thrust faults which are emergent further west. At the surface, local fault reactivation of basement fabrics is an important control on the kinematics of deformation. Previously published magnetotelluric data for the region suggest that the major faults of the Sanweishan and Nanjieshan ultimately root to the south within conductive zones that merge into the ATF. Therefore, although the southern margin of the Dunhuang Block focuses significant deformation along the ATF, the adjacent cratonic basement to the north is also affected. Collectively, the ATF and structurally linked Sanweishan and Nanjieshan fault array represent a regional asymmetric half-flower structure that is dominated by non-strain partitioned sinistral transpression. The NW-trending Dengdengshan thrust fault array near Yumen City appears to define the northeastern limit of the Sanweishan-Nanjieshan block, which may be viewed regionally as the most northern, but early-stage expression of Tibetan Plateau growth into a reluctantly deforming, mechanically stiff Archean craton.
Geophysical constraints on the Virgin River Depression, Nevada, Utah, and Arizona
Langenheim, V.E.; Glen, J.M.; Jachens, R.C.; Dixon, G.L.; Katzer, T.C.; Morin, R.L.
2000-01-01
Gravity and aeromagnetic data provide insights into the subsurface lithology and structure of the Virgin River Depression (VRD) of Nevada, Utah, and Arizona. The gravity data indicate that the Quaternary and Tertiary sedimentary deposits hide a complex pre-Cenozoic surface. A north-northwest-trending basement ridge separates the Mesquite and Mormon basins, as evidenced by seismic-reflection, gravity, and aeromagnetic data. The Mesquite basin is very deep, reaching depths of 8?10 km. The Mormon basin reaches thicknesses of 5 km. Its northern margin is very steep and may be characterized by right steps, although this interpretation could change with additional gravity stations. Most of the young (Quaternary), small-displacement faults trend within 10? of due north and occur within the deeper parts of the Mesquite basin north of the Virgin River. South of the Virgin River, only a few, young, small-displacement faults are mapped; the trend of these faults is more northeasterly and parallels the basement topography and is distinct from that of the faults to the north. The Virgin River appears to follow the margin of the basin as it emerges from the plateau. The high-resolution aeromagnetic data outline the extent of shallow volcanic rocks in the Mesquite basin. The north-northwest alignment of volcanic rocks east of Toquop Wash appear to be structurally controlled because of faults imaged on seismic-reflection profiles and because the alignment is nearly perpendicular to the direction of Cenozoic extension. More buried volcanics likely exist to the north and east of the high-resolution aeromagnetic survey. Broader aeromagnetic anomalies beneath pre-Cenozoic basement in the Mormon Mountains and Tule Springs Hills reflect either Precambrian basement or Tertiary intrusions. These rocks are probably barriers to groundwater flow, except where fractured.
NASA Astrophysics Data System (ADS)
Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.
2012-12-01
First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows westward towards exposures of granitic basement in the Superstition Mountains. The basin between the Superstition Mountains and Coyote Mountains is ~2 km deep.
Radon mitigation at Birch Cliff Public School.
Moridi, R; Becker, E
1996-01-01
In 1991, Canadian Institute for Radiation Safety (CAIRS) conducted a radon screening program in all Metropolitan Toronto public schools. Birch Cliff Public School had a radon progeny level higher than the action level of 4.16 x 10(-7) Jm-3 (20 mWL). Follow-up radon testing was carried out at the school. Locations on the ground floor and in the basement were tested. All locations on the ground floor had radon progeny levels below the action level. Six locations in the basement had readings above the action level. All cracks and openings in the basement were sealed and a new heating/ventilating (HV) system for the basement was designed and installed. Then, the basement was tested again. Radon progeny levels are now well below the action level with an average of 7.43 x 10(-8) Jm-3 (3.57 mWL). This is about one fifth of the average radon progeny level found in the first stage of follow-up testing.
Extracellular chloride signals collagen IV network assembly during basement membrane formation
Cummings, Christopher F.; Pedchenko, Vadim; Brown, Kyle L.; Colon, Selene; Rafi, Mohamed; Jones-Paris, Celestial; Pokydeshava, Elena; Liu, Min; Pastor-Pareja, Jose C.; Stothers, Cody; Ero-Tolliver, Isi A.; McCall, A. Scott; Vanacore, Roberto; Bhave, Gautam; Santoro, Samuel; Blackwell, Timothy S.; Zent, Roy; Pozzi, Ambra
2016-01-01
Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl− ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl− in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins. Phylogenetic evidence indicates this conformational switch is a fundamental mechanism of collagen IV network assembly throughout Metazoa. Using recombinant triple helical protomers, we prove that NC1 domains direct both protomer and network assembly and show in Drosophila that NC1 architecture is critical for incorporation into basement membranes. These discoveries provide an atomic-level understanding of the dynamic interactions between extracellular Cl− and collagen IV assembly outside cells, a critical step in the assembly and organization of basement membranes that enable tissue architecture and function. Moreover, this provides a mechanistic framework for understanding the molecular pathobiology of NC1 domains. PMID:27216258
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hori, I.
1979-03-01
Fresh-water planarians were studied to examine effects of x rays on regeneration of the epidermis and basement membrane. During early stages of regeneration, free rhabdite-forming cells were associated with the wound epidermis and recruited it. In later stages, however, a gradual degeneration occurred in the epidermis and cells undergoing epithelization decreased in number. Eventually epidermal cells on the wound surface appeared necrotic as evidenced by pyknotic nuclei and vacuolized dense cytoplasm. The entire basement membrane could not be reconstituted in any stage after wounding though its precursor-like material was secreted in the interspace between epidermis and parenchyma. Morphological changes inmore » extracellular products and in the cells surrounding the products suggest that epidermal cells which have covered the wound surface synthesize precursors of the basement membrane. Possible factors of a characteristic perturbation in epithelization and basement membrane formation after total-body irradiation are discussed.« less
27. EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, ...
27. EXCAVATION OF EAST (FRONT) BASEMENT WELL AND DRAINAGE SYSTEM, WITH ARCHED ENTRY INTO BASEMENT UNDER FRONT ENTRY IN BACKGROUND, LOOKING NORTH (NOTE GALLETING IN BRICK FOUNDATION) BUT CLOSER RANGE SHOWING BRICK STRUCTURE WHICH CARRIED WATER FROM THE GUTTER DRAIN PIPE INTO THE BRICK DRAIN ALONG THE GROUND AND AWAY FROM THE FOUNDATION OF THE HOUSE - Belair, Tulip Grove Drive, Belair-at-Bowie, Bowie, Prince George's County, MD
22. VIEW OF THE BASEMENT AND MEZZANINE FLOOR PLANS. ALL ...
22. VIEW OF THE BASEMENT AND MEZZANINE FLOOR PLANS. ALL MECHANICAL AND ELECTRICAL UTILITY EQUIPMENT IS CONTAINED IN THE BASEMENT. THE MEZZANINE CONTAINS OFFICES. THE DRAWING WAS REPRODUCED AT THE BEST QUALITY POSSIBLE. LETTERS AND NUMBERS IN THE CIRCLES INDICATE FOOTER AND/OR COLUMN LOCATIONS. - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO
40 CFR 280.50 - Reporting of suspected releases.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., the sudden loss of product from the UST system, or an unexplained presence of water in the tank... vapors in soils, basements, sewer and utility lines, and nearby surface water). (b) Unusual operating...; or (2) In the case of inventory control, a second month of data does not confirm the initial result. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... Application Package: You can obtain an application package via the Internet or from the Education Publications.... Department of Education, Application Control Center, Attention: CFDA Number 84.275A, LBJ Basement Level 1.... Department of Education. If you mail your application through the U.S. Postal Service, we do not accept...
Effects of periodic atmospheric pressure variation on radon entry into buildings
NASA Astrophysics Data System (ADS)
Tsang, Y. W.; Narasimhan, T. N.
1992-06-01
Using a mathematical model, we have investigated the temporal variations of radon entry into a house basement in the presence of time-dependent periodic variations of barometric pressure as well as a persistent small steady depressurization within the basement. The tool for our investigation is an integral finite difference numerical code which can solve for both diffusive and advective flux of radon in the soil gas which is treated as a slightly compressible fluid. Two different boundary conditions at the house basement are considered: (1) a dirt floor basement so that diffusion is equally or more important than advective transport, and (2) an "impermeable" cement basement except for a 1-cm-wide crack near the perimeter of the basement floor; in which case, advective transport of radon flux dominates. Two frequencies of barometric pressure fluctuation with representative values of amplitudes, based on a Fourier decomposition of barometric pressure data, were chosen in this study: one with a short period of 0.5 hour with pressure amplitude of 50 Pa, the other a diurnal variation with a period of 24 hours with the typical pressure amplitude of 250 Pa. For a homogeneous soil medium with soil permeability to air between 10-13 and 10-10 m2, we predict that the barometric fluctuations increase the radon entry into the basement by up to 120% of the steady radon inflow into the basement owing to a steady depressurization of 5 Pa. If soil permeability heterogeneity is present, such as the presence of a thin layer of higher permeability aggregate immediately below the basement floor, radon flux due to atmospheric pumping is further increased. Effects of pressure pumping on radon entry are also compared to diffusion-only transport when the steady depressurization is absent. It is found that contribution to radon entry is significant for the basement crack configuration. In particular, for pressure pumping at 0.5-hour period and for a homogeneous medium of permeability of 10-10 m2, the radon entry is a factor of 10 larger than that predicted by the diffusion-only transport. This may help to explain indoor radon concentrations during times of low steady state driving force. Extending beyond radon transport, the results of this case study establish the importance of transient advective transport resulting from atmospheric pressure variation. These results may have relevance in the estimations of the transfer of trace gases such as methane and nitrous oxide across the soil-atmosphere interface and their impact on global climate changes.
Fan, Jie; Cai, Bin; Zeng, Min; Hao, Yanyan
2015-01-01
Prior studies have indicated that the β4 integrin promotes mammary tumor invasion and metastasis by combining with ErbB2 and amplifying its signaling capacity. However, the effector pathways and cellular functions by which the β4 integrin exerts these effects are incompletely understood. To examine if β4 signaling plays a role during mammary tumor cell adhesion to microvascular endothelium, we have examined ErbB2-transformed mammary tumor cells expressing either a wild-type (WT) or a signaling-defective form of β4 (1355T). We report that WT cells adhere to brain microvascular endothelium in vitro to a significantly larger extent as compared to 1355T cells. Interestingly, integrin β4 signaling does not exert a direct effect on adhesion to the endothelium or the underlying basement membrane. Rather, it enhances ErbB2-dependent expression of VEGF by tumor cells. VEGF in turn disrupts the tight and adherens junctions of endothelial monolayers, enabling the exposure of underlying basement membrane and increasing the adhesion of tumor cells to the intercellular junctions of endothelium. Inhibition of ErbB2 on tumor cells or the VEGFR-2 on endothelial cells suppresses mammary tumor cell adhesion to microvascular endothelium. Our results indicate that β4 signaling regulates VEGF expression by the mammary tumor cells thereby enhancing their adhesion to microvascular endothelium. PMID:21556948
Carbon fixation in oceanic crust: Does it happen, and is it important?
NASA Astrophysics Data System (ADS)
Orcutt, B.; Sylvan, J. B.; Rogers, D.; Lee, R.; Girguis, P. R.; Carr, S. A.; Jungbluth, S.; Rappe, M. S.
2014-12-01
The carbon sources supporting a deep biosphere in igneous oceanic crust, and furthermore the balance of heterotrophy and autotrophy, are poorly understood. When the large reservoir size of oceanic crust is considered, carbon transformations in this environment have the potential to significantly impact the global carbon cycle. Furthermore, igneous oceanic crust is the most massive potential habitat for life on Earth, so understanding the carbon sources for this potential biosphere are important for understanding life on Earth. Geochemical evidence suggests that warm and anoxic upper basement is net heterotrophic, but the balance of these processes in cooler and potentially oxic oceanic crust are poorly known. Here, we present data from stable carbon isotope tracer incubations to examine carbon fixation in basalts collected from the Loihi Seamount, the Juan de Fuca Ridge, and the western flank of the Mid-Atlantic Ridge, to provide a first order constraint on the rates of carbon fixation on basalts. These data will be compared to recently available assessments of carbon cycling rates in fluids from upper basement to synthesize our current state of understanding of the potential for carbon fixation and respiration in oceanic crust. Moreover, we will present new genomic data of carbon fixation genes observed in the basalt enrichments as well as from the subsurface of the Juan de Fuca Ridge flank, enabling identification of the microbes and metabolic pathways involved in carbon fixation in these systems.
Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria
2017-07-19
The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement structures that could affect groundwater flow between the groundwater basins in the study area, gravity data were collected using more closely spaced measurements in September 2014. Groundwater-level data was gathered and collected from March 2014 through March 2015 to determine depth to water and direction of groundwater flow. The gravity and groundwater-level data showed that the saturated thickness of the alluvium was about 2,000 feet thick to the east and about 130 feet thick above the northward-trending basement ridge near Llano, California. Although it was uncertain whether the basement ridge affects the groundwater system, a potential barrier to groundwater flow could be created if the water table fell below the altitude of the basement ridge, effectively causing the area to the west of the basement ridge to become hydraulically isolated from the area to the east. In addition, the direction of regional-groundwater flow likely will be influenced by future changes in the number and distribution of pumping wells and the thickness of the saturated alluvium from which water is withdrawn. Three-dimensional animations were created to help visualize the relation between the basins’ basement topography and the groundwater system in the area. Further studies that could help to more accurately define the basins and evaluate the groundwater-flow system include exploratory drilling of multi-depth monitoring wells; collection of depth-dependent water-quality samples; and linking together existing, but separate, groundwater-flow models from the Antelope Valley and El Mirage Valley groundwater basins into a single, calibrated groundwater-flow model.
The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece
NASA Astrophysics Data System (ADS)
Taylor, Brian; Weiss, Jonathan R.; Goodliffe, Andrew M.; Sachpazi, Maria; Laigle, Mireille; Hirn, Alfred
2011-06-01
A multichannel seismic and bathymetry survey of the central and eastern Gulf of Corinth (GoC), Greece, reveals the offshore fault geometry, seismic stratigraphy and basin evolution of one of Earths most active continental rift systems. Active, right-stepping, en-echelon, north-dipping border faults trend ESE along the southern Gulf margin, significantly overlapping along strike. The basement offsets of three (Akrata-Derveni, Sithas and Xylocastro) are linked. The faults are biplanar to listric: typically intermediate angle (˜35° in the centre and 45-48° in the east) near the surface but decreasing in dip and/or intersecting a low- or shallow-angle (15-20° in the centre and 19-30° in the east) curvi-planar reflector in the basement. Major S-dipping border faults were active along the northern margin of the central Gulf early in the rift history, and remain active in the western Gulf and in the subsidiary Gulf of Lechaio, but unlike the southern border faults, are without major footwall uplift. Much of the eastern rift has a classic half-graben architecture whereas the central rift has a more symmetric w- or u-shape. The narrower and shallower western Gulf that transects the >40-km-thick crust of the Hellenides is associated with a wider distribution of overlapping high-angle normal faults that were formerly active on the Peloponnesus Peninsula. The easternmost sector includes the subsidiary Gulfs of Lechaio and Alkyonides, with major faults and basement structures trending NE, E-W and NW. The basement faults that control the rift architecture formed early in the rift history, with little evidence (other than the Vrachonisida fault along the northern margin) in the marine data for plan view evolution by subsequent fault linkage. Several have maximum offsets near one end. Crestal collapse graben formed where the hanging wall has pulled off the steeper onto the shallower downdip segment of the Derveni Fault. The dominant strikes of the Corinth rift faults gradually rotate from 090-120° in the basement and early rift to 090-100° in the latest rift, reflecting a ˜10° rotation of the opening direction to the 005° presently measured by GPS. The sediments include a (locally >1.5-km-) thick, early-rift section, and a late-rift section (also locally >1.5-km-thick) that we subdivide into three sequences and correlate with seven 100-ka glacio-eustatic cycles. The Gulf depocentre has deepened through time (currently >700 mbsl) as subsidence has outpaced sedimentation. We measure the minimum total horizontal extension across the central and eastern Gulf as varying along strike between 4 and 10 km, and estimate full values of 6-11 km. The rift evolution is strongly influenced by the inherited basement fabric. The regional NNW structural fabric of the Hellenic nappes changes orientation to ESE in the Parnassos terrane, facilitating the focused north-south extension observed offshore there. The basement-penetrating faults lose seismic reflectivity above the 4-14-km-deep seismogenic zone. Multiple generations and dips of normal faults, some cross-cutting, accommodate extension beneath the GoC, including low-angle (15-20°) interfaces in the basement nappes. The thermally cool forearc setting and cross-orogen structures unaccompanied by magmatism make this rift a poor analogue and unlikely precursor for metamorphic core complex formation.
[Peritubular capillary injury in Chinese herb guan-mu-tong-induced acute tubular necrosis].
Yang, Li; Li, Xiao-mei; Wang, Su-xia; Wang, Hai-yan
2005-07-01
To explore the role and mechanisms of peritubular capillary (PTC) injury in the progression of Chinese Herb guan-mu-tong (GMT, aristolochiae manshuriensis kom) induced acute tubular necrosis (GMT-ATN). Renal biopsy tissue from 4 cases of GMT-ATN and 5 cases of antibiotic induced ATN (A-ATN) were included in the study. Tubulointerstitial injury was semi-quantitatively assessed. Immunohistochemical SP method was applied to reveal PTC as well as the expression of vascular endothelial growth factor (VEGF). Ultra microstructure of endothelial cells and basement membrane of PTC was detected by electronic microscopy (EM). 5 cases of minor mesangioproliferative non-IgA glomerulonephritis were selected as a control group. The density of PTC was decreased significantly in GMT-ATN, as compared with the A-ATN and control group (211.08 +/- 56.15 vs 413.54 +/- 66.59, 536.62 +/- 68.38, P < 0.01). Dilated and deformed PTC lumina were noted in GMT-ATN with some endothelial cells and basement membrane partially disrupted. Most endothelial cells were found to be swollen with vacuoles dispersed in the cell plasma. The basement membrane was partially shrunk and thickened. The expression of VEGF in renal tubular epithelial cells (RTEC) was much less in the GMT-ATN than that in A-ATN group 2.1 (0-3.86)% vs [42.5 (31.33-60.25)%, P < 0.01], even though it was higher than that in the control group [23.1 (18.2-39.5)%, P < 0.01]; the expression was correlated with PTC density. Close correlation was also found between RTEC regeneration and PTC density, as well as VEGF expression (r = 0.880 and 0.802 respectively, P < 0.01). PTC was markedly injured in GMT-ATN; this could be one of the cause for the continuously progressing tubulointerstitial damage. The low expression of VEGF in RTEC might contribute to the PTC injury process.
NASA Astrophysics Data System (ADS)
Sun, Ming; Yin, An; Yan, Danping; Ren, Hongyu; Mu, Hongxu; Zhu, Lutao; Qiu, Liang
2018-06-01
Pre-existing weakness due to repeated tectonic, metamorphic, and magmatic events is a fundamental feature of the continental lithosphere on Earth. Because of this, continental deformation results from a combined effect of boundary conditions imposed by plate tectonic processes and heterogeneous and anisotropic mechanical strength inherited from protracted continental evolution. In this study, we assess how this interaction may have controlled the Cenozoic evolution of the eastern Tibetan plateau during the India-Asia collision. Specifically, we use analogue models to evaluate how the pre-Cenozoic structures may have controlled the location, orientation, and kinematics of the northwest-striking Xianshuihe and northeast-striking Longmen Shan fault zones, the two most dominant Cenozoic structures in eastern Tibet. Our best model indicates that the correct location, trend, and kinematics of the two fault systems can only be generated and maintained if the following conditions are met: (1) the northern part of the Songpan-Ganzi terrane in eastern Tibet has a strong basement whereas its southern part has a weak basement, (2) the northern strong basement consists of two pieces bounded by a crustal-scale weak zone that is expressed by the Triassic development of a northwest-trending antiform exposing middle and lower crustal rocks, and (3) the region was under persistent northeast-southwest compression since ∼35 Ma. Our model makes correct prediction on the sequence of deformation in eastern Tibet; the Longmen Shan right-slip transpressional zone was initiated first as an instantaneous response to the northeast-southwest compression, which is followed by the formation of the Xianshuihe fault about a half way after the exertion of northeast-southwest shortening in the model. The success of our model highlights the importance of pre-existing weakness, a key factor that has been largely neglected in the current geodynamic models of continental deformation.
NASA Astrophysics Data System (ADS)
Collot, J.-Y.; Agudelo, W.; Ribodetti, A.; Marcaillou, B.
2008-12-01
Splay faults within accretionary complexes are commonly associated with the updip limit of the seismogenic zone. Prestack depth migration of a multichannel seismic line across the north Ecuador-south Colombia oceanic margin images a crustal splay fault that correlates with the seaward limit of the rupture zone of the 1958 (Mw 7.7) tsunamogenic subduction earthquake. The splay fault separates 5-6.6 km/s velocity, inner wedge basement rocks, which belong to the accreted Gorgona oceanic terrane, from 4 to 5 km/s velocity outer wedge rocks. The outer wedge is dominated by basal tectonic erosion. Despite a 3-km-thick trench fill, subduction of 2-km-high seamount prevented tectonic accretion and promotes basal tectonic erosion. The low-velocity and poorly reflective subduction channel that underlies the outer wedge is associated with the aseismic, décollement thrust. Subduction channel fluids are expected to migrate upward along splay faults and alter outer wedge rocks. Conversely, duplexes are interpreted to form from and above subducting sediment, at ˜14- to 15-km depths between the overlapping seismogenic part of the splay fault and the underlying aseismic décollement. Coeval basal erosion of the outer wedge and underplating beneath the apex of inner wedge control the margin mass budget, which comes out negative. Intraoceanic basement fossil listric normal faults and a rift zone inverted in a flower structure reflect the evolution of the Gorgona terrane from Cretaceous extension to likely Eocene oblique compression. The splay faults could have resulted from tectonic inversion of listric normal faults, thus showing how inherited structures may promote fluid flow across margin basement and control seismogenesis.
Interferon-gamma inhibits HIV-induced invasiveness of monocytes.
Dhawan, S; Wahl, L M; Heredia, A; Zhang, Y; Epstein, J S; Meltzer, M S; Hewlett, I K
1995-12-01
HIV-infected monocytes form highly invasive network on basement membrane matrix and secrete high levels of 92-kd metalloproteinase (MMP-9), an enzyme that degrades basement membrane proteins. In the present study, using matrigel as a model basement membrane system, we demonstrate that treatment of human immunodeficiency virus (HIV)-infected monocytes with interferon-gamma at 50 U/ml inhibited the ability of infected monocytes to form an invasive network on matrigel and their invasion through the matrigel matrix. These effects were associated with a significant reduction in the levels of MMP-9 produced by HIV-infected monocytes treated with interferon-gamma 1 day prior to infection with HIV as compared with that of untreated HIV-infected monocytes. Monocytes treated with interferon-gamma 1 day after HIV infection showed the presence of integrated HIV sequences; however, the levels of MMP-9 were substantially lower than those produced by monocytes inoculated with live HIV, heat-inactivated HIV, or even the control uninfected monocytes. Exposure of monocytes to heat-inactivated HIV did not result in increased invasiveness or high MMP-9 production, suggesting that regulation of metalloproteinase by monocytes was independent of CD4-gp120 interactions and required active virus infection. Furthermore, addition of interferon-gamma to monocytes on day 10 after infection inhibited MMP-9 production by more than threefold with no significant reduction of virus replication. These results indicate that the mechanism of interferon-gamma-induced down-regulation of MMP-9 levels and reduced monocyte invasiveness may be mediated by a mechanism independent of antiviral activity of IFN-gamma in monocytes. Down-regulation of MMP-9 in HIV-infected monocytes by interferon-gamma may play an important role in the control of HIV pathogenesis.
Could Fluid Seeps Originate from the Seismogenic Zone? Evidence from Southern Costa Rica
NASA Astrophysics Data System (ADS)
Silver, E. A.; Kluesner, J. W.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.; Ranero, C. R.; Tryon, M. D.; Spinelli, G. A.; Rathburn, T.; von Huene, R.
2013-12-01
The prevailing conceptual model of convergent margin hydrogeology is one in which fluid sourced from porosity loss and dehydration reactions seaward of the updip limit of the seismogenic zone reach the seafloor via relatively low angle splay faults that act as high permeability conduits through an otherwise nearly impermeable upper plate [e.g., Lauer and Saffer, GRL, 39:L13604, 2012; Saffer and Tobin, Ann. Rev. Earth Planet. Sci., 39:157-186, 2011]. Interpretation of newly acquired 3D seismic reflection data and high resolvability multibeam and backscatter data, showing evidence for abundant potential fluid seeps sourced beneath the sediment cover and farther landward than previously thought possible, may require reevaluation of this concept. Kluesner et al. [2013, G3, doi:10.1002/ggge.20058], identified 160 potential fluid seeps in an 11 km wide swath off southern Costa Rica, based on pockmarks and high backscatter mounds, each showing subsurface indicators of fluid migration in the seismic data. Approximately half of these potential seeps are on the outer continental shelf; these are landward of the updip limit of the seismogenic zone, as estimated by both the transition from high to low reflectivity of the plate boundary and the intersection of the 150°C isotherm with the plate boundary [Ranero et al., 2008, G3, doi:10.1029/2007GC001679; Bangs et al., 2012, AGU Fall Meeting, T13A-2587; Bangs et al., this meeting]. We have mapped high probability fluid pathways beneath these potential seeps, based on seismic meta-attribute volumes calculated using user-trained neural network algorithms [Kluesner et al., this meeting]. The mapped fluid pathways are high-angle through the sedimentary section, and they root into basement highs and basement faults. Fluids could originate along the plate interface, where potential sources and pathways are known (Mid-slope sites: Hensen et al., 2004, Geology, 32:201-204), or above or below the interface, although sources from these regions have not been reported. They could travel near vertical paths through the crustal rocks, or along a landward-dipping path, because the seismic data show landward dips but not seaward dips. If the fluids do come from the plate interface, they originate in the seismogenic zone. This inference can be tested by geochemical study of the outer shelf fluid seeps, where such sampling has not yet occurred.
Basement structures over Rio Grande Rise from gravity inversion
NASA Astrophysics Data System (ADS)
Constantino, Renata; Hackspacker, Peter Christian; Anderson de Souza, Iata; Sousa Lima Costa, Iago
2017-04-01
In this study, we show that from satellite-derived gravity field, bathymetry and sediment thicknesses, it is possible to give a 3-D model of the basement over oceanic areas, and for this purpose, we have chosen the Rio Grande Rise, in South Atlantic Ocean, to build a gravity-equivalent basement topography. The advantages of the method applied in this study are manifold: does not depend directly on reflection seismic data; can be applied quickly and with fewer costs for acquiring and interpreting the data; and as the main result, presents the physical surface below the sedimentary layer, which may be different from the acoustic basement. We evaluated the gravity effect of the sediments using the global sediment thickness model of NOAA, fitting a sediment compaction model to observed density values from Deep Sea Drilling Program (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the gravity inversion procedure. The modeled Moho depth values vary between 6 to 27 km over the area, being thicker under the Rio Grande Rise and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied for a gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. A description of the basement depth over Rio Grande Rise area is unprecedented in the literature, however, our results could be compared to in situ data, provided by DSDP, and a small difference of only 9 m between our basement depth and leg 516 F was found. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. We find several short-wavelengths structures not present in the bathymetry data. Seamounts, guyots and fracture zones are much more clearly defined in the basement than in the bathymetric model. An interesting NS structure that goes from 34S and extends through de São Paulo Ridge is interpreted in the basement model, and we propose that this feature can be related to the South Atlantic opening, revealing an extinct spreading center.
NASA Astrophysics Data System (ADS)
Shi, W.; Mitchell, N. C.; Kalnins, L. M.; A Y, I.
2017-12-01
The Red Sea is considered an important example of a rifted continental shield proceeding to a seafloor spreading stage of development, and the transition of crustal types there from stretched continental to oceanic should mark the onset of significant mantle melting. However, whether the crust in the central Red Sea is continental or oceanic has been controversial. To contribute to this debate, we assessed the geometry of the basement from potential fields and seismic reflection data. Prior interpretations of basement in deep seismic reflection profiles were first verified using Werner deconvolution of marine magnetic data. The seismic depths were then used to reconstruct basement depth corrected for evaporite and other sediment loading. We found that the basement deepening with distance is similar to that of oceanic crust near mantle plumes such as the Reykjanes Ridge. In both cases, the data show a 35-80 km wide axial plateau followed by a steep 0.4-1.7 km deepening over 30-50 km distance. It has also been suggested that the variability of free-air anomalies observed in lines parallel to the axis is due to crossing oceanic short-offset fracture zones. We assessed this idea by inverting the gravity anomalies for basement relief. Using densities appropriate for oceanic crust and a modified slab formula, we found values for root-mean square (RMS) relief that are comparable to those of weakly sedimented regions of the Mid-Atlantic Ridge. Forward calculations using 2D modelling revealed that the errors in RMS basement relief caused by the slab approximation are 30%, leaving true RMS basement relief still within the range of values for oceanic crust. While these observations by themselves do not rule out an extremely extended continental crust interpretation, combined with previous analysis of refraction velocities, which are oceanic-like, they are supportive of an oceanic crustal interpretation. Additionally, the RMS values and the cross-axis basement relief both suggest a change in basement rugosity from near the coast to around the axial trough, perhaps supporting a transition in crustal type from stretched continental to predominantly oceanic, or supporting that the low RMS value areas near the coast are covered by widespread lava flows.
Li, Tingting; Hu, Jianyan; Du, Shanshan; Chen, Yongdong; Wang, Shuai
2014-01-01
Purpose Retinal vascular dysfunction caused by vascular endothelial growth factor (VEGF) is the major pathological change that occurs in diabetic retinopathy (DR). It has recently been demonstrated that G protein-coupled receptor 91 (GPR91) plays a major role in both vasculature development and retinal angiogenesis. In this study, we examined the signaling pathways involved in GPR91-dependent VEGF release during the early stages of retinal vascular change in streptozotocin-induced diabetes. Methods Diabetic rats were assigned randomly to receive intravitreal injections of shRNA lentiviral particles targeting GPR91 (LV.shGPR91) or control particles (LV.shScrambled). Accumulation of succinate was assessed by gas chromatography-mass spectrometry (GC-MS). At 14 weeks, the ultrastructure and function of the retinal vessels of diabetic retinas with or without shRNA treatment were assessed using hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and Evans blue dye permeability. The expression of GPR91, extracellular signal-regulated kinases 1 and 2 (ERK1/2) and cyclooxygenase-2 (COX-2) were measured using immunofluorescence and western blotting. COX-2 and VEGF mRNA were determined by quantitative RT–PCR. Prostaglandin E2 (PGE2) and VEGF secretion were detected using an enzyme-linked immunosorbent assay. Results Succinate exhibited abundant accumulation in diabetic rat retinas. The retinal telangiectatic vessels, basement membrane thickness, and Evans blue dye permeability were attenuated by treatment with GPR91 shRNA. In diabetic rats, knockdown of GPR91 inhibited the activities of ERK1/2 and COX-2 as well as the expression of PGE2 and VEGF. Meanwhile, COX-2, PGE2, and VEGF expression was inhibited by ERK1/2 inhibitor U0126 and COX-2 inhibitor NS-398. Conclusions Our data suggest that hyperglycemia causes succinate accumulation and GPR91 activity in retinal ganglion cells, which mediate VEGF-induced retinal vascular change via the ERK1/2/COX-2/PGE2 pathway. This study highlights the signaling pathway as a potential target for intervention in DR. PMID:25324681
Structural analysis of a fractured basement reservoir, central Yemen
NASA Astrophysics Data System (ADS)
Veeningen, Resi; Rice, Hugh; Schneider, Dave; Grasemann, Bernhard; Decker, Kurt
2013-04-01
The Pan-African Arabian-Nubian Shield (ANS), within which Yemen lies, formed as a result of Neoproterozoic collisional events between c. 870-550 Ma. Several subsequent phases of extension occurred, from the Mesozoic (due to the breakup of Gondwana) to the Recent (forming the Gulf of Aden and the Red Sea). These resulted in the formation of numerous horst- and-graben structures and the development of fractured basement reservoirs in the southeast part of the ANS. Two drill cores from the Mesozoic Marib-Shabwa Basin, central Yemen, penetrated the upper part of the Pan-African basement. The cores show both a lithological and structural inhomogeneity, with variations in extension-related deformation structures such as dilatational breccias, open fractures and closed veins. At least three deformation events have been recognized: D1) Ductile to brittle NW-SE directed faulting during cooling of a granitic pluton. U-Pb zircon ages revealed an upper age limit for granite emplacement at 627±3.5 Ma. As these structures show evidence for ductile deformation, this event must have occurred during the Ediacaran, shortly after intrusion, since Rb/Sr and (U-Th)/He analyses show that subsequent re-heating of the basement did not take place. D2) The development of shallow dipping, NNE-SSW striking extensional faults that formed during the Upper Jurassic, simultaneously with the formation of the Marib-Shabwa Basin. These fractures are regularly cross-cut by D3. D3) Steeply dipping NNE-SSW to ENE-WSW veins that are consistent with the orientation of the opening of the Gulf of Aden. These faults are the youngest structures recognized. The formation of ductile to brittle faults in the granite (D1) resulted in a hydrothermally altered zone ca. 30 cm wide replacing (mainly) plagioclase with predominantly chlorite, as well as kaolinite and heavy element minerals such as pyrite. The alteration- induced porosity has an average value of 20%, indicating that the altered zone is potentially a good fluid-flow pathway and also a suitable reservoir for hydrocarbons. The youngest faults (D3) are often filled with calcite, (saddle) dolomite and pyrite that formed at temperatures between 100 and 150° C. Fluid inclusions within calcite have abundant hydrocarbon-rich components indicating that these veins formed synchronously with hydrocarbon migration. The same minerals were deposited within the ductile to brittle faults within the granite (formed during D1). This resulted in significant porosity reduction, especially in the faults themselves, reducing the fluid flow efficiency within the altered granite, locking up hydrocarbons and reducing the reservoir quality.
Campbell, Kristin Turza; Burns, Nadja K; Ensor, Joe; Butler, Charles E
2012-04-01
Human acellular dermal matrix is used for ventral hernia repair, as it resists infection and remodels by means of surrounding tissue. However, the tissue source and impact of basement membrane on cell and vessel infiltration have not been determined. The authors hypothesized that musculofascia would be the primary tissue source of cells and vessels infiltrating into human acellular dermal matrix and that the basement membrane would inhibit infiltration. Fifty-six guinea pigs underwent inlay human acellular dermal matrix ventral hernia repair with the basement membrane oriented toward or away from the peritoneum. At postoperative weeks 1, 2, or 4, repair sites were completely excised. Histologic and immunohistochemical analyses were performed to quantify cell and vessel density within repair-site zones, including interface (lateral, beneath musculofascia) and center (beneath subcutaneous fat) zones. Cell and vessel quantities were compared as functions of zone, basement membrane orientation, and time. Cellular and vascular infiltration increased over time universally. The interface demonstrated greater mean cell density than the center (weeks 1 and 2, p = 0.01 and p < 0.0001, respectively). Cell density was greater with the basement membrane oriented toward the peritoneum at week 4 (p = 0.02). The interface zone had greater mean vessel density than the center zone at week 4 (p < 0.0001). Orienting the basement membrane toward the peritoneum increased vessel density at week 4 (p = 0.0004). Cellular and vascular infiltration into human acellular dermal matrix for ventral hernia repairs was greater from musculofascia than from subcutaneous fat, and the basement membrane inhibited cellular and vascular infiltration. Human acellular dermal matrix should be placed adjacent to the best vascularizing tissue to improve fibrovascular incorporation.
NASA Astrophysics Data System (ADS)
Ruh, Jonas B.; Gerya, Taras
2015-04-01
The Simply Folded Belt of the Zagros orogen is characterized by elongated fold trains symptomatically defining the geomorphology along this mountain range. The Zagros orogen results from the collision of the Arabian and the Eurasian plates. The Simply Folded Belt is located southwest of the Zagros suture zone. An up to 2 km thick salt horizon below the sedimentary sequence enables mechanical and structural detachment from the underlying Arabian basement. Nevertheless, deformation within the basement influences the structural evolution of the Simply Folded Belt. It has been shown that thrusts in form of reactivated normal faults can trigger out-of-sequence deformation within the sedimentary stratigraphy. Furthermore, deeply rooted strike-slip faults, such as the Kazerun faults between the Fars zone in the southeast and the Dezful embayment and the Izeh zone, are largely dispersing into the overlying stratigraphy, strongly influencing the tectonic evolution and mechanical behaviour. The aim of this study is to reveal the influence of basement thrusts and strike-slip faults on the structural evolution of the Simply Folded Belt depending on the occurrence of intercrustal weak horizons (Hormuz salt) and the rheology and thermal structure of the basement. Therefore, we present high-resolution 3D thermo-mechnical models with pre-existing, inversively reactivated normal faults or strike-slip faults within the basement. Numerical models are based on finite difference, marker-in-cell technique with (power-law) visco-plastic rheology accounting for brittle deformation. Preliminary results show that deep tectonic structures present in the basement may have crucial effects on the morphology and evolution of a fold-and-thrust belt above a major detachment horizon.
Schittny, J C; Timpl, R; Engel, J
1988-10-01
Thin and ultrathin cryosections of mouse cornea were labeled with affinity-purified antibodies directed against either laminin, its central segments (domain 1), the end of its long arm (domain 3), the end of one of its short arms (domain 4), nidogen, or low density heparan sulfate proteoglycan. All basement membrane proteins are detected by indirect immunofluorescence exclusively in the epithelial basement membrane, in Descemet's membrane, and in small amorphous plaques located in the stroma. Immunoelectron microscopy using the protein A-gold technique demonstrated laminin domain 1 and nidogen in a narrow segment of the lamina densa at the junction to the lamina lucida within the epithelial basement membrane. Domain 3 shows three preferred locations at both the cellular and stromal boundaries of the epithelial basement membrane and in its center. Domain 4 is located predominantly in the lamina lucida and the adjacent half of the lamina densa. The low density heparan sulfate proteoglycan is found all across the basement membrane showing a similar uniform distribution as with antibodies against the whole laminin molecule. In Descemet's membrane an even distribution was found with all these antibodies. It is concluded that within the epithelial basement membrane the center of the laminin molecule is located near the lamina densa/lamina lucida junction and that its long arm favors three major orientations. One is close to the cell surface indicating binding to a cell receptor, while the other two are directed to internal matrix structures. The apparent codistribution of laminin domain 1 and nidogen agrees with biochemical evidence that nidogen binds to this domain.
Townsend, G.N.; Gibson, R.L.; Horton, J. Wright; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.
2009-01-01
The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.
Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies
Sims, P.K.; O'Neill, J. M.; Bankey, Viki; Anderson, E.
2004-01-01
Newly compiled aeromagnetic anomaly data of Montana, in conjunction with the known geologic framework of basement rocks, have been combined to produce a new interpretive geologic basement map of Montana. Crystalline basement rocks compose the basement, but are exposed only in the cores of mountain ranges in southwestern Montana. Principal features deduced from the map are: (1) A prominent northeast-trending, 200-km-wide zone of spaced negative anomalies, which extends more than 700 km from southwestern Montana's Beaverhead Mountains to the Canadian border and reflects suturing of the Archean Mexican Hat Block against the Archean Wyoming Province along the Paleoproterozoic Trans-Montana Orogen (new name) at about 1.9-1.8 Ga; (2) North-northwest-trending magnetic lows in northeastern Montana, which reflect the 1.9-1.8 Ga Trans-Hudson Orogen and truncate the older Trans-Montana Zone; and (3) Subtle northwest- and west-trending negative anomalies in central and western Montana, which represent the northernmost segment of brittle-ductile transcurrent faults of the newly recognized Mesoproterozoic Trans-Rocky Mountain fault system. Structures developed in the Proterozoic provided zones of crustal weakness reactivated during younger Proterozoic and Phanerozoic igneous and tectonic activity. For example, the Trans-Montana Zone guided basement involved thrust faulting in southwestern Montana during the Sevier Orogeny. The Boulder Batholith and associated ore deposits and the linear belt of alkaline intrusions to the northeast were localized along a zone of weakness between the Missouri River suture and the Dillon shear zone of the Trans-Montana Orogen. The northwest-trending faults of Trans-Rocky Mountain system outline depocenters for sedimentary rocks in the Belt Basin. This fault system provided zones of weakness that guided Laramide uplifts during basement crustal shortening. Northwest-trending zones have been locally reactivated during Neogene basin-range extension.
43. Dressing rooms and corridor in basement on west side ...
43. Dressing rooms and corridor in basement on west side of building, looking south. (July 1991) A nearly identical corridor with dressing rooms ran along the east side of the basement, and the two corridors were connected by a short hallway at the north end. The theatre seats seen in hallway in this photo are from Seattle's Orpheum Theatre which was demolished in 1967. - Fox Theater, Seventh Avenue & Olive Way, Seattle, King County, WA
NASA Astrophysics Data System (ADS)
Sambuelli, Luigi; Bohm, Gualtiero; Capizzi, Patrizia; Cardarelli, Ettore; Cosentino, Pietro; D'Onofrio, Laurent; Marchisio, Mario
2010-05-01
By the late 2008 one of the most important pieces of the "Museo delle Antichità Egizie" in Turin, the sculpture of the Pharaoh with god Amun, was planned to be one of the masterpieces of a travelling exhibition in Japan. The "Fondazione Museo delle Antichità Egizie di Torino", managing the museum, was concerned with the integrity of the basement of the statue which actually presents visible signs of restorations dating back to the early IXX century. The questions put by the museum managers were to estimate the internal extension of some visible fractures, to search for unknown internal ones and to provide information about the overall mechanical strength of the basement. In order to tackle the first and second questions a GPR reflection survey of the basement along three sides was performed and the results were assembled in a 3D rendering. As far as the third question is concerned, two parallel, horizontal ultrasonic 2D tomographies across the basement were made with a source-receiver layout able to acquire, for each section, 723 ultrasonic signals correspondent to different transmitter and receiver positions. The ultrasonic tomographic data were inverted using different software based upon different algorithms. The obtained velocity images were then compared with the GPR results and with the visible joints on the basement. A critical analysis of the comparisons is finally presented.
Zone, J J; Taylor, T B; Kadunce, D P; Meyer, L J
1990-01-01
Linear IgA bullous dermatosis (LABD) is a rare blistering skin disease characterized by basement membrane zone deposition of IgA. This study identifies a tissue antigen detected by patient serum and then isolates the autoantibody using epidermis and protein bands blotted on nitrocellulose as immunoabsorbents. Sera from 10 patients (9 with cutaneous disease and 1 with cicatrizing conjunctivitis) were evaluated. Indirect immunofluorescence revealed an IgA anti-basement membrane antibody in 6 of 10 sera with monkey esophagus substrate and 9 of 10 sera with human epidermal substrate. Immunoblotting was performed on epidermal and dermal extracts prepared from skin separated at the basement membrane zone with either sodium chloride or EDTA. Saline-separated skin expressed a 97-kD band in dermal extract alone that was recognized by 4 of 10 sera. EDTA-separated skin expressed the 97-kD band in both epidermal (4 of 10 sera) and dermal (6 of 10 sera) extract. Immunoabsorption of positive sera with epidermis purified an IgA antibody that reacted uniquely with the 97-kD band. In addition, IgA antibody bound to nitrocellulose was eluted from the 97-kD band and found to uniquely bind basement membrane zone. It is likely that the 97-kD protein identified by these techniques is responsible for basement membrane binding of IgA in LABD. Images PMID:2107211
Distribution of type IV collagen in pancreatic adenocarcinoma and chronic pancreatitis.
Lee, C. S.; Montebello, J.; Georgiou, T.; Rode, J.
1994-01-01
Changes in the basement membrane are present in various neoplastic conditions such as neurofibrosarcoma, cervical carcinoma, colorectal cancers and hepatoblastoma. This study examines the expression of type IV collagen in the basement membrane, using an immunohistochemical method, in the normal pancreas (n = 10), chronic pancreatitis (n = 15) and pancreatic adenocarcinoma (n = 30). The formalin fixed, paraffin embedded tissue was sectioned and pretreated with protease prior to immunostaining for type IV collagen. There was a statistically significant difference in type IV collagen expression between pancreatic carcinoma and chronic pancreatitis (P = 0.0001; chi 2 test with continuity correction). In pancreatic adenocarcinoma, type IV collagen distribution in the basement membrane was discontinuous and irregular or absent around individual or groups of neoplastic cells (n = 30). Most cases of chronic pancreatitis showed continuous pattern of basement membrane type IV collagen around residual ducts (n = 10). In the normal pancreas, only one of the ten cases showed discontinuous basement membrane around pancreatic ducts, while in the rest of the cases, the pattern was continuous. This study suggests that there is abnormal distribution of type IV collagen in the basement membrane in pancreatic carcinoma, which may be related to either abnormal deposition or degradation of the collagen. Immunostaining for type IV collagen may be of some diagnostic use for distinguishing pancreatic adenocarcinoma from problematic cases of chronic pancreatitis. Images Figure 1 Figure 2 Figure 3 PMID:8199008
NASA Astrophysics Data System (ADS)
Siegesmund, S.; Oriolo, S.; Heinrichs, T.; Basei, M. A. S.; Nolte, N.; Hüttenrauch, F.; Schulz, B.
