Sample records for pathways dose total

  1. Population dose commitments due to radioactive releases from nuclear-power-plant sites in 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloquin, R.A.; Schwab, J.D.; Baker, D.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1978. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 200 person-rem to a low of 0.0004 person-rem with an arithmetic mean of 14 person-rem. The total population dose for allsites was estimated at 660 person-rem for the 93 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 3 x 10/sup -6/ mrem to a high of 0.08 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less

  2. Population dose commitments due to radioactive releases from Nuclear-Power-Plant Sites in 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.; Peloquin, R.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1979. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 1300 person-rem to a low of 0.0002 person-rem with an arithmetic mean of 38 person-rem. The total population dose for all sites was estimated at 1800 person-rem for the 94 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10/sup -6/ mrem to a high of 0.7 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less

  3. Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D. A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1977. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ, Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 220 person-rem to a low of 0.003 person-rem with an arithmetic mean of 16 person-rem. The total population dose for all sites was estimated at 700 person-rem for the 92 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10{sup -5} mrem to a high of 0.1 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less

  4. Population dose commitments due to radioactive releases from nuclear power plant sites in 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.; Peloquin, R.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1980. In addition doses derived from the shutdown reactors at the Three Mile Island site were included. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showingmore » the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 40 person-rem to a low of 0.02 person-rem with an arithmetic mean of 4 person-rem. The total population dose for all sites was estimated at 180 person-rem for the 96 million people considered at risk.« less

  5. Population dose commitments due to radioactive releases from nuclear power plant sites in 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commericial power reactors operating during 1985. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 61 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 73 person-rem to a low of 0.011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 200 person-rem for the 110 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 5 /times/ 10/sup /minus/6/ mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less

  6. Population dose commitments due to radioactive releases from nuclear power plant sites in 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10/sup -6/ mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less

  7. Population dose commitments due to radioactive releases from nuclear power plant sites in 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1986. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 66 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 kmmore » around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 31 person-rem to a low of 0.0007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.7 person-rem. The total population dose for all sites was estimated at 110 person-rem for the 140 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup -6} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. 12 refs.« less

  8. Population dose commitments due to radioactive releases from nuclear power plant sites in 1982. Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.; Peloquin, R.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1982. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 51 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each sitemore » receiving various average dose commitments from the airborne pathways. The total dose commitments from both liquid and airborne pathways ranged from a high of 30 person-rem to a low of 0.007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 130 person-rem for the 100 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 6 x 10/sup -7/ mrem to a high of 0.06 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less

  9. Population dose commitments due to radioactive releases from nuclear power plant sites in 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.; Peloquin, R.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1983. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 52 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 45 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 170 person-rem for the 100 million people considered at risk.« less

  10. Population dose commitments due to radioactive releases from nuclear power plant sites in 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 {times} 10{sup {minus}7} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year).« less

  11. Population dose commitments due to radioactive releases from nuclear power plant sites in 1988. Volume 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 {times} 10{sup {minus}7} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year).« less

  12. Crosstalk between Fas and JNK determines lymphocyte apoptosis after ionizing radiation.

    PubMed

    Praveen, Koganti; Saxena, Nandita

    2013-06-01

    Radiation simultaneously activate Fas and JNK pathway in lymphocytes but their precise interaction is not clearly understood. Activation of Fas pathway is required for radiation induced apoptosis, however induction of JNK pathway may or may not contribute in apoptosis. Here we report that Fas, Fas associated death domain and total JNK are activated in a dose- and time-dependent radiation exposure. A biphasic pattern of phospho-JNK was found at lower doses (1 and 2 Gy), however at higher doses of radiation phospho-JNK was continuously activated. Interestingly, Fas ligand expression remained biphasic at all the doses of radiation. Our results suggest that the Fas pathway is the major player in radiation-induced apoptosis, with JNK playing a contributory role. We also observed that Fas ligand expression by radiation is dependent on JNK activation. We also propose that radiation activates JNK pathway, but sustained activation is required for maximal induction of apoptosis at later times. Our findings define a mechanism for crosstalk between JNK and Fas pathway in radiation-induced apoptosis, which may lead to the development of new therapeutic strategies.

  13. Dose commitments due to radioactive releases from nuclear power plant sites in 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1989. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Partmore » 50, Appendix I design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 14 person-rem to a low of 0.005 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 84 person-rem for the 140 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix I design objectives.« less

  14. Dose commitments due to radioactive releases from nuclear power plant sites in 1989. Volume 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1989. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Partmore » 50, Appendix I design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 14 person-rem to a low of 0.005 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 84 person-rem for the 140 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix I design objectives.« less

  15. Flavonoids and Tannins from Smilax china L. Rhizome Induce Apoptosis Via Mitochondrial Pathway and MDM2-p53 Signaling in Human Lung Adenocarcinoma Cells.

    PubMed

    Fu, San; Yang, Yanfang; Liu, Dan; Luo, Yan; Ye, Xiaochuan; Liu, Yanwen; Chen, Xin; Wang, Song; Wu, Hezhen; Wang, Yuhang; Hu, Qiwei; You, Pengtao

    2017-01-01

    In vitro evidence indicates that Smilax china L. rhizome (SCR) can inhibit cell proliferation. Therefore, in the present study, we analyzed the effects in vitro of SCR extracts on human lung adenocarcinoma A549 cells. Our results showed that A549 cell growth was inhibited in a dose- and time-dependent manner after treatment with SCR extracts. Total flavonoids and total tannins from SCR induced A549 apoptosis in a dose-dependent manner, as shown by our flow cytometry analysis, which was consistent with the alterations in nuclear morphology we observed. In addition, the total apoptotic rate induced by total tannins was higher than the rate induced by total flavonoids at the same dose. Cleaved-caspase-3 protein levels in A549 cells after treatment with total flavonoids or total tannins were increased in a dose-dependent manner, followed by the activation of caspase-8 and caspase-9, finally triggering to PARP cleavage. Furthermore, total flavonoids and total tannins increased the expression of Bax, decreased the expression of Bcl-2, and promoted cytochrome [Formula: see text] release. Moreover, MDM2 and p-MDM2 proteins were decreased, while p53 and p-p53 proteins were increased, both in a dose-dependent manner, after A549 treatment with total flavonoids and total tannins. Finally, cleaved-caspase-3 protein levels in the total flavonoids or total tannins-treated H1299 (p53 null) and p53-knockdown A549 cells were increased. Our results indicated that total flavonoids and total tannins from SCR exerted a remarkable effect in reducing A549 growth through their action on mitochondrial pathway and disruption of MDM2-p53 balance. Hence, our findings demonstrated a potential application of total flavonoids and total tannins from SCR in the treatment of human lung adenocarcinoma.

  16. Collective dose estimates by the marine food pathway from liquid radioactive wastes dumped in the Sea of Japan.

    PubMed

    Togawa, O; Povinec, P P; Pettersson, H B

    1999-09-30

    IAEA-MEL has been engaged in an assessment programme related to radioactive waste dumping by the former USSR and other countries in the western North Pacific Ocean and its marginal seas. This paper focuses on the Sea of Japan and on estimation of collective doses from liquid radioactive wastes. The results from the Japanese-Korean-Russian joint expeditions are summarized, and collective doses for the Japanese population by the marine food pathway are estimated from liquid radioactive wastes dumped in the Sea of Japan and compared with those from global fallout and natural radionuclides. The collective effective dose equivalents by the annual intake of marine products caught in each year show a maximum a few years after the disposals. The total dose from all radionuclides reaches a maximum of 0.8 man Sv in 1990. Approximately 90% of the dose derives from 137Cs, most of which is due to consumption of fish. The total dose from liquid radioactive wastes is approximately 5% of that from global fallout, the contribution of which is below 0.1% of that of natural 210Po.

  17. Occupational exposure due to naturally occurring radionuclide material in granite quarry industry.

    PubMed

    Ademola, J A

    2012-02-01

    The potential occupational exposure in granite quarry industry due to the presence of naturally occurring radioactive material (NORM) has been investigated. The activity concentrations of (40)K, (226)Ra and (232)Th were determined using gamma-ray spectroscopy method. The annual effective dose of workers through different exposure pathways was determined by model calculations. The total annual effective dose varied from 21.48 to 33.69 μSv y(-1). Inhalation dose contributes the highest to the total effective dose. The results obtained were much lower than the intervention exemption levels (1.0 mSv y(-1)) given in the International Commission on Radiological Protection Publication 82.

  18. Inhibition of glycogen phosphorylation induces changes in cellular proteome and signaling pathways in MIA pancreatic cancer cells

    PubMed Central

    Ma, Danjun; Wang, Jiarui; Zhao, Yingchun; Lee, Wai-Nang Paul; Xiao, Jing; Go, Vay Liang W.; Wang, Qi; Recker, Robert; Xiao, Gary Guishan

    2011-01-01

    Objectives Novel quantitative proteomic approaches were used to study the effects of inhibition of glycogen phosphorylase on proteome and signaling pathways in MIA PaCa-2 pancreatic cancer cells. Methods We performed quantitative proteomic analysis in MIA PaCa-2 cancer cells treated with a stratified dose of CP-320626 (25 μM, 50 μM and 100 μM). The effect of metabolic inhibition on cellular protein turnover dynamics was also studied using the modified SILAC method (mSILAC). Results A total of twenty-two protein spots and four phosphoprotein spots were quantitatively analyzed. We found that dynamic expression of total proteins and phosphoproteins was significantly changed in MIA PaCa-2 cells treated with an incremental dose of CP-320626. Functional analyses suggested that most of the proteins differentially expressed were in the pathways of MAPK/ERK and TNF-α/NF-κB. Conclusions Signaling pathways and metabolic pathways share many common cofactors and substrates forming an extended metabolic network. The restriction of substrate through one pathway such as inhibition of glycogen phosphorylation induces pervasive metabolomic and proteomic changes manifested in protein synthesis, breakdown and post-translational modification of signaling molecules. Our results suggest that quantitative proteomic is an important approach to understand the interaction between metabolism and signaling pathways. PMID:22158071

  19. Population dose commitments due to radioactive releases from nuclear power plant sites in 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1987. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 70 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for reach of the sites is a histogram showing the fraction of the total population within 2 to 80 kmmore » around each site receiving various average dose commitments from the airborne pathways. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup {minus}6} mrem to a high of 0.009 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year). 2 refs., 2 figs., 7 tabs.« less

  20. A biosphere modeling methodology for dose assessments of the potential Yucca Mountain deep geological high level radioactive waste repository.

    PubMed

    Watkins, B M; Smith, G M; Little, R H; Kessler, J

    1999-04-01

    Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated water derived from the deep well. Inhalation of dust (11 radionuclides) and external irradiation (1 radionuclide) were also identified as significant exposure modes. Contribution to the total flux to dose conversion factor from the drinking water pathway for each radionuclide was also assessed and for most radionuclides was found to be less than 10% of the total flux to dose conversion factor summed across all pathways. Some of the uncertainties related to the results were considered. The biosphere modeling results have been applied within an EPRI Total Systems Performance Assessment of Yucca Mountain. Conclusions and recommendations for future performance assessments are provided.

  1. Dose-Response Analysis of RNA-Seq Profiles in Archival ...

    EPA Pesticide Factsheets

    Use of archival resources has been limited to date by inconsistent methods for genomic profiling of degraded RNA from formalin-fixed paraffin-embedded (FFPE) samples. RNA-sequencing offers a promising way to address this problem. Here we evaluated transcriptomic dose responses using RNA-sequencing in paired FFPE and frozen (FROZ) samples from two archival studies in mice, one 20 years old. Experimental treatments included 3 different doses of di(2-ethylhexyl)phthalate or dichloroacetic acid for the recently archived and older studies, respectively. Total RNA was ribo-depleted and sequenced using the Illumina HiSeq platform. In the recently archived study, FFPE samples had 35% lower total counts compared to FROZ samples but high concordance in fold-change values of differentially expressed genes (DEGs) (r2 = 0.99), highly enriched pathways (90% overlap with FROZ), and benchmark dose estimates for preselected target genes (2% difference vs FROZ). In contrast, older FFPE samples had markedly lower total counts (3% of FROZ) and poor concordance in global DEGs and pathways. However, counts from FFPE and FROZ samples still positively correlated (r2 = 0.84 across all transcripts) and showed comparable dose responses for more highly expressed target genes. These findings highlight potential applications and issues in using RNA-sequencing data from FFPE samples. Recently archived FFPE samples were highly similar to FROZ samples in sequencing q

  2. Implied Maximum Dose Analysis of Standard Values of 25 Pesticides Based on Major Human Exposure Pathways

    PubMed Central

    Li, Zijian; Jennings, Aaron A.

    2017-01-01

    Worldwide jurisdictions are making efforts to regulate pesticide standard values in residential soil, drinking water, air, and agricultural commodity to lower the risk of pesticide impacts on human health. Because human may exposure to pesticides from many ways, such as ingestion, inhalation, and dermal contact, it is important to examine pesticide standards by considering all major exposure pathways. Analysis of implied maximum dose limits for commonly historical and current used pesticides was adopted in this study to examine whether worldwide pesticide standard values are enough to prevent human health impact or not. Studies show that only U.S. has regulated pesticides standard in the air. Only 4% of the total number of implied maximum dose limits is based on three major exposures. For Chlorpyrifos, at least 77.5% of the total implied maximum dose limits are above the acceptable daily intake. It also shows that most jurisdictions haven't provided pesticide standards in all major exposures yet, and some of the standards are not good enough to protect human health. PMID:29546224

  3. Effects of ursolic acid on glucose metabolism, the polyol pathway and dyslipidemia in non-obese type 2 diabetic mice.

    PubMed

    Lee, Jin; Lee, Hae-In; Seo, Kown-Il; Cho, Hyun Wook; Kim, Myung-Joo; Park, Eun-Mi; Lee, Mi-Kyung

    2014-07-01

    Ursolic acid (UA) is a pentacyclic triterpenoid compound that naturally occurs in fruits, leaves and flowers of medicinal herbs. This study investigated the dose-response efficacy of UA (0.01 and 0.05%) on glucose metabolism, the polyol pathway and dyslipidemia in streptozotocin/nicotinamide-induced diabetic mice. Supplement with both UA doses reduced fasting blood glucose and plasma triglyceride levels in non-obese type 2 diabetic mice. High-dose UA significantly lowered plasma free fatty acid, total cholesterol and VLDL-cholesterol levels compared with the diabetic control mice, while LDL-cholesterol levels were reduced with both doses. UA supplement effectively decreased hepatic glucose-6-phosphatase activity and increased glucokinase activity, the glucokinase/glucose-6-phosphatase ratio, GLUT2 mRNA levels and glycogen content compared with the diabetic control mice. UA supplement attenuated hyperglycemia-induced renal hypertrophy and histological changes. Renal aldose reductase activity was higher, whereas sorbitol dehydrogenase activity was lower in the diabetic control group than in the non-diabetic group. However, UA supplement reversed the biochemical changes in polyol pathway to normal values. These results demonstrated that low-dose UA had preventive potency for diabetic renal complications, which could be mediated by changes in hepatic glucose metabolism and the renal polyol pathway. High-dose UA was more effective anti-dyslipidemia therapy in non-obese type 2 diabetic mice.

  4. Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic

    PubMed Central

    Georgopoulos, Panos G.; Wang, Sheng-Wei; Yang, Yu-Ching; Xue, Jianping; Zartarian, Valerie G.; Mccurdy, Thomas; Özkaynak, Halûk

    2011-01-01

    This article presents an integrated, biologically based, source-to-dose assessment framework for modeling multimedia/multipathway/multiroute exposures to arsenic. Case studies demonstrating this framework are presented for three US counties (Hunderton County, NJ; Pima County, AZ; and Franklin County, OH), representing substantially different conditions of exposure. The approach taken utilizes the Modeling ENvironment for TOtal Risk studies (MENTOR) in an implementation that incorporates and extends the approach pioneered by Stochastic Human Exposure and Dose Simulation (SHEDS), in conjunction with a number of available databases, including NATA, NHEXAS, CSFII, and CHAD, and extends modeling techniques that have been developed in recent years. Model results indicate that, in most cases, the food intake pathway is the dominant contributor to total exposure and dose to arsenic. Model predictions are evaluated qualitatively by comparing distributions of predicted total arsenic amounts in urine with those derived using biomarker measurements from the NHEXAS — Region V study: the population distributions of urinary total arsenic levels calculated through MENTOR and from the NHEXAS measurements are in general qualitative agreement. Observed differences are due to various factors, such as interindividual variation in arsenic metabolism in humans, that are not fully accounted for in the current model implementation but can be incorporated in the future, in the open framework of MENTOR. The present study demonstrates that integrated source-to-dose modeling for arsenic can not only provide estimates of the relative contributions of multipathway exposure routes to the total exposure estimates, but can also estimate internal target tissue doses for speciated organic and inorganic arsenic, which can eventually be used to improve evaluation of health risks associated with exposures to arsenic from multiple sources, routes, and pathways. PMID:18073786

  5. Age-specific radiation dose commitment factors for a one-year chronic intake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoenes, G.R.; Soldat, J.K.

    1977-11-01

    During the licensing process for nuclear facilities, radiation doses and dose commitments must be calculated for people in the environs of a nuclear facility. These radiation doses are determined by examining characteristics of population groups, pathways to people, and radionuclides found in those pathways. The pertinent characteristics, which are important in the sense of contributing a significant portion of the total dose, must then be analyzed in depth. Dose factors are generally available for adults, see Reference 1 for example, however numerous improvements in data on decay schemes and half-lives have been made in recent years. In addition, it ismore » advisable to define parameters for calculation of the radiation dose for ages other than adults since the population surrounding nuclear facilities will be composed of various age groups. Further, since infants, children, and teens may have higher rates of intake per unit body mass, it is conceivable that the maximally exposed individual may not be an adult. Thus, it was necessary to develop new radiation-dose commitment factors for various age groups. Dose commitment factors presented in this report have been calculated for a 50-year time period for four age groups.« less

  6. The influence of the dose calculation resolution of VMAT plans on the calculated dose for eye lens and optic pathway.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Jung-In; Carlson, Joel; Kim, Jin Ho

    2017-03-01

    To investigate the effect of dose calculation grid on calculated dose-volumetric parameters for eye lenses and optic pathways. A total of 30 patients treated using the volumetric modulated arc therapy (VMAT) technique, were retrospectively selected. For each patient, dose distributions were calculated with calculation grids ranging from 1 to 5 mm at 1 mm intervals. Identical structures were used for VMAT planning. The changes in dose-volumetric parameters according to the size of the calculation grid were investigated. Compared to dose calculation with 1 mm grid, the maximum doses to the eye lens with calculation grids of 2, 3, 4 and 5 mm increased by 0.2 ± 0.2 Gy, 0.5 ± 0.5 Gy, 0.9 ± 0.8 Gy and 1.7 ± 1.5 Gy on average, respectively. The Spearman's correlation coefficient between dose gradients near structures vs. the differences between the calculated doses with 1 mm grid and those with 5 mm grid, were 0.380 (p < 0.001). For the accurate calculation of dose distributions, as well as efficiency, using a grid size of 2 mm appears to be the most appropriate choice.

  7. Embryotoxic and pharmacologic potency ranking of six azoles in the rat whole embryo culture by morphological and transcriptomic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimopoulou, Myrto, E-mail: myrto.dimopoulou@wur.nl

    Differential gene expression analysis in the rat whole embryo culture (WEC) assay provides mechanistic insight into the embryotoxicity of test compounds. In our study, we hypothesized that comparative analysis of the transcriptomes of rat embryos exposed to six azoles (flusilazole, triadimefon, ketoconazole, miconazole, difenoconazole and prothioconazole) could lead to a better mechanism-based understanding of their embryotoxicity and pharmacological action. For evaluating embryotoxicity, we applied the total morphological scoring system (TMS) in embryos exposed for 48 h. The compounds tested showed embryotoxicity in a dose-response fashion. Functional analysis of differential gene expression after 4 h exposure at the ID{sub 10} (effectivemore » dose for 10% decreased TMS), revealed the sterol biosynthesis pathway and embryonic development genes, dominated by genes in the retinoic acid (RA) pathway, albeit in a differential way. Flusilazole, ketoconazole and triadimefon were the most potent compounds affecting the RA pathway, while in terms of regulation of sterol function, difenoconazole and ketoconazole showed the most pronounced effects. Dose-dependent analysis of the effects of flusilazole revealed that the RA pathway related genes were already differentially expressed at low dose levels while the sterol pathway showed strong regulation at higher embryotoxic doses, suggesting that this pathway is less predictive for the observed embryotoxicity. A similar analysis at the 24-hour time point indicated an additional time-dependent difference in the aforementioned pathways regulated by flusilazole. In summary, the rat WEC assay in combination with transcriptomics could add a mechanistic insight into the embryotoxic potency ranking and pharmacological mode of action of the tested compounds. - Highlights: • Embryonic exposure to azoles revealed concentration-dependent malformations. • Transcriptomics could enhance the mechanistic knowledge of embryotoxicants. • Retinoic acid gene set identifies early embryotoxic responses to azoles. • Toxic versus pharmacologic potency determines functional efficacy.« less

  8. The influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in children with non-Hodgkin malignant lymphoma

    PubMed Central

    Erculj, Nina; Kotnik, Barbara Faganel; Debeljak, Marusa; Jazbec, Janez; Dolzan, Vita

    2014-01-01

    Background We evaluated the influence of folate pathway polymorphisms on high-dose methotrexate (HD-MTX) related toxicity in paediatric patients with T-cell non-Hodgkin lymphoma (NHL). Patients and methods In total, 30 NHL patients were genotyped for selected folate pathway polymorphisms. Results Carriers of at least one MTHFR 677T allele had significantly higher MTX area under the time-concentration curve levels at third MTX cycle (P = 0.003). These patients were also at higher odds of leucopoenia (P = 0.006) or thrombocytopenia (P = 0.041) and had higher number of different HD-MTX-related toxicity (P = 0.035) compared to patients with wild-type genotype. Conclusions Our results suggest an important role of MTHFR 677C>T polymorphism in the development of HD-MTX-related toxicity in children with NHL. PMID:25177243

  9. [Ranking of radionuclides and pathways according to their contribution to the dose burden to the population resulting from NPP releases].

    PubMed

    Spiridonov, S I; Karpenko, E I; Sharpan, L A

    2013-01-01

    Approaches are described towards estimating the consequences of radioactive contamination of ecosystems by nuclear fuel cycle enterprises with the rationale for the optimal specification level for nuclear power plants (NPP) operating in the normal mode. Calculations are made based on the initial data of the IAEA project, INPRO ENV, dealing with the ranking of radionuclides escaping to the environment from the operating NPPs. Influence of various factors on rankings of radionuclides and pathways of public exposure is demon- strated. An important factor is the controlled radionuclide composition of atmospheric NPP releases. It has been found that variation in the dose coefficients for some radionuclides leads to significant changes not only in the ranking results but also in the estimates of total dose burdens. Invariability is shown of the estimation concerning the greatest contribution of the peroral route to the population dose of irradiation in the situation considered. A conclusion was drawn on the need of taking into consideration uncertainties of different factors when comparing effects on the environment from enterprises of conventional and innovative nuclear fuel cycles.

  10. No association between the vitamin D pathway gene polymorphisms and bone biomarkers response to calcium and low dose calcitriol supplementation in postmenopausal Chinese women: a one-year prospective study.

    PubMed

    Gu, Jiemei; Wang, Chun; Zhang, Hao; Yue, Hua; Hu, Weiwei; He, Jinwei; Fu, Wenzhen; Zhang, Zhenlin

    2018-05-18

    The aim of the study was to explore the association between the vitamin D pathway gene variations and the bone biomarkers response to calcium and low dose calcitriol supplementation in postmenopausal Chinese women. A total of 110 healthy postmenopausal Chinese women (61.51 ± 6.93 years) were enrolled. The participants were supplemented with calcium (600 mg/d) and calcitriol (0.25 μg/d), for 1 year. Four biomarkers, serum levels of beta C-terminal cross-linked telopeptides of type I collagen (β-CTX), amino-terminal propeptide of type I collagen (P1NP), parathyroid hormone (PTH) and 25-hydroxyvitamin D [25(OH)D] were measured at baseline and 12-month follow-up. Multivariate regression models were established to explore the statistical association between the change rate of the four biomarkers and 15 key genes within the vitamin D metabolic pathway. This exclusion process left 98 participants for analysis. Serum levels of P1NP, β-CTX and PTH were significantly decreased at the 12-month follow-up (all p < 0.05). Serum 25(OH)D level had no significant change (p > 0.05). No association was found between the vitamin D pathway gene polymorphisms and bone biomarkers response to calcium and low dose calcitriol supplementation. Genetic background of postmenopausal Chinese women might not influence supplemental response of the biomarkers to calcium and low dose calcitriol.

  11. THE IMPORTANCE OF ARSENIC SPECIES SPECIFIC MASS BALANCE ON THE EVALUATION OF ARSENIC SPECIATION RESULTS IN SEAFOOD MATRICES

    EPA Science Inventory

    The two predominant pathways to arsenic exposure are drinking water and dietary ingestion. A large percentage of the dietary exposure component is associated with a few food groups. For example, seafood alone represents over 50% of the total dietary exposure. From a daily dose...

  12. The Northern Marshall Islands Radiological Survey: data and dose assessments.

    PubMed

    Robison, W L; Noshkin, V E; Conrado, C L; Eagle, R J; Brunk, J L; Jokela, T A; Mount, M E; Phillips, W A; Stoker, A C; Stuart, M L; Wong, K M

    1997-07-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for 137Cs, 90Sr, 239+240Pu and 241Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from 137Cs. 90Sr is the second most significant radionuclide via ingestion. External gamma exposure from 137Cs accounts for about 10% to 30% of the dose. 239+240Pu and 241Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y(-1) to 2.1 mSv y(-1). The background dose in the Marshall Islands is estimated to be 2.4 mSv y(-1). The combined dose from both background and bomb related radionuclides ranges from slightly over 2.4 mSv y(-1) to 4.5 mSv y(-1). The 50-y integral dose ranges from 0.5 to 65 mSv.

  13. 3,3′,4,4′,5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats

    PubMed Central

    Wu, Xianai; Yang, Jun; Morisseau, Christophe; Robertson, Larry W.; Hammock, Bruce; Lehmler, Hans-Joachim

    2016-01-01

    Disruption of the homeostasis of oxygenated regulatory lipid mediators (oxylipins), potential markers of exposure to aryl hydrocarbon receptor (AhR) agonists, such as 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126), is associated with a range of diseases, including nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Here we test the hypothesis that PCB 126 exposure alters the levels of oxylipins in rats. Male Sprague-Dawley rats (5-weeks old) were treated over a 3-month period every 2 weeks with intraperitoneal injections of PCB 126 in corn oil (cumulative doses of 0, 19.8, 97.8, and 390 µg/kg b.w.; 6 injections total). PCB 126 treatment caused a reduction in growth rates at the highest dose investigated, a dose-dependent decrease in thymus weights, and a dose-dependent increase in liver weights. Liver PCB 126 levels increased in a dose-dependent manner, while levels in plasma were below or close to the detection limit. The ratios of several epoxides to diol metabolites formed via the cytochrome P450 (P450) monooxygenase/soluble epoxide hydrolase (sEH) pathway from polyunsaturated fatty acids displayed a dose-dependent decrease in the liver and plasma, whereas levels of oxylipins formed by other metabolic pathways were generally not altered by PCB 126 treatment. The effects of PCB 126 on epoxide-to-diol ratios were associated with an increased CYP1A activity in liver microsomes and an increased sEH activity in liver cytosol and peroxisomes. These results suggest that oxylipins are potential biomarkers of exposure to PCB 126 and that the P450/sEH pathway is a therapeutic target for PCB 126-mediated hepatotoxicity that warrants further attention. PMID:27208083

  14. Length of stay and hospital costs associated with a pharmacodynamic-based clinical pathway for empiric antibiotic choice for ventilator-associated pneumonia.

    PubMed

    Nicasio, Anthony M; Eagye, Kathryn J; Kuti, Effie L; Nicolau, David P; Kuti, Joseph L

    2010-05-01

    To determine hospital costs associated with the use of a clinical pathway implemented in our intensive care units (ICUs) to optimize antibiotic regimen selection for patients with ventilator-associated pneumonia (VAP) compared with costs in a historical control group treated according to prescriber preference. Retrospective cost analysis from the hospital perspective. Single, tertiary-care medical center. One hundred sixty-six adults with VAP from the medical, surgical, and neurotrauma ICUs (73 historical control patients [2004-2005] and 93 patients given an empiric antibiotic clinical pathway for VAP [2006-2007]). The VAP clinical pathway consisted of an ICU-specific three-drug regimen that considered local minimum inhibitory concentration distributions and a pharmacodynamically optimized dosing strategy. Hospital cost data were collected and inflated to 2007 according to the consumer price index. The VAP-related length of treatment, hospitalization costs, and antibiotic costs were compared between groups. The median VAP length of treatment was 24 days (interquartile range [IQR] 13-35 days] and 11 days (IQR 7-17 days) for historical and clinical pathway groups, respectively (p<0.001). Daily hospital costs were similar for both cohorts over the first 7 days, after which costs declined significantly for patients treated with the clinical pathway (p<0.001). When controlling for baseline differences between groups and length of stay before development of VAP, patients treated with the clinical pathway had shorter lengths of ICU stay after VAP, shorter total hospital lengths of stay after VAP, and lower hospital costs after the treatment of VAP. Median total antibiotic costs for individual patients were similar between groups ($535 [IQR $261-998] vs $482 [IQR $222-985] clinical pathway vs control, p=0.45), and the proportion of VAP hospital resources consumed by antibiotics for both groups was low. Although aggressive dosing of more costly antibiotics was empirically prescribed using the clinical pathway, patients in this group exhibited a shorter duration of treatment, reduced hospital length of stay after VAP, and lower hospital costs without any significant increase in antibiotic expenditures.

  15. How is agitation and restlessness managed in the last 24 h of life in patients whose care is supported by the Liverpool care pathway for the dying patient?

    PubMed

    Gambles, M; McGlinchey, T; Latten, R; Dickman, A; Lowe, D; Ellershaw, J E

    2011-12-01

    Guidance regarding the patient centred management of agitation and restlessness reinforces the importance of considering underlying causes, non-pharmacological approaches to treatment and judicious use of medications titrated to patient need. In contrast, recent reports in the literature suggest that the practice of continuous deep sedation until death is prevalent in the UK. To use data from the National Care of the Dying Audit-Hospitals (NCDAH) to explore the administration of medication for management of agitation and restlessness in the last 24 h of life. Hospitals submitted data from up to 30 consecutive adult patients whose care in the final hours/days of life was supported by the Liverpool Care Pathway for the Dying Patient (LCP). Data on the total dose received in the last 24 h of life PRN and the last dose prescribed for administration via continuous subcutaneous infusion (CSCI) for agitation and restlessness were submitted. 155 hospitals provided data from 3893 patients. Median total doses in the last 24 h for midazolam, haloperidol and levomepromazine, respectively, were: PRN only, 2.5, 1.5 and 6.25 mg; CSCI only, 10, 3 and 6.25 mg; PRN+CSCI, 15, 3 and 12.5 mg. Only 51% of patients received medication to alleviate agitation and restlessness in the last 24 h of life. Median doses were low in comparison to doses recommended for continuous deep sedation, suggesting that there is no 'blanket' policy for continuous deep sedation at the end of life for patients whose care is supported by the LCP.

  16. Implementing Toxicity Testing in the 21st Century (TT21C): Making safety decisions using toxicity pathways, and progress in a prototype risk assessment.

    PubMed

    Adeleye, Yeyejide; Andersen, Melvin; Clewell, Rebecca; Davies, Michael; Dent, Matthew; Edwards, Sue; Fowler, Paul; Malcomber, Sophie; Nicol, Beate; Scott, Andrew; Scott, Sharon; Sun, Bin; Westmoreland, Carl; White, Andrew; Zhang, Qiang; Carmichael, Paul L

    2015-06-05

    Risk assessment methodologies in toxicology have remained largely unchanged for decades. The default approach uses high dose animal studies, together with human exposure estimates, and conservative assessment (uncertainty) factors or linear extrapolations to determine whether a specific chemical exposure is 'safe' or 'unsafe'. Although some incremental changes have appeared over the years, results from all new approaches are still judged against this process of extrapolating high-dose effects in animals to low-dose exposures in humans. The US National Research Council blueprint for change, entitled Toxicity Testing in the 21st Century: A Vision and Strategy called for a transformation of toxicity testing from a system based on high-dose studies in laboratory animals to one founded primarily on in vitro methods that evaluate changes in normal cellular signalling pathways using human-relevant cells or tissues. More recently, this concept of pathways-based approaches to risk assessment has been expanded by the description of 'Adverse Outcome Pathways' (AOPs). The question, however, has been how to translate this AOP/TT21C vision into the practical tools that will be useful to those expected to make safety decisions. We have sought to provide a practical example of how the TT21C vision can be implemented to facilitate a safety assessment for a commercial chemical without the use of animal testing. To this end, the key elements of the TT21C vision have been broken down to a set of actions that can be brought together to achieve such a safety assessment. Such components of a pathways-based risk assessment have been widely discussed, however to-date, no worked examples of the entire risk assessment process exist. In order to begin to test the process, we have taken the approach of examining a prototype toxicity pathway (DNA damage responses mediated by the p53 network) and constructing a strategy for the development of a pathway based risk assessment for a specific chemical in a case study mode. This contribution represents a 'work-in-progress' and is meant to both highlight concepts that are well-developed and identify aspects of the overall process which require additional development. To guide our understanding of what a pathways-based risk assessment could look like in practice, we chose to work on a case study chemical (quercetin) with a defined human exposure and to bring a multidisciplinary team of chemists, biologists, modellers and risk assessors to work together towards a safety assessment. Our goal was to see if the in vitro dose response for quercetin could be sufficiently understood to construct a TT21C risk assessment without recourse to rodent carcinogenicity study data. The data presented include high throughput pathway biomarkers (p-H2AX, p-ATM, p-ATR, p-Chk2, p53, p-p53, MDM2 and Wip1) and markers of cell-cycle, apoptosis and micronuclei formation, plus gene transcription in HT1080 cells. Eighteen point dose response curves were generated using flow cytometry and imaging to determine the concentrations that resulted in significant perturbation. NOELs and BMDs were compared to the output from biokinetic modelling and the potential for in vitro to in vivo extrapolation explored. A first tier risk assessment was performed comparing the total quercetin concentration in the in vitro systems with the predicted total quercetin concentration in plasma and tissues. The shortcomings of this approach and recommendations for improvement are described. This paper therefore describes the current progress in an ongoing research effort aimed at providing a pathways-based, proof-of-concept in vitro-only safety assessment for a consumer use product. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: a pilot randomized study of high-dose vitamin D3 administration

    PubMed Central

    Alvarez, Jessica A.; Chong, Elizabeth Y.; Walker, Douglas I.; Chandler, Joshua D.; Michalski, Ellen S.; Grossmann, Ruth E.; Uppal, Karan; Li, Shuzhao; Frediani, Jennifer K.; Tirouvanziam, Rabindra; Tran, ViLinh T.; Tangpricha, Vin; Jones, Dean P.; Ziegler, Thomas R.

    2017-01-01

    Background Cystic fibrosis (CF) is a chronic catabolic disease often requiring hospitalization for acute episodes of worsening pulmonary exacerbations. Limited data suggest that vitamin D may have beneficial clinical effects, but the impact of vitamin D on systemic metabolism in this setting is unknown. Objective We used high-resolution metabolomics (HRM) to assess the impact of baseline vitamin D status and high-dose vitamin D3 administration on systemic metabolism in adults with CF with an acute pulmonary exacerbation. Design Twenty-five hospitalized adults with CF were enrolled in a randomized trial of high-dose vitamin D3 (250,000 IU vitamin D3 bolus) versus placebo. Age-matched healthy subjects served as a reference group for baseline comparisons. Plasma was analyzed with liquid chromatography/ultra-high resolution mass spectrometry. Using recent HRM bioinformatics and metabolic pathway enrichment methods, we examined associations with baseline vitamin D status (sufficient vs deficient per serum 25-hydroxyvitamin D concentrations) and the 7-day response to vitamin D3 supplementation. Results Several amino acids and lipid metabolites differed between CF and healthy control subjects, indicative of an overall catabolic state. In CF subjects, 343 metabolites differed (P<0.05) by baseline vitamin D status and were enriched within 7 metabolic pathways including fatty acid, amino acid, and carbohydrate metabolism. A total of 316 metabolites, which showed enrichment for 15 metabolic pathways--predominantly representing amino acid pathways-- differed between the vitamin D3- and placebo-treated CF subjects over time (P<0.05). In the placebo group, several tricarboxylic acid cycle intermediates increased while several amino acid-related metabolites decreased; in contrast, little change in these metabolites occurred with vitamin D3 treatment. Conclusions Numerous metabolic pathways detected by HRM varied in association with vitamin D status and high-dose vitamin D3 supplementation in adults with CF experiencing a pulmonary exacerbation. Overall, these pilot data suggest an anti-catabolic effect of high-dose vitamin D3 in this clinical setting. PMID:28403943

  18. Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy.

    PubMed

    Kirk, Jon; Shah, Nirav; Noll, Braxton; Stevens, Craig B; Lawler, Marshall; Mougeot, Farah B; Mougeot, Jean-Luc C

    2018-08-01

    Oral mucositis (OM) is a major dose-limiting side effect of chemotherapy and radiation used in cancer treatment. Due to the complex nature of OM, currently available drug-based treatments are of limited efficacy. Our objectives were (i) to determine genes and molecular pathways associated with OM and wound healing using computational tools and publicly available data and (ii) to identify drugs formulated for topical use targeting the relevant OM molecular pathways. OM and wound healing-associated genes were determined by text mining, and the intersection of the two gene sets was selected for gene ontology analysis using the GeneCodis program. Protein interaction network analysis was performed using STRING-db. Enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction database to find drug candidates for topical use in OM. Our analysis identified 447 genes common to both the "OM" and "wound healing" text mining concepts. Gene enrichment analysis yielded 20 genes representing six pathways and targetable by a total of 32 drugs which could possibly be formulated for topical application. A manual search on ClinicalTrials.gov confirmed no relevant pathway/drug candidate had been overlooked. Twenty-five of the 32 drugs can directly affect the PTGS2 (COX-2) pathway, the pathway that has been targeted in previous clinical trials with limited success. Drug discovery using in silico text mining and pathway analysis tools can facilitate the identification of existing drugs that have the potential of topical administration to improve OM treatment.

  19. Evaluation of potential hazard exposure resulting from DOE waste treatment and disposal at Rollins Environmental Services, Baton Rouge, LA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    The equivalent dose rate to populations potentially exposed to wastes shipped to Rollins Environmental Services, Baton Rouge, LA from Oak Ridge and Savannah River Operations of the Department of Energy was estimated. Where definitive information necessary to the estimation of a dose rate was unavailable, bounding assumptions were employed to ensure an overestimate of the actual dose rate experienced by the potentially exposed population. On this basis, it was estimated that a total of about 3.85 million pounds of waste was shipped from these DOE operations to Rollins with a maximum combined total activity of about 0.048 Curies. Populations nearmore » the Rollins site could potentially be exposed to the radionuclides in the DOE wastes via the air pathway after incineration of the DOE wastes or by migration from the soil after landfill disposal. AIRDOS was used to estimate the dose rate after incineration. RESRAD was used to estimate the dose rate after landfill disposal. Calculations were conducted with the estimated radioactive specie distribution in the wastes and, as a test of the sensitivity of the results to the estimated distribution, with the entire activity associated with individual radioactive species such as Cs-137, Ba-137, Sr-90, Co-60, U-234, U-235 and U-238. With a given total activity, the dose rates to nearby individuals were dominated by the uranium species.« less

  20. Characterization of Changes in Gene Expression and Biochemical Pathways at Low Levels of Benzene Exposure

    PubMed Central

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings. PMID:24786086

  1. EPA's SHEDS-multimedia model: children's cumulative pyrethroid exposure estimates and evaluation against NHANES biomarker data.

    PubMed

    Xue, Jianping; Zartarian, Valerie; Tornero-Velez, Rogelio; Tulve, Nicolle S

    2014-12-01

    The U.S. EPA's SHEDS-Multimedia model was applied to enhance the understanding of children's exposures and doses to multiple pyrethroid pesticides, including major contributing chemicals and pathways. This paper presents combined dietary and residential exposure estimates and cumulative doses for seven commonly used pyrethroids, and comparisons of model evaluation results with NHANES biomarker data for 3-PBA and DCCA metabolites. Model input distributions were fit to publicly available pesticide usage survey data, NHANES, and other studies, then SHEDS-Multimedia was applied to estimate total pyrethroid exposures and doses for 3-5 year olds for one year variability simulations. For dose estimations we used a pharmacokinetic model and two approaches for simulating dermal absorption. SHEDS-Multimedia predictions compared well to NHANES biomarker data: ratios of 3-PBA observed data to SHEDS-Multimedia modeled results were 0.88, 0.51, 0.54 and 1.02 for mean, median, 95th, and 99th percentiles, respectively; for DCCA, the ratios were 0.82, 0.53, 0.56, and 0.94. Modeled time-averaged cumulative absorbed dose of the seven pyrethroids was 3.1 nmol/day (versus 8.4 nmol/day for adults) in the general population (residential pyrethroid use and non-use homes) and 6.7 nmol/day (versus 10.5 nmol/day for adults) in the simulated residential pyrethroid use population. For the general population, contributions to modeled cumulative dose by chemical were permethrin (60%), cypermethrin (22%), and cyfluthrin (16%); for residential use homes, contributions were cypermethrin (49%), permethrin (29%), and cyfluthrin (17%). The primary exposure route for 3-5 year olds in the simulated residential use population was non-dietary ingestion exposure; whereas for the simulated general population, dietary exposure was the primary exposure route. Below the 95th percentile, the major exposure pathway was dietary for the general population; non-dietary ingestion was the major pathway starting below the 70th percentile for the residential use population. The new dermal absorption methodology considering surface loading had some impact, but did not change the order of key pathways. Published by Elsevier Ltd.

  2. Anti-radiation damage effect of polyethylenimine as a toll-like receptor 5 targeted agonist

    PubMed Central

    Hu, Zhiqiang; Xing, Yaling; Qian, Yuanyu; Chen, Xiaojuan; Tu, Jian; Ren, Lening; Wang, Kai; Chen, Zhongbin

    2013-01-01

    A number of agents are now available for use in protecting against ionizing radiation. These radiation-protective agents, however, have many adverse effects. Efforts have been made to develop new radiation-protective agents for medical application. Here, we investigated whether a compound, polyethylenimine (PEI), which activates Toll-like receptor 5 (TLR5)-mediated NF-kB signaling pathways, could have an anti-radiation effect on a mouse model. First, a cell-based screening model for an agonist of TLR5-mediated NF-kB pathway was established and then validated by activation of TLR5-mediated NF-kB luciferase reporter activity with a known TLR5 agonist, flagellin. We found that PEI induced dose-dependent activation of the TLR5-mediated NF-kB pathway, indicating that PEI is indeed a TLR5 agonist. Furthermore, the anti-radiation effect of polyethylenimine was assessed using a γ-ray total body irradiation (TBI) mouse model. Compared with the irradiation control, both survival time and survival rate were significantly improved in mice that received either a low dose of polyethylenimine (P= 0.019) or a high dose of polyethylenimine (P< 0.001). We also observed a positive correlation between animal body weight and survival time in mice that received a low dose of polyethylenimine, a high dose of polyethylenimine and amifostine, over a period of 30 days, r= 0.42 (P< 0.02), 0.72 (P< 0.0001) and 0.95 (P< 0.0001), respectively, while a negative correlation between animal body weight and survival time was observed in the irradiation control (r= –0.89; P< 0.0001). These results indicate that polyethylenimine is a new TLR5 agonist with potential application in offering protection for patients receiving radiotherapy or in radiation-related accidents. PMID:23104900

  3. Anti-radiation damage effect of polyethylenimine as a toll-like receptor 5 targeted agonist.

    PubMed

    Hu, Zhiqiang; Xing, Yaling; Qian, Yuanyu; Chen, Xiaojuan; Tu, Jian; Ren, Lening; Wang, Kai; Chen, Zhongbin

    2013-03-01

    A number of agents are now available for use in protecting against ionizing radiation. These radiation-protective agents, however, have many adverse effects. Efforts have been made to develop new radiation-protective agents for medical application. Here, we investigated whether a compound, polyethylenimine (PEI), which activates Toll-like receptor 5 (TLR5)-mediated NF-kB signaling pathways, could have an anti-radiation effect on a mouse model. First, a cell-based screening model for an agonist of TLR5-mediated NF-kB pathway was established and then validated by activation of TLR5-mediated NF-kB luciferase reporter activity with a known TLR5 agonist, flagellin. We found that PEI induced dose-dependent activation of the TLR5-mediated NF-kB pathway, indicating that PEI is indeed a TLR5 agonist. Furthermore, the anti-radiation effect of polyethylenimine was assessed using a γ-ray total body irradiation (TBI) mouse model. Compared with the irradiation control, both survival time and survival rate were significantly improved in mice that received either a low dose of polyethylenimine (P= 0.019) or a high dose of polyethylenimine (P< 0.001). We also observed a positive correlation between animal body weight and survival time in mice that received a low dose of polyethylenimine, a high dose of polyethylenimine and amifostine, over a period of 30 days, r= 0.42 (P< 0.02), 0.72 (P< 0.0001) and 0.95 (P< 0.0001), respectively, while a negative correlation between animal body weight and survival time was observed in the irradiation control (r= -0.89; P< 0.0001). These results indicate that polyethylenimine is a new TLR5 agonist with potential application in offering protection for patients receiving radiotherapy or in radiation-related accidents.

  4. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.

    PubMed

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J

    2009-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.

  5. Assessment of environmental consequences of the normal operations of the ESS facility

    NASA Astrophysics Data System (ADS)

    Ene, D.; Avila, R.; Hjerpe, T.; Bugay, D.; Stenberg, K.

    2018-06-01

    As other accelerator based facilities, the European Spallation Source ESS facility will interact with the environment. The Swedish legislation requires a demonstration that the sum of the doses resulting from the exposure of any member of the public to ionizing radiation dose does not exceed the specified limit of 50 μSv/year. A radiological assessment has been produced to provide that demonstration. This evaluation was based upon the actual status of the ESS design. A graded approach was adopted through over the assessment allowing estimating dose for all radionuclides and exposure pathways, but the degree of detail in the assessment depend upon their relative radiological importance. The total dose was obtained making the sum of the contribution of all-important radionuclides treated realistically with that of all screened out radionuclides, derived by means a conservative method.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated networkmore » (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.« less

  7. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells: Importance of ERK1/2 and AKT Signaling Pathways.

    PubMed

    Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu; Cui, Jiuwei; Li, Wei

    2016-01-01

    Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3' -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy.

  8. 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats.