2018-03-01
New U-Pb and Lu-Hf detrital zircon data together with whole-rock geochemical and Sm-Nd data were obtained for paragneisses of the Austroalpine basement south of the Tauern Window. Geochemically immature metasediments of the Northern-Defereggen-Petzeck (Ötztal-Bundschuh nappe system) and Defereggen (Drauzug-Gurktal nappe system) groups contain zircon age populations which indicate derivation mainly from Pan-African orogens. Younger, generally mature metasediments of the Gailtal Metamorphic Basement (Drauzug-Gurktal nappe system), Thurntaler Phyllite Group (Drauzug-Gurktal nappe system) and Val Visdende Formation (South Alpine Basement) were possibly derived from more distant sources. Their significantly larger abundances of pre-Pan-African zircons record a more advanced stage of downwearing of the Pan-African belts and erosion of older basement when the Austroalpine terrane was part of the Early Palaeozoic Northern Gondwana passive margin. Most zircon age spectra are dominated by Ediacaran sources, with lesser Cryogenian, Tonian and Stenian contributions and subordinate Paleoproterozoic and Neoarchean ages. These age patterns are similar to those recorded by Cambro-Ordovician sedimentary sequences in northeastern Africa between Libya and Jordan, and in some pre-Variscan basement inliers of Europe (e.g. Dinarides-Hellenides, Alboran microplate). Therefore, the most likely sources seem to be in the northeastern Saharan Metacraton and the Northern Arabian-Nubian Shield (Sinai), further supported by whole-rock Sm-Nd and zircon Lu-Hf data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki
Highlights: •Three-dimensional culture generates “semi-vivo” sebaceous glands. •Xenograft model failed to mimic the biology of sebaceous glands in vivo. •Proinflammatory cytokine PGE{sub 2} enhances Wnt signal activity in the organoids. •PGE{sub 2} influences on the mitochondrial and lipid metabolism in the organoids. •Considering 3R agenda, “semi-vivo” sebaceous glands are useful for research. -- Abstract: Background: Prostaglandin E{sub 2} (PGE{sub 2}) is a proinflammatory mediator and activates the canonical Wnt–β-catenin signaling pathway in hematopoietic stem cells. The SZ95 cell line was established from human sebaceous gland cells and is studied as a model system for these cells. Given that 2D culturemore » of SZ95 cells does not recapitulate the organization of sebaceous glands in situ, we developed a 3D culture system for these cells and examined the effects of PGE{sub 2} on cell morphology and function. Results: SZ95 cells maintained in 3D culture formed organoids that mimicked the organization of sebaceous glands in situ, including the establishment of a basement membrane. Organoids exposed to PGE{sub 2} were larger and adopted a more complex organization compared with control organoids. PGE{sub 2} activated the canonical Wnt signaling pathway as well as increased cell viability and proliferation, mitochondrial metabolism, and lipid synthesis in the organoids. Conclusions: Culture of SZ95 cells in 3D culture system recapitulates the structure and susceptibility to PGE{sub 2} of sebaceous glands in situ and should prove useful for studies of the response of these glands to inflammation and other environmental stressors. Our results also implicate PGE{sub 2}-induced activation of canonical Wnt signaling pathway in regulation of the morphology,proliferation, and function of “semi-vivo” sebaceous glands.« less
NASA Astrophysics Data System (ADS)
Sysoev, N. I.; Turuk, Yu V.; Kolesnichenko, I. Y.; Lugantsev, B. B.
2017-10-01
The reasons for the failure of the pitch stability of the knife-plane installation due to the action of extreme effort in the plane of the seam from the conveyor side on the mechanism of removing sections of mechanized sets are shown. The technique for determining this effort is presented. The constructions of the adaptive mechanisms of the removing sections of mechanized sets with the basements of catamaran type, in the constrictions of which elastic elements (rods) are used, are considered. The constructions of the mechanism of removing a section of the mechanized set with the basement of catamaran type in which the stock of the hydraulic jack is connected with the band loop through the movable rods intermediate basement with a link are worked out. The intermediate basement unloads the stock of the hydraulic jack of the moving installation from the side curving efforts, caused by the action of lateral forces in the plane of the seam on the conveyor side. It increases the reliability and efficiency of work of the knife plane mechanized complex.
Kasei Vallis of Mars: Dating the Interplay of Tectonics and Geomorphology
NASA Technical Reports Server (NTRS)
Wise, D. U.
1985-01-01
Crater density age dates on more than 250 small geomorphic surfaces in the Kasei Region of Mars show clusterings indicative of times of peak geomorphic and tectonic activity. Kasei Vallis is part of a 300 km wide channel system breaching a N-S trending ancient basement high (+50,000 crater age) separating the Chryse Basin from the Tharsis Volcanic Province of Mars. The basement high was covered by a least 3 groups of probable volcanic deposits. Major regional fracturing took place at age 4,000 to 5,000 and was immediately followed by deposition of regional volcanics of the Fesenkov Plains (age 3,000 to 4,200). Younger clusterings of dates in the 900 to 1,500 and 500 to 700 range represent only minor modification of the basic tectonic geomorphic landform. The data suggest that Kasei gap is a structurally controlled breach of a buried ridge by a rather brief episode of fluvial activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Basements in climates 6 & 7 can account for a fraction of a home's total heat loss when fully conditioned. These foundations are a source of moisture, with convection in open block cavities redistributing water from the wall base, usually when heating. Even when block cavities are capped, the cold foundation concrete can act as a moisture source for wood rim joist components that are in contact with the wall. As below-grade basements are increasingly retrofitted for habitable space, cold foundation walls pose increased challenges for moisture durability, energy use, and occupant comfort. To address this challenge, the NorthernSTAR Buildingmore » America Partnership evaluated a retrofit insulation strategy for foundations that is designed for use with open-core concrete block foundation walls. The three main goals were to improve moisture control, improve occupant comfort, and reduce heat loss.« less
NASA Astrophysics Data System (ADS)
Kauahikaua, J.
A controlled source, time domain electromagnetic (TDEM) sounding survey was conducted in the Calico Hills area of the Nevada Test Site (NTS). The geoelectric structure was determined as an aid in the evaluation of the site for possible future storage of spent nuclear fuel or high level nuclear waste. The data were initially interpreted with a simple scheme that produces an apparent resistivity versus depth curve from the vertical magnetic field data. These curves are qualitatively interpreted much like standard Schlumberger resistivity sounding curves. Final interpretation made use of a layered earth Marquardt inversion computer program. The results combined with those from a set of Schlumberger soundings in the area show that there is a moderately resistive basement at a depth no greater than 800 meters. The basement resistivity is greater than 100 ohm meters.
Reticular basement membrane in asthma and COPD: Similar thickness, yet different composition
Liesker, Jeroen JW; Hacken, Nick H Ten; Zeinstra-Smith, Mieke; Rutgers, Steven R; Postma, Dirkje S; Timens, Wim
2009-01-01
Background Reticular basement membrane (RBM) thickening has been variably associated with asthma and chronic obstructive pulmonary disease (COPD). Even if RBM thickness is similar in both diseases, its composition might still differ. Objective To assess whether RBM thickness and composition differ between asthma and COPD. Methods We investigated 24 allergic asthmatics (forced expiratory volume in one second [FEV1] 92% predicted), and 17 nonallergic COPD patients (FEV1 60% predicted), and for each group a control group of similar age and smoking habits (12 and 10 persons, respectively). Snap-frozen sections of bronchial biopsies were stained with hematoxylin/eosin and for collagen I, III, IV, V, laminin and tenascin. RBM thickening was assessed by digital image analysis. Relative staining intensity of each matrix component was determined. Results Mean (SD) RBM thickness was not significantly different between asthma and COPD 5.5 (1.3) vs 6.0 (1.8) μm, but significantly larger than in their healthy counterparts, ie, 4.7 (0.9) and 4.8 (1.2) μm, respectively. Collagen I and laminin stained significantly stronger in asthma than in COPD. Tenascin stained stronger in asthma than in healthy controls of similar age, and stronger in COPD controls than in asthma controls (p < 0.05). Conclusion RBM thickening occurs both in asthma and COPD. We provide supportive evidence that its composition differs in asthma and COPD. PMID:19436691
Identification of ageing-associated naturally occurring peptides in human urine
Nkuipou-Kenfack, Esther; Bhat, Akshay; Klein, Julie; Jankowski, Vera; Mullen, William; Vlahou, Antonia; Dakna, Mohammed; Koeck, Thomas; Schanstra, Joost P.; Zürbig, Petra; Rudolph, Karl L.; Schumacher, Björn; Pich, Andreas; Mischak, Harald
2015-01-01
To assess normal and pathological peptidomic changes that may lead to an improved understanding of molecular mechanisms underlying ageing, urinary peptidomes of 1227 healthy and 10333 diseased individuals between 20 and 86 years of age were investigated. The diseases thereby comprised diabetes mellitus, renal and cardiovascular diseases. Using age as a continuous variable, 116 peptides were identified that significantly (p < 0.05; |ρ|≥0.2) correlated with age in the healthy cohort. The same approach was applied to the diseased cohort. Upon comparison of the peptide patterns of the two cohorts 112 common age-correlated peptides were identified. These 112 peptides predominantly originated from collagen, uromodulin and fibrinogen. While most fibrillar and basement membrane collagen fragments showed a decreased age-related excretion, uromodulin, beta-2-microglobulin and fibrinogen fragments showed an increase. Peptide-based in silico protease analysis was performed and 32 proteases, including matrix metalloproteinases and cathepsins, were predicted to be involved in ageing. Identified peptides, predicted proteases and patient information were combined in a systems biology pathway analysis to identify molecular pathways associated with normal and/or pathological ageing. While perturbations in collagen homeostasis, trafficking of toll-like receptors and endosomal pathways were commonly identified, degradation of insulin-like growth factor-binding proteins was uniquely identified in pathological ageing. PMID:26431327
Arterial Pulsations cannot Drive Intramural Periarterial Drainage: Significance for Aβ Drainage
Diem, Alexandra K.; MacGregor Sharp, Matthew; Gatherer, Maureen; Bressloff, Neil W.; Carare, Roxana O.; Richardson, Giles
2017-01-01
Alzheimer's Disease (AD) is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (Aβ) in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and Aβ are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD) pathway. With advancing age and arteriosclerosis, the stiffness of arterial walls, this pathway fails in its function and Aβ accumulates in the walls of arteries. In this study we tested the hypothesis that arterial pulsations drive IPAD and that a valve mechanism ensures the net drainage in a direction opposite to that of the blood flow. This hypothesis was tested using a mathematical model of the drainage mechanism. We demonstrate firstly that arterial pulsations are not strong enough to produce drainage velocities comparable to experimental observations. Secondly, we demonstrate that a valve mechanism such as directional permeability of the IPAD pathway is necessary to achieve a net reverse flow. The mathematical simulation results are confirmed by assessing the pattern of IPAD in mice using pulse modulators, showing no significant alteration of IPAD. Our results indicate that forces other than the cardiac pulsations are responsible for efficient IPAD. PMID:28883786
Gut endoderm takes flight from the wings of mesoderm.
McDonald, Angela C H; Rossant, Janet
2014-12-01
The endoderm layer destined to be primitive gut is a mosaic of earlier visceral endoderm and definitive endoderm that arises later, during gastrulation. Live imaging now reveals that in mouse embryos, definitive endoderm cells egress from underlying mesoderm and intercalate into the overlying cell layer. This process requires SOX17-mediated control of basement membrane organization.
1980-11-01
by the Wabash River faults in southeast Illinois and suggests control by basement faults (Hadley and Devine 1974). A smaller cluster of epicenters...E.2). Anthropogenic input to Lake Erie of mercury, lead, zinc, and cadmium exceeds that derived from natural weathering and atmospheric deposition
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... Application Package: You can obtain an application package via the Internet or from the Education Publications... of Education, Application Control Center, Attention: (CFDA Number 84.246K), LBJ Basement Level 1, 400... Education. If you mail your application through the U.S. Postal Service, we do not accept either of the...
4. BASEMENT WALL BENEATH SOUTH PASSAGE SHOWING STEAM TUNNEL OPENING ...
4. BASEMENT WALL BENEATH SOUTH PASSAGE SHOWING STEAM TUNNEL OPENING IN SOUTH WALL. - Pennsylvania Railroad Station, South Baggage Passage & Canopy, 1101 Liberty Avenue, Pittsburgh, Allegheny County, PA
Measure Guideline: Basement Insulation Basics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldrich, R.; Mantha, P.; Puttagunta, S.
2012-10-01
This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.
7. Details of northeast elevation, demonstrating the relationship of basement ...
7. Details of northeast elevation, demonstrating the relationship of basement windows to column bases. - Roanoke Veterans Administration Hospital, Building No. 6, 1970 Roanoke Boulevard, Salem, Salem, VA
Interior detail of basement door, woodenlouvered transom and glass doorknob, ...
Interior detail of basement door, wooden-louvered transom and glass doorknob, facing southeast. - Gorgas Hospital, Administration & Clinics Building, Culebra Road, Balboa Heights, Former Panama Canal Zone, CZ
Finn, Carol A.; Anderson, Eric D.
2015-01-01
Aeromagnetic and radiometric data were used to map shallow Precambrian basement lithology and structure and determine the depth to magnetic basement, which in most cases, corresponds to the depth to crystalline basement of interest for mineral exploration. These depths, along with those determined from gravity data, help identify basins with hydrologic potential. In addition, the magnetic data were used to identify buried Precambrian rocks of unknown affinity.
Wong, Florence L.; Grim, Muriel S.
2015-01-01
Contours and derivative raster files of depth-to-basement, sediment-thickness, and bathymetry data for the area offshore of Washington, Oregon, and California are provided here as GIS-ready shapefiles and GeoTIFF files. The data were used to generate paper maps in 1992 and 1993 from 1984 surveys of the U.S. Exclusive Economic Zone by the U.S. Geological Survey for depth to basement and sediment thickness, and from older data for the bathymetry.
Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy.
Savige, Judy; Gregory, Martin; Gross, Oliver; Kashtan, Clifford; Ding, Jie; Flinter, Frances
2013-02-01
Few prospective, randomized controlled clinical trials address the diagnosis and management of patients with Alport syndrome or thin basement membrane nephropathy. Adult and pediatric nephrologists and geneticists from four continents whose clinical practice focuses on these conditions have developed the following guidelines. The 18 recommendations are based on Level D (Expert opinion without explicit critical appraisal, or based on physiology, bench research, or first principles-National Health Service category) or Level III (Opinions of respected authorities, based on clinical experience, descriptive studies, or reports of expert committees-U.S. Preventive Services Task Force) evidence. The recommendations include the use of genetic testing as the gold standard for the diagnosis of Alport syndrome and the demonstration of its mode of inheritance; the need to identify and follow all affected members of a family with X-linked Alport syndrome, including most mothers of affected males; the treatment of males with X-linked Alport syndrome and individuals with autosomal recessive disease with renin-angiotensin system blockade, possibly even before the onset of proteinuria; discouraging the affected mothers of males with X-linked Alport syndrome from renal donation because of their own risk of kidney failure; and consideration of genetic testing to exclude X-linked Alport syndrome in some individuals with thin basement membrane nephropathy. The authors recognize that as evidence emerges, including data from patient registries, these guidelines will evolve further.
NASA Astrophysics Data System (ADS)
Fendek, Marián; Grand, Tomáš; Daniel, Slavomír; Blanárová, Veronika; Kultan, Vincent; Bielik, Miroslav
2017-08-01
The geology and hydrogeology of the Liptovská Kotlina Depression were studied by means of new geophysical methods. Controlled source audio-frequency magnetotellurics enabled us to delineate the relief of the pre-Cainozoic basement in the western part of the Liptovská Kotlina Depression into two segments with different lithostratigraphic units. Our complex findings disprove the interconnection between the Bešeňová and Lúčky water bearing structures located in the study area. The results were interpreted in the form of a resistivity cross section and resistivity model. The geological interpretation of the obtained results, taking into account the other geophysical and geological constrains showed that the pre-Cainozoic basement has a tectonically disrupted, broken relief. The Bešeňová and Lúčky structures appear to be isolated by the Palaeogene sediments (sandstone, claystone) and in the deeper part also by marly carbonates and marlstones of the Jurassic age belonging to the Fatricum. It was confirmed that the structural connectivity of geothermal aquifers in the area between the Bešeňová and Lúčky-Kaľameny should not exist. The assumption of different circulation depth was also confirmed by geothermometry and existing radiocarbon analyses applied on groundwater in both areas.
NASA Astrophysics Data System (ADS)
Sulaiman, Aseem; Elawadi, Eslam; Mogren, Saad
2018-06-01
This study provides interpretation and modeling of gravity survey data to map the subsurface basement relief and controlling structures of a coastal area in the southwestern part of Saudi Arabia as an aid to groundwater potential assessment. The gravity survey data were filtered and analyzed using different edge detection and depth estimation techniques and concluded by 2-D modeling conducted along representative profiles to obtain the topography and depth variations of the basement surface in the area. The basement rocks are exposed in the eastern part of the area but dip westward beneath a sedimentary cover to depths of up to 2200 m in the west, while showing repeated topographic expressions related to a tilted fault-block structure that is dominant in the Red Sea rift zone. Two fault systems were recognized in the area. The first is a normal fault system trending in the NNW-SSE direction that is related to the Red Sea rift, and the second is a cross-cutting oblique fault system trending in the NE-SW direction. The interaction between these two fault systems resulted in the formation of a set of closed basins elongated in the NNW-SSE direction and terminated by the NE-SW fault system. The geomorphology and sedimentary sequences of these basins qualify them as potential regions of groundwater accumulation.
Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.
2016-03-02
We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.
Radiolytic hydrogen production in basaltic basement of the South Pacific Gyre
NASA Astrophysics Data System (ADS)
Dzaugis, M. E.; Spivack, A. J.; Dunlea, A. G.; Murray, R. W.; Kelley, K. A.; D'Hondt, S. L.
2013-12-01
Water radiolysis is the decomposition of water molecules due to interactions with ionizing radiation from the natural decay of radioactive elements, such as uranium (238U, 235U), thorium (232Th) and potassium (40K). This abiotic process produces electron donors (e.g., H2) and acceptors (e.g., O2) that microorganisms can metabolize for energy. Although water radiolysis has been examined in deep continental crust (Lin et al., 2005) and marine sediment (Blair et al., 2007), it has not been rigorously addressed in oceanic basement. The submarine depth to which life extends on Earth, and the potential for life in basaltic aquifers of other worlds (such as Mars and Europa), may depend on radiolytic production of electron donors and acceptors. In order to quantify the extent to which water radiolysis occurs in the subseafloor basaltic basement, we (i) quantified radioactive element concentrations of basement samples from Integrated Ocean Drilling Program (IODP) Expedition 329 and (ii) developed a quantitative model of H2 production by water radiolysis in the basement aquifer. Modeling radiolytic production of H2 in oceanic basement is difficult because the basement is a heterogeneous environment. Microscale changes in physical properties and chemical composition cause microscale variation in water radiolysis within the basement. During radioactive decay, alpha particles, beta particles and gamma rays are emitted, each with a spectrum of characteristic energies. The distance over which radiation is attenuated depends on the kind of radiation (alpha, beta or gamma), initial energy, and the absorbing material. These properties and the concentration of radioactive elements provide the basis for our preliminary model. We are using inductively coupled plasma emission spectroscopy (ICP-ES), mass spectrometry (ICP-MS) and laser ablation (LA ICP-MS) to map variation in radioelement concentrations from phase to phase (e.g., across successive alteration halos to unaltered rock). The last step in our model combines (i) the rate at which radiation energy is transferred to the water with (ii) published H2 yields per rate of energy transfer.
Chai, Annie Wai Yeeng; Cheung, Arthur Kwok Leung; Dai, Wei; Ko, Josephine Mun Yee; Ip, Joseph Chok Yan; Chan, Kwok Wah; Kwong, Dora Lai-Wan; Ng, Wai Tong; Lee, Anne Wing Mui; Ngan, Roger Kai Cheong; Yau, Chun Chung; Tung, Stewart Yuk; Lee, Victor Ho Fun; Lam, Alfred King-Yin; Pillai, Suja; Law, Simon; Lung, Maria Li
2016-11-29
Nidogen-2 (NID2) is a key component of the basement membrane that stabilizes the extracellular matrix (ECM) network. The aim of the study is to analyze the functional roles of NID2 in the pathogenesis of nasopharyngeal carcinoma (NPC) and esophageal squamous cell carcinoma (ESCC). We performed genome-wide methylation profiling of NPC and ESCC and validated our findings using the methylation-sensitive high-resolution melting (MS-HRM) assay. Results showed that promoter methylation of NID2 was significantly higher in NPC and ESCC samples than in their adjacent non-cancer counterparts. Consistently, down-regulation of NID2 was observed in the clinical samples and cell lines of both NPC and ESCC. Re-expression of NID2 suppresses clonogenic survival and migration abilities of transduced NPC and ESCC cells. We showed that NID2 significantly inhibits liver metastasis. Mechanistic studies of signaling pathways also confirm that NID2 suppresses the EGFR/Akt and integrin/FAK/PLCγ metastasis-related pathways. This study provides novel insights into the crucial tumor metastasis suppression roles of NID2 in cancers.
Chai, Annie Wai Yeeng; Cheung, Arthur Kwok Leung; Dai, Wei; Ko, Josephine Mun Yee; Ip, Joseph Chok Yan; Chan, Kwok Wah; Kwong, Dora Lai-Wan; Ng, Wai Tong; Lee, Anne Wing Mui; Ngan, Roger Kai Cheong; Yau, Chun Chung; Tung, Stewart Yuk; Lee, Victor Ho Fun; Lam, Alfred King-Yin; Pillai, Suja; Law, Simon; Lung, Maria Li
2016-01-01
Nidogen-2 (NID2) is a key component of the basement membrane that stabilizes the extracellular matrix (ECM) network. The aim of the study is to analyze the functional roles of NID2 in the pathogenesis of nasopharyngeal carcinoma (NPC) and esophageal squamous cell carcinoma (ESCC). We performed genome-wide methylation profiling of NPC and ESCC and validated our findings using the methylation-sensitive high-resolution melting (MS-HRM) assay. Results showed that promoter methylation of NID2 was significantly higher in NPC and ESCC samples than in their adjacent non-cancer counterparts. Consistently, down-regulation of NID2 was observed in the clinical samples and cell lines of both NPC and ESCC. Re-expression of NID2 suppresses clonogenic survival and migration abilities of transduced NPC and ESCC cells. We showed that NID2 significantly inhibits liver metastasis. Mechanistic studies of signaling pathways also confirm that NID2 suppresses the EGFR/Akt and integrin/FAK/PLCγ metastasis-related pathways. This study provides novel insights into the crucial tumor metastasis suppression roles of NID2 in cancers. PMID:27793011
Basement structure based on gravity anomaly in the northern Noto peninsula, Central Japan
NASA Astrophysics Data System (ADS)
Mizubayashi, T.; Sawada, A.; Hamada, M.; Hiramatsu, Y.; Honda, R.
2012-12-01
Upper crustal block structures are usually defined by using surface information, such as geological and morphological data. The northern Noto Peninsula, central Japan, is divided into four geological block structures from tectonic geomorphologic perspectives (Ota and Hirakawa, 1979). This division is based on the surface crustal movement. To image the geological blocks three-dimensionally, it is necessary to construct a subsurface structure model. Gravity survey can clarify the detailed subsurface structure with dense gravity measurement. From the detailed Bouguer anomalies in the northwestern Noto Peninsula, Honda et al. (2008) suggested that the rupture size of the 2007 Noto Hanto earthquake was constrained by the geological block structures. Hiramatsu et al. (2008) also suggested the active faults on the seafloor, such as the source fault of the 2007 Noto Hanto earthquake plays a major role for the formation of the geological block structures. In this study, we analyze subsurface density structure based on the Bouguer anomaly and estimate the distribution of basement depth in the northern Noto Peninsula. We focus the relationship among the basement depth, the block structures and the active faults on the seafloor and discuss the block movement in the northern Noto Peninsula. We compiled the data measured and published previously (Gravity Database of Southwest Japan, 2001; Geological survey of Japan, 2004; Geographical survey institute of Japan, 2006; The Gravity Research Group in Southwest Japan, 2001; Komazawa and Okuma, 2010; Hokuriku electric power Co. Ltd., undisclosed) and calculated Bouguer anomaly in the northern Noto Peninsula. Based on this Bouguer anomaly, we analyzed subsurface density structures along 13 northeastern-southwestern profiles and 35 northwestern-southeastern profiles with the interval of 2 km using the two dimensional Talwani's method (Talwani et al., 1959). In the analysis, we assumed a density structure with four layers: basement (density is 2670kg/m3), Neocene volcanic rock (density is 2400kg/m3, or 2550kg/m3), Neocene sedimentary rock (density is 2200kg/m3), and Quaternary sedimentary rock (density is 1800kg/m3, or 1500kg/m3) (Honda et al., 2008). To compare our basement model to the geological block structures, we focus on a transition zone of the basement depth. We recognize that two of three geological block boundaries correspond to the transition zones. These boundaries also correspond to the boundary of active fault segments on the seafloor. Therefore, based on the relationship between the source fault of the 2007 Noto Hanto earthquake and the geological block, we suggest that the movement of those geological blocks is possibly controlled by the corresponding active fault segments. However, we find that the other block boundary doesn't correspond to the transition zone.
Volcanism, mantle exhumation and spreading at the axial zone of a fossil slow spreading ocean
NASA Astrophysics Data System (ADS)
Chalot-Prat, F.; Coco, E.
2003-04-01
Within an axial zone of a slow spreading ocean, the mechanisms checking together volcano emplacement, mantle exhumation and ocean enlargement are poorly known. In order to better assess how they could be linked , a detailed mapping of a fossil ocean-floor structure, preserved from alpine tectonic and metamorphism, was performed in the Chenaillet unit (Franco-Italian Alps)(Chalot-Prat &Coco, submit.). The detailed 3D geometry of the ophiolite evidences that from its dimensions, topography, morphology, and the architecture of the volcanic cover at different scales, the Chenaillet unit is a witness of an axial zone of Atlantic type. The basement (serpentinized peridotites and gabbros), below and in the prolongation of the volcanic cover (le50 m), is capped by a tectonic breccias horizon (Chalot-Prat and Manatschal, 2002), underlining detachment faults responsible for its exhumation at the seafloor. Clasts of dolerite, found within the fault zone, indicate that basement exhumation had to be active during and even after volcano emplacement. Stair- and comb-type volcanic systems check the distribution of individual volcanoes; the higher the edifice, the younger it is relative to the others. In the stair-type (up to 600 m of height difference between base and top), each step is formed with a pillow and tube tongue stacking fed from fissural conduits located at the root of each step. This system formed by uplift, step by step fracturation of an already exhumed basement, and magma injection along the fissures once formed. The comb-type (up to 200 m of height difference between base and top) consists in well-defined alignments of pillow and tube conic edifices. Their central feeder dykes are emplaced on the crossing of two types of fractures, oblique (tooth) and parallel (line) to the main branch of the comb. Along a same line, eruptions are coeval as proved by rhythmic variations of major and trace element contents of basalts from one line to another. The comb formation needed initial basement fracturation, then uplift and exhumation of a new basement along the fracture which also controlled magma injection and is materialised by the main branch of the comb. Once formed, volcanoes were then dragged away and down on the travelator to give place to new volcanoes and so on. The building of comb systems was synchronous with an enlargement of the basement surface, the top of which was underlined by a detachment fault at the scale of the system. The pseudo-symmetry of most comb structures evidences that the exhumation process occurred synchronously, but not at the same rate, in opposite directions, as observed at any mid-oceanic ridge axis .
NASA Astrophysics Data System (ADS)
Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel
2016-04-01
The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized spreading center. The interest of that definition is that it does not restrain the term oceanic crust to a basement composition and consequently does not exclude the creation of magma-poor oceanic crust, as observed at slow spreading ridges for example. Indeed, the initiation of steady state oceanic spreading is not necessarily magmatic (e.g. some segments of the Australian-Antarctic margins). In this case, drifting is accommodated by mantle exhumation. However, in this magma-poor transition, and without clear markers of a gradual increase of magmatism, it thus appears difficult to clearly differentiate an exhumed OCT basement and an exhumed oceanic basement. Some theoretical differences can be nevertheless considered: exhumed OCT basement should display a chemical evolution toward the ocean from a subcontinental to an oceanic signature. Moreover, extensional detachment faults are probably long-lived due to the poor influence of the asthenosphere at this stage. On the contrary, exhumed oceanic basement should only display an oceanic signature. In this case, extensional detachment faults are certainly short-lived, due to the strong influence of the asthenosphere, which tends to quickly re-localize the deformation above the spreading center.
NASA Astrophysics Data System (ADS)
Yogodzinski, G. M.; Hocking, B.; Bizimis, M.; Hickey-Vargas, R.; Ishizuka, O.; Bogus, K.; Arculus, R. J.
2015-12-01
Drilling at IODP Site U1438, located immediately west of Kyushu-Palau Ridge (KPR), the site of IBM subduction initiation, penetrated 1460 m of volcaniclastic sedimentary rock and 150 m of underlying basement. Biostratigraphic controls indicate a probable age for the oldest sedimentary rocks at around 55 Ma (51-64 Ma - Arculus et al., Nat Geosci in-press). This is close to the 48-52 Ma time period of IBM subduction initiation, based on studies in the forearc. There, the first products of volcanism are tholeiitic basalts termed FAB (forearc basalt), which are more depleted than average MORB and show subtle indicators of subduction geochemical enrichment (Reagan et al., 2010 - Geochem Geophy Geosy). Shipboard data indicate that Site U1438 basement basalts share many characteristics with FABs, including primitive major elements (high MgO/FeO*) and strongly depleted incompatible element patterns (Ti, Zr, Ti/V and Zr/Y below those of average MORB). Initial results thus indicate that FAB geochemistry may have been produced not only in the forearc, but also in backarc locations (west of the KPR) at the time of subduction initiation. Hf-Nd isotopes for Site 1438 basement basalts show a significant range of compositions from ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 (present-day values). The data define a well-correlated and steep array in Hf-Nd isotope space. Relatively radiogenic Hf compared to Nd indicates an Indian Ocean-type MORB source, but the dominant signature, with ɛHf >16.5, is more radiogenic than most Indian MORB. The pattern through time is from more-to-less radiogenic and more variable Hf-Nd isotopes within the basement section. This pattern culminates in basaltic andesite sills, which intrude the lower parts of the sedimentary section. The sills have the least radiogenic compositions measured so far (ɛNd ~6.6, ɛHf ~13.8), and are similar to those of boninites of the IBM forearc and modern IBM arc and reararc rocks. The pattern within the basement suggests modest enrichment of a depleted Indian MORB source over time.
NASA Astrophysics Data System (ADS)
Sridhar, M.; Ramesh Babu, V.; Markandeyulu, A.; Raju, B. V. S. N.; Chaturvedi, A. K.; Roy, M. K.
2017-08-01
We constrained the geological framework over polydeformed Paleoproterozoic Sonakhan Greenstone Belt and addressed the tectonic evolution of Singhora basin in the fringes of Bastar Craton, central India by utilizing aeromagnetic data interpretation, 2.5D forward modelling and 3D magnetic susceptibility inversions. The Sonakhan Greenstone Belt exposes volcano-sedimentary sequences of the Sonakhan Group within NNW-SSE to NW-SE trending linear belts surrounded by granite gneisses, which are unconformably overlain by sedimentary rocks of Chhattisgarh Basin. The orientations of aeromagnetic anomalies are coincident with geological trends and appear to correlate with lithology and geologic structure. Regional magnetic anomalies and lineaments reveal both NNW-SSE and NE-SW trends. Prominent E-W trending linear, high amplitude magnetic anomalies are interpreted as the Trans-Chhattisgarh Aeromagnetic Lineament (TCAL). NW-SE trending aeromagnetic signatures related to Sonakhan Greenstone Belt extends below the Singhora sedimentary rocks and forms the basement in the west. The analysis suggests that TCAL is a block fault with northern block down-thrown and affected the basement rocks comprising the Sonakhan Greenstone Belt and Samblapur Granitoids. The episode of faulting represented by the TCAL is pre-Singhora sedimentation and played a vital role in basin evolution. The basement configuration image generated by estimates of depth to magnetic basement suggests a complex pattern of NNE-SSW to NE-SW trending depressions separated by a linear N-S trending basement ridge. It is inferred from the 3D magnetic susceptibility inversion that the thickness of sediments is more towards the eastern basin margin and the N-S ridge is a manifestation of post sedimentary faulting. Results of 2.5D modelling of a WNW-ESE profile across the Singhora Basin combined with results from 3D inversion suggest suggests the basin subsidence was controlled by NE-SW trending regional faults in an active system. The basin geometry evolved by E-W block faulting overprinted by NE-SW trending pre- to syn-depositional normal faults generating NE-SW depression, which are affected by N-S trend post-sedimentary faulting. Though the present work relates the basin evolution with the initiation of rift basin, it warrants further work to establish the deformation within the basin pertaining to the proximal thrust and uplift along the craton fringe.
Heterogeneous structure of the incoming plate in the Japan Trench
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Fujie, G.; Yamaguchi, A.; Kodaira, S.; Miura, S.
2017-12-01
We have conducted seismic surveys in around the Japan Trench subduction zone, northeastern Japan, to investigate the structural features of the incoming Pacific plate and the frontal prism. Thickness of the hemiplegic sediments on the deposited on the incoming Pacific plate shows the variation along trench axis between 200 and 600 ms two-way travel time (TWT). This is remarkably thinner than other subduction zones with megathrust earthquakes like Sumatra subduction zone. Off Miyagi, central part of the Japan Trench which is the main ruptured region of 2011 Tohoku earthquake, has 200 - 300 ms TWT of the incoming sediments thickness. Off Iwate, northern part of the Japan Trench, has thicker incoming sediments 500 ms TWT, and Off Fukushima, southern part of the Japan Trench, has 300 - 400 ms TWT. We found at least three areas with anomalously thin sediments; Area I: 38N 145N, Area II: 39.5N 144.5E, Area III: 39N 144.5N. At the Area I, located on the outer rise off Miyagi, the receiver function analysis using Ocean Bottom Seismograph data revealed the existence of PS conversion surfaces below the interpreted basement on the seismic sections. This implies that the interface between sediments and the igneous basement is located below the interpreted basement reflections. Previous studies suggested the existence of the petit spots in this Area I. Area II shows apparently very thin sediments near the trench axis on seismic profiles, where the petit spot volcanism was observed. Shallow sediment sampling conducted in this area indicates no major surface erosion. These observations suggest that the petit spot volcanism, like sill intrusion, masked the original deeper basement reflections and caused the apparent thin sediments on seismic profiles. Area III also has thin sediments and rough basement topography, which has possibly been caused by another petit spot activity. Petit spot area with apparent very thin sediments in the trench axis (Area II) is located next to the northern edge of the large slip zone of the 2011 Tohoku earthquake. The volcanic activities like petit spots on the incoming plate introduce heterogeneous input into the subduction zone, which could be important factors to control the megathrust seismo- and tsunamigenesis in the subduction zone.
Structurally controlled 'teleconnection' of large-scale mass wasting (Eastern Alps)
NASA Astrophysics Data System (ADS)
Ostermann, Marc; Sanders, Diethard
2015-04-01
In the Brenner Pass area (Eastern Alps) , closely ahead of the most northward outlier ('nose') of the Southern-Alpine continental indenter, abundant deep-seated gravitational slope deformations and a cluster of five post-glacial rockslides are present. The indenter of roughly triangular shape formed during Neogene collision of the Southern-Alpine basement with the Eastern-Alpine nappe stack. Compression by the indenter activated a N-S striking, roughly W-E extensional fault northward of the nose of the indenter (Brenner-normal fault; BNF), and lengthened the Eastern-Alpine edifice along a set of major strike-slip faults. These fault zones display high seismicity, and are the preferred locus of catastrophic rapid slope failures (rockslides, rock avalanches) and deep-seated gravitational slope deformations. The seismotectonic stress field, earthquake activity, and structural data all indicate that the South-Alpine indenter still - or again - exerts compression; in consequence, the northward adjacent Eastern Alps are subject mainly to extension and strike-slip. For the rockslides in the Brenner Pass area, and for the deep-seated gravitational slope deformations, the fault zones combined with high seismic activity predispose massive slope failures. Structural data and earthquakes mainly record ~W-E extension within an Eastern Alpine basement block (Oetztal-Stubai basement complex) in the hangingwall of the BNF. In the Northern Calcareous Alps NW of the Oetztal-Stubai basement complex, dextral faults provide defacement scars for large rockfalls and rockslides. Towards the West, these dextral faults merge into a NNW-SSE striking sinistral fault zone that, in turn, displays high seismic activity and is the locus of another rockslide cluster (Fern Pass cluster; Prager et al., 2008). By its kinematics dictated by the South-Alpine indenter, the relatively rigid Oetztal-Stubai basement block relays faulting and associated mass-wasting over a N-S distance of more than 60 kilometers - from the Brenner Pass area located along the crestline of the Alps to mount Zugspitze near the northern fringe of the Northern Calcareous Alps. Major fault zones and intercalated rigid blocks thus can 'teleconnect' zones of preferred mass-wasting over large lateral distances in orogens. Reference: Prager, C., Zangerl, C., Patzelt, G., Brandner, R., 2008. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazards and Earth System Science 8, 377-407.
Fukuda, Ryosuke; Morino-Koga, Saori; Suico, Mary Ann; Koyama, Kosuke; Sato, Takashi; Shuto, Tsuyoshi; Kai, Hirofumi
2012-01-01
Alport syndrome is a hereditary glomerulopathy with proteinuria and nephritis caused by defects in genes encoding type IV collagen in the glomerular basement membrane. All male and most female patients develop end-stage renal disease. Effective treatment to stop or decelerate the progression of proteinuria and nephritis is still under investigation. Here we showed that combination treatment of mild electrical stress (MES) and heat stress (HS) ameliorated progressive proteinuria and renal injury in mouse model of Alport syndrome. The expressions of kidney injury marker neutrophil gelatinase-associated lipocalin and pro-inflammatory cytokines interleukin-6, tumor necrosis factor-α and interleukin-1β were suppressed by MES+HS treatment. The anti-proteinuric effect of MES+HS treatment is mediated by podocytic activation of phosphatidylinositol 3-OH kinase (PI3K)-Akt and heat shock protein 72 (Hsp72)-dependent pathways in vitro and in vivo. The anti-inflammatory effect of MES+HS was mediated by glomerular activation of c-jun NH2-terminal kinase 1/2 (JNK1/2) and p38-dependent pathways ex vivo. Collectively, our studies show that combination treatment of MES and HS confers anti-proteinuric and anti-inflammatory effects on Alport mice likely through the activation of multiple signaling pathways including PI3K-Akt, Hsp72, JNK1/2, and p38 pathways, providing a novel candidate therapeutic strategy to decelerate the progression of patho-phenotypes in Alport syndrome. PMID:22937108
12. COLD CALIBRATION BLOCKHOUSE BASEMENT VIEW FROM LEFT TO RIGHT, ...
12. COLD CALIBRATION BLOCKHOUSE BASEMENT VIEW FROM LEFT TO RIGHT, CABLE TRAYS, RACKS, CABLE CONNECTION TERMINALS. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
58. Corridor, building 500 to building 515, basement level, looking ...
58. Corridor, building 500 to building 515, basement level, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Basement, bathroom, looking south U.S. Veterans Hospital, Jefferson Barracks, ...
Basement, bathroom, looking south - U.S. Veterans Hospital, Jefferson Barracks, Medical Officer in Charge Residence, VA Medical Center, Jefferson Barracks Division 1 Jefferson Barracks Drive, Saint Louis, Independent City, MO
STAIRWAY FROM THE PROMENADE TO THE BASEMENT SHOWING SHELTER SIGNAGE. ...
STAIRWAY FROM THE PROMENADE TO THE BASEMENT SHOWING SHELTER SIGNAGE. VIEW FACING WEST - U.S. Naval Base, Pearl Harbor, Theater, Hornet Avenue between Enterprise & Pokomoke Streets, Pearl City, Honolulu County, HI
7. BLOCK HOUSE BASEMENT LOOKING THROUGH DOOR INTO CABLE TUNNEL ...
7. BLOCK HOUSE BASEMENT LOOKING THROUGH DOOR INTO CABLE TUNNEL RUNNING BETWEEN BLOCK HOUSE AND STATIC TEST TOWER. - Marshall Space Flight Center, East Test Area, Block House, Huntsville, Madison County, AL
Halogens are key cofactors in building of collagen IV scaffolds outside the cell.
Brown, Kyle L; Hudson, Billy G; Voziyan, Paul A
2018-05-01
The purpose of this review is to highlight recent advances in understanding the molecular assembly of basement membranes, as exemplified by the glomerular basement membrane (GBM) of the kidney filtration apparatus. In particular, an essential role of halogens in the basement membrane formation has been discovered. Extracellular chloride triggers a molecular switch within non collagenous domains of collagen IV that induces protomer oligomerization and scaffold assembly outside the cell. Moreover, bromide is an essential cofactor in enzymatic cross-linking that reinforces the stability of scaffolds. Halogenation and halogen-induced oxidation of the collagen IV scaffold in disease states damage scaffold function. Halogens play an essential role in the formation of collagen IV scaffolds of basement membranes. Pathogenic damage of these scaffolds by halogenation and halogen-induced oxidation is a potential target for therapeutic interventions.
Lauridsen, Holly M; Gonzalez, Anjelica L
2017-01-01
The vascular basement membrane-a thin, elastic layer of extracellular matrix separating and encasing vascular cells-provides biological and mechanical cues to endothelial cells, pericytes, and migrating leukocytes. In contrast, experimental scaffolds typically used to replicate basement membranes are stiff and bio-inert. Here, we present thin, porated polyethylene glycol hydrogels to replicate human vascular basement membranes. Like commercial transwells, our hydrogels are approximately 10μm thick, but like basement membranes, the hydrogels presented here are elastic (E: 50-80kPa) and contain a dense network of small pores. Moreover, the inclusion of bioactive domains introduces receptor-mediated biochemical signaling. We compare elastic hydrogels to common culture substrates (E: >2GPa) for human endothelial cell and pericyte monolayers and bilayers to replicate postcapillary venules in vitro. Our data demonstrate that substrate elasticity facilitates differences in vascular phenotype, supporting expression of vascular markers that are increasingly replicative of venules. Endothelial cells differentially express vascular markers, like EphB4, and leukocyte adhesion molecules, such as ICAM-1, with decreased mechanical stiffness. With porated PEG hydrogels we demonstrate the ability to evaluate and observe leukocyte recruitment across endothelial cell and pericyte monolayers and bilayers, reporting that basement membrane scaffolds can significantly alter the rate of vascular migration in experimental systems. Overall, this study demonstrates the creation and utility of a new and accessible method to recapture the mechanical and biological complexity of human basement membranes in vitro.
Barros, Nirmalla G.; Steck, Daniel J.; Field, R. William
2014-01-01
The primary objective of this study was to investigate the temporal variability between basement winter short-term (7 to 10 days) and basement annual radon measurements. Other objectives were to test the short-term measurement’s diagnostic performance at two reference levels and to evaluate its ability to predict annual average basement radon concentrations. Electret ion chamber (short-term) and alpha track (annual) radon measurements were obtained by trained personnel in Iowa residences. Overall, the geometric mean of the short-term radon concentrations (199 Bq m−3) was slightly greater than the geometric mean of the annual radon concentrations (181 Bq m−3). Short-term tests incorrectly predicted that the basement annual radon concentrations would be below 148 Bq m−3 12% of the time and 2% of the time at 74 Bq m−3. The short-term and annual radon concentrations were strongly correlated (r=0.87, p<0.0001). The foundation wall material of the basement was the only significant factor to have an impact on the absolute difference between the short-term and annual measurements. The findings from this study provide evidence of a substantially lower likelihood of obtaining a false negative result from a single short-term test in a region with high indoor radon potential when the reference level is lowered to 74 Bq m−3. PMID:24670901
NASA Astrophysics Data System (ADS)
Mousavi, Naeim; Ebbing, Jörg
2017-04-01
In this study, we investigate the magnetic basement and crustal structure in the region of Iran by inverse and forward modeling of aeromagnetic data and gravity data. The main focus is on the definition of the magnetic top basement. The combination of multiple shallow magnetic sources and an assumed shallow Curie isotherm depth beneath the Iranian Plateau creates a complex magnetic architecture over the area. Qualitative analysis, including pseudo gravity, wavelength filtering and upward continuation allowed a first separation of probable deep and shallow features, like the Sanandaj Sirjan zone, Urumieh Dokhtar Magmatic Assemblage, Kopet Dagh structural unit and Central Iran domain. In the second step, we apply inverse modeling to generate an estimate of the top basement geometry. The initial model was established from top basement to (a) constant depth of 25 km and (b) Moho depth. The inversion result was used as starting model for more detailed modelling in 3D to evaluate the effect of susceptibility heterogeneities in the crust. Subsequently, the model was modified with respect to tectonic and geological characterization of the region. Further modification of model in regards more details of susceptibility distribution was led to separating upper crust to different magnetic domains. In addition, we refined the top basement geometry by using terrestrial gravity observation as well. The best fitting model is consistent with the Curie isotherm depth as the base of magnetization. The Curie isotherm was derived from independent geophysical-petrological model.
Crustal insights from gravity and aeromagnetic analysis: Central North Slope, Alaska
Saltus, R.W.; Potter, C.J.; Phillips, J.D.
2006-01-01
Aeromagnetic and gravity data are processed and interpreted to reveal deep and shallow information about the crustal structure of the central North Slope, Alaska. Regional aeromagnetic anomalies primarily reflect deep crustal features. Regional gravity anomalies are more complex and require detailed analysis. We constrain our geophysical models with seismic data and interpretations along two transects including the Trans-Alaska Crustal Transect. Combined geophysical analysis reveals a remarkable heterogeneity of the pre-Mississippian basement. In the central North Slope, pre-Mississippian basement consists of two distinct geophysical domains. To the southwest, the basement is dense and highly magnetic; this basement is likely mafic and mechanically strong, possibly acting as a buttress to basement involvement in Brooks Range thrusting. To the northeast, the central North Slope basement consists of lower density, moderately magnetic rocks with several discrete regions (intrusions?) of more magnetic rocks. A conjugate set of geophysical trends, northwest-southeast and southwest-northeast, may be a factor in the crustal response to tectonic compression in this domain. High-resolution gravity and aeromagnetic data, where available, reflect details of shallow fault and fold structure. The maps and profile models in this report should provide useful guidelines and complementary information for regional structural studies, particularly in combination with detailed seismic reflection interpretations. Future challenges include collection of high-resolution gravity and aeromagnetic data for the entire North Slope as well as additional deep crustal information from seismic, drilling, and other complementary methods. Copyrights ?? 2006. The American Association of Petroleum Geologists. All rights reserved.
NASA Astrophysics Data System (ADS)
Samai, Saddek; Idres, Mouloud; Ouyed, Merzouk; Bourmatte, Amar; Boughacha, Mohamed Salah; Bezzeghoud, Mourad; Borges, José Fernando
2017-09-01
In this study, we processed and interpreted gravity and aeromagnetic data of the epicentral area of the Boumerdes earthquake (May 21, 2003). The joint interpretation of both data allowed the development of a structural scheme that shows the basement undulations offshore and onshore. The shape of the eastern part of the Mitidja Basin is better defined; its northern edge is represented by a large ;sub-circular; uplifted basement located offshore. The rise of this basement indicates that this basin does not extend towards the sea. At the eastern part of the study area, aeromagnetic data have revealed that the Sid-Ali-Bounab basement is individualized in a ;sub-circular; shape, while the Dellys basement, located in the NE part, is elongated in the NE-SW direction and extends offshore. The aeromagnetic data also highlighted two EW basement uplifts which divide Isser depression into three parts. The northern part of this depression extends offshore. The southernmost uplift is an extension of the Thenia Fault (TF), suggesting the continuity of this fault to the east. It is important to note that the active Reghaia Fault (RF), which runs through the Boudouaou and Reghaia urban centers, is bounded by two faults suggesting that its length does not exceed 12 km. Moreover, alluvial terraces observed west of the active Zemmouri Fault (ZF) are in agreement with the reverse component of this fault.
de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D.; Vidotti, Roberta M.; Bezerra, Francisco H. R.; Dantas, Elton L.
2014-01-01
The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.
3D visualization of deformation structures and potential fluid pathways at the Grimsel Test Site
NASA Astrophysics Data System (ADS)
Schneeberger, Raphael; Kober, Florian; Berger, Alfons; Spillmann, Thomas; Herwegh, Marco
2015-04-01
Knowledge on the ability of fluids to infiltrate subsurface rocks is of major importance for underground constructions, geothermal or radioactive waste disposal projects. In this study, we focus on the characterization of water infiltration pathways, their 3D geometries and origins. Based on surface and subsurface mapping in combination with drill core data, we developed by the use of MoveTM (Midland Valley Exploration Ltd.) a 3D structural model of the Grimsel Test Site (GTS). GTS is an underground laboratory operated by NAGRA, the Swiss organisation responsible for the management of nuclear waste. It is located within a suite of post-Variscan magmatic bodies comprising former granitic and granodioritic melts, which are dissected by mafic and aplitic dikes. During Alpine orogeny, the suite was tectonically overprinted within two stages of ductile deformation (Wehrens et al., in prep.) followed by brittle overprint of some of the shear zones during the retrograde exhumation history. It is this brittle deformation, which controls today's water infiltration network. However, the associated fractures, cataclasites and fault gouges are controlled themselves by aforementioned pre-existing mechanical discontinuities, whose origin ranges back as far as to the magmatic stage. For example, two sets of vertically oriented mafic dikes (E-W and NW-SE striking) and compositional heterogeneities induced by magmatic segregation processes in the plutonic host rocks served as nucleation sites for Alpine strain localization. Subsequently, NE-SW, E-W and NW-SE striking ductile shear zones were formed, in combination with high temperature fracturing while dissecting the host rocks in a complex 3D pattern (Wehrens et al, in prep.). Whether the ductile shear zones have been subjected to brittle reactivation and can serve as infiltration pathways or not, depends strongly on their orientations with respect to the principal stress field. Especially where deformation structures intersect each other, water flow is high. Our 3D structural model allows the recognition of such intersections in 3D space and the prediction of their spatial extent. The structural model developed with the introduction of the locally known hydraulic permeabilities and in combination with the results of on-going hydrochemical investigations will allow to estimate the location of the recently active water pathways. References Wehrens, P., Baumberger, R., Berger, A., & Herwegh, M. (in prep.). How is strain localized in a mid-crustal basement section? Spatial distribution of deformation in the Aar massif (Switzerland).
Tectonic significance of precambrian apatite fission-track ages from the midcontinent United States
Crowley, K.D.; Naeser, C.W.; Babel, C.A.
1986-01-01
Apparent apatite fission-track ages from drill core penetrating basement on the flank of the Transcontinental Arch in northwestern Iowa range from 934 ?? 86 to 641 ?? 90 Ma. These ages, the oldest reported in North America, record at least two thermal events. The 934 Ma age, which is synchronous with KAr ages in the Grenville Province and many KAr whole-rock and RbSr isochron ages from the Lake Superior region, may document basement cooling caused by regional uplift and erosion of the crust. The remaining fission-track ages are products of a more recent thermal event, relative to the age of the samples, which raised temperatures into the zone of partial annealing. Heating may have occurred between the Middle Ordovician and Middle Cretaceous by burial of the basement with additional sediment. It is estimated that burial raised temperatures in the part of the basement sampled by the core to between 50 and 75??C. These temperature estimates imply paleogeothermal gradients of about 20??C/km, approximately two and one-half times present-day values, and burial of the basement by an additional 2-3 km of sediment. ?? 1986.
NASA Astrophysics Data System (ADS)
Parker, E. Horry, Jr.; Hawman, Robert B.; Fischer, Karen M.; Wagner, Lara S.
2016-09-01
Deconvolved waveforms for two earthquakes (Mw: 6.0 and 5.8) show clear postcritical SsPmp arrivals for broadband stations deployed across the coastal plain of Georgia, allowing mapping of crustal thickness in spite of strong reverberations generated by low-velocity sediments. Precritical SsPmp arrivals are also identified. For a basement in which velocity increases linearly with depth, a bootstrapped grid search suggests an average basement velocity of 6.5 ± 0.1 km/s and basement thickness of 29.8 ± 2.0 km. Corresponding normal-incidence Moho two-way times (including sediments) are 10.6 ± 0.6 s, consistent with times for events interpreted as Moho reflections on coincident active-source reflection profiles. Modeling of an underplated mafic layer (Vp = 7.2-7.4 km/s) using travel time constraints from SsPmp data and vertical-incidence Moho reflection times yields a total basement thickness of 30-35 km and average basement velocity of 6.35-6.65 km/s for an underplate thickness of 0-15 km.
NASA Astrophysics Data System (ADS)
Stanton, N.; Schmitt, R.; Galdeano, A.; Maia, M.; Mane, M.
2010-07-01
The continental and adjacent marginal features along southeast Brazil were investigated, focusing on the basement structural relationships between onshore and offshore provinces. Lateral and vertical variations in the magnetic anomalies provided a good correlation with the regional tectonic features. The sin-rift dykes and faults are associated with the magnetic lineaments and lie sub parallel to the Precambrian N45E-S45W basement structure of the Ribeira Belt, but orthogonally to the Cabo Frio Tectonic Domain (CFTD) basement, implying that: (1) the upper portion of the continental crust was widely affected by Mesozoic extensional deformation; and (2) tectonic features related to the process of break up of the Gondwana at the CFTD were form regardless of the preexisting structural basement orientation being controlled by the stress orientation during the rift phase. The deep crustal structure (5 km depth) is characterized by NE-SW magnetic "provinces" related to the Ribeira Belt tectonic units, while deep suture zones are defined by magnetic lows. The offshore Campos structural framework is N30E-S30W oriented and resulted from a main WNW-ESE direction of extension in Early Cretaceous. Transfer zones are represented by NW-SE and E-W oriented discontinuities. A slight difference in orientation between onshore (N45E) and offshore (N30E) structural systems seems to reflect a re-orientation of stress during rifting. We proposed a kinematical model to explain the structural evolution of this portion of the margin, characterized by polyphase rifting, associated with the rotation of the South American plate. The Campos Magnetic High (CMH), an important tectonic feature of the Campos Basin corresponds to a wide area of high crustal magnetization. The CMH wass interpreted as a magmatic feature, mafic to ultramafic in composition that extends down to 14 km depth and constitutes an evidence of intense crustal extension at 60 km from the coast.
35. Basement, passage beneath main entrance porch, showing circular skylight ...
35. Basement, passage beneath main entrance porch, showing circular skylight opening, view to northwest - Portsmouth Naval Hospital, Hospital Building, Rixey Place, bounded by Williamson Drive, Holcomb Road, & The Circle, Portsmouth, Portsmouth, VA
55. Room BF9, paper shredding facility, basement level, building 500, ...
55. Room BF-9, paper shredding facility, basement level, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
57. Entry door (open), BE16, basement level, building 500, looking ...
57. Entry door (open), BE-16, basement level, building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
54. Room BF14, IDA room, basement level, building 500, looking ...
54. Room BF-14, IDA room, basement level, building 500, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
56. Entry door (closed), BB16, basement level, building 500, looking ...
56. Entry door (closed), BB-16, basement level, building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
PBF (PER620) interior, basement level. Sampling equipment. Date: May 2004. ...
PBF (PER-620) interior, basement level. Sampling equipment. Date: May 2004. INEEL negative no. HD-41-5-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Detail of basement level concrete beams at southwest corner; camera ...
Detail of basement level concrete beams at southwest corner; camera facing west. - Mare Island Naval Shipyard, Hospital Ward, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
North rear, east part. Ramp leads to basement utility rooms ...
North rear, east part. Ramp leads to basement utility rooms and specimen preparation rooms. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA
17. INTERIOR VIEW OF BASEMENT EXHIBITION OF EVENTS OF CIVIL ...
17. INTERIOR VIEW OF BASEMENT EXHIBITION OF EVENTS OF CIVIL RIGHTS MOVEMENT AND THE 1963 BOMBING OF THE CHURCH, LOOKING SOUTH - Sixteenth Street Baptist Church, 1530 Sixth Avenue North, Birmingham, Jefferson County, AL
21. Generator Room (basement beneath Blacksmith Shop): view looking north ...
21. Generator Room (basement beneath Blacksmith Shop): view looking north showing remains of 1923 six-cylinder Studebaker engine and a dynamo - Ben Thresher's Mill, State Aid No. 1, Barnet, Caledonia County, VT
NASA Astrophysics Data System (ADS)
Vera-Sanchez, P.; Rebolledo-Vieyra, M.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.
2008-05-01
The tectonic and petrologic nature of the basement of the Yucatan Block is studied from analyses of basement clasts present in the impact suevitic breccias of Chicxulub crater. The impact breccias have been sampled as part of the drilling projects conducted in the Yucatan peninsula by Petroleos Mexicanos, the National University of Mexico and the Chicxulub Scientific Drilling Project. Samples analyzed come mainly from the Yaxcopoil-1, Tekax, and Santa Elena boreholes, and partly from Pemex boreholes. In this study we concentrate on clasts of the granites, granodiorites and quartzmonzonites in the impact breccias. We report major and trace element geochemical and petrological data, which are compared with data from the granitic and volcanic rocks from the Maya Mountains in Belize and from the Swannee terrane in Florida. Basement granitic clasts analyzed present intermediate to acidic sub-alkaline compositions. Plots of major oxides (e.g., Al2O3, Fe2O3, TiO2 and CaO) and trace elements (e.g., Th, Y, Hf, Nb and Zr) versus silica allow separation of samples into two major groups, which can be compared to units in the Maya Mountains and in Florida basement. The impact suevitic breccia samples have been affected by alteration likely related to the hydrothermal processes associated with the crater melt sheet. Cloritization, seritization and fenitization alterations are recognized, due to the long term hydrothermalism. Krogh et al. (1993) reported U-Pb dates on zircons from the suevitic breccias, which gave dates of 545 +/- 5 Ma and 418 +/- 6 Ma, which were interpreted in terms of the deep granitic metamorphic Yucatan basement. The younger date correlates with the age for the Osceola Granite and the St. Lucie metamorphic complex of the Swannee terrane in the Florida peninsula. The intrusive rocks in the Yucatan basement may be related to approx. 418 Ma ago collisional event in the Late Silurian.
Fisher, C.M.; Loewy, S.L.; Miller, C.F.; Berquist, P.; Van Schmus, W. R.; Hatcher, R.D.; Wooden, J.L.; Fullagar, P.D.
2010-01-01
The conventional view that the basement of the southern and central Appalachians represents juvenile Mesoproterozoic crust, the final stage of growth of Laurentia prior to Grenville collision, has recently been challenged. New whole-rock Pb and Sm-Nd isotopic data are presented from Meso protero zoic basement in the southern and central Appalachians and the Granite-Rhyolite province, as well as one new U-Pb zircon age from the Granite-Rhyolite province. These data, combined with existing data from Mesoproterozoic terranes throughout southeastern Laurentia, further substantiate recent suggestions that the southern and central Appalachian basement is exotic with respect to Laurentia. Sm-Nd isotopic compositions of most rocks from the southern and central Appalachian basement are consistent with progressive growth through reworking of the adjacent Granite-Rhyolite province. However, Pb isotopic data, including new analyses from important regions not sampled in previous studies, do not correspond with Pb isotopic compositions of any adjacent crust. The most distinct ages and isotopic compositions in the southern and central Appalachian basement come from the Roan Mountain area, eastern Tennessee-western North Carolina. The data set indicates U-Pb zircon ages up to 1.8 Ga for igneous rocks, inherited and detrital zircon ages >2.0 Ga, Sm-Nd depleted mantle model (TDM) ages >2.0 Ga, and the most elevated 207Pb/204Pb observed in southeastern Laurentia. The combined U-Pb geochronologic and Sm-Nd and Pb isotopic data preclude derivation of southern and central Appalachian basement from any nearby crustal material and demonstrate that Grenville age crust in southeastern Laurentia is exotic and probably was transferred during collision and assembly of Rodinia. These new data better define the boundary between the exotic southern and central Appalachian basement and adjacent Laurentian Granite-Rhyolite province. ?? 2010 Geological Society of America.
NASA Astrophysics Data System (ADS)
Dodson, Robin E.; Levy, Jonathan I.; Spengler, John D.; Shine, James P.; Bennett, Deborah H.
Concentrations of many volatile organic compounds (VOCs) are often higher inside residences than outdoors as a result of sources or activities within the residences. These sources can be located directly in the living space of the home or in areas associated with the home such as an attached garage, basement, or common apartment hallway. To characterize the contributions from these areas to indoor residential concentrations, VOC concentrations were measured inside, outside, and, if present, in the attached garage, basement, or common hallway of an apartment of 55 residences in the Boston area, most over two seasons, as part of the Boston Exposure Assessment in Microenvironments (BEAM) Study. Of the 55 residences in the study, 11 had attached garages and basements, 24 had only basements, 10 other residences had common apartment hallways, and the remaining 10 were treated as single compartment residences. Concentrations in the garage were up to 5-10 times higher at the median than indoor concentrations for mobile source pollutants including benzene, toluene, ethylbenzene, and xylenes. Basement/indoor concentration ratios were significantly >1 for methylene chloride, ethylbenzene, m, p-xylene, and o-xylene, and summer ratios tended to be higher than winter ratios. Approximately, 20-40% of the indoor concentration for compounds associated with gasoline sources, such as methyl t-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes, can be attributed to an attached garage at the residence, with garages laterally attached to the first floor of the home having a larger impact. At the median, basements contributed to approximately 10-20% of the estimated indoor concentrations. For apartments, approximately 5-10% of the estimated indoor concentrations confer with air from the hallway. Contributions of these secondary zones to concentrations in the living area of a home were calculated using concentration and airflow estimates. Our findings illustrate the potential significance of these non-living spaces from an exposure perspective and suggest potentially effective mitigation measures.
Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina
2009-01-01
The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.
NASA Astrophysics Data System (ADS)
Hartnady, Michael; Kirkland, Chris; Clark, Chris; Spaggiari, Catherine; Smithies, Hugh
2017-04-01
The Albany-Fraser Orogen is a 1200 km long east to northeasterly trending Palaeoproterozoic to Mesoproterozoic orogenic belt that defines the southern to southeastern margin of the West Australian Craton (WAC). The belt records a long and complex geological history spanning the break-up of Nuna between 2000 and 1700 Ma and amalgamation of Rodinia between 1300 and 1000 Ma. Recent geochronological, geochemical and isotopic work has shown that the Albany-Fraser Orogen formed through a protracted period of reworking of the margin of the Archean Yilgarn Craton (part of the WAC) with various additions of mantle-derived material. The Cretaceous Bight and Cenozoic Eucla Basins partially overlie the northeastern part of the Albany-Fraser Orogen and completely cover 1000 km of crystalline basement (the Eucla basement) that separates the belt from the South Australian Craton. This basement constitutes the glue between the major building blocks of Proterozoic Australia, yet, its geological history is poorly understood. New drill cores penetrating the basement have intersected interlayered granitic and gabbroic rocks that yield U-Pb zircon dates that are dissimilar to any magmatic ages from units within the adjoining Albany-Fraser Orogen, with the exception of the youngest, 1190-1125 Ma magmatic suite. In addition, mantle-like hafnium and neodymium isotopic signatures indicate that the rocks of the Eucla basement are dominated by new juvenile addition, and may represent an allochthonous terrane of oceanic heritage. New ɛHf contour maps for the Albany-Fraser Orogen and Eucla basement highlight this difference. Time-slicing the isotopic dataset reveals a pattern of Palaeoproterozoic juvenile magmatism sub-perpendicular to the present day structural grain in the belt. If this marks the presence of an older lithospheric structure then it demonstrates the power that time-constrained isotopic mapping provides for illuminating lithospheric architecture through time. This may be particularly useful for unravelling crustal evolution in regions with complex tectonic histories.
McCafferty, Anne E.; Cordell, Lindrith E.
1992-01-01
This report is an analysis of regional gravity and aeromagnetic data that was carried out as part of a Conterminuous United States Mineral Assessment Program (CUSMAP) study of the Joplin 1° X 2° quadrangle, Kansas and Missouri. It is one in a series of reports representing a cooperative effort between the U.S. Geological Survey, Kansas Geological Survey, and Missouri Department of Natural Resources, Division of Geology and Land Survey. The work presented here is part of a larger project whose goal is to assess the mineral resource potential of the Paleozoic sedimentary section and crystalline basement within the quadrangle. Reports discussing geochemical, geological, and various other aspects of the study area are included in this Miscellaneous Field Studies Map series as MF-2125-A through MF-2125-E. Geophysical interpretation of Precambrian crystalline basement lithology and structure is the focus of this report. The study of the crystalline basement is complicated by the lack of exposures due to the presence of a thick sequence of Phanerozoic sedimentary cover. In areas where there are no outcrops, the geologist must turn to other indirect methods to assist in an understanding of the basement. Previous investigations of the buried basement in this region used available drill hole data, isotope age information, and regional geophysical data (Sims, 1990; Denison and others, 1984; Bickford and others, 1986). These studies were regional in scope and were presented at state and multistate scales. The work documented here used recently collected detailed gravity and aeromagnetic data to enhance the regional geologic knowledge of the area. Terrace-density and terrace-magnetization maps were calculated from the gravity and aeromagnetic data, leading directly to inferred physical-property (density and magnetization) maps. Once these maps were produced, the known geology and drill-hole data were reconciled with the physical-property maps to form a refined structural and lithologic map of the crystalline basement.
8. SAC command center underground structure, building 501, basement entry, ...
8. SAC command center underground structure, building 501, basement entry, machine room, April 11, 1955 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
32. VIEW OF BASEMENT BELOW BOILER 904 LOOKING SOUTHEAST AT ...
32. VIEW OF BASEMENT BELOW BOILER 904 LOOKING SOUTHEAST AT TURBINE DRIVEN FORCED DRAFT FAN FOR BOILER 904. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
PBF (PER620) interior, first basement level. Sampling equipment. Date: March ...
PBF (PER-620) interior, first basement level. Sampling equipment. Date: March 2004. INEEL negative no. HD-41-4-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF (PER620) interior, basement level. Detail of coolant piping. Date: ...
PBF (PER-620) interior, basement level. Detail of coolant piping. Date: May 2004. INEEL negative no. HD-41-5-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Antimetastatic effect of PSK, a protein-bound polysaccharide, against the B16-BL6 mouse melanoma.
Matsunaga, K; Ohhara, M; Oguchi, Y; Iijima, H; Kobayashi, H
1996-01-01
We examined the effect of PSK, a protein-bound polysaccharide, upon in vivo metastasis and in vitro invasion of the B16-BL6 mouse melanoma cells. (1) PSK suppressed in vivo artificial and spontaneous lung metastases of B16-BL6 in C57BL/6 mice. (2) PSK in a dose-dependent fashion suppressed in vitro invasion and chemotaxis of the tumor cells using filters coated with a reconstituted basement membrane. (3) PSK had little effect on DNA synthesis in tumor cells in vitro, but suppressed tumor cell adhesion to, degradation of, and haptotaxis to components of the basement membrane. (4) PSK suppressed the binding of tumor cells to components of the basement membrane. These findings suggest that PSK may suppress metastasis through inhibition of tumor cell invasion and that this effect is the result of interactions between PSK and components of the basement membrane.
IgA antibasement membrane nephritis with pulmonary hemorrhage.
Border, W A; Baehler, R W; Bhathena, D; Glassock, R J
1979-07-01
Goodpasture's syndrome has characteristically been described as being mediated by IgG antibodies. We have recently seen a 55-year-old man who developed renal failure and hemoptysis; a renal biopsy showed linear deposits of IgA and C3 involving glomerular and tubular basement membrane. Serologic tests for detecting (IgG) antiglomerular basement membrane antibodies were negative. Elution studies of kidney and lung showed the presence of an IgA antibasement membrane antibody only. The patient's serum contained IgA, but not IgG, antibodies reactive with glomerular and tubular basement membrane of normal human kidney and alveolar basement membrane of normal human lung. Attempts to transfer disease with the patient's IgA antibody to a monkey and to Lewis and Brown-Norway rats were unsuccessful. Immunoglobulin A antibasement membrane antibody must be considered in the design of immunoserologic procedures for the diagnosis of Goodpasture's syndrome.
Force-dependent breaching of the basement membrane.
Chang, Tammy T; Thakar, Dhruv; Weaver, Valerie M
2017-01-01
Clinically, non-invasive carcinomas are confined to the epithelial side of the basement membrane and are classified as benign, whereas invasive cancers invade through the basement membrane and thereby acquire the potential to metastasize. Recent findings suggest that, in addition to protease-mediated degradation and chemotaxis-stimulated migration, basement membrane invasion by malignant cells is significantly influenced by the stiffness of the associated interstitial extracellular matrix and the contractility of the tumor cells that is dictated in part by their oncogenic genotype. In this review, we highlight recent findings that illustrate unifying molecular mechanisms whereby these physical cues contribute to tissue fibrosis and malignancy in three epithelial organs: breast, pancreas, and liver. We also discuss the clinical implications of these findings and the biological properties and clinical challenges linked to the unique biology of each of these organs. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Thinning Mechanism of the South China Sea Crust: New Insight from the Deep Crustal Images
NASA Astrophysics Data System (ADS)
Chang, S. P.; Pubellier, M. F.; Delescluse, M.; Qiu, Y.; Liang, Y.; Chamot-Rooke, N. R. A.; Nie, X.; Wang, J.
2017-12-01
The passive margin in the South China Sea (SCS) has experienced a long-lived extension period from Paleocene to late Miocene, as well as an extreme stretching which implies an unusual fault system to accommodate the whole amount of extension. Previous interpretations of the fault system need to be revised to explain the amount of strain. We study a long multichannel seismic profile crossing the whole rifted margin in the southwest of SCS, using 6 km- and 8 km-long streamers. After de-multiple processing by SRME, Radon and F-K filtering, an enhanced image of the crustal geometry, especially on the deep crust, allows us to illustrate two levels of detachment at depth. The deeper detachment is around 7-8 sec TWT in the profile. The faults rooting at this detachment are characterized by large offset and are responsible for thicker synrift sediment. A few of these faults appear to reach the Moho. The geometry of the acoustic basement between these boundary faults suggests gentle tilting with a long wavelength ( 200km), and implies some internal deformation. The shallower detachment is located around 4-5 sec TWT. The faults rooting at this detachment represent smaller offset, a shorter wavelength of the basement and thinner packages of synrift sediment. Two detachments separate the crust into upper, middle and lower crust. If the lower crust shows ductile behavior, the upper and middle crust is mostly brittle and form large wavelength boudinage structure, and the internal deformation of the boudins might imply low friction detachments at shallower levels. The faults rooting to deep detachment have activated during the whole rifting period until the breakup. Within the upper and middle crust, the faults resulted in important tilting of the basement at shallow depth, and connect to the deep detachment at some places. The crustal geometry illustrates how the two detachments are important for the thinning process, and also constitute a pathway for the following magmatic activity from the mantle to the surface.
Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin
NASA Astrophysics Data System (ADS)
Nogueira, Carlos R.; Marques, Fernando O.
2017-04-01
Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western segment border fault should be a pure thrust; (5) uplift along the northern and central segments may point out to the presence of a salt diapir at depth, aiding vertical movement and local uplift of the structure; (6) geometry of seismic units of the neighboring basins is consistent with halokinesis related to the antiform growth during the Jurassic; (7) sedimentary filling of the neighbouring basins shows relationship to antiform development and growth into a structural high before the Late Miocene Alpine event. These data suggest that: (1) pre-existing basement faults and their reactivation played important role on the development of Montejunto complex tectonic structure; (2) important vertical movements occurred as the result of regional and local (diapir) tectonics; (3) subsidence in neighbouring basins may have promoted maturation, and possible targets with strong potential for hydrocarbon trapping and accumulation may have also developed; (4) diapir tectonics initiated before the Cretaceous; (5) given the topography, and the geometry and inferred kinematics of all segments, it seems that the Montejunto structure formed in a restraining bend controlled by inherited late-Variscan basement faults.
NASA Astrophysics Data System (ADS)
Lin, H.; Cowen, J. P.; Olson, E. J.; Lilley, M. D.; Jungbluth, S.; Rappe, M. S.
2013-12-01
The ocean crust is the largest aquifer system on Earth. Within the sediment-buried 3.5 Myr basaltic crust of the eastern Juan de Fuca Ridge (JFR) flank, the circulating basement fluids have moderate temperature (~65°C) and potentially harbor a substantial subseafloor biosphere. With dissolved oxygen and nitrate exhausted, sulfate may serve as the major electron acceptor in this environment. This study aims to evaluate the availability and the biogeochemistry of two important electron donors, methane and hydrogen, for the subseafloor biosphere. Basement fluids were collected via stainless steel and ethylene-tetrafluoroethylene fluoropolymer (ETFE) fluid delivery lines associated with Integrated Ocean Drilling Program (IODP) Circulation Obviation Retrofit Kits (CORKs) that extend from basement depths to outlet ports at the seafloor. Three CORKs were visited; 1301A, 1362A and 1362B lie within 200 to 500 m of each other, and their fluid intakes lie at ~30, ~60, and ~50 m below the sediment-basement interface (mbs), respectively. In addition, CORK 1362A contains a second intake at a deep (~200 mbs) horizon. The basement fluids from the three CORKs contained significantly higher concentrations of methane (1.5-13μM) and hydrogen (0.05-1.1 μM) than in bottom seawater (0.002 and 0.0004, respectively), indicating that prevalence and availability of both methane and hydrogen as electron donors for the subseafloor biosphere. Thermodynamic calculations show that sulfate reduction coupled with either methane or hydrogen oxidation is energy yielding in the oceanic basement. The δ13C values of methane ranged from -43×1‰ to -58×0.3‰; the δ2H values of methane in CORKs 1301A, 1362A and 1362B fluids were 57×5‰, -262×2‰, -209×2‰, respectively. The isotopic compositions suggest that methane in the basement fluid is of biogenic origin. Interestingly, the δ2H value of methane in the CORK 1301A fluids is far more positive than that in other marine environments investigated so far (Martens et al., 1999; Kessler et al., 2006; Kessler et al., 2008). The positive δ2H value of methane is best explained by partial microbial oxidation of biogenic methane, which has an initial isotopic composition similar to that from CORK 1362A and 1362B borehole fluid. High-throughput sequencing of the small subunit ribosomal RNA gene indicates the presence of methanogenic Euryarchaeota (e.g. Methanobacteria) in each of the borehole fluid samples described here. On average, fluid samples from boreholes 1362A and 1362B possessed a relatively higher abundance of known methanogens compared to borehole 1301A, consistent with higher methane concentration in 1362A and 1362B relative to 1301A fluids. Methane-oxidizing bacterial lineages from the phyla Proteobacteria and Verrucomicrobia were also detected; however, these groups were less abundant relative to the putative methane-producing groups. In conclusion, our study shows that methane and hydrogen are available electron donors and that methane is produced and potentially consumed by microorganisms in the oceanic basement. The data presented will guide incubation experiments using basement fluid in order to better understand the methane production/utilization processes within the oceanic basement.
16. June 1974. BASEMENT, VIEW LOOKING SOUTHWEST, SHOWING THE MAIN ...
16. June 1974. BASEMENT, VIEW LOOKING SOUTHWEST, SHOWING THE MAIN LINE SHAFT COMING THROUGH THE WALL FROM THE OTTO ENGINE. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
Anti-glomerular basement membrane blood test
... the part of the kidney that helps filter waste and extra fluid from the blood. Anti-glomerular basement membrane antibodies are antibodies against this membrane. They can lead to kidney damage. This article describes the blood test to detect these antibodies.
36. Basement, cellar beneath main stairway, with skylight in stair ...
36. Basement, cellar beneath main stairway, with skylight in stair riser, and adjacent storage room, view to east - Portsmouth Naval Hospital, Hospital Building, Rixey Place, bounded by Williamson Drive, Holcomb Road, & The Circle, Portsmouth, Portsmouth, VA
12. Credit WS. Basement of Mill, showing wooden flywheels to ...
12. Credit WS. Basement of Mill, showing wooden flywheels to water wheel and Fairbanks. Morse 20 hp, 350 rpm diesel engine, patented April 20, 1920. - Bunker Hill Mill, County Route 26, Bunker Hill, Berkeley County, WV
26. OVERALL SHOT OF BASEMENT, MILL NO. 1. ORIGINALLY MACHINE ...
26. OVERALL SHOT OF BASEMENT, MILL NO. 1. ORIGINALLY MACHINE SHOP. PALLETS ON FLOOR ADDED IN LATE 20th C. FOR CLOTH STORAGE. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL
30. VIEW WEST IN BASEMENT OF BUILDING 41A; NOTE PLASTIC ...
30. VIEW WEST IN BASEMENT OF BUILDING 41A; NOTE PLASTIC DUCTING WHICH WAS USED TO VENT CORROSIVE FUMES FROM ACID PICKLING AND ELECTROPLATING TANKS - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT
Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust
NASA Astrophysics Data System (ADS)
Farahat, Navah X.; Archer, David; Abbot, Dorian S.
2017-08-01
Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.
Mechanical stress regulates transport in a compliant 3D model of the blood-brain barrier.
Partyka, Paul P; Godsey, George A; Galie, John R; Kosciuk, Mary C; Acharya, Nimish K; Nagele, Robert G; Galie, Peter A
2017-01-01
Transport of fluid and solutes is tightly controlled within the brain, where vasculature exhibits a blood-brain barrier and there is no organized lymphatic network facilitating waste transport from the interstitial space. Here, using a compliant, three-dimensional co-culture model of the blood-brain barrier, we show that mechanical stimuli exerted by blood flow mediate both the permeability of the endothelial barrier and waste transport along the basement membrane. Application of both shear stress and cyclic strain facilitates tight junction formation in the endothelial monolayer, with and without the presence of astrocyte endfeet in the surrounding matrix. We use both dextran perfusion and TEER measurements to assess the initiation and maintenance of the endothelial barrier, and microparticle image velocimetry to characterize the fluid dynamics within the in vitro vessels. Application of pulsatile flow to the in vitro vessels induces pulsatile strain to the vascular wall, providing an opportunity to investigate stretch-induced transport along the basement membrane. We find that a pulsatile wave speed of approximately 1 mm/s with Womersley number of 0.004 facilitates retrograde transport of high molecular weight dextran along the basement membrane between the basal endothelium and surrounding astrocytes. Together, these findings indicate that the mechanical stress exerted by blood flow is an important regulator of transport both across and along the walls of cerebral microvasculature. Copyright © 2016 Elsevier Ltd. All rights reserved.
The thermal environment of Cascadia Basin
NASA Astrophysics Data System (ADS)
Johnson, H. Paul; Hautala, Susan L.; Bjorklund, Tor A.
2012-07-01
Located adjacent to the NE Pacific convergent boundary, Cascadia Basin has a global impact well beyond its small geographic size. Composed of young oceanic crust formed at the Juan de Fuca Ridge, igneous rocks underlying the basin are partially insulated from cooling of their initial heat of formation by a thick layer of pelagic and turbidite sediments derived from the adjacent North American margin. The igneous seafloor is eventually consumed at the Cascadia subduction zone, where interactions between the approaching oceanic crust and the North American continental margin are partially controlled by the thermal environment. Within Cascadia Basin, basement topographic relief varies dramatically, and sediments have a wide range of thickness and physical properties. This variation produces regional differences in heat flow and basement temperatures for seafloor even of similar age. Previous studies proposed a north-south thermal gradient within Cascadia Basin, with high geothermal flux and crustal temperatures measured in the heavily sedimented northern portion near Vancouver Island and lower than average heat flux and basement temperatures predicted for the central and southern portions of the basin. If confirmed, this prediction has implications for processes associated with the Cascadia subduction zone, including the location of the "locked zone" of the megathrust fault. Although existing archival geophysical data in the central and southern basin are sparse, nonuniformly distributed, and derived from a wide range of historical sources, a substantial N-S geothermal gradient appears to be confirmed by our present compilation of combined water column and heat flow measurements.
4. VIEW LOOKING WEST FROM BASEMENT UNDER OPEN CONCOURSE ...
4. VIEW LOOKING WEST FROM BASEMENT UNDER OPEN CONCOURSE - CEILING OF BRICK ARCHES; WOOD PANELS MARK LOCATION OF ORIGINAL GLASS PRISM SKYLIGHTS REPLACED WITH CONCRETE - Pennsylvania Railroad Station, Open Concourse & Concourse Roof Extension, 1101 Liberty Avenue, Pittsburgh, Allegheny County, PA
ERIC Educational Resources Information Center
Stetson, Emily
1991-01-01
Thanks to two enterprising teachers, a basement greenhouse has energized an inner-city elementary school in Brooklyn, New York. Though the basement jungle is the most visible part of the science program, students tend outdoor plants and integrate horticulture into all curriculum areas. (MLH)
11. INTERIOR DETAIL, BASEMENT, SHOWING CONDUITS LEADING UNDERGROUND TO SWITCHES ...
11. INTERIOR DETAIL, BASEMENT, SHOWING CONDUITS LEADING UNDERGROUND TO SWITCHES AND SIGNALS - Baltimore & Potomac Interlocking Tower, Adjacent to AMTRAK railroad tracks in block bounded by Howard Street, Jones Falls Expressway, Maryland Avenue & Falls Road, Baltimore, Independent City, MD
14. View toward the northwest corner of the basement in ...
14. View toward the northwest corner of the basement in the north segment of the building. Portions of the basement floor are earth, and portions are concrete. For some undetermined reason an unbonded, narrow panel of brick occurs in the west (left) wall. A corbeled brick footing is seen under this panel, as if the panel is carrying a concentrated load. An identical element occurs to the left, outside the camera's view. These 'columns' may support the second-story brick facade over the ground floor store windows. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ
33. VIEW OF BASEMENT UNDER EAST BOILER ROOM LOOKING TOWARD ...
33. VIEW OF BASEMENT UNDER EAST BOILER ROOM LOOKING TOWARD WEST BOILER ROOM BASEMENT THROUGH THE ASH TRANSFER TUNNEL. ASH HOPPER FOR BOILER 900 IS ON THE RIGHT. NOTE THE TRACKS ALONG THE FLOOR OF THE TUNNEL. A SMALL ELECTRIC LOCOMOTIVE HAULED CARS FOR TRANSFERRING ASH FROM BOILERS TO DISPOSAL SITES OUTSIDE THE BUILDING. THIS SYSTEM BECAME OBSOLETE IN 1938 WHEN BOILERS IN THE WEST BOILER ROOM WERE REMOVED AND PULVERIZED COAL WAS ADOPTED AS THE FUEL. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
Armstead, Sumiko I; Hellmark, Thomas; Wieslander, Jorgen; Zhou, Xin J; Saxena, Ramesh; Rajora, Nilum
2013-01-01
Posttransplant antiglomerular basement membrane (anti-GBM) disease occurs in approximately 5% of Alport patients and usually ends in irreversible graft failure. Recent research has focused on characterizing the structure of the anti-GBM alloepitope. Here we present a case of a 22-year-old male with end-stage renal disease secondary to Alport syndrome, with a previously failed renal allograft, who received a second deceased-donor kidney transplant. Six days after transplantation, he developed acute kidney injury. The serum anti-GBM IgG was negative by enzyme immunoassay (EIA). On biopsy, he had crescentic glomerulonephritis with linear GBM fixation of IgG. With further analysis by western blotting, we were able to detect antibodies to an unidentified protein from the basement membrane. This patient was treated with plasmapheresis twice per week and monthly intravenous immunoglobulin (IVIG) for a total of five months. At the end of treatment, these unknown antibodies were no longer detected. His renal function improved, and he has not required dialysis. We conclude that anti-GBM disease in patients with Alport Syndrome may be caused by circulating antibodies to other components of the basement membrane that are undetectable by routine anti-GBM EIA and may respond to treatment with plasmapheresis and IVIG.
Impact of climate changes during the last 5 million years on groundwater in basement aquifers.
Aquilina, Luc; Vergnaud-Ayraud, Virginie; Les Landes, Antoine Armandine; Pauwels, Hélène; Davy, Philippe; Pételet-Giraud, Emmanuelle; Labasque, Thierry; Roques, Clément; Chatton, Eliot; Bour, Olivier; Ben Maamar, Sarah; Dufresne, Alexis; Khaska, Mahmoud; Le Gal La Salle, Corinne; Barbecot, Florent
2015-09-22
Climate change is thought to have major effects on groundwater resources. There is however a limited knowledge of the impacts of past climate changes such as warm or glacial periods on groundwater although marine or glacial fluids may have circulated in basements during these periods. Geochemical investigations of groundwater at shallow depth (80-400 m) in the Armorican basement (western France) revealed three major phases of evolution: (1) Mio-Pliocene transgressions led to marine water introduction in the whole rock porosity through density and then diffusion processes, (2) intensive and rapid recharge after the glacial maximum down to several hundred meters depths, (3) a present-day regime of groundwater circulation limited to shallow depth. This work identifies important constraints regarding the mechanisms responsible for both marine and glacial fluid migrations and their preservation within a basement. It defines the first clear time scales of these processes and thus provides a unique case for understanding the effects of climate changes on hydrogeology in basements. It reveals that glacial water is supplied in significant amounts to deep aquifers even in permafrosted zones. It also emphasizes the vulnerability of modern groundwater hydrosystems to climate change as groundwater active aquifers is restricted to shallow depths.
NASA Astrophysics Data System (ADS)
Martínez, Fernando; Parra, Mauricio; Arriagada, César; Mora, Andrés; Bascuñan, Sebastián; Peña, Matías
2017-11-01
The Frontal Cordillera in northern Chile is located over the flat-slab subduction segment of the Central Andes. This tectonic province is characterized by a thick-skinned structural style showing evidence of tectonic inversion and basement-involved compressive structures. Field data, U-Pb geochronological and apatite fission track data were used to unravel partially the tectonic history of the area. Previous U-Pb ages of synorogenic deposits exposed on the flanks of basement-core anticlines indicate that Andean deformation started probably during Late Cretaceous with the tectonic inversion of Triassic and Jurassic half-grabens. New U-Pb ages of the synorogenic Quebrada Seca Formation suggest that this deformation continued during Paleocene (66-60 Ma) with the reverse faulting of pre-rift basement blocks. The analysis of new apatite fission-track data shows that a rapid and coeval cooling related to exhumation of the pre-rift basement blocks occurred during Eocene times. This exhumation event is interpreted for first time in the Chilean Frontal Cordillera and it could have occurred simultaneously with the propagation of basement-involved structures. The age of this exhumation event coincides with the Incaic orogenic phase, which is interpreted as the most important to the Central Andes in terms of shortening, uplift and exhumation.
1996-01-01
The expression of the constituent alpha 1 chain of laminin-1, a major component of basement membranes, is markedly regulated during development and differentiation. We have designed an antisense RNA strategy to analyze the direct involvement of the alpha 1 chain in laminin assembly, basement membrane formation, and cell differentiation. We report that the absence of alpha 1-chain expression, resulting from the stable transfection of the human colonic cancer Caco2 cells with an eukaryotic expression vector comprising a cDNA fragment of the alpha 1 chain inserted in an antisense orientation, led to (a) an incorrect secretion of the two other constituent chains of laminin-1, the beta 1/gamma 1 chains, (b) the lack of basement membrane assembly when Caco2-deficient cells were cultured on top of fibroblasts, assessed by the absence of collagen IV and nidogen deposition, and (c) changes in the structural polarity of cells accompanied by the inhibition of an apical digestive enzyme, sucrase-isomaltase. The results demonstrate that the alpha 1 chain is required for secretion of laminin-1 and for the assembly of basement membrane network. Furthermore, expression of the laminin alpha 1-chain gene may be a regulatory element in determining cell differentiation. PMID:8609173
Delineation of tectonic provinces of New York state as a component of seismic-hazard evaluation
Fakundiny, R.H.
2004-01-01
Seismic-hazard evaluations in the eastern United States must be based on interpretations of the composition and form of Proterozoic basement-rock terranes and overlying Paleozoic strata, and on factors that can cause relative movements among their units, rather than Phanerozoic orogenic structures, which may be independent of modern tectonics. The tectonic-province concept is a major part of both probabilistic and deterministic seismic-hazard evaluations, yet those that have been proposed to date have not attempted to geographically correlate modern earthquakes with regional basement structure. Comparison of basement terrane (megablock) boundaries with the spatial pattern of modern seismicity may lead to the mechanically sound definition of tectonic provinces, and thus, better seismic-hazard evaluation capability than is currently available. Delineation of megablock boundaries will require research on the many factors that affect their structure and movement. This paper discusses and groups these factors into two broad categories-megablock tectonics in relation to seismicity and regional horizontal-compressive stresses, with megablock tectonics divided into subcategories of basement, overlying strata, regional lineaments, basement tectonic terranes, earthquake epicenter distribution, and epeirogeny, and compressive stresses divided into pop-ups and the contemporary maximum horizontal-compressive stress field. A list presenting four to nine proposed research topics for each of these categories is given at the end.
NASA Astrophysics Data System (ADS)
Jones, F. W.; Majorowicz, J. A.
Radiogenic heat generation values for 381 basement samples from 229 sites in the western Canadian basin exhibit a lognormal frequency distribution. The mean value = 2.06 (S.D. = 1.22) µWm-3 is larger than the radiogenic heat generation values reported for the shield in the Superior (ca. 1.2 µWm-3, Jessop and Lewis, 1978) and Churchill (ca. 0.7 µWm-3, Drury, 1985) provinces. When equal Log A contour intervals are used to map the basement heat generation, three large zones of relatively high heat generation are found. One coincides with the Peace River Arch basement structure and one with the Athabasca axis (Darnley, 1981). There is no apparent indication of increased heat flow through the Paleozoic formations associated with these two zones. The third zone, in southwestern Saskatchewan, coincides with a high heat flow zone in the Swift Current area. The lack of correlation between heat flow and heat generation in Alberta may be due to the disturbance to the heat flow in the Paleozoic formations by water motion, or may indicate that the heat is from uranium, thorium and potassium isotope enrichment near the basement surface rather than enrichment throughout the entire upper crust.
Orogenic structural inheritance and rifted passive margin formation
NASA Astrophysics Data System (ADS)
Salazar Mora, Claudio A.; Huismans, Ritske S.
2016-04-01
Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution of Campos Basin, offshore Brazil: Evidence from 3D seismic analysis and section restoration. Marine and Petroleum Geology 26, 873-886. Tommasi, A., Vauchez, A., 2001. Continental rifting parallel to ancient collisional belts: An effect of the mechanical anisotropy of the lithospheric mantle. Earth and Planetary Science Letters 185, 199-210.