    PubMed

    Wu, Xianai; Yang, Jun; Morisseau, Christophe; Robertson, Larry W; Hammock, Bruce; Lehmler, Hans-Joachim

    2016-08-01

    Disruption of the homeostasis of oxygenated regulatory lipid mediators (oxylipins), potential markers of exposure to aryl hydrocarbon receptor (AhR) agonists, such as 3,3',4,4',5-pentachlorobiphenyl (PCB 126), is associated with a range of diseases, including nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Here we test the hypothesis that PCB 126 exposure alters the levels of oxylipins in rats. Male Sprague-Dawley rats (5-weeks old) were treated over a 3-month period every 2 weeks with intraperitoneal injections of PCB 126 in corn oil (cumulative doses of 0, 19.8, 97.8, and 390 µg/kg b.w.; 6 injections total). PCB 126 treatment caused a reduction in growth rates at the highest dose investigated, a dose-dependent decrease in thymus weights, and a dose-dependent increase in liver weights. Liver PCB 126 levels increased in a dose-dependent manner, while levels in plasma were below or close to the detection limit. The ratios of several epoxides to diol metabolites formed via the cytochrome P450 (P450) monooxygenase/soluble epoxide hydrolase (sEH) pathway from polyunsaturated fatty acids displayed a dose-dependent decrease in the liver and plasma, whereas levels of oxylipins formed by other metabolic pathways were generally not altered by PCB 126 treatment. The effects of PCB 126 on epoxide-to-diol ratios were associated with an increased CYP1A activity in liver microsomes and an increased sEH activity in liver cytosol and peroxisomes. These results suggest that oxylipins are potential biomarkers of exposure to PCB 126 and that the P450/sEH pathway is a therapeutic target for PCB 126-mediated hepatotoxicity that warrants further attention. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. for Permissions, please e-mail: journals.permissions@oup.com.

  9. Analysis of the NAEG model of transuranic radionuclide transport and dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kercher, J.R.; Anspaugh, L.R.

    We analyze the model for estimating the dose from /sup 239/Pu developed for the Nevada Applied Ecology Group (NAEG) by using sensitivity analysis and uncertainty analysis. Sensitivity analysis results suggest that the air pathway is the critical pathway for the organs receiving the highest dose. Soil concentration and the factors controlling air concentration are the most important parameters. The only organ whose dose is sensitive to parameters in the ingestion pathway is the GI tract. The air pathway accounts for 100% of the dose to lung, upper respiratory tract, and thoracic lymph nodes; and 95% of its dose via ingestion.more » Leafy vegetable ingestion accounts for 70% of the dose from the ingestion pathway regardless of organ, peeled vegetables 20%; accidental soil ingestion 5%; ingestion of beef liver 4%; beef muscle 1%. Only a handful of model parameters control the dose for any one organ. The number of important parameters is usually less than 10. Uncertainty analysis indicates that choosing a uniform distribution for the input parameters produces a lognormal distribution of the dose. The ratio of the square root of the variance to the mean is three times greater for the doses than it is for the individual parameters. As found by the sensitivity analysis, the uncertainty analysis suggests that only a few parameters control the dose for each organ. All organs have similar distributions and variance to mean ratios except for the lymph modes. 16 references, 9 figures, 13 tables.« less

  10. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    PubMed

    Goodson, William H; Lowe, Leroy; Carpenter, David O; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K; Collins, Andrew R; Ward, Andrew; Salzberg, Anna C; Colacci, Annamaria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J; Zhou, Binhua P; Blanco-Aparicio, Carmen; Baglole, Carolyn J; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C; Yedjou, Clement; Curran, Colleen S; Laird, Dale W; Koch, Daniel C; Carlin, Danielle J; Felsher, Dean W; Roy, Debasish; Brown, Dustin G; Ratovitski, Edward; Ryan, Elizabeth P; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L; Van Schooten, Frederik J; Goldberg, Gary S; Wagemaker, Gerard; Nangami, Gladys N; Calaf, Gloria M; Williams, Graeme; Wolf, Gregory T; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R; Scovassi, A Ivana; Klaunig, James E; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R; Woodrick, Jordan; Christopher, Joseph A; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R; Narayanan, Kannan Badri; Cohen-Solal, Karine A; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D'Abronzo, Leandro S; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A; Wade, Mark; Manjili, Masoud H; Lleonart, Matilde E; Xia, Menghang; Gonzalez, Michael J; Karamouzis, Michalis V; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P K; Vadgama, Pankaj; Marignani, Paola A; Ghosh, Paramita M; Ostrosky-Wegman, Patricia; Thompson, Patricia A; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Sing Leung, Po; Nangia-Makker, Pratima; Cheng, Qiang Shawn; Robey, R Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C; Palorini, Roberta; Abd Hamid, Roslida; Langie, Sabine A S; Eltom, Sakina E; Brooks, Samira A; Ryeom, Sandra; Wise, Sandra S; Bay, Sarah N; Harris, Shelley A; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W Kimryn; Engström, Wilhelm; Decker, William K; Bisson, William H; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-06-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. © The Author 2015. Published by Oxford University Press.

  11. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    PubMed Central

    Goodson, William H.; Lowe, Leroy; Carpenter, David O.; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K.; Collins, Andrew R.; Ward, Andrew; Salzberg, Anna C.; Colacci, Anna Maria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J.; Zhou, Binhua P.; Blanco-Aparicio, Carmen; Baglole, Carolyn J.; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C.; Yedjou, Clement; Curran, Colleen S.; Laird, Dale W.; Koch, Daniel C.; Carlin, Danielle J.; Felsher, Dean W.; Roy, Debasish; Brown, Dustin G.; Ratovitski, Edward; Ryan, Elizabeth P.; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L.; Van Schooten, Frederik J.; Goldberg, Gary S.; Wagemaker, Gerard; Nangami, Gladys N.; Calaf, Gloria M.; Williams, Graeme P.; Wolf, Gregory T.; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H. Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K.; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R.; Scovassi, A.Ivana; Klaunig, James E.; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R.; Woodrick, Jordan; Christopher, Joseph A.; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R.; Narayanan, Kannan Badri; Cohen-Solal, Karine A.; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D’Abronzo, Leandro S.; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J.; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A.; Wade, Mark; Manjili, Masoud H.; Lleonart, Matilde E.; Xia, Menghang; Gonzalez Guzman, Michael J.; Karamouzis, Michalis V.; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B.; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P.K.; Vadgama, Pankaj; Marignani, Paola A.; Ghosh, Paramita M.; Ostrosky-Wegman, Patricia; Thompson, Patricia A.; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Leung, Po Sing; Nangia-Makker, Pratima; Cheng, Qiang (Shawn); Robey, R.Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K.; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C.; Palorini, Roberta; Hamid, Roslida A.; Langie, Sabine A.S.; Eltom, Sakina E.; Brooks, Samira A.; Ryeom, Sandra; Wise, Sandra S.; Bay, Sarah N.; Harris, Shelley A.; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C.; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W.Kimryn; Engström, Wilhelm; Decker, William K.; Bisson, William H.; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-01-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. PMID:26106142

  12. Low-dose radiation induces Drosophila innate immunity through Toll pathway activation.

    PubMed

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Park, Joong-Jean; Min, Kyung-Jin; Jin, Young-Woo

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and JNK. These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila.

  13. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Anamika; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078; Liu Jing

    2010-10-15

    Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clusteringmore » while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NF{Kappa}B, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse/synaptic transmission and transcription/translation. Nine genes were differentially affected in all four CPF dosing groups. We conclude that the most robust, consistent changes in differential gene expression in neonatal forebrain across a range of acute CPF dosages occurred at an exposure level associated with the classical marker of OP toxicity, AChE inhibition. Disruption of multiple cellular pathways, in particular cell adhesion, may contribute to the developmental neurotoxicity potential of this pesticide.« less

  14. Nonmonotonic dose response curves (NMDRCs) are common after Estrogen or Androgen signaling pathway disruption. Fact or Falderal?##

    EPA Science Inventory

    Nonmonotonic dose response curves (NMDRCs) are common after Estrogen or Androgen signaling pathway disruption. Fact or Falderal? Leon Earl Gray Jr, USEPA, ORD, NHEERL, TAD, RTB. RTP, NC, USA The shape of the dose response curve in the low dose region has been debated since th...

  15. [Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder].

    PubMed

    Zhou, Rong-Yi; Wang, Jiao-Jiao; You, Yue; Sun, Ji-Chao; Song, Yu-Chen; Yuan, Hai-Xia; Han, Xin-Min

    2017-05-01

    To study the effect of baicalin on synaptosomal adenosine triphosphatase (ATPase) and lactate dehydrogenase (LDH) and its regulatory effect on the adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway in rats with attention deficit hyperactivity disorder (ADHD). A total of 40 SHR rats were randomly divided into five groups: ADHD model, methylphenidate hydrochloride treatment (0.07 mg/mL), and low-dose (3.33 mg/mL), medium-dose (6.67 mg/mL), and high-dose (10 mg/mL) baicalin treatment (n=8 each). Eight WKY rats were selected as normal control group. Percoll density gradient centrifugation was used to prepare brain synaptosomes and an electron microscope was used to observe their structure. Colorimetry was used to measure the activities of ATPase and LDH in synaptosomes. ELISA was used to measure the content of AC, cAMP, and PKA. Compared with the normal control group, the ADHD model group had a significant reduction in the ATPase activity, a significant increase in the LDH activity, and significant reductions in the content of AC, cAMP, and PKA (P<0.05). Compared with the ADHD model group, the methylphenidate hydrochloride group and the medium- and high-dose baicalin groups had a significant increase in the ATPase activity (P<0.05), a significant reduction in the LDH activity (P<0.05), and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the methylphenidate hydrochloride group, the high-dose baicalin group had significantly greater changes in these indices (P<0.05). Compared with the low-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05); the medium- and high-dose baicalin groups had a significant reduction in the LDH activity (P<0.05) and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the medium-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05). Both methylphenidate hydrochloride and baicalin can improve synaptosomal ATPase and LDH activities in rats with ADHD. The effect of baicalin is dose-dependent, and high-dose baicalin has a significantly greater effect than methylphenidate hydrochloride. Baicalin exerts its therapeutic effect possibly by upregulating the AC/cAMP/PKA signaling pathway.

  16. The Mixture of Salvianolic Acids from Salvia miltiorrhiza and Total Flavonoids from Anemarrhena asphodeloides Attenuate Sulfur Mustard-Induced Injury

    PubMed Central

    Li, Jianzhong; Chen, Linlin; Wu, Hongyuan; Lu, Yiming; Hu, Zhenlin; Lu, Bin; Zhang, Liming; Chai, Yifeng; Zhang, Junping

    2015-01-01

    Sulfur mustard (SM) is a vesicating chemical warfare agent used in numerous military conflicts and remains a potential chemical threat to the present day. Exposure to SM causes the depletion of cellular antioxidant thiols, mainly glutathione (GSH), which may lead to a series of SM-associated toxic responses. MSTF is the mixture of salvianolic acids (SA) of Salvia miltiorrhiza and total flavonoids (TFA) of Anemarrhena asphodeloides. SA is the main water-soluble phenolic compound in Salvia miltiorrhiza. TFA mainly includes mangiferin, isomangiferin and neomangiferin. SA and TFA possess diverse activities, including antioxidant and anti-inflammation activities. In this study, we mainly investigated the therapeutic effects of MSTF on SM toxicity in Sprague Dawley rats. Treatment with MSTF 1 h after subcutaneous injection with 3.5 mg/kg (equivalent to 0.7 LD50) SM significantly increased the survival levels of rats and attenuated the SM-induced morphological changes in the testis, small intestine and liver tissues. Treatment with MSTF at doses of 60 and 120 mg/kg caused a significant (p < 0.05) reversal in SM-induced GSH depletion. Gene expression profiles revealed that treatment with MSTF had a dramatic effect on gene expression changes caused by SM. Treatment with MSTF prevented SM-induced differential expression of 93.8% (973 genes) of 1037 genes. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 36 pathways, such as the MAPK signaling pathway, pathways in cancer, antigen processing and presentation. These data suggest that MSTF attenuates SM-induced injury by increasing GSH and targeting multiple pathways, including the MAPK signaling pathway, as well as antigen processing and presentation. These results suggest that MSTF has the potential to be used as a potential therapeutic agent against SM injuries. PMID:26501264

  17. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation

    PubMed Central

    Lynnyk, Anna; Lunova, Mariia; Jirsa, Milan; Egorova, Daria; Kulikov, Andrei; Kubinová, Šárka; Lunov, Oleg; Dejneka, Alexandr

    2018-01-01

    Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses. PMID:29541521

  18. Interrogating two schedules of the AKT inhibitor MK-2206 in patients with advanced solid tumors incorporating novel pharmacodynamic and functional imaging biomarkers.

    PubMed

    Yap, Timothy A; Yan, Li; Patnaik, Amita; Tunariu, Nina; Biondo, Andrea; Fearen, Ivy; Papadopoulos, Kyriakos P; Olmos, David; Baird, Richard; Delgado, Liliana; Tetteh, Ernestina; Beckman, Robert A; Lupinacci, Lisa; Riisnaes, Ruth; Decordova, Shaun; Heaton, Simon P; Swales, Karen; deSouza, Nandita M; Leach, Martin O; Garrett, Michelle D; Sullivan, Daniel M; de Bono, Johann S; Tolcher, Anthony W

    2014-11-15

    Multiple cancers harbor genetic aberrations that impact AKT signaling. MK-2206 is a potent pan-AKT inhibitor with a maximum tolerated dose (MTD) previously established at 60 mg on alternate days (QOD). Due to a long half-life (60-80 hours), a weekly (QW) MK-2206 schedule was pursued to compare intermittent QW and continuous QOD dosing. Patients with advanced cancers were enrolled in a QW dose-escalation phase I study to investigate the safety and pharmacokinetic-pharmacodynamic profiles of tumor and platelet-rich plasma (PRP). The QOD MTD of MK-2206 was also assessed in patients with ovarian and castration-resistant prostate cancers and patients with advanced cancers undergoing multiparametric functional magnetic resonance imaging (MRI) studies, including dynamic contrast-enhanced MRI, diffusion-weighted imaging, magnetic resonance spectroscopy, and intrinsic susceptibility-weighted MRI. A total of 71 patients were enrolled; 38 patients had 60 mg MK-2206 QOD, whereas 33 received MK-2206 at 90, 135, 150, 200, 250, and 300 mg QW. The QW MK-2206 MTD was established at 200 mg following dose-limiting rash at 250 and 300 mg. QW dosing appeared to be similarly tolerated to QOD, with toxicities including rash, gastrointestinal symptoms, fatigue, and hyperglycemia. Significant AKT pathway blockade was observed with both continuous QOD and intermittent QW dosing of MK-2206 in serially obtained tumor and PRP specimens. The functional imaging studies demonstrated that complex multiparametric MRI protocols may be effectively implemented in a phase I trial. Treatment with MK-2206 safely results in significant AKT pathway blockade in QOD and QW schedules. The intermittent dose of 200 mg QW is currently used in phase II MK-2206 monotherapy and combination studies (NCT00670488). ©2014 American Association for Cancer Research.

  19. Selective tissue factor/factor VIIa Inhibitor, ER-410660, and its prodrug, E5539, have anti-venous and anti-arterial thrombotic effects with a low risk of bleeding.

    PubMed

    Nagakura, Tadashi; Tabata, Kimiyo; Kira, Kazunobu; Hirota, Shinsuke; Clark, Richard; Matsuura, Fumiyoshi; Hiyoshi, Hironobu

    2013-08-01

    Many anticoagulant drugs target factors common to both the intrinsic and extrinsic coagulation pathways, which may lead to bleeding complications. Since the tissue factor (TF)/factor VIIa complex is associated with thrombosis onset and specifically activates the extrinsic coagulation pathway, compounds that inhibit this complex may provide therapeutic and/or prophylactic benefits with a decreased risk of bleeding. The in vitro enzyme profile and anticoagulation selectivity of the TF/VIIa complex inhibitor, ER-410660, and its prodrug E5539 were assessed using enzyme inhibitory and plasma clotting assays. In vivo effects of ER-410660 and E5539 were determined using a TF-induced, thrombin generation rhesus monkey model; a stasis-induced, venous thrombosis rat model; a photochemically induced, arterial thrombosis rat model; and a rat tail-cut bleeding model. ER-410660 selectively prolonged prothrombin time, but had a less potent anticoagulant effect on the intrinsic pathway. It also exhibited a dose-dependent inhibitory effect on thrombin generation caused by TF-injection in the rhesus monkey model. ER-410660 also reduced venous thrombus weights in the TF-administered, stasis-induced, venous thrombosis rat model and prolonged the occlusion time induced by arterial thrombus formation after vascular injury. The compound was capable of doubling the total bleeding time in the rat tail-cut model, albeit with a considerably higher dose compared to the effective dose in the venous and arterial thrombosis models. Moreover, E5539, an orally available ER-410660 prodrug, reduced the thrombin-anti-thrombin complex levels, induced by TF-injection, in a dose-dependent manner. Selective TF/VIIa inhibitors have potential as novel anticoagulants with a lower propensity for enhancing bleeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Metabolomic analysis reveals metabolic changes caused by bisphenol A in rats.

    PubMed

    Chen, Minjian; Zhou, Kun; Chen, Xiaojiao; Qiao, Shanlei; Hu, Yanhui; Xu, Bo; Xu, Bin; Han, Xiumei; Tang, Rong; Mao, Zhilei; Dong, Congcong; Wu, Di; Wang, Yubang; Wang, Shoulin; Zhou, Zuomin; Xia, Yankai; Wang, Xinru

    2014-04-01

    Bisphenol A (BPA) is a widely used material known to cause adverse effects in humans and other mammals. To date, little is known about the global metabolomic alterations caused by BPA using urinalysis. Sprague-Dawley rats were orally administrated BPA at the levels of 0, 0.5 μg/kg/day and 50 mg/kg/day covering a low dose and a reference dose for 8 weeks. We conducted a capillary electrophoresis in tandem with electrospray ionization time-of-flight mass spectrometry based nontargeted metabolomic analysis using rat urine. To verify the metabolic alteration at both low and high doses, reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were further conducted to analyze hepatic expression of methionine adenosyltransferase Iα (Mat1a) and methionine adenosyltransferase IIα (Mat2a). Hepatic S-adenosylmethionine (SAMe) was also analyzed. A total of 199 metabolites were profiled. Statistical analysis and pathway mapping indicated that the most significant metabolic perturbations induced by BPA were the increased biotin and riboflavin excretion, increased synthesis of methylated products, elevated purine nucleotide catabolism, and increased flux through the choline metabolism pathway. We found significantly higher mRNA and protein levels of Mat1a and Mat2a, and significantly higher SAMe levels in rat liver at both low and high doses. These two genes encode critical isoenzymes that catalyze the formation of SAMe, the principal biological methyl donor involved in the choline metabolism. In conclusion, an elevated choline metabolism is underlying the mechanism of highly methylated environment and related metabolic alterations caused by BPA. The data of BPA-elevated accepted biomarkers of injury indicate that BPA induces DNA methylation damage and broad protein degradation, and the increased deleterious metabolites in choline pathway may also be involved in the toxicity of BPA.

  1. Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and p38 mitogen-activated protein kinase signalling pathway.

    PubMed

    Wei, Liang; Zhang, Yanfei; Yang, Cheng; Wang, Qi; Zhuang, Zhongwei; Sun, Zhiyang

    2014-02-01

    Previous investigations have found that ebselen is able to treat neurodegenerative diseases caused by radical and acute total cerebral ischaemia. The aim of the present study was to investigate the neuroprotective effects of ebselen in a traumatic brain injury (TBI) model. Ninety Sprague-Dawley rats were randomly divided into five groups (n = 18 in each): (i) sham operation; (ii) an injury model group; (iii) low-dose (3 mg/kg) ebselen-treated group; (iv) a moderate-dose (10 mg/kg) ebselen-treated group; and (v) a high-dose (30 mg/kg) ebselen-treated group. The TBI model was created according using a modified weight-drop model. Neurological severity score (NSS), brain water content and histopathological deficits were assessed as parameters of injury severity. Expression of nitric oxide (NO), inducible NO synthase (iNOS) mRNA, Toll-like receptor (TLR) and phosphorylated (p-) p38 mitogen-activated protein kinase (MAPK) were examined by chemical colorimetry, quantitative polymerase chain reaction and western blotting 24 h after intragastric ebselen administration. Rats in the TBI model group exhibited markedly more severe neurological injury (higher NSS, more brain water content and more histopathological deficits) than those in the sham-operated group. Ebselen treatment significantly ameliorated the neurological injury of TBI rats in a dose-dependent manner. Moreover, ebselen significantly reduced the NO and iNOS mRNA levels and inhibited TLR4 and p-p38 MAPK expression, indicating the involvement of NO and p38 MAPK signalling pathways in the neuroprotection afforded by ebselen. In conclusion, ebselen ameliorated neurological injury, possibly by reducing NO levels and modulating the TLR4-mediated p38 MAPK signalling pathway. Therefore, ebselen may have potential to treat secondary injuries of TBI. © 2013 Wiley Publishing Asia Pty Ltd.

  2. Dose response evaluation of gene expression profiles in the skin of K6/ODC mice exposed to sodium arsenite.

    PubMed

    Ahlborn, Gene J; Nelson, Gail M; Ward, William O; Knapp, Geremy; Allen, James W; Ouyang, Ming; Roop, Barbara C; Chen, Yan; O'Brien, Thomas; Kitchin, Kirk T; Delker, Don A

    2008-03-15

    Chronic drinking water exposure to inorganic arsenic and its metabolites increases tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, we characterized gene expression profiles from analysis of K6/ODC mice administered 0, 0.05, 0.25, 1.0 and 10 ppm sodium arsenite in their drinking water for 4 weeks. Following exposure, total RNA was isolated from mouse skin and processed to biotin-labeled cRNA for microarray analyses. Skin gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 GeneChips, and pathway analysis was conducted with DAVID (NIH), Ingenuity Systems and MetaCore's GeneGo. Differential expression of several key genes was verified through qPCR. Only the highest dose (10 ppm) resulted in significantly altered KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including MAPK, regulation of actin cytoskeleton, Wnt, Jak-Stat, Tight junction, Toll-like, phosphatidylinositol and insulin signaling pathways. Approximately 20 genes exhibited a dose response, including several genes known to be associated with carcinogenesis or tumor progression including cyclin D1, CLIC4, Ephrin A1, STAT3 and DNA methyltransferase 3a. Although transcription changes in all identified genes have not previously been linked to arsenic carcinogenesis, their association with carcinogenesis in other systems suggests that these genes may play a role in the early stages of arsenic-induced skin carcinogenesis and can be considered potential biomarkers.

  3. Metabolism of bepridil in laboratory animals and humans.

    PubMed

    Wu, W N; Hills, J F; Chang, S Y; Ng, K T

    1988-01-01

    The metabolism of bepridil was studied in the Swiss mouse, Sprague-Dawley rat, New Zealand rabbit, rhesus monkey, and healthy human. After oral administration of bepridil-14C-hydrochloride, recoveries of total radioactivity in urine and feces (7 days) were greater than or equal to 80% of the administered dose in all five species. Bepridil and 25 metabolites have been isolated by HPLC and TLC from representative plasma, urine, and fecal extract pools from all species and identified on the basis of TLC, HPLC, and mass spectrometry. The identified metabolites explained 60-99% of the total radioactivity in each sample for rabbit plasma, in which only 17% of the total radioactivity was characterized. Metabolic pathways involving oxidative reactions at seven sites on the bepridil molecule are proposed for each species. Metabolite formation in the five species is described by four interrelated pathways. The metabolic pathway involving aromatic hydroxylation followed by N-dealkylation, N-debenzylation, and N-acetylation was important in all species. Major metabolites produced by this pathway included 4-hydroxy(at N-phenyl)-bepridil (Ia), N-benzyl-4-amino-phenol (IV), and N-acetyl-4-aminophenol (Vy). Metabolite Ia was isolated in significant amounts (greater than or equal to 5% of sample) in all fecal and urine samples except rat urine. Metabolite IV was a major circulating metabolite in all species and a major urinary metabolite in humans. Metabolite Vy was present in significant quantities in urine in all species except rabbit. Other important pathways involved primary reactions such as iso-butyl hydroxylation, pyrrolidine ring oxidation, and N-debenzylation.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. SR-TXRF analysis of trace elements in whole blood and heart of rats: effects of irradiation with low and high doses

    NASA Astrophysics Data System (ADS)

    Mota, C. L.; Pickler, A.; Braz, D.; Barroso, R. C.; Mantuano, A.; Salata, C.; Ferreira-Machado, S. C.; Lau, C. C.; de Almeida, C. E.

    2018-04-01

    In the last decades, studies showed that the exposure to low doses of ionizing radiation of the body could sense and activate the cell signaling pathways needed to respond to any induced cellular damage. This procedure reduces cell killing compared with a single dose of high radiation dose. Damage to the vasculature can affect the function of most body organs by restricting blood flow and oxygen to tissues; however, the heart and brain are of main concern. The precise relationship between long-term health effects and low-dose exposures remain poorly understood. Biological markers are powerful tools that can be used to determine dose- response relationships and to estimate risk, especially when dealing with, the effects of low dose exposures in humans. These markers should be specific, sensitive, as well as easy and fast to quantify. Various types of biologic specimens are potential candidates for identifying biomarkers but blood has the advantage of being minimally invasive to obtain. In this study, we propose to apply total reflection X-ray fluorescence to quantify possible chemical elemental concentration (sulfer, iron, zinc, potassium and calcium) changes in blood and heart tissues of Wistar rats after total body irradiation with low (0.1 Gy) and high (2.5 Gy) doses. The fluorescence measurements were carried out at the X-ray Fluorescence beamline in the Brazilian Synchrotron Light Laboratory. The results showed that the irradiated animals with low doses have significant alterations in blood and cardiac tissue when compared with animals that received high doses of radiation. Taken together the analysis of all the elements, we can observe that the radiation induced oxidative stress may be the leading cause for alteration of the elemental level in the studied samples.

  5. Calculations of individual doses for Techa River Cohort members exposed to atmospheric radioiodine from Mayak releases.

    PubMed

    Napier, Bruce A; Eslinger, Paul W; Tolstykh, Evgenia I; Vorobiova, Marina I; Tokareva, Elena E; Akhramenko, Boris N; Krivoschapov, Victor A; Degteva, Marina O

    2017-11-01

    Time-dependent thyroid doses were reconstructed for over 29,000 Techa River Cohort members living near the Mayak production facilities from 131 I released to the atmosphere for all relevant exposure pathways. The calculational approach uses four general steps: 1) construct estimates of releases of 131 I to the air from production facilities; 2) model the transport of 131 I in the air and subsequent deposition on the ground and vegetation; 3) model the accumulation of 131 I in environmental media; and 4) calculate individualized doses. The dose calculations are implemented in a Monte Carlo framework that produces best estimates and confidence intervals of dose time-histories. Other radionuclide contributors to thyroid dose were evaluated. The 131 I contribution was 75-99% of the thyroid dose. The mean total thyroid dose for cohort members was 193 mGy and the median was 53 mGy. Thyroid doses for about 3% of cohort members were larger than 1 Gy. About 7% of children born in 1940-1950 had doses larger than 1 Gy. The uncertainty in the 131 I dose estimates is low enough for this approach to be used in regional epidemiological studies. Copyright © 2017. Published by Elsevier Ltd.

  6. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells

    PubMed Central

    Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu

    2016-01-01

    Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3′ -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy. PMID:26788032

  7. Low-dose occupational exposure to benzene and signal transduction pathways involved in the regulation of cellular response to oxidative stress.

    PubMed

    Fenga, Concettina; Gangemi, Silvia; Giambò, Federica; Tsitsimpikou, Christina; Golokhvast, Kirill; Tsatsakis, Aristidis; Costa, Chiara

    2016-02-15

    Benzene metabolism seems to modulate NF-κB, p38-MAPK (mitogen-activated protein kinase) and signal transducer and activator of transcription 3 (STAT3) signalling pathways via the production of reactive oxygen species. This study aims to evaluate the effects of low-dose, long-term exposure on NF-κB, STAT3, p38-MAPK and stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK) signal transduction pathways in peripheral blood mononuclear cells in gasoline station attendants. The influence of consumption of vegetables and fruits on these pathways has also been evaluated. A total of 91 men, employed in gasoline stations located in eastern Sicily, were enrolled for this study and compared with a control group of 63 male office workers with no history of exposure to benzene. The exposure was assessed by measuring urinary trans,trans-muconic acid (t,t-MA) concentration. Quantitative analyses were performed for proteins NF-κB p65, phospho-NF-κB p65, phospho-IκB-α, phospho-SAPK/JNK, phospho-p38 MAPK and phospho-STAT3 using an immunoenzymatic assay. The results of this study indicate significantly higher t,t-MA levels in gasoline station attendants. With regard to NF-κB, phospho-IκB-α and phospho-STAT3 proteins, statistically significant differences were observed in workers exposed to benzene. However, no differences were observed in SAPK/JNK and p38-MAPK activation. These changes were positively correlated with t,t-MA levels, but only phospho-NF-κB p65 was associated with the intake of food rich in antioxidant active principles. Chronic exposure to low-dose benzene can modulate signal transduction pathways activated by oxidative stress and involved in cell proliferation and apoptosis. This could represent a possible mechanism of carcinogenic action of chronic benzene exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  9. Low-dose testosterone alleviates vascular damage caused by castration in male rats in puberty via modulation of the PI3K/AKT signaling pathway.

    PubMed

    Zhao, Jing; Liu, Ge-Li; Wei, Ying; Jiang, Li-Hong; Bao, Peng-Li; Yang, Qing-Yan

    2016-09-01

    The aim of the present study was to investigate the effect of testosterone on glucolipid metabolism and vascular injury in male rats, and examine the underlying molecular mechanisms. A total of 40 male Sprague-Dawley rats were divided into a control group (n=10), high-fat-diet + castration group (n=10), high‑fat‑diet + castration + low dose testosterone group (n=10), and high-fat-diet + castration + high dose testosterone group (n=10). Hematoxylin and eosin staining was performed to evaluate the morphology of the thoracic aortic tissues. Immunohistochemical staining was used to detect biomarkers of the phosphoinositide 3‑kinase (PI3K) signaling pathway. The mRNA and protein expression levels of PI3K, AKT, insulin receptor substrate‑1 (IRS‑1), glucose transporter type 4 (GLUT‑4), nuclear factor (NF)‑κB and tumor necrosis factor (TNF)‑α in the aortas were determined using quantitative polymerase chain reaction and Western blot analyses, respectively. Apoptosis in the aortic tissues was detected using a TUNEL assay. Castration induced apoptosis in the animals fed a high‑fat‑diet, whereas low dose testosterone replacement ameliorated the apoptosis in the aorta. However, the levels of apoptosis was more severe following high‑dose testosterone treatment. Low‑dose testosterone induced upregulation in the levels of IRS‑1, AKT, GLUT‑4 protein, NF‑κB, TNF‑α and PI3K, compared with those in the animals fed a high‑fat diet following castration. A high dose of testosterone resulted in a significant decrease in the levels of IRS‑1, AKT, GLUT‑4, NF‑κB, TNF‑α and PI3K. Compared with the rats in the high‑fat diet + castration group, a low dose of testosterone induced upregulation in the mRNA levels of IRS‑1, AKT and GLUT‑4, and downregulation of the mRNA levels of NF‑κB, TNF‑α and PI3K. A high dose of testosterone resulted in a significant decrease in the levels of IRS‑1, AKT and GLUT‑4, and marked increases in the mRNA levels of NF‑κB, TNF‑α and PI3K, compared with the low dose group. Castration induced marked disorders of glucolipid metabolism and vascular injuries in the pubescent male rats. Low‑dose testosterone treatment was found to ameliorate the vascular damage caused by castration via the PI3K/AKT signaling pathway.

  10. Radiation exposure from videofluoroscopic swallow studies in children with a type 1 laryngeal cleft and pharyngeal dysphagia: A retrospective review.

    PubMed

    Hersh, Cheryl; Wentland, Carissa; Sally, Sarah; de Stadler, Marie; Hardy, Steven; Fracchia, M Shannon; Liu, Bob; Hartnick, Christopher

    2016-10-01

    Radiation exposure is recognized as having long term consequences, resulting in increased risks over the lifetime. Children, in particular, have a projected lifetime risk of cancer, which should be reduced if within our capacity. The objective of this study is to quantify the amount of ionizing radiation in care for children being treated for aspiration secondary to a type 1 laryngeal cleft. With this baseline data, strategies can be developed to create best practice pathways to maintain quality of care while minimizing radiation exposure. Retrospective review of 78 children seen in a tertiary pediatric aerodigestive center over a 5 year period from 2008 to 2013 for management of a type 1 laryngeal cleft. The number of videofluoroscopic swallow studies (VFSS) per child was quantified, as was the mean effective dose of radiation exposure. The 78 children reviewed were of mean age 19.9 mo (range 4 mo-12 years). All children were evaluated at the aerodigestive center with clinical symptomatology and subsequent diagnosis of a type 1 laryngeal cleft. Aspiration was assessed via VFSS and exposure data collected. Imaging exams where dose parameters were not available were excluded. The mean number of VFSS each child received during the total course of treatment was 3.24 studies (range 1-10). The average effective radiation dose per pediatric VFSS was 0.16 mSv (range: 0.03 mSv-0.59 mSv) per study. Clinical significance was determined by comparison to a pediatric CXR. At our facility a CXR yields an effective radiation dose of 0.017 mSv. Therefore, a patient receives an equivalent total of 30.6 CXR over the course of management. Radiation exposure has known detrimental effects particularly in pediatric patients. The total ionizing radiation from VFSS exams over the course of management of aspiration has heretofore not been reported in peer reviewed literature. With this study's data in mind, future developments are indicated to create innovative clinical pathways and limit radiation exposure. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. Calculations of individual doses for Techa River Cohort members exposed to atmospheric radioiodine from Mayak releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, Bruce A.; Eslinger, Paul W.; Tolstykh, Evgenia I.

    Time-dependent thyroid doses were reconstructed for Techa River Cohort members living near the Mayak production facilities from 131I released to the atmosphere for all relevant exposure pathways. The calculational approach uses four general steps: 1) construct estimates of releases of 131I to the air from production facilities; 2) model the transport of 131I in the air and subsequent deposition on the ground and vegetation; 3) model the accumulation of 131I in soil, water, and food products (environmental media); and 4) calculate individual doses by matching appropriate lifestyle and consumption data for the individual to concentrations of 131I in environmental media.more » The dose calculations are implemented in a Monte Carlo framework that produces best estimates and confidence intervals of dose time-histories. The 131I contribution was 75-99% of the thyroid dose. The mean total thyroid dose for cohort members was 193 mGy and the median was 53 mGy. Thyroid doses for about 3% of cohort members were larger than 1 Gy. About 7% of children born in 1940-1950 had doses larger than 1 Gy. The uncertainty in the 131I dose estimates is low enough for this approach to be used in regional epidemiological studies.« less

  12. Result Summary for the Area 5 Radioactive Waste Management Site Performance Assessment Model Version 4.110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    2011-07-20

    Results for Version 4.110 of the Area 5 Radioactive Waste Management Site (RWMS) performance assessment (PA) model are summarized. Version 4.110 includes the fiscal year (FY) 2010 inventory estimate, including a future inventory estimate. Version 4.110 was implemented in GoldSim 10.11(SP4). The following changes have been implemented since the last baseline model, Version 4.105: (1) Updated the inventory and disposal unit configurations with data through the end of FY 2010. (1) Implemented Federal Guidance Report 13 Supplemental CD dose conversion factors (U.S. Environmental Protection Agency, 1999). Version 4.110 PA results comply with air pathway and all-pathways annual total effective dosemore » (TED) performance objectives (Tables 2 and 3, Figures 1 and 2). Air pathways results decrease moderately for all scenarios. The time of the maximum for the air pathway open rangeland scenario shifts from 1,000 to 100 years (y). All-pathways annual TED increases for all scenarios except the resident scenario. The maximum member of public all-pathways dose occurs at 1,000 y for the resident farmer scenario. The resident farmer dose was predominantly due to technetium-99 (Tc-99) (82 percent) and lead-210 (Pb-210) (13 percent). Pb-210 present at 1,000 y is produced predominantly by radioactive decay of uranium-234 (U-234) present at the time of disposal. All results for the postdrilling and intruder-agriculture scenarios comply with the performance objectives (Tables 4 and 5, Figures 3 and 4). The postdrilling intruder results are similar to Version 4.105 results. The intruder-agriculture results are similar to Version 4.105, except for the Pit 6 Radium Disposal Unit (RaDU). The intruder-agriculture result for the Shallow Land Burial (SLB) disposal units is a significant fraction of the performance objective and exceeds the performance objective at the 95th percentile. The intruder-agriculture dose is due predominantly to Tc-99 (75 percent) and U-238 (9.5 percent). The acute intruder scenario results comply with all performance objectives (Tables 6 and 7, Figures 5 and 6). The acute construction result for the SLB disposal units decreases significantly with this version. The maximum acute intruder dose occurs at 1,000 y for the SLB disposal units under the acute construction scenario. The acute intruder dose is caused by multiple radionuclides including U-238 (31 percent), Th-229 (28 percent), plutonium-239 (8.6 percent), U-233 (7.8 percent), and U-234 (6.7 percent). All results for radon-222 (Rn-222) flux density comply with the performance objective (Table 8, Figure 7). The mean Pit 13 RaDU flux density is close to the 0.74 Bq m{sup -2} s{sup -1} limit.« less

  13. On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Edward T.; Hardcastle, Nicholas; Tome, Wolfgang A.

    2012-01-15

    Purpose: Deformable image registration (DIR) is necessary for accurate dose accumulation between multiple radiotherapy image sets. DIR algorithms can suffer from inverse and transitivity inconsistencies. When using deformation vector fields (DVFs) that exhibit inverse-inconsistency and are nontransitive, dose accumulation on a given image set via different image pathways will lead to different accumulated doses. The purpose of this study was to investigate the dosimetric effect of and propose a postprocessing solution to reduce inverse consistency and transitivity errors. Methods: Four MVCT images and four phases of a lung 4DCT, each with an associated calculated dose, were selected for analysis. DVFsmore » between all four images in each data set were created using the Fast Symmetric Demons algorithm. Dose was accumulated on the fourth image in each set using DIR via two different image pathways. The two accumulated doses on the fourth image were compared. The inverse consistency and transitivity errors in the DVFs were then reduced. The dose accumulation was repeated using the processed DVFs, the results of which were compared with the accumulated dose from the original DVFs. To evaluate the influence of the postprocessing technique on DVF accuracy, the original and processed DVF accuracy was evaluated on the lung 4DCT data on which anatomical landmarks had been identified by an expert. Results: Dose accumulation to the same image via different image pathways resulted in two different accumulated dose results. After the inverse consistency errors were reduced, the difference between the accumulated doses diminished. The difference was further reduced after reducing the transitivity errors. The postprocessing technique had minimal effect on the accuracy of the DVF for the lung 4DCT images. Conclusions: This study shows that inverse consistency and transitivity errors in DIR have a significant dosimetric effect in dose accumulation; Depending on the image pathway taken to accumulate the dose, different results may be obtained. A postprocessing technique that reduces inverse consistency and transitivity error is presented, which allows for consistent dose accumulation regardless of the image pathway followed.« less

  14. Arachidonic acid induces macrophage cell cycle arrest through the JNK signaling pathway.

    PubMed

    Shen, Ziying; Ma, Yunqing; Ji, Zhonghao; Hao, Yang; Yan, Xuan; Zhong, Yuan; Tang, Xiaochun; Ren, Wenzhi

    2018-02-09

    Arachidonic acid (AA) has potent pro-apoptotic effects on cancer cells at a low concentration and on macrophages at a very high concentration. However, the effects of AA on the macrophage cell cycle and related signaling pathways have not been fully investigated. Herein we aim to observe the effect of AA on macrophages cell cycle. AA exposure reduced the viability and number of macrophages in a dose- and time-dependent manner. The reduction in RAW264.7 cell viability was not caused by apoptosis, as indicated by caspase-3 and activated caspase-3 detection. Further research illustrated that AA exposure induced RAW264.7 cell cycle arrested at S phase, and some cell cycle-regulated proteins were altered accordingly. Moreover, JNK signaling was stimulated by AA, and the stimulation was partially reversed by a JNK signaling inhibitor in accordance with cell cycle-related factors. In addition, nuclear and total Foxo1/3a and phosphorylated Foxo1/3a were elevated by AA in a dose- and time-dependent manner, and this elevation was suppressed by the JNK signaling inhibitor. Our study demonstrated that AA inhibits macrophage viability by inducing S phase cell cycle arrest. The JNK signaling pathway and the downstream FoxO transcription factors are involved in AA-induced RAW264.7 cell cycle arrest.

  15. Proteomic analysis of acetaminophen-induced hepatotoxicity and identification of heme oxygenase 1 as a potential plasma biomarker of liver injury.

    PubMed

    Gao, Yuan; Cao, Zhijun; Yang, Xi; Abdelmegeed, Mohamed A; Sun, Jinchun; Chen, Si; Beger, Richard D; Davis, Kelly; Salminen, William F; Song, Byoung-Joon; Mendrick, Donna L; Yu, Li-Rong

    2017-01-01

    Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  16. Proteomic analysis of acetaminophen-induced hepatotoxicity and identification of heme oxygenase 1 as a potential plasma biomarker of liver injury

    PubMed Central

    Gao, Yuan; Cao, Zhijun; Yang, Xi; Abdelmegeed, Mohamed A.; Sun, Jinchun; Chen, Si; Beger, Richard D.; Davis, Kelly; Salminen, William F.; Song, Byoung-Joon; Mendrick, Donna L.; Yu, Li-Rong

    2017-01-01

    Purpose Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. Experimental design Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. Results Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. Conclusions and clinical relevance This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury. PMID:27634590

  17. Escitalopram Ameliorates Forskolin-Induced Tau Hyperphosphorylation in HEK239/tau441 Cells.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Zhou, Qi-Da; Xu, Lin; Zhang, Zhi-Jun

    2015-06-01

    To investigate the effect of escitalopram (a widely used and highly efficacious antidepressant from the SSRI class) on tau hyperphosphorylation, HEK293/tau441 cells were pretreated with 4 μM of forskolin for 2 h. Then we treated the cells with different doses of escitalopram (0, 5, 10, 20, 40, 80 μM) for 22 h. We measured the phosphorylation level of tau by Western blotting. It was shown that escitalopram could protect tau from hyperphosphorylation induced by pharmacological activation of protein kinase A (PKA) at a dose of 20, 40, and 80 μM in vitro. Interestingly, the same dose of escitalopram could also increase the level of serine-9-phosphorylated GSK-3β (inactive form) and the phosphorylation level of Akt at Ser473 (active form) with no significant change in the level of total GSK-3β and Akt. Unexpectedly, 5-hydroxytryptamine 1A receptor (5-HT1A) agonist 8-OH-DPAT did not decrease forskolin-induced tau hyperphosphorylation. Our results suggest that escitalopram can ameliorate forskolin-induced tau hyperphosphorylation, which is not through the typical 5-HT1A pathway, and Akt/GSK-3β signaling pathway is involved. These findings may support an effective role of antidepressants in the prevention of dementia associated with depression in patients.

  18. A framework for the use of single-chemical transcriptomics data in predicting the hazards associated with complex mixtures of polycyclic aromatic hydrocarbons.

    PubMed

    Labib, Sarah; Williams, Andrew; Kuo, Byron; Yauk, Carole L; White, Paul A; Halappanavar, Sabina

    2017-07-01

    The assumption of additivity applied in the risk assessment of environmental mixtures containing carcinogenic polycyclic aromatic hydrocarbons (PAHs) was investigated using transcriptomics. MutaTMMouse were gavaged for 28 days with three doses of eight individual PAHs, two defined mixtures of PAHs, or coal tar, an environmentally ubiquitous complex mixture of PAHs. Microarrays were used to identify differentially expressed genes (DEGs) in lung tissue collected 3 days post-exposure. Cancer-related pathways perturbed by the individual or mixtures of PAHs were identified, and dose-response modeling of the DEGs was conducted to calculate gene/pathway benchmark doses (BMDs). Individual PAH-induced pathway perturbations (the median gene expression changes for all genes in a pathway relative to controls) and pathway BMDs were applied to models of additivity [i.e., concentration addition (CA), generalized concentration addition (GCA), and independent action (IA)] to generate predicted pathway-specific dose-response curves for each PAH mixture. The predicted and observed pathway dose-response curves were compared to assess the sensitivity of different additivity models. Transcriptomics-based additivity calculation showed that IA accurately predicted the pathway perturbations induced by all mixtures of PAHs. CA did not support the additivity assumption for the defined mixtures; however, GCA improved the CA predictions. Moreover, pathway BMDs derived for coal tar were comparable to BMDs derived from previously published coal tar-induced mouse lung tumor incidence data. These results suggest that in the absence of tumor incidence data, individual chemical-induced transcriptomics changes associated with cancer can be used to investigate the assumption of additivity and to predict the carcinogenic potential of a mixture.

  19. Assessment of relative potential for Legionella species or surrogates inhalation exposure from common water uses.

    PubMed

    Hines, Stephanie A; Chappie, Daniel J; Lordo, Robert A; Miller, Brian D; Janke, Robert J; Lindquist, H Alan; Fox, Kim R; Ernst, Hiba S; Taft, Sarah C

    2014-06-01

    The Legionella species have been identified as important waterborne pathogens in terms of disease morbidity and mortality. Microbial exposure assessment is a tool that can be utilized to assess the potential of Legionella species inhalation exposure from common water uses. The screening-level exposure assessment presented in this paper developed emission factors to model aerosolization, quantitatively assessed inhalation exposures of aerosolized Legionella species or Legionella species surrogates while evaluating two generalized levels of assumed water concentrations, and developed a relative ranking of six common in-home uses of water for potential Legionella species inhalation exposure. Considerable variability in the calculated exposure dose was identified between the six identified exposure pathways, with the doses differing by over five orders of magnitude in each of the evaluated exposure scenarios. The assessment of exposure pathways that have been epidemiologically associated with legionellosis transmission (ultrasonic and cool mist humidifiers) produced higher estimated inhalation exposure doses than pathways where epidemiological evidence of transmission has been less strong (faucet and shower) or absent (toilets and therapy pool). With consideration of the large uncertainties inherent in the exposure assessment process used, a relative ranking of exposure pathways from highest to lowest exposure doses was produced using culture-based measurement data and the assumption of constant water concentration across exposure pathways. In this ranking, the ultrasonic and cool mist humidifier exposure pathways were estimated to produce the highest exposure doses, followed by the shower and faucet exposure pathways, and then the toilet and therapy pool exposure pathways. Published by Elsevier Ltd.

  20. Reproductive Alterations in Chronically Exposed Female Mice to Environmentally Relevant Doses of a Mixture of Phthalates and Alkylphenols.

    PubMed

    Patiño-García, Daniel; Cruz-Fernandes, Leonor; Buñay, Julio; Palomino, Jaime; Moreno, Ricardo D

    2018-02-01

    Endocrine-disrupting chemicals (EDCs) are exogenous compounds that modify hormone biosynthesis, causing adverse effects to human health. Among them, phthalates and alkylphenols are important due to their wide use in plastics, detergents, personal care products, cosmetics, and food packaging. However, their conjoint effects over reproductive female health have not been addressed. The aim of this work was to test the effect of chronically exposed female mice to a mixture of three phthalates [bis (2-ethylhexyl), dibutyl, and benzyl butyl] and two alkylphenols (4-nonylphenol and 4-tert-octylphenol) from conception to adulthood at environmentally relevant doses. These EDCs were administered in two doses: one below the minimal risk dose to cause adverse effects on human development and reproduction [1 mg/kg body weight (BW)/d of the total mixture] and the other one based on the reference value close to occupational exposure in humans (10 mg/kg BW/d of the total mixture). Our results show that both doses had similar effects regarding the uterus and ovary relative weight, estrous cyclicity, serum levels of progesterone and 17β-estradiol, and expression of key elements in the steroidogenesis pathway (acute steroidogenic regulatory protein and CYP19A1). However, only the 1-mg/kg BW/d dose delayed the onset of puberty and the transition from preantral to antral follicles, whereas the 10-mg/kg BW/d dose decreased the number of antral follicles and gonadotropin receptor expression. In addition, we observed changes in several fertility parameters in exposed females and in their progeny (F2 generation). In conclusion, our results indicate that chronic exposure to a complex EDC mixture, at environmentally relevant doses, modifies reproductive parameters in female mice. Copyright © 2018 Endocrine Society.