NASA Astrophysics Data System (ADS)
Martz, Pierre; Cathelineau, Michel; Mercadier, Julien; Boiron, Marie-Christine; Jaguin, Justine; Tarantola, Alexandre; Demacon, Mickael; Gerbeaud, Olivier; Quirt, David; Doney, Amber; Ledru, Patrick
2017-12-01
Graphitic shear zones are spatially associated with unconformity-related uranium deposits that are located around the unconformity between the strata of the Paleo- to Mesoproterozoic Athabasca Basin (Saskatchewan, Canada) and its underlying Archean to Paleoproterozoic basement. The present study focuses on basement-hosted ductile-brittle graphitic shear zones near the Cigar Lake U deposit, one of the largest unconformity-related U deposits. The goal of the study is to decipher the pre-Athabasca Basin fluid migration history recorded within such structures and its potential role on the formation of such exceptional deposit. Dominantly C-O-H(-N) metamorphic fluids have been trapped in Fluid Inclusion Planes (FIPs) in magmatic quartz within ductile-brittle graphitic shear zones active during retrograde metamorphism associated with the formation of the Wollaston-Mudjatik Transition Zone (WMTZ) between ca. 1805 and 1720 Ma. Such fluids show a compositional evolution along the retrograde path, from a dense and pure CO2 fluid during the earliest stages, through a lower density CO2 ± CH4-N2 (± H2O) fluid and, finally, to a very low density CH4-N2 fluid. Statistical study of the orientation, distribution, proportion, and chemical characterization of the FIPs shows that: i) CO2 (δ13CCO2 around - 9‰ PDB) from decarbonation reactions and/or partial water-metamorphic graphite equilibrium initially migrated regionally and pervasively under lithostatic conditions at about 500 to 800 °C and 150 to 300 MPa. Such P-T conditions attest to a high geothermal gradient of around 60 to 90 °C/km, probably related to rapid exhumation of the basement or a large-scale heat source. ii) Later brittle reactivation of the shear zone at around 450 °C and 25-50 MPa favored circulation of CO2-CH4-N2(± H2O) fluids in equilibrium with metamorphic graphite (δ13CCO2 around - 14‰) under hydrostatic conditions and only within the shear zones. Cooling of these fluids and the water uptake linked to fluid-basement rock reactions led to the precipitation at around 450 °C of poorly-crystallized hydrothermal graphite. This graphite presents isotopic (δ13C - 30 to - 26‰ PDB) and morphological differences from the high-T metamorphic graphite (> 600 °C, - 29 to - 20‰ δ13C) derived from metamorphism of C-rich sedimentary material. The brittle structural reactivation and the related fluid migration and graphite precipitation were specifically focused within the shear zones and related damage zones. The brittle reactivation produced major changes in the petro-physical, mineralogical, and chemical characteristics of the structures and their damage zones. It especially increased the fracture paleoporosity and rock weakness toward the fault cores. These major late metamorphic modifications of the graphitic shear zones were likely key parameters favoring the enhanced reactivity of these basement zones under tectonic stress following deposition of the Athabasca Basin, and so controlled basinal brine movement at the basin/basement interface related to the formation of the unconformity-related uranium deposits. This relationship consequently readily explains the specific spatial relationships between unconformity-related U deposits and the ductile-brittle graphitic shear zones.
NASA Astrophysics Data System (ADS)
Master, Sharad; Mirrander Ndhlovu, N.
2015-04-01
Ever since Wakefield (1978, IMM Trans., B87, 43-52) described a porphyry-type meta-morphosed Cu prospect, the ca 50 Mt, 0.5% Cu Samba deposit (12.717°S, 27.833°E), hosted by porphyry-associated quartz-sericite-biotite schists in northern Zambia, there has been controversy about its origin and significance. This is because it is situated in the basement to the world's largest stratabound sediment-hosted copper province, the Central African Copperbelt, which is hosted by rocks of the Neoproterozoic Katanga Supergroup. Mineralization in the pre-Katangan basement has long played a prominent role in ore genetic models, with some authors suggesting that basement Cu mineralization may have been recycled into the Katangan basin through erosion and redeposition, while others have suggested that the circulation of fluids through Cu-rich basement may have leached out the metals which are found concentrated in the Katangan orebodies. On the basis of ca 490-460 Ma Ar-Ar ages, Hitzman et al. (2012, Sillitoe Vol., SEG Spec. Publ., 16, 487-514) suggested that Samba represents late-stage impregnation of copper mineralization into the basement, and that it was one of the youngest copper deposits known in the Central African Copperbelt. If the Samba deposit really is that young, then it would have post-dated regional deformation and metamorphism (560-510 Ma), and it ought to be undeformed and unmetamorphosed. The Samba mineralization consists of chalcopyrite and bornite, occurring as disseminations, stringers and veinlets, found in a zone >1 km along strike, in steeply-dipping lenses up to 10m thick and >150m deep. Our new major and trace element XRF geochemical data (14 samples) show that the host rocks are mainly calc-alkaline metadacites. Cu is correlated with Ag (Cu/Ag ~10,000:1) with no Au or Mo. Our study focused on the microtextures and petrology of the Samba ores. We confirm that there is alteration of similar style to that accompanying classical porphyry Cu mineralization, including potassic (biotite+sericite+ quartz), propylitic (clinozoisite+chlorite+saussuritized plagioclase), phyllic (sericite+quartz+ pyrite+hydromuscovite/illite) and argillic (kaolinite+chlorite+dolomite) alteration. The clays were identified with XRD. All the rocks show penetrative deformational textures and fabrics. Our textural studies show that phyllic zone pyrite crystals have quartz-rich pressure shadows, and they predate all phases of deformation. Similarly, in the potassic zone, fracture-controlled biotite stringers in particular orientations are deformed, and partly replaced by chlorite, again showing their pre-deformational, pre-metamorphic origin. Copper sulfide-bearing quartz veinlets are deformed. Many of the alteration assemblages containing biotite or sericite have been deformed into crenulated schists, showing that they were formed early in the deformation history. Coupled with the dating of a Samba metavolcanic rock at 1964±12 Ma (Rainaud et al., 2005, JAES, 42, 1-31), we regard the Samba deposit as a metamorphosed Palaeoproterozoic porphyry-type Cu deposit, which has undergone deformation, and retrograde metamorphism of its alteration assemblages, during the Neoproterozoic Lufilian Orogeny, followed by post-tectonic cooling, which occurred throughout the Copperbelt at about 480±20 Ma. Samba, together with the Mkushi deposits, is part of a long-lived (>100 Ma) Palaeoproterozoic porphyry-Cu province in the Zambian Copperbelt basement, and ore genetic theories for the Copperbelt mineralization must now seriously take this into account.
Randles, Michael J.; Woolf, Adrian S.; Huang, Jennifer L.; Byron, Adam; Humphries, Jonathan D.; Price, Karen L.; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J.; Long, David A.
2015-01-01
Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein–protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. PMID:25896609
Liu, Xinchun; Zhou, Xiaoshu; Yuan, Wei
2014-10-15
In mammalian central nervous system (CNS), the integrity of the blood-spinal cord barrier (BSCB), formed by tight junctions (TJs) between adjacent microvascular endothelial cells near the basement membrane of capillaries and the accessory structures, is important for relatively independent activities of the cellular constituents inside the spinal cord. The barrier function of the BSCB are tightly regulated and coordinated by a variety of physiological or pathological factors, similar with but not quite the same as its counterpart, the blood-brain barrier (BBB). Herein, angiopoietin 1 (Ang1), an identified ligand of the endothelium-specific tyrosine kinase receptor Tie-2, was verified to regulate barrier functions, including permeability, junction protein interactions and F-actin organization, in cultured spinal cord microvascular endothelial cells (SCMEC) of rat through the activity of Akt. Besides, these roles of Ang1 in the BSCB in vitro were found to be accompanied with an increasing expression of epidermal growth factor receptor pathway substrate 8 (Eps8), an F-actin bundling protein. Furthermore, the silencing of Eps8 by lentiviral shRNA resulted in an antagonistic effect vs. Ang1 on the endothelial barrier function of SCMEC. In summary, the Ang1-Akt pathway serves as a regulator in the barrier function modulation of SCMEC via the actin-binding protein Eps8. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zouhri, L.
2001-05-01
The Mamora aquifer, in the northern Moroccan Meseta, constitutes the main regional water resource. Its impermeable basement is mostly composed of blue marls. The lithostratigraphy of the basin aquifer is characterised by a sequence of sandstones, sandy limestones, conglomerates and sandy clays. The structure of the basement of the Mamora aquifer, deduced from electrical resistivity measurements, allowed the hydrogeological behaviour of the reservoir, and the direction of the groundwater flow, to be established. The combination of the lithological, morphological, piezometric, geophysical and structural investigations revealed a northward thickening of the substrate with groundwater flow towards the Rharb (to the north) and towards the Atlantic Ocean (northwest). This 'multicriteria' approach enabled a structural model to be defined, which correlated well with the aquifer geometry and the groundwater flow. The variability of the hydrogeological units, and the northward thickening of the sedimentary facies, were controlled by northeast-southwest orientated faults, which affect their impermeability.
3D crustal model of the US and Canada East Coast rifted margin
NASA Astrophysics Data System (ADS)
Dowla, N.; Bird, D. E.; Murphy, M. A.
2017-12-01
We integrate seismic reflection and refraction data with gravity and magnetic data to generate a continent-scale 3D crustal model of the US and Canada East Coast, extending north from the Straits of Florida to Newfoundland, and east from the Appalachian Mountains to the Central Atlantic Ocean. The model includes five layers separated by four horizons: sea surface, topography, crystalline basement, and Moho. We tested magnetic depth-to-source techniques to improve the basement morphology, from published sources, beneath the continental Triassic rift basins and outboard to the Jurassic ocean floor. A laterally varying density grid was then produced for the resultant sedimentary rock layer thickness based on an exponential decay function that approximates sedimentary compaction. Using constant density values for the remaining layers, we calculated an isostatically compensated Moho. The following structural inversion results of the Moho, controlled by seismic refraction depths, advances our understanding of rift-to-drift crustal geometries, and provides a regional context for additional studies.
The Effect of Finite Thickness Extent on Estimating Depth to Basement from Aeromagnetic Data
NASA Astrophysics Data System (ADS)
Blakely, R. J.; Salem, A.; Green, C. M.; Fairhead, D.; Ravat, D.
2014-12-01
Depth to basement estimation methods using various components of the spectral content of magnetic anomalies are in common use by geophysicists. Examples of these are the Tilt-Depth and SPI methods. These methods use simple models having the base of the magnetic body at infinity. Recent publications have shown that this 'infinite depth' assumption causes underestimation of the depth to the top of sources, especially in areas where the bottom of the magnetic layer is shallow, as would occur in high heat-flow regions. This error has been demonstrated in both model studies and using real data with seismic or well control. To overcome the limitation of infinite depth this contribution presents the mathematics for a finite depth contact body in the Tilt depth and SPI methods and applies it to the central Red Sea where the Curie isotherm and Moho are shallow. The difference in the depth estimation between the infinite and finite contacts is such a case is significant and can exceed 200%.
Preparing for Emergencies: A Checklist for People with Neuromuscular Diseases
TORNADO • FLASH FLOOD • EARTHQUAKE • WINTER STORM • HURRICANE • FIRE • HAZARDOUS MATERIALS SPILL Preparing for Emergencies A Checklist for ... head for a basement when there is a tornado warning, but most basements aren’t wheelchair-accessible. ...
Basement hall under the northeast part of the building. Live ...
Basement hall under the northeast part of the building. Live animal cages and dissection rooms are to the right. Note concrete footings. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA
3D Vp heterogeneity beneath the Marmara Sea: Shot tomography on a 2D OBS array
NASA Astrophysics Data System (ADS)
Bayrakci, Gaye; Laigle, Mireille; Bécel, Anne; Hirn, Alfred; Taymaz, Tuncay; Yolsal-Ćevikbilen, Seda
2010-05-01
After the 1999 Izmit and Duzce earthquakes, the multi-method SEISMARMARA seismic survey has been carried out with the aim to constrain the seismogenic part of the North Anatolian Fault (NAF) immersed into the Marmara Sea. During this survey, a network of 35 3-components Japanese Ocean Bottom Seismometers (OBS) placed on a 2D grid and land stations have recorded the current seismic activity for a period of 6 weeks and 2000 km of MCS profiles shot in the North Marmara Trough (NMT). In the present study the first arrival times of artificial sources are inverted with the well known local earthquake tomography (LET) code Simulps in order to approach the 3D upper-crustal heterogeneity which then could be implemented as initial model easily and without any loss of information into a joint inversion of the local earthquake data and shots. The 3D upper-crustal P-wave velocity heterogeneity of the North Marmara Trough (NMT) is derived by inverting a set of 16000 first arrival times of artificial sources. We have checked the sensitivity of the results to the grid geometry, the control parameters and the 1D initial velocity model. Due to a huge basement depth variation between the NMT rims and the trough itself, we have then designed a 3D a priori model by taking into account the sea-floor depth and the topographic trend of the basement. This 3D initial model allowed to include the shots recorded by 5 land stations into the inverted data set and to improve the image resolution at the borders of NMT. It allowed also to have a denser inversion grid which is needed for constraining the small wave-length heterogeneity of the Marmara Sea. The artefacts which may be due to the very large perturbations with respect to the 1D initial model were avoided with the use of this 3D initial model. The reliability of the results are validated by synthetic tests and by the comparison with the seismic reflection and refraction profiles which principal characteristics such as the sedimentary infill and basement geometry are remarkably recovered by the inversion in the well resolved regions. This study provides an unprecedented 3D view of the sedimentary thicknesses and of the basement topography which shows large vertical throws which may reach up to 7 km. It reveals also the variations of more than 2 km of the basement topography in a distance of 5 km along the sea-bottom trace of the North Anatolian Fault and its basins. The consideration of the 3D sedimentary thickness and of such basement topography is crucial for accurate relocation of the earthquakes by taking into account the 3D heterogeneity of both, upper-crustal P and S wave velocities. This 3D structure may find also further applications like in modeling studies for the evolution and the present activity of the Marmara Sea's features.
NASA Astrophysics Data System (ADS)
Gourley, J. R.; Byrne, T.
2005-12-01
An integrated data set of earthquake locations (Taiwan's Central Weather Bureau), focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS), GPS velocities and geologic data are combined to constrain the geometry and kinematics of a crustal block within the metamorphic basement of Taiwan's northeastern Central Range. The active block is bounded by two parallel seismic zones that accommodate uplift and northeastward oblique lateral extrusion. The western shear zone is a region that dips vertically to steeply west and projects generally to the western boundary between the Slate Belt and pre-Tertiary metamorphic basement. BATS focal mechanisms consistently show east-side-up, left-lateral normal displacements. Late-stage geologic structures published previously show left-lateral faulting followed by east-west extension. The eastern shear zone dips vertically to steeply west and projects to the eastern boundary of the metamorphic basement, which correlates with the eastern mountain front in this area. BATS focal mechanisms show west-side-up reverse displacements. The kinematics of these two zones define a crustal scale block that is interpreted to be moving up and northeast towards the Okinawa Trough. The extrusion of this crustal block may be driven in part by the topographic difference between the Central Range and the Okinawa Trough, as well as by the active collision between the Philippine Sea Plate and the Eurasian basement high. This proposed northeastern lateral extrusion mirrors the active lateral extrusion in southwestern Taiwan which is observed on the southern side of the Eurasian basement high collision. The involvement of the basement high in the collision and adjacent regions appears to be an important factor in understanding local structural variations in the arc-continent collision and should be considered in both forward and reverse modeling of Taiwan deformation.
NASA Technical Reports Server (NTRS)
Costes, S.; Streuli, C. H.; Barcellos-Hoff, M. H.
2000-01-01
We previously reported that laminin immunoreactivity in mouse mammary epithelium is altered shortly after whole-body irradiation with 0.8 Gy from 600 MeV/nucleon iron ions but is unaffected after exposure to sparsely ionizing radiation. This observation led us to propose that the effect could be due to protein damage from the high ionization density of the ion tracks. If so, we predicted that it would be evident soon after radiation exposure in basement membranes of other tissues and would depend on ion fluence. To test this hypothesis, we used immunofluorescence, confocal laser scanning microscopy, and image segmentation techniques to quantify changes in the basement membrane of mouse skin epidermis. At 1 h after exposure to 1 GeV/nucleon iron ions with doses from 0.03 to 1.6 Gy, neither the visual appearance nor the mean pixel intensity of laminin in the basement membrane of mouse dorsal skin epidermis was altered compared to sham-irradiated tissue. This result does not support the hypothesis that particle traversal directly affects laminin protein integrity. However, the mean pixel intensity of laminin immunoreactivity was significantly decreased in epidermal basement membrane at 48 and 96 h after exposure to 0.8 Gy 1 GeV/nucleon iron ions. We confirmed this effect with two additional antibodies raised against affinity-purified laminin 1 and the E3 fragment of the long-arm of laminin 1. In contrast, collagen type IV, another component of the basement membrane, was unaffected. Our studies demonstrate quantitatively that densely ionizing radiation elicits changes in skin microenvironments distinct from those induced by sparsely ionizing radiation. Such effects may might contribute to the carcinogenic potential of densely ionizing radiation by altering cellular signaling cascades mediated by cell-extracellular matrix interactions.
Analyzing evacuation versus shelter-in-place strategies after a terrorist nuclear detonation.
Wein, Lawrence M; Choi, Youngsoo; Denuit, Sylvie
2010-09-01
We superimpose a radiation fallout model onto a traffic flow model to assess the evacuation versus shelter-in-place decisions after the daytime ground-level detonation of a 10-kt improvised nuclear device in Washington, DC. In our model, ≈ 80k people are killed by the prompt effects of blast, burn, and radiation. Of the ≈ 360k survivors without access to a vehicle, 42.6k would die if they immediately self-evacuated on foot. Sheltering above ground would save several thousand of these lives and sheltering in a basement (or near the middle of a large building) would save of them. Among survivors of the prompt effects with access to a vehicle, the number of deaths depends on the fraction of people who shelter in a basement rather than self-evacuate in their vehicle: 23.1k people die if 90% shelter in a basement and 54.6k die if 10% shelter. Sheltering above ground saves approximately half as many lives as sheltering in a basement. The details related to delayed (i.e., organized) evacuation, search and rescue, decontamination, and situational awareness (via, e.g., telecommunications) have very little impact on the number of casualties. Although antibiotics and transfusion support have the potential to save ≈ 10k lives (and the number of lives saved from medical care increases with the fraction of people who shelter in basements), the logistical challenge appears to be well beyond current response capabilities. Taken together, our results suggest that the government should initiate an aggressive outreach program to educate citizens and the private sector about the importance of sheltering in place in a basement for at least 12 hours after a terrorist nuclear detonation. © 2010 Society for Risk Analysis.
The timing of metamorphism in the Odenwald-Spessart basement, Mid-German Crystalline Zone
NASA Astrophysics Data System (ADS)
Will, T. M.; Schulz, B.; Schmädicke, E.
2017-07-01
New in situ electron microprobe monazite and white mica 40Ar/39Ar step heating ages support the proposition that the Odenwald-Spessart basement, Mid-German Crystalline Zone, consists of at least two distinct crustal terranes that experienced different geological histories prior to their juxtaposition. The monazite ages constrain tectonothermal events at 430 ± 43 Ma, 349 ± 14 Ma, 331 ± 16 Ma and 317 ± 12 Ma/316 ± 4 Ma, and the 40Ar/39Ar analyses provide white mica ages of 322 ± 3 Ma and 324 ± 3 Ma. Granulite-facies metamorphism occurred in the western Odenwald at c. 430 and 349 Ma, and amphibolite-facies metamorphism affected the eastern Odenwald and the central Spessart basements between c. 324 and 316 Ma. We interpret these data to indicate that the Otzberg-Michelbach Fault Zone, which separates the eastern Odenwald-Spessart basement from the Western Odenwald basement, is part of the Rheic Suture, which marks the position of a major Variscan plate boundary separating Gondwana- and Avalonia-derived crustal terranes. The age of the Carboniferous granulite-facies event in the western Odenwald overlaps with the minimum age of eclogite-facies metamorphism in the adjacent eastern Odenwald. The granulite- and eclogite-facies rocks experienced contrasting pressure-temperature paths but occur in close spatial proximity, being separated by the Rheic Suture. As high-pressure and high-temperature metamorphisms are of similar age, we interpret the Odenwald-Spessart basement as a paired metamorphic belt and propose that the adjacent high-pressure and high-temperature rocks were metamorphosed in the same subduction zone system. Juxtaposition of these rocks occurred during the final stages of the Variscan orogeny along the Rheic Suture.
Neotectonic Reactivation of the Gobi Corridor Region, Central Asia
NASA Astrophysics Data System (ADS)
Cunningham, D.
2016-12-01
In this presentation, I review the neotectonic development of the Gobi Corridor region of Central Asia and explore crustal controls on the style and kinematics of mountain building north of Tibet. The Gobi Corridor includes the actively deforming Gobi Altai-Altai, eastern Tien Shan, Beishan and North Tibetan Foreland. Archean basement beneath Central Mongolia has acted as a rigid backstop focusing Late Miocene-Recent crustal reactivation in the Altai and Gobi Altai around the western, southwestern and southern margins of the Hangay Dome. The northern Gobi Altai is characterized by sinistral transpression and growth and coalescence of restraining bends and thrust blocks along the Ih Bogd deforming belt. The southern Gobi Altai is kinematically linked with the easternmost Tien Shan as a separate deforming belt nucleated along the Gobi-Tien Shan sinistral strike-slip fault system. The enigmatic Beishan plateau may be a peripheral bulge to northernmost Tibet and contains two structural culminations within it characterized by sinistral transpression along the Mazong Shan and Xingxingxia fault systems. The North Tibetan foreland contains the Sanweishan and Nanjieshan basement ridges also characterized by Quaternary uplift and oblique sinistral-thrust kinematics. The diffusely reactivated, crust of the Gobi Corridor is largely comprised of amalgamated Cambrian-Permian terranes that are non-cratonized. The region was mechanically weakened by widespread Cretaceous continental rifting and thermally weakened by Jurassic-Tertiary basaltic volcanism and can be regarded as the rheological `soft core' of Central Asia. The kinematics of Late Cenozoic reactivation throughout the region are fundamentally controlled by the angular relationship between SHmax and older basement strike trends. The diffuse array of faults active in the Quaternary and distribution of historical seismicity suggests that tectonic loading is shared by many potentially active faults, thus extrapolation of derived fault slip rates to derive seismic hazard assessments is not straightforward. Intracontinental, intraplate deformation in the Gobi Corridor region reminds us that reactivation of non-cratonized continental interior regions may be a common effect of distant continental collisions.
NASA Astrophysics Data System (ADS)
Canales, I.; Fucugauchi, J. U.; Perez-Cruz, L. L.; Camargo, A. Z.; Perez-Cruz, G.
2011-12-01
Asymmetries in the geophysical signature of Chicxulub crater are being evaluated to investigate on effects of impact angle and trajectory and pre-existing target structural controls for final crater form. Early studies interpreted asymmetries in the gravity anomaly in the offshore sector to propose oblique either northwest- and northeast-directed trajectories. An oblique impact was correlated to the global ejecta distribution and enhanced environmental disturbance. In contrast, recent studies using marine seismic data and computer modeling have shown that crater asymmetries correlate with pre-existing undulations of the Cretaceous continental shelf, suggesting a structural control of target heterogeneities. Documentation of Yucatan subsurface stratigraphy has been limited by lack of outcrops of pre-Paleogene rocks. The extensive cover of platform carbonate rocks has not been affected by faulting or deformation and with no rivers cutting the carbonates, information comes mainly from the drilling programs and geophysical surveys. Here we revisit the subsurface stratigraphy in the crater area from the well log data and cores retrieved in the drilling projects and marine seismic reflection profiles. Other source of information being exploited comes from the impact breccias, which contain a sampling of disrupted target sequences, including crystalline basement and Mesozoic sediments. We analyze gravity and seismic data from the various exploration surveys, including multiple Pemex profiles in the platform and the Chicxulub experiments. Analyses of well log data and seismic profiles identify contacts for Lower Cretaceous, Cretaceous/Jurassic and K/Pg boundaries. Results show that the Cretaceous continental shelf was shallower on the south and southwest than on the east, with emerged areas in Quintana Roo and Belize. Mesozoic and upper Paleozoic sediments show variable thickness, possibly reflecting the crystalline basement regional structure. Paleozoic and Precambrian basement outcrops are located farther to the southeast in Belize and northern Guatemala. Inferred shelf paleo-bathymetry supports existence of a sedimentary basin extending to the northeast, where crater rim and terrace zones are subdued in the seismic images.
NASA Astrophysics Data System (ADS)
Lacombe, Olivier; Mouthereau, FréDéRic; Angelier, Jacques; Chu, Hao-Tsu; Lee, Jian-Cheng
2003-06-01
Combined structural and tectonic analyses demonstrate that the NW Foothills of the Taiwan collision belt constitute mainly an asymmetric "primary arc" type fold-thrust belt. The arcuate belt developed as a basin-controlled salient in the portion of the foreland basin that was initially thicker, due to the presence of a precollisional depocenter (the Taihsi basin). Additional but limited buttress effects at end points related to interaction with foreland basement highs (Kuanyin and Peikang highs) may have also slightly enhanced curvature. The complex structural pattern results from the interaction between low-angle thrusting related to shallow decollement tectonics and oblique inversion of extensional structures of the margin on the southern edge of the Kuanyin basement high. The tectonic regimes and mechanisms revealed by the pattern of paleostress indicators such as striated outcrop-scale faults are combined with the orientation and geometry of offshore and onshore regional faults in order to accurately define the Quaternary kinematics of the propagating units. The kinematics of this curved range is mainly controlled by distributed transpressional wrenching along the southern edge of the Kuanyin high, leading to the development of a regional-scale oblique ramp, the Kuanyin transfer fault zone, which is conjugate of the NW trending Pakua transfer fault zone north of the Peikang basement high. The divergence between the N120° regional transport direction and the maximum compressive trend that evolved from N120° to N150° (and even to N-S) in the northern part of the arc effectively supports distributed wrench deformation along its northern limb during the Pleistocene. The geometry and kinematics of the western Taiwan Foothills therefore appear to be highly influenced by both the preorogenic structural pattern of the irregularly shaped Chinese passive margin and the obliquity of its Plio-Quaternary collision with the Philippine Sea plate.
UPP mediated Diabetic Retinopathy via ROS/PARP and NF-κB inflammatory factor pathways.
Luo, D-W; Zheng, Z; Wang, H; Fan, Y; Chen, F; Sun, Y; Wang, W-J; Sun, T; Xu, X
2015-01-01
Diabetic retinopathy (DR) is a leading cause of blindness in adults at working age. Human diabetic retinopathy is characterized by the basement membrane thick, pericytes loss, microaneurysms formation, retina neovascularization and vitreous hemorrhage. To investigate whether UPP activated ROS/PARP and NF-κB inflammatory factor pathways in Diabetic Retinopathy, human retinal endothelial cells (HRECs) and rats with streptozotocin-induced diabetes were used to determine the effect of UPP on ROS generation, cell apoptosis, mitochondrial membrane potential (ΔΨm) and inflammatory factor protein expression, through flow cytometry assay, immunohistochemistry, Real-time PCR, Western blot analysis and ELISA. The levels of ROS and apoptosis and the expressions of UPP (Ub and E3) and inflammatory factor protein were increased in high glucose-induced HRECs and retina of diabetic rats, while ΔΨm was decreased. The UPP inhibitor and UbshRNA could attenuate these effects through inhibiting the pathway of ROS/PARP and the expression of NF-κB inflammatory factors, and the increased UPP was a result of high glucose-induced increase of ROS generation and NF-κBp65 expression, accompanied with the decrease of ΔΨm. Clinical study showed the overexpression of UPP and detachment of epiretinal membranes in proliferative DR (PDR) patients. It has been indicated that the pathogenic effect of UPP on DR was involved in the increase of ROS generation and NF-κB expression, which associated with the ROS/PARP and NF-κB inflammatory factor pathways. Our study supports a new insight for further application of UPP inhibitor in DR treatment.
Vascular, glial, and lymphatic immune gateways of the central nervous system.
Engelhardt, Britta; Carare, Roxana O; Bechmann, Ingo; Flügel, Alexander; Laman, Jon D; Weller, Roy O
2016-09-01
Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer's disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.
Horiguchi, Kotaro; Fujiwara, Ken; Ilmiawati, Cimi; Kikuchi, Motoshi; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi
2011-07-01
Folliculostellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture exhibited marked proliferation in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In a process referred to as matricrine action, FS cells receive ECM as a signal through their receptors, which results in morphological and functional changes. In this study, we investigated matricrine signaling in FS cells and observed that the proliferation of FS cells is mediated by integrin β1, which is involved in various signaling pathways for cell migration and proliferation in response to ECM. Then, we analyzed downstream events of the integrin β1 signaling pathway in the proliferation of FS cells and identified caveolin 3 as a potential candidate molecule. Caveolin 3 is a membrane protein that binds cholesterol and a number of signaling molecules that interact with integrin β1. Using specific small interfering RNA of caveolin 3, the proliferation of FS cells was inhibited. Furthermore, caveolin 3 drove activation of the mitogen-activated protein kinase (MAPK) signaling cascades, which resulted in upregulation of cyclin D1 in FS cells. These findings suggest that matricrine signaling in the proliferation of FS cells was transduced by a caveolin 3-mediated integrin β1 signaling pathway and subsequent activation of the MAPK pathway. © 2011 Society for Endocrinology
7. AGENT STORAGE TANKS LOCATED IN CONCRETE BASEMENT. PHOTOGRAPH IS ...
7. AGENT STORAGE TANKS LOCATED IN CONCRETE BASEMENT. PHOTOGRAPH IS OF THE EASTERN MOST TANK LOOKING SOUTH. - Rocky Mountain Arsenal, Tank House, Quadrant 1, approximately 1000 feet South of December Seventh Avenue; 2200 feet East of D Street, Commerce City, Adams County, CO
71. (Credit JTL) Pipe gallery looking south in basement underneath ...
71. (Credit JTL) Pipe gallery looking south in basement underneath 1910-11 and 1924 filter wing extensions. Note bottoms of converted New York horizontal pressure filters in right background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
22. INTERIOR VIEW, BASEMENT UNDER NORTH ROOM OF MAIN BLOCK, ...
22. INTERIOR VIEW, BASEMENT UNDER NORTH ROOM OF MAIN BLOCK, VIEW OF NORTHWEST WALL SHOWING CORBELING BASE OF FIRST FLOOR CHIMNEY BLOCK WITH STOVE-PIPE HOLE, AND MORTISE AND TENON FRAMING FOR HEARTH BED - Clifton Farm, Off Baker Road, Frederick, Frederick County, MD
29 CFR 1910.219 - Mechanical power-transmission apparatus.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 5 2011-07-01 2011-07-01 false Mechanical power-transmission apparatus. 1910.219 Section... Mechanical power-transmission apparatus. (a) General requirements. (1) This section covers all types and... apparatus located in basements. All mechanical power transmission apparatus located in basements, towers...
29 CFR 1910.219 - Mechanical power-transmission apparatus.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 5 2010-07-01 2010-07-01 false Mechanical power-transmission apparatus. 1910.219 Section... Mechanical power-transmission apparatus. (a) General requirements. (1) This section covers all types and... apparatus located in basements. All mechanical power transmission apparatus located in basements, towers...
6. VIEW OF BASEMENT, LOOKING NORTHEAST TOWARD THIRD TURBINE. VISIBLE ...
6. VIEW OF BASEMENT, LOOKING NORTHEAST TOWARD THIRD TURBINE. VISIBLE IS THE LINE SHAFTING THAT DROVE THE MILL'S WATER-POWERED MACHINERY. Photographer: Jet T. Lowe, 1985 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH
Basement geology of the National Petroleum Reserve Alaska (NPRA), Northern Alaska
Saltus, R.W.; Hudson, T.L.; Phillips, J.D.; Kulander, C.; Dumoulin, Julie A.; Potter, C.
2002-01-01
Gravity, aeromagnetic, seismic, and borehole information enable mapping of crustal basement characteristics within the National Petroleum Reserve Alaska (NPRA). In general, the pre-Mississippian basement of the southern portion of the NPRA is different from that in the north in that it is deeper and thinner, is made up of dense magnetic rocks, is cut by more normal faults, and underlies thicker accumulations of Mississippian to Triassic Ellesmerian sequence sedimentary rocks. Mafic igneous rocks within the basement and locally within the deeper Ellesmerian sequence sedimentary section could explain the observed density and magnetic variations. Because these variations spatially overlap thicker Ellesmerian sequence sediment accumulations, they may have developed, at least in part, during Mississippian to Triassic extension and basin formation. If this period of extension, and postulated mafic magmatism, was accompanied by higher heat flow, then early Ellesmerian sequence clastic sediments may have become mature for hydrocarbon generation (Magoon and Bird, 1988). This could have produced an early petroleum system in the Colville basin.
Collagen IV Diseases: A Focus on the Glomerular Basement Membrane in Alport Syndrome
Cosgrove, Dominic; Liu, Shiguang
2016-01-01
Alport syndrome is the result of mutations in any of three type IV collagen genes, COL4A3, COL4A4, or COL4A5. Because the three collagen chains form heterotrimers, there is an absence of all three proteins in the basement membranes where they are expressed. In the glomerulus, the mature glomerular basement membrane type IV collagen network, normally comprised of two separate networks, α3(IV)/α4(IV)/α5(IV) and α1(IV)/α2(IV), is comprised entirely of collagen α1(IV)/α2. This review addresses the current state of our knowledge regarding the consequence of this change in basement membrane composition, including both the direct, via collagen receptor binding, and indirect, regarding influences on glomerular biomechanics. The state of our current understanding regarding mechanisms of glomerular disease initiation and progression will be examined, as will the current state of the art regarding emergent therapeutic approaches to slow or arrest glomerular disease in Alport patients. PMID:27576055
Kelley, Laura C.; Wang, Zheng; Hagedorn, Elliott J.; Wang, Lin; Shen, Wanqing; Lei, Shijun; Johnson, Sam A.; Sherwood, David R.
2018-01-01
Cell invasion through basement membrane (BM) barriers is crucial during development, leukocyte trafficking, and for the spread of cancer. Despite its importance in normal and diseased states, the mechanisms that direct invasion are poorly understood, in large part because of the inability to visualize dynamic cell-basement membrane interactions in vivo. This protocol describes multi-channel time-lapse confocal imaging of anchor cell invasion in live C. elegans. Methods presented include outline slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min), and quantitative analysis (variable timing). Images acquired enable direct measurement of invasive dynamics including invadopodia formation, cell membrane protrusions, and BM removal. This protocol can be combined with genetic analysis, molecular activity probes, and optogenetic approaches to uncover molecular mechanisms underlying cell invasion. These methods can also be readily adapted for real-time analysis of cell migration, basement membrane turnover, and cell membrane dynamics by any worm laboratory. PMID:28880279
NASA Astrophysics Data System (ADS)
McCarthy, A. J.; Hickey-Vargas, R.; Yogodzinski, G. M.; Ishizuka, O.; Hocking, B.; Bizimis, M.; Savov, I. P.; Kusano, Y.; Arculus, R. J.
2016-12-01
IODP Expedition 351 Site 1438 is located in the Amami-Sankaku basin, just west of the Kyushu-Palau Ridge (KPR), a remnant of the early Izu-Bonin-Mariana (IBM) volcanic arc. 150 meters of basement basalt were drilled beneath 1460 m of volcaniclastic sediments and sedimentary rock. The age range inferred for these basalts is 51-52 Ma, close to the 48-52 Ma age of basalts associated with subduction initiation in the IBM forearc (forearc basalts or FABs). Site 1438 basement basalts form several distinct subunits, all relatively mafic (MgO = 6-14 %; Mg# = 51-83). Non-fluid-mobile incompatible trace element patterns are profoundly depleted. Sm/Nd (0.34-0.43) and Lu/Hf (0.18-0.37) reach values higher than most normal MORBs while La/Yb (0.31-0.98) and Ti/V (15.8-27.0) are lower. These features are shared with basalts drilled just west of the KPR at ODP Site 1201 and DSDP Site 447, and many FABs. Abundances of fluid-mobile incompatible elements vary together and are correlated with subunits defined by flow margins and rock physical properties, suggesting control by post-eruptive seawater alteration rather than varying inputs of subduction fluids. Hf-Nd isotopes for Site 1438 basement basalts range from (present-day) ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 in a well-correlated array. Their more radiogenic Hf-isotope character could indicate an Indian-type MORB source, however, basalts with ɛHf >16.5, are more radiogenic than many Indian MORB. Pb isotope data will help distinguish differing mantle source domains and origins for fluid-mobile elements. Overall, the combined geochemical data indicate that the mantle source of basement basalts in drill sites west of the KPR (1438, 1201, 447) are closely similar to those for FAB, and that as a group, these rocks are more depleted than more than 90% of global MORB. Our interpretation is that both IBM forearc basalts and basalts from drill sites immediately west of the KPR formed by melting of the same uniquely depleted mantle source during subduction initiation. Melting may have been promoted by rapid decompression and by flux melting with a solute-poor hydrous subduction fluid. These basalts were erupted over a broad area in an extensional setting, which later narrowed as subduction and the subduction-related IBM volcanic arc became established.
NASA Astrophysics Data System (ADS)
Hutnak, M.; Fisher, A. T.; Stauffer, P.; Gable, C. W.
2005-12-01
We use two-dimensional, finite-element models of coupled heat and fluid flow to investigate local and large-scale heat and fluid transport around and between basement outcrops on a young ridge flank. System geometries and properties are based on observations and measurements on the 3.4-3.6 Ma eastern flank of the Juan de Fuca Ridge. A small area of basement exposure (Baby Bare outcrop) experiences focused hydrothermal discharge, whereas a much larger feature (Grizzly Bare outcrop) 50 km to the south is a site of hydrothermal recharge. Observations of seafloor heat flow, subseafloor pressures, and basement fluid geochemistry at and near these outcrops constrain acceptable model results. Single-outcrop simulations suggest that local convection alone (represented by a high Nusselt number proxy) cannot explain the near-outcrop heat flow patterns; rapid through-flow is required. Venting of at least 5 L/s through the smaller outcrop, a volumetric flow rate consistent with earlier estimates based on plume and outcrop measurements, is needed to match seafloor heat flow patterns. Heat flow patterns are more variable and complex near the larger, recharging outcrop. Simulations that include 5-20 L/s of recharge through this feature can replicate first-order trends in the data, but small-scale variations are likely to result from heterogeneous flow paths and vigorous, local convection. Two-outcrop simulations started with a warm hydrostatic initial condition, based on a conductive model, result in rapid fluid flow from the smaller outcrop to the larger outcrop, inconsistent with observations. Flow can be sustained in the opposite (correct) direction if it is initially forced, which generates a hydrothermal siphon between the two features. Free flow simulations maintain rapid circulation at rates consistent with observations (specific discharge of m/yr to tens of m/yr), provided basement permeability is on the order of 10-10 m2 or greater. Lateral flow rates scale inversely with the thickness of the permeable basement layer. The differential pressure needed to drive this circulation, created by the siphon, is on the order of tens to hundreds of kPa, with greater differential pressure needed when basement permeability is lower.
NASA Astrophysics Data System (ADS)
Vendeville, Bruno; Lymer, Gael; Gaullier, Virginie; Chanier, Frank; Maillard, Agnes; Sage, Françoise; Lofi, Johanna; Thinon, Isabelle
2014-05-01
The Tyrrhenian Basin opened by eastward migration of the Apennine subduction system. Rifting along the Eastern Sardinian margin started during the middle to late Miocene times and hence this timing partly overlapped the Messinian Salinity Crisis. The two "METYSS" cruises were conducted to use the deformation of the Messinian salt and its Plio-Quaternary overburden as a proxy for better delineating the tectonic history of the sub-salt basement. Many parts of the study area contain two of the most typical Messinian series of the Western Mediterranean: the Mobile Unit (MU; salt, mainly halite), overlain by the more competent Upper Unit (UU: alternating dolomitic marls and anhydrite). The brittle Plio-Quaternary cover overlies the UU. Usually, the presence of mobile salt is viewed as a nuisance for understanding crustal tectonics because salt's ability to act as a structural buffer between the basement and the cover. However, we illustrate, using examples from the Cornaglia Terrace, how we can use thin-skinned salt tectonics as indicators of vertical movements in the sub-salt, pre-Messinian basement. There, slip along N-S-trending crustal normal faults bounding basement troughs has been recorded by salt and overburden in two different manners: - First, post-salt basement faulting (typically after deposition of the Upper Unit and the early Pliocene), and some crustal-scale southward tilting, triggered along-strike (southward) thin-skinned, gliding of salt and overburden recorded by upslope extension and downslope shortening. - Second, and less obvious at first glance, there was some crustal activity along another basement trough, located East of the Baronie Ridge after deposition of the Messinian salt. This trough is narrow, trends N-S and is bounded by crustal faults. The narrow width of the trough allowed for only minor across-strike (E-W) gliding. The resulting geometry would suggest that nothing happened after Messinian times, but some structural features (confirmed by analogue modelling) show that basement fault slip and tilting (Eastward or Westward) was accommodated by lateral flow of salt, which thinned upslope and inflated downslope, while the overlying sediments remained sub-horizontal.
Passive margins: U.S. Geological Survey Line 19 across the Georges Bank basin
Klitgord, Kim D.; Schlee, John S.; Grow, John A.; Bally, A.W.
1987-01-01
Georges Bank is a shallow part of the Atlantic continental shelf southeast of New England (Emery and Uchupi, 1972, 1984). This bank, however, is merely the upper surface of several sedimentary basins overlying a block-faulted basement of igneous and metamorphic crystalline rock. Sedimentary rock forms a seaward-thickening cover that has accumulated in one main depocenter and several ancillary depressions, adjacent to shallow basement platforms of paleozoic and older crystalline rock. Georges Bank basin contains a thickness of sedimentary rock greater than 10 km, whereas the basement platforms that flank the basin are areas of thin sediment accumulation (less than 5 km).
113. ENTRANCE TO GOLD AREA SECURITY ROOM IN BASEMENT, LOCATED ...
113. ENTRANCE TO GOLD AREA SECURITY ROOM IN BASEMENT, LOCATED IN BOTTOM OF ORIGINAL WET-BUCKET ELEVATOR SHAFT, ADJACENT TO DIESTER TABLE ROOM. NOTE BOARD WITH INDIVIDUAL TAGS FOR GOLD AREA EMPLOYEES. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO
Pneumatic vacuum tube message center, basement room 23, looking southeast ...
Pneumatic vacuum tube message center, basement room 23, looking southeast toward doorway and corridor. Note soundproof walls, pedestal flooring, and cable tray suspended from the ceiling - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA
Implications of Protein Alkylation and Proteolysis on Vesication Caused by Sulfur Mustard.
1998-10-01
the integrity of the basement membrane is destroyed, such as dermatitis herpetiformis, dystrophic epidermolysis bullosa and lichen planus (Kähäri...A., Schiraldi, O., and Quaranta, V. (1996). Altered expression of basement membrane proteins and their integrin receptors in lichen planus : possible
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN BASEMENT HOUSES HAVING ADJOINING WINGS
The report gives results of tests of indoor radon reduction techniques in 12 existing Maryland houses, with the objective of determining when basement houses with adjoining wings require active soil depressurization (ASD) treatment of both wings, and when treatment of the basemen...
ETR BUILDING, TRA642, INTERIOR. BASEMENT. LIQUID SODIUM PIPING INSIDE CUBICLE ...
ETR BUILDING, TRA-642, INTERIOR. BASEMENT. LIQUID SODIUM PIPING INSIDE CUBICLE SHOWN IN ID-33-G-101. INL NEGATIVE NO. HD24-3-4. Mike Crane, Photographer, 11/2000 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
10. Historic American Buildings Survey Photocopy BASEMENT PLAN, NORTH ELEVATION, ...
10. Historic American Buildings Survey Photocopy BASEMENT PLAN, NORTH ELEVATION, ARCHITECT'S ORIGINAL PLAN Restricted: Not to be reproduced without written permission from Beinecke Rare Books Library, Yale University, New Haven, Conn. - John Pitkin Norton House, 52 Hillhouse Avenue, New Haven, New Haven County, CT
NASA Astrophysics Data System (ADS)
Bial, Julia; Büttner, Steffen; Appel, Peter
2016-11-01
Granulite facies basement gneisses from the Grünau area in the Kakamas Domain of the Namaqua-Natal Metamorphic Province in south Namibia show high-grade mineral assemblages, most commonly consisting of garnet, cordierite, sillimanite, alkali feldspar and quartz. Cordierite + hercynitic spinel, and in some places quartz + hercynitic spinel, indicate granulite facies P-T conditions. The peak assemblage equilibrated at 800-850 °C at 4.0-4.5 kbar. Sillimanite pseudomorphs after kyanite1 and late-stage staurolite and kyanite2 indicate that the metamorphic record started and ended within the stability field of kyanite. Monazite in the metamorphic basement gneisses shows a single-phase growth history dated as 1210-1180 Ma, which we interpret as the most likely age of the regional metamorphic peak. This time coincides with the emplacement of granitic plutons in the Grünau region. The ∼10 km wide, NW-SE striking Grünau shear zone crosscuts the metamorphic basement and overprints high-temperature fabrics. In sheared metapelites, the regional metamorphic peak assemblage is largely obliterated, and is replaced by synkinematic biotite2, quartz, alkali feldspar, sillimanite and cordierite or muscovite. In places, gedrite, staurolite, sillimanite and green biotite3 may have formed late- or post-kinematically. The mylonitic mineral assemblage equilibrated at 590-650 °C at 3.5-5.0 kbar, which is similar to a retrograde metamorphic stage in the basement away from the shear zone. Monazite cores in two mylonite samples are similar in texture and age (∼1200 Ma) to monazite in metapelites away from the shear zone. Chemically distinct monazite rims indicate a second growth episode at ∼1130-1120 Ma. This age is interpreted to date the main deformation episode along the Grünau shear zone and the retrograde metamorphic stage seen in the basement. The main episode of ductile shearing along the Grünau shear zone took place 70-80 million years after the thermal peak metamorphism and granite emplacement, and after substantial isobaric cooling of the basement. Metamorphism and regional shearing in the Grünau area can be correlated with the crustal evolution in the Kakamas Domain in South Africa, but not with the timing of metamorphism in the Aus area, 230 km to the NW of Grünau, which is significantly younger.
Tornado injuries related to housing in the Plainfield tornado.
Brenner, S A; Noji, E K
1995-02-01
On 28 August 1990, a tornado in Will County, Illinois, caused 29 deaths and more than US $200 million in damage. Risk factors for impact-related morbidity and mortality were studied. A case-control study was conducted of 26 people hospitalized or killed, and 116 injured, randomly selected people who were in houses damaged by the tornado. To obtain information on study subjects, telephone interviews were conducted, and hospital records, coroners' reports, and American Red Cross records were abstracted. Structural details on houses were collected from tax assessor records. Cases were more likely than controls to have been in multistorey houses than in single-storey houses (OR = 3.9; 95% CI: 1.2-13.2). The risk associated with houses built after 1972 (OR = 7.9) and those built from 1962 to 1972 (OR = 2.2) was greater than for those built before 1962 (OR = 1.0; chi 2 for trend = 12.1; P < 0.01). Being in the basement when the tornado hit was protective (OR = 0.1; 95% CI: 0.0-0.4). One-storey houses were safer than multistorey houses, and basements were safer than other rooms. The association of risk with the construction date of the house is a new finding and should be examined in further studies.
Deshpande, P; Ralston, D R; MacNeil, S
2013-09-01
Over the past two decades a range of 3D models for human skin have been described. Some include native collagen and intrinsic basement membrane proteins and fibroblasts, others are based on xenogeneic collagen or synthetic supports often without fibroblasts. The aim of this study was to look at the influence of media calcium, basement membrane and fibroblasts on the quality of 3D tissue engineered skin produced using human de-epidermized acellular dermis. In this study we deliberately used Euro skin as the source of the donor dermis to examine to what extent this could provide an effective dermal substrate for producing 3D skin for clinical use. Keratinocytes were cultured in the presence and absence of fibroblasts and both with and without basement membrane on decellularized dermis at calcium concentrations ranging from 250μM to 1.6mM over a period of 14 days. Results showed the formation of a well attached epithelium with many of the features of normal skin in the presence of a basement membrane. This was largely independent of the presence of fibroblasts and not greatly influenced by the concentration of calcium in the media. However there was a clear requirement for physiological levels of calcium in the formation of a stratified epithelium in the absence of a basement membrane. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
Valsartan ameliorates podocyte loss in diabetic mice through the Notch pathway.
Gao, Feng; Yao, Min; Cao, Yanping; Liu, Shuxia; Liu, Qingjuan; Duan, Huijun
2016-05-01
The Notch pathway is known to be linked to diabetic nephropathy (DN); however, its underlying mechanism was poorly understood. In the present study, we examined the effect of Valsartan, an angiotensin II type 1 receptor antagonist, on the Notch pathway and podocyte loss in DN. Diabetes was induced in mice by an intraperitoneal injection of streptozotocin and and this was followed by treatment with Valsartan. Levels of blood glucose, kidney weight and body weight, as well as proteinuria were measured. Samples of the kidneys were also histologically examined. The relative levels of Jagged1, Notch1, Notch intracellular domain 1 (NICD1), Hes family BHLH transcription factor 1 (Hes1) and Hes-related family BHLH transcription factor with YRPW motif 1 expression (Hey1) in the glomeruli were determined by immunohistochemical analysis, western blot analysis and RT-qPCR. The B-Cell CLL/Lymphoma 2 (Bcl-2) and p53 pathways were examined by western blot analysis. Apoptosis and detachment of podocytes from the glomerular basement membrane were examined using a TUNEL assay, flow cytometric analysis and ELISA. The number of podocytes was quantified by measuring Wilms tumor-1 (WT-1) staining. We noted that the expression of Jagged1, Notch1, NICD1, Hes1 and Hey1 was increased in a time-dependent manner in the glomeruli of mice with streptozotocin (STZ)-induced diabetes. Moreover, in diabetic mice, Valsartan significantly reduced kidney weight and proteinuria, and mitigated the pathogenic processes in the kidneys. Valsartan also inhibited the activation of Notch, Bcl-2 and p53 pathways and ameliorated podocyte loss in the glomeruli of mice with STZ-induced diabetes. Taken together, these findings indicated that Valsartan exerted a beneficial effect on reducing podocyte loss, which is associated with inhibition of Notch pathway activation in the glomeruli of diabetic mice.
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kubo, A.; Doi, A.; Tamanaha, S.
2011-12-01
Ryukyu Arc is located on the southwestern extension of Japanese Island-arc towards the east of Taiwan Island along the margin of the Asian continent off China. The island-arc forms an arcuate trench-arc-backarc system. A NW-ward subduction of the Philippine Sea Plate (PSP)at a rate of 6-8 cm/y relative to the Eurasian Plate (EP) causes frequent earthquakes. The PSP is subducting almost normally in the north-central area and more obliquely around the southwestern area. Behind the arc-trench system, the Okinawa Trough (OT) was formed by back-arc rifting, where active hydrothermal vent systems have been discovered. Several across-arc submarine faults are located in the central and southern Ryukyu Arc. The East Ishigaki Fault (EIF) is one of the across-arc normal faults located in the southwestern Ryukyu Arc, ranging by 44km and extending from SE to NW. This fault was surveyed by SEABAT8160 multibeam echo sounder and by ROV Hyper-Dolphin in 2005 and 2008. The result shows that the main fault consists of five fault segments. A branched segment from the main fault was also observed. The southernmost segment is most mature (oldest but still active) and the northernmost one is most nascent. This suggests the north-westward propagation of the fault rupture corresponding to the rifting of the southwestern OT and the southward retreat of the arc-trench system. Considering that the fault is segmented and in some part branched, propagation might take place episodically rather than continuously from SE to NW. The ROV survey also revealed the rupture process of the limestone basement along this fault from the nascent stage to the mature stage. Most of the rock samples collected from the basement outcrop were limestone blocks (or calcareous sedimentary rocks). Limestone basement was observed to the west on the hanging wall far away from the main fault scarp. Then fine-grained sand with ripple marks was observed towards the main scarp. Limestone basement was observed on the main scarp and on the footwall. These suggest that basically the both sides are composed of the same material, that the whole study area is characterised by Ryukyu limestone exposure and that the basement was split by the across-arc normal fault. Coarse-grained sand and gravels/rubbles were observed towards and on the trough of the fault. On the main scarp an outcrop of limestone basement was exposed and in some part it was broken into rubbles. These facts suggest that crash of the basement due to rupturing is taking place repeatedly on the scarp and the trough. The observed fine-grained sand on the hanging wall might be the final product by the process of the crash of the limestone basement.
Thomas, William A.; Tucker, Robert D.; Astini, Ricardo A.; Denison, Rodger E.
2012-01-01
New geochronologic data from basement rocks support the interpretation that the Argentine Precordillera (Cuyania) terrane was rifted from the Ouachita embayment of the Iapetan margin of Laurentia. New data from the Ozark dome show a range of ages in two groups at 1466 ± 3 to 1462 ± 1 Ma and 1323 ± 2 to 1317 ± 2 Ma, consistent with existing data for the Eastern Granite-Rhyolite province and Southern Granite-Rhyolite province, respectively. Similarly, a newly determined age of 1364 ± 2 Ma for the Tishomingo Granite in the Arbuckle Mountains confirms previously published analyses for this part of the Southern Granite-Rhyolite province. Along with previously reported ages from basement olistoliths in Ordovician slope deposits in the Ouachita embayment, the data for basement ages support the interpretation that rocks of the Southern Granite-Rhyolite province form the margin of Laurentian crust around the corner of the Ouachita embayment, which is bounded by the Ouachita rift and Alabama-Oklahoma transform fault. In contrast, both west and east of the corner of the Ouachita embayment, Grenville-Llano basement (approximately 1325–1000 Ma) forms the rifted margin of Laurentia. New U/Pb zircon data from basement rocks in the southern part of the Argentine Precordillera indicate crystallization ages of 1205 ± 1 Ma and 1204 ± 2 Ma, consistent with previously reported ages (approximately 1250–1000 Ma) of basement rocks from other parts of the Precordillera. These data document multiple events within the same time span as multiple events in the Grenville orogeny in eastern Laurentia, and are consistent with Grenville-age rocks along the conjugate margins of the Precordillera and Laurentia. Ages from one newly analyzed collection, however, are older than those from other basement rocks in the Precordillera. These ages, from granodioritic-granitic basement clasts in a conglomerate olistolith in Ordovician slope deposits, are 1370 ± 2 Ma and 1367 ± 5 Ma. These older ages from the Precordillera are consistent with indications that the Iapetan margin in the Ouachita embayment of Laurentia truncated the Grenville front and left older rocks of the Southern Granite-Rhyolite province (1390–1320 Ma) at the rifted margin. Chronostratigraphic correlations of synrift and post-rift sedimentary deposits on the Precordillera and on the Texas promontory of Laurentia document initial rifting in the Early Cambrian. Previously published data from synrift plutonic and volcanic rocks in the Wichita and Arbuckle Mountains along the transform-parallel intracratonic Southern Oklahoma fault system inboard from the Ouachita embayment document crystallization ages of 539–530 Ma. New data from synrift volcanic rocks in the Arbuckle Mountains in the eastern part of the Southern Oklahoma fault system yield ages of 539 ± 5 Ma and 536 ± 5 Ma, confirming the age of synrift volcanism.
SIMPSON, F O; OERTELIS, S J
1962-01-01
An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers-plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands.
Simpson, F. O.; Oertelis, S. J.
1962-01-01
An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers—plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands. PMID:13913207
29. Basement under central corridor. Shaft on right actuates cross ...
29. Basement under central corridor. Shaft on right actuates cross over valve. Shaft at left operates main flood valve to admit water into the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT
ETR BUILDING, TRA642, INTERIOR. BASEMENT. ROLLUP DOOR TO CUBICLE POSTS ...
ETR BUILDING, TRA-642, INTERIOR. BASEMENT. ROLLUP DOOR TO CUBICLE POSTS CAUTION SIGNS BECAUSE OF SODIUM HAZARD WITHIN. INL NEGATIVE NO. HD24-3-1. Mike Crane, Photographer, 11/2000 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
31. VIEW EAST IN BASEMENT OF BUILDING 41A; NOTE REMAINS ...
31. VIEW EAST IN BASEMENT OF BUILDING 41A; NOTE REMAINS OF SUPPORTS FOR OVERHEAD TROLLEY SYSTEM AT LEFT CENTER OF PHOTOGRAPH; TROLLEY SYSTEM WAS USED TO CARRY BASKETS OF SMALL PARTS ALONG THE ELECTROPLATING LINE - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT
MTR WING, TRA604, INTERIOR. BASEMENT. WEST CORRIDOR. CAMERA FACES NORTH. ...
MTR WING, TRA-604, INTERIOR. BASEMENT. WEST CORRIDOR. CAMERA FACES NORTH. HVAC AREA IS AT RIGHT OF CORRIDOR. INL NEGATIVE NO. HD46-13-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Reactor Building (PER620). Camera in first basement, facing south ...
PBF Reactor Building (PER-620). Camera in first basement, facing south and upward toward main floor. Cable trays being erected. Photographer: Kirsh. Date: May 20, 1969. INEEL negative no. 69-3110 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF (PER620) interior, second basement level. Coolant and tank piping. ...
PBF (PER-620) interior, second basement level. Coolant and tank piping. Mark on vertical pipe says, "H.P. Demin. Water." (High pressure demineralized water.) Date: March 2004. INEEL negative no. HD-41-4-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF (PER620) interior, basement level. Concrete wall shows outline of ...
PBF (PER-620) interior, basement level. Concrete wall shows outline of reactor basin. Sign says, "Flashing Light - Reactor On - Evacuate Area." Date: May 2004. INEEL negative no. HD-41-5-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
REACTIVITY MEASUREMENT FACILITY, UNDER CONSTRUCTION OVER MTR CANAL IN BASEMENT ...
REACTIVITY MEASUREMENT FACILITY, UNDER CONSTRUCTION OVER MTR CANAL IN BASEMENT OF MTR BUILDING, TRA-603. WOOD PLANKS REST ON CANAL WALL OBSERVABLE IN FOREGROUND. INL NEGATIVE NO. 11745. Unknown Photographer, 8/20/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK, LOOKING WESTSOUTHWEST, BASEMENT ...
VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK, LOOKING WEST-SOUTHWEST, BASEMENT LEVEL -15. EDGE O FRESONANCE TEST REACTOR (RTR), LATER KNOWN AS LATTICE TEST REACTOR (LTR), VISIBLE TO RIGHT OF PDP TANK - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
NORTH BASEMENT WALL. IBEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. ...
NORTH BASEMENT WALL. I-BEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. STEEL BEAMS LAY ACROSS FIRST FLOOR AWAITING CONCRETE POUR. CAMERA LOOKS SOUTHWEST. INL NEGATIVE NO. 735. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
CASE STUDY OF RADON DIAGNOSTICS AND MITIGATION IN A NEW YORK STATE SCHOOL
The paper discusses a case study of radon diagnostics and mitigation performed by EPA in a New York State school building. esearch focused on active subslab depressurization (ASD) in the basement and, to a lesser degree, the potential for radon reduction in the basement and slab-...
PBF (PER620) interior, first basement. Detail of valves and other ...
PBF (PER-620) interior, first basement. Detail of valves and other penetrations along wall. Bricks are made of high density shielding materials. Date: March 2004. INEEL negative no. HD-41-4-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
SOME RESULTS FROM THE DEMONSTRATION OF INDOOR RADON REDUCTION MEASURES IN BLOCK BASEMENT HOUSES
Active soil ventilation techniques have been tested in 26 block-wall basement houses in eastern Pennsylvania with significantly elevated indoor radon concentrations, generally above 740 Bq/m3, and the results indicate that radon levels can be reduced substantially often below the...
Early Opening of Seychelles and India: the Gop Basin Revisited
NASA Astrophysics Data System (ADS)
Dyment, J.; Vadakkeyakath, Y.; Bhattacharya, G.
2012-12-01
The deep offshore region located between the India-Pakistan continental margin and the Laxmi Ridge continental sliver contains valuable imprints of the early oceanic opening phase between India and the Seychelles. The acquisition of wide-angle deep seismic data by British scientists in 2003 provided new information about the deep structure and nature of the crust [1,2]. These data complement the large amount of seismic reflection profiles, altimetry-derived gravity and marine magnetic data which allow mapping the structure and determining the age of the oceanic crust [3,4,5]. Although these authors all agree on the oceanic nature of the Gop Basin, they surprisingly differ on the extent of the oceanic crust, the location of the extinct spreading center and the age of the basin. Here we re-evaluate published interpretations of the Gop Basin in light of all available data. The major discrepancy between [1,2,4] and [5] is the location of the extinct spreading center. [1,2,4] place it on an unnamed basement high located at 19°55'N, whereas [5] identify it with the Palitana Ridge at 19°25'N. Checking the location of the basement high of [1,2,4] on the basement isobath map of [3], based on many seismic reflection profiles, reveals that this basement high actually is an isolated feature of limited extent, which at best can be considered as part of a NE-SW trending basement high zone. This basement high locally coincides with a strong positive magnetic anomaly and a narrow gravity anomaly low but the trend of these anomalies is E-W, in contrast to the NE-SW trend of the basement in this area. For these reasons, this basement high probably is not the location of the Gop Basin extinct spreading center. Conversely, on the basement isobath map of [3], the Palitana Ridge appears as a prominent E-W high, located in the middle of a broad E-W graben, the Gop Basin. It extends over 200 km and is flanked on both sides by basement 2000 m deeper. On free air gravity anomaly maps, the Palitana Ridge lies in the center of the broad gravity high that delineates the Gop Basin. It corresponds, to the west, to a narrow gravity low, a typical signature of fossil spreading centers. The crustal structure determined by the wide angle seismic data of [1,2] shows that the base of the lower crust, the best seismically constrained interface (according to the ray diagram of [1]), is flat in the Arabian Basin, deeper under the Laxmi Ridge, shallower in the Gop Basin under the Palitana Ridge, and deeper again further north. For these reasons, the Palitana Ridge probably is the location of the Gop Basin extinct spreading centre. Further, the Gop Basin, being narrow, does not exhibit long sequences of magnetic anomalies, thereby making their interpretation difficult. Many models may fit the observed anomalies, so [4] and [5] each proposed different hypotheses. We note, however, that [4] consider a plausible (and preferred) model with "initial" spreading rates, i.e. just after break up, as fast as 68 mm/yr half-rate, which implies the Gop Basin to form in 1 Myr. Such a fast initial rate appears unrealistic, considering that initial spreading rates are usually much slower, about one fourth of that rate. [1] Minshull et al., Nature Geo., 2008 [2] Collier et al., JGR, 2009 [3] Malod et al., Tectonophys., 1997 [4] Collier et al., EPSL, 2008 [5] Yatheesh et al., EPSL, 2009
NASA Astrophysics Data System (ADS)
Amri, Dorra Tanfous; Dhahri, Ferid; Soussi, Mohamed; Gabtni, Hakim; Bédir, Mourad
2017-10-01
The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and gravity data. These data are used to highlight the tectonic control on the deposition of Jurassic and Lower Cretaceous series and to discuss the role of the main faults that controlled the basin architecture and Cretaceous-Tertiary inversion. The horizontal gravity gradient map of the study area highlights the pattern of discontinuities within the two basins and reveals the presence of deep E-W basement faults. Primary attention is given to the role played by the E-W faults system and that of the NW-SE Gafsa fault which was previously considered active since the Jurassic. Facies and thickness analyses based on new seismic interpretation and well data suggest that the E-W-oriented faults controlled the subsidence distribution especially during the Jurassic. The NW-SE faults seem to be key structures that controlled the basins paleogeography during Late Cretaceous-Cenozoic time. The upper Triassic evaporite bodies, which locally outline the main NW-SE Gafsa fault, are regarded as intrusive salt bodies rather than early diapiric extrusions as previously interpreted since they are rare and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are deep and do not exhibit true diapiric features.
Grauch, V.J.S.; Drenth, Benjamin J.
2009-01-01
High-resolution aeromagnetic data were acquired over the town of Poncha Springs and areas to the northwest to image faults, especially where they are concealed. Because this area has known hot springs, faults or fault intersections at depth can provide pathways for upward migration of geothermal fluids or concentrate fracturing that enhances permeability. Thus, mapping concealed faults provides a focus for follow-up geothermal studies. Fault interpretation was accomplished by synthesizing interpretative maps derived from several different analytical methods, along with preliminary depth estimates. Faults were interpreted along linear aeromagnetic anomalies and breaks in anomaly patterns. Many linear features correspond to topographic features, such as drainages. A few of these are inferred to be fault-related. The interpreted faults show an overall pattern of criss-crossing fault zones, some of which appear to step over where they cross. Faults mapped by geologists suggest similar crossing patterns in exposed rocks along the mountain front. In low-lying areas, interpreted faults show zones of west-northwest-, north-, and northwest-striking faults that cross ~3 km (~2 mi) west-northwest of the town of Poncha Springs. More easterly striking faults extend east from this juncture. The associated aeromagnetic anomalies are likely caused by magnetic contrasts associated with faulted sediments that are concealed less than 200 m (656 ft) below the valley floor. The faults may involve basement rocks at greater depth as well. A relatively shallow (<300 m or <984 ft), faulted basement block is indicated under basin-fill sediments just north of the hot springs and south of the town of Poncha Springs.
Sarks, Shirley; Cherepanoff, Svetlana; Killingsworth, Murray; Sarks, John
2007-03-01
To correlate basal laminar deposit (BLamD) and membranous debris, including basal linear deposit (BLinD), with the evolution of early age-related macular degeneration (AMD). A clinicopathologic collection of 132 eyes with a continuous layer of BLamD was reviewed. The thickness and type of BLamD and the sites of membranous debris deposition were correlated with the clinical progression of the disease. Two types of BLamD, termed early and late, were identified based on light microscopic appearance by using the picro-Mallory stain. The progressive accumulation of late type BLamD correlated well with increasing BLamD thickness, advancing RPE degeneration, poorer vision, increasing age, and clinically evident pigment changes. Membranous debris initially accumulated diffusely as BLinD, most eyes with BLinD and early BLamD remaining funduscopically normal. However, membranous debris also formed focal collections as basal mounds internal to the RPE basement membrane and as soft drusen external to the basement membrane. Eyes in which membranous debris remained confined to basal mounds belonged to older patients with poorer vision, whereas patients with soft drusen were younger and had better vision. The presence of BLinD and early BLamD define threshold AMD, which manifests clinically as a normal fundus. Although late BLamD correlates most closely with clinical pigment abnormalities, it is the quantity and sites of membranous debris accumulation that appear to determine whether the disease develops pigment changes only or follows the alternative pathway of soft drusen formation with its attendant greater risk of choroidal neovascularization (CNV).
Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.
2014-01-01
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 hr post-SM exposure. After 96 hr, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermalepidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. PMID:25127551
Chang, Yoke-Chen; Wang, James D; Hahn, Rita A; Gordon, Marion K; Joseph, Laurie B; Heck, Diane E; Heindel, Ned D; Young, Sherri C; Sinko, Patrick J; Casillas, Robert P; Laskin, Jeffrey D; Laskin, Debra L; Gerecke, Donald R
2014-10-15
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal-epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. Copyright © 2014 Elsevier Inc. All rights reserved.
Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan
NASA Astrophysics Data System (ADS)
Aslam, K.; Khan, M.; Liu, Y.; Farid, A.
2017-12-01
The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.
NASA Astrophysics Data System (ADS)
Saura, Eduard; Garcia-Castellanos, Daniel; Casciello, Emilio; Vergés, Jaume
2014-05-01
Protracted Arabia-Eurasia convergence resulted in the closure of the >2000 km wide Neo-Tethys Ocean from early Late Cretaceous to Recent. This process was controlled by the structure of the NE margin of the Arabian plate, the NE-dipping oceanic subduction beneath Eurasia, the obduction of oceanic lithosphere and the collision of small continental and volcanic arc domains of the SW margin of Eurasia. The evolution of the Zagros Amiran and Mesopotamian foreland basins is studied in this work along a ~700 km long transect in NW Zagros constrained by field, seismic and published data. We use the well-defined geometries and ages of the Amiran and Mesopotamian foreland basins to estimate the elastic thickness of the lithosphere and model the evolution of the deformation to quantitatively link the topographic, tectonic and sedimentary evolution of the system. Modelling results show two major stages of emplacement. The obduction (pre-collision) stage involves the thin thrust sheets of the Kermanshah complex together with the Bisotun basement. The collision stage corresponds to the emplacement of the basement duplex and associated crustal thickening, coeval to the out of sequence emplacement of Gaveh Rud and Imbricated Zone in the hinterland. The geodynamic model is consistent with the history of the foreland basins, with the regional isostasy model, and with a simple scenario for the surface process efficiency. The emplacement of Bisotun basement during obduction tectonically loaded and flexed the Arabian plate triggering deposition in the Amiran foreland basin. The basement units emplaced during the last 10 My, flexed the Arabian plate below the Mesopotamian basin. During this stage, material eroded from the Simply Folded belt and the Imbricated zone was not enough to fill the Mesopotamian basin, which, according to our numerical model results, required a maximum additional sediment supply of 80 m/Myr. This additional supply had to be provided by an axial drainage system, which can be correlated by the income of paleo-Tigris and paleo-Eufrates rivers transporting sediments from north-westernmost areas.
Fracture controls on valley persistence: the Cairngorm Granite pluton, Scotland
NASA Astrophysics Data System (ADS)
Hall, A. M.; Gillespie, M. R.
2017-09-01
Valleys are remarkably persistent features in many different tectonic settings, but the reasons for this persistence are rarely explored. Here, we examine the structural controls on valleys in the Cairngorms Mountains, Scotland, part of the passive margin of the eastern North Atlantic. We consider valleys at three scales: straths, glens and headwater valleys. The structural controls on valleys in and around the Cairngorm Granite pluton were examined on satellite and aerial photographs and by field survey. Topographic lineaments, including valleys, show no consistent orientation with joint sets or with sheets of microgranite and pegmatitic granite. In this granite landscape, jointing is not a first-order control on valley development. Instead, glens and headwater valleys align closely to quartz veins and linear alteration zones (LAZs). LAZs are zones of weakness in the granite pluton in which late-stage hydrothermal alteration and hydro-fracturing have greatly reduced rock mass strength and increased permeability. LAZs, which can be kilometres long and >700 m deep, are the dominant controls on the orientation of valleys in the Cairngorms. LAZs formed in the roof zone of the granite intrusion. Although the Cairngorm pluton was unroofed soon after emplacement, the presence of Old Red Sandstone (ORS) outliers in the terrain to the north and east indicates that the lower relief of the sub-ORS basement surface has been lowered by <500 m. Hence, the valley patterns in and around the Cairngorms have persisted through >1 km of vertical erosion and for 400 Myr. This valley persistence is a combined product of regionally low rates of basement exhumation and of the existence of LAZs in the Cairngorm pluton and sub-parallel Caledonide fractures in the surrounding terrain with depths that exceed 1 km.
NASA Astrophysics Data System (ADS)
Kayode, John Stephen; Nawawi, M. N. M.; Abdullah, Khiruddin B.; Khalil, Amin E.
2017-01-01
The integration of Aeromagnetic data and remotely sensed imagery with the intents of mapping the subsurface geological structures in part of the South-western basement complex of Nigeria was developed using the PCI Geomatica Software. 2013. The data obtained from the Nigerian Geological Survey Agency; was corrected using Regional Residual Separation of the Total Magnetic field anomalies enhanced, and International Geomagnetic Reference Field removed. The principal objective of this study is, therefore, to introduce a rapid and efficient method of subsurface structural depth estimate and structural index evaluation through the incorporation of the Euler Deconvolution technique into PCI Geomatica 2013 to prospect for subsurface geological structures. The shape and depth of burial helped to define these structures from the regional aeromagnetic map. The method enabled various structural indices to be automatically delineated for an index of between 0.5 SI and 3.0 SI at a maximum depth of 1.1 km that clearly showed the best depths estimate for all the structural indices. The results delineate two major magnetic belts in the area; the first belt shows an elongated ridge-like structure trending mostly along the NorthNortheast-SouthSouthwest and the other anomalies trends primarily in the Northeast, Northwest, Northeast-Southwest parts of the study area that could be attributed to basement complex granitic intrusions from the tectonic history of the area. The majority of the second structures showed various linear structures different from the first structure. Basically, a significant offset was delineated at the core segment of the study area, suggesting a major subsurface geological feature that controls mineralisation in this area.
NASA Astrophysics Data System (ADS)
Yassaghi, A.; Naeimi, A.
2011-08-01
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic-Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N-S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.
NASA Technical Reports Server (NTRS)
Sobel, Edward R.; Oskin, Michael; Burbank, Douglas; Mikolaichuk, Alexander
2005-01-01
The Kyrgyz Range, the northernmost portion of the Kyrgyzstan Tien Shan, displays topographic evidence for lateral propagation of surface uplift and exhumation. The highest and most deeply dissected segment lies in the center of the range. To the east, topography and relief decrease, and preserved remnants of a Cretaceous regional erosion surface imply minimal amounts of bedrock exhumation. The timing of exhumation of range segments defines the lateral propagation rate of the range-bounding reverse fault and quantifies the time and erosion depth needed to transform a mountain range from a juvenile to a mature morphology. New apatite fission-track (AFT) data from three transects from the eastern Kyrgyz Range, combined with published AFT data, demonstrate that the range has propagated over 110 km eastwards over the last 7-11 Myr. Based on the thermal and topographic evolutionary history, we present a model for a time-varying exhumation rate driven by rock uplift and changes in erodability and the time scale of geomorphic adjustment to surface uplift. Easily eroded, Cenozoic sedimentary rocks overlying resistant basement control early, rapid exhumation and slow surface upliftrates. As increasing amounts of resistant basement are exposed, exhumation rates decrease while surface uplift rates are sustained or increase, thereby growing topography. As the range becomes high enough to cause ice accumulation and develop steep river valleys, fluvial and glacial erosion become more powerful and exhumation rates once again increase. Independently determined range-noma1 shortening rates have also varied over time, suggesting a feedback between erosional efficiency and shortening rate.
Lung-Specific Loss of α3 Laminin Worsens Bleomycin-Induced Pulmonary Fibrosis
Morales-Nebreda, Luisa I.; Rogel, Micah R.; Eisenberg, Jessica L.; Hamill, Kevin J.; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A.; Ridge, Karen M.; Misharin, Alexander V.; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M.; Pardo, Annie; Selman, Moises; Jones, Jonathan C. R.
2015-01-01
Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3fl/fl). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression. PMID:25188360
Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.
Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott
2015-04-01
Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.
NASA Astrophysics Data System (ADS)
Belkhiria, W.; Boussiga, H.; Inoubli, M. H.
2017-05-01
The transition zone between western and central Mediterranean domains presents a key area to investigate kinematic interactions within the adjacent orogen systems such as the easternmost Atlas foreland-and-thrust belt. Gravity and seismic data revealed a highly structured basement, characterizing a series of structural highs and lows delimited by high-angle N-S, E-W, and NW-SE extensional faults. This basement architecture is inherited from successive extensional events related to the openings of the Triassic-Early Cretaceous Tethys oceans (i.e., Alpine Tethys, Ligurian Tethys, and Mesogea). Throughout this period, this mosaic of continental blocks significantly controlled the thickness and facies distributions. Early stages of diapirism took place along these basement faults and allowed maximum subsidence in minibasins revealed by the development of growth strata. In response to the Late Cretaceous-Eocene shortenings, these extensional faults have been reactivated as trasnpressional shear zones, giving rise to narrow pop-up structures. In addition, gravity modeling indicates crustal thinning and deep-rooted faults affecting the crust south of the Zaghouan Thrust and along E-W transfer zones. From the late Miocene, a drastic change in the stress regime is attributed to the effect of the adjacent Sicily channel on the study area. This promotes crustal thinning, basin subsidence, and channeling up of mantle-derived helium along lithospheric-scale weak zones. Our results give rise to new insights into the reactivation of inherited weakness zones of southern Tethys margin in response to the complex interaction between African and Eurasian plates accommodated by subduction, rollback, collision, and slab segmentation.
NASA Astrophysics Data System (ADS)
Bersan, Samuel Moreira; Danderfer, André; Lagoeiro, Leonardo; Costa, Alice Fernanda de Oliveira
2017-12-01
Convex-to-the-foreland map-view curves are common features in fold-thrust belts around cratonic areas. These features are easily identifiable in belts composed of supracrustal rocks but have been rarely described in rocks from relatively deeper crustal levels where plastic deformation mechanisms stand out. Several local salients have been described in Neoproterozoic marginal fold-thrust belts around the São Francisco craton. In the northern part of the Espinhaço fold-thrust belt, which borders the eastern portion of the São Francisco craton, both Archean-Paleoproterozoic basement rocks and Proterozoic cover rocks are involved in the so-called Serra Central salient. A combination of conventional structural analysis and microstructural and paleostress studies were conducted to characterize the kinematic and the overall architecture and processes involved in the generation of this salient. The results allowed us to determine that the deformation along the Serra Central salient occur under low-grade metamorphic conditions and was related to a gently oblique convergence with westward mass transport that developed in a confined flow, controlled by two transverse bounding shear zones. We propose that the Serra Central salient nucleates as a basin-controlled primary arc that evolves to a progressive arc with secondary vertical axis rotation. This secondary rotation, well-illustrated by the presence of two almost orthogonal families of folds, was dominantly controlled by buttress effect exert by a basement high located in the foreland of the Serra Central salient.
USDA-ARS?s Scientific Manuscript database
Matrigel and similar commercial products are extracts of the Engelbreth-Holm-Swarm sarcoma that provide a basement-membrane-like attachment factor or gel that is used to grow cells on or in. To ascertain further what proteins may be present in Matrigel, besides its major basement-membrane constitue...
15. ELECTRICAL REACTOR SHELVES, CONSTRUCTED OF CONCRETE IN THE BASEMENT ...
15. ELECTRICAL REACTOR SHELVES, CONSTRUCTED OF CONCRETE IN THE BASEMENT ALONG EAST WALL, WITH REACTOR PADS BEHIND FRAMED AND SCREENED CAGE, AND PORCELAIN-LINED CABLE DUCTS VISIBLE IN WALL NEAR FLOOR AT REAR - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR
PBF Reactor Building (PER620). Camera in second basement near subpile ...
PBF Reactor Building (PER-620). Camera in second basement near sub-pile room (directly below reactor vessel). Door and penetrations lead to sub-pile room. Date: August 15, 1969. Photographer: Larry Page. INEEL negative no. 69-4310 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601) BASEMENT SHOWING PROCESS ...
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601) BASEMENT SHOWING PROCESS CORRIDOR AND EIGHTEEN CELLS. TO LEFT IS LABORATORY BUILDING (CPP-602). INL DRAWING NUMBER 200-0601-00-706-051981. ALTERNATE ID NUMBER CPP-E-1981. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
"We Dominate the Basement!": How Asian American Girls Construct a Borderland Community
ERIC Educational Resources Information Center
Tokunaga, Tomoko
2016-01-01
This article, based on two years of ethnographic fieldwork, explores the ways in which eight Asian American immigrant high school girls construct a borderland community, which they call the "Basement Group," after the place where they gather at school. While the girls struggle with displacement in the borderlands, including isolation in…
Jayadev, Ranjay; Sherwood, David R
2016-07-11
In this issue of Developmental Cell, Isabella and Horne-Badovinac (2016) show that Rab10 directs site-specific secretion of basement membrane components, which assemble into fibrils that spool out to elongate the Drosophila egg chamber. These findings establish the basement membrane's active role in tissue sculpting. Copyright © 2016 Elsevier Inc. All rights reserved.
Geophysical investigation of the Raton Basin
NASA Astrophysics Data System (ADS)
Cheney, R. S.
1982-05-01
This thesis correlates gravity, magnetic, and seismic data for the Raton Basin of Colorado and New Mexico. The gravity data suggest that the study area, and the region around it, is in isostatic equilibrium. The free air anomaly in the southern portion of the study area suggests lack of local compensation due to Quaternary volocanic rock. The volcanic rock thickness, calculated from the free air gravity data, is 180 m. The gravity data indicated a crustal thickness of about 45 km, and the crust thinned from west to east. A basement relief map was constructed from the Bouquer gravity data. Computer techniques were developed to calculate the depth to the basement surface and to plot a contour map of that surface. The Raton Basin magnetic map defined the same surface found on the basement relief map since the overlying sedimentary rocks have no magnetism; therefore, any magnetism present is caused by the basement rock. A seismic survey near capulin Mountain detected a high level of microseismicity that may be caused by adjustment along faults or dormant volcanic activity.
Alport syndrome and Pierson syndrome: Diseases of the glomerular basement membrane.
Funk, Steven D; Lin, Meei-Hua; Miner, Jeffrey H
2018-04-16
The glomerular basement membrane (GBM) is an important component of the kidney's glomerular filtration barrier. Like all basement membranes, the GBM contains type IV collagen, laminin, nidogen, and heparan sulfate proteoglycan. It is flanked by the podocytes and glomerular endothelial cells that both synthesize it and adhere to it. Mutations that affect the GBM's collagen α3α4α5(IV) components cause Alport syndrome (kidney disease with variable ear and eye defects) and its variants, including thin basement membrane nephropathy. Mutations in LAMB2 that impact the synthesis or function of laminin α5β2γ1 (LM-521) cause Pierson syndrome (congenital nephrotic syndrome with eye and neurological defects) and its less severe variants, including isolated congenital nephrotic syndrome. The very different types of kidney diseases that result from mutations in collagen IV vs. laminin are likely due to very different pathogenic mechanisms. A better understanding of these mechanisms should lead to targeted therapeutic approaches that can help people with these rare but important diseases. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinze, W.J.; Braile, L.W.; Keller, G.R.
1983-05-01
An integrated geophysical/geologic program is being conducted to evaluate the rift complex hypothesis as an explanation for the earthquake activity in the New Madrid Seismic Zone and its extensions, to refine our knowledge of the rift complex, and to investigate the possible northern extensions of the New Madrid Fault Zone, especially its possible connection to the Anna, Ohio seismogenic region. Drillhole basement lithologies are being investigated to aid in tectonic analysis and geophysical interpretation, particularly in the Anna, Ohio area. Gravity and magnetic modeling combined with limited seismic reflection studies in southwest Indiana are interpreted as confirming speculation that anmore » arm of the New Madrid Rift Complex extends northeasterly into Indiana. The geologic and geophysical evidence confirm that the basement lithology in the Anna, Ohio area is highly variable reflecting a complex geologic history. The data indicate that as many as three major Late Precambrian tectonic features intersect within the basement of the Anna area suggesting that the seismicity may be related to basement zones of weakness.« less
NASA Astrophysics Data System (ADS)
Kamzolkin, V. A.; Latyshev, A. V.; Vidyapin, Yu. P.; Somin, M. L.; Smul'skaya, A. I.; Ivanov, S. D.
2018-05-01
The paper presents new data on the composition, age, and relationships (with host and overlying deposits) of intrusive rocks in the basement of the Fore Range zone (Greater Caucasus), in the Malaya Laba River Basin. The evolutionary features of intrusive units located within the Blyb metamorphic complex are described. It is shown for the first time that the lower levels of this complex are, in a structural sense, outcrops of the Late Vendian basement. The basement is composed of the Balkan Formation and a massif of quartz metadiorites that intrudes it; for the rocks of this massif, ages ranging from 549 ± 7.4 to 574.1 ± 6.7 Ma are obtained for three U-Pb datings by the SHRIMP-II method. The Herzyinan magmatic event is represented by a group of granodiorite intrusions penetrating the Blyb complex on a series of faults extending along its boundary with the Main Range zone. The obtained estimate for the U-Pb age of one of the intrusions (319 ± 3.8 Ma) corresponds to the end of the Serpukhovian stage of the Early Carboniferous.
Spatial instability of the rift in the St. Paul multifault transform fracture system, Atlantic Ocean
NASA Astrophysics Data System (ADS)
Sokolov, S. Yu.; Zaraiskaya, Yu. A.; Mazarovich, A. O.; Efimov, V. N.; Sokolov, N. S.
2016-05-01
The structure of the acoustic basement of the eastern part of the St. Paul multifault transform fracture system hosts rift paleovalleys and a paleonodal depression that mismatch the position of the currently active zones. This displacement zone, which is composed of five fault troughs, is unstable in terms of the position of the rift segments, which jumped according to redistribution of stresses. The St. Paul system is characterized by straightening of the transform transition between two remote segments of the Mid-Atlantic Ridge (MAR). The eastern part of the system contains anomalous bright-spot-like reflectors on the flattened basement, which is a result of atypical magmatism, that forms the standard ridge relief of the acoustic basement. Deformations of the acoustic basement have a presedimentation character. The present-day deformations with lower amplitude in comparison to the basement are accompanied by acoustic brightening of the sedimentary sequence. The axial Bouguer anomalies in the east of the system continue to the north for 120 km from the active segments of the St. Paul system. Currently seismically active segments of the spreading system are characterized by increasing amplitudes of the E-W displacement along the fault troughs. Cross-correlation of the lengths of the active structural elements of the MAR zone (segments of the ridge and transform fracture zones of displacement) indicates that, statistically, the multifault transform fracture system is a specific type of oceanic strike-slip faults.
HT-LP thermometamorphism modelling : Agly massif, French Pyrenees.
NASA Astrophysics Data System (ADS)
Tournaire Guille, Baptiste; Pascal, Marie-Lola; Lejeune, Anne-Marie; Annen, Catherine
2017-04-01
Owing to the strongly anomalous thermal gradients implied, HT-LP metamorphism is a worldwide type of processes in which magma emplacement and solidification at relatively high levels in the crust must be considered as a potentially major heat source. Thermal modelling (e.g. Annen et al. 2005) is an appropriate tool for constraining the part played by such processes in practical cases of thermometamorphism. We study the Agly massif, an exhumed part of middle crust from the Variscan belt in the French Pyrenees. This massif is a classical example of HT-LP metamorphism (Vielzeuf 1996), composed of a metasedimentary cover, mainly micaschists aged from upper Cambrian to Devonian, unconformably overlying an older basement of para- and orthogneisses. The Variscan metamorphic facies extend from greenschists, in the upper part of the cover, to granulites in the basement (Fonteilles 1976). The apparent geotherm of about 110°/km in the metasedimentary cover (amphibolite and greenschist facies) has given way to contrasting interpretations. Magmatic activity partly synchronous with and probably related to the Variscan thermometamorphism is observed at the outcropping level as at least 4 magmatic bodies of mantle origin (Touil 1994), of Stephanian age, including granodiorites and subordinate diorites and gabbros. Recent U/Pb datations on zircons (Tournaire-Guille et al., in prep) also reveal the presence of lower Cambrian magmatism in the gneisses, therefore confirming their interpretation as a pre-Variscan basement. The location (depth), volume (thickness), temperature (composition) and timing of magma emplacement are the parameters controlling the thermal effect to be modelled with a Matlab® code (Annen et al. 2005). In order to constrain these parameters, we have updated the lithostratigraphy and the PT conditions of the Variscan metamorphism in the Agly area. Mineralogic and petrologic data exploited in thermobarometric analyses compared with thermodynamic PerpleX modelling yield P-T peak estimates of 4.5 ± 0.5 kb and 720 ± 50 °C in the lower part of the massif, followed by an uplift at still high temperatures. Such conditions leave no clear indication of the pre-Variscan metamorphic grade in the basement, a parameter probably most important in the thermal modelling. A supposedly anhydrous or almost anhydrous character of the basement has been considered as a clue to explain the observed high thermal gradient in the overlying micaschists ('basement effect', Fonteilles & Guitard 1968). Annen, C. « Thermal Constraints on ... ». Journal of Petrology. Vol 47, n°3 , 2005. Fonteilles, M. « Essai d'interprétation... ». Thèse Université de Paris VI. 2 Tomes, 1976. Fonteilles, M., Guitard G. « L'effet de socle... ». Bull. Soc. Fr. Minér. Cristallogr. 91, 1968. Touil, A. « Géochimie et minéralogie... ». Thèse Ecole Nationale Supérieure des Mines de Paris, 1994. https://tel.archives-ouvertes.fr/tel-01052964/document. Vielzeuf, D. « Les massifs nord-pyrénéens à soubassement granulitique » in Barnolas, A., and Chiron J.C., eds., Synthèse géologique et géophysique des Pyrénées : Introduction, Géophysique, Cycle hercynien, Ed. BRGM - ITGE, v.1, p. 502-521. 1996
Thomsen, Maj Schneider; Birkelund, Svend; Burkhart, Annette; Stensballe, Allan; Moos, Torben
2017-03-01
The brain vascular basement membrane is important for both blood-brain barrier (BBB) development, stability, and barrier integrity and the contribution hereto from brain capillary endothelial cells (BCECs), pericytes, and astrocytes of the BBB is probably significant. The aim of this study was to analyse four different in vitro models of the murine BBB for expression and possible secretion of major basement membrane proteins from murine BCECs (mBCECs). mBCECs, pericytes and glial cells (mainly astrocytes and microglia) were prepared from brains of C57BL/6 mice. The mBCECs were grown as monoculture, in co-culture with pericytes or mixed glial cells, or as a triple-culture with both pericytes and mixed glial cells. The integrity of the BBB models was validated by measures of transendothelial electrical resistance (TEER) and passive permeability to mannitol. The expression of basement membrane proteins was analysed using RT-qPCR, mass spectrometry and immunocytochemistry. Co-culturing mBCECs with pericytes, mixed glial cells, or both significantly increased the TEER compared to the monoculture, and a low passive permeability was correlated with high TEER. The mBCECs expressed all major basement membrane proteins such as laminin-411, laminin-511, collagen [α1(IV)] 2 α2(IV), agrin, perlecan, and nidogen 1 and 2 in vitro. Increased expression of the laminin α5 subunit correlated with the addition of BBB-inducing factors (hydrocortisone, Ro 20-1724, and pCPT-cAMP), whereas increased expression of collagen IV α1 primarily correlated with increased levels of cAMP. In conclusion, BCECs cultured in vitro coherently form a BBB and express basement membrane proteins as a feature of maturation. Cover Image for this issue: doi: 10.1111/jnc.13789. © 2016 International Society for Neurochemistry.
An Interactive GIS Procedure for Building and Basement Corrections in Urban Microgravity Surveys
NASA Astrophysics Data System (ADS)
Chasseriau, P.; Olivier, R.
2007-12-01
Construction of a new underground railway in Lausanne, a highly-urbanized city in Switzerland, was an opportunity to test the feasibility and reliability of microgravity surveys in urban environments. The goal of our microgravity survey was to determine the depth-to-bedrock along the project corridor. Available drilling information allowed us verify the density model obtained. The geophysical results also provided spatially exhaustive subsurface information that could not be obtained with drilling methods alone. Gravimetry is one of the rare geophysical methods that can be used in noisy urban environments. An inevitable constraint of this method is terrain correction. It is not easy to obtain a simple and accurate digital elevation model (DEM) of an urban environment considering that buildings and basements are not included. However, these structures significantly influence gravity measurements. We calculate, with software that we have developed, the influence of buildings and basements in order to correct our gravity data. Our procedure permits the integration of gravity measurements, cadastral information (building typology and geometry) and basement geometry in an Access database that allows interactive determination of the Bouguer anomaly. A geographic information system (GIS) is used to extract building geometries based on cadastral information and to correct the influence of each building using a simplified architectural style. Basement voids are then introduced in the final DEM using building outlines given by cadastral maps. The depths and altitudes of the basements are measured by visiting them, and then linking the results to a regional topographic map. All of these corrections can be calculated before the gravity acquisition has begun in order to optimize the design of the survey. The surveys are executed late at night so as to minimize the effects of traffic noise. 160 gravity measurements were carried out before and after digging of the underground tunnel. The difference between gravimetric values of both surveys permitted validation of our modelling code.
New Interpretations of the Rayn Anticlines in the Arabian Basin Inferred from Gravity Modelling
NASA Astrophysics Data System (ADS)
AlMogren, S. M.; Mukhopadhyay, M.