  1. CERISE, a French radioprotection code, to assess the radiological impact and acceptance criteria of installations for material handling, and recycling or disposal of very low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santucci, P.; Guetat, P.

    1993-12-31

    This document describes the code CERISE, Code d`Evaluations Radiologiques Individuelles pour des Situations en Enterprise et dans l`Environnement. This code has been developed in the frame of European studies to establish acceptance criteria of very low-level radioactive waste and materials. This code is written in Fortran and runs on PC. It calculates doses received by the different pathways: external exposure, ingestion, inhalation and skin contamination. Twenty basic scenarios are already elaborated, which have been determined from previous studies. Calculations establish the relation between surface, specific and/or total activities, and doses. Results can be expressed as doses for an average activitymore » unit, or as average activity limits for a set of reference doses (defined for each scenario analyzed). In this last case, the minimal activity values and the corresponding limiting scenarios, are selected and summarized in a final table.« less

  2. The impact of low and intermediate-level radioactive waste on humans and the environment over the next one hundred thousand years.

    PubMed

    Kautsky, Ulrik; Saetre, Peter; Berglund, Sten; Jaeschke, Ben; Nordén, Sara; Brandefelt, Jenny; Keesmann, Sven; Näslund, Jens-Ove; Andersson, Eva

    2016-01-01

    In order to assess the potential radiological risk to humans and the environment from a geological repository for radioactive waste, a safety assessment must be performed. This implies that the release and transfer of radionuclides from the repository into the surface environment are calculated and that the effects in the biosphere are evaluated for an assessment period up to one hundred thousand years according to Swedish regulations. This paper discusses the challenges associated with the modelling of surface ecosystems over such long time scales, using the recently completed assessment for the extension of the existing repository for the low- and intermediate-level nuclear waste (called SFR) in Forsmark, Sweden as an applied example. In the assessment, natural variation and uncertainties in climate during the assessment period were captured by using a set of climate cases, primarily reflecting different expectations on the effects of global warming. Development of the landscape at the site, due to post-glacial isostatic rebound, was modelled, and areas where modelling indicated that radionuclides could discharge into the biosphere were identified. Transfers of surface water and groundwater were described with spatially distributed hydrological models. The projected release of radionuclides from the bedrock was then fed into a biosphere radionuclide transport model, simulating the transport and fate of radionuclides within and between ecosystems in the landscape. Annual doses for human inhabitants were calculated by combining activity concentrations in environmental media (soil, water, air and plants) with assumptions on habits and land-use of future human inhabitants. Similarly, dose rates to representative organisms of non-human biota were calculated from activity concentrations in relevant habitats, following the ERICA methodology. In the main scenario, the calculated risk for humans did not exceed the risk criteria or the screening dose rate for non-human biota, indicating that the repository design is sufficient to protect future populations and the environment. Although the combination of radionuclides, land-uses/habitats, type of most exposed population and area of exposure that contribute most to the total dose shifts over time, the total calculated dose shows limited variability. Significant reductions in the dose only occur during submerged periods and under periglacial climate conditions. As several different water and food pathways were equally important for endpoint results, it is concluded that it would be difficult to represent the biosphere with one or a set of simplified models. Instead, we found that it is important to maintain a diversity of food and water pathways, as key pathways for radionuclide accumulation and exposure partly worked in parallel. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya Wang

    2010-05-31

    The major goal of this study is to determine the effects of the Fhit pathway on low dose ({le} 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repairmore » genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.« less

  4. Transcriptional response to 131I exposure of rat thyroid gland.

    PubMed

    Rudqvist, Nils; Spetz, Johan; Schüler, Emil; Parris, Toshima Z; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2017-01-01

    Humans are exposed to 131I in medical diagnostics and treatment but also from nuclear accidents, and better knowledge of the molecular response in thyroid is needed. The aim of the study was to examine the transcriptional response in thyroid tissue 24 h after 131I administration in rats. The exposure levels were chosen to simulate both the clinical situation and the case of nuclear fallout. Thirty-six male rats were i.v. injected with 0-4700 kBq 131I, and killed at 24 h after injection (Dthyroid = 0.0058-3.0 Gy). Total RNA was extracted from individual thyroid tissue samples and mRNA levels were determined using oligonucleotide microarray technique. Differentially expressed transcripts were determined using Nexus Expression 3.0. Hierarchical clustering was performed in the R statistical computing environment. Pathway analysis was performed using the Ingenuity Pathway Analysis tool and the Gene Ontology database. T4 and TSH plasma concentrations were measured using ELISA. Totally, 429 differentially regulated transcripts were identified. Downregulation of thyroid hormone biosynthesis associated genes (e.g. thyroglobulin, thyroid peroxidase, the sodium-iodine symporter) was identified in some groups, and an impact on thyroid function was supported by the pathway analysis. Recurring downregulation of Dbp and Slc47a2 was found. Dbp exhibited a pattern with monotonous reduction of downregulation with absorbed dose at 0.0058-0.22 Gy. T4 plasma levels were increased and decreased in rats whose thyroids were exposed to 0.057 and 0.22 Gy, respectively. Different amounts of injected 131I gave distinct transcriptional responses in the rat thyroid. Transcriptional response related to thyroid function and changes in T4 plasma levels were found already at very low absorbed doses to thyroid.

  5. Potential impact of clinical use of noninvasive FFRCT on radiation dose exposure and downstream clinical event rate.

    PubMed

    Bilbey, Nicolas; Blanke, Philipp; Naoum, Christopher; Arepalli, Chesnel Dey; Norgaard, Bjarne Linde; Leipsic, Jonathon

    2016-01-01

    This study aims to determine the potential impact of introducing noninvasive fractional flow reserve based on coronary computed tomography angiography (CTA) into clinical practice, with respect to radiation dose exposure and downstream event rate. We modeled a population of 1000 stable, symptomatic patients with suspected coronary artery disease, using the disease prevalence from the CONFIRM registry to estimate the pretest likelihood. Four potential clinical pathways were modeled based on the first noninvasive diagnostic test performed: (1) dobutamine echo; (2) single-photon emission computerized tomography (SPECT); (3) coronary CTA; and (4) CTA+FFRCT and leading to possible invasive coronary angiography. The posttest likelihood of testing positive/negative by each test was based on the presenting disease burden and diagnostic accuracy of each test. The dobutamine echo pathway resulted in the lowest radiation dose of 5.4 mSv, with 4.0 mSv from angiography and 1.4 mSv from percutaneous coronary intervention (PCI). The highest dose was with SPECT, with 26.5 mSv. The coronary computed tomography angiography (cCTA) pathway demonstrated a dose of 14.2 mSv, 3.7 mSv from cCTA, 7.7 mSv from angiography, and 2.8 mSv from PCI. The CTA+FFRCT pathway exhibited a radiation dose of 9.7 mSv, 3.7 mSv for cCTA, 4.2 mSv for angiography, and 1.8 mSv for PCI. Radiation dose exposure for CTA+FFRCT was lower than for SPECT (P<.001). The CTA+FFRCT pathway resulted in the lowest projected death/myocardial infarction rate at 1 year (2.44%) while the dobutamine stress pathway had the highest 1-year event rate (2.84%). Our analysis suggests that integrating FFRCT into the CTA clinical pathway may result in reduced cumulative radiation exposure, while promoting favorable clinical outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. LAND AND WATER USE CHARACTERISTICS AND HUMAN HEALTH INPUT PARAMETERS FOR USE IN ENVIRONMENTAL DOSIMETRY AND RISK ASSESSMENTS AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, T.; Karapatakis, D.; Lee, P.

    2010-08-06

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) Regulatory Guides. Within the regulatory guides, default values are provided for many of the dose model parameters but the use of site-specific values by the applicant is encouraged. A detailed survey of land and water use parameters was conducted in 1991 and is being updated here. These parameters include local characteristics of meat, milk andmore » vegetable production; river recreational activities; and meat, milk and vegetable consumption rates as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors to be used in human health exposure calculations at SRS are documented. Based on comparisons to the 2009 SRS environmental compliance doses, the following effects are expected in future SRS compliance dose calculations: (1) Aquatic all-pathway maximally exposed individual doses may go up about 10 percent due to changes in the aquatic bioaccumulation factors; (2) Aquatic all-pathway collective doses may go up about 5 percent due to changes in the aquatic bioaccumulation factors that offset the reduction in average individual water consumption rates; (3) Irrigation pathway doses to the maximally exposed individual may go up about 40 percent due to increases in the element-specific transfer factors; (4) Irrigation pathway collective doses may go down about 50 percent due to changes in food productivity and production within the 50-mile radius of SRS; (5) Air pathway doses to the maximally exposed individual may go down about 10 percent due to the changes in food productivity in the SRS area and to the changes in element-specific transfer factors; and (6) Air pathway collective doses may go down about 30 percent mainly due to the decrease in the inhalation rate assumed for the average individual.« less

  7. Development of a stable low-dose aglycosylated antibody formulation to minimize protein loss during intravenous administration.

    PubMed

    Morar-Mitrica, Sorina; Puri, Manasi; Beumer Sassi, Alexandra; Fuller, Joshua; Hu, Ping; Crotts, George; Nesta, Douglas

    2015-01-01

    The physical and chemical integrity of a biopharmaceutical must be maintained not only during long-term storage but also during administration. Specifically for the intravenous (i.v.) delivery of a protein drug, loss of stability can occur when the protein formulation is compounded with i.v. bag diluents, thus modifying the original composition of the drug product. Here we present the challenges associated with the delivery of a low-dose, highly potent monoclonal antibody (mAb) via the i.v. route. Through parallel in-use stability studies and conventional formulation development, a drug product was developed in which adsorptive losses and critical oxidative degradation pathways were effectively controlled. This development approach enabled the i.v. administration of clinical doses in the range of 0.1 to 0.5 mg total protein, while ensuring liquid drug product storage stability under refrigerated conditions.

  8. Development of a stable low-dose aglycosylated antibody formulation to minimize protein loss during intravenous administration

    PubMed Central

    Morar-Mitrica, Sorina; Puri, Manasi; Beumer Sassi, Alexandra; Fuller, Joshua; Hu, Ping; Crotts, George; Nesta, Douglas

    2015-01-01

    The physical and chemical integrity of a biopharmaceutical must be maintained not only during long-term storage but also during administration. Specifically for the intravenous (i.v.) delivery of a protein drug, loss of stability can occur when the protein formulation is compounded with i.v. bag diluents, thus modifying the original composition of the drug product. Here we present the challenges associated with the delivery of a low-dose, highly potent monoclonal antibody (mAb) via the i.v. route. Through parallel in-use stability studies and conventional formulation development, a drug product was developed in which adsorptive losses and critical oxidative degradation pathways were effectively controlled. This development approach enabled the i.v. administration of clinical doses in the range of 0.1 to 0.5 mg total protein, while ensuring liquid drug product storage stability under refrigerated conditions. PMID:26073995

  9. Measurement of 238U and 232Th in Petrol, Gas-oil and Lubricant Samples by Using Nuclear Track Detectors and Resulting Radiation Doses to the Skin of Mechanic Workers.

    PubMed

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-10-01

    Workers in repair shops of vehicles (cars, buses, truck, etc.) clean carburetors, check fuel distribution, and perform oil changes and greasing. To explore the exposure pathway of (238)U and (232)Th and its decay products to the skin of mechanic workers, these radionuclides were measured inside petrol, gas-oil, and lubricant material samples by means of CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs), and corresponding annual committed equivalent doses to skin were determined. The maximum total equivalent effective dose to skin due to the (238)U and (232)Th series from the application of different petrol, gas-oil, and lubricant samples by mechanic workers was found equal to 1.2 mSv y(-1) cm(-2).

  10. [Effect of Buzhong Yiqi decoction on PI3K and AKT in spleen, stomach and lung of nude mice with lung adenocarcinoma transplantation tumor].

    PubMed

    Liu, Ya-Li; Wang, Ying; Yi, Jia-Li; Jing, Huan; Liu, Chun-Ying

    2014-05-01

    To explore the effect of Buzhong Yiqi decoction on PI3K/AKT signaling pathway in spleen, stomach and lung of nude mice with lung adenocarcinoma transplantation tumor. Totally 60 nude mice were randomly divided into the blank control group, the tumor-bearing control group, the cisplatin group, the low-dose Buzhong Yiqi decoction group, the middle-dose Buzhong Yiqi decoction group and the high-dose Buzhong Yiqi decoction group. After the corresponding interventions, efforts were made to measure the transplanted tumor volume and calculate the tumor inhibiting rate. The immunohistochemical method and real time PCR were used to detect the expression of PI3K and AKT level in nude mice spleen, stomach and lung. Buzhong Yiqi decoction of different concentrations combined with cisplatin could inhibit the growth of the transplanted tumor, with the strongest inhibitory effect in the middle-dose Buzhong Yiqi decoction group and the high-dose Buzhong Yiqi decoction group. All of the expressions of PI3K and AKT protein and gene in the spleen, stomach and lung increased, with the most significant increase in the tumor-bearing group. Along with the increase of the concentration of cisplatin and Buzhong Yiqi decoction, the expressions of PI3K and AKT gradually reduced. Compared with the tumor-bearing control group, there were statistical differences in spleen and stomach tissues (P < 0.05). Compared with the cisplatin group, the middle-dose Buzhong Yiqi decoction group and the high-dose Buzhong Yiqi decoction group showed statistical differences (P < 0.05), but without statistical difference compared with the blank control group. Among nude mice with lung adenocarcinoma transplantation tumor, the PI3K and AKT protein and gene expressions in spleen, stomach and lung tissues increased, which might indicated the effect of cisplatin and Buzhong Yiqi decoction in reducing PI3K and AKT expressions and the relations between the reduction degree and the concentrations of Buzhong Yiqi decoction. Cisplatin combined with Buzhong Yiqi decoction could decrease the PI3K and AKT protein and gene expression in spleen, stomach and lung, and make the pathway closer to normal, so as to protect the functions of spleen, stomach and lung, there may be target spots of Buzhong Yiqi decoction in PI3K/AKT signal pathway.

  11. Public member dose assessment of Bushehr Nuclear Power Plant under normal operation by modeling the fallout from stack using the HYSPLIT atmospheric dispersion model.

    PubMed

    Zali, A; Shamsaei Zafarghandi, M; Feghhi, S A; Taherian, A M

    2017-05-01

    In this work, public dose resulting from fission products released from Bushehr Nuclear Power Plant (BNPP) under normal operation is assessed. Due to the long range transport of radionuclides in this work (80 km) and considering terrain and meteorological data, HYbrid Single-Particle Lagrangian Integrated Trajectory (HYsplit) model, which uses three dimensional long-range numerical models, has been employed to calculate atmospheric dispersion. Annual effective dose calculation is carried out for inhalation, ingestion, and external exposure pathways in 16directions and within 80 km around the site for representative person. The results showed the maximum dose of inhalation and external exposure for adults is 3.8 × 10 -8 Sv/y in the SE direction and distance of 600 m from the BNPP site which is less than ICRP 103 recommended dose limit (1 mSv). Children and infants' doses are higher in comparison with adults, although they are less than 1 mSv. Ingestion dose percentage in the total dose is less than 0.1%. The results of this study underestimate the Final Safety Analysis Report ofBNPP-1 (FSAR)data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Problems in evaluating radiation dose via terrestrial and aquatic pathways.

    PubMed Central

    Vaughan, B E; Soldat, J K; Schreckhise, R G; Watson, E C; McKenzie, D H

    1981-01-01

    This review is concerned with exposure risk and the environmental pathways models used for predictive assessment of radiation dose. Exposure factors, the adequacy of available data, and the model subcomponents are critically reviewed from the standpoint of absolute error propagation. Although the models are inherently capable of better absolute accuracy, a calculated dose is usually overestimated by from two to six orders of magnitude, in practice. The principal reason for so large an error lies in using "generic" concentration ratios in situations where site specific data are needed. Major opinion of the model makers suggests a number midway between these extremes, with only a small likelihood of ever underestimating the radiation dose. Detailed evaluations are made of source considerations influencing dose (i.e., physical and chemical status of released material); dispersal mechanisms (atmospheric, hydrologic and biotic vector transport); mobilization and uptake mechanisms (i.e., chemical and other factors affecting the biological availability of radioelements); and critical pathways. Examples are shown of confounding in food-chain pathways, due to uncritical application of concentration ratios. Current thoughts of replacing the critical pathways approach to calculating dose with comprehensive model calculations are also shown to be ill-advised, given present limitations in the comprehensive data base. The pathways models may also require improved parametrization, as they are not at present structured adequately to lend themselves to validation. The extremely wide errors associated with predicting exposure stand in striking contrast to the error range associated with the extrapolation of animal effects data to the human being. PMID:7037381

  13. TU-H-CAMPUS-JeP1-05: Dose Deformation Error Associated with Deformable Image Registration Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surucu, M; Woerner, A; Roeske, J

    Purpose: To evaluate errors associated with using different deformable image registration (DIR) pathways to deform dose from planning CT (pCT) to cone-beam CT (CBCT). Methods: Deforming dose is controversial because of the lack of quality assurance tools. We previously proposed a novel metric to evaluate dose deformation error (DDE) by warping dose information using two methods, via dose and contour deformation. First, isodose lines of the pCT were converted into structures and then deformed to the CBCT using an image based deformation map (dose/structure/deform). Alternatively, the dose matrix from the pCT was deformed to CBCT using the same deformation map,more » and then the same isodose lines of the deformed dose were converted into structures (dose/deform/structure). The doses corresponding to each structure were queried from the deformed dose and full-width-half-maximums were used to evaluate the dose dispersion. The difference between the FWHM of each isodose level structure is defined as the DDE. Three head-and-neck cancer patients were identified. For each patient, two DIRs were performed between the pCT and CBCT, either deforming pCT-to-CBCT or CBCT-to-pCT. We evaluated the errors associated by using either of these pathways to deform dose. A commercially available, Demons based DIR was used for this study, and 10 isodose levels (20% to 105%) were used to evaluate the errors in various dose levels. Results: The prescription dose for all patients was 70 Gy. The mean DDE for CT-to-CBCT deformation was 1.0 Gy (range: 0.3–2.0 Gy) and this was increased to 4.3 Gy (range: 1.5–6.4 Gy) for CBCT-to-CT deformation. The mean increase in DDE between the two deformations was 3.3 Gy (range: 1.0–5.4 Gy). Conclusion: The proposed DDF was used to quantitatively estimate dose deformation errors caused by different pathways to perform DIR. Deforming dose using CBCT-to-CT deformation produced greater error than CT-to-CBCT deformation.« less

  14. Radiation doses to critical groups since the early 1950s due to discharges of liquid radioactive waste from Sellafield.

    PubMed

    Hunt, G J

    1997-04-01

    First, some of the early work is reviewed on exposure pathways in connection with proposed and early liquid radioactive waste discharges from Sellafield. The main historical features of these discharges, affected by relevant plant operations, are then briefly described. The important radiological exposure pathways resulting from the discharges and people's consumption and occupancy habits are considered. To place the changing scenario onto a consistent basis using present-day methodology, a reconstruction of exposures has been carried out using environmental monitoring data and models. The three major pathways are examined of Porphyra/laverbread consumption in South Wales, fish and shellfish consumption near Sellafield, and external exposure over local and more distant sediments. The results show that over the period 1952 to about 1970 the laverbread pathway was probably critical, taking a cautious approach. Effective dose rates fluctuated at around 1 mSv y(-1) from about 1956 to 1971. From about 1970 to 1985, the fish and shellfish pathway was likely to have been critical, with effective dose rates peaking at about 2 mSv y(-1) in 1975-1976. External exposure was likely to have been of lesser importance than the other two pathways until about 1985, when with the retention of previously-released radiocesium on sediments it has become dominant. This phenomenon applies particularly further afield where radiocesium concentrations have been slower to decline; in the Ribble estuary, houseboat dwellers have been the critical group from about 1985. Effective doses have been at about 0.3 mSv y(-1) and declining; they are due to the effects of radiocesium discharges in earlier years. Dose rates have remained within contemporary ICRP dose limits.

  15. Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clewell, H.J., E-mail: hclewell@thehamner.org; Efremenko, A.; Campbell, J.L.

    Male and female Fischer 344 rats were exposed to naphthalene vapors at 0 (controls), 0.1, 1, 10, and 30 ppm for 6 h/d, 5 d/wk, over a 90-day period. Following exposure, the respiratory epithelium and olfactory epithelium from the nasal cavity were dissected separately, RNA was isolated, and gene expression microarray analysis was conducted. Only a few significant gene expression changes were observed in the olfactory or respiratory epithelium of either gender at the lowest concentration (0.1 ppm). At the 1.0 ppm concentration there was limited evidence of an oxidative stress response in the respiratory epithelium, but not in themore » olfactory epithelium. In contrast, a large number of significantly enriched cellular pathway responses were observed in both tissues at the two highest concentrations (10 and 30 ppm, which correspond to tumorigenic concentrations in the NTP bioassay). The nature of these responses supports a mode of action involving oxidative stress, inflammation and proliferation. These results are consistent with a dose-dependent transition in the mode of action for naphthalene toxicity/carcinogenicity between 1.0 and 10 ppm in the rat. In the female olfactory epithelium (the gender/site with the highest incidences of neuroblastomas in the NTP bioassay), the lowest concentration at which any signaling pathway was significantly affected, as characterized by the median pathway benchmark dose (BMD) or its 95% lower bound (BMDL) was 6.0 or 3.7 ppm, respectively, while the lowest female olfactory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 16.1, 11.1, and 8.4 ppm, respectively. In the male respiratory epithelium (the gender/site with the highest incidences of adenomas in the NTP bioassay), the lowest pathway BMD and BMDL were 0.4 and 0.3 ppm, respectively, and the lowest male respiratory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 0.5, 0.7, and 0.9 ppm, respectively. Using a published physiologically based pharmacokinetic (PBPK) model to estimate target tissue dose relevant to the proposed mode of action (total naphthalene metabolism per gram nasal tissue), the lowest transcriptional BMDLs from this analysis equate to human continuous naphthalene exposure at approximately 0.3 ppm. It is unlikely that significant effects of naphthalene or its metabolites will occur at exposures below this concentration. - Highlights: • We investigated mode of action for carcinogenicity of inhaled naphthalene in rats. • Gene expression changes were measured in rat nasal tissues after 90 day exposures. • Support a non-linear mode of action (oxidative stress, inflammation, and proliferation) • Suggest a dose-dependent transition in the mode of action between 1.0 and 10 ppm • Transcriptional benchmark doses could inform point of departure for risk assessment.« less

  16. Inhibition of the L-arginine-nitric oxide pathway mediates the antidepressant effects of ketamine in rats in the forced swimming test.

    PubMed

    Zhang, Guang-Fen; Wang, Nan; Shi, Jin-Yun; Xu, Shi-Xia; Li, Xiao-Min; Ji, Mu-Huo; Zuo, Zhi-Yi; Zhou, Zhi-Qiang; Yang, Jian-Jun

    2013-09-01

    Converging evidence shows that the acute administration of a sub-anaesthetic dose ketamine produces fast-acting and robust antidepressant properties in patients suffering from major depressive disorder. However, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the role of the L-arginine-nitric oxide pathway in the antidepressant effects of ketamine in rats performing the forced swimming test (FST). Ketamine (10 mg/kg) significantly decreased immobility times in the FST and the activities of total nitric oxide synthases (T-NOS), inducible NOS (iNOS), and endothelial NOS (eNOS) in the rat hippocampus. Interestingly, the plasma activities of T-NOS, iNOS, and eNOS increased after administration of ketamine. Furthermore, the activities of neuronal NOS (nNOS) did not change significantly in either the hippocampus or plasma after ketamine administration. The antidepressant effects of ketamine were prevented by pre-treatment with l-arginine (750 mg/kg). Pre-treatment with the NOS inhibitor L-NG-nitroarginine methyl ester at a sub-antidepressant dose of 50 mg/kg and ketamine at a sub-antidepressant dose of 3 mg/kg reduced immobility time in the FST compared to treatment with either drug alone. None of the drugs affected crossing and rearing scores in the open field test. These results suggest that the L-arginine-nitric oxide pathway is involved in the antidepressant effects of ketamine observed in rats in the FST and this involvement is characterised by the inhibition of brain T-NOS, iNOS, and eNOS activities. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Mangiferin Mitigates Gastric Ulcer in Ischemia/ Reperfused Rats: Involvement of PPAR-γ, NF-κB and Nrf2/HO-1 Signaling Pathways

    PubMed Central

    Mahmoud-Awny, Magdy; Attia, Ahmed S.; Abd-Ellah, Mohamed F.; El-Abhar, Hanan Salah

    2015-01-01

    Mangiferin (MF), a xanthonoid from Mangifera indica, has been proved to have antisecretory and antioxidant gastroprotective effects against different gastric ulcer models; however, its molecular mechanism has not been previously elucidated. Therefore, the aim of this study was to test its modulatory effect on several signaling pathways using the ischemia/reperfusion model for the first time. Animals were treated with MF, omeprazole (OMP), and the vehicle. The mechanistic studies revealed that MF mediated its gastroprotective effect partly via inducing the expression of Nrf2, HO-1 and PPAR-γ along with downregulating that of NF-κB. Surprisingly, the effect of MF, especially the high dose, exceeded that mediated by OMP except for Nrf2. The molecular results were reflected on the biomarkers measured, where the antioxidant effect of MF was manifested by increasing total antioxidant capacity and glutathione, besides normalizing malondialdehyde level. Additionally, MF decreased the I/R-induced nitric oxide elevation, an effect that was better than that of OMP. In the serum, MF, dose dependently, enhanced endothelial nitric oxide synthase, while reduced the inducible isoform. Regarding the anti-inflammatory effect of MF, it reduced serum level of IL-1β and sE-selectin, effects that were mirrored on the tissue level of myeloperoxidase, the neutrophil infiltration marker. In addition, MF possessed an antiapoptotic character evidenced by elevating Bcl-2 level and reducing that of caspase-3 in a dose related order. As a conclusion, the intimated gastroprotective mechanisms of MF are mediated, partially, by modulation of oxidative stress, inflammation and apoptosis possibly via the Nrf2/HO-1, PPAR-γ/NF-κB signaling pathways. PMID:26196679

  18. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Dongyun; Li Jingxia; Gao Jimin

    2009-02-15

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cellmore » transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.« less

  19. Genetic variation throughout the folate metabolic pathway influences negative symptom severity in schizophrenia.

    PubMed

    Roffman, Joshua L; Brohawn, David G; Nitenson, Adam Z; Macklin, Eric A; Smoller, Jordan W; Goff, Donald C

    2013-03-01

    Low serum folate levels previously have been associated with negative symptom risk in schizophrenia, as has the hypofunctional 677C>T variant of the MTHFR gene. This study examined whether other missense polymorphisms in folate-regulating enzymes, in concert with MTHFR, influence negative symptoms in schizophrenia, and whether total risk allele load interacts with serum folate status to further stratify negative symptom risk. Medicated outpatients with schizophrenia (n = 219), all of European origin and some included in a previous report, were rated with the Positive and Negative Syndrome Scale. A subset of 82 patients also underwent nonfasting serum folate testing. Patients were genotyped for the MTHFR 677C>T (rs1801133), MTHFR 1298A>C (rs1801131), MTR 2756A>G (rs1805087), MTRR 203A>G (rs1801394), FOLH1 484T>C (rs202676), RFC 80A>G (rs1051266), and COMT 675G>A (rs4680) polymorphisms. All genotypes were entered into a linear regression model to determine significant predictors of negative symptoms, and risk scores were calculated based on total risk allele dose. Four variants, MTHFR 677T, MTR 2756A, FOLH1 484C, and COMT 675A, emerged as significant independent predictors of negative symptom severity, accounting for significantly greater variance in negative symptoms than MTHFR 677C>T alone. Total allele dose across the 4 variants predicted negative symptom severity only among patients with low folate levels. These findings indicate that multiple genetic variants within the folate metabolic pathway contribute to negative symptoms of schizophrenia. A relationship between folate level and negative symptom severity among patients with greater genetic vulnerability is biologically plausible and suggests the utility of folate supplementation in these patients.

  20. Vehicle effects on human stratum corneum absorption and skin penetration.

    PubMed

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  1. Homeopathic drug discovery: theory update and methodological aspect.

    PubMed

    Khuda-Bukhsh, Anisur Rahman; Pathak, Surajit

    2008-08-01

    Homeopathy treats patient on the basis of totality of symptoms and is based on the principle of 'like cures like'. It uses ultra-low doses of highly diluted natural substances as remedies that originate from plants, minerals or animals. The objectives of this review are to discuss concepts, controversies and research related to understanding homeopathy in the light of modern science. Attempts have been made to focus on current views of homeopathy and to delineate its most plausible mechanism(s) of action. Although some areas of concern remain, research carried out so far both in vitro and in vivo validates the effects of highly diluted homeopathic medicines in a wide variety of organisms. The precise mechanism(s) and pathway(s) of action of highly diluted homeopathic drugs are still unknown.

  2. A metabolomics strategy to explore urinary biomarkers and metabolic pathways for assessment of interaction between Danhong injection and low-dose aspirin during their synergistic treatment.

    PubMed

    Li, Jianping; Guo, Jianming; Shang, Erxin; Zhu, Zhenhua; Zhu, Kevin Yue; Li, Shujiao; Zhao, Buchang; Jia, Lifu; Zhao, Jing; Tang, Zhishu; Duan, Jinao

    2016-07-15

    The drug combination of Danhong injection (DHI) and low-dose aspirin (ASA) was frequently applied for the treatment of cardiovascular and cerebrovascular diseases. Due to the drug interactions, a lot of potential benefits and risks might exist side by side in the course of combination therapy. However, there had been no studies of interaction between DHI and ASA. Metabolomics was a powerful tool to explore endogenous biomarkers and metabolic pathways. In present study, metabolic profiling with ultra-high-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UHPLC-QTOF/MS) coupled with multivariate statistical analysis was performed to provide insight into understanding the interaction between DHI and low-dose ASA. Eleven potential biomarkers of three types were identified and seven metabolic pathways were constructed. The results showed that the interaction between DHI and low-dose ASA during synergistic treatment indeed affected some key endogenous biomarkers and metabolic pathways, which could not happen when DHI or low-dose ASA was used alone. The quality and quantity of endogenous metabolite were both influenced by interaction between DHI and low-dose ASA. In details, the amount of flavin mononucleotide, L-2, 4-diaminobutyric acid (DABA) and 4-aminohippuric acid were significantly increased. On the contrary, the amount of 3-methyluridine, 4, 6-dihydroxyquinoline, cortolone-3-glucuronide, and serotonin were significantly decreased. Furthermore, O-phosphotyrosine, 3-methyl-2-butenal, indoxyl sulfate and dolichyl diphosphate were disappeared in urine. As to metabolic pathways, riboflavin metabolism, pentose and glucuronate interconversions, and tryptophan metabolism were all significantly influenced. The emerging alterations of biomarkers and metabolic pathways were associated with a lot of drugs and diseases based on literature researches, which might influence the co-administration of other drugs or the treatments of relevant diseases. Our paper presented some hints to uncover the mechanism of interaction between DHI and low-dose ASA, which would provide some references for application of DHI and low-dose ASA combination. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Maximizing Tumor Immunity With Fractionated Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu; Ratikan, Josephine A.; Iwamoto, Keisuke S.

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma}more » enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.« less

  4. Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment

    EPA Science Inventory

    We describe a framework for estimating the human dose at which a chemical significantly alters a biological pathway in vivo, making use of in vitro assay data and an in vitro derived pharmacokinetic model, coupled with estimates of population variability and uncertainty. The q...

  5. Biological impact of low dose-rate simulated solar particle event radiation in vivo.

    PubMed

    Chang, P Y; Doppalapudi, R; Bakke, J; Wang, A; Menda, S; Davis, Z

    2010-08-01

    C57Bl6-lacZ animals were exposed to a range of low dose-rate simulated solar particle event (sSPE) radiation at the NASA-sponsored Research Laboratory (NSRL) at Brookhaven National Laboratory (BNL). Peripheral blood was harvested from animals from 1 to 12 days after total body irradiation (TBI) to quantify the level of circulating reticulocytes (RET) and micronucleated reticulocytes (MN-RET) as an early indicator of radiation-induced genotoxicity. Bone marrow lymphocytes and hippocampal tissues from each animal were collected at 12 days and up to two months, to evaluate dose-dependent late effects after sSPE exposure. Early hematopoietic changes show that the % RET was reduced up to 3 days in response to radiation exposure but recovered at 12 days postirradiation. The % MN-RET in peripheral blood was temporally regulated and dependant on the total accumulated dose. Total chromosome aberrations in lymphocytes increased linearly with dose within a week after radiation and remained significantly higher than the control values at 4 weeks after exposure. The level of aberrations in the irradiated animals returned to control levels by 8 weeks postirradiation. Measurements of chromosome 2 and 8 specific aberrations indicate that, consistent with conventional giemsa-staining methods, the level of aberrations is also not significantly higher than in control animals at 8 weeks postirradiation. The hippocampus was surveyed for differential transcriptional regulation of genes known to be associated with neurogenesis. Our results showed differential expression of neurotrophin and their associated receptor genes within 1 week after sSPE exposure. Progressive changes in the profile of expressed genes known to be involved in neurogenic signaling pathways were dependent on the sSPE dose. Our results to date suggest that radiation-induced changes in the hematopoietic system, i.e., chromosome aberrations in lymphocytes, are transient and do not persist past 4 weeks after radiation. On the other hand, alteration in the profile of genes known to be involved in neurotrophic functions in the hippocampal tissue appears to persist for up to 8 weeks after radiation exposure. Such temporal changes confirm that, although cytogenetic changes after a single dose of low-dose and low-dose-rate protons appear to be transient, the impact of this exposure is sufficient to lead to persistent dynamic changes in neuronal tissues long after the initial radiation exposure.

  6. Uncovering the proteome response of murine neuroblastoma cells against low-dose exposure to saxitoxin.

    PubMed

    Chen, Xiao; Sun, Ye; Huang, Haiyan; Liu, Wei; Hu, Panpan; Huang, Xinfeng; Zou, Fei; Liu, Jianjun

    2018-06-01

    The potent neurotoxin saxitoxin produced by both marine and freshwater phytoplankton causes paralytic shellfish poisoning syndrome. The toxicity and mode of action of the acute exposure of high-dose saxitoxin have been intensively studied for decades; however, the potential risk of exposure of low-dose saxitoxin remained to be uncovered. Here we present a proteomics study of murine neuroblastoma N2A cell with low-dose saxitoxin exposure (1 nM and 10 nM, 24-h intoxication). Differential proteins were profiled by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). A total of 9 proteins, including 14-3-3 beta (1433B), alpha enolase (ENO1) and cofilin 2 (CFL2), were altered by the low-dose saxitoxin exposure. We further validated the expressions of 1433B, ENO1 and CFL2 by Western blot analysis and the enzyme-linked immunosorbent assay. These 9 proteins involve cell apoptotic pathways, cell skeleton maintenance, membrane potentials and mitochondrial functions. Modulation of these 9 proteins by low-dose saxitoxin exposure could correlate to the reports on genotoxicity and neurotoxicity induced by saxitoxin. This study also suggested other potential risks of saxitoxin.

  7. The interplay between dose and immune system activation determines fungal infection outcome in the African malaria mosquito, Anopheles gambiae.

    PubMed

    Rhodes, Victoria L; Thomas, Matthew B; Michel, Kristin

    2018-08-01

    The Toll pathway is a central regulator of antifungal immunity in insects. In mosquitoes, the Toll pathway affects infections with the fungal entomopathogen, Beauveria bassiana, which is considered a potential mosquito biopesticide. We report here the use of B. bassiana strain I93-825 in Anopheles gambiae to analyze the impact of Toll pathway modulation on mosquito survival. Exposure to a narrow dose range of conidia by direct contact decreased mosquito longevity and median survival. In addition, fungal exposure dose correlated positively and linearly with hazard ratio. Increased Toll signaling by knockdown of its inhibitor, cactus, decreased survivorship of uninfected females, increased mosquito survival after low dose B. bassiana exposure, but had little effect following exposure to higher doses. This observed trade-off could have implications for development of B. bassiana as a prospective vector control tool. On the one hand, selection for small increases in mosquito immune signaling across a narrow dose range could impair efficacy of B. bassiana. On the other hand, costs of immunity and the capacity for higher doses of fungus to overwhelm immune responses could limit evolution of resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. KAE609 (Cipargamin), a New Spiroindolone Agent for the Treatment of Malaria: Evaluation of the Absorption, Distribution, Metabolism, and Excretion of a Single Oral 300-mg Dose of [14C]KAE609 in Healthy Male Subjects.

    PubMed

    Huskey, Su-Er W; Zhu, Chun-qi; Fredenhagen, Andreas; Kühnöl, Jürgen; Luneau, Alexandre; Jian, Zhigang; Yang, Ziping; Miao, Zhuang; Yang, Fan; Jain, Jay P; Sunkara, Gangadhar; Mangold, James B; Stein, Daniel S

    2016-05-01

    KAE609 [(1'R,3'S)-5,7'-dichloro-6'-fluoro-3'-methyl-2',3',4',9'-tetrahydrospiro[indoline-3,1'-pyridol[3,4-b]indol]-2-one] is a potent, fast-acting, schizonticidal agent in clinical development for the treatment of malaria. This study investigated the absorption, distribution, metabolism, and excretion of KAE609 after oral administration of [(14)C]KAE609 in healthy subjects. After oral administration to human subjects, KAE609 was the major radioactive component (approximately 76% of the total radioactivity in plasma); M23 was the major circulating oxidative metabolite (approximately 12% of the total radioactivity in plasma). Several minor oxidative metabolites (M14, M16, M18, and M23.5B) were also identified, each accounting for approximately 3%-8% of the total radioactivity in plasma. KAE609 was well absorbed and extensively metabolized, such that KAE609 accounted for approximately 32% of the dose in feces. The elimination of KAE609 and metabolites was primarily mediated via biliary pathways. M23 was the major metabolite in feces. Subjects reported semen discoloration after dosing in prior studies; therefore, semen samples were collected once from each subject to further evaluate this clinical observation. Radioactivity excreted in semen was negligible, but the major component in semen was M23, supporting the rationale that this yellow-colored metabolite was the main source of semen discoloration. In this study, a new metabolite, M16, was identified in all biologic matrices albeit at low levels. All 19 recombinant human cytochrome P450 enzymes were capable of catalyzing the hydroxylation of M23 to form M16 even though the extent of turnover was very low. Thus, electrochemistry was used to generate a sufficient quantity of M16 for structural elucidation. Metabolic pathways of KAE609 in humans are summarized herein and M23 is the major metabolite in plasma and excreta. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.

  10. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    PubMed

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 ( n -3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n -3 FAs on gene expression levels are also dose-dependent.

  11. Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter-comparison of modelling approaches.

    PubMed

    Johansen, M P; Barnett, C L; Beresford, N A; Brown, J E; Černe, M; Howard, B J; Kamboj, S; Keum, D-K; Smodiš, B; Twining, J R; Vandenhove, H; Vives i Batlle, J; Wood, M D; Yu, C

    2012-06-15

    Radiological doses to terrestrial wildlife were examined in this model inter-comparison study that emphasised factors causing variability in dose estimation. The study participants used varying modelling approaches and information sources to estimate dose rates and tissue concentrations for a range of biota types exposed to soil contamination at a shallow radionuclide waste burial site in Australia. Results indicated that the dominant factor causing variation in dose rate estimates (up to three orders of magnitude on mean total dose rates) was the soil-to-organism transfer of radionuclides that included variation in transfer parameter values as well as transfer calculation methods. Additional variation was associated with other modelling factors including: how participants conceptualised and modelled the exposure configurations (two orders of magnitude); which progeny to include with the parent radionuclide (typically less than one order of magnitude); and dose calculation parameters, including radiation weighting factors and dose conversion coefficients (typically less than one order of magnitude). Probabilistic approaches to model parameterisation were used to encompass and describe variable model parameters and outcomes. The study confirms the need for continued evaluation of the underlying mechanisms governing soil-to-organism transfer of radionuclides to improve estimation of dose rates to terrestrial wildlife. The exposure pathways and configurations available in most current codes are limited when considering instances where organisms access subsurface contamination through rooting, burrowing, or using different localised waste areas as part of their habitual routines. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  12. [Study on the relationship between renal apoptosis and expression of caspase protein in fluoride induced rat].

    PubMed

    Gao, Jiping; Song, Guohua; Liu, Maolin; Wang, Yu; Yang, Xia

    2014-01-01

    To study the relationship between death receptor pathway, mitochondrion pathway and fluoride-induced apoptosis of renal cell. Male Sprague-Dawley rats were divided randomly into four groups (control, low-fluoride, medium-fluoride,and high-fluoride) and administered 0, 50, 100, and 200 mg/L of sodium fluoride, respectively, via drinking water for 120 days. The incidence of dental fluorosis were observed, the body weights and urine fluoride levels were measured. Apoptosis was detected by the Flow Cytometry (FCM). The expressions of protein of Caspase-3, Caspase-8, Caspase-9, Cyt C were detectedby immunohistoehemistry. The apoptosis rate in the fluoride exposed low does group,middle dose group and high dose group increased significantly as compared with control group. The average optical density value of Caspase-3, Caspase-8, Caspase-9 and Cyt C were higher in the fluoride exposed middle dose group and high dose group than those in the control group (P < 0.05). Death receptor pathway and mitochondrion pathway may participate in the process of fluoride-induced apoptosis of renal cell.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noshkin, V. E.; Robison, W. L.

    Between June 1946 and October 1958, Enewetak and Bikini Atolls were used by the United States as testing grounds for 66 nuclear devices. The combined explosive yield from these tests was 107 Mt (Mt TNT equivalents). This testing produced close-in fallout debris that was contaminated with quantities of radioactive fission and particle activated products, and unspent radioactive nuclear fuel that entered the aquatic environment of the atolls. Today, the sediments in the lagoons are reservoirs for 10's of TBq of the transuranics and some long-lived fission and activation products. The larger amounts of contamination are associated with fine and coarsemore » sediment material adjacent to the locations of the high yield explosions. Radionuclides are also distributed vertically in the sediment column to various depths in all regions of the lagoons. Concentrations greater than fallout background levels are found in filtered water sampled over several decades from all locations and depths in the lagoons. This is a direct indication that the radionuclides are continuously mobilized to solution from the solid phases. Of particular importance is the fact that the long-lived radionuclides are accumulated to different levels by indigenous aquatic plants and organisms that are used as food by resident people. One might anticipate finding continuous high contamination levels in many of the edible marine organisms from the lagoons, since the radionuclides associated with the sediments are not contained and are available to the different organisms in a relatively shallow water environment. This is not the case. We estimate that the radiological dose from consumption of the edible parts of marine foods at Enewetak and Bikini is presently about 0.05% of the total 50-year integral effective dose from all other exposure pathways that include ingestion of terrestrial foods and drinking water, external exposure and inhalation. The total radiological dose from the marine pathway is dominated by the natural radionuclides, {sup 210}Po and {sup 210}Pb. Man-made radionuclides presently contribute less than 0.3% of the dose from these natural radionuclides in the marine food chain.« less

  14. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  15. Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, Estefania G.; Department of Physiological Sciences, State University of Londrina, Londrina, PR; Yu Xiaozhong

    2010-06-15

    Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles acrossmore » doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10 mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.« less

  16. Differential Role of Rapamycin in Epidermis-Induced IL-15-IGF-1 Secretion via Activation of Akt/mTORC2.

    PubMed

    Bai, Yang; Xu, Rui; Zhang, Xueyuan; Zhang, Xiaorong; Hu, Xiaohong; Li, Yashu; Li, Haisheng; Liu, Meixi; Huang, Zhenggen; Yan, Rongshuai; He, Weifeng; Luo, Gaoxing; Wu, Jun

    2017-01-01

    Backgroud/Aims: The effects of rapamycin (RPM) on wound healing have been previously studied. However, reciprocal contradictory data have been reported, and the underlying mechanism remains unclear. This study aims to uncover differential role of RPM in regulation of wound healing and explore the possible mechanism. C57BL/6J mice and epidermal cells were treated with different doses of RPM. The wound re-epithelialization was observed by hematoxylin and eosin (HE) staining. The expression of IL-15 and IGF-1 were detected by immunohistochemistry and quantitative real-time PCR. Epidermal cell survival was determined by CCK-8 assays. Moreover, the mTORC1 and mTORC2 pathway were examined by western blot analysis. This study showed that differential doses of RPM could lead to separate consequences in epidermis. Histological analyses showed that low-dose RPM promoted wound healing, and enhanced the expression of IL-15 and IGF-1. Furthermore, western blot analysis showed that the effect of low-dose RPM in epidermis were not through mTORC1 pathway. Instead, activation of the Akt/mTORC2 pathway was involved in low-dose RPM-induced IL-15 and IGF-1 production in epidermis, while high-dose RPM inhibited the expression of IL-15 and IGF-1 and the activity of mTORC1 and mTORC2 pathway. This study for the first time demonstrated that RPM-mediated wound healing was dose-dependent. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Possible involvement of nitric oxide (NO) signaling pathway in the antidepressant-like effect of MK-801(dizocilpine), a NMDA receptor antagonist in mouse forced swim test.

    PubMed

    Dhir, Ashish; Kulkarni, S K

    2008-03-01

    L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) is an important signaling pathway involved in depression. With this information, the present study aimed to study the involvement of this signaling pathway in the antidepressant-like action of MK-801 (dizocilpine; N-methyl-d-aspartate receptor antagonist) in the mouse forced-swim test. Total immobility period was recorded in mouse forced swim test for 6 min. MK-801 (5-25 microg/kg., ip) produced a U-shaped curve in reducing the immobility period. The antidepressant-like effect of MK-801 (10 microg/kg, ip) was prevented by pretreatment with L-arginine (750 mg/kg, ip) [substrate for nitric oxide synthase (NOS)]. Pretreatment of mice with 7-nitroindazole (7-NI) (25 mg/kg, ip) [a specific neuronal nitric oxide synthase inhibitor] produced potentiation of the action of subeffective dose of MK-801 (5 microg/kg, ip). In addition, treatment of mice with methylene blue (10 mg/kg, ip) [direct inhibitor of both nitric oxide synthase and soluble guanylate cyclase] potentiated the effect of MK-801 (5 microg/kg, ip) in the forced-swim test. Further, the reduction in the immobility period elicited by MK-801 (10 microg/kg, ip) was also inhibited by pretreatment with sildenafil (5 mg/kg, ip) [phosphodiesterase 5 inhibitor]. The various modulators used in the study and their combination did not produce any changes in locomotor activity per se and in combination with MK-801. MK-801 however, at higher doses (25 microg/kg, ip) produced hyperlocomotion. The results demonstrated the involvement of nitric oxide signaling pathway in the antidepressant-like effect of MK-801 in mouse forced-swim test.

  18. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cucinotta, Francis A

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ)more » pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental approaches to apply to these problems using confocal microscopy and flow cytometry to detail changes at low dose/dose-rate in order to understand individual cell responses, and will establish our mathematical models based on the experimental findings resulting from changes in DNA repair, apoptosis and proliferation.« less

  19. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Peter; Anderson, Jennifer

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ)more » pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental approaches to apply to these problems using confocal microscopy and flow cytometry to detail changes at low dose/dose-rate in order to understand individual cell responses, and will establish our mathematical models based on the experimental findings resulting from changes in DNA repair, apoptosis and proliferation.« less

  20. Gene expression, glutathione status and indicators of hepatic oxidative stress in laughing gull (Larus atricilla) hatchlings exposed to methylmercury

    USGS Publications Warehouse

    Jenko, Kathryn; Karouna-Renier, Natalie K.; Hoffman, David J.

    2012-01-01

    Despite extensive studies of methylmercury (MeHg) toxicity in birds, molecular effects on birds are poorly characterized. To improve our understanding of toxicity pathways and identify novel indicators of avian exposure to Hg, the authors investigated genomic changes, glutathione status, and oxidative status indicators in liver from laughing gull (Larus atricilla) hatchlings that were exposed in ovo to MeHg (0.05–1.6 µg/g). Genes involved in the transsulfuration pathway, iron transport and storage, thyroid-hormone related processes, and cellular respiration were identified by suppression subtractive hybridization as differentially expressed. Quantitative polymerase chain reaction (qPCR) identified statistically significant effects of Hg on cytochrome C oxidase subunits I and II, transferrin, and methionine adenosyltransferase RNA expression. Glutathione-S-transferase activity and protein-bound sulfhydryl levels decreased, whereas glucose-6-phosphate dehydrogenase activity increased dose-dependently. Total sulfhydryl concentrations were significantly lower at 0.4 µg/g Hg than in controls. T ogether, these endpoints provided some evidence of compensatory effects, but little indication of oxidative damage at the tested doses, and suggest that sequestration of Hg through various pathways may be important for minimizing toxicity in laughing gulls. This is the first study to describe the genomic response of an avian species to Hg. Laughing gulls are among the less sensitive avian species with regard to Hg toxicity, and their ability to prevent hepatic oxidative stress may be important for surviving levels of MeHg exposures at which other species succumb.

  1. Computation of restoration of ligand response in the random kinetics of a prostate cancer cell signaling pathway.

    PubMed

    Dana, Saswati; Nakakuki, Takashi; Hatakeyama, Mariko; Kimura, Shuhei; Raha, Soumyendu

    2011-01-01

    Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. 2011 Elsevier Ireland Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faillace, E.R.; Cheng, J.J.; Yu, C.

    A series of benchmarking runs were conducted so that results obtained with the RESRAD code could be compared against those obtained with six pathway analysis models used to determine the radiation dose to an individual living on a radiologically contaminated site. The RESRAD computer code was benchmarked against five other computer codes - GENII-S, GENII, DECOM, PRESTO-EPA-CPG, and PATHRAE-EPA - and the uncodified methodology presented in the NUREG/CR-5512 report. Estimated doses for the external gamma pathway; the dust inhalation pathway; and the soil, food, and water ingestion pathways were calculated for each methodology by matching, to the extent possible, inputmore » parameters such as occupancy, shielding, and consumption factors.« less

  3. Analysis of radiation safety for Small Modular Reactor (SMR) on PWR-100 MWe type

    NASA Astrophysics Data System (ADS)

    Udiyani, P. M.; Husnayani, I.; Deswandri; Sunaryo, G. R.

    2018-02-01

    Indonesia as an archipelago country, including big, medium and small islands is suitable to construction of Small Medium/Modular reactors. Preliminary technology assessment on various SMR has been started, indeed the SMR is grouped into Light Water Reactor, Gas Cooled Reactor, and Solid Cooled Reactor and from its site it is group into Land Based reactor and Water Based Reactor. Fukushima accident made people doubt about the safety of Nuclear Power Plant (NPP), which impact on the public perception of the safety of nuclear power plants. The paper will describe the assessment of safety and radiation consequences on site for normal operation and Design Basis Accident postulation of SMR based on PWR-100 MWe in Bangka Island. Consequences of radiation for normal operation simulated for 3 units SMR. The source term was generated from an inventory by using ORIGEN-2 software and the consequence of routine calculated by PC-Cream and accident by PC Cosyma. The adopted methodology used was based on site-specific meteorological and spatial data. According to calculation by PC-CREAM 08 computer code, the highest individual dose in site area for adults is 5.34E-02 mSv/y in ESE direction within 1 km distance from stack. The result of calculation is that doses on public for normal operation below 1mSv/y. The calculation result from PC Cosyma, the highest individual dose is 1.92.E+00 mSv in ESE direction within 1km distance from stack. The total collective dose (all pathway) is 3.39E-01 manSv, with dominant supporting from cloud pathway. Results show that there are no evacuation countermeasure will be taken based on the regulation of emergency.

  4. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways

    PubMed Central

    Gong, Li-rong; Dong, Shu-an; Cao, Xin-shun; Wu, Li-li; Wu, Li-na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies. PMID:26524181

  5. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways.

    PubMed

    Yu, Jian-Bo; Shi, Jia; Zhang, Yuan; Gong, Li-Rong; Dong, Shu-An; Cao, Xin-Shun; Wu, Li-Li; Wu, Li-Na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies.

  6. Hanford Environmental Dose Reconstruction Project monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact onmore » humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.« less

  7. Clozapine counteracts a ketamine-induced depression of hippocampal-prefrontal neuroplasticity and alters signaling pathway phosphorylation

    PubMed Central

    Rame, Marion; Caudal, Dorian; Schenker, Esther; Svenningsson, Per; Spedding, Michael; Jay, Thérèse M.

    2017-01-01

    Single sub-anesthetic doses of ketamine can exacerbate the symptoms of patients diagnosed with schizophrenia, yet similar ketamine treatments rapidly reduce depressive symptoms in major depression. Acute doses of the atypical antipsychotic drug clozapine have also been shown to counteract ketamine-induced psychotic effects. In the interest of understanding whether these drug effects could be modeled with alterations in neuroplasticity, we examined the impact of acutely-administered ketamine and clozapine on in vivo long-term potentiation (LTP) in the rat’s hippocampus-to-prefrontal cortex (H-PFC) pathway. We found that a low dose of ketamine depressed H-PFC LTP, whereas animals that were co-administrated the two drugs displayed LTP that was similar to a saline-treated control. To address which signaling molecules might mediate such effects, we also examined phosphorylation and total protein levels of GSK3β, GluA1, TrkB, ERK, and mTOR in prefrontal and hippocampal sub-regions. Among the statistically significant effects that were detected (a) both ketamine and clozapine increased the phosphorylation of Ser9-GSK3β throughout the prefrontal cortex and of Ser2481-mTOR in the dorsal hippocampus (DH), (b) clozapine increased the phosphorylation of Ser831-GluA1 throughout the prefrontal cortex and of Ser845-GluA1 in the ventral hippocampus, (c) ketamine treatment increased the phosphorylation of Thr202/Tyr204-ERK in the medial PFC (mPFC), and (d) clozapine treatment was associated with decreases in the phosphorylation of Tyr705-TrkB in the DH and of Try816-TrkB in the mPFC. Further analyses involving phosphorylation effect sizes also suggested Ser831-GluA1 in the PFC displayed the highest degree of clozapine-responsivity relative to ketamine. These results provide evidence for how ketamine and clozapine treatments affect neuroplasticity and signaling pathways in the stress-sensitive H-PFC network. They also demonstrate the potential relevance of H-PFC pathway neuroplasticity for modeling ketamine-clozapine interactions in regards to psychosis. PMID:28472198

  8. Induction prednisone dosing for childhood nephrotic syndrome: how low should we go?

    PubMed

    Sibley, Matthew; Roshan, Abishek; Alshami, Alanoud; Catapang, Marisa; Jöbsis, Jasper J; Kwok, Trevor; Polderman, Nonnie; Sibley, Jennifer; Matsell, Douglas G; Mammen, Cherry

    2018-05-22

    Historically, children with nephrotic syndrome (NS) across British Columbia (BC), Canada have been cared for without formal standardization of induction prednisone dosing. We hypothesized that local historical practice variation in induction dosing was wide and that children treated with lower doses had worse relapsing outcomes. This retrospective cohort study included 92 NS patients from BC Children's Hospital (1990-2010). We excluded secondary causes of NS, age < 1 year at diagnosis, steroid resistance, and incomplete induction due to early relapse. We explored cumulative induction dose and defined dosing quartiles. Relapsing outcomes above and below each quartile threshold were compared including total relapses in 2 years, time to first relapse, and proportions developing frequently relapsing NS (FRNS) or starting a steroid-sparing agent (SSA). Cumulative prednisone was widely distributed with approximated median, 1st, and 3rd quartile doses of 2500, 2000, and 3000 mg/m 2 respectively. Doses ≤ 2000 mg/m 2 showed significantly higher relapses (4.2 vs 2.7), shorter time to first relapse (61 vs 175 days), and higher SSA use (36 vs 14%) compared to higher doses. Doses ≤ 2500 mg/m 2 also showed significantly more relapses (3.9 vs 2.2), quicker first relapse (79 vs 208 days), and higher FRNS (37 vs 17%) and SSA use (28 vs 11%). Relapsing outcomes lacked statistical difference in ≤ 3000 vs > 3000 mg/m 2 doses. Results strongly justify our development of a standardized, province-wide NS clinical pathway to reduce practice variation and minimize under-treatment. The lowest induction prednisone dosing threshold to minimize future relapsing risks is likely between 2000 and 2500 mg/m 2 . Further prospective studies are warranted.

  9. [Effect of Guanmaitong Tablet on ERK and p38 Protein of TLR2 Pathway Expression in Cerebral Ischemia/Reperfusion Rats: an Experimental Study].

    PubMed

    Zhang, Cui-xiang; Liu, Jian-xun; Li, Dan; Li, Lei; Fu, Jian-hua; Hou, Jin-cai; Du, Xue-mei; Zhang, Fa-chang

    2015-06-01

    To explore the inflammatory cascade mechanism through Toll like receptor 2 (TLR2) pathway after cerebral ischemia/reperfusion, and to study molecular mechanisms of Guanmaitong (GMT) Tablet for protecting brain damage. We used bolt-line method to block/release the middle cerebral artery, causing cerebral ischemia/reperfusion (I/R) injury model. GMT Tablet was given by gastrogavage. Rats were then divided into the high dose GMT group (1200 mg/kg), the middle dose GMT group (600 mg/kg), the low dose GMT group (300 mg/kg), the positive control group (Tanakan, 20 mg/kg). Their right brain tissues were fixed in 10% neutral formalin. TLR2 expressions were detected by immunofluorescence staining. The total protein was extracted from right brain tissues by ultrasonica- tion. Expression levels of extracellular regulated protein kinases (ERK), phospho-extracellular regulated protein kinases (p-ERK), p38-mitogen activated protein kinases (p-ERK), phospho-p38-mitogen activated protein kinases [p-p38-MAPKs(p-p38)] were assessed by Western blot. Abdominal aortic blood was withdrawn. IL-6 and IL-1β levels were detected by ELISA in brain tissues and serum. Compared with the sham-oepration group, expression levels of TLR2, ERK, p-ERK, p38, p-p38 protein were up-regulated (P < 0.05, P < 0.01), and contents of IL-6 and IL-1β in brain tissues and serum were increased in the model group (P < 0.01). Expression levels of TLR2, ERK, p-ERK, p38, p-p38 were down-regulated (P < 0.05, P < 0.01), and contents of IL-6 and IL-1β were reduced in brain tissues and serum in middle and high dose GMT groups (P < 0.05, P < 0.01). TLR2 pathway was involved in cerebral I/R injury. GMT protected neurons by down-regulating protein expressions of TLR2, ERK, p-ERK, p38, p-p38 and contents of IL-1β and IL-6.

  10. Role of Phosphatidylinositol-3 Kinase Pathway in NMDA Preconditioning: Different Mechanisms for Seizures and Hippocampal Neuronal Degeneration Induced by Quinolinic Acid.

    PubMed

    Constantino, Leandra C; Binder, Luisa B; Vandresen-Filho, Samuel; Viola, Giordano G; Ludka, Fabiana K; Lopes, Mark W; Leal, Rodrigo B; Tasca, Carla I

    2018-04-20

    N-methyl D-aspartate (NMDA) preconditioning is evoked by the administration of a subtoxic dose of NMDA and is protective against neuronal excitotoxicity. This effect may involve a diversity of targets and cell signaling cascades associated to neuroprotection. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases (MAPKs) such as extracellular regulated protein kinase 1/2 (ERK1/2) and p38 MAPK pathways play a major role in neuroprotective mechanisms. However, their involvement in NMDA preconditioning was not yet fully investigated. The present study aimed to evaluate the effect of NMDA preconditioning on PI3K/Akt, ERK1/2, and p38 MAPK pathways in the hippocampus of mice and characterize the involvement of PI3K on NMDA preconditioning-evoked prevention of seizures and hippocampal cell damage induced by quinolinic acid (QA). Thus, mice received wortmannin (a PI3K inhibitor) and 15 min later a subconvulsant dose of NMDA (preconditioning) or saline. After 24 h of this treatment, an intracerebroventricular QA infusion was administered. Phosphorylation levels and total content of Akt, glycogen synthase protein kinase-3β (GSK-3β), ERK1/2, and p38 MAPK were not altered after 24 h of NMDA preconditioning with or without wortmmanin pretreatment. Moreover, after QA administration, behavioral seizures, hippocampal neuronal degeneration, and Akt activation were evaluated. Inhibition of PI3K pathway was effective in abolishing the protective effect of NMDA preconditioning against QA-induced seizures, but did not modify neuronal protection promoted by preconditioning as evaluated by Fluoro-Jade B staining. The study confirms that PI3K participates in the mechanism of protection induced by NMDA preconditioning against QA-induced seizures. Conversely, NMDA preconditioning-evoked protection against neuronal degeneration is not altered by PI3K signaling pathway inhibition. These results point to differential mechanisms regarding protection against a behavioral and cellular manifestation of neural damage.

  11. Biotransformation and tissue distribution of protopine and allocryptopine and effects of Plume Poppy Total Alkaloid on liver drug-metabolizing enzymes.

    PubMed

    Huang, Ya-Jun; Cheng, Pi; Zhang, Zhuo-Yi; Tian, Shi-Jie; Sun, Zhi-Liang; Zeng, Jian-Guo; Liu, Zhao-Ying

    2018-01-11

    In this study, the biotransformation in the plasma, urine and feces of rats following oral administration of protopine (PRO) and allocryptopine (ALL)were explored using HPLC-QqTOF MS. An HPLC-MS/MS method for the determination of tissues was developed and applied to the tissue distribution study in rats following intragastric administration of Plume Poppy Total Alkaloid for 3 weeks. A total of ten PRO metabolites and ten ALL metabolites were characterized in rats in vivo. Among these metabolites, six PRO metabolites and five ALL metabolites were reported for the first time. The predicated metabolic pathways including ring cleavage, demethylation following ring cleavage, and glucuronidation were proposed. The low-concentration residue of PRO and ALL in various tissues was detected at 24 h and 48 h after dosing, which indicated that both compounds could be widely distributed in tissues and exist as low levels of residue. The activities of erythromycin N-demethylase, aminopyrine N-demethylase and NAD (P)H quinone oxidoreductase in female rats can be induced post-dose, but these activities were inhibited in male rats. The proposed biotransformation and residues of PRO and ALL and their effects on enzymes may provide a basis for clarifying the metabolism and interpreting pharmacokinetics.

  12. Estimate of radiation release from MIT reactor with un-finned LEU core during Maximum Hypothetical Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kaichao; Hu, Lin-wen; Newton, Thomas

    2017-05-01

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. At 6 MW, it delivers neutron flux and energy spectrum comparable to light water reactor (LWR) power reactors in a compact core using highly enriched uranium (HEU) fuel. In the framework of nonproliferation policy, the international community aims to minimize the use of HEU in civilian facilities. Within this context, research and test reactors have started a program to convert HEU fuel to low enriched uranium (LEU) fuel. A new type of LEU fuel basedmore » on a high density alloy of uranium and molybdenum (U-10Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. The current study focuses on the impacts of MITR Maximum Hypothetical Accident (MHA), which is also the Design Basis Accident (DBA), with LEU fuel. The MHA for the MITR is postulated to be a coolant flow blockage in the fuel element that contains the hottest fuel plate. It is assumed that the entire active portion of five fuel plates melts. The analysis shows that, within a 2-h period and by considering all the possible radiation sources and dose pathways, the overall off-site dose is 302.1 mrem (1 rem ¼ 0.01 Sv) Total Effective Dose Equivalent (TEDE) at 8 m exclusion area boundary (EAB) and a higher dose of 392.8 mrem TEDE is found at 21 m EAB. In all cases the dose remains below the 500 mrem total TEDE limit goal based on NUREG-1537 guidelines.« less

  13. Credibility of Uncertainty Analyses for 131-I Pathway Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, F O.; Anspaugh, L. R.; Apostoaei, A. I.

    2004-05-01

    We would like to make your readers aware of numerous concerns we have with respect to the paper by A. A. Simpkins and D. M. Hamby on Uncertainty in transport factors used to calculate historic dose from 131I releases at the Savannah River Site. The paper by Simpkins and Hamby concludes by saying their uncertainty analysis would add credibility to current dose reconstruction efforts of public exposures to historic releases of 131I from the operations at the Savannah River Site, yet we have found their paper to be afflicted with numerous errors in assumptions and methodology, which in turn leadmore » to grossly misleading conclusions. Perhaps the most egregious errors are their conclusions, which state that: a. the vegetable pathway, not the ingestion of fresh milk, was the main contributor to thyroid dose for exposure to 131I (even though dietary intake of vegetables was less in the past than at present), and b. the probability distribution assigned to the fraction of iodine released in the elemental form (Uniform 0, 0.6) is responsible for 64.6% of the total uncertainty in thyroid dose, given a unit release of 131I to the atmosphere. The assumptions used in the paper by Simpkins and Hamby lead to a large overestimate of the contamination of vegetables by airborne 131I. The interception by leafy and non-leafy vegetables of freshly deposited 131I is known to be highly dependent on the growth form of the crop and the standing crop biomass of leafy material. Unrealistic assumptions are made for losses of 131I from food processing, preparation, and storage prior to human consumption. These assumptions tend to bias their conclusions toward an overestimate of the amount of 131I retained by vegetation prior to consumption. For example, the generic assumption of a 6-d hold-up time is used for the loss from radioactive decay for the time period from harvest to human consumption of fruits, vegetables, and grains. We anticipate hold-up times of many weeks, if not months, between harvest and consumption for most grains and non-leafy forms of vegetation. The combined assumptions made by Simpkins and Hamby about the fraction of fresh deposition intercepted by vegetation, and the rather short hold-up time for most vegetables consumed, probably caused the authors to conclude that the consumption of 131I-contaminated vegetables was more important to dose than was the consumption of fresh sources of milk. This conclusion is surprising, given that the consumption rate assumed for whole milk was rather large and that the value of the milk transfer coefficient was also higher and more uncertain than most distributions reported in the literature. In our experience, the parameters contributing most to the uncertainty in dose for the 131I air-deposition-vegetation-milk-human-thyroid pathway are the deposition velocity for elemental iodine, the mass interception factor for pasture vegetation, the milk transfer coefficient, and the thyroid dose conversion factor. In none of our previous investigations has the consumption of fruits, vegetables, and grains been the dominant contributor to the thyroid dose (or the uncertainty in dose) when the individual also was engaged in the consumption of even moderate quantities of fresh milk. The results of the relative contribution of uncertain input parameters to the overall uncertainty in exposure are counterintuitive. We suspect that calculational errors may have occurred in their application of the software that was used to estimate the relative sensitivity for each uncertain input variable. Their claim that the milk transfer coefficient contributed only 4% to the total uncertainty in the aggregated transfer from release to dose, and that the uncertainty in the vegetation interception fraction contributed only 3.3%, despite relatively large uncertainties assigned to both of these variables, violates our sense of face validity.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Sood, S; Badkul, R

    Purpose: To compare dose distributions calculated using PB-hete vs. XVMC algorithms for SRT treatments of cavernous sinus tumors. Methods: Using PB-hete SRT, five patients with cavernous sinus tumors received the prescription dose of 25 Gy in 5 fractions for planning target volume PTV(V100%)=95%. Gross tumor volume (GTV) and organs at risk (OARs) were delineated on T1/T2 MRI-CT-fused images. PTV (range 2.1–84.3cc, mean=21.7cc) was generated using a 5mm uniform-margin around GTV. PB-hete SRT plans included a combination of non-coplanar conformal arcs/static beams delivered by Novalis-TX consisting of HD-MLCs and a 6MV-SRS(1000 MU/min) beam. Plans were re-optimized using XVMC algorithm with identicalmore » beam geometry and MLC positions. Comparison of plan specific PTV(V99%), maximal, mean, isocenter doses, and total monitor units(MUs) were evaluated. Maximal dose to OARs such as brainstem, optic-pathway, spinal cord, and lenses as well as normal tissue volume receiving 12Gy(V12) were compared between two algorithms. All analysis was performed using two-tailed paired t-tests of an upper-bound p-value of <0.05. Results: Using either algorithm, no dosimetrically significant differences in PTV coverage (PTVV99%,maximal, mean, isocenter doses) and total number of MUs were observed (all p-values >0.05, mean ratios within 2%). However, maximal doses to optic-chiasm and nerves were significantly under-predicted using PB-hete (p=0.04). Maximal brainstem, spinal cord, lens dose and V12 were all comparable between two algorithms, with exception of one patient with the largest PTV who exhibited 11% higher V12 with XVMC. Conclusion: Unlike lung tumors, XVMC and PB-hete treatment plans provided similar PTV coverage for cavernous sinus tumors. Majority of OARs doses were comparable between two algorithms, except for small structures such as optic chiasm/nerves which could potentially receive higher doses when using XVMC algorithm. Special attention may need to be paid on a case-by-case basis when planning for sinus SRT based on tumor size and location to OARs particularly the optic apparatus.« less

  15. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  16. Radon and leukemia in the Danish study: another source of dose.

    PubMed

    Harley, Naomi H; Robbins, Edith S

    2009-10-01

    An epidemiologic study of childhood leukemia in Denmark (2,400 cases; 6,697 controls) from 1968 to 1994 suggested a weak, but statistically significant, association of residential radon exposure and acute childhood lymphoblastic leukemia (ALL). The Danish study estimated a relative risk (RR) = 1.56 (95% CI, 1.05-2.30) for a cumulative exposure of 1,000 Bq m-3 y. For an exposure duration of 10 y their RR corresponds to a radon concentration of 100 Bq m-3. There are two dose pathways of interest where alpha particles could damage potential stem cells for ALL. One is the alpha dose to bone marrow, and two is the dose to bronchial mucosa where an abundance of circulating lymphocytes is found. Compared with an exposure of about 1 mSv y-1 from natural external background, radon and decay products contribute an additional 10 to 60% to the bone marrow equivalent dose. The other pathway for exposure of T (or B) lymphocytes is within the tracheobronchial epithelium (BE). Inhaled radon decay products deposit on the relatively small area of airway surfaces and deliver a significant dose to the nearby basal or mucous cells implicated in human lung cancer. Lymphocytes are co-located with basal cells and are half as abundant. Using a 10-y exposure to 100 Bq m-3, our dose estimates suggest that the equivalent dose to these lymphocytes could approach 1 Sv. The relatively high dose estimate to lymphocytes circulating through the BE, potential precursor cells for ALL, provides a dose pathway for an association.

  17. Peripheral Blood Signatures of Lead Exposure

    PubMed Central

    LaBreche, Heather G.; Meadows, Sarah K.; Nevins, Joseph R.; Chute, John P.

    2011-01-01

    Background Current evidence indicates that even low-level lead (Pb) exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. Methodology/Principal Finding Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. Conclusions/Significance The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway. PMID:21829687

  18. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impactmore » on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.« less

  19. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impactmore » on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.« less

  20. Evidence Theory Based Uncertainty Quantification in Radiological Risk due to Accidental Release of Radioactivity from a Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Ingale, S. V.; Datta, D.

    2010-10-01

    Consequence of the accidental release of radioactivity from a nuclear power plant is assessed in terms of exposure or dose to the members of the public. Assessment of risk is routed through this dose computation. Dose computation basically depends on the basic dose assessment model and exposure pathways. One of the exposure pathways is the ingestion of contaminated food. The aim of the present paper is to compute the uncertainty associated with the risk to the members of the public due to the ingestion of contaminated food. The governing parameters of the ingestion dose assessment model being imprecise, we have approached evidence theory to compute the bound of the risk. The uncertainty is addressed by the belief and plausibility fuzzy measures.

  1. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.

    PubMed

    Yang, Feng; Waters, Katrina M; Miller, John H; Gritsenko, Marina A; Zhao, Rui; Du, Xiuxia; Livesay, Eric A; Purvine, Samuel O; Monroe, Matthew E; Wang, Yingchun; Camp, David G; Smith, Richard D; Stenoien, David L

    2010-11-30

    High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.

  2. Phosphoproteomics Profiling of Human Skin Fibroblast Cells Reveals Pathways and Proteins Affected by Low Doses of Ionizing Radiation

    PubMed Central

    Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2010-01-01

    Background High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. Principal Findings We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conclusions Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health. PMID:21152398

  3. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-12-31

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmentalmore » pathways and dose estimates.« less

  4. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmentalmore » pathways and dose estimates.« less

  5. Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway.

    PubMed

    Aimaiti, Abudousaimi; Maimaitiyiming, Asihaerjiang; Boyong, Xu; Aji, Kaisaier; Li, Cao; Cui, Lei

    2017-12-19

    Strontium is a widely used anti-osteoporotic agent due to its dual effects on inhibiting bone resorption and stimulating bone formation. Thus, we studied the dose response of strontium on osteo-inductive efficiency in human adipose-derived stem cells (hASCs). Qualitative alkaline phosphatase (ALP) staining, quantitative ALP activity, Alizarin Red staining, real-time polymerase chain reaction and Western blot were used to investigate the in vitro effects of a range of strontium concentrations on hASC osteogenesis and associated signaling pathways. In vitro work revealed that strontium (25-500 μM) promoted osteogenic differentiation of hASCs according to ALP activity, extracellular calcium deposition, and expression of osteogenic genes such as runt-related transcription factor 2, ALP, collagen-1, and osteocalcin. However, osteogenic differentiation of hASCs was significantly inhibited with higher doses of strontium (1000-3000 μM). These latter doses of strontium promoted apoptosis, and phosphorylation of ERK1/2 signaling was increased and accompanied by the downregulation of Bcl-2 and increased phosphorylation of BAX. The inhibition of ERK1/2 decreased apoptosis in hASCs. Lower concentrations of strontium facilitate osteogenic differentiation of hASCs up to a point; higher doses cause apoptosis of hASCs, with activation of the ERK1/2 signaling pathway contributing to this process.

  6. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  7. Phase I study of bortezomib and cetuximab in patients with solid tumours expressing epidermal growth factor receptor

    PubMed Central

    Dudek, A Z; Lesniewski-Kmak, K; Shehadeh, N J; Pandey, O N; Franklin, M; Kratzke, R A; Greeno, E W; Kumar, P

    2009-01-01

    Bortezomib inhibits nuclear factor-κB (NF-κB). Cetuximab is a chimeric mouse–human antibody targeted against epidermal growth factor receptor (EGFR). We hypothesised that concomitant blockade of NF-κB and EGFR signalling would overcome EGFR-mediated resistance to single-agent bortezomib and induce apoptosis through two molecular pathways. The aim of this phase I trial was to establish the maximum tolerated dose (MTD) for bortezomib plus cetuximab in patients with EGFR-expressing epithelial tumours. The 21-day treatment cycle consisted of bortezomib administered on days 1 and 8 through dose escalation (1.3–2 mg m−2). Cetuximab was delivered at a dose of 250 mg m−2 on days 1, 8 and 15 (400 mg m−2 day 1 cycle 1). A total of 37 patients were enroled and given a total 91 cycles. No grade ⩾3 haematological toxicity was noted. Non-hematological grade ⩾3 toxicities included fatigue (22% of patients), dyspnoea (16%) and infection (11%). The MTD was not reached at the highest tested bortezomib dose (2.0 mg m−2). Efficacy outcomes included disease progression in 21 patients (56.7%) and stable disease (SD) at 6 weeks in 16 patients (43.3%). Five of the six patients with SD at 12 weeks were diagnosed with cancers of the lungs or head and neck. This combination therapy was moderately effective in extensively pretreated patients with non-small cell lung or head and neck cancers and warrants further investigation. PMID:19401697

  8. Cohort-specific imputation of gene expression improves prediction of warfarin dose for African Americans.

    PubMed

    Gottlieb, Assaf; Daneshjou, Roxana; DeGorter, Marianne; Bourgeois, Stephane; Svensson, Peter J; Wadelius, Mia; Deloukas, Panos; Montgomery, Stephen B; Altman, Russ B

    2017-11-24

    Genome-wide association studies are useful for discovering genotype-phenotype associations but are limited because they require large cohorts to identify a signal, which can be population-specific. Mapping genetic variation to genes improves power and allows the effects of both protein-coding variation as well as variation in expression to be combined into "gene level" effects. Previous work has shown that warfarin dose can be predicted using information from genetic variation that affects protein-coding regions. Here, we introduce a method that improves dose prediction by integrating tissue-specific gene expression. In particular, we use drug pathways and expression quantitative trait loci knowledge to impute gene expression-on the assumption that differential expression of key pathway genes may impact dose requirement. We focus on 116 genes from the pharmacokinetic and pharmacodynamic pathways of warfarin within training and validation sets comprising both European and African-descent individuals. We build gene-tissue signatures associated with warfarin dose in a cohort-specific manner and identify a signature of 11 gene-tissue pairs that significantly augments the International Warfarin Pharmacogenetics Consortium dosage-prediction algorithm in both populations. Our results demonstrate that imputed expression can improve dose prediction and bridge population-specific compositions. MATLAB code is available at https://github.com/assafgo/warfarin-cohort.

  9. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages

    PubMed Central

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-01-01

    Background: An appropriate intake of omega-3 (n-3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n-3 FAs on gene expression levels are also dose-dependent. PMID:28441337

  10. Comparative toxicity of low dose tributyltin chloride on serum, liver, lung and kidney following subchronic exposure.

    PubMed

    Mitra, Sumonto; Gera, Ruchi; Singh, Vikas; Khandelwal, Shashi

    2014-02-01

    Tributyltin (TBT) pollution is rampant worldwide and is a growing threat due to its bio-accumulative property. Isolated studies of TBT toxicity on different organs are available but consolidated information is greatly lacking. We planned this study to delineate the effect of subchronic (1 month) exposure to low dose TBT-chloride (TBTC) (1 and 5 mg/kg) in male Wistar rats. Total tin concentration was found to be significantly increased in liver, kidney and blood, and marginally in lungs. Organo-somatic indices were seen to be altered with little effect on serum biochemical markers (liver and kidney function, and general parameters). Reactive oxygen species but not lipid peroxidation content was observed to be significantly elevated both in the tissues and serum. TBTC was found to act as a hyperlipidemic agent and it also affected heme biosynthetic pathway. Hematological analysis showed that TBTC exposure resulted in minor alterations in RBC parameters. Histological studies demonstrated marked tissue damage in all the 3 organs. Calcium inhibitors (BAPTA-AM, EGTA) and antioxidants (NAC, C-PC) significantly restored TBTC induced loss in cell viability, under ex-vivo conditions. Antioxidants were evidently more efficient in comparison to the calcium inhibitors, implying major role of oxidative stress pathways in TBTC toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Taenia crassiceps: fatty acids oxidation and alternative energy source in in vitro cysticerci exposed to anthelminthic drugs.

    PubMed

    Vinaud, Marina Clare; Ferreira, Cirlane Silva; Lino Junior, Ruy de Souza; Bezerra, José Clecildo Barreto

    2009-07-01

    Cysticerci metabolic studies demonstrate alternative pathways responsible for its survival, such as energy sources, fatty acids oxidation and excretion of beta-hydroxybutyrate, which indicates the capability of energy production from proteins. The aim of this study was to detect alternative metabolic pathways for energy production and its end products in Taenia crassiceps cysticerci in vitro exposed to praziquantel and albendazole, in sub-lethal doses. Spectrophotometer and chromatographic analysis were performed to detect: propionate, acetate, beta-hydroxybutyrate, total proteins, urea and creatinine, SE by cysticerci in vitro exposed to praziquantel and albendazole. The drugs influenced the metabolism by inducing the creatinine phosphate phosphorylation as an alternative energy source, inhibiting the use of proteins and amino acids in the acid nucleic synthesis; and preventing the budding and replication of the cysticerci. This study also highlights the description of urea excretion, which is an important metabolic pathway to excrete toxic products such as ammonia, and the fatty acid oxidation as an alternative energy source in cysticerci exposed to anthelmintic drugs.

  12. Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dongxu; Wang, Yijun; Wan, Xiaochun

    (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1more » (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at lethal dose substantially suppresses hepatic Nrf2 pathway.« less

  13. Drug disposition in obesity: toward evidence-based dosing.

    PubMed

    Knibbe, Catherijne A J; Brill, Margreke J E; van Rongen, Anne; Diepstraten, Jeroen; van der Graaf, Piet Hein; Danhof, Meindert

    2015-01-01

    Obesity and morbid obesity are associated with many physiological changes affecting pharmacokinetics, such as increased blood volume, cardiac output, splanchnic blood flow, and hepatic blood flow. In obesity, drug absorption appears unaltered, although recent evidence suggests that this conclusion may be premature. Volume of distribution may vary largely, but the magnitude and direction of changes seem difficult to predict, with extrapolation on the basis of total body weight being the best approach to date. Changes in clearance may be smaller than in distribution, whereas there is growing evidence that the influence of obesity on clearance can be predicted on the basis of reported changes in the metabolic or elimination pathways involved. For obese children, we propose two methods to distinguish between developmental and obesity-related changes. Future research should focus on the characterization of physiological concepts to predict the optimal dose for each drug in the obese population.

  14. Effect of chemical mutagens and carcinogens on gene expression profiles in human TK6 cells.

    PubMed

    Godderis, Lode; Thomas, Reuben; Hubbard, Alan E; Tabish, Ali M; Hoet, Peter; Zhang, Luoping; Smith, Martyn T; Veulemans, Hendrik; McHale, Cliona M

    2012-01-01

    Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes), we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose-response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti-) apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control.

  15. Determination of dose distributions and parameter sensitivity. Hanford Environmental Dose Reconstruction Project; dose code recovery activities; Calculation 005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose ofmore » infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1 as described in Calculation 001.« less

  16. Methotrexate Is a JAK/STAT Pathway Inhibitor

    PubMed Central

    Thomas, Sally; Fisher, Katherine H.; Snowden, John A.; Danson, Sarah J.; Brown, Stephen; Zeidler, Martin P.

    2015-01-01

    Background The JAK/STAT pathway transduces signals from multiple cytokines and controls haematopoiesis, immunity and inflammation. In addition, pathological activation is seen in multiple malignancies including the myeloproliferative neoplasms (MPNs). Given this, drug development efforts have targeted the pathway with JAK inhibitors such as ruxolitinib. Although effective, high costs and side effects have limited its adoption. Thus, a need for effective low cost treatments remains. Methods & Findings We used the low-complexity Drosophila melanogaster pathway to screen for small molecules that modulate JAK/STAT signalling. This screen identified methotrexate and the closely related aminopterin as potent suppressors of STAT activation. We show that methotrexate suppresses human JAK/STAT signalling without affecting other phosphorylation-dependent pathways. Furthermore, methotrexate significantly reduces STAT5 phosphorylation in cells expressing JAK2 V617F, a mutation associated with most human MPNs. Methotrexate acts independently of dihydrofolate reductase (DHFR) and is comparable to the JAK1/2 inhibitor ruxolitinib. However, cells treated with methotrexate still retain their ability to respond to physiological levels of the ligand erythropoietin. Conclusions Aminopterin and methotrexate represent the first chemotherapy agents developed and act as competitive inhibitors of DHFR. Methotrexate is also widely used at low doses to treat inflammatory and immune-mediated conditions including rheumatoid arthritis. In this low-dose regime, folate supplements are given to mitigate side effects by bypassing the biochemical requirement for DHFR. Although independent of DHFR, the mechanism-of-action underlying the low-dose effects of methotrexate is unknown. Given that multiple pro-inflammatory cytokines signal through the pathway, we suggest that suppression of the JAK/STAT pathway is likely to be the principal anti-inflammatory and immunosuppressive mechanism-of-action of low-dose methotrexate. In addition, we suggest that patients with JAK/STAT-associated haematological malignancies may benefit from low-dose methotrexate treatments. While the JAK1/2 inhibitor ruxolitinib is effective, a £43,200 annual cost precludes widespread adoption. With an annual methotrexate cost of around £32, our findings represent an important development with significant future potential. PMID:26131691

  17. Delayed treatment with recombinant human tissue factor pathway inhibitor improves survival in rabbits with gram-negative peritonitis.

    PubMed

    Camerota, A J; Creasey, A A; Patla, V; Larkin, V A; Fink, M P

    1998-03-01

    To determine whether treatment with recombinant human tissue factor pathway inhibitor (TFPI), an inhibitor of the extrinsic coagulation pathway, can improve survival in a clinically relevant model of gram-negative sepsis, rabbits were given an intraperitoneal inoculation of a suspension containing hemoglobin (40 microg/mL), porcine mucin (150 microg/mL), and viable Escherichia coli O18:K1 (1.0 +/- 0.5 x 10(5) cfu/kg). Treatment with gentamicin (5 mg/kg every 12 h for five doses) was instituted 4 h after induction of peritonitis. At the same time point, rabbits were randomized to receive a 24-h infusion of vehicle or one of three different doses of TFPI. Treatment groups, 7-day survival rates, and significance versus control were as follows: control, 1 of 20; TFPI(LOW DOSE) (0.1 mg/kg, then 1 microg/kg/min), 3 of 12 (P = .14); TFPI(MID DOSE), (0.5 mg/kg, then 5 microg/kg/min), 7 of 12 (P = .002); TFPI(HIGH DOSE) (10 mg/kg, then 10 microg/kg/min), 4 of 13 (P = .04). Thus, delayed treatment with TFPI improves survival in septic rabbits.

  18. Rhizoma Smilacis Glabrae inhibits pathogen-induced upper genital tract inflammation in rats through suppression of NF-κB pathway.

    PubMed

    Zou, Wei; Zhou, Hougang; Hu, Jian; Zhang, Li; Tang, Qiue; Wen, Xiaoke; Xiao, Zuoqi; Wang, Wei

    2017-04-18

    Rhizoma Smilacis Glabrae (RSG) is traditionally used to treat gynecological disease, which is simply recorded in Chinese Pharmacopoeia. However, whether it has effect on upper genital tract inflammation (UGTI) is unclear. To evaluate the pharmacological effect of RSG on UGTI in rats and analyze its phytochemistry characteristics. The substances in RSG extract was qualified by LC-Q-TOF-MS method, and 11 substances were further quantified. The RSG extract, at dose of 241, 482 (clinical dose) and 964mg/kg/day, was orally administered to UGTI rats whose upper genital tracts were multi-infected with pathogens. Infiltrations of neutrophil and lymphocyte and productions of IL-1β, IL-6, CXCL-1, MCP-1, RANTES, PGE2, COX-2, NF-κB p65 and IκB-α in upper genital tract were examined to evaluate the effects of RSG and its potential mechanism. A total of 77 substances were detected in RSG extract, with 50 substances putatively identified, most of which were flavonoids, phenolic acids and phenylpropanoids. The quantification analysis showed flavonoid had a relative high amount. In pharmacological study, RSG extract suppressed infiltrations of inflammatory cells, reduced over-productions of factors involved in inflammation and pelvic pain. A potential mechanism of these effects was blocking NF-κB signal pathway. The RSG extract exhibited anti-inflammatory effect on UGTI, with a potential mechanism of blocking the activation of NF-κB signal pathway. The effect may be involved in the presence of substances, such as flavonoids and phenolic acids. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. On the pharmacology of ascending, descending and recurrent postsynatic inhibition of the cuneothalamic relay cells in the cat

    PubMed Central

    Kelly, J. S.; Renaud, L. P.

    1973-01-01

    1. In cats decerebrated or anaesthetized with pentobarbitone, cells of the middle third of the cuneate nucleus that were excited by tactile stimulation of the ipsilateral forelimb (responding to displacement of hairs, skin or joints) and inhibited by electrical stimulation of the contralateral pyramid, were invariably inhibited by electrical stimulation of the ipsilateral forepaw and the contralateral forelimb nerves. 2. In 50% of the cats, the cells were more fully identified by placing electrodes stereotaxically in the contralateral medial lemniscus. Recurrent inhibition was always a concomitant of the antidromic action potential. 3. The intensity and the duration of inhibition evoked by all of these pathways was totally resistant to iontophoretic and intravenous strychnine in doses at least 5 times that required to block completely the response of the same cells to iontophoretic glycine and was extremely sensitive to either iontophoretic bicuculline or picrotoxin. 4. Although the inhibition was invariably sensitive to intravenous picrotoxin, no significant change occurred in the duration or intensity of the inhibition when bicuculline was administered intravenously (5 or 6 times) as repeated doses of 0·2 mg/kg. 5. Postsynaptic inhibition in the cuneate may be mediated by γ-aminobutyric acid released from the nerve terminals of a common pool of interneurones shared by ascending, descending and recurrent pathways. Since the receptors involved in this pathway are resistant to intravenous bicuculline, they may well be distinct from those responsible for changes in the primary afferent terminal excitability, usually believed to be associated with presynaptic inhibition. PMID:4357959

  20. Membrane Signaling Induced by High Doses of Ionizing Radiation in the Endothelial Compartment. Relevance in Radiation Toxicity

    PubMed Central

    Corre, Isabelle; Guillonneau, Maëva; Paris, François

    2013-01-01

    Tumor areas can now be very precisely delimited thanks to technical progress in imaging and ballistics. This has also led to the development of novel radiotherapy protocols, delivering higher doses of ionizing radiation directly to cancer cells. Despite this, radiation toxicity in healthy tissue remains a major issue, particularly with dose-escalation in these new protocols. Acute and late tissue damage following irradiation have both been linked to the endothelium irrigating normal tissues. The molecular mechanisms involved in the endothelial response to high doses of radiation are associated with signaling from the plasma membrane, mainly via the acid sphingomyelinase/ceramide pathway. This review describes this signaling pathway and discusses the relevance of targeting endothelial signaling to protect healthy tissues from the deleterious effects of high doses of radiation. PMID:24252908

  1. The hepatotoxicity of multi-walled carbon nanotubes in mice

    NASA Astrophysics Data System (ADS)

    Ji, Zongfei; Zhang, Danying; Li, Ling; Shen, Xizhong; Deng, Xiaoyong; Dong, Ling; Wu, Minhong; Liu, Yuanfang

    2009-11-01

    The hepatotoxicity of two types of multi-walled carbon nanotubes (MWCNTs), acid-oxidized MWCNTs (O-MWCNTs) and Tween-80-dispersed MWCNTs (T-MWCNTs), were investigated with Kunming mice exposed to 10 and 60 mg kg-1 by intravenous injection for 15 and 60 d. Compared with the PBS group, the body-weight gain of the mice decreased and the level of total bilirubin and aspartate aminotransferase increased in the MWCNT-exposed group with a significant dose-effect relationship, while tumor necrosis factor alpha level did not show significant statistical change within 60 d. Spotty necrosis, inflammatory cell infiltration in portal region, hepatocyte mitochondria swelling and lysis were observed with a significant dose-effect relationship in the MWCNT groups. Liver damage of the T-MWCNT group was more severe than that of the O-MWCNT group according to the Roenigk classification system. Furthermore, T-MWCNTs induce slight liver oxidative damage in mice at 15 d, which was recovered at 60 d. Part of the gene expressions of mouse liver in the MWCNT groups changed compared to the PBS group, including GPCRs (G protein-coupled receptors), cholesterol biosynthesis, metabolism by cytochrome P450, natural-killer-cell-mediated cytotoxicity, TNF- α, NF-κB signaling pathway, etc. In the P450 pathway, the gene expressions of Gsta2 (down-regulated), Cyp2B19 (up-regulated) and Cyp2C50 (down-regulated) had significant changes in the MWCNT groups. These results show that a high dose of T-MWCNTs can induce hepatic toxicity in mice while O-MWCNTs seem to have less toxicity.

  2. Hypotensive effect of agmatine, arginine metabolite, is affected by NO synthase.

    PubMed

    Gerová, M; Török, J

    2004-01-01

    The metabolites of arginine were recently shown to be involved in cardiovascular control. The study addresses the general cardiovascular response of anaesthetized rats to agmatine, a decarboxylated arginine. The relation between two arginine metabolic pathways governed by arginine decarboxylase and nitric oxide synthase was investigated. Intravenous administration of agmatine 30 and 60 microM/0.1 ml saline elicited remarkable hypotension of 42.6+/-4.6 and 70.9+/-6.5 mm Hg, respectively. The hypotension was characterized by long duration with half-time of return 171.6+/-2.9 and 229.2+/-3.8 s, respectively. The time of total blood pressure BP recovery was about 10 min. Dose-dependent relaxation to agmatine was also found in aorta rings in vitro. Both doses of agmatine administered 60-180 min after NO synthase inhibition L-NAME 40 mg/kg i.v. caused greater hypotension 59.0+/-7.6 and 95.8 8.8 mm Hg P<0.01 both compared to animals with intact NO synthase, but this was accompanied by a significant shortening of the half-time of BP return. If agmatine was administered to hypertensive NO-deficient rats treated with 40 mg/kg/day L-NAME for 4 weeks, similar significant enhancement of hypotension was observed at both agmatine doses, again with a significant shortening of half-time of BP return. It can be summarized that the long-lasting hypotension elicited by agmatine was amplified after acute or chronic NO synthase inhibition, indicating a feedback relation between the two metabolic pathways of arginine.

  3. Site-Specific Reference Person Parameters and Derived Concentration Standards for the Savannah River Site

    DOE PAGES

    Stone, Daniel K.; Higley, Kathryn A.; Jannik, G. Timothy

    2014-05-01

    The U.S. Department of Energy Order 458.1 states that the compliance with the 1 mSv annual dose constraint to a member of the public may be demonstrated by calculating dose to the maximally exposed individual (MEI) or to a representative person. Historically, the MEI concept was used for dose compliance at the Savannah River Site (SRS) using adult dose coefficients and adult male usage parameters. For future compliance, SRS plans to use the representative person concept for dose estimates to members of the public. The representative person dose will be based on the reference person dose coefficients from the U.S.more » DOE Derived Concentration Technical Standard and on usage parameters specific to SRS for the reference and typical person. Usage parameters and dose coefficients were determined for inhalation, ingestion and external exposure pathways. The parameters for the representative person were used to calculate and tabulate SRS-specific derived concentration standards (DCSs) for the pathways not included in DOE-STD-1196-2011.« less

  4. Akt1/NFκB signaling pathway activation by a small molecule DMA confers radioprotection to intestinal epithelium in xenograft model.