2014-12-01
The Ryan Anticlines comprise of a regularly-spaced set of super-giant anticlines oriented NNW, developed due to E-W compression in the Arabian Basin. Most prominent of these being: the Ghawar Anticline, followed by the Summan, Khurais Anticlines and Qatar Arch. Gravity anomaly is largely characteristic for both Ryan Anticlines and its smaller size version the Jinadriah Anticline in the Riyadh Salt Basin. It displays a bipolar gravity field - a zone of gravity high running along the fold axis that is flanked by asymmetric gravity lows. Available structural models commonly infer structural uplift for the median gravity high but ignore the flanking lows. Here we interpret the bipolar gravity anomaly due primarily to such anticline structures, while, the flanking gravity lows are due to greater sediment thickness largely compacted and deformed over the basement depressions. Further complexities are created due to the salt layer and its migration at the lower horizons of sediment strata. Such diagnostic gravity anomaly pattern is taken here as an evidence for basement tectonics due to prevailing crustal dynamics in the Arabian Basin. Density inversion provides details on the subsurface density variation due to the folding and structural configuration for the sediment layers, including the salt layer, affected by basement deformation. This interpretation is largely supported by gravity forward and inversion models given in the present study what is partly constrained by the available seismic, MT and deep resistivity lines and surface geologic mapping. Most of the oil-gas fields in this part of the Arabian Basin are further known for salt diapirism. In this study the gravity interpretation help in identification of salt diapirism directly overlying the basement is firstly given here for Jinadriah Anticline; that is next extended to a regional geologic cross-section traversing the Ryan Anticlines to infer probable subsurface continuation of salt diapirs directly overlying the metamorphosed basement, sediment deformation pattern skirting the anticlines as well as their relationship of faulting to basement tectonics.
NASA Astrophysics Data System (ADS)
Kayode, J. S.; Adelusi, A. O.; Nawawi, M. N. M.; Bawallah, M.; Olowolafe, T. S.
2016-07-01
This paper presents a geophysical surveying for groundwater identification in a resistive crystalline basement hard rock in Isuada area, Southwestern Nigeria. Very low frequency (VLF) electromagnetic and electrical resistivity geophysical techniques combined with well log were used to characterize the concealed near surface conductive structures suitable for groundwater accumulation. Prior to this work; little was known about the groundwater potential of this area. Qualitative and semi-quantitative interpretations of the data collected along eight traverses at 20 m spacing discovered conductive zones suspected to be fractures, faults, and cracks which were further mapped using Vertical Electrical Sounding (VES) technique. Forty VES stations were utilized using Schlumberger configurations with AB/2 varying from 1 to 100 m. Four layers i.e. the top soil, the weathered layer, the partially weathered/fractured basement and the fresh basement were delineated from the interpreted resistivity curves. The weathered layers constitute the major aquifer unit in the area and are characterized by moderately low resistivity values which ranged between about 52 Ωm and 270 Ωm while the thickness varied from 1 to 35 m. The depth to the basement and the permeable nature of the weathered layer obtained from both the borehole and the hand-dug wells was used to categorize the groundwater potential of the study area into high, medium and low ratings. The groundwater potential map revealed that about 45% of the study area falls within the low groundwater potential rating while about 10% constitutes the medium groundwater potential and the remaining 45% constitutes high groundwater potential. The low resistivity, thick overburden, and fractured bedrock constitute the aquifer units and the series of basement depressions identified from the geoelectric sections as potential conductive zones appropriate for groundwater development.
Basement diapirism associated with the emplacement of major ophiolite nappes: Some constraints
NASA Astrophysics Data System (ADS)
Andrews-Speed, C. P.; Johns, C. C.
1985-09-01
The association of basement uplifts with major ophiolite nappes in some Phanerozoic orogenic belts suggests that gravitational instability results in the local diapiric uplift of the basement following ophiolite emplacement. In previous analyses of diapirism in crustal silicate rocks, viscous behaviour of rocks has been assumed. It is argued that this assumption is not valid. An alternative analysis is offered to determine whether or not the stress would be sufficient for diapirism to occur. The negative buoyancy stress resulting from the emplacement of an ophiolite nappe 5-15 km thick onto continental basement may be in the range 10-50 MPa. If the horizontal deviatoric stress is zero, this will be the maximum principal compressive stress. After ophiolite emplacement the thermal profile through the ophiolite and the basement will relax from a saw-tooth form to an equilibrium profile. If the ophiolite is young and thick there will be a zone of ductile strain in the lower part of the ophiolite and in the upper part of the continental basement. Results from steady-state creep experiments suggest that temperatures in this zone may be high enough for a short time after ophiolite emplacement (3 Ma or more) for the rocks in this zone to deform at geologically significant strain rates (10 -14 or greater) in response to the negative buoyancy stress. A thin ophiolite or rapid erosion will result in this ductile zone being absent or too short-lived for significant strain. Aquaeous fluids may reduce the strength of brittle rocks by decreasing the effective normal stress or by encouraging pressure solution creep. Evidence suggests that the deviatoric stress across presently active faults may be as low at 10 MPa. Thus diapirism in response to ophiolite emplacement may occur through brittle strain. Gravity spreading within the ophiolite is an alternative mechanism for accommodating the gravitational instability. The critical evidence lies in the field.
Mendez, Gregory O.; Langenheim, V.E.; Morita, Andrew; Danskin, Wesley R.
2016-09-30
In the spring of 2009, the U.S. Geological Survey, in cooperation with the San Bernardino Valley Municipal Water District, began working on a gravity survey in the Yucaipa area to explore the three-dimensional shape of the sedimentary fill (alluvial deposits) and the surface of the underlying crystalline basement rocks. As water use has increased in pace with rapid urbanization, water managers have need for better information about the subsurface geometry and the boundaries of groundwater subbasins in the Yucaipa area. The large density contrast between alluvial deposits and the crystalline basement complex permits using modeling of gravity data to estimate the thickness of alluvial deposits. The bottom of the alluvial deposits is considered to be the top of crystalline basement rocks. The gravity data, integrated with geologic information from surface outcrops and 51 subsurface borings (15 of which penetrated basement rock), indicated a complex basin configuration where steep slopes coincide with mapped faults―such as the Crafton Hills Fault and the eastern section of the Banning Fault―and concealed ridges separate hydrologically defined subbasins.Gravity measurements and well logs were the primary data sets used to define the thickness and structure of the groundwater basin. Gravity measurements were collected at 256 new locations along profiles that totaled approximately 104.6 km (65 mi) in length; these data supplemented previously collected gravity measurements. Gravity data were reduced to isostatic anomalies and separated into an anomaly field representing the valley fill. The ‘valley-fill-deposits gravity anomaly’ was converted to thickness by using an assumed, depth-varying density contrast between the alluvial deposits and the underlying bedrock.To help visualize the basin geometry, an animation of the elevation of the top of the basement-rocks was prepared. The animation “flies over” the Yucaipa groundwater basin, viewing the land surface, geology, faults, and ridges and valleys of the shaded-relief elevation of the top of the basement complex.
NASA Astrophysics Data System (ADS)
Liu, Hejuan; Giroux, Bernard; Harris, Lyal B.; Mansour, John
2017-04-01
Although eastern Canada is considered as having a low potential for high-temperature geothermal resources, the possibility for additional localized radioactive heat sources in Mesoproterozoic Grenvillian basement to parts of the Palaeozoic St. Lawrence Lowlands in Quebec, Canada, suggests that this potential should be reassessed. However, such a task remains hard to achieve due to scarcity of heat flow data and ambiguity about the nature of the basement. To get an appraisal, the impact of radiogenic heat production for different Grenville Province crystalline basement units on temperature distribution at depth was simulated using the Underworld Geothermal numerical modelling code. The region south of Trois-Rivières was selected as representative for the St. Lawrence Lowlands. An existing 3D geological model based on well log data, seismic profiles and surface geology was used to build a catalogue of plausible thermal models. Statistical analyses of radiogenic element (U, Th, K) concentrations from neighbouring outcropping Grenville domains indicate that the radiogenic heat production of rocks in the modelled region is in the range of 0.34-3.24 μW/m3, with variations in the range of 0.94-5.83 μW/m3 for the Portneuf-Mauricie (PM) Domain, 0.02-4.13 μW/m3 for the Shawinigan Domain (Morin Terrane), and 0.34-1.96 μW/m3 for the Parc des Laurentides (PDL) Domain. Various scenarios considering basement characteristics similar to the PM domain, Morin Terrane and PDL Domain were modelled. The results show that the temperature difference between the scenarios can be as much as 12 °C at a depth of 5 km. The results also show that the temperature distribution is strongly affected by both the concentration of radiogenic elements and the thermal conductivity of the basement rocks. The thermal conductivity in the basement affects the trend of temperature change between two different geological units, and the spatial extent of thermal anomalies. The validity of the results was assessed by comparing the modelled temperature and heat flow data with the available experimental data. The overall agreement is good, although some discrepancies appear at some wells. Hence, detailed investigations are needed to obtain a more reliable estimate of temperature distribution at a local scale.
NASA Astrophysics Data System (ADS)
Yogodzinski, Gene M.; Bizimis, Michael; Hickey-Vargas, Rosemary; McCarthy, Anders; Hocking, Benjamin D.; Savov, Ivan P.; Ishizuka, Osamu; Arculus, Richard
2018-05-01
Whole-rock isotope ratio (Hf, Nd, Pb, Sr) and trace element data for basement rocks at ocean drilling Sites U1438, 1201 and 447 immediately west of the KPR (Kyushu-Palau Ridge) are compared to those of FAB (forearc basalts) previously interpreted to be the initial products of IBM subduction volcanism. West-of-KPR basement basalts (drill sites U1438, 1201, 447) and FAB occupy the same Hf-Nd and Pb-Pb isotopic space and share distinctive source characteristics with εHf mostly > 16.5 and up to εHf = 19.8, which is more radiogenic than most Indian mid-ocean ridge basalts (MORB). Lead isotopic ratios are depleted, with 206Pb/204Pb = 17.8-18.8 accompanying relatively high 208Pb/204Pb, indicating an Indian-MORB source unlike that of West Philippine Basin plume basalts. Some Sr isotopes show affects of seawater alteration, but samples with 87Sr/86Sr < 0.7034 and εNd > 8.0 appear to preserve magmatic compositions and also indicate a common source for west-of-KPR basement and FAB. Trace element ratios resistant to seawater alteration (La/Yb, Lu/Hf, Zr/Nb, Sm/Nd) in west-of-KPR basement are generally more depleted than normal MORB and so also appear similar to FAB. At Site U1438, only andesite sills intruding sedimentary rocks overlying the basement have subduction-influenced geochemical characteristics (εNd ∼ 6.6, εHf ∼ 13.8, La/Yb > 2.5, Nd/Hf ∼ 9). The key characteristic that unites drill site basement rocks west of KPR and FAB is the nature of their source, which is more depleted in lithophile trace elements than average MORB but with Hf, Nd, and Pb isotope ratios that are common in MORB. The lithophile element-depleted nature of FAB has been linked to initiation of IBM subduction in the Eocene, but Sm-Nd model ages and errorchron relationships in Site U1438 basement indicate that the depleted character of the rocks is a regional characteristic that was produced well prior to the time of subduction initiation and persists today in the source of modern IBM arc volcanic rocks with Sm/Nd > 0.34 and εNd ∼ 9.0.
Randles, Michael J; Woolf, Adrian S; Huang, Jennifer L; Byron, Adam; Humphries, Jonathan D; Price, Karen L; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J; Long, David A; Lennon, Rachel
2015-12-01
Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. Copyright © 2015 by the American Society of Nephrology.
New geophysical constraints on the tectonic history of the Bering Sea
NASA Astrophysics Data System (ADS)
Barth, G. A.; Scheirer, D. S.; Christeson, G. L.; Scholl, D. W.; Stern, R. J.
2012-12-01
The Bering Sea, between the ancient Beringian subduction margin and the modern Aleutian arc, is partitioned by two major mature arc remnants (Bowers and Shirshov ridges) into three distinct deepwater basins (Aleutian, Bowers, and Komandorsky). The formation history of these ridges and basins has yet to be resolved (Stern et al., this session), although it is a key component to understanding the nature of the Aleutian system's tectonic and volcanic behavior today. New multichannel seismic (MCS) reflection and OBS refraction results from the Aleutian basin and updated regional compilations of potential field data provide crisp new views of the deepest basin sediment, basement character, crustal structure, and potential field patterns of the deepwater Bering Sea. This clarity allows us to delve into the possibilities of crustal extension, magmatism, oceanic versus backarc spreading, and subduction related bending and compression in the evolution of the Aleutian basin and its margins. We reconsider tectonic history hypotheses and focus on whether these basins formed as trapped North Pacific oceanic crust of Mesozoic age or as Paleogene backarc basins. This Bering Sea geophysical data acquisition and synthesis effort is being carried out on behalf of the interagency US Extended Continental Shelf project (continentalshelf.gov), under which 2200 km of 2D MCS data, gravity, magnetics, and over 500 km of 2D OBS refraction coverage were acquired by the USGS in 2011 (MGL1111). The new data ties to roughly 27,000 km of vintage short streamer seismic reflection coverage in the Aleutian basin region, and to the global database of marine potential field trackline data. OBS results are well-constrained, and show an oceanic crustal structure near the US-Russia international boundary line averaging 7 to 8 km thick and reminiscent of the product of a fast-spreading mid-ocean ridge system. Sediment thickness averages near 4 km. MCS profiles show ample evidence of fluid venting pathways and methane hydrate accumulation. Basement topography is extreme, with troughs and half-dome blocks bounded by scarps with 1-2 km offset. Basement reflection character includes regions of rough, blocky, and bright smooth appearances, some reminiscent of extensional basins. Updates to the regional magnetics compilation honor shipboard resolution, improve the latest published global compilation for the region, and show demonstrably north-south orientation of a lineated magnetic fabric as well as hints of spreading center propagation and complex geometries.
HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity.
Trusolino, L; Cavassa, S; Angelini, P; Andó, M; Bertotti, A; Comoglio, P M; Boccaccio, C
2000-08-01
Hepatocyte growth factor/scatter factor (HGF/SF) controls a genetic program known as 'invasive growth', which involves as critical steps cell adhesion, migration, and trespassing of basement membranes. We show here that in MDA-MB-231 carcinoma cells, these steps are elicited by HGF/SF but not by epidermal growth factor (EGF). Neither factor substantially alters the production or activity of extracellular matrix proteases. HGF/SF, but not EGF, selectively promotes cell adhesion on laminins 1 and 5, fibronectin, and vitronectin through a PI3-K-dependent mechanism. Increased adhesion is followed by enhanced invasiveness through isolated matrix proteins as well as through reconstituted basement membranes. Inhibition assays using function-blocking antibodies show that this phenomenon is mediated by multiple integrins including beta1, beta3, beta4, and beta5. HGF/SF triggers clustering of all these integrins at actin-rich adhesive sites and lamellipodia but does not quantitatively modify their membrane expression. These data suggest that HGF/SF promotes cell adhesion and invasiveness by increasing the avidity of integrins for their specific ligands.
PBF Reactor Building (PER620). Cubicle 10 area in basement. Highdensity ...
PBF Reactor Building (PER-620). Cubicle 10 area in basement. High-density shielding bricks will protect personnel from radiation coming from in-pile-tube coolant and blowdown tank. Photographer: John Capek. Date: January 26, 1970. INEEL negative no. 70-348 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETR BUILDING, TRA642, INTERIOR. BASEMENT. CORRIDOR ALONG WEST WALL OF ...
ETR BUILDING, TRA-642, INTERIOR. BASEMENT. CORRIDOR ALONG WEST WALL OF BUILDING, WHICH IS AT RIGHT OF VIEW. AUDIO ALARM IS ALONG WALL AT RIGHT. CAMERA FACES SOUTH. INL NEGATIVE NO. HD46-30-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
11. VIEW NORTH OF MACHINE SHOP IN BASEMENT OF OLD ...
11. VIEW NORTH OF MACHINE SHOP IN BASEMENT OF OLD POWERHOUSE, WITH PIPECUTTER (LEFT), DRILL PRESS LEFT (CENTER), AND GRINDER (RIGHT CENTER) BENEATH LINE SHAFTING) - Trenton Falls Hydroelectric Station, Powerhouse & Substation, On west bank of West Canada Creek, along Trenton Falls Road, 1.25 miles north of New York Route 28, Trenton Falls, Oneida County, NY
Ivory Basements and Ivory Towers
ERIC Educational Resources Information Center
Fitzgerald, Tanya
2012-01-01
The metaphors of the ivory tower and ivory basement are used in this chapter to reflect how many women understand and experience the academy. The ivory tower signifies a place that is protected, a place of privilege and authority and a place removed from the outside world (and consequently the rigours of the market place). The ivory tower, by…
2. Basement tunnel plan: Pine (Building 6, HABS DC349AA), Linden ...
2. Basement tunnel plan: Pine (Building 6, HABS DC-349-AA), Linden (Building 28 HABS DC-349-AD), Holly (Building 29, HABS DC-349-AE), East Lodge / Detached Nurses Home (Building 30, HABS DC-349-AB) - St. Elizabeths Hospital, Tunnels, 2700 Martin Luther King Jr. Avenue, Southeast, Washington, District of Columbia, DC
MTR WING, TRA604. BASEMENT FLOOR PLAN. FIREPROOF RECORD ROOM BELOW ...
MTR WING, TRA-604. BASEMENT FLOOR PLAN. FIRE-PROOF RECORD ROOM BELOW COUNTING ROOM. HEATING AND COOLING EQUIPMENT. UNSPECIFIED EXPANSION AREA ALONG WEST WALL. BLAW-KNOX 3150-4-1, 7/1950. INL INDEX NO. 531-0604-00-098-100007, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
5. INTERIOR VIEW OF BASEMENT, LOOKING WEST. DEEP DRAW, HEAVY ...
5. INTERIOR VIEW OF BASEMENT, LOOKING WEST. DEEP DRAW, HEAVY PRESS MANUFACTURED BY E. W. BLISS CO., BROOKLYN, NEW YORK. PRESS #3-3/4 S, PATENTED BY E. W. BLISS CO., AUGUST 16, 1892, AND JANUARY 31, 1893. THIS PRESS DATES FROM CA. 1920. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL
NASA Astrophysics Data System (ADS)
Ustaszewski, Kamil; Kasch, Norbert; Siegburg, Melanie; Navabpour, Payman; Thieme, Manuel
2014-05-01
The southwestern part of Thuringia (central Germany) hosts large subsurface extents of Lower Carboniferous granitoids of the Mid-German Crystalline Rise, overlain by an up to several kilometer thick succession of Lower Permian to Mid-Triassic volcanic and sedimentary rocks. The granitic basement represents a conductivity-controlled ('hot dry rock') reservoir of high potential that could be targeted for economic exploitation as an enhanced geothermal system (EGS) in the future. As a preparatory measure, the federal states of Thuringia and Saxony have jointly funded a collaborative research and development project ('Optiriss') aimed at mitigating non-productivity risks during the exploration of such reservoirs. In order to provide structural constraints on the fracture network design during reservoir stimulation, we have carried out a geometric and kinematic analysis of pre-existing fracture patterns in exposures of the Carboniferous basement and Mesozoic cover rocks within an area of c. 500 km2 around the towns of Meiningen and Suhl, where granitic basement and sedimentary cover are juxtaposed along the southern border fault of the Thuringian Forest basement high. The frequency distribution of fractures was assessed by combining outcrop-scale fracture measurements in 31 exposures and photogrammetric analysis of fractures using a LIDAR DEM with 5 m horizontal resolution and rectified aerial images at 4 localities. This analysis revealed a prevalence of NW-SE-trending fractures of mainly joints, extension veins, Permian magmatic dikes and subordinately brittle faults in the Carboniferous granitic basement, which probably resulted from Permian tectonics. In order to assess the reactivation potential of fractures in the reservoir during a stimulation phase, constraints on the current strain regime and in-situ stress magnitudes, including borehole data and earthquake focal mechanisms in a larger area, were needed. These data reveal a presently NW-SE-trending maximum horizontal stress SHmax and a strike-slip regime (Heidbach et al. 2008). In-situ stress magnitudes at a reservoir depth of 4.5 km were calculated assuming hydrostatic pore pressures and frictional equilibrium along pre-existing fractures. Our estimates allow predicting that NW-SE-trending fractures in the reservoir would probably be reactivated as dilational veins during stimulation. In order to ensure that the stimulated rock volume is as large as possible and injected fluids circulate along newly-formed fractures rather than other pre-existing fractures, hydraulic fracturing at reservoir depth should follow a well trajectory parallel to the minimum horizontal stress Shmin, i.e. subhorizontal and NE-SW-oriented. References: Heidbach, O., et al., 2008, World Stress Map database release 2008, doi:10.1594/GFZ.WSM.Rel2008.
Plateau growth around the Changma Basin in NE Tibet
NASA Astrophysics Data System (ADS)
Vernon, Rowan; Cunningham, Dickson; Zhang, Jin; England, Richard
2014-05-01
The Qilian Mountains form one of the most actively uplifting regions of the northeastern Tibetan Plateau and provide an opportunity to study the ongoing, intermediate stages of plateau growth. The crust of the Qilian Mountains consists of an orogenic collage of mid-Proterozoic to mid-Palaeozoic island arc terranes accreted to the North China Craton during the Palaeozoic. NE-directed compression related to the Indo-Asian collision began in the Early Neogene, uplifting fold-thrust mountain ranges which splay south-eastwards from the sinistral northeast-trending Altyn Tagh Fault (ATF). In this study, we investigate the post-Oligocene tectonic evolution of the northern margin of the Tibetan Plateau around the Changma Basin, at the very northeast corner of the Plateau, where the ATF forms a triple junction with the frontal Qilian Shan thrust. Our research involves synthesis of previous geological and geophysical data, remote sensing analysis and field mapping of structures along key transects. The Changma Basin is a relatively low intra-montane basin in the northeast Tibetan Plateau that is receiving alluvial infill from surrounding ranges, but is also being drained by the Su Le River, one of the largest river systems in the northeast Tibetan Plateau. The basin is also internally deforming and inverting along fault and fold zones, as well as being overthrust along some of its margins. Where older basement trends are parallel to neotectonic faults, some reactivation is inferred and locally documented through field observations. Otherwise, the post-Oligocene thrust and oblique-slip faults which are responsible for uplifting various basement blocks and inverting the Changma Basin appear discordant to nearby basement trends. Range-bounding thrust faults with the greatest along-strike continuity and relief generation are assumed to have the largest displacements, whereas other intra-range thrusts that bound uplifted limestone blocks are assumed to have lower amounts of displacement. Structural transects reveal a lack of intra-range reactivation of inherited structures or fabrics, concentrating uplift on the lithologically-controlled intra-range thrust faults and the major range-bounding thrust and oblique-slip faults. Northeast of the Changma Basin, in the Qilian Shan foreland, an east-trending belt of low folds and faulted ridges along the ATF marks the structural continuation of the Yumen Shan range. We find that uplift and growth of northeastern Tibet is complex with local variations in structural vergence, degree of strain partitioning, fault reactivation and basin inversion. This complexity reflects both the buttressing effect of the rigid Archaean basement directly to the north and the variation in the structural trends and lithologies of the Qilian basement, as well as the competition between uplift and erosion in the region.
NASA Astrophysics Data System (ADS)
Ferrer, Oriol; McClay, Ken
2017-04-01
Salt is mechanically weaker than other sedimentary rocks in rift basins. During extension it commonly acts as a strain localizer, decoupling supra- and sub-salt deformation. In this scenario the movement of the subsalt faults combined with the salt migration commonly constraint the development of syncline basins. The shape of these synclines is basically controlled by the thickness and strength of the overlying salt section, as well as by the shapes of the extensional faults, and the magnitudes and slip rates along the faults. The inherited extensional structure, and particularly the continuity of the salt section, plays a key role if the rift basin is subsequently inverted. This research utilizes scaled physical models to analyse the interplay between subsalt structures and suprasalt units during both extension and inversion in domino-style basement fault systems. The experimental program includes twelve analogue models to analyze how the thickness and stratigraphy of the salt unit as well as the thickness of the pre-extensional cover constraint the structural style during extension and subsequent inversion. Different models with the same setup have been used to examine the kinematic evolution. Model kinematics was documented and analyzed combining high-resolution photographs and sub-millimeter resolution scanners. The vertical sections carried out at the end of the experiments have been used to characterize the variations of the structures along strike using new methodologies (3D voxel models in image processing software and 3D seismic). The experimental results show that after extension, rift systems with salt affected by domino-style basement faults don't show the classical growth stratal wedges. In this case synclinal basins develop above the salt on the hangingwall of the basement faults. The evolution of supra- and subsalt deformation is initially decoupled by the salt layer. Salt migrates from the main depocenters towards the edges of the basin constraining the sinking of this basin. As extension progressed, salt was locally depleted above the basement faults. From this point the structural style changed dramatically evolving to a coupled deformation. Welding produces a variation in the position of the basin depocenter that jumps towards a new formed antithetic fault above the depleted area. During inversion this basins were progressively folded and uplifted. Shortcuts formed on subsalt fault whereas the salt section acts as a contractional detachment transferring part of the deformation out of the basin. Changes in thickness of the salt section during the inversion produced primary welds and these permitted the sub-polymer deformation to propagate upwards into the supra-salt layers. These experimental results are compared with seismic examples from different areas of the Southern North Sea.
NASA Astrophysics Data System (ADS)
Cook, B.; Henstock, T.; McNeill, L. C.; Geersen, J.; Bull, J. M.
2013-12-01
The Central Sumatran Forearc exhibits along and across strike variations in morphology and deformation style; variations occur over distances of 10's to 100's of kilometres and are related to the varying oceanic basement topography and sediment input. We present a detailed interpretation of multi-channel seismic reflection (MCS) data offshore Central Sumatra to better characterise morphologic and structural variations; provide insight into fault development; relate structures to the varying input parameters; and identify any links to seismicity. The data were collected using a 5420 cu. in. gun array and recorded with a 192-channel, 2.4 km long streamer. Data coverage extends across strike from the deformation front to the outer forearc high with a few lines extending into the forearc basin; and along strike from 1.5οS to 3oN. In the southern part of our study area, from 1.5oS to 0.5oN, oceanic basement highs outcrop at the seafloor along the outer-arc high and the sediment section thickness varies from approximately 1.2 to 3.2 km at the trench. The accretionary prism is comprised of seaward-, landward- and mixed-vergence faults which apparently sole into the top of oceanic basement. Landward-vergent faults are concentrated at the deformation front near the subducting Wharton Fossil Ridge and seem to be associated with a relatively strong downgoing plate reflection. The larger accretionary prism structure is dominated by two relatively continuous, major fault-controlled structures that divide the prism into three strike-parallel belts. From 0.5oN to 2oN, the sediment section is approximately 2.3-4.3 km thick and we do not observe oceanic basement outcrops at the seafloor. Landward-vergent faults are less common and where present they are subordinate to relatively high-offset seaward-vergent faults at the deformation front. The larger prism structure has a convex profile which results from displacement on several major faults. North of 2oN, the sediment section at the trench is >4.5 km thick and a high-amplitude, negative polarity reflector is observed approximately 500 m above the oceanic basement. Landward-vergent faults are commonly observed at the deformation front. The larger accretionary prism structure transitions to the steep frontal prism and wide plateau geometry observed off Northern Sumatra. In the southern part of our study area, short wavelength variations in structure and plate boundary reflectivity, and the Batu Islands earthquake segment boundary are coincident with the subducting Wharton Fossil Ridge. Longer-wavelength changes in the overall prism structure observed across our study area are likely related to regional changes in sediment properties and thickness and may be linked to differing rupture characteristics.
The Mesozoic palaeo-relief and immature front belt of northern Tianshan
NASA Astrophysics Data System (ADS)
Chen, K.; Gumiaux, C.; Augier, R.; Chen, Y.; Wang, Q.
2012-04-01
The modern Tianshan (central Asia) extends east-west on about 2500 km long with an average of more than 2000 m in altitude. At first order, the finite structure of this range obviously displays a crust-scale 'pop-up' of Palaeozoic rocks surrounded by two Cenozoic foreland basins. Up to now, this range is regarded as a direct consequence of the Neogene to recent reactivation of a Palaeozoic belt due to the India - Asia collision. This study focuses on the structure of the northern front area of Tianshan and is mainly based on field structural works. In particular, relationships in between sedimentary cover and basement units allow discussing the tectonic and morphological evolution of the northern Tianshan during Mesozoic and Cenozoic times. The study area is about 250 km long, from Wusu to Urumqi, along the northern piedmont of the Tianshan. Continental sedimentary series of the basin as well as structure of the cover/basement interface can well be observed along several incised valleys. Sedimentological observations argue for a limited transport distance for Lower and Uppermost Jurassic deposits that are preserved within intra-mountainous basins or within the foreland basin, along the range front. Moreover, some of the studied geological sections show that Triassic to Jurassic sedimentary series can be continuously followed from the basin to the range where they unconformably overlie the Carboniferous basement. Such onlap type structures of the Jurassic series, on top of the Palaeozoic rock units, can also be observed at more local-scale (~a few 100 m). At different scales, our observations thus clearly evidence i) the existence of a substantial relief during Mesozoic times and ii) very limited deformation, after Mesozoic, along some segments of the northern range front. Yet, thrusting of the Palaeozoic basement on the Mesozoic or Cenozoic sedimentary series of the basin is also well exposed along some other river valleys. As a consequence, the northern front of Tianshan displays as very uncylindrical with rapid lateral transitions from one type to the other. This study shows that the Cenozoic reactivation of the Tianshan range has not yielded important deformation along its contact with the juxtaposed Junggar basin, into the studied segment. Besides, the topography of the current northern Tianshan area can not be considered as the unique consequence of Cenozoic reactivation. Finally, from a compilation of structural field observations with available seismic geophysical data, regional cross sections show only moderate shortening in the deformed belt of the northern piedmont of Tianshan. Structure of the fold-and-thrust belt looks controlled by several basement thrusts faults separating rigid blocks. This study suggests that the northern front of the intra-continental Tianshan range may be considered as an immature thrust belt and is still at an early developing stage of its orogenic evolution.
Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding.
Germain, Stéphane; Monnot, Catherine; Muller, Laurent; Eichmann, Anne
2010-05-01
Angiogenesis is a highly coordinated tissue remodeling process leading to blood vessel formation. Hypoxia triggers angiogenesis via induction of expression of growth factors such as vascular endothelial growth factor (VEGF). VEGF instructs endothelial cells to form tip cells, which lead outgrowing capillary sprouts, whereas Notch signaling inhibits sprout formation. Basement membrane deposition and mechanical cues from the extracellular matrix (ECM) induced by hypoxia may participate to coordinated vessel sprouting in conjunction with the VEGF and Notch signaling pathways. Hypoxia regulates ECM composition, deposition, posttranslational modifications and rearrangement. In particular, hypoxia-driven vascular remodeling is dynamically regulated through modulation of ECM-modifying enzyme activities that eventually affect both matricellular proteins and growth factor availability. Better understanding of the complex interplay between endothelial cells and soluble growth factors and mechanical factors from the ECM will certainly have significant implications for understanding the regulation of developmental and pathological angiogenesis driven by hypoxia.
Hashimoto, Takashi; Tsuruta, Daisuke; Yasukochi, Atsushi; Imanishi, Hisayoshi; Sekine, Hideharu; Fujita, Teizo; Wanibuchi, Hideki; Gi, Min; Kárpáti, Sarolta; Sitaru, Cassian; Zone, John J; Endo, Daisuke; Abe, Shinichi; Nishino, Tomoya; Koji, Takehiko; Ishii, Norito
2016-08-23
There has been no previous systematic study of bullous skin diseases with granular basement membrane zone deposition exclusively of C3. In this study we collected 20 such patients, none of whom showed cutaneous vasculitis histopathologically. Oral dapsone and topical steroids were effective. Various serological tests detected no autoantibodies or autoantigens. Direct immunofluorescence for various complement components revealed deposition only of C3 and C5-C9, indicating that no known complement pathways were involved. Studies of in situ hybridization and micro-dissection with quantitative RT-PCR revealed a slight reduction in expression of C3 in patient epidermis. These patients may represent a new disease entity, for which we propose the term "granular C3 dermatosis". The mechanism for granular C3 deposition in these patients is unknown, but it is possible that the condition is caused by autoantibodies to skin or aberrant C3 expression in epidermal keratinocytes.
Analysis of photo linear elements, Laramie Mountains, Wyoming
NASA Technical Reports Server (NTRS)
Blackstone, D. L., Jr.
1973-01-01
The author has identified the following significant results. Photo linear features in the Precambrian rocks of the Laramie Mountains are delineated, and the azimuths plotted on rose diagrams. Three strike directions are dominant, two of which are in the northeast quadrant. Laramide folds in the Laramie basin to the west of the mountains appear to have the same trend, and apparently have been controlled by response of the basement along fractures such as have been measured from the imagery.
Williamson, J R; Hoffmann, P L; Kohrt, W M; Spina, R J; Coggan, A R; Holloszy, O
1996-03-01
The objectives of these studies were to 1) evaluate the relationships among age, glucose intolerance, and skeletal muscle capillary basement membrane (CBM) width (CBMW) and 2) determine the effects of exercise training on CBMW by comparing values of young (28 +/- 4 yr) and older (63 +/- 7 yr) athletes with those of age-matched sedentary control subjects and by measuring CBMW in older men and women before and after a 9-mo endurance-exercise training program. CBMW was measured in tissue samples obtained from the gastrocnemius muscle. CBMW in sedentary 64 +/- 3-yr-old subjects was 25% thicker than in sedentary 24 +/- 3-yr-old subjects. CBMW was similar in young and older athletes and was thinner than the CBMW of age-matched sedentary control subjects. There were no differences in CBMW among older sedentary individuals with normal or impaired glucose tolerance or mild non-insulin-dependent diabetes mellitus. Nine months of endurance exercise training reduced CBMW in older men and women by 30-40%, to widths that were not different from those of the young subjects; this response was independent of glucose tolerance status. These findings suggest that habitual exercise prevents the thickening of the skeletal muscle CBM that is characteristic of advancing age. Moreover, the thickening of the CBM appears to be readily reversed as a result of exercise training, even in older individuals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin, A.; Meneghini, C.; Mezzanotte, S.
The tongue was examined microscopically with various staining techniques 5, 15, and 30 days postirradiation. The mucous glands were consistently reduced in thickness, independent of the dose. As seen by the periodic acid-Schiff (PAS) reaction, the polysaccharide material took on a homogeneous appearance after irradiation in contrast to its granular form in control sections. The number of capillary vessels appeared to be increased 5 days after irradiation at all dose levels, whereas after 15 days the number was fewer than in control specimens. At 30 days, further changes were noted: with the 2000-r dose the number of vessels was normalmore » but with the 2 higher doses the number was below normal and many vessels were occluded. The occlusion resulted from hypertrophy of endothelial cells, and the basement membrane was thickened and stained more intensely than normal. The early apparent increase in the number of capillaries could not be traced to newly formed vessels but to dilatation of pre-existing ones. This increase in luminal diameter following irradiation was subsequently (at 15 to 30 days) obliterated by swelling of endothelium. Hemorrhagic changes were present at 5 days after all 3 doses but at 30 days were evident only after 5000 and 10 000 r. The findings are interpreted as indicating that interstitial polysaccharides are depolymerized by radiation and that the thickening of the capillary basement membrane represents increased permeability and accumulation of glycoproteins from the blood. (TCO)« less
NASA Astrophysics Data System (ADS)
Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.
2018-03-01
We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, R.G.N.; Ballantyne, P.
1990-06-01
The oldest rocks known on Halmahera, eastern Indonesia, are petrologically and chemically similar to supra-subduction ophiolites and include boninitic volcanics resembling those dredged from the Marianas forearc. The age of the ophiolitic rocks is unknown; in east Halmahera they are overlain by Late Cretaceous and Eocene volcanics and associated sediments. Similar volcanics form the basement of western Halmahera. Plutonic rocks intruding the ophiolite and associated metamorphic rocks also yield Late Cretaceous to Eocene radiometric ages. The petrology and chemistry of the igneous rocks indicate an island arc origin. These rocks are locally overlain by shallow-water Eocene limestones and all aremore » overlain unconformably by Neogene sediments. The Halmahera basement rocks have many structural, petrological, and stratigraphic similarities to submarine plateaus of the southern and northern Philippine Sea and basement terranes of the eastern Philippines. The authors suggest that these similarities indicate the existence of an extensive region of Late Cretaceous and Eocene volcanism built upon probable Mesozoic ophiolitic basement. The resultant thickened crust was later fragmented by spreading in the West Philippine Sea Central Basin and backarc spreading in the Eastern Philippine Sea. It is difficult to reconcile the present distribution of these crustal fragments with a linear arc, but equally difficult to propose a simple alternative. A proto-Philippine archipelago, with short-lived arcs separated by small oceanic basins, may be the closest modern analog. The development of younger subduction zones has been influenced by the distribution of thickened crustal fragments as they have re-amalgamated since the Miocene.« less
Singh, Pratyush; Grover, Jasleen; Byatnal, Aditi Amit; Guddattu, Vasudeva; Radhakrishnan, Raghu; Solomon, Monica Charlotte
2017-05-01
Oral lichen planus (OLP) is a chronic, inflammatory disorder that affects the oral mucous membrane. During an inflammatory response, several chemokines and cytokines are released by the cells of the immune system. Activation of MMPs, along with mast cell-derived chymase and tryptase, degrades the basement membrane structural proteins, resulting in basement membrane breaks. To investigate the association between the COX-2 expressions, presence of intact or degranulating mast cells within the connective tissue and the extent of basement membrane discontinuity in OLP cases. This study included a total of 50 formalin-fixed paraffin-embedded specimens (FFPE) of histologically confirmed cases of idiopathic oral lichen planus. A retrospective cross-sectional analysis was carried out by immunohistochemistry to study the epithelial expression of COX-2 and by the use of special stains such as toluidine blue and periodic acid-Schiff (PAS) to study the mast cell count and basement membrane changes in the oral mucosal tissue, respectively. There was a significant (P = 0.03) association between the COX-2 expressions and mast cell count. As the intensity of COX-2 expression increased from mild to moderate or severe, the number of mast cell count almost doubled. Interaction between upregulation of COX-2, mast cell and basement membrane sets a vicious cycle which relates to the chronic nature of the disease. Inhibitors of COX-2 may reduce the inflammatory process preceding the immune dysregulation in OLP. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Crustal modeling of the central part of the Northern Western Desert, Egypt using gravity data
NASA Astrophysics Data System (ADS)
Alrefaee, H. A.
2017-05-01
The Bouguer anomaly map of the central part of the Northern Western Desert, Egypt was used to construct six 2D gravity models to investigate the nature, physical properties and structures of the crust and upper mantle. The crustal models were constrained and constructed by integrating results from different geophysical techniques and available geological information. The depth to the basement surface, from eight wells existed across the study area, and the depth to the Conrad and Moho interfaces as well as physical properties of sediments, basement, crust and upper mantle from previous petrophysical and crustal studies were used to establish the gravity models. Euler deconvolution technique was carried on the Bouguer anomaly map to detect the subsurface fault trends. Edge detection techniques were calculated to outlines the boundaries of subsurface structural features. Basement structural map was interpreted to reveal the subsurface structural setting of the area. The crustal models reveals increasing of gravity field from the south to the north due to northward thinning of the crust. The models reveals also deformed and rugged basement surface with northward depth increasing from 1.6 km to 6 km. In contrast to the basement, the Conrad and Moho interfaces are nearly flat and get shallower northward where the depth to the Conrad or the thickness of the upper crust ranges from 18 km to 21 km while the depth to the Moho (crustal thickness) ranges from 31.5 km to 34 km. The crust beneath the study area is normal continental crust with obvious thinning toward the continental margin at the Mediterranean coast.
Leetaru, H.E.; McBride, J.H.
2009-01-01
Sequestration sites are evaluated by studying the local geological structure and confirming the presence of both a reservoir facies and an impermeable seal not breached by significant faulting. The Cambrian Mt. Simon Sandstone is a blanket sandstone that underlies large parts of Midwest United States and is this region's most significant carbon sequestration reservoir. An assessment of the geological structure of any Mt. Simon sequestration site must also include knowledge of the paleotopography prior to deposition. Understanding Precambrian paleotopography is critical in estimating reservoir thickness and quality. Regional outcrop and borehole mapping of the Mt. Simon in conjunction with mapping seismic reflection data can facilitate the prediction of basement highs. Any potential site must, at the minimum, have seismic reflection data, calibrated with drill-hole information, to evaluate the presence of Precambrian topography and alleviate some of the uncertainty surrounding the thickness or possible absence of the Mt. Simon at a particular sequestration site. The Mt. Simon is thought to commonly overlie Precambrian basement granitic or rhyolitic rocks. In places, at least about 549 m (1800 ft) of topographic relief on the top of the basement surface prior to Mt. Simon deposition was observed. The Mt. Simon reservoir sandstone is thin or not present where basement is topographically high, whereas the low areas can have thick Mt. Simon. The paleotopography on the basement and its correlation to Mt. Simon thickness have been observed at both outcrops and in the subsurface from the states of Illinois, Ohio, Wisconsin, and Missouri. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.
Fluid and chemical fluxes along a buried-basement ridge in the eastern Juan de Fuca Ridge flank
NASA Astrophysics Data System (ADS)
Hulme, S.; Wheat, C. G.
2010-12-01
Hydrothermal fluid circulation within oceanic crust at low temperatures affects global biogeochemical cycles, with the volume of fluid circulation rivaling that of the world’s water flux to the oceans from rivers. Our work focuses on the best studied low temperature hydrothermal system on the eastern flank of the Juan de Fuca Ridge where a buried basement ridge 100 km from the active spreading axis has been sampled with a variety of mediums. We use data from deep sea drilling, gravity coring, and submersible operations from five sites along-strike of the buried ridge to better constrain the chemical and fluid fluxes along this transect. A transport (advection-diffusion) model is applied to the data, constraining the volumetric fluid flux per unit length within the oceanic crust from 0.05 and 0.2 m3 y-1 cm-1 and identifying conservative elements within this system. Using an average fluid flux, reactive fluxes are determined for non-conservative elements within basaltic crust for twenty-four chemical species. Conservative species include K, Cl, SO4, Ba, Sr, Cs, Mo, and Y. Only Ca and the rare earth elements Ce and Gd are produced by basaltic basement. The remaining chemical species Mg, Na, ammonium, Li, Rb, Mn, Fe, Co, Zn, Cd, U, La and Yb are all consumed within upper basaltic basement. Fluxes of potentially-bioavailable redox species ammonium, Fe, and Mn into the upper basaltic basement are 3 to 20 nmol y-1cm-2. Possible mechanisms of removal are suggested, placing constraints on microbial metabolic activity and biomineralization.
Hann, Cheryl R.; Bentley, Michael D.; Vercnocke, Andrew; Ritman, Erik L.; Fautsch, Michael P.
2011-01-01
The site of outflow resistance leading to elevated intraocular pressure in primary open angle glaucoma is believed to be located in the region of Schlemm’s canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecular outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde, and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide, and scanned with 3D micro-CT at 2 µm or 5 µm voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 ± 5 µm. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 ± 13 µm. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm’s canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm’s canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for noninvasive study of the role of the trabecular outflow pathway as a whole unit. PMID:21187085
DOE Office of Scientific and Technical Information (OSTI.GOV)
C Hann; M Bentley; A Vercnocke
2011-12-31
The site of outflow resistance leading to elevated intraocular pressure in primary open-angle glaucoma is believed to be located in the region of Schlemm's canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecularmore » outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide and scanned with 3D micro-CT at 2 {mu}m or 5 {mu}m voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 {+-} 5 {mu}m. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 {+-} 13 {mu}m. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm's canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm's canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for non-invasive study of the role of the trabecular outflow pathway as a whole unit.« less
NASA Astrophysics Data System (ADS)
DeCelles, P. G.; Carrapa, B.; Gehrels, G. E.; Chakraborty, T.; Ghosh, P.
2016-12-01
The Himalaya consists of thrust sheets tectonically shingled together since 58 Ma as India collided with and slid beneath Asia. Major Himalayan structures, including the South Tibetan Detachment (STD), Main Central Thrust (MCT), Lesser Himalayan Duplex (LHD), Main Boundary Thrust (MBT), and Main Frontal Thrust (MFT), persist along strike from northwestern India to Arunachal Pradesh near the eastern end of the orogenic belt. Previous work suggests significant basement involvement and a kinematic history unique to the Arunachal Himalaya. We present new geologic and geochronologic data to support a regional structural cross section and kinematic restoration of the Arunachal Himalaya. Large Paleoproterozoic orthogneiss bodies (Bomdila Gneiss) previously interpreted as Indian basement have ages of 1774-1810 Ma, approximately 50 Ma younger than Lesser Himalayan strata into which their granitic protoliths intruded. Bomdila Gneiss is therefore part of the Lesser Himalayan cover sequence, and no evidence exists for basement involvement in the Arunachal Himalaya. Minimum shortening in rocks structurally beneath the STD is 421 km. The MCT was active during the early Miocene; STD extension overlapped MCT shortening and continued until approximately 15-12 Ma; and growth of the LHD began 11 Ma, followed by slip along the MBT (post-7.5 Ma) and MFT (post-1 Ma) systems. Earlier thrusting events involved long-distance transport of strong, low-taper thrust sheets, whereas events after 12-10 Ma stacked smaller, weaker thrust sheets into a steeply tapered orogenic wedge dominated by duplexing. A coeval kinematic transition is observed in other Himalayan regions, suggesting that orogenic wedge behavior was controlled by rock strength and erodibility.
Three-dimensional P wave velocity model for the San Francisco Bay region, California
Thurber, C.H.; Brocher, T.M.; Zhang, H.; Langenheim, V.E.