    PubMed

    Tiwari, Vinod; Kamran, Mohammad Zahid; Ranjan, Atul; Nimesh, Hemlata; Singh, Manish; Tandon, Vibha

    2017-07-01

    Normal tissue protection and recovery of radiation-induced damage are of paramount importance for development of radioprotector. Radioprotector which selectively protects normal tissues over cancerous tissues improves the therapeutic window of radiation therapy. In the present study, small bisbenzimidazole molecule, DMA (5-(4-methylpiperazin-1-yl)-2-[2'-(3,4-dimethoxy-phenyl)-5'-benzimidazolyl]-benzimidazole) was evaluated for in vivo radioprotective effects to selectively protect normal tissue over tumor with underlying molecular mechanism. Administration of single DMA dose prior to radiation has enhanced survival of Balb/c mice against sublethal and supralethal total body irradiation. DMA ameliorated radiation-induced damage of normal tissues such as hematopoietic (HP) and gastrointestinal tract (GI) system. Oxidative stress marker Malondialdehyde level was decreased by DMA whereas it maintained endogenous antioxidant status by increasing the level of reduced glutathione, glutathione reductase, glutathione-s-transferase, superoxide dismutase and total thiol content in hepatic tissue of irradiated mice. Mechanistic studies revealed that DMA treatment prior to radiation leads to Akt1/NFκB signaling which reduced radiation-induced genomic instability in normal cells. However, these pathways were not activated in tumor tissues when subjected to DMA treatment in similar conditions. Abrogation of Akt1 and NFκB genes resulted in no radioprotection by DMA and enhanced apoptosis against radiation. Plasma half-life of DMA was 3.5h and 2.65h at oral and intravenous dose respectively and 90% clearance was observed in 16h. In conclusion, these data suggests that DMA has potential to be developed as a safe radioprotective agent for radiation countermeasures and an adjuvant in cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  5. Expression of Genes Associated with DNA Damage Sensing in Human Fibroblasts Exposed to Low-dose-rate Gamma Rays

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Mehta, Satish; Hammond, Diane; Pierson, Duane; Jeevarajan, Antony; Cucinotta, Francis; Rohde, Larry; Wu, Honglu

    2007-01-01

    Understanding of the molecular response to low-dose and low-dose-rate radiation exposure is essential for the extrapolation of high-dose radiation risks to those at dose levels relevant to space and other environmental concerns. Most of the reported studies of gene expressions induced by low-dose or low-dose-rate radiation were carried out on exponentially growing cells. In the present study, we analyzed expressions of 84 genes associated with DNA damage sensing using real time PCR in human fibroblasts in mostly G1 phase of the cell cycle. The cells were exposed continuously to gamma rays at a dose rate of 0.8 cGy/hr for 1, 2, 6 or 24 hrs at 37 C throughout the exposure. The total RNA was isolated immediately after the exposure was terminated. Of the 84 genes, only a few showed significant changes of the expression level. Some of the genes (e.g. DDit3 and BTG2) were found to be up or down regulated only after a short period of exposure, while other genes (e.g. PRKDC) displayed a highest expression level at the 24 hr time point. The expression profiles for the exposed cells which had a smaller portion of G1 cells indicated more cell cycle signaling and DNA repair genes either up or down regulated. Interestingly, the panel of genes changed from radiation exposure in G1 cells is different from the panel in cells having less G1 arrest cells. The gene expression profile of the cells responding to low-dose-radiation insult apparently depends on the cell growth stage. The response pathway in G1 cells may differ from that in exponentially growing cells.

  6. Metabolites and JAK/STAT pathway were involved in the liver and spleen damage in male Wistar rats fed with mequindox.

    PubMed

    Wang, Xu; Huang, Xian-Ju; Ihsan, Awais; Liu, Zhao-Ying; Huang, Ling-Li; Zhang, Hua-Hai; Zhang, Hong-Fei; Zhou, Wen; Liu, Qin; Xue, Xi-Juan; Yuan, Zong-Hui

    2011-02-27

    Mequindox (MEQ) is a novel synthetic quinoxaline 1,4-dioxides antibacterial agent and growth promoter in animal husbandry. This study was to investigate whether reactive oxygen species (ROS), the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway, suppressors of cytokine signaling (SOCS) and inflammatory cytokines were involved in toxicities of MEQ. Our data demonstrated that high dose of MEQ (275 mg/kg) apparently led to tissue impairment combined with imbalance of redox in liver. In liver and spleen samples, hydroxylation metabolites and desoxymequindox were detected, directly confirming the potential link of N→O group reduction metabolism with its organ toxicity. Moreover, up-regulation of JAK/STAT, SOCS family, tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) were also observed in the high-dose group. Meanwhile, significant changes of oxidative stress indices in liver were observed in the high-dose group. As for NADPH subunit, the mRNA levels of many subunits were significantly up-regulated at low doses but down-regulated in a dose-dependent manner in liver and spleen, suggesting an involvement of NADPH in MEQ metabolism and ROS generation. In conclusion, we reported the dose-dependent long-term toxicity as well as the discussion of the potential mechanism and pathways of MEQ, which raised further awareness of its toxicity following with the dose change. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. SPECIAL ANALYSIS AIR PATHWAY MODELING OF E-AREA LOW-LEVEL WASTE FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, R.; Taylor, G.

    This Special Analysis (SA) was initiated to address a concern expressed by the Department of Energy's Low Level Waste Disposal Facility Federal Review Group (LFRG) Review Team during their review of the 2008 E-Area Performance Assessment (PA) (WSRC, 2008). Their concern was the potential for overlapping of atmospheric plumes, emanating from the soil surface above SRS LLW disposal facilities within the E-Area, to contribute to the dose received by a member of the public during the Institutional Control (IC) period. The implication of this concern was that the dose to the maximally-exposed individual (MEI) located at the SRS boundary mightmore » be underestimated during this time interval. To address this concern a re-analysis of the atmospheric pathway releases from E-Area was required. In the process of developing a new atmospheric release model (ARM) capable of addressing the LFRG plume overlap concern, it became obvious that new and better atmospheric pathway disposal limits should be developed for each of the E-Area disposal facilities using the new ARM. The scope of the SA was therefore expanded to include the generation of these new limits. The initial work conducted in this SA was to develop a new ARM using the GoldSim{reg_sign} program (GTG, 2009). The model simulates the subsurface vapor diffusion of volatile radionuclides as they release from E-Area disposal facility waste zones and migrate to the land surface. In the process of this work, many new features, including several new physical and chemical transport mechanisms, were incorporated into the model. One of the most important improvements was to incorporate a mechanism to partition volatile contaminants across the water-air interface within the partially saturated pore space of the engineered and natural materials through which vapor phase transport occurs. A second mechanism that was equally important was to incorporate a maximum concentration of 1.9E-07 Ci/m{sup 3} of {sup 14}CO{sub 2} in the air-filled pores of cementitious materials. The ARM also combines the individual transport models constructed for each E-Area disposal facility into a single model, and was ultimately used to analyze the LFRG concern regarding the potential for atmospheric plume overlap at the SRS boundary during the IC period. To evaluate the plume overlap issue, a conservative approach was adopted whereby the MEI at the SRS boundary was exposed to the releases from all E-Area disposal facilities simultaneously. This is equivalent to a 100% overlap of all atmospheric plumes emanating from E-Area. Should the dose received from this level of atmospheric plume overlap still fall below the permissible exposure level of 10 mrem/yr, then the LFRG concern would be alleviated. The structuring of the ARM enables this evaluation to be easily performed. During the IC period, the peak of the 'total plume overlap dose' was computed to be 1.9E-05 mrem/yr, which is five orders of magnitude lower than the 10 mrem/yr PA performance objective for the atmospheric release pathway. The main conclusion of this study is that for atmospheric releases from the E-Area disposal facilities, plume overlap does not cause the total dose to the MEI at the SRS boundary during the IC to exceed the Performance Assessment (PA) performance objective. Additionally, the potential for plume overlap was assessed in the post-Institutional Control period. Atmospheric plume overlap is less likely to occur during this period but conceivably could occur if the prevailing wind direction shifted so as to pass directly over all EArea disposal facilities and transport airborne radionuclides to the MEI at the 100 m point of compliance (POC). This concern was also demonstrated of little concern, as the maximum plume overlap dose was found to be 1.45E+00 mrem/yr (or {approx}15% of the performance measure) during this period and under these unlikely conditions.« less

  8. Mechanism of the synergistic effect of amiodarone and fluconazole in Candida albicans.

    PubMed

    Gamarra, Soledad; Rocha, Elousa Maria F; Zhang, Yong-Qiang; Park, Steven; Rao, Rajini; Perlin, David S

    2010-05-01

    The antiarrhythmic drug amiodarone has been found to have fungicidal activity. In Saccharomyces cerevisiae, its antifungal activity is mediated by calcium overload stress, which leads to a rapid nuclear accumulation of the calcineurin-regulated transcription factor CRZ1. In addition, low doses of amiodarone have been reported to be synergistic with fluconazole in fluconazole-resistant Candida albicans. To establish its mechanism of toxicity in C. albicans, we used expression profiling of key pathway genes to examine cellular responses to amiodarone alone and in combination with fluconazole. Gene expression profiling of 59 genes was done in five C. albicans strains (three fluconazole-susceptible strains and two fluconazole-resistant strains) after amiodarone and/or fluconazole exposure. Of the 59 genes, 27 analyzed showed a significant change (>2-fold) in expression levels after amiodarone exposure. The up- or downregulated genes included genes involved in Ca(2+) homeostasis, cell wall synthesis, vacuolar/lysosomal transport, diverse pathway regulation, stress response, and pseudohyphal morphogenesis. As expected, fluconazole induces an increase in ergosterol pathway genes expression levels. The combination treatment significantly dampened the transcriptional response to either drug, suggesting that synergism was due to an inhibition of compensatory response pathways. This dampening resulted in a decrease in total ergosterol levels and decreased pseudohyphal formation, a finding consistent with decreased virulence in a murine candidiasis model.

  9. In Utero Exposure to Low-Dose Alcohol Induces Reprogramming of Mammary Development and Tumor Risk in MMTV-erbB-2 Transgenic Mice

    PubMed Central

    Ma, Zhikun; Blackwelder, Amanda J.; Lee, Harry; Zhao, Ming; Yang, Xiaohe

    2015-01-01

    There is increasing evidence that prenatal exposure to environmental factors may modify breast cancer risk later in life. This study aimed to investigate the effects of in utero exposure to low-dose alcohol on mammary development and tumor risk. Pregnant MMTV-erbB-2 mice were exposed to alcohol (6 g/kg/day) between day 13 and day 19 of gestation, and the female offspring were examined for tumor risk. Whole mount analysis indicated that in utero exposure to low-dose alcohol induced significant increases in ductal extension at 10 weeks of age. Molecular analysis showed that in utero alcohol exposure induced upregulation of ERα signaling and activation of Akt and Erk1/2 in pubertal mammary glands. However, enhanced signaling in the EGFR/erbB-2 pathway appeared to be more prominent in 10-week-old glands than did signaling in the other pathways. Interestingly, tumor development in mice with in utero exposure to low-dose alcohol was slightly delayed compared to control mice, but tumor multiplicity was increased. The results indicate that in utero exposure to low-dose alcohol induces the reprogramming of mammary development by mechanisms that include altered signaling in the estrogen receptor (ER) and erbB-2 pathways. The intriguing tumor development pattern might be related to alcohol dose and exposure conditions, and warrants further investigation. PMID:25853264

  10. Hanford Environmental Dose Reconstruction Project. Monthly report, December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.; McMakin, A.H.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public.more » The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.« less

  11. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public.more » The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.« less

  12. Determination of dose distributions and parameter sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose ofmore » infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.« less

  13. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris.

    PubMed

    Li, Shuai; Harley, Peter C; Niinemets, Ülo

    2017-09-01

    Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre-exposure to lower O 3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol -1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol -1 O 3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O 3 priming than in light and without priming. After low O 3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. © 2017 John Wiley & Sons Ltd.

  14. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris

    PubMed Central

    Li, Shuai; Harley, Peter C.; Niinemets, Ülo

    2018-01-01

    Acute ozone exposure triggers major emissions of volatile organic compounds (VOC), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e., pre-exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol-1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol-1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. PMID:28623868

  15. Pharmacokinetics of paracetamol and its metabolites in women at delivery and post‐partum

    PubMed Central

    Kulo, Aida; Peeters, Mariska Y.; Allegaert, Karel; Smits, Anne; de Hoon, Jan; Verbesselt, Rene; Lewi, Liesbeth; van de Velde, Marc; Knibbe, Catherijne A. J.

    2013-01-01

    Aim A recent report on intravenous (i.v.) paracetamol pharmacokinetics (PK) showed a higher total clearance in women at delivery compared with non‐pregnant women. To describe the paracetamol metabolic and elimination routes involved in this increase in clearance, we performed a population PK analysis in women at delivery and post‐partum in which the different pathways were considered. Methods Population PK parameters using non‐linear mixed effect modelling were estimated in a two‐period PK study in women to whom i.v. paracetamol (2 g loading dose followed by 1 g every 6 h up to 24 h) was administered immediately following Caesarean delivery and in a subgroup of the same women to whom single 2 g i.v.loading dose was administered 10–15 weeks post‐partum. Results Population PK analysis was performed based on 255 plasma and 71 urine samples collected in 39 women at delivery and in eight of these 39 women 12 weeks post‐partum. Total clearance was higher in women at delivery compared with 12th post‐partum week (21.1 vs. 11.7 l h−1) due to higher clearances to paracetamol glucuronide (11.6 vs. 4.76 l h−1), to oxidative metabolites (4.95 vs. 2.77 l h−1) and of unchanged paracetamol (1.15 vs. 0.75 l h−1). In contrast, there was no difference in clearance to paracetamol sulphate. Conclusion The increased total paracetamol clearance at delivery is caused by a disproportional increase in glucuronidation clearance and a proportional increase in clearance of unchanged paracetamol and in oxidation clearance, of which the latter may potentially limit further dose increase in this patient group. PMID:22845052

  16. DOSE-DEPENDENT TRANSITIONS IN MECHANISMS OF TOXICITY: CASE STUDIES

    EPA Science Inventory

    Experience with dose response and mechanisms of toxicity has shown that multiple mechanisms may exist for a single agent along the continuum of the full dose-response curve. It is highly likely that critical, limiting steps in any given mechanistic pathway may become overwhelmed ...

  17. Propolis extracts from the northern region of Thailand suppress cancer cell growth through induction of apoptosis pathways.

    PubMed

    Khacha-Ananda, Supakit; Tragoolpua, Khajornsak; Chantawannakul, Panuwan; Tragoolpua, Yingmanee

    2016-12-01

    The continual increase in mortality rates and number of cancer cases is a matter of serious concern in developing countries. The incorporation of natural products into classical cancer treatment approaches is a promising direction. The mechanisms of A549 and HeLa cancer cell death induction by ethanolic extracts of propolis samples from Phayao, Chiang Mai, and Nan provinces in northern Thailand were investigated in this study. The propolis extract from Chiang Mai showed the highest antioxidant activity and the greatest total phenolic content. The propolis extract from Nan also exhibited the highest total flavonoid content. The proliferation of A549 and HeLa cells grown in the presence of the propolis extracts was suppressed in a dose- and time-dependent manner. Moreover, treatment of both cancer cells with the propolis extracts showed DNA fragmentation and significantly increased the number of the apoptotic cells. On A549 cells, the extrinsic and intrinsic pathways of caspase enzymes were activated by the propolis extracts from Phayao and Chiang Mai. In the case of the propolis extract from Nan, the mechanisms involved apoptosis on the A549 cells were caspase-independent pathway. The extrinsic pathway of the caspase enzyme was triggered by all of the propolis extracts on HeLa cells. Finally, oral administration of the propolis granule produced from the propolis extract from Nan resulted in extended survival of tumour-bearing mice. Therefore, propolis extracts from the northern region of Thailand demonstrated pharmacological properties, both antioxidant and anticancer activities. From these findings, it is evident that propolis extracts can be considered as a naturally obtained agent extremely useful in cancer treatment.

  18. Nonmonotonic dose response curves (NMDRCs) are common after Estrogen or Androgen signaling pathway disruption. Fact or Falderal? ###SETAC

    EPA Science Inventory

    The shape of the dose response curve in the low dose region has been debated since the late 1940s. The debate originally focused on linear no threshold (LNT) vs threshold responses in the low dose range for cancer and noncancer related effects. Recently, claims have arisen tha...

  19. WNK4 inhibits NCC protein expression through MAPK ERK1/2 signaling pathway.

    PubMed

    Zhou, Bo; Wang, Dexuan; Feng, Xiuyan; Zhang, Yiqian; Wang, Yanhui; Zhuang, Jieqiu; Zhang, Xuemei; Chen, Guangping; Delpire, Eric; Gu, Dingying; Cai, Hui

    2012-03-01

    WNK [with no lysine (K)] kinase is a subfamily of serine/threonine kinases. Mutations in two members of this family (WNK1 and WNK4) cause pseudohypoaldosteronism type II featuring hypertension, hyperkalemia, and metabolic acidosis. WNK1 and WNK4 were shown to regulate sodium chloride cotransporter (NCC) activity through phosphorylating SPAK and OSR1. Previous studies including ours have also shown that WNK4 inhibits NCC function and its protein expression. A recent study reported that a phorbol ester inhibits NCC function via activation of extracellular signal-regulated kinase (ERK) 1/2 kinase. In the current study, we investigated whether WNK4 affects NCC via the MAPK ERK1/2 signaling pathway. We found that WNK4 increased ERK1/2 phosphorylation in a dose-dependent manner in mouse distal convoluted tubule (mDCT) cells, whereas WNK4 mutants with the PHA II mutations (E562K and R1185C) lost the ability to increase the ERK1/2 phosphorylation. Hypertonicity significantly increased ERK1/2 phosphorylation in mDCT cells. Knock-down of WNK4 expression by siRNA resulted in a decrease of ERK1/2 phosphorylation. We further showed that WNK4 knock-down significantly increases the cell surface and total NCC protein expressions and ERK1/2 knock-down also significantly increases cell surface and total NCC expression. These data suggest that WNK4 inhibits NCC through activating the MAPK ERK1/2 signaling pathway.

  20. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storb, R.; Raff, R.F.; Graham, T.

    1993-03-20

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing [sup 60]Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionatedmore » total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs.« less

  1. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Waters, Katrina M.; Miller, John H.

    2010-11-30

    Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peakmore » intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low dose radiation exposure on human health.« less

  2. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells.

    PubMed

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2013-06-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p<0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. “Stockpile” of Slight Transcriptomic Changes Determines the Indirect Genotoxicity of Low-Dose BPA in Thyroid Cells

    PubMed Central

    Porreca, Immacolata; Ulloa Severino, Luisa; D’Angelo, Fulvio; Cuomo, Danila; Ceccarelli, Michele; Altucci, Lucia; Amendola, Elena; Nebbioso, Angela; Mallardo, Massimo

    2016-01-01

    Epidemiological and experimental data highlighted the thyroid-disrupting activity of bisphenol A (BPA). Although pivotal to identify the mechanisms of toxicity, direct low-dose BPA effects on thyrocytes have not been assessed. Here, we report the results of microarray experiments revealing that the transcriptome reacts dynamically to low-dose BPA exposure, adapting the changes in gene expression to the exposure duration. The response involves many genes, enriching specific pathways and biological functions mainly cell death/proliferation or DNA repair. Their expression is only slightly altered but, since they enrich specific pathways, this results in major effects as shown here for transcripts involved in the DNA repair pathway. Indeed, even though no phenotypic changes are induced by the treatment, we show that the exposure to BPA impairs the cell response to further stressors. We experimentally verify that prolonged exposure to low doses of BPA results in a delayed response to UV-C-induced DNA damage, due to impairment of p21-Tp53 axis, with the BPA-treated cells more prone to cell death and DNA damage accumulation. The present findings shed light on a possible mechanism by which BPA, not able to directly cause genetic damage at environmental dose, may exert an indirect genotoxic activity. PMID:26982218

  4. Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordgren, Kendra K.S., E-mail: knordgre@d.umn.edu; Wallace, Kendall B., E-mail: kwallace@d.umn.edu

    Doxorubicin (DOX) is a widely prescribed treatment for a broad scope of cancers, but clinical utility is limited by the cumulative, dose-dependent cardiomyopathy that occurs with repeated administration. DOX-induced cardiotoxicity is associated with the production of reactive oxygen species (ROS) and oxidation of lipids, DNA and proteins. A major cellular defense mechanism against such oxidative stress is activation of the Keap1/Nrf2-antioxidant response element (ARE) signaling pathway, which transcriptionally regulates expression of antioxidant genes such as Nqo1 and Gstp1. In the present study, we address the hypothesis that an initial event associated with DOX-induced oxidative stress is activation of the Keap1/Nrf2-dependentmore » expression of antioxidant genes and that this is regulated through drug-induced changes in redox status of the Keap1 protein. Incubation of H9c2 rat cardiac myoblasts with DOX resulted in a time- and dose-dependent decrease in non-protein sulfhydryl groups. Associated with this was a near 2-fold increase in Nrf2 protein content and enhanced transcription of several of the Nrf2-regulated down-stream genes, including Gstp1, Ugt1a1, and Nqo1; the expression of Nfe2l2 (Nrf2) itself was unaltered. Furthermore, both the redox status and the total amount of Keap1 protein were significantly decreased by DOX, with the loss of Keap1 being due to both inhibited gene expression and increased autophagic, but not proteasomal, degradation. These findings identify the Keap1/Nrf2 pathway as a potentially important initial response to acute DOX-induced oxidative injury, with the primary regulatory events being the oxidation and autophagic degradation of the redox sensor Keap1 protein. - Highlights: • DOX caused a ∼2-fold increase in Nrf2 protein content. • DOX enhanced transcription of several Nrf2-regulated down-stream genes. • Redox status and total amount of Keap1 protein were significantly decreased by DOX. • Loss of Keap1 protein was due to inhibited gene expression and increased autophagy. • Keap1/Nrf2 pathway is an important initial response to DOX-induced oxidative injury.« less

  5. Methyl salicylate differently affects benzenoid and terpenoid volatile emissions in Betula pendula.

    PubMed

    Liu, Bin; Kaurilind, Eve; Jiang, Yifan; Niinemets, Ülo

    2018-06-20

    Methyl salicylate (MeSA) is a long-distance signal transduction chemical that plays an important role in plant responses to abiotic stress and herbivore and pathogen attacks. However, it is unclear how photosynthesis and elicitation of plant volatile organic compounds (VOC) from different metabolic pathways respond to the dose of MeSA. We applied different MeSA concentrations (0-50 mM) to study how exogenous MeSA alters VOC profiles of silver birch (Betula pendula Roth) leaves from application through recovery (0.5-23 h). Methyl salicylate application significantly reduced net assimilation rate in 10 mM and 20 mM MeSA-treated plants. No significant effects of MeSA were observed on the stomatal conductance at any MeSA concentration. Methyl salicylate elicited emissions of benzenoids (BZ), monoterpenes (MT) and fatty acid derived compounds (LOX products). Emission rates of BZ were positively, but emission rates of MT were negatively correlated with MeSA concentration. Total emission of LOX products was not influenced by MeSA concentration. Emission rate of MT was negatively correlated with BZ and the share of MT in the total emission blend decreased and the share of BZ increased with increasing MeSA concentration. Although the share of LOX products was similar across MeSA treatments, some LOX products responded differently to MeSA concentration, ultimately resulting in unique VOC blends. Overall, this study demonstrates inverse responses of MT and BZ to different MeSA doses such that plant defense mechanisms induced by lower MeSA doses mainly lead to enhanced MT synthesis, whereas greater MeSA doses trigger BZ-related defense mechanisms. Our results will contribute to improving the understanding of birch defenses induced upon regular herbivore attacks and pathogen infections in boreal forests.

  6. Traditional Chinese medicine suppresses left ventricular hypertrophy by targeting extracellular signal-regulated kinases signaling pathway in spontaneously hypertensive rats

    PubMed Central

    Xiong, Xingjiang; Yang, Xiaochen; Duan, Lian; Liu, Wei; Zhang, Yun; Liu, Yongmei; Wang, Pengqian; Li, Shengjie; Li, Xiaoke

    2017-01-01

    Chinese herbal medicine Bu-Shen-Jiang-Ya decoction (BSJYD) is reported to be beneficial for hypertension. Over expression of extracellular signal regulated kinases (ERK) pathway plays an important role in left ventricular hypertrophy (LVH). This study aimed to observe effects of BSJYD on LVH in spontaneously hypertensive rats (SHRs) and explore its possible mechanism on regulation of ERK pathway. Sixty 12-week-old SHRs were randomly allocated into 5 groups: BSJYD high dose group, middle dose group, low dose group, captopril group, and control group. Besides, a control group of Wistar-Kyoto rats was established. All rats were treated for 8 weeks. Systolic blood pressure (SBP), heart rate (HR), pathology, and left ventricular mass index (LVMI) were measured. Western blotting and Real-time PCR were used to assess the expressions of BDNF, Ras, ERK1/2, and c-fox levels. SBP and HR were significantly decreased compared with the control group and LVMI was markedly improved by BSJYD treatment in a dose-dependent manner. BSJYD inhibited the expression of BDNF, Ras, ERK1/2, and c-fox mRNA in LVH. In conclusion, BSJYD suppressed hypertension-induced cardiac hypertrophy by inhibiting the expression of ERK pathway. These changes in gene expression may be a possible mechanism by which BSJYD provides myocardial protection from hypertension. PMID:28225023

  7. Incorporation of additional radionuclides and the external exposure pathway into the BECAMP (Basic Environmental Compliance and Monitoring Program) radiological assessment model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Yook C.; Rodean, H.C.; Anspaugh, L.R.

    The Nevada Applied Ecology Group (NAEG) Model of transport and dose for transuranic radionuclides was modified and expanded for the analysis of radionuclides other than pure alpha-emitters. Doses from internal and external exposures were estimated for the inventories and soil distributions of the individual radionuclides quantified in Areas 2 and 4 of the Nevada Test Site (NTS). We found that the dose equivalents via inhalation to liver, lungs, bone marrow, and bone surface from the plutonium isotopes and /sup 241/Am, those via ingestion to bone marrow and bone surfaces from /sup 90/Sr, and those via ingestion to all the targetmore » organs from /sup 137/Cs were the highest from internal exposures. The effective dose equivalents from /sup 137/Cs, /sup 152/Eu, and /sup 154/Eu were the highest from the external exposures. The /sup 60/Co, /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu dose estimates for external exposures greatly exceeded those for internal exposures. The /sup 60/Co, /sup 90/Sr, and /sup 137/Cs dose equivalents from internal exposures were underestimated due to the adoption of some of the foodchain parameter values originally selected for /sup 239/Pu. Nonetheless, the ingestion pathway contributed significantly to the dose estimates for /sup 90/Sr and /sup 137/Cs, but contributed very much less than external exposures to the dose estimates for /sup 60/Co. Therefore, the use of more appropriate values would not alter the identification of important radionuclides, pathways, target organs, and exposure modes in this analysis. 19 refs., 13 figs., 12 tabs.« less

  8. Overexpression of the Anthocyanidin Synthase Gene in Strawberry Enhances Antioxidant Capacity and Cytotoxic Effects on Human Hepatic Cancer Cells.

    PubMed

    Giampieri, Francesca; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Mazzoni, Luca; Capocasa, Franco; Sabbadini, Silvia; Alvarez-Suarez, Josè M; Afrin, Sadia; Rosati, Carlo; Pandolfini, Tiziana; Molesini, Barbara; Sánchez-Sevilla, José F; Amaya, Iraida; Mezzetti, Bruno; Battino, Maurizio

    2018-01-24

    Food fortification through the increase and/or modulation of bioactive compounds has become a major goal for preventing several diseases, including cancer. Here, strawberry lines of cv. Calypso transformed with a construct containing an anthocyanidin synthase (ANS) gene were produced to study the effects on anthocyanin biosynthesis, metabolism, and transcriptome. Three strawberry ANS transgenic lines (ANS L5, ANS L15, and ANS L18) were analyzed for phytochemical composition and total antioxidant capacity (TAC), and their fruit extracts were assessed for cytotoxic effects on hepatocellular carcinoma. ANS L18 fruits had the highest levels of total phenolics and flavonoids, while those of ANS L15 had the highest anthocyanin concentration; TAC positively correlated with total polyphenol content. Fruit transcriptome was also specifically affected in the polyphenol biosynthesis and in other related metabolic pathways. Fruit extracts of all lines exerted cytotoxic effects in a dose/time-dependent manner, increasing cellular apoptosis and free radical levels and impairing mitochondrial functionality.

  9. Approaches for characterizing threshold dose-response relationships for DNA-damage pathways involved in carcinogenicity in vivo and micronuclei formation in vitro.

    PubMed

    Clewell, Rebecca A; Andersen, Melvin E

    2016-05-01

    Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Melatonin in autism spectrum disorders.

    PubMed

    Rossignol, Daniel A; Frye, Richard E

    2014-01-01

    Melatonin is an endogenous neurohormone produced predominantly in the pineal gland. Recent studies have implicated abnormalities in melatonin physiology and the circadian rhythm in individuals with autism spectrum disorders (ASD). These physiological abnormalities include lower nighttime melatonin or melatonin metabolite concentrations in ASD compared to controls. These abnormalities in melatonin concentrations may be directly attributed to variations in melatonin pathway physiology as both functional and genetic variations in this pathway have been reported in children with ASD. Four studies have observed a correlation between abnormal melatonin concentrations and the severity of autistic behaviors. Twenty clinical studies have reported improvements in sleep parameters with exogenous melatonin supplementation in ASD, including longer sleep duration, less nighttime awakenings and quicker sleep onset. A recent meta-analysis of five randomized, double-blind, placebo-controlled crossover trials examining exogenous melatonin supplementation in ASD reported significant improvements with large effect sizes in total sleep duration and sleep onset latency compared to both baseline and placebo. Six studies reported that the nighttime administration of exogenous melatonin was associated with better daytime behaviors. Four studies reported improvements with exogenous melatonin supplementation when other sleep medications had previously failed. Adverse effects of melatonin were minimal to none in the twenty treatment studies. These studies indicate that the administration of exogenous melatonin for abnormal sleep parameters in ASD is evidence-based. Further studies examining optimal effective dosing and timing of dosing are warranted.

  11. Identification of potential target genes and related regulatory transcription factors in spontaneous hairline fracture induced by hypervitaminosis A.

    PubMed

    Peng, Chuangang; Yang, Qi; Wei, Bo; Liu, Yong; Li, Yuxiang; Gu, Dawei; Yin, Guochao; Wang, Bo; Xu, Dehui; Zhang, Xuebing; Kong, Daliang

    2017-07-01

    The aim was to research the molecular changes of bone cells induced by excessive dose of vitamin A, and analyze molecular mechanism underlying spontaneous fracture. The gene expression profile of GSE29859, including 4 cortical bone marrow samples with excessive doses of Vitamin A and 4 control cortical bone marrow samples, was obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DGEs) between cortical bone marrow samples and control samples were screened out and pathway enrichment analysis was undertaken. Based on the MSigDB database, the potential regulatory transcription factors (TFs) were identified. A total of 373 DEGs including 342 up- and 31 down-regulated genes were identified. These DEGs were significantly enriched in pathways of protein processing in endoplasmic reticulum, ubiquitin mediated proteolysis and glycerophospholipid metabolism. Finally, the most significant regulatory TFs were obtained, including E2F Transcription Factor 1 (E2F1), GA Binding Protein Transcription Factor (GABP), Nuclear Factor, Erythroid 2-Like 2 (NRF2) and ELK1, Member of ETS Oncogene Family (ELK1). Key TFs including E2F1, GABP, NRF2 and ELK1 and their targets genes such as Ube2d3, Uba1, Phb2 and Tomm22 may play potential key roles in spontaneous fracture induced by hypervitaminosis A. The pathways of protein processing in endoplasmic reticulum, ubiquitin mediated proteolysis and glycerophospholipid metabolism may be key mechanisms involved in spontaneous fracture induced by hypervitaminosis A. Our findings will provide new insights for the target selection in clinical application to prevent spontaneous fracture induced by hypervitaminosis A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization of LY3023414, a Novel PI3K/mTOR Dual Inhibitor Eliciting Transient Target Modulation to Impede Tumor Growth.

    PubMed

    Smith, Michele C; Mader, Mary M; Cook, James A; Iversen, Philip; Ajamie, Rose; Perkins, Everett; Bloem, Laura; Yip, Yvonne Y; Barda, David A; Waid, Philip P; Zeckner, Douglas J; Young, Debra A; Sanchez-Felix, Manuel; Donoho, Gregory P; Wacheck, Volker

    2016-10-01

    The PI3K/AKT/mTOR pathway is among the most frequently altered pathways in cancer cell growth and survival. LY3023414 is a complex fused imidazoquinolinone with high solubility across a wide pH range designed to inhibit class I PI3K isoforms and mTOR kinase. Here, we describe the in vitro and in vivo activity of LY3023414. LY3023414 was highly soluble at pH 2-7. In biochemical testing against approximately 266 kinases, LY3023414 potently and selectively inhibited class I PI3K isoforms, mTORC1/2, and DNA-PK at low nanomolar concentrations. In vitro, inhibition of PI3K/AKT/mTOR signaling by LY3023414 caused G 1 cell-cycle arrest and resulted in broad antiproliferative activity in cancer cell panel screens. In vivo, LY3023414 demonstrated high bioavailability and dose-dependent dephosphorylation of PI3K/AKT/mTOR pathway downstream substrates such as AKT, S6K, S6RP, and 4E-BP1 for 4 to 6 hours, reflecting the drug's half-life of 2 hours. Of note, equivalent total daily doses of LY3023414 given either once daily or twice daily inhibited tumor growth to similar extents in multiple xenograft models, indicating that intermittent target inhibition is sufficient for antitumor activity. In combination with standard-of-care drugs, LY3023414 demonstrated additive antitumor activity. The novel, orally bioavailable PI3K/mTOR inhibitor LY3023414 is highly soluble and exhibits potent in vivo efficacy via intermittent target inhibition. It is currently being evaluated in phase I and II trials for the treatment of human malignancies. Mol Cancer Ther; 15(10); 2344-56. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Relative importance of different exposure routes of heavy metals for humans living near a municipal solid waste incinerator.

    PubMed

    Li, Tong; Wan, Yi; Ben, Yujie; Fan, Senrong; Hu, Jianying

    2017-07-01

    The potential health effects of toxic chemicals (e.g. heavy metals) emitted by municipal solid waste incinerators (MSWIs) are of great concern to local residents, however there have been few studies on the contributions of different exposure pathways and their subsequent effects on the body burden of residents living near MSWIs. In this study, multiple exposure routes of heavy metals including Pb, Cr, Cd and Mn were assessed by investigating the metals in foods (such as vegetables, crops, meats and fruits etc.), drinking water, ambient air and soil collected surrounding an MSWI in Shenzhen, south China. Vegetable ingestion played the most important role in the total average daily dose of Pb and Cr, and cereals were the key exposure routes for Mn and Cd. Compound-specific contaminations were observed in the investigated areas, with Pb and Cr present in the surrounding environment, having accumulated to relatively high levels in the local vegetables, and the intake of contaminated vegetable foods greatly influencing the body burden of Pb and Cr. Consistently, significantly high blood concentrations of Pb and Cr were detected in the local residents compared to a referenced population, and a lack of significant differences was found for Cd and Mn. The results possibly suggested that emission of MSWI influenced the external exposure doses of the major pathways of Pb and Cr in this study, and resulted in the different body burden of metals in humans living near a MSWI. MSWI-local food-humans is an important exposure pathway for residents living near MSWI, and thus should not be neglected in developing future strategies and policies to prevent the high risks suffered by residents living near MSWIs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. SHYCD induces APE1/Ref-1 subcellular localization to regulate the p53-apoptosis signaling pathway in the prevention and treatment of acute on chronic liver failure

    PubMed Central

    Diao, Jianxin; Li, Haiye; Huang, Wei; Ma, Wenxiao; Dai, Huan; Liu, Yawei; Wang, Ming; Hua, He Yu; Ou, Jinying; Sun, Xiaomin; Sun, Xuegang; Yang, Yungao

    2017-01-01

    Background & Aims: San huang yin chi decoction(SHYCD) is derived from the yin chen hao decoction, a well-known and canonical Chinese medicine formula from the “Treatise on Febrile Diseases”. Over the past decade, SHYCD has been used to treat and prevent the liver cirrhosis and liver failure. In the present study, we investigated the effects of SHYCD for acute on chronic liver failure(ACLF) and explored its potential mechanism. an ACLF rat model, which induced by carbon tetrachloride (CCl4) combined with D-galactosamine (D-GalN) and lipopolysaccharide(LPS), was used and confirmed by B-ultrasound analysis. Rats were randomly divided into control group, model group, SHYCD-H group, SHYCD-M group, SHYCD-L group, AGNHW group. Compared with the ACLF model group, High, medium, and low doses of SHYCD reduced ALT, AST, TBIL, NH3, IL-1β, IL-6, and TNFα expression levels in the serum, Shorten PT and INR time,and increased Fbg content in the whole blood, increased survival rate of the rats, improved liver pathological changes. APE1 / Ref-1 was mainly expressed in the nucleus, but the nucleus and cytoplasm were co-expressed after hepatocyte injury. SHYCD significantly downregulated APE1/Ref-1 expression in the cytoplasm. Increased APE1/Ref-1, Bcl-2, reduced p53, caspase-3, Bax, and Cyt-c in the total protein. Base on the results, we conclused that High, medium, and low doses of SHYCD could be applied in prevention and treatment of ACLF, and dose-dependent. The possible mechanism is to promote the APE1 / Ref-1 from the cytoplasm to the nuclear transfer, regulation of p53 apoptosis signal pathway prevention and treatment of ACLF. PMID:29156683

  15. Effects of mutant human Ki-ras{sup G12C} gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.

    2008-08-15

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras{sup G12C} allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 {mu}g/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras{sup G12C} allele in the lung, and resulted in themore » development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 {mu}g/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 {mu}g/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 {mu}g/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras{sup G12C} expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models.« less

  16. Hypolipidemic activity and mechanisms of the total phenylpropanoid glycosides from Ligustrum robustum (Roxb.) Blume by AMPK-SREBP-1c pathway in hamsters fed a high-fat diet.

    PubMed

    Yang, Runmei; Chu, Xinxin; Sun, Le; Kang, Zhuoying; Ji, Min; Yu, Ying; Liu, Ying; He, Zhendan; Gao, Nannan

    2018-04-01

    The aim of this study was to evaluate the hypolipidemic effect and mechanisms of total phenylpropanoid glycosides extracted from Ligustrum robustum (Roxb.) Blume (LRTPG) in hamsters fed a high-fat diet and to discover bioactive components in HepG2 cell model induced by oleic acid. LRTPG of high (1.2 g/kg), medium (0.6 g/kg), and low (0.3 g/kg) doses was administrated daily for 21 consecutive days in hamsters. We found that in hamsters fed a high-fat diet, LRTPG effectively reduced the concentrations of plasma triglycerides (TG), free fatty acid, total cholesterol, low-density lipoprotein cholesterol, and hepatic TG and total cholesterol. And the compounds acteoside, ligupurpuroside A, ligupurpuroside C, and ligupurpuroside D significantly inhibited lipid accumulation in HepG2 cell at the concentration of 50 μmol/L. Mechanism research demonstrated that LRTPG increased the levels of phospho-AMP-activated protein kinase and phospho-sterol regulatory element binding protein-1c in liver, further to suppress the downstream lipogenic genes as stearoyl-CoA desaturase 1, glycerol-3-phosphate acyltransferase, 1-acylglycerol-3-phosphate O-acyltransferase 2, and diacylglycerol acyltransferase 2. In addition, LRTPG increased the hydrolysis of circulating TG by up-regulating lipoprotein lipase activities. These results indicate that LRTPG prevents hyperlipidemia via activation of hepatic AMP-activated protein kinase-sterol regulatory element binding protein-1c pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  17. DRUGS System Improving the Effects of Clinical Pathways: A Systematic Study.

    PubMed

    Wang, Shan; Zhu, Xiaohe; Zhao, Xian; Lu, Yang; Yang, Zhifu; Qian, Xiaoliang; Li, Weiwei; Ma, Lixiazi; Guo, Huning; Wang, Jingwen; Wen, Aidong

    2016-03-01

    The aim of the study is to assess the feasibility of Drugs Rational Usage Guideline System (DRUGS)-supported clinical pathway (CP) for breast carcinoma, cataract, inguinal hernia and 2-diabetes mellitus whether the application of such a system could improve work efficiency, medical safety, and decrease hospital cost. Four kinds of diseases which included 1773 cases (where 901 cases using paper-based clinical pathways and 872 cases using DRUGS-supported clinical pathways) were selected and their demographic and clinical data were collected. The evaluation criteria were length of stay, preoperative length of stay, hospital cost, antibiotics prescribed during hospitalization, unscheduled surgery, complications and prognosis. The median total LOS was 1 to 3 days shorter in the DRUGS-supported CP group as compared to the Paper-based CP group for all types (p < 0.05). Totel hospital cost decreased significantly in the DRUGS-supported CP group than that in Paper-based CP group. About antibiotics prescribed during hospitalization, there were no statistically differences in the time of initial dose of antibiotic and the duration of administration except the choice of antibiotic categories. The proportion of DRUGS-supported clinical pathway conditions where a broad-spectrum antibiotic was prescribed decreased from 63.6 to 34.5 % (p < 0.01) in the Paper-based group. While after the intervention, the differences were statistically not significant in unscheduled surgery, complications and prognosis. In this study, DRUGS-supported clinical pathway for breast carcinoma, cataract, inguinal hernia, 2-diabetes mellitus was smoothly shifted from a paper-based to an electronic system, and confer benefits at the hospital level.

  18. Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis

    PubMed Central

    Gardell, Alison M.; Yang, Jun; Sacchi, Romina; Fangue, Nann A.; Hammock, Bruce D.; Kültz, Dietmar

    2013-01-01

    SUMMARY This study aimed to determine the regulation of the de novo myo-inositol biosynthetic (MIB) pathway in Mozambique tilapia (Oreochromis mossambicus) brain following acute (25 ppt) and chronic (30, 60 and 90 ppt) salinity acclimations. The MIB pathway plays an important role in accumulating the compatible osmolyte, myo-inositol, in cells in response to hyperosmotic challenge and consists of two enzymes, myo-inositol phosphate synthase and inositol monophosphatase. In tilapia brain, MIB enzyme transcriptional regulation was found to robustly increase in a time (acute acclimation) or dose (chronic acclimation) dependent manner. Blood plasma osmolality and Na+ and Cl− concentrations were also measured and significantly increased in response to both acute and chronic salinity challenges. Interestingly, highly significant positive correlations were found between MIB enzyme mRNA and blood plasma osmolality in both acute and chronic salinity acclimations. Additionally, a mass spectrometry assay was established and used to quantify total myo-inositol concentration in tilapia brain, which closely mirrored the hyperosmotic MIB pathway induction. Thus, myo-inositol is a major compatible osmolyte that is accumulated in brain cells when exposed to acute and chronic hyperosmotic challenge. These data show that the MIB pathway is highly induced in response to environmental salinity challenge in tilapia brain and that this induction is likely prompted by increases in blood plasma osmolality. Because the MIB pathway uses glucose-6-phosphate as a substrate and large amounts of myo-inositol are being synthesized, our data also illustrate that the MIB pathway likely contributes to the high energetic demand posed by salinity challenge. PMID:24072790

  19. Effect of Chemical Mutagens and Carcinogens on Gene Expression Profiles in Human TK6 Cells

    PubMed Central

    Godderis, Lode; Thomas, Reuben; Hubbard, Alan E.; Tabish, Ali M.; Hoet, Peter; Zhang, Luoping; Smith, Martyn T.; Veulemans, Hendrik; McHale, Cliona M.

    2012-01-01

    Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes), we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose–response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti-) apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control. PMID:22723965

  20. Editor's Highlight: Application of Gene Set Enrichment Analysis for Identification of Chemically Induced, Biologically Relevant Transcriptomic Networks and Potential Utilization in Human Health Risk Assessment.

    PubMed

    Dean, Jeffry L; Zhao, Q Jay; Lambert, Jason C; Hawkins, Belinda S; Thomas, Russell S; Wesselkamper, Scott C

    2017-05-01

    The rate of new chemical development in commerce combined with a paucity of toxicity data for legacy chemicals presents a unique challenge for human health risk assessment. There is a clear need to develop new technologies and incorporate novel data streams to more efficiently inform derivation of toxicity values. One avenue of exploitation lies in the field of transcriptomics and the application of gene expression analysis to characterize biological responses to chemical exposures. In this context, gene set enrichment analysis (GSEA) was employed to evaluate tissue-specific, dose-response gene expression data generated following exposure to multiple chemicals for various durations. Patterns of transcriptional enrichment were evident across time and with increasing dose, and coordinated enrichment plausibly linked to the etiology of the biological responses was observed. GSEA was able to capture both transient and sustained transcriptional enrichment events facilitating differentiation between adaptive versus longer term molecular responses. When combined with benchmark dose (BMD) modeling of gene expression data from key drivers of biological enrichment, GSEA facilitated characterization of dose ranges required for enrichment of biologically relevant molecular signaling pathways, and promoted comparison of the activation dose ranges required for individual pathways. Median transcriptional BMD values were calculated for the most sensitive enriched pathway as well as the overall median BMD value for key gene members of significantly enriched pathways, and both were observed to be good estimates of the most sensitive apical endpoint BMD value. Together, these efforts support the application of GSEA to qualitative and quantitative human health risk assessment. Published by Oxford University Press on behalf of the Society of Toxicology 2017. This work is written by US Government employees and is in the public domain in the US.

  1. Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease.

    PubMed

    Black, Kevin J; Koller, Jonathan M; Campbell, Meghan C; Gusnard, Debra A; Bandak, Stephen I

    2010-12-01

    Adenosine A(2a) receptor antagonists reduce symptom severity in Parkinson disease (PD) and animal models. Rodent studies support the hypothesis that A(2a) antagonists produce this benefit by reducing the inhibitory output of the basal ganglia indirect pathway. One way to test this hypothesis in humans is to quantify regional pharmacodynamic responses with cerebral blood flow (CBF) imaging. That approach has also been proposed as a tool to accelerate pharmaceutical dose finding, but has not yet been applied in humans to drugs in development. We successfully addressed both these aims with a perfusion magnetic resonance imaging (MRI) study of the novel adenosine A(2a) antagonist SYN115. During a randomized, double-blind, placebo-controlled, crossover study in 21 PD patients on levodopa but no agonists, we acquired pulsed arterial spin labeling MRI at the end of each treatment period. SYN115 produced a highly significant decrease in thalamic CBF, consistent with reduced pallidothalamic inhibition via the indirect pathway. Similar decreases occurred in cortical regions whose activity decreases with increased alertness and externally focused attention, consistent with decreased self-reported sleepiness on SYN115. Remarkably, we also derived quantitative pharmacodynamic parameters from the CBF responses to SYN115. These results suggested that the doses tested were on the low end of the effective dose range, consistent with clinical data reported separately. We conclude that (1) SYN115 enters the brain and exerts dose-dependent regional effects, (2) the most prominent of these effects is consistent with deactivation of the indirect pathway as predicted by preclinical studies; and (3) perfusion MRI can provide rapid, quantitative, clinically relevant dose-finding information for pharmaceutical development.

  2. Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease

    PubMed Central

    Black, Kevin J.; Koller, Jonathan M.; Campbell, Meghan C.; Gusnard, Debra A.; Bandak, Stephen I.

    2010-01-01

    Adenosine A2a receptor antagonists reduce symptom severity in Parkinson disease (PD) and animal models. Rodent studies support the hypothesis that A2a antagonists produce this benefit by reducing the inhibitory output of the basal ganglia indirect pathway. One way to test this hypothesis in humans is to quantify regional pharmacodynamic responses with cerebral blood flow (CBF) imaging. That approach has also been proposed as a tool to accelerate pharmaceutical dose-finding, but has not yet been applied in humans to drugs in development. We successfully addressed both these aims with a perfusion MRI study of the novel adenosine A2a antagonist SYN115. During a randomized, double-blind, placebo-controlled, crossover study in 21 PD patients on levodopa but no agonists, we acquired pulsed arterial spin labeling MRI at the end of each treatment period. SYN115 produced a highly significant decrease in thalamic CBF, consistent with reduced pallidothalamic inhibition via the indirect pathway. Similar decreases occurred in cortical regions whose activity decreases with increased alertness and externally-focused attention, consistent with decreased self-reported sleepiness on SYN115. Remarkably, we also derived quantitative pharmacodynamic parameters from the CBF responses to SYN115. These results suggested that the doses tested were on the low end of the effective dose range, consistent with clinical data reported separately. We conclude that (1) SYN115 enters the brain and exerts dose-dependent regional effects, (2) the most prominent of these effects is consistent with deactivation of the indirect pathway as predicted by preclinical studies; and (3) perfusion MRI can provide rapid, quantitative, clinically relevant dose-finding information for pharmaceutical development. PMID:21123574

  3. NONMONOTONIC DOSE RESPONSE CURVES (NMDRCS) ARE COMMON AFTER ESTROGEN OR ANDROGEN SIGNALING PATHWAY DISRUPTION. FACT OR FALDERAL?

    EPA Science Inventory

    ABSTRACT BODY: The shape of the dose response curve in the low dose region has been debated since the 1940s, originally focusing on linear no threshold (LNT) versus threshold responses for cancer and noncancer effects. Recently, it has been claimed that endocrine disrupters (EDCs...

  4. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose.

    PubMed

    Lever, Melissa; Lim, Hong-Sheng; Kruger, Philipp; Nguyen, John; Trendel, Nicola; Abu-Shah, Enas; Maini, Philip Kumar; van der Merwe, Philip Anton; Dushek, Omer

    2016-10-25

    T cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map peptide MHC (pMHC) affinity onto T-cell responses have produced inconsistent patterns of responses, preventing formulations of canonical models of T-cell signaling. Here, a systematic analysis of T-cell responses to 1 million-fold variations in both pMHC affinity and dose produced bell-shaped dose-response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signaling incorporating kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop (KPL-IFF) that reproduces these observations. We show that the KPL-IFF model correctly predicts the T-cell response to antigen copresentation. Our work offers a general approach for studying cellular signaling that does not require full details of biochemical pathways.

  5. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network.

    PubMed

    Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2018-06-01

    Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.

  6. Endocrine disruption of parr-smolt transformation and seawater tolerance of Atlantic salmon by 4-nonylphenol and 17β-estradiol

    USGS Publications Warehouse

    McCormick, Stephen D.; O'Dea, Michael F.; Moeckel, Amy M.; Lerner, Darrren T.; Bjornsson, Bjorn Thrandur

    2005-01-01

    Sex steroids are known to interfere with the parr-smolt transformation of anadromous salmonids, and environmental estrogens such as nonylphenol have recently been implicated in reduced returns of Atlantic salmon in the wild. To determine the endocrine pathways by which estrogenic compounds affect smolt development and seawater tolerance, groups of juvenile Atlantic salmon were injected with one of five doses (0.5, 2, 10, 40 or 150 μg g−1) of branched 4-nonylphenol (NP), 2 μg g−1 of 17β-estradiol (E2), or vehicle, during the parr-smolt transformation in April, and the treatment was repeated 4, 8, and 11 days after the first injection. Plasma was obtained for biochemical analysis 7 and 14 days after initiation of treatment. After 14 days of treatment, additional fish from each treatment group were exposed to seawater for 24 h to assess salinity tolerance. The E2 treatment and the highest NP dose resulted in lower salinity tolerance and decreased plasma insulin-like growth factor I (IGF-I) levels, along with elevated levels of plasma vitellogenin and total calcium. Plasma growth hormone levels were elevated at intermediate NP doses only, and not affected by E2. After 7 days, plasma thyroxine (T4) levels decreased in a strong, dose-dependent manner in response to nonylphenol, but after 14 days, this suppressive effect of T4 occurred at the highest NP dose only. Similarly, E2 decreased plasma T4 levels at 7, but not 14 days. Plasma 3,3′,5-triodo-l-thyronine was reduced by E2 and the highest NP dose after 7 and 14 days of treatment. Plasmacortisol levels were not affected by any of the treatments. The results indicate that the parr-smolt transformation and salinity tolerance can be compromised by exposure to estrogenic compounds. Suppression of plasma IGF-I levels is a likely endocrine pathway for the effects of estrogenic compounds on hypo-osmoregulatory capacity, and the detrimental effects of E2 and NP on thyroid hormone levels are also likely to compromise the normal parr-smolt transformation of Atlantic salmon.

  7. Atypical radiation response of SCID cells

    NASA Astrophysics Data System (ADS)

    Chawapun, Nisa

    Murine SCID (severe combined immune deficiency) cells are well known for their defect in DNA double-strand break repair and in variable(diversity)joining [V(D)J] recombination due to a mutation in a catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). As a consequence, scid cells are hypersensitive to ionizing radiation. The present study showed that asynchronous populations of scid cells were about two-fold more sensitive than Balb/c with respect to cell killing and the defect in scid cells was corrected by complementation with human chromosome 8. Analysis of the survival of synchronized populations as a function of the cell cycle revealed that while scid cells were hypersensitive in all cell cycle phases compared to wild-type cells, this hypersensitivity is even more pronounced in G1 phase. The hypersensitivity reduced as the cells progressed into S phase suggested that homologous recombination repair plays a role. The results imply that there are at least two pathways for the repair of DSB DNA, consistent with a model previously proposed by others. The scid cells were also more sensitive to UVC light (254 nm) killing as compared to wild type cells by clonogenic survival. Using a host cell reactivation (HCR) assay to study the nucleotide excision repair (NER) which is the major repair pathway for UV-photoproducts, the results showed that NER in scid cells was not as efficient as CB- 17. This suggests that DNA-PK is involved in NER as well as non-homologous end-joining (NHEJ) DSB repair which is responsible for ionizing radiation sensitivity in scid cells. Repair in scid cells was not totally absent as shown by low dose rate sparing of cell killing after exposure to 137Cs γ-rays at dose rate of 0.6 cGy/h, 1.36 cGy/h, 6 cGy/h as compared to high dose rate at 171 cGy/min, although this phenomenon could be explained partly by proliferation. However, for radiation induced transformation, no significant dose rate effect was seen. A plot of transformation versus survival revealed that the transformation induction was inversely proportional to radiation dose rate. Lower dose rates were more effective in inducing transformation in scid cells. This finding could lead to the influence of cancer risk estimation in an irradiated population consisting of a subpopulation(s) with genetic disorders predisposing those individuals to cancer.

  8. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  9. Imaging of Ras/Raf activity induced by low energy laser irradiation in living cell using FRET

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chen, Tong-Sheng; Xing, Da

    2005-01-01

    Ras/Raf signaling pathway is an important signaling pathway that governs cell proliferation, differential and apoptosis. Low-energy laser irradiation (LELI) was found to modulate various processes. Generally, cell proliferation is induced by low doses LELI and apoptosis is induced by high doses LELI. Mechanism of biological effect of LELI has not been clear. Recently, activation of MEK (mitogen-activated protein kinase) and ERK (extracellular-signal-regulated kinase), which are downstream protein kinases of Ras/Raf, are observed during LELI-induced cell proliferation by immunoprecipitation and western blot analysis. RaichuRas reporter consisting of fusions of H-ras, the Ras-binding domain of Raf (RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP). Therefore, intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) was transfected with the plasmid (pRaichuRas) and then treated with LELI at dose of 60J/cm2. Effect of LELI on Ras/Raf in physiological condition of living cells was observed by fluorescence resonance energy transfer (FRET) technique during lung adenocarcinoma cell apoptosis induced by high dose (60J/cm2) LELI. Experimental results showed that after high dose LELI treatment, the binding of Ras and Raf decreases obviously, Ras/Raf signaling pathway deregulates and cell apoptosis occurs.

  10. Dose-dependent difference of nuclear receptors involved in murine liver hypertrophy by piperonyl butoxide.

    PubMed

    Sakamoto, Yohei; Yoshida, Midori; Tamura, Kei; Takahashi, Miwa; Kodama, Yukio; Inoue, Kaoru

    2015-12-01

    Nuclear receptors play important roles in chemically induced liver hypertrophy in rodents. To clarify the involvement of constitutive androstane receptor (CAR) and other nuclear receptors in mouse liver hypertrophy induced by different doses of piperonyl butoxide (PBO), wild-type and CAR-knockout mice were administered PBO (200, 1,000, or 5,000 ppm) in the basal diet for 1 week. Increased liver weight and diffuse hepatocellular hypertrophy were observed at 5,000 ppm for both genotypes, accompanied by increased Cyp3a11 mRNA and CYP3A protein expression, suggesting that CAR-independent pathway, possibly pregnane X receptor (PXR), plays a major role in the induction of hypertrophy. Moreover, wild-type mice at 5,000 ppm showed enhanced hepatocellular hypertrophy and strong positive staining for CYP2B in the centrilobular area, suggesting the localized contribution of CAR. At 1,000 ppm, only wild-type mice showed liver weight increase and centrilobular hepatocellular hypertrophy concurrent with elevated Cyp2b10 mRNA expression and strong CYP2B staining, indicating that CAR was essential at 1,000 ppm. We concluded that high-dose PBO induced hypertrophy via CAR and another pathway, while lower dose of PBO induced a pathway mediated predominantly by CAR. The dose-responsiveness on liver hypertrophy is important for understanding the involvement of nuclear receptors.

  11. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - Implication in modification of radiation damage

    PubMed Central

    Anuranjani; Bala, Madhu

    2014-01-01

    Whole body exposure to low linear energy transfer (LET) ionizing radiations (IRs) damages vital intracellular bio-molecules leading to multiple cellular and tissue injuries as well as pathophysiologies such as inflammation, immunosuppression etc. Nearly 70% of damage is caused indirectly by radiolysis of intracellular water leading to formation of reactive oxygen species (ROS) and free radicals and producing a state of oxidative stress. The damage is also caused by direct ionization of biomolecules. The type of radiation injuries is dependent on the absorbed radiation dose. Sub-lethal IR dose produces more of DNA base damages, whereas higher doses produce more DNA single strand break (SSBs), and double strand breaks (DSBs). The Nrf2-ARE pathway is an important oxidative stress regulating pathway. The DNA DSBs repair regulated by MRN complex, immunomodulation and inflammation regulated by HMGB1 and various types of cytokines are some of the key pathways which interact with each other in a complex manner and modify the radiation response. Because the majority of radiation damage is via oxidative stress, it is essential to gain in depth understanding of the mechanisms of Nrf2-ARE pathway and understand its interactions with MRN complex, HMGB1 and cytokines to increase our understanding on the radiation responses. Such information is of tremendous help in development of medical radiation countermeasures, radioprotective drugs and therapeutics. Till date no approved and safe countermeasure is available for human use. This study reviews the Nrf2-ARE pathway and its crosstalk with MRN-complex, HMGB1 and cytokines (TNF-a, IL-6, IFN-? etc.). An attempt is also made to review the modification of some of these pathways in presence of selected antioxidant radioprotective compounds or herbal extracts. PMID:25009785

  12. Modelling of Radiological Health Risks from Gold Mine Tailings in Wonderfonteinspruit Catchment Area, South Africa.

    PubMed

    Mathuthu, Manny; Kamunda, Caspah; Madhuku, Morgan

    2016-06-07

    Mining is one of the major causes of elevation of naturally-occurring radionuclide material (NORM) concentrations on the Earth's surface. The aim of this study was to evaluate the human risk associated with exposure to NORMs in soils from mine tailings around a gold mine. A broad-energy germanium detector was used to measure activity concentrations of these NORMs in 66 soil samples (56 from five mine tailings and 10 from the control area). The RESidual RADioactivity (RESRAD) OFFSITE modeling program (version 3.1) was then used to estimate the radiation doses and the cancer morbidity risk of uranium-238 ((238)U), thorium-232 ((232)Th), and potassium-40 ((40)K) for a hypothetical resident scenario. According to RESRAD prediction, the maximum total effective dose equivalent (TEDE) during 100 years was found to be 0.0315 mSv/year at year 30, while the maximum total excess cancer morbidity risk for all the pathways was 3.04 × 10(-5) at year 15. The US Environmental Protection Agency considers acceptable for regulatory purposes a cancer risk in the range of 10(-6) to 10(-4). Therefore, results obtained from RESRAD OFFSITE code has shown that the health risk from gold mine tailings is within acceptable levels according to international standards.

  13. Modelling of Radiological Health Risks from Gold Mine Tailings in Wonderfonteinspruit Catchment Area, South Africa

    PubMed Central

    Mathuthu, Manny; Kamunda, Caspah; Madhuku, Morgan

    2016-01-01

    Mining is one of the major causes of elevation of naturally-occurring radionuclide material (NORM) concentrations on the Earth’s surface. The aim of this study was to evaluate the human risk associated with exposure to NORMs in soils from mine tailings around a gold mine. A broad-energy germanium detector was used to measure activity concentrations of these NORMs in 66 soil samples (56 from five mine tailings and 10 from the control area). The RESidual RADioactivity (RESRAD) OFFSITE modeling program (version 3.1) was then used to estimate the radiation doses and the cancer morbidity risk of uranium-238 (238U), thorium-232 (232Th), and potassium-40 (40K) for a hypothetical resident scenario. According to RESRAD prediction, the maximum total effective dose equivalent (TEDE) during 100 years was found to be 0.0315 mSv/year at year 30, while the maximum total excess cancer morbidity risk for all the pathways was 3.04 × 10−5 at year 15. The US Environmental Protection Agency considers acceptable for regulatory purposes a cancer risk in the range of 10−6 to 10−4. Therefore, results obtained from RESRAD OFFSITE code has shown that the health risk from gold mine tailings is within acceptable levels according to international standards. PMID:27338424

  14. A phase 1 study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of TAK-063, a selective PDE10A inhibitor.

    PubMed

    Tsai, Max; Chrones, Lambros; Xie, Jinhui; Gevorkyan, Hakop; Macek, Thomas A

    2016-10-01

    Schizophrenia is a complex neuropsychiatric disorder characterized, in part, by impaired dopamine signaling. TAK-063 is a selective inhibitor of phosphodiesterase 10A, a key regulator of intracellular signaling pathways that is highly expressed in the striatum. Safety, tolerability, and pharmacokinetics of TAK-063 were evaluated in a phase 1 study. Healthy Japanese and non-Japanese volunteers were randomized into dose cohorts of 3, 10, 30, 100, 300, and 1000 mg. Each fasting volunteer randomly received a single dose of TAK-063 or placebo. Individuals from the 100-mg cohort also received a post-washout, 100-mg dose under fed conditions. A total of 84 volunteers enrolled (14 per cohort). The most common drug-related adverse events (AEs) were somnolence (33.3 %), orthostatic tachycardia (19.7 %), and orthostatic hypotension (9.1 %). The three severe AEs recorded occurred at the highest doses: orthostatic hypotension (n = 1; 300 mg) and somnolence (n = 2; 1000 mg). There were no deaths, serious AEs, or discontinuations due to AEs. TAK-063 exposure increased in a dose-dependent manner. Median T max was reached 3 to 4 h postdose. Fed conditions slowed absorption (T max =  6 h) and increased oral bioavailability. Renal elimination was negligible. Safety and pharmacokinetic parameters were similar between Japanese and non-Japanese subjects. Impairments in cognitive function consistent with the effects of other sedative or hypnotic agents were detected using a validated, computerized cognition battery, CNS Vital Signs. TAK-063 was safe and well tolerated at doses up to 1000 mg and demonstrated a pharmacokinetic profile supporting once-daily dosing. Further evaluation of the clinical safety and efficacy of TAK-063 is warranted.

  15. Lung fibrosis in Sprague-Dawley rats, induced by exposure to manual metal arc-stainless steel welding fumes.

    PubMed

    Yu, I J; Song, K S; Chang, H K; Han, J H; Kim, K J; Chung, Y H; Maeng, S H; Park, S H; Han, K T; Chung, K H; Chung, H K

    2001-09-01

    To investigate the disease process of pneumoconiosis induced by welding-fume exposure, a lung fibrosis model was established by building a stainless steel arc welding fume generation system and exposing male Sprague-Dawley rats for 90 days. The rats were exposed to welding fumes with concentrations of 57-67 mg/m3 (low dose) and 105-118 mg/m3 (high dose) total suspended particulates for 2 h per day in an inhalation chamber for 90 days. The concentrations of the main metals, Fe, Mn, Cr, and Ni, were measured in the welding fumes, plus the gaseous compounds, including nitrous gases and ozone, were monitored. During the exposure period, the animals were sacrificed after the initial 2-h exposure and after 15, 30, 60, and 90 days. Histopathological examinations were conducted on the animals' upper respiratory tract, including the nasal pathway and conducting airway, plus the gas exchange region, including the alveolar ducts, alveolar sacs, and alveoli. When compared to the control group, the lung weights did not increase significantly in the low-dose group, yet in the high-dose group there was a significant increase from day 15 to day 90. The histopathological examination combined with fibrosis-specific staining (Masson's trichrome) indicated that the lungs in the low-dose group did not exhibit any progressive fibrotic changes. Whereas, the lungs in the high-dose group exhibited early delicate fibrosis from day 15, which progressed into the perivascular and peribronchiolar regions by day 30. Interstitial fibrosis appeared at day 60 and became prominent by day 90, along with the additional appearance of pleural fibrosis. Accordingly, it would appear that a significant dose of welding-fume exposure was required to induce lung fibrosis.

  16. Mechanism of the Synergistic Effect of Amiodarone and Fluconazole in Candida albicans▿ †

    PubMed Central

    Gamarra, Soledad; Rocha, Elousa Maria F.; Zhang, Yong-Qiang; Park, Steven; Rao, Rajini; Perlin, David S.

    2010-01-01

    The antiarrhythmic drug amiodarone has been found to have fungicidal activity. In Saccharomyces cerevisiae, its antifungal activity is mediated by calcium overload stress, which leads to a rapid nuclear accumulation of the calcineurin-regulated transcription factor CRZ1. In addition, low doses of amiodarone have been reported to be synergistic with fluconazole in fluconazole-resistant Candida albicans. To establish its mechanism of toxicity in C. albicans, we used expression profiling of key pathway genes to examine cellular responses to amiodarone alone and in combination with fluconazole. Gene expression profiling of 59 genes was done in five C. albicans strains (three fluconazole-susceptible strains and two fluconazole-resistant strains) after amiodarone and/or fluconazole exposure. Of the 59 genes, 27 analyzed showed a significant change (>2-fold) in expression levels after amiodarone exposure. The up- or downregulated genes included genes involved in Ca2+ homeostasis, cell wall synthesis, vacuolar/lysosomal transport, diverse pathway regulation, stress response, and pseudohyphal morphogenesis. As expected, fluconazole induces an increase in ergosterol pathway genes expression levels. The combination treatment significantly dampened the transcriptional response to either drug, suggesting that synergism was due to an inhibition of compensatory response pathways. This dampening resulted in a decrease in total ergosterol levels and decreased pseudohyphal formation, a finding consistent with decreased virulence in a murine candidiasis model. PMID:20194694

  17. Novel Measure of Opioid Dose and Costs of Care for Diabetes Mellitus: Opioid Dose and Health Care Costs.

    PubMed

    Gautam, Santosh; Franzini, Luisa; Mikhail, Osama I; Chan, Wenyaw; Turner, Barbara J

    2016-03-01

    Diabetes mellitus (DM) has well known costly complications but we hypothesized that costs of care for chronic pain treated with opioid analgesic (OA) medications would also be substantial. In a statewide, privately insured cohort of 29,033 adults aged 18 to 64 years with DM and noncancer pain who filled OA prescription(s) from 2008 to 2012, our outcomes were costs for specific health care services and total costs per 6-month intervals after the first filled OA prescription. Average daily OA dose (4 categories) and total dose (quartiles) in morphine-equivalent milligrams were calculated per 6-month interval after the first OA prescription and combined into a novel OA dose measure. Associations of OA measures with costs of care (n = 126,854 6-month intervals) were examined using generalized estimating equations adjusted for clinical conditions, psychotherapeutic drugs, and DM treatment. Incremental costs for each type of health care service and total cost of care increased progressively with average daily and total OA dose versus no OAs. The combined OA measure identified the highest incremental total costs per 6-month interval that were increased by $8,389 for 50- to 99-mg average daily dose plus >900 mg total dose and, by $9,181 and $9,958 respectively, for ≥100 mg average daily dose plus 301- to 900-mg or >900 mg total dose. In this statewide DM cohort, total health care costs per 6-month interval increased progressively with higher average daily OA dose and with total OA dose but the greatest increases of >$8,000 were distinguished by combinations of higher average daily and total OA doses. The higher costs of care for opioid-treated patients appeared for all types of services and likely reflects multiple factors including morbidity from the underlying cause of pain, care and complications related to opioid use, and poorer control of diabetes as found in other studies. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Mainul, E-mail: mainul.husain@hc-sc.gc.ca; Saber, Anne T., E-mail: ats@nrcwe.dk; Guo, Charles, E-mail: charles.guo@hc-sc.gc.ca

    2013-06-15

    We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO{sub 2}). Female C57BL/6 mice were exposed to rutile nano-TiO{sub 2} via single intratracheal instillations of 18, 54, and 162 μg/mouse. Mice were sampled 1, 3, and 28 days post-exposure. The deposition of nano-TiO{sub 2} in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO{sub 2} in the lungs upmore » to 28 days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (± 1.3 fold; p < 0.1). Several inflammatory mediators changed in a dose- and time-dependent manner at both the mRNA and protein level. Although no influx of neutrophils was detected at the low dose, changes in the expression of several genes and proteins associated with inflammation were observed. Resolving inflammation at the medium dose, and lack of neutrophil influx in the lung fluid at the low dose, were associated with down-regulation of genes involved in ion homeostasis and muscle regulation. Our gene expression results imply that retention of nano-TiO{sub 2} in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities. - Highlights: • Pulmonary effects following exposure to low doses of nano-TiO{sub 2} were examined. • Particle retention in lungs was assessed using nanoscale hyperspectral microscopy. • Particles persisted up to 28 days in lungs in all dose groups. • Inflammation was the pathway affected in the high dose group at all time points. • Ion homeostasis and muscle activity pathways were affected in the low dose group.« less

  19. Radiation protocols determine acute graft-versus-host disease incidence after allogeneic bone marrow transplantation in murine models.

    PubMed

    Schwarte, Sebastian; Bremer, Michael; Fruehauf, Joerg; Sorge, Yanina; Skubich, Susanne; Hoffmann, Matthias W

    2007-09-01

    Effects of radiation sources used for total body irradiation (TBI) on Graft-versus-Host Disease (GvHD) induction were examined. In a T cell receptor (TCR) transgenic mouse model, single fraction TBI was performed with different radiation devices ((60)Cobalt; (137)Cesium; 6 MV linear accelerator), dose rates (0.85; 1.5; 2.9; 5 Gy/min) and total doses before allogeneic bone marrow transplantation (BMT). Recipients were observed for 120 days. Different tissues were examined histologically. Acute GvHD was induced by a dose rate of 0.85 Gy/min ((60)Cobalt) and a total dose of 9 Gy and injection of 5 x 10(5) lymph node cells plus 5 x 10(6) bone marrow cells. Similar results were obtained using 6 MV linear accelerator- (linac-) photons with a dose rate of 1.5 Gy/min and 0.85 Gy/min, a total dose of 9.5 Gy and injection of same cell numbers. TBI with (137)Cesium (dose rate: 2.5 Gy/min) did not lead reproducibly to lethal acute GvHD. Experimental TBI in murine models may induce different immunological responses, depending on total energy, total single dose and dose rate. GvHD might also be induced by TBI with low dose rates.

  20. Assessment of cell death mechanisms triggered by 177Lu-anti-CD20 in lymphoma cells.

    PubMed

    Azorín-Vega, E; Rojas-Calderón, E; Martínez-Ventura, B; Ramos-Bernal, J; Serrano-Espinoza, L; Jiménez-Mancilla, N; Ordaz-Rosado, D; Ferro-Flores, G

    2018-08-01

    The aim of this research was to evaluate the cell cycle redistribution and activation of early and late apoptotic pathways in lymphoma cells after treatment with 177 Lu-anti-CD20. Experimental and computer models were used to calculate the radiation absorbed dose to cancer cell nuclei. The computer model (Monte Carlo, PENELOPE) consisted of twenty spheres representing cells with an inner sphere (cell nucleus) embedded in culture media. Radiation emissions of the radiopharmaceutical located in cell membranes and in culture media were considered for nuclei dose calculations. Flow cytometric analyses demonstrated that doses as low as 4.8Gy are enough to induce cell cycle arrest and activate late apoptotic pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  2. Real-time colour pictorial radiation monitoring during coronary angiography: effect on patient peak skin and total dose during coronary angiography.

    PubMed

    Wilson, Sharon M; Prasan, Ananth M; Virdi, Amy; Lassere, Marissa; Ison, Glenn; Ramsay, David R; Weaver, James C

    2016-10-10

    The aim of this study was to evaluate whether a real-time (RT) colour pictorial radiation dose monitoring system reduces patient skin and total radiation dose during coronary angiography and intervention. Patient demographics, procedural variables and radiation parameters were recorded before and after institution of the RT skin dose recording system. Peak skin dose as well as traditionally available measures of procedural radiation dose were compared. A total of 1,077 consecutive patients underwent coronary angiography, of whom 460 also had PCI. Institution of the RT skin dose recording system resulted in a 22% reduction in peak skin dose after accounting for confounding variables. Radiation dose reduction was most pronounced in those having PCI but was also seen over a range of subgroups including those with prior coronary artery bypass surgery, high BMI, and with radial arterial access. This was associated with a significant reduction in the number of patients placed at risk of skin damage. Similar reductions in parameters reflective of total radiation dose were also demonstrated after institution of RT radiation monitoring. Institution of an RT skin dose recording reduced patient peak skin and total radiation dose during coronary angiography and intervention. Consideration should be given to widespread adoption of this technology.

  3. Chronic Low Dose Chlorine Exposure Aggravates Allergic Inflammation and Airway Hyperresponsiveness and Activates Inflammasome Pathway

    PubMed Central

    Kim, Sae-Hoon; Park, Da-Eun; Lee, Hyun-Seung; Kang, Hye-Ryun; Cho, Sang-Heon

    2014-01-01

    Background Epidemiologic clinical studies suggested that chronic exposure to chlorine products is associated with development of asthma and aggravation of asthmatic symptoms. However, its underlying mechanism was not clearly understood. Studies were undertaken to define the effects and mechanisms of chronic low-dose chlorine exposure in the pathogenesis of airway inflammation and airway hyperresponsiveness (AHR). Methods Six week-old female BALB/c mice were sensitized and challenged with OVA in the presence and absence of chronic low dose chlorine exposure of naturally vaporized gas of 5% sodium hypochlorite solution. Airway inflammation and AHR were evaluated by bronchoalveolar lavage (BAL) cell recovery and non-invasive phlethysmography, respectively. Real-time qPCR, Western blot assay, and ELISA were used to evaluate the mRNA and protein expressions of cytokines and other inflammatory mediators. Human A549 and murine epithelial (A549 and MLE12) and macrophage (AMJ2-C11) cells were used to define the responses to low dose chlorine exposure in vitro. Results Chronic low dose chlorine exposure significantly augmented airway inflammation and AHR in OVA-sensitized and challenged mice. The expression of Th2 cytokines IL-4 and IL-5 and proinflammatory cytokine IL-1β and IL-33 were significantly increased in OVA/Cl group compared with OVA group. The chlorine exposure also activates the major molecules associated with inflammasome pathway in the macrophages with increased expression of epithelial alarmins IL-33 and TSLP in vitro. Conclusion Chronic low dose exposure of chlorine aggravates allergic Th2 inflammation and AHR potentially through activation of inflammasome danger signaling pathways. PMID:25202911

  4. Live-cell imaging.

    PubMed

    Cole, Richard

    2014-01-01

    It would be hard to argue that live-cell imaging has not changed our view of biology. The past 10 years have seen an explosion of interest in imaging cellular processes, down to the molecular level. There are now many advanced techniques being applied to live cell imaging. However, cellular health is often under appreciated. For many researchers, if the cell at the end of the experiment has not gone into apoptosis or is blebbed beyond recognition, than all is well. This is simply incorrect. There are many factors that need to be considered when performing live-cell imaging in order to maintain cellular health such as: imaging modality, media, temperature, humidity, PH, osmolality, and photon dose. The wavelength of illuminating light, and the total photon dose that the cells are exposed to, comprise two of the most important and controllable parameters of live-cell imaging. The lowest photon dose that achieves a measureable metric for the experimental question should be used, not the dose that produces cover photo quality images. This is paramount to ensure that the cellular processes being investigated are in their in vitro state and not shifted to an alternate pathway due to environmental stress. The timing of the mitosis is an ideal canary in the gold mine, in that any stress induced from the imaging will result in the increased length of mitosis, thus providing a control model for the current imagining conditions.

  5. Live-cell imaging

    PubMed Central

    Cole, Richard

    2014-01-01

    It would be hard to argue that live-cell imaging has not changed our view of biology. The past 10 years have seen an explosion of interest in imaging cellular processes, down to the molecular level. There are now many advanced techniques being applied to live cell imaging. However, cellular health is often under appreciated. For many researchers, if the cell at the end of the experiment has not gone into apoptosis or is blebbed beyond recognition, than all is well. This is simply incorrect. There are many factors that need to be considered when performing live-cell imaging in order to maintain cellular health such as: imaging modality, media, temperature, humidity, PH, osmolality, and photon dose. The wavelength of illuminating light, and the total photon dose that the cells are exposed to, comprise two of the most important and controllable parameters of live-cell imaging. The lowest photon dose that achieves a measureable metric for the experimental question should be used, not the dose that produces cover photo quality images. This is paramount to ensure that the cellular processes being investigated are in their in vitro state and not shifted to an alternate pathway due to environmental stress. The timing of the mitosis is an ideal canary in the gold mine, in that any stress induced from the imaging will result in the increased length of mitosis, thus providing a control model for the current imagining conditions. PMID:25482523

  6. Gamma irradiation induces acetylcholine-evoked, endothelium-independent relaxation and activatesk-channels of isolated pulmonary artery of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, Veronique; Gautier, Mathieu; Boissiere, Julien

    2004-12-01

    Purpose: To test the effects of irradiation (R*) on the pulmonary artery (PA). Methods and materials: Isolated PA rings were submitted to gamma irradiation (cesium, 8 Gy/min{sup -1}) at doses of 20 Gy-140 Gy. Rings were placed in an organ chamber, contracted with serotonin (10{sup -4} M 5-hydroxytryptamine [5-HT]), then exposed to acetylcholine (ACh) in incremental concentrations. Smooth muscle cell (SMC) membrane potential was measured with microelectrodes. Results: A high dose of irradiation (60 Gy) increased 5HT contraction by 20%, whereas lower (20 Gy) doses slightly decreased it compared with control. In the absence of the endothelium, 5-HT precontracted ringsmore » exposed to 20 Gy irradiation developed a dose-dependent relaxation induced by acetylcholine (EI-ACh) with maximal relaxation of 60 {+-} 17% (n = 13). This was totally blocked by L-NAME (10{sup -4} M), partly by 7-nitro indazole; it was abolished by hypoxia and iberiotoxin, decreased by tetra-ethyl-ammonium, and not affected by free radical scavengers. In irradiated rings, hypoxia induced a slight contraction which was never observed in control rings. No differences in SMC membrane potential were observed between irradiated and nonirradiated PA rings. Conclusion: Irradiation mediates endothelium independent relaxation by a mechanism involving the nitric oxide pathway and K-channels.« less

  7. Hanford Site Composite Analysis Technical Approach Description: Groundwater Pathway Dose Calculation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgans, D. L.; Lindberg, S. L.

    The purpose of this technical approach document (TAD) is to document the assumptions, equations, and methods used to perform the groundwater pathway radiological dose calculations for the revised Hanford Site Composite Analysis (CA). DOE M 435.1-1, states, “The composite analysis results shall be used for planning, radiation protection activities, and future use commitments to minimize the likelihood that current low-level waste disposal activities will result in the need for future corrective or remedial actions to adequately protect the public and the environment.”

  8. Moderate DNA damage promotes metabolic flux into PPP via PKM2 Y-105 phosphorylation: a feature that favours cancer cells.

    PubMed

    Kumar, Bhupender; Bamezai, Rameshwar N K

    2015-08-01

    Pyruvate kinase M2, an important metabolic enzyme, promotes aerobic glycolysis (Warburg effect) to facilitate cancer cell proliferation. Unravelling the status of this important glycolytic pathway enzyme under sub-lethal doses of etoposide, a commonly used anti-proliferative genotoxic drug to induce mild/moderate DNA damage in HeLa cells as a model system and discern its effect on: PKM2 expression, phosphorylation, dimer: tetramer ratio, activity and associated effects, was pertinent. Protein expression and phosphorylation of PKM2 from HeLa cells was estimated using Western blotting. Same protein lysate was also used to estimate total pyruvate kinase activity and the total dimer: tetramer content evaluated using glycerol gradient ultra-centrifugation. Intracellular PEP was estimated manually using standard curve; while NADPH was assessed by NADPH estimation kit. Unpaired t test and two-way-ANOVA was used for statistical analysis. A relative decrease in PKM2 expression and a subsequent dose and time dependent increase in Y105-phosphorylation were observed. A concomitant increase in PKM2 dimer content and Y105-phosphorylation responsible for reduced PKM2 activity promoted PEP accumulation and NADPH production, representing increased metabolic flux into PPP, a feature that favours cancer cells. It was apparent that the sub-lethal doses of etoposide induced inadequate damage to DNA in cancer cells in culture promoted pro-survival conditions due to Y105-phosphorylation of PKM2, its stable dimerization and inactivation, a unique association not known earlier, indicating what might happen in tumour revivals or recurrences.

  9. Low-dose γ-radiation inhibits IL-1β-induced dedifferentiation and inflammation of articular chondrocytes via blockage of catenin signaling

    PubMed Central

    Hong, Eun-Hee; Song, Jie-Young; Lee, Su-Jae; Park, In-Chul; Um, Hong-Duck; Park, Jong Kuk; Lee, Kee-Ho; Nam, Seon Young; Hwang, Sang-Gu

    2014-01-01

    Although low-dose radiation (LDR) regulates a wide range of biological processes, limited information is available on the effects of LDR on the chondrocyte phenotype. Here, we found that LDR, at doses of 0.5–2 centiGray (cGy), inhibited interleukin (IL)-1β-induced chondrocyte destruction without causing side effects, such as cell death and senescence. IL-1β treatment induced an increase in the expression of α-, β-, and γ-catenin proteins in chondrocytes via Akt signaling, thereby promoting dedifferentiation through catenin-dependent suppression of Sox-9 transcription factor expression and induction of inflammation through activation of the NF-κB pathway. Notably, LDR blocked cartilage disorders by inhibiting IL-1β-induced catenin signaling and subsequent catenin-dependent suppression of the Sox-9 pathway and activation of the NF-κB pathway, without directly altering catenin expression. LDR also inhibited chondrocyte destruction through the catenin pathway induced by epidermal growth factor, phorbol 12-myristate 13-acetate, and retinoic acid. Collectively, these results identify the molecular mechanisms by which LDR suppresses pathophysiological processes and establish LDR as a potentially valuable therapeutic tool for patients with cytokine- or soluble factors-mediated cartilage disorders. PMID:24604706

  10. Effectiveness of clinical pathways for total knee and total hip arthroplasty: literature review.

    PubMed

    Kim, Stephen; Losina, Elena; Solomon, Daniel H; Wright, John; Katz, Jeffrey N

    2003-01-01

    Although many hospitals have implemented clinical pathways to standardize the process of care, the effectiveness of clinical pathways for total hip and knee arthroplasties has not been reviewed critically. We searched for articles comparing outcomes of total hip or knee arthroplasty for patients who were treated using clinical pathways as opposed to patients treated without these pathways. Eleven studies met criteria for inclusion. Ten used historical controls, and 1 was a randomized trial. The studies had important methodological limitations. In general, the articles showed that patients treated using pathways experienced shorter hospital stays and lower costs, with comparable clinical outcomes as compared with patients treated without clinical pathways. We concluded that clinical pathways appear successful in reducing costs and length of stay in the acute care hospital, with no compromise in patient outcomes. However, interpretation of these studies is complicated by substantial methodological limitations, particularly the use of historical controls and failure to account for length of stay in rehabilitation facilities. Copyright 2003, Elsevier Science (USA). All rights reserved.

  11. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  12. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  13. Determinants of cell-to-cell variability in protein kinase signaling.

    PubMed

    Jeschke, Matthias; Baumgärtner, Stephan; Legewie, Stefan

    2013-01-01

    Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  14. The role of dose rate in radiation cancer risk: evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation

    PubMed Central

    Brooks, Antone L.; Hoel, David G.; Preston, R. Julian

    2016-01-01

    Abstract Purpose: This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). Conclusions: Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2–30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP (2007) and BEIR VII (NRC/NAS 2006). PMID:27266588

  15. INTEGRATED HUMAN EXPOSURE SOURCE-TO-DOSE MODELING

    EPA Science Inventory

    The NERL human exposure research program is designed to provide a sound, scientifically-based approach to understanding how people are actually exposed to pollutants and the factors and pathways influencing exposure and dose. This research project serves to integrate and incorpo...

  16. BMDExpress Data Viewer: A Visualization Tool to Analyze BMDExpress Datasets

    EPA Science Inventory

    Regulatory agencies increasingly apply benchmark dose (BMD) modeling to determine points of departure in human risk assessments. BMDExpress applies BMD modeling to transcriptomics datasets and groups genes to biological processes and pathways for rapid assessment of doses at whic...

  17. VS-5584 as a PI3K/mTOR inhibitor enhances apoptotic effects of subtoxic dose arsenic trioxide via inhibition of NF-κB activity in B cell precursor-acute lymphoblastic leukemia.

    PubMed

    Toosi, Bahareh; Zaker, Farhad; Alikarami, Fatemeh; Kazemi, Ahmad; Teremmahi Ardestanii, Majid

    2018-06-01

    Activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway as a survival signaling cascade is a prominent feature of cancers such as acute lymphoblastic leukemia (ALL). In patients with B-cell precursor-ALL (BCP-ALL), the high activity of the pathway correlates with the weak response to anti-leukemic drugs and relapse as a result of downstream prosurvival pathway activation, such as nuclear factor kappa B (NF-κB). Recent targeted therapy (PI3K/mTOR inhibitors) in combination with a multifunctional conventional chemotherapeutic drug may be useful for treatment of BCP-ALL patients. In the current study, the potential of a subtoxic dose (0.2 μM) of arsenic trioxide (ATO) in combination with VS-5584 (a highly potent PI3K/mTOR dual inhibitor) was tested for blocking of the PI3K/Akt/mTOR pathway, inhibition of NF-κB activation and induction of apoptosis and cell-cycle arrest. The data indicate that VS-5584 as a PI3K/mTOR inhibitor inhibited cell proliferation and induced apoptosis in NALM-6 cells by means of NF-κB transcriptional activity suppression. This apoptotic process markedly increased 72 h after administration of the subtoxic dose of ATO. We also showed that concomitant treatment of VS-5584 and the subtoxic dose of ATO significantly inhibited phosphorylation of NF-κB inhibitor alpha (IκBα) and S6 ribosomal protein (S6) as the downstream proteins of the PI3K/Akt/mTOR pathway. Combining VS-5584 and a subtoxic dose of ATO also resulted in down expression of the NF-κB target genes involved in cell proliferation and survival. These results indicate that incorporation of VS-5584/ATO combination into BCP-ALL therapeutic protocols can improve treatment and the survival of patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Maximum dose rate is a determinant of hypothyroidism after 131I therapy of Graves' disease but the total thyroid absorbed dose is not.

    PubMed

    Krohn, Thomas; Hänscheid, Heribert; Müller, Berthold; Behrendt, Florian F; Heinzel, Alexander; Mottaghy, Felix M; Verburg, Frederik A

    2014-11-01

    The determinants of successful (131)I therapy of Graves' disease (GD) are unclear. To relate dosimetry parameters to outcome of therapy to identify significant determinants eu- and/or hypothyroidism after (131)I therapy in patients with GD. A retrospective study in which 206 Patients with GD treated in University Hospital between November 1999 and January 2011. All received (131)I therapy aiming at a total absorbed dose to the thyroid of 250 Gy based on pre-therapeutic dosimetry. Post-therapy dosimetric thyroid measurements were performed twice daily until discharge. From these measurements, thyroid (131)I half-life, the total thyroid absorbed dose, and the maximum dose rate after (131)I administration were calculated. In all, 48.5% of patients were hypothyroid and 28.6% of patients were euthyroid after (131)I therapy. In univariate analysis, nonhyperthyroid and hyperthyroid patients only differed by sex. A lower thyroid mass, a higher activity per gram thyroid tissue, a shorter effective thyroidal (131)I half-life, and a higher maximum dose rate, but not the total thyroid absorbed dose, were significantly associated with hypothyroidism. In multivariate analysis, the maximum dose rate remained the only significant determinant of hypothyroidism (P < .001). Maximum dose rates of 2.2 Gy/h and higher were associated with a 100% hypothyroidism rate. Not the total thyroid absorbed dose, but the maximum dose rate is a determinant of successfully achieving hypothyroidism in Graves' disease. Dosimetric concepts aiming at a specific total thyroid absorbed dose will therefore require reconsideration if our data are confirmed prospectively.

  19. Preharvest Ultraviolet C Irradiation Increased the Level of Polyphenol Accumulation and Flavonoid Pathway Gene Expression in Strawberry Fruit.

    PubMed

    Xu, Yanqun; Charles, Marie Thérèse; Luo, Zisheng; Mimee, Benjamin; Veronneau, Pierre-Yves; Rolland, Daniel; Roussel, Dominique

    2017-11-22

    Preharvest ultraviolet C (UV-C) irradiation is an innovative approach for increasing the bioactive phytochemical content of strawberries to increase the disease resistance and nutritional value. This study investigated the changes in individual flavonoids in strawberry developed with three different cumulative doses of preharvest UV-C treatment (low, 9.6 kJ m -2 ; middle, 15 kJ m -2 ; and high , 29.4 kJ m -2 ). Significant accumulation (p < 0.05) of phenolics (25-75% increase), namely, cyanidin 3-glucoside, pelargonidin 3-glucoside/rutinoside, glucoside and glucuronide of quercetin and kaempferol, and ellagic acid, was found in the fruit subjected to low and middle supplemental doses of UV-C radiation. The expression of the flavonoid pathway structural genes, i.e., FaCHS1, FaCHI, FaFHT, FaDFR, FaFLS, and FaFGT, was upregulated in the low- and middle-dose groups, while the early stage genes were not affected by the high dose. FaMYB1 was also relatively enhanced in the low- and middle-dose groups, while FaASR was upregulated in only the low-dose group. Hormetic preharvest UV-C dose ranges for enhancing the polyphenol content of strawberries were established for the first time.

  20. Approaches to Children’s Exposure Assessment: Case Study with Diethylhexylphthalate (DEHP)

    PubMed Central

    Ginsberg, Gary; Ginsberg, Justine; Foos, Brenda

    2016-01-01

    Children’s exposure assessment is a key input into epidemiology studies, risk assessment and source apportionment. The goals of this article are to describe a methodology for children’s exposure assessment that can be used for these purposes and to apply the methodology to source apportionment for the case study chemical, diethylhexylphthalate (DEHP). A key feature is the comparison of total (aggregate) exposure calculated via a pathways approach to that derived from a biomonitoring approach. The 4-step methodology and its results for DEHP are: (1) Prioritization of life stages and exposure pathways, with pregnancy, breast-fed infants, and toddlers the focus of the case study and pathways selected that are relevant to these groups; (2) Estimation of pathway-specific exposures by life stage wherein diet was found to be the largest contributor for pregnant women, breast milk and mouthing behavior for the nursing infant and diet, house dust, and mouthing for toddlers; (3) Comparison of aggregate exposure by pathways vs biomonitoring-based approaches wherein good concordance was found for toddlers and pregnant women providing confidence in the exposure assessment; (4) Source apportionment in which DEHP presence in foods, children’s products, consumer products and the built environment are discussed with respect to early life mouthing, house dust and dietary exposure. A potential fifth step of the method involves the calculation of exposure doses for risk assessment which is described but outside the scope for the current case study. In summary, the methodology has been used to synthesize the available information to identify key sources of early life exposure to DEHP. PMID:27376320

  1. Hanford Environmental Dose Reconstruction Project Monthly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.

    1991-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, cultural and technical experts nominated by the regional Native American tribes, and an individualmore » representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. Project reports and references used in the reports are made available to the public in a public reading room. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.« less

  2. Peripheral NMDA Receptor/NO System Blockage Inhibits Itch Responses Induced by Chloroquine in Mice

    PubMed Central

    Haddadi, Nazgol-Sadat; Foroutan, Arash; Ostadhadi, Sattar; Azimi, Ehsan; Rahimi, Nastaran; Nateghpour, Mehdi; Lerner, Ethan A.; Dehpour, Ahmad Reza

    2017-01-01

    Intradermal administration of chloroquine (CQ) provokes scratching behavior in mice. Chloroquine-induced itch is histamine-independent and we have reported that the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is involved in CQ-induced scratching behavior in mice. Previous studies have demonstrated that activation of N-methyl-d-aspartate receptors (NMDARs) induces NO production. Here we show that NMDAR antagonists significantly decrease CQ-induced scratching in mice while a non-effective dose of an NMDAR agonist potentiates the scratching behavior provoked by sub-effective doses of CQ. In contrast, combined pre-treatment with sub-effective doses of an NMDAR antagonist, MK-801, and the NO synthase inhibitor, L-N-nitro arginine methyl ester (L-NAME), decreases CQ-induced scratching behavior. While intradermal administration of CQ significantly increases the concentration of intradermal nitrite, the end product of NO metabolism, effective doses of intraperitoneal and intradermal MK-801 significantly decrease intradermal nitrite levels. Likewise, administration of an effective dose of L-NAME significantly decreases CQ-induced nitrite production. We conclude that the NMDA/NO pathway in the skin modulates CQ-induced scratching behavior. PMID:28119997

  3. A crucial role of constitutive androstane receptor (CAR) in liver tumor development by imazalil in mice.

    PubMed

    Tamura, Kei; Inoue, Kaoru; Takahashi, Miwa; Matsuo, Saori; Kodama, Yukio; Yoshida, Midori

    2016-01-01

    To clarify the major pathway of liver tumor development induced by imazalil (IMA), an imidazole fungicide, male constitutive androstane receptor (CAR)-knockout (CARKO) and wild-type (WT) mice were treated with IMA at 500 ppm in the diet up to 27 weeks after initiation by diethylnitrosamine. After 27 weeks of treatment, neither altered foci nor adenomas were significantly increased in CARKO mice, whereas both eosinophilic altered foci and adenomas were increased in WT mice. After 4 or 13 weeks of IMA treatment, liver hypertrophy was observed at the tumor-inducible dose without differences among genotypes or durations. Analysis of hepatic drug metabolite enzymes, performed after administration of multiple doses during a 1-week period, indicated that pregnane X receptor might be involved in liver hypertrophy because IMA markedly elevated Cyp3a11 and Cyp2b10 expression levels in a dose-dependent manner in both genotypes. Our results demonstrated that the CAR pathway was the main mechanism of liver tumor development induced by IMA. The carcinogenic pathway was different from that of liver hypertrophy.