2007-01-01
A new three-dimensional P wave velocity model for the greater San Francisco Bay region has been derived using the double-difference seismic tomography method, using data from about 5,500 chemical explosions or air gun blasts and approximately 6,000 earthquakes. The model region covers 140 km NE-SW by 240 km NW-SE, extending from 20 km south of Monterey to Santa Rosa and reaching from the Pacific coast to the edge of the Great Valley. Our model provides the first regional view of a number of basement highs that are imaged in the uppermost few kilometers of the model, and images a number of velocity anomaly lows associated with known Mesozoic and Cenozoic basins in the study area. High velocity (Vp > 6.5 km/s) features at ???15-km depth beneath part of the edge of the Great Valley and along the San Francisco peninsula are interpreted as ophiolite bodies. The relocated earthquakes provide a clear picture of the geometry of the major faults in the region, illuminating fault dips that are generally consistent with previous studies. Ninety-five percent of the earthquakes have depths between 2.3 and 15.2 km, and the corresponding seismic velocities at the hypocenters range from 4.8 km/s (presumably corresponding to Franciscan basement or Mesozoic sedimentary rocks of the Great Valley Sequence) to 6.8 km/s. The top of the seismogenic zone is thus largely controlled by basement depth, but the base of the seismogenic zone is not restricted to seismic velocities of ???6.3 km/s in this region, as had been previously proposed. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Ghazian, Reza Khabbaz; Buiter, Susanne J. H.
2014-09-01
The Zagros fold-and-thrust belt formed in the collision of Arabia with Central Iran. Its sedimentary sequence is characterised by the presence of several weak layers that may control the style of folding and thrusting. We use 2-D thermo-mechanical models to investigate the role of salt in the southeast Zagros fold-and-thrust belt. We constrain the crustal and lithospheric thickness, sedimentary stratification, convergence velocity, and thermal structure of the models from available geological and geophysical data. We find that the thick basal layer of Hormuz salt in models on the scale of the upper-mantle decouples the overlying sediments from the basement and localises deformation in the sediments by trench-verging shear bands. In the collision stage of the models, basement dips with + 1° towards the trench. Including the basal Hormuz salt improves the fit of predicted topography to observed topography. We use the kinematic results and thermal structure of this large-scale model as the initial conditions of a series of upper-crustal-scale models. These models aim to investigate the effects of basal and intervening weak layers, salt strength, basal dip, and lateral salt distribution on deformation style of the simply folded Zagros. Our results show that in addition to the Hormuz salt at the base of the sedimentary cover, at least one intervening weak layer is required to initiate fold-dominated deformation in the southeast Zagros. We find that an upper-crustal-scale model, with a basal and three internal weak layers with viscosities between 5 × 1018 and 1019 Pa s, and a basement that dips + 1° towards the trench, best reproduces present-day topography and the regular folding of the sedimentary layers of the simply folded Zagros.
River capture controlling changes in the drainage pattern and river slope
NASA Astrophysics Data System (ADS)
Castelltort, Xavier; Colombo, Ferran
2016-04-01
The crystalline block of Les Guilleries, in the northeast of the Iberian Peninsula, is part of the Hercynian basement over which Palaeogene materials of the Ebro basinwere deposited . This massif is affected by a family of basement fractures of NW-SE direction which continue under the Paleogene cover. This is evident in the areas of contact between the two units. One of these areas affected by fractures was used by the primitive river Ter to transition, through a process of river capture, from the crystal unit Guilleries, with a rectangular drainage pattern, toward the sedimentary cover of the Ebro basin, with a meander drainage pattern. The fractured material that the river Ter used to deepen against the dip of the layers is more evident due to it being rigid and resistant to erosion, the Sandstones of Folgueroles Fm. The use of fractures resulted in a course of the river Ter that can be divided into three subparallel reaches with a shape of Z, which can be described as structural pseudomeanders. The change in the drainage pattern of the river between its passage accross the basement and the cover can never be the product of a process of antecedence or superimposition as has been proclaimed earlier. The rectangular pattern fits the structure of the crystalline massif. The meandering pattern on the cover is due to the difficulty of flowing through the Sandstones of Folgueroles Fm, and to the subsequent pressure loss affecting the current of the river that moves upstream beyond the Bellmunt Anticline. Up to the point where the pattern meander is conserved, river slope is below 1%. Upstream, the river slope increases significantly due to the adaptation of the river to a new layout.
How supercontinents and superoceans affect seafloor roughness.
Whittaker, Joanne M; Müller, R Dietmar; Roest, Walter R; Wessel, Paul; Smith, Walter H F
2008-12-18
Seafloor roughness varies considerably across the world's ocean basins and is fundamental to controlling the circulation and mixing of heat in the ocean and dissipating eddy kinetic energy. Models derived from analyses of active mid-ocean ridges suggest that ocean floor roughness depends on seafloor spreading rates, with rougher basement forming below a half-spreading rate threshold of 30-35 mm yr(-1) (refs 4, 5), as well as on the local interaction of mid-ocean ridges with mantle plumes or cold-spots. Here we present a global analysis of marine gravity-derived roughness, sediment thickness, seafloor isochrons and palaeo-spreading rates of Cretaceous to Cenozoic ridge flanks. Our analysis reveals that, after eliminating effects related to spreading rate and sediment thickness, residual roughness anomalies of 5-20 mGal remain over large swaths of ocean floor. We found that the roughness as a function of palaeo-spreading directions and isochron orientations indicates that most of the observed excess roughness is not related to spreading obliquity, as this effect is restricted to relatively rare occurrences of very high obliquity angles (>45 degrees ). Cretaceous Atlantic ocean floor, formed over mantle previously overlain by the Pangaea supercontinent, displays anomalously low roughness away from mantle plumes and is independent of spreading rates. We attribute this observation to a sub-Pangaean supercontinental mantle temperature anomaly leading to slightly thicker than normal Late Jurassic and Cretaceous Atlantic crust, reduced brittle fracturing and smoother basement relief. In contrast, ocean crust formed above Pacific superswells, probably reflecting metasomatized lithosphere underlain by mantle at only slightly elevated temperatures, is not associated with basement roughness anomalies. These results highlight a fundamental difference in the nature of large-scale mantle upwellings below supercontinents and superoceans, and their impact on oceanic crustal accretion.
Hayashi, Kazuhiro; Mochizuki, Mayumi; Nomizu, Motoyoshi; Uchinuma, Eijyu; Yamashina, Shohei; Kadoya, Yuichi
2002-04-01
We established a serum-free organ culture system of isolated single vibrissa rudiments taken from embryonic day 13 mice. This system allowed us to test more than 30 laminin-derived cell adhesive peptides to determine their roles on the growth and differentiation of vibrissa hair follicles. We found that the RKRLQVQLSIRT sequence (designated AG-73), which mapped to the LG-4 module of the laminin-alpha1 chain carboxyl-terminal G domain, perturbed the growth of hair follicles in vitro. AG-73 is one of the cell-binding peptides identified from more than 600 systematically synthesized 12 amino acid peptides covering the whole amino acid sequence of the laminin-alpha1, -beta1, and -gamma1 chains, by cell adhesion assay. Other cell-adhesive laminin peptides and a control scrambled peptide, LQQRRSVLRTKI, however, failed to show any significant effects on the growth of hair follicles. The AG-73 peptide binds to syndecan-1, a transmembrane heparan-sulfate proteoglycan. Syndecan-1 was expressed in both the mesenchymal condensation and the epithelial hair peg of developing vibrissa, suggesting that AG-73 binding to the cell surface syndecan-1 perturbed the epithelial-mesenchymal interactions of developing vibrissa. The formation of hair bulbs was aberrant in the explants treated with AG-73. In addition, impaired basement membrane formation, an abnormal cytoplasmic bleb formation, and an unusual basal formation of actin bundles were noted in the AG-73-treated-hair matrix epithelium, indicating that AG-73 binding perturbs various steps of epithelial morphogenesis, including the basement membrane remodeling. We also found a region-specific loss of the laminin-alpha1 chain in the basement membrane at the distal region of the invading hair follicle epithelium, indicating that laminins play a part in hair morphogenesis.
Ormo, J.; Sturkell, E.; Horton, J. Wright; Powars, D.S.; Edwards, L.E.
2009-01-01
Collapse and inward slumping of unconsolidated sedimentary strata expanded the Chesapeake Bay impact structure far beyond its central basement crater. During crater collapse, sediment-loaded water surged back to fill the crater. Here, we analyze clast frequency and granulometry of these resurge deposits in one core hole from the outermost part of the collapsed zone (i.e., Langley) as well as a core hole from the moat of the basement crater (i.e., Eyreville A). Comparisons of clast provenance and flow dynamics show that at both locations, there is a clear change in clast frequency and size between a lower unit, which we interpret to be dominated by slumped material, and an upper, water-transported unit, i.e., resurge deposit. The contribution of material to the resurge deposit was primarily controlled by stripping and erosion. This includes entrainment of fallback ejecta and sediments eroded from the surrounding seafloor, found to be dominant at Langley, and slumped material that covered the annular trough and basement crater, found to be dominant at Eyreville. Eyreville shows a higher content of crystalline clasts than Langley. There is equivocal evidence for an anti-resurge from a collapsing central water plume or, alternatively, a second resurge pulse, as well as a transition into oscillating resurge. The resurge material shows more of a debris-flow-like transport compared to resurge deposits at some other marine target craters, where the ratio of sediment to water has been relatively low. This result is likely a consequence of the combination of easily disaggregated host sediments and a relatively shallow target water depth. ?? 2009 The Geological Society of America.
Iran: The Next Nuclear Threshold State?
2014-09-01
than 1,000 nuclear explosives.96 Furthermore, after the Fukushima disaster , Japan shut down its reactors, but continues work on the Rakkasho...Basement,’ and China Isn’t Happy,” NBC News, March 11, 2014, http://www.nbcnews.com/storyline/ fukushima -anniversary/japan-has- nuclear - bomb-basement...line civilian nuclear program that includes enrichment and reprocessing capabilities. Japan possesses few energy resources. Before the Fukushima
ETR, TRA642. ON BASEMENT FLOOR. REACTOR VESSEL WILL BE PLACED ...
ETR, TRA-642. ON BASEMENT FLOOR. REACTOR VESSEL WILL BE PLACED WITHIN THE INNER METAL FORM. WHEN CONCRETE IS POURED OUTSIDE THIS FORM, CONDUIT HOLES WILL BE PRESERVE SPACE THROUGH HOLES. INL NEGATIVE NO. 56-1507. Jack L. Anderson, Photographer, 5/8/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Pathogenesis of Acute and Delayed Corneal Lesions after Ocular Exposure to Sulfur Mustard Vapor
2012-01-01
mechanistic understanding and therapeutic development. Here we evaluate the histopathologic, biochemical and ultrastructural expressions of...were identified, including destabilization of the basal corneal epithelium , basement membrane zone abnormalities and stromal deformation. Clinical...pathology of MGK, in part resulting from persistent necrosis of the basal corneal epithelium and deterioration of the basement membrane. The findings
Blakely, R.J.; Ponce, D.A.
2001-01-01
A depth to basement map of the Death Valley groundwater model area was prepared using over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.
28. PUMP/ENGINE ROOM OFF THE BASEMENT OF MILL NO. 1. ...
28. PUMP/ENGINE ROOM OFF THE BASEMENT OF MILL NO. 1. ENGINE PLATFORM IS SEEN BEHIND PUMP. THIS AMERICAN MOISTURE CO. PUMP WAS USED TO HUMIDIFY UPPER FLOORS OF MILL. NOTE TANK TO LEFT, UNKNOWN USE. NOTHING IN THIS ROOM HAS BEEN USED SINCE 1945. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL
146. View of oil filter room in basement (Room B1) ...
146. View of oil filter room in basement (Room B-1) where oil used in lubrication in generator room is cleaned and recycled. The two tanks in the foreground each have capacities of 2,100 gallons. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
7. INTERIOR VIEW OF BASEMENT OF CA. 1948 FACTORY ADDITION, ...
7. INTERIOR VIEW OF BASEMENT OF CA. 1948 FACTORY ADDITION, LOOKING SOUTHEAST. AT CENTER IS A DEEP-BRAWN, HEAVY PRESS MANUFACTURED BY E. W. BLISS CO., BROOKLYN, NEW YORK. PRESS #3-1/2-C PATENTED BY E. W. BLISS CO., 1893. MANUFACTURER'S PLATE INDICATES PRESS DATES FROM 1922. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL
Gravitational sliding of the Mt. Etna massif along a sloping basement
NASA Astrophysics Data System (ADS)
Murray, John B.; van Wyk de Vries, Benjamin; Pitty, Andy; Sargent, Phil; Wooller, Luke
2018-04-01
Geological field evidence and laboratory modelling indicate that volcanoes constructed on slopes slide downhill. If this happens on an active volcano, then the movement will distort deformation data and thus potentially compromise interpretation. Our recent GPS measurements demonstrate that the entire edifice of Mt. Etna is sliding to the ESE, the overall direction of slope of its complex, rough sedimentary basement. We report methods of discriminating the sliding vector from other deformation processes and of measuring its velocity, which averaged 14 mm year-1 during four intervals between 2001 and 2012. Though sliding of one sector of a volcano due to flank instability is widespread and well-known, this is the first time basement sliding of an entire active volcano has been directly observed. This is important because the geological record shows that such sliding volcanoes are prone to devastating sector collapse on the downslope side, and whole volcano migration should be taken into account when assessing future collapse hazard. It is also important in eruption forecasting, as the sliding vector needs to be allowed for when interpreting deformation events that take place above the sliding basement within the superstructure of the active volcano, as might occur with dyke intrusion or inflation/deflation episodes.
Watt, Stephen A.; Dayal, Jasbani H. S.; Wright, Sheila; Riddle, Megan; Pourreyron, Celine; McMillan, James R.; Kimble, Roy M.; Prisco, Marco; Gartner, Ulrike; Warbrick, Emma; McLean, W. H. Irwin; Leigh, Irene M.; McGrath, John A.; Salas-Alanis, Julio C.; Tolar, Jakub; South, Andrew P.
2015-01-01
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention. PMID:26380979
NASA Astrophysics Data System (ADS)
Xu, Chunxia; Yin, Runsheng; Peng, Jiantang; Hurley, James P.; Lepak, Ryan F.; Gao, Jianfeng; Feng, Xinbin; Hu, Ruizhong; Bi, Xianwu
2018-03-01
The Lanuoma and Cuona sediment-hosted Pb-Zn deposits hosted by Upper Triassic limestone and sandstone, respectively, are located in the Changdu area, SW China. Mercury concentrations and Hg isotopic compositions from sulfide minerals and potential source rocks (e.g., the host sedimentary rocks and the metamorphic basement) were investigated to constrain metal sources and mineralization processes. In both deposits, sulfide minerals have higher mercury (Hg) concentrations (0.35 to 1185 ppm) than the metamorphic basement rocks (0.05 to 0.15 ppm) and sedimentary rocks (0.02 to 0.08 ppm). Large variations of mass-dependent fractionation (3.3‰ in δ202Hg) and mass-independent fractionation (0.3‰ in Δ199Hg) of Hg isotopes were observed. Sulfide minerals have Hg isotope signatures that are similar to the hydrothermal altered rocks around the deposit, and similar to the metamorphic basement, but different from barren sedimentary rocks. The variation of Δ199Hg suggests that Hg in sulfides was mainly derived from the underlying metamorphic basement. Mercury isotopes could be a geochemical tracer in understanding metal sources in hydrothermal ore deposits.
NASA Astrophysics Data System (ADS)
He, Dengfa
2016-04-01
Junggar Basin is located in the central part of the Central Asian Orogenic Belt (CAOB). Its basement nature is a highly controversial scientific topic, involving the basic style and processes of crustal growth. Some researchers considered the basement of the Junggar Basin as a Precambrian continental crust, which is not consistent with the petrological compositions of the adjacent orogenic belts and the crust isotopic compositions revealed by the volcanic rocks in the basin. Others, on the contrary, proposed an oceanic crust basement model that does not match with the crustal thickness and geophysical characteristics of the Junggar area. Additionally, there are several viewponits, such as the duplex basement with the underlying Precambrian crystalline rocks and the overlying pre-Carboniferous folded basement, and the collaged basement by the Precambrian micro-continent block in the central part and the Hercynian accretionary folded belts circling it. Anyway, it is necessary to explain the property of basement rock, its strong inhomogeneous compositions as well as the geophysical features. In this paper, based on the borehole data from more than 300 industry wells drilled into the Carboniferous System, together with the high-resolution gravity and magnetic data (in a scale of 1:50,000), we made a detailed analysis of the basement structure, formation timing and processes and its later evolution on a basis of core geochemical and isotopic analysis. Firstly, we defined the Mahu Pre-Cambrian micro-continental block in the juvenile crust of Junggar Basin according to the Hf isotopic analysis of the Carboniferous volcanic rocks. Secondly, the results of the tectonic setting and basin analysis suggest that the Junggar area incorporates three approximately E-W trending island arc belts (from north to south: Yemaquan- Wulungu-Chingiz, Jiangjunmiao-Luliang-Darbut and Zhongguai-Mosuowan- Baijiahai-Qitai island arcs respectively) and intervened three approximately E-W trending retro-arc or inter-arc basin belts from north to south, such as Santanghu-Suosuoquan-Emin, Wucaiwan-Dongdaohaizi-Mahu (Mahu block sunk as a bathyal basin during this phase) and Fukang-western well Pen1 sag accordingly. Thirdly, the closure of these retro-arc or inter-arc basins migrating gradually toward the south led to the collision and amalgamation between the above-mentioned island arcs during the Carboniferous, constituting the basic framework of the Junggar 'block'. Fourthly, the emplacement of large-scale mantle-derived magmas occurred in the latest Carboniferous to Early Permian. For instance, the well Mahu 5 penetrate the latest Carboniferous basalts with a thickness of over 20 m, and these mantle-derived magmas consolidated the above-mentioned island arc-collaged blocks. Therefore, the Junggar basin basement mainly comprises pre-Carboniferous collaged basement, and its formation is characterized by two-stage growth model, involving the Carboniferous lateral growth of island arcs and the latest Carboniferous to Early Permian vertical crustal growth related to emplacement and underplating of the mantle-derived magmas. In the Middle Permian, the Junggar Basin is dominated by a series of stable intra-continental sag basins from west to east, such as Mahu, Shawan, western Well Pen1, Dongdaohaizi-Wucaiwan-Dajing, Fukang-Jimusaer sag lake-basins and so on. The Middle Permian (e.g., Lower Wu'erhe, Lucaogou, and Pingdiquan Formations) thick source rocks developed in these basins, suggesting that the Junggar Basin had been entered 'intra-cratonic sag' basin evolution stage. Since then, no strong thermal tectonic event could result in crust growth. The present crustal thickness of Junggar Basin is 45-52 km, which was mainly formed before the latest Early Permian. Subsequently, the Junggar Basin experienced a rapid cooling process during the Late Permian to Triassic. These events constrain the formation timing of the Junggar basin basement to be before the latest Early Permian. It is inferred that the crustal thickness of Carboniferous island arc belts and associated back-arc basins is of 30-35 km or less. The latest Carboniferous to Early Permian vertical crust growth should have a thickness of 15-20 km or more. Viewed from the deep seismic refection profile across the basin, the Junggar crust does not contain the large-scale imbricate thrust systems, but shows well-layered property. Thus, the vertical growth rate reached 0.75~1 km/Ma in the latest Carboniferous to Early Permian time, a period approximately of 20Ma. It indicates a very rapid crustal growth style which could be named as the Junggar-type vertical growth of continental crust. Its formation mechanism and geodynamic implications need to be further explored later.
NASA Astrophysics Data System (ADS)
Săbău, Gavril; Negulescu, Elena
2014-05-01
Monazite U-Th-Pb chemical dating reaches an acceptable compromise between precision and accuracy on one side, and spatial resolution and textural constraints on the other side. Thus it has a powerful potential in testing the coherence of individual metamorphic basement units, and enabling correlations among them. Yet, sensitivity and specificity issues in monazite response to thermotectonic events, especially in the case of superposed effects, remain still unclear. Monazite dating at informative to detailed scale in the main metamorphic basement units of the Carpathians resulted in complex age spectra. In the main, the spectra are dominated by the most pervasive thermal and structural overprint, as checked against independent geochronological data. Post-peak age resetting is mostly present, but statistically subordinate. Resetting in case of superposed events is correlated with the degree of textural and paragenetic overprinting, inheritances being always indicated by more or less well-defined age clusters. The lack of relict ages correlating with prograde structural and porphyroblast zonation patterns is indicative for juvenile formations. Age data distribution in the Carpathians allowed distinction of pre-Variscan events, syn-metamorphic Variscan tectonic stacking of juvenile and reworked basement, post-Variscan differential tectonic uplift, as well as prograde metamorphic units ranging down to Upper Cretaceous ages. In the South Carpathians, the Alpine Danubian domain consists of several Variscan and Alpine thrust sheets containing a metamorphic complex dominated by Upper Proterozoic to Lower Cambrian metamorphic and magmatic ages (Lainici-Păiuş), and several complexes with metamorphic overprints ranging from Carboniferous to Lower Permian. Any correlation among these units, as well as geotectonic models placing a Lower Paleozoic oceanic domain between pre-existing Lainici-Păiuş and Drăgşan terranes are precluded by the age data. Other basement of the South Carpathians contain lower Paleozoic or older units intruded by Ordovician granitoids, imbricated with juvenile Variscan slivers, the structural sequence differing in individual basement complexes. So, in the Leaota Massif the lowermost term of the sequence is prograde Variscan, tectonically overlain by reworked lower Paleozoic gneisses, supporting thrust sheets with very low- to low-grade Variscan schists. In the Făgăraş Massif a lower Paleozoic (Cumpăna) complex bearing a strong Variscan overprint, straddles Variscan juvenile rocks, and the lowermost visible structural level is assumed by upper Carboniferous to Permian juvenile medium-grade metamorphic schists. In the Lotru Metamorphic Suite of the Alpine Getic Nappe, the Variscan stacking is overprinted by post-orogenic differential uplift, documented by the correlation among younging ages, structural and metamorphic low-pressure overprints, recording often higher metamorphic temperatures. The most spectacular structure is Upper Jurassic in age, contains high-grade metamorphic rocks and peraluminous anatectic granitoids, is outlined by a deformed boundary evolving from ductile to brittle regime during cooling, and induces a thermal overprint in the neighbouring rocks. In the basement units thrust over the Getic Nappe, the Sibişel unit yielded Permian prograde peak metamorphic ages and Triassic post-peak overprints, while an adjacent gneissic unit (Laz) delivered an exclusively Cretaceous age pattern. Unexpectedly young metamorphic ages resulted also for the East Carpathians and the Apuseni Mountains. While most of the ages obtained so far correspond to Variscan retrogression of older basement units, the lowermost structural unit of the infra-Bucovinian nappe system in the East Carpathians yielded Upper Cretaceous metamorphic ages in apparently monometamorphic medium-grade schists. In the Apuseni Mountains, schists of the Baia de Arieş Unit display an Upper Jurassic age spectrum, corresponding to a clearly prograde medium-grade event. The ages recorded not only question some of the currently accepted correlations among basement units, but urge to reconsideration of the way in which the basement-cover relationships are interpreted and extrapolated.
Structural Control and Groundwater Flow in the Nubian Aquifer
NASA Astrophysics Data System (ADS)
Fathy, K.; Sultan, M.; Ahmed, M.; Save, H.; Emil, M. K.; Elkaliouby, B.
2017-12-01
An integrated research approach (remote sensing, field, geophysics) was conducted to investigate the structural control on groundwater flow in large aquifers using the less studied Nubian Sandstone Aquifer System (NSAS) of NE Africa as a test site. The aquifer extends over 2.2 x 106 km2 in Egypt, Libya, Chad, and Sudan and consists of thick (> 3 kms), water-bearing, Paleozoic and Mesozoic sandstone with intercalations of Tertiary shale and clay. It is subdivided into three sub-basins (Northern Sudan Platform [NSP], Dakhla [DAS], and Kufra) that are separated by basement uplifts (e.g., E-W trending Uweinat-Aswan uplift that separates DAS from the NSP). Aquifer recharge occurs in the south (NSP and southern Kufra) where the aquifer is unconfined and precipitation is high (Average Annual Precipitation [AAP]: 117 mm/yr.) and discharge is concentrated in the north (DAS and northern Kufra). Our approach is a three-fold exercise. Firstly, we compared GOCE-based Global Geopotential Models (GGMs) to terrestrial gravity anomalies for 21262 sites to select the optimum model for deriving Bouguer gravity anomalies. Secondly, structures and uplifts were mapped using hill shade images and their extension in the subsurface were mapped using the Eigen_6C4 model-derived Bouguer anomalies and their Tilt Derivative products (TDR). Thirdly, hydrological analysis was conducted using GRACE CSR 1° x 1° mascon solutions to investigate the mass variations in relation to the mapped structures. Our findings include: (1) The Eigen-6C4 is the optimum model having the lowest deviation (9.122 mGal) from the terrestrial gravity anomalies; (2) the surface expressions of structures matched fairly well with their postulated extensions in the subsurface; (3) identified fault systems include: Red Sea rift-related N-S to NW-SE trending grabens formed by reactivating basement structures during Red Sea opening and Syrian arc-related NE-SW trending dextral shear systems; (4) TWS patterns are uniform throughout the length (hundreds of kilometers) of the identified shear systems but are dissimilar from those extracted in areas proximal to, but outside of, the shear zones; and (5) basement uplifts impede or redirect the groundwater flow.
Controls on erosional retreat of the uplifted rift flanks at the Gulf of Suez and northern Red Sea
NASA Technical Reports Server (NTRS)
Steckler, Michael S.; Omar, Gomaa I.
1994-01-01
The Gulf of Suez and the Red Sea rigts are currently bordered by large asymmetric uplifts that are undergoing erosion. We find that the amount and timing of erosion vary systematically along the strike of the margin and have been controlled by variations in the perift stratigraphy. The perfit strata are compsoed of cliff-forming Eocene-Cretaceous carbonates overlaying the easily eroded Cretaceous-Cambrian 'Nubian' sandstone. This lithologic succession promotes scarp retreat of the sedimentary section, follwed by dissection of the underlying basement. The perift section thins from over 2000 m at the northern end of the rift to less htan 400 m at its junction with the Red Sea. Thus, at the northern part of the Gulf of Suez, the Nubian sandstone is minimally exposed, and the carbonates form a scarp at the rift border fault. Farther south, undercuttin of hte carbonates by erosion of the sandstion has resulted in scarp retreat. The escarpment cuts diagonally away from the border fault andis over 100 km inland from the border fault at the southernmost Gulf of Suez. The amount of retreat varies inversely with the sediment thickness. Exposure and erosion of basement are initiated by the retreate of the escarpment, and the depth of erosion, as indicated by fission track ages, increases with distance from the escarpment. These observations are explained by a model in which erosion along the Gulf of Suez is initiated as rift flank uplift becomes sufficiently large ot expose the friable sandstones. Undercutting the escarpment and exhumation of basement has been propagating northward and westward for at least 20 m.y. The average rate of scarp retreat has been 6 km/m.y. and the along-strike propagation of the erosion has been 12 km/m.y. The diachronous erosion of the rift flanks at the Gulf of Suez highlights the importance of distinguishing between the timing of uplift and of erosion. Both thermochronometric and stratigraphic data primarily indicate the timing of erosion, which may differ significantly form the timing of the uplift that initiates it. They must be interpreted carefully to avoid erroneous conclusions about rift tectonics.
NASA Astrophysics Data System (ADS)
Baidder, L.; Michard, A.; Soulaimani, A.; Fekkak, A.; Eddebbi, A.; Rjimati, E.-C.; Raddi, Y.
2016-07-01
Conflicting views are expressed in literature concerning fold interference patterns in thick-skinned tectonic context (e.g. Central Anti-Atlas and Rocky Mountains-Colorado areas). Such patterns are referred to superimposed events with distinct orientation of compression or to the inversion of paleofaults with distinct strike during a single compressional event. The present work presents a case study where both types of control on fold interference are likely to be combined. The studied folds occur in the Tafilalt-Maider area of eastern Anti-Atlas, i.e. in the E-trending foreland fold belt of the Meseta Variscan Orogen in the area where it connects with the SE-trending, intracontinental Ougarta Variscan belt. Detail mapping documents unusual fold geometries such as sigmoidal and croissant- or boomerang-shaped folds associated with a complex major fault pattern. The folded rock material corresponds to a 6-8 km-thick Cambrian-Serpukhovian sedimentary pile that includes alternating competent and incompetent formations. The basement of the Paleozoic succession is made up of rhomboedric tilted blocks that formed during the Cambrian rifting of north-western Gondwana and the Devonian dislocation of the Sahara platform. The latter event is responsible for an array of paleofaults bounding the Maider and South Tafilalt Devonian-Early Carboniferous basins with respect to the adjoining high axes. The Variscan Orogeny began during the Bashkirian-Westphalian with a N-S direction of shortening that converted the NW-trending Ougnat-Ouzina paleogeographic high into a mega dextral shear zone. Folds developed on top of a moving mosaic of basement blocks, being oriented en echelon on the inverted paleofaults or above intensely sheared fault zones. However, a dominantly NE-SW compression responsible for the building of the Ougarta belt also affected the studied area, presumably during the latest Carboniferous-Early Permian. The resulting fold interference pattern and peculiar geometries (J. Tijekht croissant-shaped fold) would exemplify a dual control of deformation by both the variably oriented basement paleofaults and the evolution of the regional shortening direction with time.
Oklahoma's induced seismicity strongly linked to wastewater injection depth
NASA Astrophysics Data System (ADS)
Hincks, Thea; Aspinall, Willy; Cooke, Roger; Gernon, Thomas
2018-03-01
The sharp rise in Oklahoma seismicity since 2009 is due to wastewater injection. The role of injection depth is an open, complex issue, yet critical for hazard assessment and regulation. We developed an advanced Bayesian network to model joint conditional dependencies between spatial, operational, and seismicity parameters. We found that injection depth relative to crystalline basement most strongly correlates with seismic moment release. The joint effects of depth and volume are critical, as injection rate becomes more influential near the basement interface. Restricting injection depths to 200 to 500 meters above basement could reduce annual seismic moment release by a factor of 1.4 to 2.8. Our approach enables identification of subregions where targeted regulation may mitigate effects of induced earthquakes, aiding operators and regulators in wastewater disposal regions.
Preliminary geologic map and digital database of the San Bernardino 30' x 60' quadrangle, California
Morton, Douglas M.; Miller, Fred K.
2003-01-01
The San Bernardino 30'x60' quadrangle, southern California, is diagonally bisected by the San Andreas Fault Zone, separating the San Gabriel and San Bernardino Mountains, major elements of California's east-oriented Transverse Ranges Province. Included in the southern part of the quadrangle is the northern part of the Peninsular Ranges Province and the northeastern part of the oil-producing Los Angeles basin. The northern part of the quadrangle includes the southern part of the Mojave Desert Province. Pre-Quaternary rocks within the San Bernardino quadrangle consist of three extensive, well-defined basement rock assemblages, the San Gabriel Mountains, San Bernardino Mountains, and the Peninsular Ranges assemblages, and a fourth assemblage restricted to a narrow block bounded by the active San Andreas Fault and the Mill Creek Fault. Each of these basement rock assemblages is characterized by a relatively unique suite of rocks that was amalgamated by the end of the Cretaceous and (or) early Cenozoic. Some Tertiary sedimentary and volcanic rocks are unique to specific assemblages, and some overlap adjacent assemblages. A few Miocene and Pliocene units cross the boundaries of adjacent assemblages, but are dominant in only one. Tectonic events directly and indirectly related to the San Andreas Fault system have partly dismembered the basement rocks during the Neogene, forming the modern-day physiographic provinces. Rocks of the four basement rock assemblages are divisible into an older suite of Late Cretaceous and older rocks and a younger suite of post-Late Cretaceous rocks. The age span of the older suite varies considerably from assemblage to assemblage, and the point in time that separates the two suites varies slightly. In the Peninsular Ranges, the older rocks were formed from the Paleozoic to the end of Late Cretaceous plutonism, and in the Transverse Ranges over a longer period of time extending from the Proterozoic to metamorphism at the end of the Cretaceous. Within the Peninsular Ranges a profound diachronous unconformity marks the pre-Late Cretaceous-post-Late Cretaceous subdivision, but within the Transverse Ranges the division appears to be slightly younger, perhaps coinciding with the end of the Cretaceous or extending into the early Cenozoic. Initial docking of Peninsular Ranges rocks with Transverse Ranges rocks appears to have occurred at the terminus of plutonism within the Peninsular Ranges. During the Paleogene there was apparently discontinuous but widespread deposition on the basement rocks and little tectonic disruption of the amalgamated older rocks. Dismemberment of these Paleogene and older rocks by strike-slip, thrust, and reverse faulting began in the Neogene and is ongoing. The Peninsular Ranges basement rock assemblage is made up of the Peninsular Ranges batholith and a variety of metasedimentary rocks. Most of the plutonic rocks of the batholith are granodiorite and tonalite in composition; primary foliation is common, mainly in the eastern part. Tertiary sedimentary rocks of the Los Angeles Basin crop out in the Puente and San Jose Hills along with the spatially associated Glendora Volcanics; both units span the boundary between the Peninsular Ranges and San Gabriel Mountains basement rock assemblages. The San Gabriel Mountains basement rock assemblage includes two discrete areas, the high standing San Gabriel Mountains and the relatively low San Bernardino basin east of the San Jacinto Fault. The basement rock assemblage is characterized by a unique suite of rocks that include anorthosite, Proterozoic and Paleozoic gneiss and schist, the Triassic
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Horn, Brian
2014-05-01
Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.
Diagnosis and classification of Goodpasture's disease (anti-GBM).
Hellmark, Thomas; Segelmark, Mårten
2014-01-01
Goodpasture's disease or anti-glomerular basement membrane disease (anti-GBM-disease) is included among immune complex small vessel vasculitides. The definition of anti-GBM disease is a vasculitis affecting glomerular capillaries, pulmonary capillaries, or both, with GBM deposition of anti-GBM autoantibodies. The disease is a prototype of autoimmune disease, where the patients develop autoantibodies that bind to the basement membranes and activate the classical pathway of the complement system, which start a neutrophil dependent inflammation. The diagnosis of anti-GBM disease relies on the detection of anti-GBM antibodies in conjunction with glomerulonephritis and/or alveolitis. Overt clinical symptoms are most prominent in the glomeruli where the inflammation usually results in a severe rapidly progressive glomerulonephritis. Despite modern treatment less than one third of the patients survive with a preserved kidney function after 6 months follow-up. Frequencies vary from 0.5 to 1 cases per million inhabitants per year and there is a strong genetic linkage to HLA-DRB1(∗)1501 and DRB1(∗)1502. Essentially, anti-GBM disease is now a preferred term for what was earlier called Goodpasture's syndrome or Goodpasture's disease; anti-GBM disease is now classified as small vessel vasculitis caused by in situ immune complex formation; the diagnosis relies on the detection of anti-GBM in tissues or circulation in conjunction with alveolar or glomerular disease; therapy is effective only when detected at an early stage, making a high degree of awareness necessary to find these rare cases; 20-35% have anti-GBM and MPO-ANCA simultaneously, which necessitates testing for anti-GBM whenever acute test for ANCA is ordered in patients with renal disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys.
Burghardt, Tillmann; Kastner, Jürgen; Suleiman, Hani; Rivera-Milla, Eric; Stepanova, Natalya; Lottaz, Claudio; Kubitza, Marion; Böger, Carsten A; Schmidt, Sarah; Gorski, Mathias; de Vries, Uwe; Schmidt, Helga; Hertting, Irmgard; Kopp, Jeffrey; Rascle, Anne; Moser, Markus; Heid, Iris M; Warth, Richard; Spang, Rainer; Wegener, Joachim; Mierke, Claudia T; Englert, Christoph; Witzgall, Ralph
2013-11-01
Mutations of the LMX1B gene cause nail-patella syndrome, a rare autosomal-dominant disorder affecting the development of the limbs, eyes, brain, and kidneys. The characterization of conventional Lmx1b knockout mice has shown that LMX1B regulates the development of podocyte foot processes and slit diaphragms, but studies using podocyte-specific Lmx1b knockout mice have yielded conflicting results regarding the importance of LMX1B for maintaining podocyte structures. In order to address this question, we generated inducible podocyte-specific Lmx1b knockout mice. One week of Lmx1b inactivation in adult mice resulted in proteinuria with only minimal foot process effacement. Notably, expression levels of slit diaphragm and basement membrane proteins remained stable at this time point, and basement membrane charge properties also did not change, suggesting that alternative mechanisms mediate the development of proteinuria in these mice. Cell biological and biophysical experiments with primary podocytes isolated after 1 week of Lmx1b inactivation indicated dysregulation of actin cytoskeleton organization, and time-resolved DNA microarray analysis identified the genes encoding actin cytoskeleton-associated proteins, including Abra and Arl4c, as putative LMX1B targets. Chromatin immunoprecipitation experiments in conditionally immortalized human podocytes and gel shift assays showed that LMX1B recognizes AT-rich binding sites (FLAT elements) in the promoter regions of ABRA and ARL4C, and knockdown experiments in zebrafish support a model in which LMX1B and ABRA act in a common pathway during pronephros development. Our report establishes the importance of LMX1B in fully differentiated podocytes and argues that LMX1B is essential for the maintenance of an appropriately structured actin cytoskeleton in podocytes.
Pirici, Ionica; Balsanu, Tudor Adrian; Bogdan, Catalin; Margaritescu, Claudiu; Divan, Tamir; Vitalie, Vacaras; Mogoanta, Laurentiu; Pirici, Daniel; Carare, Roxana Octavia; Muresanu, Dafin Fior
2017-12-23
Aquaporin-4 (AQP4) is the most abundant water channel in the brain, and its inhibition before inducing focal ischemia, using the AQP4 inhibitor TGN-020, has been showed to reduce oedema in imaging studies. Here, we aimed to evaluate, for the first time, the histopathological effects of a single dose of TGN-020 administered after the occlusion of the medial cerebral artery (MCAO). On a rat model of non-reperfusion ischemia, we have assessed vascular densities, albumin extravasation, gliosis, and apoptosis at 3 and 7 days after MCAO. TGN-020 significantly reduced oedema, glial scar, albumin effusion, and apoptosis, at both 3 and 7 days after MCAO. The area of GFAP-positive gliotic rim decreased, and 3D fractal analysis of astrocytic processes revealed a less complex architecture, possibly indicating water accumulating in the cytoplasm. Evaluation of the blood vessels revealed thicker basement membranes colocalizing with exudated albumin in the treated animals, suggesting that inhibition of AQP4 blocks fluid flow towards the parenchyma in the paravascular drainage pathways of the interstitial fluid. These findings suggest that a single dose of an AQP4 inhibitor can reduce brain oedema, even if administered after the onset of ischemia, and AQP4 agonists/antagonists might be effective modulators of the paravascular drainage flow.
Percolation of diagenetic fluids in the Archaean basement of the Franceville basin
NASA Astrophysics Data System (ADS)
Mouélé, Idalina Moubiya; Dudoignon, Patrick; Albani, Abderrazak El; Cuney, Michel; Boiron, Marie-Christine; Gauthier-Lafaye, François
2014-01-01
The Palaeoproterozoic Franceville basin, Gabon, is mainly known for its high-grade uranium deposits, which are the only ones known to act as natural nuclear fission reactors. Previous work in the Kiéné region investigated the nature of the fluids responsible for these natural nuclear reactors. The present work focuses on the top of the Archaean granitic basement, specifically, to identify and date the successive alteration events that affected this basement just below the unconformity separating it from the Palaeoproterozoic basin. Core from four drill holes crosscutting the basin-basement unconformity have been studied. Dating is based on U-Pb isotopic analyses performed on monazite. The origin of fluids is discussed from the study of fluid inclusion planes (FIP) in quartz from basement granitoids. From the deepest part of the drill holes to the unconformable boundary with the basin, propylitic alteration assemblages are progressively replaced by illite and locally by a phengite + Fe chlorite ± Fe oxide assemblage. Illitic alteration is particularly strong along the sediment-granitoid contact and is associated with quartz dissolution. It was followed by calcite and anhydrite precipitation as fracture fillings. U-Pb isotopic dating outlines three successive events: a 3.0-2.9-Ga primary magmatic event, a 2.6-Ga propylitic alteration and a late 1.9-Ga diagenetic event. Fluid inclusion microthermometry suggests the circulation of three types of fluids: (1) a Na-Ca-rich diagenetic brine, (2) a moderately saline (diagenetic + meteoric) fluid, and (3) a low-salinity fluid of probable meteoric origin. These fluids are similar to those previously identified within the overlying sedimentary rocks of the Franceville basin. Overall, the data collected in this study show that the Proterozoic-Archaean unconformity has operated as a major flow corridor for fluids circulation, around 1.9 Ga. highly saline diagenetic brines; hydrocarbon-rich fluids derived from organic matter-rich formations; a low-salinity fluid likely of meteoric origin migrating through the granitic basement; mineralizing fluids resulting from the mixing of fluids 1 and 3; high-temperature fluids resulting from the natural nuclear reactor environment (Mathieu et al., 2000). The present paper attempts to characterize the succession of alteration events that have affected the top of the basement below the Palaeoproterozoic sediment unconformity. Are these alterations related to early post-magmatic to hydrothermal events, to palaeoweathering, or to late infiltration of diagenetic brines from the overlying basin? Our study, carried out on drill core samples from Kiéné, is supported by petrographic investigation, new fluid inclusion data and U-Pb geochronology on monazite.
Kim, Ju Han; Ha, Il Soo; Hwang, Chang-Il; Lee, Young-Ju; Kim, Jihoon; Yang, Seung-Hee; Kim, Yon Su; Cao, Yun Anna; Choi, Sangdun; Park, Woong-Yang
2004-11-01
Immune complexes may cause an irreversible onset of chronic renal disease. Most patients with chronic renal disease undergo a final common pathway, marked by glomerulosclerosis and interstitial fibrosis. We attempted to draw a molecular map of anti-glomerular basement membrane (GBM) glomerulonephritis in mice using oligonucleotide microarray technology. Kidneys were harvested at days 1, 3, 7, 11, and 16 after inducing glomerulonephritis by using anti-GBM antibody. In parallel with examining the biochemical and histologic changes, gene expression profiles were acquired against five pooled control kidneys. Gene expression levels were cross-validated by either reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, or immunohistochemistry. Pathologic changes in anti-GBM glomerulonephritis were confirmed in both BALB/c and C57BL/6 strains. Among the 13,680 spotted 65mer oligonucleotides, 1112 genes showing significant temporal patterns by permutation analysis of variance (ANOVA) with multiple testing correction [false discovery ratio (FDR) < 0.05] were chosen for cluster analysis. From the expression profile, acute inflammatory reactions characterized by the elevation of various cytokines, including interleukin (IL)-1 and IL-6, were identified within 3 days of disease onset. After 7 days, tissue remodeling response was prominent with highly induced extracellular-matrix (ECM) genes. Although cytokines related to lymphocyte activation were not detected, monocyte or mesangial cell proliferation-related genes were increased. Tumor necrosis factor-alpha (TNF-alpha) and nuclear factor-kappaB (NF-kappaB) pathway were consistently activated along the entire disease progression, inducing various target genes like complement 3, IL-1b, IL-6, Traf1, and Saa1. We made a large-scale gene expression time table for mouse anti-GBM glomerulonephritis model, providing a comprehensive overview on the mechanism governing the initiation and the progression of inflammatory renal disease.
ETR, TRA642. BASEMENT SPACE ALLOCATION FOR EXPERIMENTERS CA. 1966, SOUTHEAST ...
ETR, TRA-642. BASEMENT SPACE ALLOCATION FOR EXPERIMENTERS CA. 1966, SOUTHEAST QUADRANT OF FLOOR. WESTINGHOUSE ATOMIC POWER DIVISION (WAPD) AND BETTIS ATOMIC POWER LABORATORY (BAPL) CONSUME MOST OF THE QUADRANT. PHILLIPS PETROLEUM COMPANY ETR-E-2256, 12/1966. INL INDEX NO. 532-0642-00-706-021256, REV. F. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Difficulties in differentiating thin basement membrane disease from Alport syndrome.
Żurawski, Jakub; Burchardt, Paweł; Seget, Monika; Moczko, Jerzy; Woźniak, Aldona; Grochowalski, Marcin; Salwa-Żurawska, Wiesława
We examined a group of 83 patients (57 children and 26 adults) with thin basement membrane disease and 17 patients with Alport syndrome. We compared the clinical data and, above all, the morphological patterns of both disease entities, with particular focus on not very advanced changes which might lead to a misdiagnosis due to the non-detection of the early stages of Alport syndrome.
Geological Structure of the Basement of Western and Eastern Parts of the West-Siberian Plain
ERIC Educational Resources Information Center
Ivanov, Kirill S.; Erokhin, Yuriy V.; Ponomarev, Vladimir S.; Pogromskaya, Olga E.; Berzin, Stepan V.
2016-01-01
The U-Pb dating (SHRIMP-II on zircon) was obtained for the first time from the basement of the West Siberian Plain in the Western half of the region. It is established that a large part of the protolith of the metamorphic depth in the Shaim-Kuznetsov meganticlinorium contained sedimentary late- and middle-Devonian rocks (395-358 million years).…
MTR BUILDING INTERIOR, TRA603. BASEMENT. CAMERA IN WEST CORRIDOR FACING ...
MTR BUILDING INTERIOR, TRA-603. BASEMENT. CAMERA IN WEST CORRIDOR FACING SOUTH. FREIGHT ELEVATOR IS AT RIGHT OF VIEW. AT CENTER VIEW IS MTR VAULT NO. 1, USED TO STORE SPECIAL OR FISSIONABLE MATERIALS. INL NEGATIVE NO. HD46-6-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
MTR BASEMENT. WORKERS (DON ALVORD AND CYRIL VAN ORDEN OF ...