  4. Tennessee Valley region study: potential year 2000 radiological dose to population resulting from nuclear facility operations. [Includes glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A companion report, DOE/ET-0064/1, presents a geographic, cultural, and demographic profile of the Tennessee Valley Region study area. This report describes the calculations of radionuclide release and transport and of the resultant dose to the regional population, assuming a projected installed capacity of 220,000 MW in the year 2000, of which 144,000 MW would be nuclear. All elements of the fuel cycle were assumed to be in operation. The radiological dose was calculated as a one-year dose based on ingestion of 35 different food types as well as for nine non-food pathways, and was reported as dose to the totalmore » body and for six specific organs for each of four age groups (infant, child, teen, and adult). Results indicate that the average individual would receive an incremental dose of 7 x 10/sup -4/ millirems in the year 2000 from the operation of nuclear facilities within and adjacent to the region, five orders of magnitude smaller than the dose from naturally occurring radiation in the area. The major contributor to dose was found to be tritium, and the most significant pathways were immersion in air, inhalation of air, transpiration of tritium (absorption through the skin), and exposure radionuclide-containing soil. 60 references.« less

  5. Dexmedetomidine inhibits activation of the MAPK pathway and protects PC12 and NG108-15 cells from lidocaine-induced cytotoxicity at its maximum safe dose.

    PubMed

    Wang, Qiong; Tan, Yonghong; Zhang, Na; Xu, Yingyi; Wei, Wei; She, Yingjun; Bi, Xiaobao; Zhao, Baisong; Ruan, Xiangcai

    2017-07-01

    The developing brains of pediatric patients are highly vulnerable to anesthetic regimen (e.g., lidocaine), potentially causing neurological impairment. Recently, dexmedetomidine (DEX) has been used as an adjunct for sedation, and was shown to exert dose-dependent neuroprotective effects during brain injury. However, the maximum safe dose of DEX is unclear, and its protective effects against lidocaine-related neurotoxicity need to be confirmed. In this study, PC12 and NG108-15 cells were used to estimate safe, non-cytotoxic doses of DEX. We found that 100 and 60μM are the maximum safe dose of DEX for PC12 and NG108-15 cells, respectively, with no significant cytotoxicity. Lidocaine was found to remarkably inhibit cell vitality, but could be reversed by different doses of DEX, especially its maximum safe dose. Furthermore, the apoptosis induced by lidocaine was also assessed, and 100 and 60μM DEX showed optimal protective effects in PC12 and NG108-15 cells, respectively. Mechanistically, DEX activated the mitogen-activated protein kinase (MAPK) pathway, impaired caspase-3 expression, and enhanced anti-apoptotic factor Bcl-2 to resist lidocaine-induced apoptosis, indicating that the optimal dose of DEX alleviates lidocaine-induced cytotoxicity and should be considered in clinical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    PubMed Central

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  7. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Gene Profiling Characteristics of Radioadaptive Response in AG01522 Normal Human Fibroblasts

    PubMed Central

    Hou, Jue; Wang, Fan; Kong, Peizhong; Yu, Peter K. N.; Wang, Hongzhi; Han, Wei

    2015-01-01

    Radioadaptive response (RAR) in mammalian cells refers to the phenomenon where a low-dose ionizing irradiation alters the gene expression profiles, and protects the cells from the detrimental effects of a subsequent high dose exposure. Despite the completion of numerous experimental studies on RAR, the underlying mechanism has remained unclear. In this study, we aimed to have a comprehensive investigation on the RAR induced in the AG01522 human fibroblasts first exposed to 5 cGy (priming dose) and then followed by 2 Gy (challenge dose) of X-ray through comparisons to those cells that had only received a single 2 Gy dose. We studied how the priming dose affected the expression of gene transcripts, and to identify transcripts or pathways that were associated with the reduced chromosomal damages (in terms of the number of micronuclei) after application of the challenging dose. Through the mRNA and microRNA microarray analyses, the transcriptome alteration in AG01522 cells was examined, and the significantly altered genes were identified for different irradiation procedures using bioinformatics approaches. We observed that a low-dose X-ray exposure produced an alert, triggering and altering cellular responses to defend against subsequent high dose-induced damages, and accelerating the cell repair process. Moreover, the p53 signaling pathway was found to play critial roles in regulating DNA damage responses at the early stage after application of the challenging dose, particularly in the RAR group. Furthermore, microRNA analyses also revealed that cell communication and intercellular signaling transduction played important roles after low-dose irradiation. We conclude that RAR benefits from the alarm mechanisms triggered by a low-dose priming radation dose. PMID:25886619

  9. DOSE RECONSTRUCTION FROM URINARY BIOMARKERS

    EPA Science Inventory

    The use of biomarkers for human health risk assessment is attractive because they are an indicator of the dose that actually entered the body by all mechanisms. This is an important consideration given the need to include aggregate exposures from diet and other pathways for pes...

  10. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides withmore » 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.« less

  11. Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Morita, Akinori; Ninomiya, Yasuharu; Maruyama, Kouichi; Fujita, Kazuko; Hosoi, Yoshio; Nenoi, Mitsuru

    2013-01-01

    Previous in vitro and in vivo studies have shown that sodium orthovanadate (vanadate), an inorganic vanadium compound, could effectively suppress radiation-induced p53-mediated apoptosis via both transcription-dependent and transcription-independent pathways. As a potent radiation protector administered at a dose of 20 mg/kg body weight (20 mg/kg) prior to total body irradiation (TBI) by intra-peritoneal (ip) injection, it completely protected mice from hematopoietic syndrome and partially from gastrointestinal syndrome. In the present study, radiation mitigation effects from vanadate were investigated by ip injection of vanadate after TBI in mice. Results showed that a single administration of vanadate at a dose of 20 mg/kg markedly improved the 30-day survival rate and the peripheral blood hemogram, relieved bone marrow aplasia and decreased occurrence of the bone marrow micronucleated erythrocytes in the surviving animals. The dose reduction factor was 1.2 when a single dose of 20 mg/kg was administered 15 min after TBI in mice using the 30-day survival test as the endpoint. Results also showed that either doubling the vanadate dose (40 mg/kg) in a single administration or continuing the vanadate treatment (after a single administration at 20 mg/kg) from the following day at a dose of 5 mg/kg per day for 4 consecutive days further significantly improved the efficacy for rescuing bone marrow failure in the 30-day survival test. Taken together, these findings indicate that vanadate would be a potent mitigator suppressing the acute lethality (hematopoietic syndrome) and minimizing the detrimental effects (anhematopoiesis and delayed genotoxic effects) induced by TBI in mice. PMID:23349341

  12. Steady-State Serum T3 Concentrations for 48 Hours Following the Oral Administration of a Single Dose of 3,5,3'-Triiodothyronine Sulfate (T3S).

    PubMed

    Santini, Ferruccio; Giannetti, Monica; Ricco, Ilaria; Querci, Giorgia; Saponati, Giorgio; Bokor, Daniela; Rivolta, Giovanni; Bussi, Simona; Braverman, Lewis E; Vitti, Paolo; Pinchera, Aldo

    2014-07-01

    Sulfate conjugation of thyroid hormones is an alternate metabolic pathway that facilitates the biliary and urinary excretion of iodothyronines and enhances their deiodination rate, leading to the generation of inactive metabolites. A desulfating pathway reverses this process, and thyromimetic effects have been observed following the parenteral administration of 3,5,3'-triiodothyronine (T3) sulfate (T3S) in rats. The present study investigated whether T3S is absorbed after oral administration in humans and if it represents a source of T3. Twenty-eight hypothyroid patients (7 men and 21 women; mean age, 44 ± 11 years) who had a thyroidectomy for thyroid carcinoma were enrolled. Replacement thyroid hormone therapy was withdrawn (42 days for thyroxine, 14 days for T3) prior to 131I remnant ablation. A single oral dose of 20, 40, 80 (4 patients/group), or 160 μg (16 patients/group) of T3S was administered 3 days before the planned administration of 131I. Blood samples for serum T3S and total T3 (TT3) concentrations were obtained at various times up to 48 hours after T3S administration. At all T3S doses, serum T3S concentrations increased, reaching a peak at 2 to 4 hours and progressively returning to basal levels within 8 to 24 hours. The T3S maximum concentration (Cmax) and area under the 0- to 48-hour concentration-time curve (AUC0-48h) were directly and significantly related to the administered dose. An increase in serum TT3 concentration was observed (significant after 1 hour), and the concentration increased further at 2 and 4 hours and then remained steady up to 48 hours after T3S administration. There was a significant direct correlation between the TT3 AUC0-48h and the administered dose of T3S. No changes in serum free thyroxine (T4) concentrations during the entire study period were observed, whereas serum thyroid-stimulating hormone levels increased slightly at 48 hours, but this was not related to the dose of T3S. No adverse events were reported. (1) T3S is absorbed following oral administration in hypothyroid humans; (2) after a single oral dose, T3S is converted to T3 in a dose-dependent manner, resulting in steady-state serum T3 concentrations for 48 hours; (3) T3S may represent a new agent in combination with T4 in the therapy of hypothyroidism, if similar conversion of T3S to T3 can be demonstrated in euthyroid patients who are already taking T4.

  13. Relative contributions of four exposure pathways to influenza infection risk.

    PubMed

    Nicas, Mark; Jones, Rachael M

    2009-09-01

    The relative contribution of four influenza virus exposure pathways-(1) virus-contaminated hand contact with facial membranes, (2) inhalation of respirable cough particles, (3) inhalation of inspirable cough particles, and (4) spray of cough droplets onto facial membranes-must be quantified to determine the potential efficacy of nonpharmaceutical interventions of transmission. We used a mathematical model to estimate the relative contributions of the four pathways to infection risk in the context of a person attending a bed-ridden family member ill with influenza. Considering the uncertainties in the sparse human subject influenza dose-response data, we assumed alternative ratios of 3,200:1 and 1:1 for the infectivity of inhaled respirable virus to intranasally instilled virus. For the 3,200:1 ratio, pathways (1), (2), and (4) contribute substantially to influenza risk: at a virus saliva concentration of 10(6) mL(-1), pathways (1), (2), (3), and (4) contribute, respectively, 31%, 17%, 0.52%, and 52% of the infection risk. With increasing virus concentrations, pathway (2) increases in importance, while pathway (4) decreases in importance. In contrast, for the 1:1 infectivity ratio, pathway (1) is the most important overall: at a virus saliva concentration of 10(6) mL(-1), pathways (1), (2), (3), and (4) contribute, respectively, 93%, 0.037%, 3.3%, and 3.7% of the infection risk. With increasing virus concentrations, pathway (3) increases in importance, while pathway (4) decreases in importance. Given the sparse knowledge concerning influenza dose and infectivity via different exposure pathways, nonpharmaceutical interventions for influenza should simultaneously address potential exposure via hand contact to the face, inhalation, and droplet spray.

  14. Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure–Activity Relationships and Biopersistence in the Lung

    DOE PAGES

    Sun, Bingbing; Wang, Xiang; Liao, Yu-Pei; ...

    2016-08-02

    Contrary to the notion that the use of fumed silica in consumer products can “generally (be) regarded as safe” (GRAS), the high surface reactivity of pyrogenic silica differs from other forms of synthetic amorphous silica (SAS), including the capacity to induce membrane damage and acute proinflammatory changes in the murine lung. Additionally, the chain-like structure and reactive surface silanols also allow fumed silica to activate the NLRP3 inflammasome, leading to IL-1β production. This pathway is known to be associated with subchronic inflammation and profibrogenic effects in the lung by α-quartz and carbon nanotubes. Different from the latter materials, bolus dosemore » instillation of 21 mg/kg fumed silica did not induce sustained IL-1β production or subchronic pulmonary effects. In contrast, the NLRP3 inflammasome pathway was continuously activated by repetitive-dose administration of 3 × 7 mg/kg fumed silica, 1 week apart. We also found that while single-dose exposure failed to induce profibrotic effects in the lung, repetitive dosing can trigger increased collagen production, even at 3 × 3 mg/kg. The change between bolus and repetitive dosing was due to a change in lung clearance, with recurrent dosing leading to fumed silica biopersistence, sustained macrophage recruitment, and activation of the NLRP3 pathway. These subchronic proinflammatory effects disappeared when less surface-reactive titanium-doped fumed silica was used for recurrent administration. Finally, these data indicate that while fumed silica may be regarded as safe for some applications, we should reconsider the GRAS label during repetitive or chronic inhalation exposure conditions.« less

  15. Total body irradiation, toward optimal individual delivery: dose evaluation with metal oxide field effect transistors, thermoluminescence detectors, and a treatment planning system.

    PubMed

    Bloemen-van Gurp, Esther J; Mijnheer, Ben J; Verschueren, Tom A M; Lambin, Philippe

    2007-11-15

    To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.

  16. Comparison between in vivo dosimetry and barium contrast technique for prediction of rectal complications in high-dose-rate intracavitary radiotherapy in cervix cancer patients.

    PubMed

    Huh, Seung Jae; Lim, Do Hoon; Ahn, Yong Chan; Lee, Jeong Eun; Kang, Min Kyu; Shin, Seong Soo; Shin, Kyung Hwan; Kim, Bokyung; Park, Won; Han, Youngyih

    2003-03-01

    To investigate the correlation between late rectal complications and rectal dose in cervix cancer patients treated with high-dose-rate intracavitary radiotherapy (HDR ICR) and to analyze factors reducing rectal complications. A total of 136 patients with cervix cancer who were treated with external beam radiotherapy (EBRT) and HDR ICR from 1995 to 1999 were retrospectively analyzed. Radiotherapy (RT) consisted of EBRT plus HDR ICR. The median EBRT dose was 50.4 Gy, and midline block was done after 30-50 Gy of EBRT. A total of six fractions of HDR ICR with 4 Gy fraction size each were applied twice per week to the A point. The rectal dose was calculated at the rectal reference point using the barium contrast criteria. In vivo measurement of the rectal dose was performed with thermoluminescent dosimeter (TLD) during HDR ICR. The median follow-up period was 26 months (range 6-60 months). A total of 16 patients (12%) experienced rectal bleeding, which occurred 4-33 months (median 11 months) after the completion of RT. The calculated rectal doses did not differ in patients with rectal bleeding and those without, but the measured rectal doses were higher in affected patients. The differences of the measured ICR fractional rectal dose, ICR total rectal dose, and total rectal biologically equivalent dose (BED) were statistically significant. When the measured ICR total rectal dose exceeded 16 Gy, the ratio of the measured rectal dose to A point dose was > 70%; when the measured rectal BED exceeded 110 Gy(3), a high possibility of late rectal complications could be found. In vivo dosimetry using TLD during HDR ICR was a good predictor of late rectal complications. Hence, if data from in vivo dosimetry shows any possibility of rectal bleeding, efforts should be made to reduce the rectal dose.

  17. Pathways of metabolism of [1'-14C]-trans-anethole in the rat and mouse.

    PubMed

    Bounds, S V; Caldwell, J

    1996-07-01

    This study describes the metabolic fate of trans-4'-methoxyprop-[1-14C]enylbenzene, the natural flavor compound trans-anethole, in rats and mice given single doses of 250 mg/kg body weight. In both rats and mice, an essentially quantitative (> 95% of dose) recovery of 14C was obtained with the majority in the 0-24 hr urine. Separation and identification of 18 urinary anethole metabolites were achieved by radio-HPLC, chemical derivatization, and GC/ MS. Anethole undergoes three primary oxidation pathways-O-demethylation, omega-side chain oxidation, and side chain epoxidation-followed by a variety of secondary pathways of oxidation and hydration, the products of which are extensively conjugated with sulfate, glucuronic acid, glycine, and glutathione. A novel major metabolite has been characterized in the rat, apparently originating from conjugation of the epoxide with glutathione, namely S-[1-(4'-methoxyphenyl)-2-hydroxypropane]-N-acetylcysteine. These metabolites are discussed in terms of the pathways responsible for and the toxicological consequences of their formation.

  18. Transcriptomic profile of host response in mouse brain after exposure to plant toxin abrin.

    PubMed

    Bhaskar, A S Bala; Gupta, Nimesh; Rao, P V Lakshmana

    2012-09-04

    Abrin toxin is a plant glycoprotein, which is similar in structure and properties to ricin and is obtained from the seeds of Abrus precatorius (jequirity bean). Abrin is highly toxic, with an estimated human fatal dose of 0.1-1 μg/kg, and has caused death after accidental and intentional poisoning. Abrin is a potent biological toxin warfare agent. There are no chemical antidotes available against the toxin. Neurological symptoms like delirium, hallucinations, reduced consciousness and generalized seizures were reported in human poisoning cases. Death of a patient with symptoms of acute demyelinating encephalopathy with gastrointestinal bleeding due to ingestion of abrin seeds was reported in India. The aim of this study was to examine both dose and time-dependent transcriptional responses induced by abrin in the adult mouse brain. Mice (n=6) were exposed to 1 and 2 LD50 (2.83 and 5.66 μg/kg respectively) dose of abrin by intraperitoneal route and observed over 3 days. A subset of animals (n=3) were sacrificed at 1 and 2 day intervals for microarray and histopathology analysis. None of the 2 LD50 exposed animals survived till 3 days. The histopathological analysis showed the severe damage in brain and the infiltration of inflammatory cells in a dose and time dependent manner. The abrin exposure resulted in the induction of rapid immune and inflammatory response in brain. Clinical biochemistry parameters like lactate dehydrogenase, aspartate aminotransferase, urea and creatinine showed significant increase at 2-day 2 LD50 exposure. The whole genome microarray data revealed the significant regulation of various pathways like MAPK pathway, cytokine-cytokine receptor interaction, calcium signaling pathway, Jak-STAT signaling pathway and natural killer cell mediated toxicity. The comparison of differential gene expression at both the doses showed dose dependent effects of abrin toxicity. The real-time qRT-PCR analysis of selected genes supported the microarray data. This is the first report on host-gene response using whole genome microarray in an animal model after abrin exposure. The data generated provides leads for developing suitable medical counter measures against abrin poisoning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Total Dose Survivability of Hubble Electronic Components

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2017-01-01

    A total dose analysis for exposure of electronic parts at the box level is presented for the Hubble Space Telescope. This was done using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are discussed in terms of parts that are potential total dose concerns.

  20. New Approach to Total Dose Specification for Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael

    2017-01-01

    Variability of the space radiation environment is investigated with regard to total dose specification for spacecraft electronics. It is shown to have a significant impact. A new approach is developed for total dose requirements that replaces the radiation design margin concept with failure probability during a mission.

  1. LTC1877 High Efficiency Regulator Total Ionizing Dose Test Report

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy; Pellish, Jonathan; Boutte, Alvin

    2012-01-01

    This report presents total ionizing dose evaluation data for the Linear Technology Corporation LTC1877 high efficiency monolithic synchronous step-down regulator. Data sheet parameters were tracked as a function of ionizing dose up to a total of 20 krad(SiO2). Control devices were also used.

  2. Agmatine enhances the anticonvulsant effect of lithium chloride on pentylenetetrazole-induced seizures in mice: Involvement of L-arginine/nitric oxide pathway.

    PubMed

    Bahremand, Arash; Ziai, Pouya; Khodadad, Tina Kabiri; Payandemehr, Borna; Rahimian, Reza; Ghasemi, Abbas; Ghasemi, Mehdi; Hedayat, Tina; Dehpour, Ahmad Reza

    2010-07-01

    After nearly 60years, lithium is still the mainstay in the treatment of mood disorders. In addition to its antimanic and antidepressant effects, lithium also has anticonvulsant properties. Similar to lithium, agmatine plays a protective role in the central nervous system against seizures and has been reported to enhance the effect of different antiepileptic agents. Moreover, both agmatine and lithium have modulatory effects on the L-arginine/nitric oxide pathway. This study was designed to investigate: (1) whether agmatine and lithium exert a synergistic effect against clonic seizures induced by pentylenetetrazole and (2) whether or not this synergistic effect is mediated through inhibition of the L-arginine/nitric oxide pathway. In our study, acute administration of a single potent dose of lithium chloride (30mg/kg ip) increased seizure threshold, whereas pretreatment with a low and independently noneffective dose of agmatine (3mg/kg) potentiated a subeffective dose of lithium (10mg/kg). N(G)-L-arginine methyl ester (L-NAME, nonspecific nitric oxide synthase inhibitor) at 1 and 5mg/kg and 7-nitroindazole (7-NI, preferential neuronal nitric oxide synthase inhibitor) at 15 and 30mg/kg augmented the anticonvulsant effect of the noneffective combination of lithium (10mg/kg ip) and agmatine (1mg/kg), whereas several doses (20 and 40mg/kg) of aminoguanidine (inducible nitric oxide synthase inhibitor) failed to alter the seizure threshold of the same combination. Furthermore, pretreatment with independently noneffective doses (30 and 60mg/kg) of L-arginine (substrate for nitric oxide synthase) inhibited the potentiating effect of agmatine (3mg/kg) on lithium (10mg/kg). Our findings demonstrate that agmatine and lithium chloride have synergistic anticonvulsant properties that may be mediated through the L-arginine/nitric oxide pathway. In addition, the role of constitutive nitric oxide synthase versus inducible nitric oxide synthase is prominent in this phenomenon. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Effects of clofibrate and indocyanine green on the hepatobiliary disposition of acetaminophen and its metabolites in male CD-1 mice.

    PubMed

    Chen, C; Hennig, G E; McCann, D J; Manautou, J E

    2000-11-01

    1. The effects of clofibrate (CFB) and indocyanine green (ICG) on the biliary excretion of acetaminophen (APAP) and its metabolites were investigated. 2. Male CD-1 mice were pretreated with 500 mg CFB/kg, i.p. for 10 days. Controls received corn oil vehicle only. After overnight fasting, common bile duct-cannulated mice were challenged with a non-toxic dose of APAP (1 mmol/kg, i.v.). 3. CFB pretreatment did not affect bile flow rate, nor did it affect the cumulative biliary excretion of APAP and its conjugated metabolites. 4. Additional CFB or corn oil pretreated mice were given 30 mumol indocyanine green (ICG)/kg, i.v., immediately before APAP dosing. ICG is a non-metabolizable organic anion that is completely excreted into the bile through a canalicular transport process for organic anions. 5. ICG significantly decreased the bile flow rate and biliary concentration of APAP-glutathione, APAP-glucuronide and APAP-mercapturate within the first hour after dosing without affecting the biliary concentration of APAP. 6. The results indicate that CFB pretreatment does not affect the total amount of APAP and its metabolites excreted in bile. They also suggest that the biliary excretion of several conjugated metabolites of APAP share the same excretory pathway with the organic anion ICG.

  4. Degradation Products of Benzophenone-3 in Chlorinated Seawater Swimming Pools.

    PubMed

    Manasfi, Tarek; Storck, Veronika; Ravier, Sylvain; Demelas, Carine; Coulomb, Bruno; Boudenne, Jean-Luc

    2015-08-04

    Oxybenzone (2-hydroxy-4-methoxyphenone, benzophenone-3) is one of the UV filters commonly found in sunscreens. Its presence in swimming pools and its reactivity with chlorine has already been demonstrated but never in seawater swimming pools. In these pools, chlorine added for disinfection results in the formation of bromine, due to the high levels of bromide in seawater, and leads to the formation of brominated disinfection byproducts, known to be more toxic than chlorinated ones. Therefore, it seems important to determine the transformation products of oxybenzone in chlorinated seawater swimming pools; especially that users of seawater swimming pools may apply sunscreens and other personal-care products containing oxybenzone before going to pools. This leads to the introduction of oxybenzone to pools, where it reacts with bromine. For this purpose, the reactivity of oxybenzone has been examined as a function of chlorine dose and temperature in artificial seawater to assess its potential to produce trihalomethanes and to determine the byproducts generated following chlorination. Increasing doses of chlorine and increasing temperatures enhanced the formation of bromoform. Experiments carried out with excess doses of chlorine resulted in the degradation of oxybenzone and allowed the determination of the degradation mechanisms leading to the formation of bromoform. In total, ten transformation products were identified, based on which the transformation pathway was proposed.

  5. UVB-induced gene expression in the skin of Xiphophorus maculatus Jp 163 B☆

    PubMed Central

    Yang, Kuan; Boswell, Mikki; Walter, Dylan J.; Downs, Kevin P.; Gaston-Pravia, Kimberly; Garcia, Tzintzuni; Shen, Yingjia; Mitchell, David L.; Walter, Ronald B.

    2014-01-01

    Xiphophorus fish and interspecies hybrids represent long-standing models to study the genetics underlying spontaneous and induced tumorigenesis. The recent release of the Xiphophorus maculatus genome sequence will allow global genetic regulation studies of genes involved in the inherited susceptibility to UVB-induced melanoma within select backcross hybrids. As a first step toward this goal, we report results of an RNA-Seq approach to identify genes and pathways showing modulated transcription within the skin of X. maculatus Jp 163 B upon UVB exposure. X. maculatus Jp 163 B were exposed to various doses of UVB followed by RNA-Seq analysis at each dose to investigate overall gene expression in each sample. A total of 357 genes with a minimum expression change of 4-fold (p-adj < 0.05) were identified as responsive to UVB. The molecular genetic response of Xiphophorus skin to UVB exposure permitted assessment of; (1) the basal expression level of each transcript for each skin sample, (2) the changes in expression levels for each gene in the transcriptome upon exposure to increasing doses of UVB, and (3) clusters of genes that exhibit similar patterns of change in expression upon UVB exposure. These data provide a foundation for understanding the molecular genetic response of fish skin to UVB exposure. PMID:24556253

  6. Identification of penetration path and deposition distribution of radionuclides in houses by experiments and numerical model

    NASA Astrophysics Data System (ADS)

    Hirouchi, Jun; Takahara, Shogo; Iijima, Masashi; Watanabe, Masatoshi; Munakata, Masahiro

    2017-11-01

    In order to lift of an evacuation order in evacuation areas and return residents to their homes, human dose assessments are required. However, it is difficult to exactly assess indoor external dose rate because the indoor distribution and infiltration pathways of radionuclides are unclear. This paper describes indoor and outdoor dose rates measured in eight houses in the difficult-to-return area in Fukushima Prefecture and identifies the distribution and main infiltration pathway of radionuclides in houses. In addition, it describes dose rates calculated with a Monte Carlo photon transport code to aid a thorough understanding of the measurements. The measurements and calculations indicate that radionuclides mainly infiltrate through visible openings such as vents, windows, and doors, and then deposit near these visible openings; however, they hardly infiltrate through sockets and air conditioning outlets. The measurements on rough surfaces such as bookshelves implies that radionuclides discharged from the Fukushima-Daiichi nuclear power plant did not deposit locally on rough surfaces.

  7. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose

    PubMed Central

    Lever, Melissa; Lim, Hong-Sheng; Kruger, Philipp; Nguyen, John; Trendel, Nicola; Abu-Shah, Enas; Maini, Philip Kumar; van der Merwe, Philip Anton

    2016-01-01

    T cells must respond differently to antigens of varying affinity presented at different doses. Previous attempts to map peptide MHC (pMHC) affinity onto T-cell responses have produced inconsistent patterns of responses, preventing formulations of canonical models of T-cell signaling. Here, a systematic analysis of T-cell responses to 1 million-fold variations in both pMHC affinity and dose produced bell-shaped dose–response curves and different optimal pMHC affinities at different pMHC doses. Using sequential model rejection/identification algorithms, we identified a unique, minimal model of cellular signaling incorporating kinetic proofreading with limited signaling coupled to an incoherent feed-forward loop (KPL-IFF) that reproduces these observations. We show that the KPL-IFF model correctly predicts the T-cell response to antigen copresentation. Our work offers a general approach for studying cellular signaling that does not require full details of biochemical pathways. PMID:27702900

  8. A swinging seesaw as a novel model mechanism for time-dependent hormesis under dose-dependent stimulatory and inhibitory effects: A case study on the toxicity of antibacterial chemicals to Aliivibrio fischeri.

    PubMed

    Sun, Haoyu; Calabrese, Edward J; Zheng, Min; Wang, Dali; Pan, Yongzheng; Lin, Zhifen; Liu, Ying

    2018-08-01

    Hormesis occurs frequently in broadly ranging biological areas (e.g. plant biology, microbiology, biogerontology), toxicology, pharmacology and medicine. While numerous mechanisms (e.g. receptor and pathway mediated pathway responses) account for stimulatory and inhibitory features of hormetic dose responses, the vast majority emphasizes the inclusion of many doses but only one timepoint or use of a single optimized dose that is assessed over a broad range of timepoints. In this paper, a toxicity study was designed using a large number of properly spaced doses with responses determined over a large number of timepoints, which could help us reveal the underlying mechanism of hormesis. We present the results of a dose-time-response study on hormesis using five antibacterial chemicals on the bioluminescence of Aliivibrio fischeri, measuring expression of protein mRNA based on quorum sensing, simulating bioluminescent reaction and analyzing toxic actions of test chemicals. The findings show dose-time-dependent responses conforming to the hormetic dose-response model, while revealing unique response dynamics between agent induced stimulatory and inhibitory effects within bacterial growth phase dynamics. These dynamic dose-time features reveal a type of biological seesaw model that integrates stimulatory and inhibitory responses within unique growth phase, dose and time features, which has faultlessly explained the time-dependent hormetic phenomenon induced by five antibacterial chemicals (characterized by low-dose stimulation and high-dose inhibition). This study offers advances in understanding cellular dynamics, the biological integration of diverse and opposing responses and their role in evolutionary adaptive strategies to chemicals, which can provide new insight into the mechanistic investigation of hormesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Total dose bias dependency and ELDRS effects in bipolar linear devices

    NASA Technical Reports Server (NTRS)

    Yui, C. C.; McClure, S. S.; Rex, B. G.; Lehman, J. M.; Minto, T. D.; Wiedeman, M.

    2002-01-01

    Total dose tests of several bipolar linear devices show sensitivity to both dose rate and bias during exposure. All devices exhibited Enhanced Low Dose Rate Sensitivity (ELDRS). An accelerated ELDRS test method for three different devices demonstrate results similar to tests at low dose rate. Behavior and critical parameters from these tests are compared and discussed.

  10. The Profiling and Identification of the Absorbed Constituents and Metabolites of Guizhi Decoction in Rat Plasma and Urine by Rapid Resolution Liquid Chromatography Combined with Quadrupole-Time-of-Flight Mass Spectrometry.

    PubMed

    Xiang, Hongjun; Zhang, Lishi; Song, Jiannan; Fan, Bin; Nie, Yinglan; Bai, Dong; Lei, Haimin

    2016-09-12

    Guizhi decoction (GZD), a well-known traditional Chinese medicine (TCM) prescription consisting of Ramulus Cinnamomi, Radix Paeoniae Alba, Radix Glycyrrhizae, Fructus Jujubae and Rhizoma Zingiberis Recens, is usually used for the treatment of common colds, influenza, and other pyretic conditions in the clinic. However, the absorbed ingredients and metabolic compounds of GZD have not been reported. In this paper, a method incorporating rapid resolution liquid chromatography (RRLC) with quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) was used to identify ingredients after oral administration of GZD. Identification of the primary components in GZD, drug-containing serum and urine samples was carried out in order to investigate the assimilation and metabolites of the decoction in vivo. By comparing the total ion chromatograms (TICs) of GZD, a total of 71 constituents were detected or characterized. By comparing TICs of blank and dosed rat plasma, a total of 15 constituents were detected and identified as prototypes according to their retention time (tR) and MS, MS/MS data. Based on this, neutral loss scans of 80 and 176 Da in samples of rat plasma and urine helped us to identify most of the metabolites. Results showed that the predominant metabolic pathways of (epi) catechin and gallic acid were sulfation, methylation, glucuronidation and dehydroxylation; the major metabolic pathways of flavone were hydrolysis, sulfation and glucuronidation. Furthermore, degradation, oxidation and ring fission were found to often occur in the metabolism process of GZD in vivo.

  11. The Profiling and Identification of the Absorbed Constituents and Metabolites of Guizhi Decoction in Rat Plasma and Urine by Rapid Resolution Liquid Chromatography Combined with Quadrupole-Time-of-Flight Mass Spectrometry

    PubMed Central

    Xiang, Hongjun; Zhang, Lishi; Song, Jiannan; Fan, Bin; Nie, Yinglan; Bai, Dong; Lei, Haimin

    2016-01-01

    Guizhi decoction (GZD), a well-known traditional Chinese medicine (TCM) prescription consisting of Ramulus Cinnamomi, Radix Paeoniae Alba, Radix Glycyrrhizae, Fructus Jujubae and Rhizoma Zingiberis Recens, is usually used for the treatment of common colds, influenza, and other pyretic conditions in the clinic. However, the absorbed ingredients and metabolic compounds of GZD have not been reported. In this paper, a method incorporating rapid resolution liquid chromatography (RRLC) with quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) was used to identify ingredients after oral administration of GZD. Identification of the primary components in GZD, drug-containing serum and urine samples was carried out in order to investigate the assimilation and metabolites of the decoction in vivo. By comparing the total ion chromatograms (TICs) of GZD, a total of 71 constituents were detected or characterized. By comparing TICs of blank and dosed rat plasma, a total of 15 constituents were detected and identified as prototypes according to their retention time (tR) and MS, MS/MS data. Based on this, neutral loss scans of 80 and 176 Da in samples of rat plasma and urine helped us to identify most of the metabolites. Results showed that the predominant metabolic pathways of (epi) catechin and gallic acid were sulfation, methylation, glucuronidation and dehydroxylation; the major metabolic pathways of flavone were hydrolysis, sulfation and glucuronidation. Furthermore, degradation, oxidation and ring fission were found to often occur in the metabolism process of GZD in vivo. PMID:27626411

  12. Assessment of radiation doses from residential smoke detectors that contain americium-241

    NASA Astrophysics Data System (ADS)

    Odonnell, F. R.; Etnier, E. L.; Holton, G. A.; Travis, C. C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv to 20 nSv for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 micro-Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 micro-Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft squared.

  13. Radionuclides in the Arctic seas from the former Soviet Union: Potential health and ecological risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, D W; Edson, R; Varela, M

    1999-11-15

    The primary goal of the assessment reported here is to evaluate the health and environmental threat to coastal Alaska posed by radioactive-waste dumping in the Arctic and Northwest Pacific Oceans by the FSU. In particular, the FSU discarded 16 nuclear reactors from submarines and an icebreaker in the Kara Sea near the island of Novaya Zemlya, of which 6 contained spent nuclear fuel (SNF); disposed of liquid and solid wastes in the Sea of Japan; lost a {sup 90}Sr-powered radioisotope thermoelectric generator at sea in the Sea of Okhotsk; and disposed of liquid wastes at several sites in the Pacificmore » Ocean, east of the Kamchatka Peninsula. In addition to these known sources in the oceans, the RAIG evaluated FSU waste-disposal practices at inland weapons-development sites that have contaminated major rivers flowing into the Arctic Ocean. The RAIG evaluated these sources for the potential for release to the environment, transport, and impact to Alaskan ecosystems and peoples through a variety of scenarios, including a worst-case total instantaneous and simultaneous release of the sources under investigation. The risk-assessment process described in this report is applicable to and can be used by other circumpolar countries, with the addition of information about specific ecosystems and human life-styles. They can use the ANWAP risk-assessment framework and approach used by ONR to establish potential doses for Alaska, but add their own specific data sets about human and ecological factors. The ANWAP risk assessment addresses the following Russian wastes, media, and receptors: dumped nuclear submarines and icebreaker in Kara Sea--marine pathways; solid reactor parts in Sea of Japan and Pacific Ocean--marine pathways; thermoelectric generator in Sea of Okhotsk--marine pathways; current known aqueous wastes in Mayak reservoirs and Asanov Marshes--riverine to marine pathways; and Alaska as receptor. For these waste and source terms addressed, other pathways, such as atmospheric transport, could be considered under future-funded research efforts for impacts to Alaska. The ANWAP risk assessment does not address the following wastes, media, and receptors: radioactive sources in Alaska (except to add perspective for Russian source term); radioactive wastes associated with Russian naval military operations and decommissioning; Russian production reactor and spent-fuel reprocessing facilities nonaqueous source terms; atmospheric, terrestrial and nonaqueous pathways; and dose calculations for any circumpolar locality other than Alaska. These other, potentially serious sources of radioactivity to the Arctic environment, while outside the scope of the current ANWAP mandate, should be considered for future funding research efforts.« less

  14. RECONSTRUCTION OF RADIATION DOSES IN A CASE-CONTROL STUDY OF THYROID CANCER FOLLOWING THE CHERNOBYL ACCIDENT

    PubMed Central

    Drozdovitch, Vladimir; Khrouch, Valeri; Maceika, Evaldas; Zvonova, Irina; Vlasov, Oleg; Bratilova, Angelica; Gavrilin, Yury; Goulko, Guennadi; Hoshi, Masaharu; Kesminiene, Ausrele; Shinkarev, Sergey; Tenet, Vanessa; Cardis, Elisabeth; Bouville, Andre

    2010-01-01

    A population-based case-control study of thyroid cancer was carried out in contaminated regions of Belarus and Russia among persons who were exposed during childhood and adolescence to fallout from the Chernobyl accident. For each study subject, individual thyroid doses were reconstructed for the following pathways of exposure: (1) intake of 131I via inhalation and ingestion; (2) intake of short-lived radioiodines (132I, 133I, and 135I) and radiotelluriums (131mTe, 132Te) via inhalation and ingestion; (3) external dose from radionuclides deposited on the ground; and (4) ingestion of 134Cs and 137Cs. A series of intercomparison exercises validated the models used for reconstruction of average doses to populations of specific age groups as well as of individual doses. Median thyroid doses from all factors for study subjects were estimated to be 0.37 and 0.034 Gy in Belarus and Russia, respectively. The highest individual thyroid doses among the subjects were 10.2 Gy in Belarus and 5.3 Gy in Russia. Iodine-131 intake was the main pathway for thyroid exposure. Estimated doses from short-lived radioiodines and radiotelluriums ranged up to 0.53 Gy. Reconstructed individual thyroid doses from external exposure ranged up to 0.1 Gy, while those from internal exposure due to ingested cesium did not exceed 0.05 Gy. The uncertainty of the reconstructed individual thyroid doses, characterized by the geometric standard deviation, varies from 1.7 to 4.0 with a median of 2.2. PMID:20539120

  15. Dose and Effect Thresholds for Early Key Events in a Mode of PPARa-Mediated Action

    EPA Science Inventory

    ABSTRACT Strategies for predicting adverse health outcomes of environmental chemicals are centered on early key events in toxicity pathways. However, quantitative relationships between early molecular changes in a given pathway and later health effects are often poorly defined. T...

  16. Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks.

    PubMed

    Plets, D; Joseph, W; Vanhecke, K; Vermeeren, G; Wiart, J; Aerts, S; Varsier, N; Martens, L

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism.

  17. Joint Minimization of Uplink and Downlink Whole-Body Exposure Dose in Indoor Wireless Networks

    PubMed Central

    Plets, D.; Joseph, W.; Vanhecke, K.; Vermeeren, G.; Wiart, J.; Aerts, S.; Varsier, N.; Martens, L.

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism. PMID:25793213

  18. Arsenic affects the production of glucosinolate, thiol and phytochemical compounds: A comparison of two Brassica cultivars.

    PubMed

    Pandey, Chandana; Augustine, Rehna; Panthri, Medha; Zia, Ismat; Bisht, Naveen C; Gupta, Meetu

    2017-02-01

    Arsenic (As), a non-essential metalloid, severely affects the normal functioning of plants, animals and humans. Plants play a crucial role in metabolic, physiological and numerous detoxification mechanisms to cope up with As induced stress. This study aimed to examine the differential response in two Brassica juncea cultivars, Varuna and Pusa Jagannath (PJn) exposed to different doses of As (50, 150, 300 μM) for 48 h duration. Change in morphological traits, concentration of individual as well as total GSL, sulfur related thiol proteins, sulfur content, and phytochemicals were analyzed in both cultivars. Accumulation pattern of As showed dose dependent accumulation in both the cultivars, being more in PJn. Our finding revealed that both cultivars were tolerant at low concentrations of As, while at higher concentration Varuna excelled over PJn. The increased tolerance of Varuna cultivar exposed to 150 and 300 μM concentration of As, correlated with its increased thiol related proteins, sulfur content and phytochemicals, which serves as defence strategy in the plant against oxidative stress. Differential pattern of total as well as individual GSLs content was observed in both Varuna and PJn cultivars. Varuna cultivar showed higher level of total and aliphatic GSLs, which serves as defence compound with other detoxification machineries to combat As stress. Our findings provide foundation for developing metalloid tolerant crops by analyzing the role of different genes involved in GSL mechanism and signaling pathways in different organs of plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Degradation of sulfamethazine by gamma irradiation in the presence of hydrogen peroxide.

    PubMed

    Liu, Yuankun; Wang, Jianlong

    2013-04-15

    The gamma irradiation-induced degradation of sulfamethazine (SMT) in aqueous solution in the presence of hydrogen peroxide (H2O2) was investigated. The initial SMT concentration was 20mg/L and it was irradiated in the presence of extra H2O2 with initial concentration of 0, 10 and 30 mg/L. The results showed that gamma irradiation was effective for removing SMT in aqueous solution and its degradation conformed to the pseudo first-order kinetics under the applied conditions. When initial H2O2 concentration was in the range of 0-30 mg/L, higher concentration of H2O2 was more effective for the decomposition and mineralization of SMT. However, the removal of total organic carbon (TOC) was not as effective as that of SMT. Total nitrogen (TN) was not removed even at absorbed dose of 5 kGy, which was highest dose applied in this study. Major decomposition products of SMT, including degradation intermediates, organic acids and some inorganic ions were detected by high performance liquid chromatography (HPLC) and ion chromatography (IC). Sulfate (SO4(2-)), formic acid (HCOOH), acetic acid (CH3COOH), 4-aminophenol, 4-nitrophenol were identified in the irradiated solutions. Possible pathways for SMT decomposition by gamma irradiation in aqueous solution were proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Antimony exposure and speciation in human biomarkers near an active mining area in Hunan, China.

    PubMed

    Ye, Li; Qiu, Shixin; Li, Xinhai; Jiang, Yuxuan; Jing, Chuanyong

    2018-05-28

    Antimony (Sb) exposure threatens human health. To identify human biomarkers for Sb exposure, we analyzed 480 environmental samples from an active Sb mining area in Hunan, China. Elevated Sb concentrations exceeding the reference level were detected in drinking water (70% of n = 83 total samples), foods (80%, n = 188), urine (95%, n = 63), saliva (44%, n = 48), hair (80%, n = 51) and nails (83%, n = 47). Drinking water contributed 85%-100% of the average daily dose (ADD) of Sb, and the total ADD (11.7 μg/kg bodyweight/day) was up to thirty times higher than the oral reference dose (0.4 μg/kg bodyweight/day) as recommended by USEPA. A positive correlation was found between ADD and Sb content in hair (p = 0.02), but not in urine (p = 0.051), saliva (p = 0.52) or nails (p = 0.85), suggesting that hair is the best non-invasive biomarker. Micro X-ray fluorescence analysis indicated that Sb is distributed in discrete spots in hair and nails, and Sb distribution is correlated with other metals. Methylated Sb species were predominant in urine (46%-100%) and saliva (74%-100%) in collected samples, implying that the human metabolic system adopts methylation as an effective pathway to detoxify and excrete Sb. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Fas- and Mitochondria-Mediated Signaling Pathway Involved in Osteoblast Apoptosis Induced by AlCl3.

    PubMed

    Xu, Feibo; Ren, Limin; Song, Miao; Shao, Bing; Han, Yanfei; Cao, Zheng; Li, Yanfei

    2018-07-01

    Aluminum (Al) is known to induce apoptosis of osteoblasts (OBs). However, the mechanism is not yet established. To investigate the apoptotic mechanism of OBs induced by aluminum trichloride (AlCl 3 ), the primary OBs from the craniums of fetal Wistar rats were exposed to 0 mg/mL (control group, CG), 0.06 mg/mL (low-dose group, LG), 0.12 mg/mL (mid-dose group, MG), and 0.24 mg/mL (high-dose group, HG) AlCl 3 for 24 h, respectively. We observed that AlCl 3 induced OB apoptosis with the appearance of apoptotic morphology and increase of apoptosis rate. Additionally, AlCl 3 treatment activated mitochondrial-mediated signaling pathway, accompanied by mitochondrial membrane potential (ΔΨm) depolarization, release of cytochrome c from the mitochondria to the cytoplasm, as well as survival signal-related factor caspase-9 and caspase-3 activation. AlCl 3 exposure also activated Fas/Fas ligand signaling pathway, presented as Fas, Fas ligand, and Fas-associated death domain expression enhancement and caspase-8 activation, as well as the hydrolysis of Bid to truncated Bid, suggesting that the Fas-mediated signaling pathway might aggravate mitochondria-mediated OB apoptosis through hydrolyzing Bid. Furthermore, AlCl 3 exposure inhibited Bcl-2 protein expression and increased the expressions of Bax, Bak, and Bim in varying degrees. These results indicated that AlCl 3 exposure induced OB apoptosis through activating Fas- and mitochondria-mediated signaling pathway and disrupted B-cell lymphoma-2 family proteins.

  2. Protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats through inhibiting the Cys-C/Wnt signaling pathway

    PubMed Central

    Feng, Jun; Chen, Hua-Wen; Pi, Li-Juan; Wang, Jin; Zhan, Da-Qian

    2017-01-01

    The study aimed to investigate the protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats (SHRs) through the Cys-C/Wnt signaling pathway. Thirty SHRs were randomly divided into cardiac hypertrophy, low- and high-dose tanshinone IIA groups. Ten Wistar-Kyoto rats were selected as control group. The systolic blood pressure (SBP), heart weight (HW), left ventricular weight (LVW) and body weight (BW) of all rats were recorded. HE staining and qRT-PCR were applied to observe the morphology of myocardial tissue and mRNA expressions of COL1A1 and COL3A1. ELISA and Western blotting were used to measure the serum asymmetric dimethylarginine (ADMA), nitric oxide (NO) and cardiac troponin I (cTnI) levels, and the expressions of the Cys-C/Wnt signaling pathway-related proteins, eNOS and Nox4. Compared with the cardiac hypertrophy group, the SBP, HW/BW, LVW/BW, swelling degree of myocardial cells, COL1A1 and COL3A1 mRNA expressions, serum cTnI and ADMA levels, and the Cys-C/Wnt signaling pathway-related proteins and Nox4 expressions in the low- and high-dose tanshinone IIA groups were decreased, but the endothelial NO synthase (eNOS), phosphorylated eNOS (Ser1177) and NO expressions were increased. No significant difference was found between the low- and high-dose tanshinone IIA groups. Our study indicated a protective effect of tanshinone IIA against cardiac hypertrophy in SHRs through inhibiting the Cys-C/Wnt signaling pathway. PMID:28053285

  3. Increased Body Weight Reduces Voluntary Movement to Maintain Energy Expenditure of Rats Exposed to Increases in Gravity

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Moran, M. M.; Stein, T. P.; Sin, Sidney (Technical Monitor)

    2001-01-01

    With the increase in obesity related diseases there is heightened interest in mechanisms regulating body weight. To assess the influence of increases in body weight on energy expenditure and intake in rats we employed variable levels of gravity. Our approach afforded the means to measure interactions of energy expenditure and intake in response to increases in body weight (body mass x gravity level). We found a dose relationship between rapid elevation of body weight and reduction of voluntary movement, such that the energy requirements for activity are unchanged, and total energy expenditure and intake maintained. Reduction of movement appears to be a response to increased body weight, rather than a contributing factor, suggesting a new regulatory pathway.