MTR BASEMENT. WORKERS (DON ALVORD AND CYRIL VAN ORDEN OF PHILLIPS PETROLEUM CO.) POSE FOR GAMMA IRRADIATION EXPERIMENT IN MTR CANAL. CANS OF FOOD WILL BE LOWERED TO CANAL BOTTOM, WHERE SPENT MTR FUEL ELEMENTS EMIT GAMMA RADIATION. INL NEGATIVE NO. 11746. Unknown Photographer, 8/20/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
D'Antonio, Massimo
2011-02-01
A geologically reasonable working hypothesis is proposed for the lithology of the basement underlying the Campi Flegrei caldera in the ca. 4-8 km depth range. In most current geophysical modeling, this portion of crust is interpreted as composed of Meso-Cenozoic carbonate rocks, underlain by a ca. 1 km thick sill of partially molten rock, thought to be a main magma reservoir. Shallower magma reservoirs likely occur in the 3-4 km depth range. However, the lack of carbonate lithics in any Campi Flegrei caldera volcanic rocks does not support the hypothesis of a limestone basement. Considering the major caldera-forming eruptions, which generated widespread and voluminous ignimbrites during late Quaternary times, including the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions, the total volume of trachytic to phonolitic ejected magma is conservatively estimated at not less than 350 km 3. Results of least-squared mass-balance calculations suggest that this evolved magma formed through fractional crystallization from at least 2500 km 3 of parent shoshonitic magma, in turn derived from even more voluminous, more mafic, K-basaltic magma. Calculations suggest that shoshonitic magma, likely emplaced at ca. 8 km depth, must have crystallized about 2100 km 3 of solid material, dominated by alkali-feldspar and plagioclase, with a slightly lower amount of mafic minerals, during its route toward shallower magma reservoirs, before feeding the Campi Flegrei large-volume eruptions. The calculated volume of cumulate material, likely syenitic in composition at least in its upper portions, is more than enough to completely fill the basement volume in the 4-8 km depth range beneath the Campi Flegrei caldera, estimated at ca. 1250 km 3. Thus, it is proposed that the basement underlying the Campi Flegrei caldera below 4 km is composed mostly of crystalline igneous rocks, as for many large calderas worldwide. Syenite sensu lato would meet physical properties requirements for geophysical data interpretations, explain some geochemical and isotopic features of the past 15 ka volcanics, and justify the carbon isotopic composition of fumaroles at the Campi Flegrei caldera. This implies that Meso-Cenozoic limestones, if still present today beneath the Campi Flegrei caldera, no longer constitute significant portions of its basement.
Staude, S.; Gob, S.; Pfaff, K.; Strobele, F.; Premo, W.R.; Markl, G.
2011-01-01
Primary and secondary barites from hydrothermal mineralizations in SW Germany were investigated, for the first time, by a combination of strontium (Sr) isotope systematics (87Sr/86Sr), Sr contents and δ34S values to distinguish fluid sources and precipitation mechanisms responsible for their formation. Barite of Permian age derived its Sr solely from crystalline basement rocks, whereas all younger barite also incorporate Sr from formation waters of the overlying sediments. In fact, most of the Sr in younger barite is leached from Lower and Middle Triassic sediments. In contrast, most of the sulfur (S) of Permian, Jurassic and northern Schwarzwald Miocene barite originated from basement rocks. The S source of Upper Rhinegraben (URG)-related Paleogene barite differs depending on geographic position: for veins of the southern URG, it is the Oligocene evaporitic sequence, while central URG mineralizations derived its S from Middle Triassic evaporites. Using Sr isotopes of barite of known age combined with estimates on the Sr contents and Sr isotopic ratios of the fluids' source rocks, we were able to quantify mixing ratios of basement-derived fluids and sedimentary formation waters for the first time. These calculations show that Jurassic barite formed by mixing of 75–95% ascending basement-derived fluids with 5–25% sedimentary formation water, but that only 20–55% of the Sr was brought by the basement-derived fluid to the depositional site. Miocene barite formed by mixing of an ascending basement-derived brine (60–70%) with 30–40% sedimentary formation waters. In this case, only 8–15% of the Sr was derived from the deep brine. This fluid-mixing calculation is an example for deposits in which the fluid source is known. This method applied to a greater number of deposits formed at different times and in various geological settings may shed light on more general causes of fluid movement in the Earth's crust and on the formation of hydrothermal ore deposits.
NASA Astrophysics Data System (ADS)
Kettrup, B.; Deutsch, A.
2003-07-01
The 65 Ma old Chicxulub impact structure with a diameter of about 180 km is again in the focus of the geosciences because of the recently commenced drilling of the scientific well Yaxcopoil- 1. Chicxulub is buried beneath thick post-impact sediments, yet samples of basement lithologies in the drill cores provide a unique insight into age and composition of the crust beneath Yucatan. This study presents major element, Sr, and Nd isotope data for Chicxulub impact melt lithologies and clasts of basement lithologies in impact breccias from the PEMEX drill cores C-1 and Y-6, as well as data for ejecta material from the K/T boundaries at La Lajilla, Mexico, and Furlo, Italy. The impact melt lithologies have an andesitic composition with significantly varying contents of Al, Ca, and alkali elements. Their present day 87Sr/86Sr ratios cluster at about 0.7085, and 143Nd/144Nd ratios range from 0.5123 to 0.5125. Compared to the melt lithologies that stayed inside the crater, data for ejecta material show larger variations. The 87Sr/86Sr ratios range from 0.7081 for chloritized spherules from La Lajilla to 0.7151 for sanidine spherules from Furlo. The 143Nd/144Nd ratio is 0.5126 for La Lajilla and 0.5120 for the Furlo spherules. In an tCHUR(Nd)-tUR(Sr) diagram, the melt lithologies plot in a field delimited by Cretaceous platform sediments, various felsic lithic clasts and a newly found mafic fragment from a suevite. Granite, gneiss, and amphibolite have been identified among the fragments from crystalline basement gneiss. Their 87Sr/86Sr ratios range from 0.7084 to 0.7141, and their 143Nd/144Nd ratios range from 0.5121 to 0.5126. The TNdDM model ages vary from 0.7 to 1.4 Ga, pointing to different source terranes for these rocks. This leads us to believe that the geological evolution and the lithological composition of the Yucatàn basement is probably more complex than generally assumed, and Gondwanan as well as Laurentian crust may be present in the Yucatàn basement.
NASA Astrophysics Data System (ADS)
Keast, R. T.; Lacroix, B.; Raef, A. E.; Adam, C.; Bidgoli, T. S.; Leclere, H.; Daniel, G.
2017-12-01
South-central Kansas has experienced an increase in seismic activity within the Proterozoic basement. Since 2013, United States Geological Survey (USGS) seismograph stations have recorded 3414 earthquakes. Fluid pressure increases associated with recent high-rate wastewater injection into the dolomitic Arbuckle disposal zone is the hypothesized cause of reactivation of the faulted study region's Proterozoic basement. Although the magnitude of the pressure change required for reactivation of these faults is likely low given failure equilibrium conditions in the midcontinent, heterogeneities in the basement could allow for a range of fluid pressure changes associated with injection. This research aims to quantify the fluid pressure changes responsible for fault reactivation of the Proterozoic basement. To address this issue, we use 103 focal mechanisms and 3,414 seismic events, from the USGS catalog, within an area encompassing 4,000 km2. Three major fault populations have been identified using the dense seismicity and focal mechanism datasets. Win-Tensor paleostress reconstruction software was used to identify effective stress ratios, R = (σ'1/σ'3), and stress tensors for twelve 22 km by 17 km grid squares covering the study area. One fault population strikes parallel with the Nemaha Ridge basement structure ( 030˚). Another reoccurring fault population is oriented 310˚, closely parallel to the Central Kansas Uplift, a subtle anticlinal structure subjected to repeated movement during the Paleozoic. The third population of faults is parallel to the regional maximum compressive stress oriented 265˚ as determined by previous researchers using borehole image logs and shear wave anisotropy. A 3D stress modeling Matlab script was used to analyze fault reactivation potential based on results obtained from Win-Tensor to better understand fault orientations and their susceptibility to reactivation related to pore fluid pressure increases. In addition, the orientations of these normal and strike-slip fault populations suggest the development of a transtensional basin, not yet identified.
NASA Astrophysics Data System (ADS)
Yogeshwar, P.; Tezkan, B.
2017-01-01
Thick sedimentary sequences are deposited in the central area of the Azraq basin in Jordan consisting mostly of hyper-saline clay and various evaporates. These sediment successions form the 10 km × 10 km large Azraq mudflat and are promising archives for a palaeoclimatical reconstruction. Besides palaeoclimatical research, the Azraq area is of tremendous importance to Jordan due to groundwater and mineral resources. The heavy exploitation of groundwater has lead to a drastic decline of the water table and drying out of the former Azraq Oasis. Two 7 and 5 km long transects were investigated from the periphery of the mudflat across its center using a total of 150 central loop transient electromagnetic (TEM) soundings. The scope of the survey was to detect the thickness of sedimentary deposits along both transects and to provide a basis for future drilling activities. We derive a two-dimensional model which can explain the TEM data for all soundings along each profile simultaneously. Previously uncertain depths of geological boundaries were determined along both transects. Particularly the thickness of the deposited mudflat sediments was identified and ranges from 40 m towards the periphery down to approximately 130 m at the deepest location. Besides that, the depth and lateral extent of a buried basalt layer was identified. In the basin center the groundwater is hyper-saline. The lateral extent of the saline water body was determined precisely along both transects. In order to investigate the detectability of the basement below the high conductive mudflat sediments an elaborate two-dimensional modeling study was performed. Both, the resistivity and depth of the basement were varied systematically. The basement resistivity cannot be determined precisely in most zones and may range roughly between 1 and 100 Ωm without deteriorating the misfit. In contrast to that, the depth down to the basement is detected accurately in most zones and along both transects. Varying the depth of the basement or removing it completely results in a poor data fitting and, therefore, proves its significance. From the modeling study we derived bounds for the resistivity and depth of the base layer as a measure of their uncertainty.
NASA Astrophysics Data System (ADS)
Palu, J. M.; Burberry, C. M.
2014-12-01
The reactivation potential of pre-existing basement structures affects the geometry of subsequent deformation structures. A conceptual model depicting the results of these interactions can be applied to multiple fold-thrust systems and lead to valuable deformation predictions. These predictions include the potential for hydrocarbon traps or seismic risk in an actively deforming area. The Sawtooth Range, Montana, has been used as a study area. A model for the development of structures close to the Augusta Syncline in the Sawtooth Range is being developed using: 1) an ArcGIS map of the basement structures of the belt based on analysis of geophysical data indicating gravity anomalies and aeromagnetic lineations, seismic data indicating deformation structures, and well logs for establishing lithologies, previously collected by others and 2) an ArcGIS map of the surface deformation structures of the belt based on interpretation of remote sensing images and verification through the collection of surface field data indicating stress directions and age relationships, resulting in a conceptual model based on the understanding of the interaction of the two previous maps including statistical correlations of data and development of balanced cross-sections using Midland Valley's 2D/3D Move software. An analysis of the model will then indicate viable deformation paths where prominent basement structures influenced subsequently developed deformation structures and reactivated faults. Preliminary results indicate that the change in orientation of thrust faults observed in the Sawtooth Range, from a NNW-SSE orientation near the Gibson Reservoir to a WNW-ESE trend near Haystack Butte correlates with pre-existing deformation structures lying within the Great Falls Tectonic Zone. The Scapegoat-Bannatyne trend appears to be responsible for this orientation change and rather than being a single feature, may be composed of up to 4 NE-SW oriented basement strike-slip faults. This indicates that the pre-existing basement features have a profound effect on the geometry of the later deformation. This conceptual model can also be applied to other deformed belts to provide a prediction for the potential hydrocarbon trap locations of the belt as well as their seismic risk.
McBride, J.H.
1997-01-01
Deformation within the United States mid-continent is frequently expressed as quasilinear zones of faulting and folding, such as the La Salle deformation belt, a northwest-trending series of folds cutting through the center of the Illinois basin. Seismic reflection profiles over the southern La Salle deformation belt reveal the three-dimensional structural style of deformation in the lower Paleozoic section and uppermost Precambrian(?) basement. Individual profiles and structural contour maps show for the first time that the folds of the La Salle deformation belt are underlain at depth by reverse faults that disrupt and offset intrabasement structure, offset the top of interpreted Precambrian basement, and accommodate folding of overlying Paleozoic strata. The folds do not represent development of initial dips by strata deposited over a preexisting basement high. Rather, the structures resemble subdued "Laramide-style" forced folds, in that Paleozoic stratal reflectors appear to be flexed over a fault-bounded basement uplift with the basement-cover contact folded concordantly with overlying strata. For about 40 km along strike, the dominant faults reverse their dip direction, alternating between east and west. Less well expressed antithetic or back thrusts appear to be associated with the dominant faults and could together describe a positive flower structure. The overall trend of this part of the La Salle deformation belt is disrupted by along-strike discontinuities that separate distinct fold culminations. Observations of dual vergence and along-strike discontinuities suggest an original deformation regime possibly involving limited transpression associated with distant late Paleozoic Appalachian-Ouachita mountain building. Moderate-magnitude earthquakes located west of the western flank of the La Salle deformation belt have reverse and strike-slip mechanisms at upper trustai depths, which might be reactivating deep basement faults such as observed in this study. The La Salle deformation belt is not necessarily typical of other well-known major midcontinent fault and fold zones, such as the Nemaha ridge, over which Paleozoic and younger sediments appear to simply be draped.
NASA Astrophysics Data System (ADS)
Becel, A.
2016-12-01
In September-October 2014, the East North American Margin (ENAM) Community Seismic Experiment (CSE) acquired deep penetration multichannel seismic (MCS) reflection on a 500 km wide section of the Mid-Atlantic continental margin offshore North Carolina and Virginia. This margin formed after the Mesozoic breakup of supercontinent Pangea. One of the goals of this experiment is an improved understanding of events surrounding final stage of breakup including the relationship between the timing of rifting and the occurrence of offshore magmatism and early spreading history of this passive margin that remain poorly understood. Deep penetration MCS data were acquired with the 6600 cu.in. tuned airgun array and the 636 channel, 8-km-long streamer of the R/V Marcus Langseth. The source and the streamer were both towed at a depth of 9 m for deep imaging. Here we present initial results from MCS data along two offshore margin normal profiles (450-km long and 370-km-long, respectively), spanning from continental crust 50 km off the coast to mature oceanic crust and a 350-km-long MCS profile along the enigmatic Blake Spur Magnetic Anomaly (BSMA). Initial images reveal a major change in the basement roughness at the BSMA on both margin normal profiles. Landward of this anomaly, the basement is rough and more faulted whereas starting at the anomaly and seaward, the basement is very smooth and reflective. Clear Moho reflections are observed 2.5-3s (7.75-9.3 km assuming an average crustal velocity of 6.2 km/s) beneath the top of the basement on the seaward part of two margin normal profiles and on the margin parallel profile. Intracrustal reflections are also observed over both transitional and oceanic basement. A long-lived mantle thermal anomaly close to the ridge axis during the early opening of the Atlantic Ocean could explain the thicker than normal oceanic crust and smooth basement topography observed in the data.
Diabetic retinopathy: a review for the primary care physician.
Fonseca, V; Munshi, M; Merin, L M; Bradford, J D
1996-09-01
Hyperglycemia can result in key biochemical reactions that may contribute to thickening of basement membranes, dysfunction of pericytes and endothelial cells, and closure of retinal vessels. The Diabetes Control and Complications Trial has proved the value of good glycemic control in preventing retinopathy and/or delaying its progression. The primary care physician has a crucial role in translating these results into practice. Recognition and management of other risk factors, such as proteinuria, smoking, and hypertension, are easily done in the primary care setting. Also, appropriate referral to an ophthalmologist for retinal evaluation and treatment is both necessary and cost effective in reducing the burden of this devastating complication of diabetes.
Glycyrrhizin and long-term histopathologic changes in a murine model of asthma.
Hocaoglu, Arzu Babayigit; Karaman, Ozkan; Erge, Duygu Olmez; Erbil, Guven; Yilmaz, Osman; Bagriyanik, Alper; Uzuner, Nevin
2011-12-01
Licorice root has been widely used to treat bronchial asthma for many years. However, the effect of this herb on lung histopathologic features is not fully understood. In this study, we aimed to determine the effects of oral administration of glycyrrhizin, an active constituent of licorice root, on lung histopathologic features in BALB/c mice, in which the model of chronic asthma was established. Twenty-eight BALB/c mice were divided into 4 groups: control, placebo, dexamethasone, and glycyrrhizin. Mice in the treatment and placebo groups were sensitized with 2 intraperitoneal injections of ovalbumin and then were exposed to aerosolized ovalbumin for 30 minutes per day on 3 days each week for 8 weeks beginning on the 21st study day. In the last week of inhalational exposure, mice in the placebo group received saline and those in the treatment groups received either dexamethasone, 1 mg/kg, or glycyrrhizin, 10 mg/kg, via orogastric gavage for 7 consecutive days. Animals were humanely killed 24 hours after the last ovalbumin and drug exposure. Lung histopathologic findings were evaluated using light and electron microscopy. As evaluated in the control, placebo, dexamethasone, and glycyrrhizin groups, respectively, the mean (SD) basement membrane thickness was 306.34 (36.91), 657.52 (98.99), 405.13 (96.1), and 465.01 (121.48) nm; subepithelial smooth muscle thickness was 7.22 (1.37), 11.24 (1.85), 5.62 (1.15), and 7.76 (1.11) μm; epithelium thickness was 19.48 (1.22), 41.62 (5.49), 22.59 (3.18), and 25.54 (4.68) μm; number of mast cells was 1.34 (0.19), 3.62 (0.5), 2.06 (0.77), and 2.77 (0.23)/16,400 μm(2); and number of goblet cells was 0.32 (0.1), 4.92 (0.82), 0.66 (0.06), and 0.98 (0.15)/100 μm. Evaluation of lung histopathologic features demonstrated that the chronic asthma model of mice was successfully established, with significantly higher numbers of goblet and mast cells and increased thickness of epithelium, basement membrane, and subepithelial smooth muscle layers (P < 0.001 for all) in the asthma group compared with in the control group. The number of goblet (P < 0.001) and mast (P < 0.02) cells and the thickness of basement membrane (P < 0.001), subepithelial smooth muscle layers (P ≤ 0.001), and epithelium of the lung (P < 0.001) were found to be significantly lower in the glycyrrhizin group compared with in the placebo group. When the glycyrrhizin and dexamethasone groups were compared, there was no statistically significant difference between the 2 groups in the histopathologic parameters, including thickness of basement membrane (P = 0.514), subepithelial smooth muscle (P = 0.054), and epithelium (P = 1.0) and number of mast (P = 0.075) and goblet (P = 0.988) cells. The results of this study suggest that the group receiving glycyrrhizin had amelioration of all established chronic histopathologic changes of lung in the mouse model of asthma. Further studies are needed to evaluate the efficacy of glycyrrhizin in the management of asthma.
LOFT. Containment and service building (TAN650). Section through east/west axis ...
LOFT. Containment and service building (TAN-650). Section through east/west axis of building as viewed from the south. Shows basement and grade levels of containment building, connection to control room on west side, air filter vaults, and duct enclosure for air exhaust system. Kaiser engineers 6413-11-STEP/LOFT-650-A-4. Date: October 1964. INEEL index code no. 036-650-00-486-122216 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Kalscheuer, Thomas; Blake, Sarah; Podgorski, Joel E.; Wagner, Frederic; Green, Alan G.; Maurer, Hansruedi; Jones, Alan G.; Muller, Mark; Ntibinyane, Ongkopotse; Tshoso, Gomotsang
2015-09-01
The Okavango Delta of northern Botswana is one of the world's largest inland deltas or megafans. To obtain information on the character of sediments and basement depths, audiomagnetotelluric (AMT), controlled-source audiomagnetotelluric (CSAMT) and central-loop transient electromagnetic (TEM) data were collected on the largest island within the delta. The data were inverted individually and jointly for 1-D models of electric resistivity. Distortion effects in the AMT and CSAMT data were accounted for by including galvanic distortion tensors as free parameters in the inversions. By employing Marquardt-Levenberg inversion, we found that a 3-layer model comprising a resistive layer overlying sequentially a conductive layer and a deeper resistive layer was sufficient to explain all of the electromagnetic data. However, the top of the basal resistive layer from electromagnetic-only inversions was much shallower than the well-determined basement depth observed in high-quality seismic reflection images and seismic refraction velocity tomograms. To resolve this discrepancy, we jointly inverted the electromagnetic data for 4-layer models by including seismic depths to an interface between sedimentary units and to basement as explicit a priori constraints. We have also estimated the interconnected porosities, clay contents and pore-fluid resistivities of the sedimentary units from their electrical resistivities and seismic P-wave velocities using appropriate petrophysical models. In the interpretation of our preferred model, a shallow ˜40 m thick freshwater sandy aquifer with 85-100 Ωm resistivity, 10-32 per cent interconnected porosity and <13 per cent clay content overlies a 105-115 m thick conductive sequence of clay and intercalated salt-water-saturated sands with 15-20 Ωm total resistivity, 1-27 per cent interconnected porosity and 15-60 per cent clay content. A third ˜60 m thick sandy layer with 40-50 Ωm resistivity, 10-33 per cent interconnected porosity and <15 per cent clay content is underlain by the basement with 3200-4000 Ωm total resistivity. According to an interpretation of helicopter TEM data that cover the entire Okavango Delta and borehole logs, the second and third layers may represent lacustrine sediments from Paleo Lake Makgadikgadi and a moderately resistive freshwater aquifer comprising sediments of the recently proposed Paleo Okavango Megafan, respectively.
Tanji, N; Markowitz, G S; Fu, C; Kislinger, T; Taguchi, A; Pischetsrieder, M; Stern, D; Schmidt, A M; D'Agati, V D
2000-09-01
Advanced glycation end products (AGE) contribute to diabetic tissue injury by two major mechanisms, i.e., the alteration of extracellular matrix architecture through nonenzymatic glycation, with formation of protein crosslinks, and the modulation of cellular functions through interactions with specific cell surface receptors, the best characterized of which is the receptor for AGE (RAGE). Recent evidence suggests that the AGE-RAGE interaction may also be promoted by inflammatory processes and oxidative cellular injury. To characterize the distributions of AGE and RAGE in diabetic kidneys and to determine their specificity for diabetic nephropathy, an immunohistochemical analysis of renal biopsies from patients with diabetic nephropathy (n = 26), hypertensive nephrosclerosis (n = 7), idiopathic focal segmental glomerulosclerosis (n = 11), focal sclerosis secondary to obesity (n = 7), and lupus nephritis (n = 11) and from normal control subjects (n = 2) was performed, using affinity-purified antibodies raised to RAGE and two subclasses of AGE, i.e., N(epsilon)-(carboxymethyl)-lysine (CML) and pentosidine (PENT). AGE were detected equally in diffuse and nodular diabetic nephropathy. CML was the major AGE detected in diabetic mesangium (96%), glomerular basement membranes (GBM) (42%), tubular basement membranes (85%), and vessel walls (96%). In diabetic nephropathy, PENT was preferentially located in interstitial collagen (90%) and was less consistently observed in vessel walls (54%), mesangium (77%), GBM (4%), and tubular basement membranes (31%). RAGE was expressed on normal podocytes and was upregulated in diabetic nephropathy. The restriction of RAGE mRNA expression to glomeruli was confirmed by reverse transcription-PCR analysis of microdissected renal tissue compartments. The extent of mesangial and GBM immunoreactivity for CML, but not PENT, was correlated with the severity of diabetic glomerulosclerosis, as assessed pathologically. CML and PENT were also identified in areas of glomerulosclerosis and arteriosclerosis in idiopathic and secondary focal segmental glomerulosclerosis, hypertensive nephrosclerosis, and lupus nephritis. In active lupus nephritis, CML and PENT were detected in the proliferative glomerular tufts and crescents. In conclusion, CML is a major AGE in renal basement membranes in diabetic nephropathy, and its accumulation involves upregulation of RAGE on podocytes. AGE are also accumulated in acute inflammatory glomerulonephritis secondary to systemic lupus erythematosus, possibly via enzymatic oxidation of glomerular matrix proteins.
Preil, Simone A R; Kristensen, Lars P; Beck, Hans C; Jensen, Pia S; Nielsen, Patricia S; Steiniche, Torben; Bjørling-Poulsen, Marina; Larsen, Martin R; Hansen, Maria L; Rasmussen, Lars M
2015-10-01
The increased risk of cardiovascular diseases in type 2 diabetes mellitus has been extensively documented, but the origins of the association remain largely unknown. We sought to determine changes in protein expressions in arterial tissue from patients with type 2 diabetes mellitus and moreover hypothesized that metformin intake influences the protein composition. We analyzed nonatherosclerotic repair arteries gathered at coronary bypass operations from 30 patients with type 2 diabetes mellitus and from 30 age- and sex-matched nondiabetic individuals. Quantitative proteome analysis was performed by isobaric tag for relative and absolute quantitation-labeling and liquid chromatography-mass spectrometry, tandem mass spectrometry analysis on individual arterial samples. The amounts of the basement membrane components, α1-type IV collagen and α2-type IV collagen, γ1-laminin and β2-laminin, were significantly increased in patients with diabetes mellitus. Moreover, the expressions of basement membrane components and other vascular proteins were significantly lower among metformin users when compared with nonusers. Patients treated with or without metformin had similar levels of hemoglobin A1c, cholesterol, and blood pressure. In addition, quantitative histomorphometry showed increased area fractions of collagen-stainable material in tunica intima and media among patients with diabetes mellitus. The distinct accumulation of arterial basement membrane proteins in type 2 diabetes mellitus discloses a similarity between the diabetic macroangiopathy and microangiopathy and suggests a molecular explanation behind the alterations in vascular remodeling, biomechanical properties, and aneurysm formation described in diabetes mellitus. The lower amounts of basement membrane components in metformin-treated individuals are compatible with the hypothesis of direct beneficial drug effects on the matrix composition in the vasculature. © 2015 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, C.G.; Karlstrom, K.E.
1993-04-01
Distinctive lithostratigraphic markers, metamorphic isobaric surfaces, major ductile thrusts and overturned folds in Early Proterozoic rocks from 4 isolated uplifts in north-central NM provide relatively firm piercing points for restoration of over 50 km of right lateral strike-slip movement along a network of N-S trending faults. In addition, the authors speculate that the Uncompahgre Group in the Needle Mts. of southern Colorado is correlative with the Hondo Group in northern NM; suggesting over 150 km of right-lateral strike slip offset has occurred across a network of N-S trending faults that includes the Picuris-Pecos fault, the Borrego fault, the Nacimiento faultmore » and others. The tectonic implications of this reconstruction span geologic time from the Proterozoic to the Cenozoic. The restoration of slip provides new insights into the structure of the Proterozoic basement in NM. Volcanogenic basement (1.74--1.72 Ga) and overlying sedimentary cover (Hondo Group) are imbricated in an originally EW- to NW-trending ductile foreland thrust and fold belt that formed near the southern margin of 1.74--1.72 basement. The authors propose that the volcanogenic basement rocks correlate with rocks of the Yavapi Province in Arizona and that the Hondo Group correlates with foreland rocks of the Tonto Basin Supergroup. Rocks south of this belt are 1.65 Ga or younger and are interpreted to belong to a separate crustal province which correlates with the Mazatzal Province in Arizona. Proterozoic ductile fault geometries suggest that the Mazatzal Province was thrust northward and resulted in imbrication of Yavapi Province basement and its siliciclastic over sequence.« less
Mourão, R V C; Júnior, E C Pinheiro; Barros Silva, P G; Turatti, E; Mota, M R L; Alves, A P N N
2016-05-01
To evaluate the relationship between mononuclear inflammatory infiltrate and the expression of a proliferative immunomarker (Ki-67) as well as to evaluate basement membrane and extracellular matrix proteins (laminin and collagen type IV) in radicular cysts and dentigerous cysts (DC). Immunohistochemical analyses were performed in heavily inflamed radicular cysts (HIRC), slightly inflamed radicular cysts (SIRC) and DC (n = 20) using Ki-67 (Dako(®) , 1 : 50), anticollagen type IV (DBS(®) , 1 : 40) and antilaminin (DBS(®) , 1 : 20). The data were analysed using anova/Tukey's test (Ki-67) and Kruskal-Wallis/Dunn's test (collagen type IV and laminin) (P < 0.05). The immunoexpression of Ki-67 was significantly greater in the SIRC group compared with the HIRC and DC (P = 0.0040). Likewise, the immunoexpression of collagen type IV in the basement membrane of the SIRC group was significantly more continuous (P = 0.0475) than in the HIRC group. DC had significantly less collagen type IV in extracellular matrix immunoexpression than HIRC and SIRC (P = 0.0246). Laminin was absent in the basement membrane in the SIRC and DC groups, and the extracellular matrix of the HIRC was weak and punctate. The presence of inflammatory factors in the radicular cyst wall modified the expression of proliferation factors in the epithelial lining and the expression of collagen type IV and laminin in the basement membrane, but did not modify extracellular matrix behaviour in radicular cysts. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Heat flow evidence for hydrothermal circulation in the volcanic basement of subducting plates
NASA Astrophysics Data System (ADS)
Harris, R. N.; Spinelli, G. A.; Fisher, A. T.
2017-12-01
We summarize and interpret evidence for hydrothermal circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of hydrothermal circulation on plate boundary temperatures in these settings. Heat flow evidence for hydrothermal circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these systems that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for hydrothermal circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of hydrothermal circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. Hydrothermal circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of hydrothermal circulation remains an interdisciplinary frontier.
[Cellular architecture of papillary and nonpapillary transitional cell carcinoma].
Moriyama, M
1989-07-01
To characterize the cellular architecture of papillary and nonpapillary transitional cell carcinoma. 2 normal ureters, 6 papillary bladder cancers and 5 nonpapillary bladder cancers were subjected to light and electron microscopic study as well as three dimensional reconstruction by 0.5 microns thick serial sections. Normal urothelium consisted of three cell layers of the basal, intermediate and superficial cells, each of which was morphologically characterized in terms of cell shape and development of cell organelles. Over 90% of the epithelial cells were proved to be connected to the uniform basement membrane directly or with long, fine cytoplasmic processes, forming hemidesmosomes at the junctional portion. Papillary tumors had, as a rule, the same cellular architecture as that of normal epithelium in terms of the regularity of cellular polarity, arrangement and differentiation, and the connection to the basement membrane. But, in G2 tumors, the connection between the intermediate and superficial cells and the basement membrane failed to be confirmed in 7 to 44% of the cells, suggesting the heterogeneity of the tumors. In contrast, nonpapillary tumors showed a high irregularity of the cellular architecture in both lesions of stromal and intra-epithelial invasion. The development of the basement membrane was indefinite, often showing thinning or disruption where occasional cytoplasmic protrusion of the tumor cells into the lamina propria was found. Nearly all of the intermediate and superficial cells in the intraepithelial lesions proved not to communicate with the basement membrane. The present results indicate distinct differences of cellular architecture between the papillary and nonpapillary urothelial tumors, which may reflect not only the growth pattern but also the biological behaviour of the individual tumors.
Brocher, T.M.
2005-01-01
Compressional-wave (sonic) and density logs from 119 oil test wells provide knowledge of the physical properties and impedance contrasts within urban sedimentary basins in northern California, which is needed to better understand basin amplification. These wire-line logs provide estimates of sonic velocities and densities for primarily Upper Cretaceous to Pliocene clastic rocks between 0.1 - and 5.6-km depth to an average depth of 1.8 km. Regional differences in the sonic velocities and densities in these basins largely 1reflect variations in the lithology, depth of burial, porosity, and grain size of the strata, but not necessarily formation age. For example, Miocene basin filling strata west of the Calaveras Fault exhibit higher sonic velocities and densities than older but finer-grained and/or higher-porosity rocks of the Upper Cretaceous Great Valley Sequence. As another example, hard Eocene sandstones west of the San Andreas Fault have much higher impedances than Eocene strata, mainly higher-porosity sandstones and shales, located to the east of this fault, and approach those expected for Franciscan Complex basement rocks. Basement penetrations define large impedence contrasts at the sediment/basement contact along the margins of several basins, where Quaternary, Pliocene, and even Miocene deposits directly overlie Franciscan or Salinian basement rocks at depths as much as 1.7 km. In contrast, in the deepest, geographic centers of the basins, such logs exhibit only a modest impedance contrast at the sediment/basement contact at depths exceeding 2 km. Prominent (up to 1 km/sec) and thick (up to several hundred meters) velocity and density reversals in the logs refute the common assumption that velocities and densities increase monotonically with depth.
NASA Astrophysics Data System (ADS)
Mitchell, Neil C.; Davies, Huw
2018-03-01
The central equatorial Pacific is interesting for studying clues to upper mantle processes, as the region lacks complicating effects of continental remnants or major volcanic plateaus. In particular, the most recently produced maps of the free-air gravity field from satellite altimetry show in greater detail the previously reported lineaments west of the East Pacific Rise (EPR) that are aligned with plate motion over the mantle and originally suggested to have formed from mantle convection rolls. In contrast, the gravity field 600 km or farther west of the EPR reveals lineaments with varied orientations. Some are also parallel with plate motion over the mantle but others are sub-parallel with fracture zones or have other orientations. This region is covered by pelagic sediments reaching 500-600 m thickness so bathymetry is not so useful for seeking evidence for plate deformation across the lineaments. We instead use depth to basement from three seismic reflection cruises. In some segments of these seismic data crossing the lineaments, we find that the co-variation between gravity and basement depth is roughly compatible with typical densities of basement rocks (basalt, gabbro or mantle), as expected for some explanations for the lineaments (e.g., mantle convection rolls, viscous asthenospheric inter-fingering or extensional deformation). However, some other lineaments are associated with major changes in basement depth with only subtle changes in the gravity field, suggesting topography that is locally supported by varied crustal thickness. Overall, the multiple gravity lineament orientations suggest that they have multiple origins. In particular, we propose that a further asthenospheric inter-fingering instability mechanism could occur from pressure variations in the asthenosphere arising from regional topography and such a mechanism may explain some obliquely oriented gravity lineaments that have no other obvious origin.
Geochemical provenance of Florida basement components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heatherington, A.L.; Mueller, P.A.; Dallmeyer, R.D.
1993-03-01
The pre-Cretaceous basement of Florida is generally considered to be exotic with respect to Proterozoic Laurentia. Paleontologic and paleomagnetic evidence have suggested a Gondwanan provenance for the Floridan basement, as either a peri-Gondwanide terrane or as a rifted block of the West African craton. The report of generally similar lithologic sequences and a record of similar Ar-Ar cooling ages in some Floridan and West African lithologic units has led to very specific correlations between these units. U-Pb, Sm-Nd, and Rb-Sr geochronologic studies as well as isotopic and elemental abundance data have been used to evaluate the validity of these correlations.more » Results indicate: (1) geochemical similarities between volcanic rocks of northeastern Florida and a Pan-African metavolcanic sequence (Niokola-Koba group) exposed in Senegal; (2) an absence of a Grenvillian-age (i.e., Laurentian) component in zircons separated from a Paleozoic Suwanee basin sandstone; and (3) whole-rock Sm-Nd and U-Pb zircon evidence for an Archean ([approximately]3.0 Ga) component in the neo-Proterozoic Osceola granitoid(s). Although silicic rocks from throughout Florida have Nd model ages (T[sub DM]) that are predominantly Grenvillian (1.1--1.4 Ga), the absence of a Grenvillian component in zircons separated from granite and sandstone suggests that the model ages represent a mixture of older and younger components. Overall, the evidence for Birimian ([approximately]2.1 Ga) and Liberian ([approximately]3.0 Ga) age components in the Florida basement are consistent with its origin as a rifted block of cratonic Gondwana. In addition to demonstrating a strong affinity between the Florida basement and cratonic West Africa/northern South America, these data provide a basis for comparison with other circum-Atlantic terranes traditionally described as Avalonian/Cadomian, etc.« less
Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dien, P.T.
1994-07-01
The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, whichmore » developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.« less
Lithologies of the basement complex (Devonian and older) in the National Petroleum Reserve - Alaska
Dumoulin, Julie A.; Houseknecht, David W.
2001-01-01
Rocks of the basement complex (Devonian and older) were encountered in at least 30 exploratory wells in the northern part of the NPRA. Fine-grained, variably deformed sedimentary rocks deposited in a slope or basinal setting predominate and include varicolored (mainly red and green) argillite in the Simpson area, dark argillite and chert near Barrow, and widespread gray argillite. Chitinozoans of Middle-Late Ordovician and Silurian age occur in the dark argillite and chert unit. Sponge spicules and radiolarians establish a Phanerozoic age for the varicolored and gray argillite units, both of which contain local interbeds of chert-rich sandstone and silt-stone. Conglomerate and sandstone, also chert-rich but interbedded with mudstone and coal and of Early-Middle Devonian age, occur in the Topagoruk area; these strata formed in a fluvial environment. At East Teshekpuk, granite of probable Devonian age was penetrated. Brecciated, quartz-veined rock of uncertain protolith that may be part of the basement complex was encountered in the Ikpikpuk well. Seismic data indicate that angular unconformities truncate all sedimentary units of the basement complex in NPRA. Rocks correlative in age and lithofacies with the dark argillite and chert unit occur in the subsurface near Prudhoe Bay. Other argillite units in NPRA have similarities to basement rocks in the subsurface adjacent to ANWR and the Ordovician-Silurian Iviagik Group at Cape Lisburne, but lack the interbedded limestones found in the ANWR strata, and are less metamorphosed than, and compositionally distinct from, the Iviagik. The Topagoruk conglomerate and the East Teshekpuk granite resemble the Ulungarat formation and the Okpilak batholith, respectively, in the northeastern Brooks Range.
Phelps, Geoffrey A.; McKee, Edwin H.; Sweetkind, D.; Langenheim, V.E.
2000-01-01
The Environmental Restoration Program of the U.S. Department of Energy, Nevada Operations Office, was developed to investigate the possible consequences to the environment of 40 years of nuclear testing on the Nevada Test Site. The majority of the tests were detonated underground, introducing contaminants into the ground-water system (Laczniak and others, 1996). An understanding of the ground-water flow paths is necessary to evaluate the extent of ground-water contamination. This report provides information specific to Yucca Flat on the Nevada Test Site. Critical to understanding the ground-water flow beneath Yucca Flat is an understanding of the subsurface geology, particularly the structure and distribution of the pre-Tertiary rocks, which comprise both the major regional aquifer and aquitard sequences (Winograd and Thordarson, 1975; Laczniak and others, 1996). Because the pre-Tertiary rocks are not exposed at the surface of Yucca Flat their distribution must be determined through well logs and less direct geophysical methods such as potential field studies. In previous studies (Phelps and others, 1999; Phelps and Mckee, 1999) developed a model of the basement surface of the Paleozoic rocks beneath Yucca Flat and a series of normal faults that create topographic relief on the basement surface. In this study the basement rocks and structure of Yucca Flat are examined in more detail using the basement gravity anomaly derived from the isostatic gravity inversion model of Phelps and others (1999) and high-resolution magnetic data, as part of an effort to gain a better understanding of the Paleozoic rocks beneath Yucca Flat in support of groundwater modeling.
The origin and development of plains-type folds during the cretaceous in Central and western Kansas
Merriam, D.F.; Forster, A.
2000-01-01
Kansas is part of the Central Stable Region of North America. Structural movement on this part of the craton has been mainly the result of tectonism in nearby areas. Response to the outside tectonic forces, transmitted through the rigid Precambrian basement, has been vertical adjustment. Differential movement along an indigenous fault/fracture pattern in the basement created displaced blocks over which the later sediments were draped by differential compaction. After initial formation of this structural regimen in late Mississippian-early Pennsylvanian time, continued movement of the basement blocks gave rise to the plains-type folds so prevalent in the U.S. Midcontinent. The incremental movement continues through the late Paleozoic, Mesozoic, and Tertiary until today. This paper demonstrates the Cretaceous development of some of these structures in central and western Kansas.
Carlson, M.P.
2007-01-01
The Phanerozoic history in Nebraska and adjacent regions contains many patterns of structure and stratigraphy that can be directly related to the history of the Precambrian basement rocks of the area. A process is proposed that explains the southward growth of North America during the period 1.8-1.6 Ga. A series of families of accretionary events during the Proterozoic emplaced sutures that remained as fundamental basement weak zones. These zones were rejuvenated in response to a variety of continental stress events that occurred during the Phanerozoic. By combining the knowledge of basement history with the history of rejuvenation during the Phanerozoic, both the details of Proterozoic accretionary growth and an explanation for the patterns of Phanerozoic structure and stratigraphy is provided. ?? 2007 The Geological Society of America. All rights reserved.
Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases.
Sun, Bao-Liang; Wang, Li-Hua; Yang, Tuo; Sun, Jing-Yi; Mao, Lei-Lei; Yang, Ming-Feng; Yuan, Hui; Colvin, Robert A; Yang, Xiao-Yi
2017-09-10
The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange. Copyright © 2017. Published by Elsevier Ltd.
Regional Surface Waves from Mesabi Range Mine Blasts (Northern Minnesota)
1991-10-29
rocks within the Archean basement which underlies the Animikie basin near the source areas. The final analysis was two dimensional raytracing which...overlying the Archean basement. Overlying the Pokegama Quartzite is the Biwabik Iron Formation and the Virginia Formation (Morey, 1983, Southwick and others...composed of intercalated mudstone and siltstone turbidite deposits which thicken and coarsen progressively from north to south across the basin (Morey and
2012-08-10
development. Here we evaluate the histopathologic, biochemical and ultrastructural expressions of pathogenesis of the chronic SM injury over eight weeks...the basal corneal epithelium , basement membrane zone abnormalities and stromal deformation. Clinical sequelae of MGK appeared abruptly three weeks after...persistent necrosis of the basal corneal epithelium and deterioration of the basement membrane. The findings also provide a potential explanation as to why
4. INTERIOR VIEW OF BASEMENT. CENTRAL LINE SHAFTING RUNNING NORTHSOUTH ...
4. INTERIOR VIEW OF BASEMENT. CENTRAL LINE SHAFTING RUNNING NORTH-SOUTH IS IN PLACE; AT RIGHT IS A PRESS FOR WORKING THE ALUMINUM SHEETS; E. W. BLISS CO. OF BROOKLYN, NEW YORK, MANUFACTURED THE PRESS. MACHINERY ORIGINALLY POWERED BY OVERHEAD BELTS CONNECTED TO CENTRAL LINE SHAFTS; BY ABOUT THE 1940s THE MACHINERY WAS ELECTRICALLY POWERED. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL
MTR BASEMENT. DOORWAY TO SOURCE STORAGE VAULT IS AT CENTER ...
MTR BASEMENT. DOORWAY TO SOURCE STORAGE VAULT IS AT CENTER OF VIEW; TO DECONTAMINATION ROOM, AT RIGHT. PART OF MAZE ENTRY IS VISIBLE INSIDE VAULT DOORWAY. INL NEGATIVE NO. 7763. Unknown Photographer, photo was dated as 3/30/1953, but this was probably an error. The more likely date is 3/30/1952. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
6. INTERIOR VIEW OF BASEMENT OF CA. 1948 FACTORY ADDITION, ...
6. INTERIOR VIEW OF BASEMENT OF CA. 1948 FACTORY ADDITION, WITH REINFORCED CONCRETE FRAME AND FLOOR OF REINFORCED CONCRETE TEE-BEAMS, LOOKING NORTH. AT LEFT IS DEEP DRAW, HEAVY PRESS MANUFACTURED BY E. W. BLISS CO., BROOKLYN, NEW YORK. PRESS #3-1/2 B, PATENTED BY E. W. BLISS CO., 1893. MANUFACTURERS PLATE INDICATES PRESS DATES FROM 1920. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL
A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc
NASA Astrophysics Data System (ADS)
Arculus, Richard J.; Ishizuka, Osamu; Bogus, Kara A.; Gurnis, Michael; Hickey-Vargas, Rosemary; Aljahdali, Mohammed H.; Bandini-Maeder, Alexandre N.; Barth, Andrew P.; Brandl, Philipp A.; Drab, Laureen; Do Monte Guerra, Rodrigo; Hamada, Morihisa; Jiang, Fuqing; Kanayama, Kyoko; Kender, Sev; Kusano, Yuki; Li, He; Loudin, Lorne C.; Maffione, Marco; Marsaglia, Kathleen M.; McCarthy, Anders; Meffre, Sebastién; Morris, Antony; Neuhaus, Martin; Savov, Ivan P.; Sena, Clara; Tepley, Frank J., III; van der Land, Cees; Yogodzinski, Gene M.; Zhang, Zhaohui
2015-09-01
The initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence of dense lithosphere along faults adjacent to buoyant lithosphere, would result in extension and magmatism. The rock record of subduction initiation is typically obscured by younger deposits, so evaluating these possibilities has proved elusive. Here we analyse the geochemical characteristics of igneous basement rocks and overlying sediments, sampled from the Amami Sankaku Basin in the northwest Philippine Sea. The uppermost basement rocks are areally widespread and supplied via dykes. They are similar in composition and age--as constrained by the biostratigraphy of the overlying sediments--to the 52-48-million-year-old basalts in the adjacent Izu-Bonin-Mariana fore-arc. The geochemical characteristics of the basement lavas indicate that a component of subducted lithosphere was involved in their genesis, and the lavas were derived from mantle source rocks that were more melt-depleted than those tapped at mid-ocean ridges. We propose that the basement lavas formed during the inception of Izu-Bonin-Mariana subduction in a mode consistent with the spontaneous initiation of subduction.