  4. Phase I Clinical Trial Assessing Temozolomide and Tamoxifen With Concomitant Radiotherapy for Treatment of High-Grade Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Shilpen, E-mail: Shilpenp@uw.edu; DiBiase, Steven; Meisenberg, Barry

    2012-02-01

    Purpose: The new standard treatment of glioblastoma multiforme is concurrent radiotherapy (RT) and temozolomide. The proliferation of high-grade gliomas might be partly dependent on protein kinase C-mediated pathways. Tamoxifen has been shown in vitro to inhibit protein kinase C through estrogen receptor-independent antineoplastic effects. This Phase I trial was designed to determine the maximal tolerated dose (MTD) of tamoxifen when given with temozolomide and concurrent RT to patients with high-grade gliomas. Methods and Materials: A total of 17 consecutive patients in four cohorts with World Health Organization Grade 3 (n = 2) and 4 (n = 15) gliomas were givenmore » tamoxifen twice daily during 6 weeks of concurrent RT and temozolomide. Eligibility included histologic diagnosis, age >18 years old, Karnofsky performance status {>=}60, and no previous brain RT or chemotherapy. The starting dose was 50 mg/m{sup 2} divided twice daily. If no dose-limiting toxicities (DLTs) occurred in 3 patients, the dose was escalated in 25-mg/m{sup 2} increments until the MTD was reached. When {>=}2 patients within a cohort experienced a DLT, the MTD had been exceeded. Temozolomide was given with RT at 75 mg/m{sup 2}. A dose of 60 Gy in 2 Gy/d fractions to a partial brain field was delivered. Results: A total of 6 patients in Cohort 4 had received tamoxifen at 125 mg/m{sup 2}. One patient was excluded, and the fourth patient developed Grade 4 thrombocytopenia (DLT). Thus, 3 more patients needed to be enrolled. A deep venous thrombosis (DLT) occurred in the sixth patient. Thus, the MTD was 100 mg/m{sup 2}. Conclusions: The MTD of tamoxifen was 100 mg/m{sup 2} when given concurrently with temozolomide 75 mg/m{sup 2} and RT. Tamoxifen might have a role in the initial treatment of high-grade gliomas and should be studied in future Phase II trials building on the newly established platform of concurrent chemoradiotherapy.« less

  5. DOSE RECONSTRUCTION FROM URINARY BIOMARKERS USING PHARMACOKINETIC MODELS

    EPA Science Inventory

    The use of biomarkers for human health risk assessment is attractive because they are an indicator of the dose that actually entered the body by all mechanisms. This is an important consideration given the need to include aggregate exposures from diet and other pathways for pes...

  6. Transcription factors and stress response gene alterations in human keratinocytes following Solar Simulated Ultra Violet Radiation.

    PubMed

    Marais, Thomas L Des; Kluz, Thomas; Xu, Dazhong; Zhang, Xiaoru; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2017-10-19

    Ultraviolet radiation (UVR) from sunlight is the major effector for skin aging and carcinogenesis. However, genes and pathways altered by solar-simulated UVR (ssUVR), a mixture of UVA and UVB, are not well characterized. Here we report global changes in gene expression as well as associated pathways and upstream transcription factors in human keratinocytes exposed to ssUVR. Human HaCaT keratinocytes were exposed to either a single dose or 5 repetitive doses of ssUVR. Comprehensive analyses of gene expression profiles as well as functional annotation were performed at 24 hours post irradiation. Our results revealed that ssUVR modulated genes with diverse cellular functions changed in a dose-dependent manner. Gene expression in cells exposed to a single dose of ssUVR differed significantly from those that underwent repetitive exposures. While single ssUVR caused a significant inhibition in genes involved in cell cycle progression, especially G2/M checkpoint and mitotic regulation, repetitive ssUVR led to extensive changes in genes related to cell signaling and metabolism. We have also identified a panel of ssUVR target genes that exhibited persistent changes in gene expression even at 1 week after irradiation. These results revealed a complex network of transcriptional regulators and pathways that orchestrate the cellular response to ssUVR.

  7. A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation

    PubMed Central

    Sasatani, Megumi; Iizuka, Daisuke; Masuda, Yuji; Inaba, Toshiya; Suzuki, Keiji; Ootsuyama, Akira; Umata, Toshiyuki; Kamiya, Kenji; Suzuki, Fumio

    2014-01-01

    Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage. PMID:25093836

  8. Minnelide Overcomes Oxaliplatin Resistance by Downregulating the DNA Repair Pathway in Pancreatic Cancer.

    PubMed

    Modi, Shrey; Kir, Devika; Giri, Bhuwan; Majumder, Kaustav; Arora, Nivedita; Dudeja, Vikas; Banerjee, Sulagna; Saluja, Ashok K

    2016-01-01

    Oxaliplatin is part of pancreatic cancer therapy in the FOLFIRINOX or GEMOX/XELOX regimen. DNA damage repair is one of the factors responsible for oxaliplatin resistance that eventually develops in this cancer. Triptolide/Minnelide has been shown to be effective against pancreatic cancer in preclinical trials. In this study, we evaluated the efficacy of combination of triptolide and oxaliplatin against pancreatic cancer. Highly aggressive pancreatic cancer cells (MIA PaCa-2 and PANC-1) were treated with oxaliplatin (0-10 μM), low-dose triptolide (50 nM), or a combination of both for 24-48 h. Cell viability, apoptosis, and DNA damage were evaluated by appropriate methods. Nucleotide excision repair pathway components were quantitated using qPCR and Western blot. Combination of low doses of Minnelide and oxaliplatin was tested in an orthotopic murine model of pancreatic cancer. Proliferation of pancreatic cancer cells was markedly inhibited by combination treatment. Triptolide potentiated apoptotic cell death induced by oxaliplatin and sensitized cancer cells towards oxaliplatin-induced DNA damage by suppressing the oxaliplatin-induced DNA damage repair pathway. Combination of low doses of Minnelide and oxaliplatin inhibited tumor progression by inducing significant apoptotic cell death in these tumors. Combination of low doses of Minnelide and oxaliplatin has immense potential to emerge as a novel therapeutic strategy against pancreatic cancer.

  9. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma.

    PubMed

    Zhu, Xingyang; Song, Xiaoling; Xie, Kun; Zhang, Xue; He, Wei; Liu, Fubao

    2017-10-01

    Osthole is a natural coumarin isolated from Umbelliferae plant monomers. Previous research has indicated that osthole exerts a wide variety of biological effects, acting as anti-seizure, anti-osteoporosis and anti-inflammation. However, the regulatory effect and related molecular mechanism of osthole in intrahepatic cholangiocarcinoma (ICC) remain unknown. In the present study, the authors found that osthole inhibited ICC cell lines in a dose- and time-dependent manner. Osthole also significantly induced mitochondrial-dependent apoptosis by upregulating Bax, cleaved caspase-3, cleaved caspase-9, and cleaved poly ADP-ribose polymerase expression, and by downregulating Bcl-2 expression. Moreover, the levels of p-Akt and PI3K were significantly decreased, while total Akt protein levels were unchanged. Following transfection with wild-type-Akt and constitutively active (CA)-Akt plasmids, the effects of osthole were decreased. Osthole was also able to suppress tumor growth in vivo. Together, these data demonstrated that osthole induces mitochondrial-dependent apoptosis via the PI3K/Akt pathway, suggesting that osthole may represent a novel and effective agent for the treatment of ICC.

  10. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chin-Rang

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complementmore » Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.« less

  11. Hydrocortisone Therapy in Catecholamine-Resistant Pediatric Septic Shock: A Pragmatic Analysis of Clinician Practice and Association With Outcomes.

    PubMed

    Nichols, Blake; Kubis, Sherri; Hewlett, Jennifer; Yehya, Nadir; Srinivasan, Vijay

    2017-09-01

    The 2012 Surviving Sepsis Campaign pediatric guidelines recommend stress dose hydrocortisone in children experiencing catecholamine-dependent septic shock with suspected or proven absolute adrenal insufficiency. We evaluated whether stress dose hydrocortisone therapy in children with catecholamine dependent septic shock correlated with random serum total cortisol levels and was associated with improved outcomes. Retrospective cohort study. Non-cardiac PICU. Critically ill children (1 mo to 18 yr) admitted between January 1, 2013, and December 31, 2013, with catecholamine dependent septic shock who had random serum total cortisol levels measured prior to potential stress dose hydrocortisone therapy. None. The cohort was dichotomized to random serum total cortisol less than 18 mcg/dL and greater than or equal to 18 mcg/dL. Associations of stress dose hydrocortisone with outcomes: PICU mortality, PICU and hospital length of stay, ventilator-free days, and vasopressor-free days were examined. Seventy children with catecholamine-dependent septic shock and measured random serum total cortisol levels were eligible (16% PICU mortality). Although 43% (30/70) had random serum total cortisol less than 18 μg/dL, 60% (42/70) received stress dose hydrocortisone. Children with random serum total cortisol less than 18 μg/dL had lower severity of illness and lower Vasopressor Inotrope Scores than those with random serum total cortisol greater than or equal to 18 μg/dL (all p < 0.05). Children with stress dose hydrocortisone had higher severity of illness and PICU mortality than those without stress dose hydrocortisone (all p < 0.05). Mean random serum total cortisol levels were similar in children with and without stress dose hydrocortisone (21.1 vs 18.7 μg/dL; p = 0.69). In children with random serum total cortisol less than 18 μg/dL, stress dose hydrocortisone was associated with greater PICU and hospital length of stay and fewer ventilator-free days (all p < 0.05). In children with random serum total cortisol greater than 18 μg/dL, stress dose hydrocortisone was associated with greater PICU mortality and fewer ventilator-free days and vasopressor-free days (all p < 0.05). Stress dose hydrocortisone therapy in children with catecholamine-dependent septic shock correlated more with severity of illness than random serum total cortisol levels and was associated with worse outcomes, irrespective of random serum total cortisol levels.

  12. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    PubMed

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.

  13. Bioaccessibility of Fukushima-Accident-Derived Cs in Soils and the Contribution of Soil Ingestion to Radiation Doses in Children.

    PubMed

    Takahara, Shogo; Ikegami, Maiko; Yoneda, Minoru; Kondo, Hitoshi; Ishizaki, Azusa; Iijima, Masashi; Shimada, Yoko; Matsui, Yasuto

    2017-07-01

    Ingestion of contaminated soil is one potential internal exposure pathway in areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Doses from this pathway can be overestimated if the availability of radioactive nuclides in soils for the gastrointestinal tract is not considered. The concept of bioaccessibility has been adopted to evaluate this availability based on in vitro tests. This study evaluated the bioaccessibility of radioactive cesium from soils via the physiologically-based extraction test (PBET) and the extractability of those via an extraction test with 1 mol/L of hydrochloric acid (HCl). The bioaccessibility obtained in the PBET was 5.3% ± 1%, and the extractability in the tests with HCl was 16% ± 3%. The bioaccessibility was strongly correlated with the extractability. This result indicates the possibility that the extractability in HCl can be used as a good predictor of the bioaccessibility with PBET. In addition, we assessed the doses to children from the ingestion of soil via hand-to-mouth activity based on our PBET results using a probabilistic approach considering the spatial distribution of radioactive cesium in Date City in Fukushima Prefecture and the interindividual differences in the surveyed amounts of soil ingestion in Japan. The results of this assessment indicate that even if children were to routinely ingest a large amount of soil with relatively high contamination, the radiation doses from this pathway are negligible compared with doses from external exposure owing to deposited radionuclides in Fukushima Prefecture. © 2016 Society for Risk Analysis.

  14. Differentially expressed genes and pathways induced by organophosphates in human neuroblastoma cells.

    PubMed

    Li, Tianwei; Zhao, Hongtao; Hung, Guo-Chiuan; Han, Jing; Tsai, Shien; Li, Bingjie; Zhang, Jing; Puri, Raj K; Lo, Shyh-Ching

    2012-12-01

    Organophosphates (OPs) are toxic chemicals commonly used as pesticides and herbicides. Some OPs are highly toxic to humans and have been used in warfare and terrorist attacks. In order to elucidate the molecular mechanisms of injury caused by OPs, the differentially expressed genes were analyzed in human SK-N-SH neuroblastoma cells induced by three OPs. The SK-N-SH cells were treated with one of the three OPs, chlorpyrifos, dichlorvos or methamidophos at LC20 (high-dose), the concentration causing 20% cell death, as well as 1/20 of LC20 (low-dose), a sub-lethal concentration with no detectable cell death, for 24 h. The genome-wide gene changes were identified by Agilent Microarray System, and analyzed by microarray analysis tools. The analysis revealed neuroblastoma cells treated with the high doses of all three OPs markedly activated cell apoptosis and inhibited cell growth and proliferation genes, which would most likely lead to the process of cell death. Interestingly, the analysis also revealed significant decrease in expressions of many genes in a specific spliceosome pathway in cells treated with the low doses of all three different OPs. The change of spliceosome pathway may represent an important mechanism of injury in neuronal cells exposed to low doses of various OPs. In addition to unraveling a potentially different form of OP pathogenesis, this finding could provide a new diagnostic marker in assessing OP-associated injury in cells or tissues. In addition, these results could also contribute to the development of new prevention and/or therapeutic regimens against OP toxicity.

  15. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats.

    PubMed

    Cai, Jianwei; Zhang, Qinmin; Wastney, Meryl E; Weaver, Connie M

    2004-01-01

    The objective was to investigate the bioavailability and mechanism of calcium absorption of calcium ascorbate (ASC) and calcium acetate (AC). A series of studies was performed in adult Sprague-Dawley male rats. In the first study, each group of rats (n = 10/group) was assigned to one of the five test meals labeled with (45)Ca: (i) 25 mg calcium as heated ASC or (ii) unheated ASC, (iii) 25 mg calcium as unheated AC, (iv) 3.6 mg Ca as unheated ASC, or (v) unheated AC. Femur uptake indicated better calcium bioavailability from ASC than AC at both calcium loads. A 5-min heat treatment partly reduced bioavailability of ASC. Kinetic studies were performed to further investigate the mechanism of superior calcium bioavailability from ASC. Two groups of rats (n = 10/group) received oral doses of 25 mg Ca as ASC or AC. Each dose contained 20 micro Ci (45)Ca. Two additional groups of rats (n = 10/group) received an intravenous injection (iv) of 10 micro Ci (45)Ca after receiving an unlabeled oral dose of 25 mg calcium as ASC or AC. Sequential blood samples were collected over 48 hrs. Urine and fecal samples were collected every 12 hrs for 48 hrs and were analyzed for total calcium and (45)Ca content. Total calcium and (45)Ca from serum, urine, and feces were fitted by a compartment kinetics model with saturable and nonsaturable absorption pathways by WinSAAM (Windows-based Simulation Analysis and Modeling). The difference in calcium bioavailability between the two salts was due to differences in saturable rather than passive intestinal absorption and not to endogenous secretion or calcium deposition rate. The higher bioavailability of calcium ascorbate was due to a longer transit time in the small intestine compared with ASC.

  16. Pharmacokinetics and disposition of monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) after intravenous dosing of antiseptic XueBiJing injection in human subjects and rats.

    PubMed

    Cheng, Chen; Lin, Jia-zhen; Li, Li; Yang, Jun-ling; Jia, Wei-wei; Huang, Yu-hong; Du, Fei-fei; Wang, Feng-qing; Li, Mei-juan; Li, Yan-fen; Xu, Fang; Zhang, Na-ting; Olaleye, Olajide E; Sun, Yan; Li, Jian; Sun, Chang-hai; Zhang, Gui-ping; Li, Chuan

    2016-04-01

    Monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) are believed to be pharmacologically important for the antiseptic herbal injection XueBiJing. This study was designed to characterize the pharmacokinetics and disposition of monoterpene glycosides. Systemic exposure to Chishao monoterpene glycosides was assessed in human subjects receiving an intravenous infusion and multiple infusions of XueBiJing injection, followed by assessment of the pharmacokinetics of the major circulating compounds. Supportive rat studies were also performed. Membrane permeability and plasma-protein binding were assessed in vitro. A total of 18 monoterpene glycosides were detected in XueBiJing injection (content levels, 0.001-2.47 mmol/L), and paeoniflorin accounted for 85.5% of the total dose of monoterpene glycosides detected. In human subjects, unchanged paeoniflorin exhibited considerable levels of systemic exposure with elimination half-lives of 1.2-1.3 h; no significant metabolite was detected. Oxypaeoniflorin and albiflorin exhibited low exposure levels, and the remaining minor monoterpene glycosides were negligible or undetected. Glomerular-filtration-based renal excretion was the major elimination pathway of paeoniflorin, which was poorly bound to plasma protein. In rats, the systemic exposure level of paeoniflorin increased proportionally as the dose was increased. Rat lung, heart, and liver exposure levels of paeoniflorin were lower than the plasma level, with the exception of the kidney level, which was 4.3-fold greater than the plasma level; brain penetration was limited by the poor membrane permeability. Due to its significant systemic exposure and appropriate pharmacokinetic profile, as well as previously reported antiseptic properties, paeoniflorin is a promising XueBiJing constituent of therapeutic importance.

  17. Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative /nitrosative stress in humans.

    PubMed

    Wang, Xiaofei; Liu, Liangpo; Zhang, Weibing; Zhang, Jie; Du, Xiaoyan; Huang, Qingyu; Tian, Meiping; Shen, Heqing

    2017-10-01

    Previous in vivo and in vitro studies have linked perfluorinated compound (PFC) exposure with metabolic interruption, but the inter-species difference and high treatment doses usually make the results difficult to be extrapolated to humans directly. The best strategy for identifying the metabolic interruption may be to establish the direct correlations between monitored PFCs data and metabolic data on human samples. In this study, serum metabolome data and PFC concentrations were acquired for a Chinese adult male cohort. The most abundant PFCs are PFOA and PFOS with concentration medians 7.56 and 12.78 nM, respectively; in together they count around 81.6% of the total PFCs. PFC concentration-related serum metabolic profile changes and the related metabolic biomarkers were explored by using partial least squares-discriminant analysis (PLS-DA). Respectively taking PFOS, PFOA and total PFC as the classifiers, serum metabolome can be differentiated between the lowest dose group (1st quartile PFCs) and the highest PFC dose group (4th quartile PFCs). Ten potential PFC biomarkers were identified, mainly involving in pollutant detoxification, antioxidation and nitric oxide (NO) signal pathways. These suggested that low-level environmental PFC exposure has significantly adverse impacts on glutathione (GSH) cycle, Krebs cycle, nitric oxide (NO) generation and purine oxidation in humans. To the best of our knowledge, this is the first report investigating the association of environmental PFC exposure with human serum metabolome alteration. Given the important biological functions of the identified biomarkers, we suggest that PFC could increase the metabolism syndromes risk including diabetes and cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Deposition of radon progeny on skin surfaces and resulting radiation doses in radon therapy.

    PubMed

    Tempfer, H; Hofmann, W; Schober, A; Lettner, H; Dinu, A L

    2010-05-01

    In the Gastein valley, Austria, radon-rich thermal water and air have been used for decades for the treatment of various diseases. To explore the exposure pathway of radon progeny adsorbed to the skin, progeny activities on the skin of patients exposed to thermal water (in a bathtub) and hot vapour (in a vapour chamber) were measured by alpha spectrometry. Average total alpha activities on the patients' skin varied from 1.2 to 4.1 Bq/cm(2) in the bathtub, and from 1.1 to 2.6 Bq/cm(2) in the vapour bath. Water pH-value and ion concentration did affect radon progeny adsorption on the skin, whereas skin greasiness and blood circulation did not. Measurements of the penetration of deposited radon progeny into the skin revealed a roughly exponential activity distribution in the upper layers of the skin. Based on the radon progeny surface activity concentrations and their depth distributions, equivalent doses to different layers of the skin, in particular to the Langerhans cells located in the epidermis, ranged from 0.12 mSv in the thermal bath to 0.33 mSv in the vapour bath, exceeding equivalent doses to the inner organs (kidneys) by inhaled radon and progeny by about a factor 3, except for the lung, which receives the highest doses via inhalation. These results suggest that radon progeny attachment on skin surfaces may play a major role in the dosimetry for both thermal water and hot vapour treatment schemes.

  19. SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, S; Tomic, N; DeBlois, F

    2016-06-15

    Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response bymore » using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis is inventor and runs a consulting company for radiochromic films.« less

  20. Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Daniel; TU Darmstadt, Darmstadt; Saito, Nami

    2014-05-01

    Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporalmore » correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V{sub 95}) and 107% (V{sub 107}) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V{sub 95} and V{sub 107} values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V{sub 95} > 87%, SD < 3%) and overdose (mean V{sub 107} < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment.« less

  1. Tiered Approaches to Incorporate the Adverse Outcome Pathway Framework into Chemical-Specific Risk-Based Decision Making

    EPA Science Inventory

    The concept of Adverse Outcome Pathways (AOPs) arose as a means of addressing the challenges associated with establishing relationships between high-throughout (HT) in vitro dose response data and in vivo biological outcomes. However, AOP development has also been met with challe...

  2. ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.

    PubMed

    Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon

    2018-03-16

    Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.

  3. Organ dose calculations by Monte Carlo modeling of the updated VCH adult male phantom against idealized external proton exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Guozhi; Liu, Qian; Zeng, Shaoqun; Luo, Qingming

    2008-07-01

    The voxel-based visible Chinese human (VCH) adult male phantom has offered a high-quality test bed for realistic Monte Carlo modeling in radiological dosimetry simulations. The phantom has been updated in recent effort by adding newly segmented organs, revising walled and smaller structures as well as recalibrating skeletal marrow distributions. The organ absorbed dose against external proton exposure was calculated at a voxel resolution of 2 × 2 × 2 mm3 using the MCNPX code for incident energies from 20 MeV to 10 GeV and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO), respectively. The effective dose on the VCH phantom was derived in compliance with the evaluation scheme for the reference male proposed in the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Algorithm transitions from the revised radiation and tissue weighting factors are accountable for approximately 90% and 10% of effective dose discrepancies in proton dosimetry, respectively. Results are tabulated in terms of fluence-to-dose conversion coefficients for practical use and are compared with data from other models available in the literature. Anatomical variations between various computational phantoms lead to dose discrepancies ranging from a negligible level to 100% or more at proton energies below 200 MeV, corresponding to the spatial geometric locations of individual organs within the body. Doses show better agreement at higher energies and the deviations are mostly within 20%, to which the organ volume and mass differences should be of primary responsibility. The impact of body size on dose distributions was assessed by dosimetry of a scaled-up VCH phantom that was resized in accordance with the height and total mass of the ICRP reference man. The organ dose decreases with the directionally uniform enlargement of voxels. Potential pathways to improve the VCH phantom have also been briefly addressed. This work pertains to VCH-based systematic multi-particle dose investigations and will contribute to comparative dosimetry studies of ICRP standardized voxel phantoms in the near future.

  4. Potential for reduced radiation‐induced toxicity using intensity‐modulated arc therapy for whole‐brain radiotherapy with hippocampal sparing

    PubMed Central

    Sood, Sumit; Lominska, Christopher; Kumar, Parvesh; Badkul, Rajeev; Jiang, Hongyu; Wang, Fen

    2015-01-01

    The purpose of this study was to retrospectively investigate the accuracy, plan quality, and efficiency of using intensity‐modulated arc therapy (IMAT) for whole brain radiotherapy (WBRT) patients with sparing not only the hippocampus (following RTOG 0933 compliance criteria) but also other organs at risk (OARs). A total of 10 patients previously treated with nonconformal opposed laterals whole‐brain radiotherapy (NC‐WBRT) were retrospectively replanned for hippocampal sparing using IMAT treatment planning. The hippocampus was volumetrically contoured on fused diagnostic T1‐weighted MRI with planning CT images and hippocampus avoidance zone (HAZ) was generated using a 5 mm uniform margin around the hippocampus. Both hippocampi were defined as one paired organ. Whole brain tissue minus HAZ was defined as the whole‐brain planning target volume (WB‐PTV). Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis TX linear accelerator consisting of high‐definition multileaf collimators (HD‐MLCs: 2.5 mm leaf width at isocenter) and 6 MV beam for a prescription dose of 30 Gy in 10 fractions following RTOG 0933 dosimetric criteria. Two full coplanar arcs with orbits avoidance sectors were used. In addition to RTOG criteria, doses to other organs at risk (OARs), such as parotid glands, cochlea, external/middle ear canals, skin, scalp, optic pathways, brainstem, and eyes/lens, were also evaluated. Subsequently, dose delivery efficiency and accuracy of each IMAT plan was assessed by delivering quality assurance (QA) plans with a MapCHECK device, recording actual beam‐on time and measuring planed vs. measured dose agreement using a gamma index. On IMAT plans, following RTOG 0933 dosimetric criteria, the maximum dose to WB‐PTV, mean WB‐PTV D2%, and mean WB‐PTV D98% were 34.9±0.3 Gy,33.2±0.4 Gy, and 26.0±0.4 Gy, respectively. Accordingly, WB‐PTV received the prescription dose of 30 Gy and mean V30 was 90.5%±0.5%. The D100%, and mean and maximum doses to hippocampus were 8.4±0.3 Gy,11.2±0.3 Gy, and 15.6±0.4 Gy, on average, respectively. The mean values of homogeneity index (HI) and conformity index (CI) were 0.23×0.02 and 0.96×0.02, respectively. The maximum point dose to WB‐PTV was 35.3 Gy, well below the optic pathway tolerance of 37.5 Gy. In addition, compared to NC‐WBRT, dose reduction of mean and maximum of parotid glands from IMAT were 65% and 50%, respectively. Ear canals mean and maximum doses were reduced by 26% and 12%, and mean and maximum scalp doses were reduced by 9 Gy (32%) and 2 Gy (6%), on average, respectively. The mean dose to skin was 9.7 Gy with IMAT plans compared to 16 Gy with conventional NC‐WBRT, demonstrating that absolute reduction of skin dose by a factor of 2. The mean values of the total number of monitor units (MUs) and actual beam on time were 719×44 and 2.34×0.14 min, respectively. The accuracy of IMAT QA plan delivery was (98.1±0.8) %, on average, with a 3%/3 mm gamma index passing rate criteria. All of these plans were considered clinically acceptable per RTOG 0933 criteria. IMAT planning provided highly conformal and homogenous plan with a fast and effective treatment option for WBRT patients, sparing not only hippocampi but also other OARs, which could potentially result in an additional improvement of the quality life (QoL). In the future, we plan to evaluate the clinical potential of IMAT planning and treatment option with hippocampal and other OARs avoidance in our patient's cohort and asses the QoL of the WBRT patients, as well as simultaneous integrated boost (SIB) for the brain metastases diseases. PACS number: 87 PMID:26699321

  5. Tranilast prevents renal interstitial fibrosis by blocking mast cell infiltration in a rat model of diabetic kidney disease.

    PubMed

    Yin, Dan-Dan; Luo, Jun-Hui; Zhao, Zhu-Ye; Liao, Ying-Jun; Li, Ying

    2018-05-01

    Renal interstitial fibrosis is a final pathway that is observed in various types of kidney diseases, including diabetic kidney disease (DKD). The present study investigated the effect of tranilast on renal interstitial fibrosis and the association between its role and mast cell infiltration in a rat model of DKD. A total of 30 healthy 6‑week‑old male Sprague‑Dawley rats were randomly divided into the following four groups: Normal control group; DKD model group; low‑dose tranilast group (200 mg/kg/day); and high‑dose tranilast group (400 mg/kg/day). The morphological alterations of tubulointerstitial fibrosis were evaluated by Masson's trichrome staining, while mast cell infiltration into the renal tubular interstitium was measured by toluidine blue staining and complement C3a receptor 1 (C3aR) immunohistochemical staining (IHC). The expression of fibronectin (FN), collagen I (Col‑I), stem cell factor (SCF) and proto‑oncogene c‑kit (c‑kit) was detected by IHC, western blotting and reverse transcription‑quantitative‑polymerase chain reaction. The results demonstrated that tubulointerstitial fibrosis and mast cell infiltration were observed in DKD model rats, and this was improved dose‑dependently in the tranilast treatment groups. The expression of FN, Col‑I, SCF and c‑kit mRNA and protein was upregulated in the tubulointerstitium of DKD model rats compared with the normal control rats, and tranilast inhibited the upregulated expression of these markers. Furthermore, the degree of SCF and c‑kit expression demonstrated a significant positive correlation with C3aR‑positive mast cells and the markers of renal interstitial fibrosis. The results of the present study indicate that mast cell infiltration may promote renal interstitial fibrosis via the SCF/c‑kit signaling pathway. Tranilast may prevent renal interstitial fibrosis through inhibition of mast cell infiltration mediated through the SCF/c-kit signaling pathway.

  6. COMPUTATIONAL MODELING OF SIGNALING PATHWAYS MEDIATING CELL CYCLE AND APOPTOTIC RESPONSES TO IONIZING RADIATION MEDIATED DNA DAMAGE

    EPA Science Inventory

    Demonstrated of the use of a computational systems biology approach to model dose response relationships. Also discussed how the biologically motivated dose response models have only limited reference to the underlying molecular level. Discussed the integration of Computational S...

  7. Understanding causal pathways within health systems policy evaluation through mediation analysis: an application to payment for performance (P4P) in Tanzania.

    PubMed

    Anselmi, Laura; Binyaruka, Peter; Borghi, Josephine

    2017-02-02

    The evaluation of payment for performance (P4P) programmes has focused mainly on understanding contributions to health service coverage, without unpacking causal mechanisms. The overall aim of the paper is to test the causal pathways through which P4P schemes may (or may not) influence maternal care outcomes. We used data from an evaluation of a P4P programme in Tanzania. Data were collected from a sample of 3000 women who delivered in the 12 months prior to interview and 200 health workers at 150 health facilities from seven intervention and four comparison districts in Tanzania in January 2012 and in February 2013. We applied causal mediation analysis using a linear structural equation model to identify direct and indirect effects of P4P on institutional delivery rates and on the uptake of two doses of an antimalarial drug during pregnancy. We first ran a series of linear difference-in-difference regression models to test the effect of P4P on potential mediators, which we then included in a linear difference-in-difference model evaluating the impact of P4P on the outcome. We tested the robustness of our results to unmeasured confounding using semi-parametric methods. P4P reduced the probability of women paying for delivery care (-4.5 percentage points) which mediates the total effect of P4P on institutional deliveries (by 48%) and on deliveries in a public health facility (by 78%). P4P reduced the stock-out rate for some essential drugs, specifically oxytocin (-36 percentage points), which mediated the total effect of P4P on institutional deliveries (by 22%) and deliveries in a public health facility (by 30%). P4P increased kindness at delivery (5 percentage points), which mediated the effect of P4P on institutional deliveries (by 48%) and on deliveries in a public health facility (by 49%). P4P increased the likelihood of supervision visits taking place within the last 90 days (18 percentage points), which mediated 15% of the total P4P effect on the uptake of two antimalarial doses during antenatal care (IPT2). Kindness during deliveries and the probability of paying out of pocket for delivery care were the mediators most robust to unmeasured confounding. The effect of P4P on institutional deliveries is mediated by financing and human resources factors, while uptake of antimalarials in pregnancy is mediated by governance factors. Further research is required to explore additional and more complex causal pathways.

  8. Pharmacokinetics and Bioavailability of Inhaled Esketamine in Healthy Volunteers.

    PubMed

    Jonkman, Kelly; Duma, Andreas; Olofsen, Erik; Henthorn, Thomas; van Velzen, Monique; Mooren, René; Siebers, Liesbeth; van den Beukel, Jojanneke; Aarts, Leon; Niesters, Marieke; Dahan, Albert

    2017-10-01

    Esketamine is traditionally administered via intravenous or intramuscular routes. In this study we developed a pharmacokinetic model of inhalation of nebulized esketamine with special emphasis on pulmonary absorption and bioavailability. Three increasing doses of inhaled esketamine (dose escalation from 25 to 100 mg) were applied followed by a single intravenous dose (20 mg) in 19 healthy volunteers using a nebulizer system and arterial concentrations of esketamine and esnorketamine were obtained. A multicompartmental pharmacokinetic model was developed using population nonlinear mixed-effects analyses. The pharmacokinetic model consisted of three esketamine, two esnorketamine disposition and three metabolism compartments. The inhalation data were best described by adding two absorption pathways, an immediate and a slower pathway, with rate constant 0.05 ± 0.01 min (median ± SE of the estimate). The amount of esketamine inhaled was reduced due to dose-independent and dose-dependent reduced bioavailability. The former was 70% ± 5%, and the latter was described by a sigmoid EMAX model characterized by the plasma concentration at which absorption was impaired by 50% (406 ± 46 ng/ml). Over the concentration range tested, up to 50% of inhaled esketamine is lost due to the reduced dose-independent and dose-dependent bioavailability. We successfully modeled the inhalation of nebulized esketamine in healthy volunteers. Nebulized esketamine is inhaled with a substantial reduction in bioavailability. Although the reduction in dose-independent bioavailability is best explained by retention of drug and particle exhalation, the reduction in dose-dependent bioavailability is probably due to sedation-related loss of drug into the air.

  9. Assessment of radiation doses from residential smoke detectors that contain americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 ..mu..Ci) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 ..mu..rem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 ..mu..Svmore » (0.0006 to 8 mrem) to total body and from 0.06 to 800 ..mu..Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft/sup 2/).« less

  10. A comparative analysis of warfarin and low-dose heparin as thromboembolism prophylaxis in total hip replacement patinets.

    PubMed Central

    Ritter, M A; HamiltonCW

    1975-01-01

    Warfarin, low-dose heparin, or a combination of low-dose heparin and hydrocortisone was administered to 300 patients undergoing total hip replacement. The lowest incidence of thromboembolic (5 per cent) was attained with Warfarin. Further investigation into the method of administration of low-dose heparin is necessary before it can be used effectively as thromboembolism prophylaxis in total hip replacement patients. The addition of hydrocortisone was not found useful. PMID:1138642

  11. Nitrogen Mustard-Induced Corneal Injury Involves DNA Damage and Pathways Related to Inflammation, Epithelial-Stromal Separation, and Neovascularization.

    PubMed

    Goswami, Dinesh G; Tewari-Singh, Neera; Dhar, Deepanshi; Kumar, Dileep; Agarwal, Chapla; Ammar, David A; Kant, Rama; Enzenauer, Robert W; Petrash, J Mark; Agarwal, Rajesh

    2016-02-01

    To evaluate the toxic effects and associated mechanisms in corneal tissue exposed to the vesicating agent, nitrogen mustard (NM), a bifunctional alkylating analog of the chemical warfare agent sulfur mustard. Toxic effects and associated mechanisms were examined in maximally affected corneal tissue using corneal cultures and human corneal epithelial (HCE) cells exposed to NM. Analysis of ex vivo rabbit corneas showed that NM exposure increased apoptotic cell death, epithelial thickness, epithelial-stromal separation, and levels of vascular endothelial growth factor, cyclooxygenase 2, and matrix metalloproteinase-9. In HCE cells, NM exposure resulted in a dose-dependent decrease in cell viability and proliferation, which was associated with DNA damage in terms of an increase in p53 ser15, total p53, and H2A.X ser139 levels. NM exposure also induced caspase-3 and poly ADP ribose polymerase cleavage, suggesting their involvement in NM-induced apoptotic death in the rabbit cornea and HCE cells. Similar to rabbit cornea, NM exposure caused an increase in cyclooxygenase 2, matrix metalloproteinase-9, and vascular endothelial growth factor levels in HCE cells, indicating a role of these molecules and related pathways in NM-induced corneal inflammation, epithelial-stromal separation, and neovascularization. NM exposure also induced activation of activator protein 1 transcription factor proteins and upstream signaling pathways including mitogen-activated protein kinases and Akt protein kinase, suggesting that these could be key factors involved in NM-induced corneal injury. Results from this study provide insight into the molecular targets and pathways that could be involved in NM-induced corneal injuries laying the background for further investigation of these pathways in vesicant-induced ocular injuries, which could be helpful in the development of targeted therapies.

  12. Nitrogen mustard-induced corneal injury involves DNA damage and pathways related to inflammation, epithelial-stromal separation and neovascularization

    PubMed Central

    Goswami, Dinesh G; Tewari-Singh, Neera; Dhar, Deepanshi; Kumar, Dileep; Agarwal, Chapla; Ammar, David A; Kant, Rama; Enzenauer, Robert W; Petrash, J Mark; Agarwal, Rajesh

    2015-01-01

    Purpose To evaluate the toxic effects and associated mechanisms in corneal tissue exposed to vesicating agent, nitrogen mustard (NM), a bi-functional alkylating analog of chemical warfare agent sulfur mustard (SM). Methods Toxic effects and associated mechanisms were examined in maximal affected corneal tissue employing corneal cultures and human corneal epithelial (HCE) cells exposed to nitrogen mustard (NM). Results Analysis of ex vivo rabbit corneas showed that NM exposure increased apoptotic cell death, epithelial thickness, epithelial-stromal separation and levels of VEGF, COX-2 and MMP-9. In HCE cells, NM exposure resulted in a dose-dependent decrease in cell viability and proliferation, which was associated with DNA damage in terms of an increase in p53 ser15, total p53 and H2A.X ser139 levels. NM exposure also induced caspase-3 and PARP cleavage, suggesting their involvement in NM-induced apoptotic death in rabbit cornea and HCE cells. Similar to rabbit cornea, NM exposure caused an increase in COX-2, MMP-9 and VEGF levels in HCE cells, indicating a role of these molecules and related pathways in NM-induced corneal inflammation, epithelial-stromal separation and neovascularization. NM exposure also induced activation of AP-1 transcription factor proteins and upstream signaling pathways including MAPKs and Akt, suggesting that these could be key factors involved in NM-induced corneal injury. Conclusion Results from this study provide insight into the molecular targets and pathways that could be involved in NM-induced corneal injuries laying the background for further investigation of these pathways in vesicant–induced ocular injuries, which could be helpful in the development of targeted therapies. PMID:26555588

  13. Non-Clinical Safety Studies of IMT504, a Unique Non-CpG Oligonucleotide

    PubMed Central

    Franco, Raúl; Rodriguez, Juan M.; Elías, Fernanda; Hernando-Insúa, Andrés; Fló, Juan; López, Ricardo; Nagle, Carlos; Lago, Néstor; Zorzopulos, Jorge; Horn, David L.

    2014-01-01

    IMT504 is a non-CpG 24-mer oligodeoxynucleotide (ODN) with immunomodulatory as well as tissue repair activity. IMT504 has been previously proven to be effective in animal models of vaccine potency, chronic lymphocytic leukemia, tissue regeneration, and sepsis. Here, we assessed the safety, including pharmacokinetics and toxicity studies in rats and monkeys, of IMT504 in a single- or repeated-dose administration by the subcutaneous (SC) or intravenous (IV) routes. In rats, the maximum tolerated dose was determined to be 50 mg/kg when administered SC. Adverse effects at 50 mg/kg were mild and reversible liver injury, revealed as lobular inflammation, focal necrosis, and small changes in the transaminase profile. Dose-dependent splenomegaly and lymphoid hyperplasia, most probably associated with immune stimulation, were commonly observed. Rats and monkeys were also IV injected with a single dose of 10 or 3.5 mg/kg, and no adverse effects were observed. Rats injected IV with 10 mg/kg showed a transient increase in spleen weight, together with a slight increase in the marginal zone of the white pulp and in leukocyte count 2 days post-administration. In monkeys, this dosage caused slight changes in total serum complement and leukocyte count on day 14. No adverse effects were observed at 3.5 mg/kg IV in rats or monkeys. Therefore, this dose was defined as the “no observed adverse effect level” for this route. Furthermore, repeated-dose toxicity studies were performed in these species using 3.5 or 0.35 mg/kg/day IV for 6 weeks. A transient increase in the spleen and liver weight was observed at 3.5 mg/kg/day only in female rats. No changes in clotting time and activation of the alternative complement pathway were observed. The toxicity profile of IMT504 herein reported suggests a dose range in which IMT504 can be used safely in clinical trials. PMID:24720569

  14. Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt-mTOR signaling pathway in oral squamous cell carcinoma.

    PubMed

    Kapoor, Vaishali; Zaharieva, Maya M; Das, Satya N; Berger, Martin R

    2012-06-01

    We investigated the anticancer activity of erufosine in oral squamous carcinoma cell lines in terms of cell proliferation, colony formation, induction of autophagy/apoptosis, cell cycle and mTOR signaling pathway. Erufosine showed dose-dependent cytotoxicity in all cell lines, it induced autophagy as well as apoptosis, G2 cell cycle arrest and modulation of cyclin D1 expression. Further erufosine downregulated the phosphorylation of major components of mTOR pathway, like p-Akt at Ser473 and Thr308 residues, p-Raptor, p-mTOR, p-PRAS40 and its downstream substrates p-p70S6K and p-4EBP1 in a dose-dependent manner. The pre-treatment of tumor cells with p-mTOR siRNA increased cytotoxic effects of erufosine comparable to cisplatin but higher than rapamycin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Estimation of immunization providers' activities cost, medication cost, and immunization dose errors cost in Iraq.

    PubMed

    Al-lela, Omer Qutaiba B; Bahari, Mohd Baidi; Al-abbassi, Mustafa G; Salih, Muhannad R M; Basher, Amena Y

    2012-06-06

    The immunization status of children is improved by interventions that increase community demand for compulsory and non-compulsory vaccines, one of the most important interventions related to immunization providers. The aim of this study is to evaluate the activities of immunization providers in terms of activities time and cost, to calculate the immunization doses cost, and to determine the immunization dose errors cost. Time-motion and cost analysis study design was used. Five public health clinics in Mosul-Iraq participated in the study. Fifty (50) vaccine doses were required to estimate activities time and cost. Micro-costing method was used; time and cost data were collected for each immunization-related activity performed by the clinic staff. A stopwatch was used to measure the duration of activity interactions between the parents and clinic staff. The immunization service cost was calculated by multiplying the average salary/min by activity time per minute. 528 immunization cards of Iraqi children were scanned to determine the number and the cost of immunization doses errors (extraimmunization doses and invalid doses). The average time for child registration was 6.7 min per each immunization dose, and the physician spent more than 10 min per dose. Nurses needed more than 5 min to complete child vaccination. The total cost of immunization activities was 1.67 US$ per each immunization dose. Measles vaccine (fifth dose) has a lower price (0.42 US$) than all other immunization doses. The cost of a total of 288 invalid doses was 744.55 US$ and the cost of a total of 195 extra immunization doses was 503.85 US$. The time spent on physicians' activities was longer than that spent on registrars' and nurses' activities. Physician total cost was higher than registrar cost and nurse cost. The total immunization cost will increase by about 13.3% owing to dose errors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The radiation dosimeter on-board the FY-4 Satellite

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Sun, Y.; Zhang, S.; Zhang, X.; Sun, Y.; Jing, T.

    2017-12-01

    The total radiation dose effect can lead to a decrease in the performance of satellite devices or materials. Accurately obtaining the total radiation dose during satellite operation could help to analyze the abnormality of payloads in orbit and optimize the design of radiation shielding. The radiation dosimeter is one of the space environmental monitoring devices on the "FY-4" satellite, which is a new generation of geostationary meteorological satellite. The dosimeter consists of 8 detectors, which are installed in different locations of the satellite, to obtain the total radiation dose with different shielding thickness and different orientations. To measure a total radiation dose up to 2000krad(Si), 100nm ion implantation RADFET was used. To improve the sensitivity of the dosimeter, the bias voltage of RADFET is set to 15V, and a 10V, 15-bit A/D is adopted to digitalize the RADFET's threshold voltage, which is increased as the total radiation dose grows. In addition, the temperature effect of RADFET is corrected from the measured temperature on orbit. The preliminary monitoring results show that the radiation dose is less than 35rad (Si) per day at 0.87 mm shielding thickness of equivalent aluminum in the geostationary orbit, and the dose in Y direction of the satellite is less than those in the X and Z directions. The radiation dose at the thickness of 3.87 mm equivalent aluminum is less than 1rad(Si)/day. It is found that the daily total dose measured by the dosimeter has a strong correlation with the flux of high energy electrons.

  17. Rates of Change in Naturalistic Psychotherapy: Contrasting Dose-Effect and Good-Enough Level Models of Change

    ERIC Educational Resources Information Center

    Baldwin, Scott A.; Berkeljon, Arjan; Atkins, David C.; Olsen, Joseph A.; Nielsen, Stevan L.

    2009-01-01

    Most research on the dose-effect model of change has combined data across patients who vary in their total dose of treatment and has implicitly assumed that the rate of change during therapy is constant across doses. In contrast, the good-enough level model predicts that rate of change will be related to total dose of therapy. In this study, the…

  18. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; Label, Kenneth A.; Ladbury, Raymond L.; Mondy, Timothy K.; O'Bryan, Martha V.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose.

  19. DITTY - a computer program for calculating population dose integrated over ten thousand years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.

    The computer program DITTY (Dose Integrated Over Ten Thousand Years) was developed to determine the collective dose from long term nuclear waste disposal sites resulting from the ground-water pathways. DITTY estimates the time integral of collective dose over a ten-thousand-year period for time-variant radionuclide releases to surface waters, wells, or the atmosphere. This document includes the following information on DITTY: a description of the mathematical models, program designs, data file requirements, input preparation, output interpretations, sample problems, and program-generated diagnostic messages.

  20. Vitamin C and E chronic supplementation differentially affect hepatic insulin signaling in rats.

    PubMed

    Ali, Mennatallah A; Eid, Rania M H M; Hanafi, Mervat Y

    2018-02-01

    Vitamin C and vitamin E supplementations and their beneficial effects on type 2 diabetes mellitus (T2DM) have been subjected to countless controversial data. Hence, our aim is to investigate the hepatic molecular mechanisms of any diabetic predisposing risk of the chronic administration of different doses of vitamin E or vitamin C in rats. The rats were supplemented with different doses of vitamin C or vitamin E for eight months. Vitamin C and vitamin E increased fasting blood glucose, insulin, and homeostasis model assessment index for insulin resistance (HOMA). Vitamin C disrupted glucose tolerance by attenuating upstream hepatic insulin action through impairing the phosphorylation and activation of insulin receptor and its subsequent substrates; however, vitamin E showed its effect downstream insulin receptor in the insulin signaling pathway, reducing hepatic glucose transporter-2 (GLUT2) and phosphorylated protein kinase (p-Akt). Moreover, both vitamins showed their antioxidant capabilities [nuclear factor-erythroid-2-related factor 2 (Nrf2), total and reduced glutathione] and their negative effect on Wnt pathway [phosphorylated glycogen synthase kinase-3β (p-GSK-3β)], by altering the previously mentioned parameters, inevitably leading to severe reduction of reactive oxygen species (ROS) below the physiological levels. In conclusion, a detrimental effect of chronic antioxidant vitamins supplementation was detected; leading to insulin resistance and impaired glucose tolerance obviously through different mechanisms. Overall, these findings indicate that the conventional view that vitamins promote health benefits and delay chronic illnesses and aging should be modified or applied with caution. Copyright © 2017. Published by Elsevier Inc.

  1. A targeted strategy to identify untargeted metabolites from in vitro to in vivo: Rapid and sensitive metabolites profiling of licorice in rats using ultra-high performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Huang, Meilin; Cheng, Zhongzhe; Wang, Lu; Feng, Yulin; Huang, Jiangeng; Du, Zhifeng; Jiang, Hongliang

    2018-05-29

    It is challenging to conduct in vivo metabolic study for traditional Chinese medicines (TCMs) because of complex components, unpredictable metabolic pathways and low metabolite concentrations. Herein, we proposed a sensitive strategy to characterize TCM metabolites in vivo at an orally clinical dose using ultra-high performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry (UHPLC-QTRAP-MS). Firstly, the metabolism of individual compounds in rat liver microsomes was studied to obtain the metabolic pathways and fragmentation patterns. The untargeted metabolites in vitro were detected by multiple ion monitoring-enhanced product ion (EPI) and neutral loss-EPI scans. Subsequently, a sensitive multiple reaction monitoring-EPI method was developed according to the in vitro results and predicted metabolites to profile the in vivo metabolites. Licorice as a model herb was used to evaluate and validate our strategy. A clinical dose of licorice water extract was orally administered to rats, then a total of 45 metabolites in urine, 21 metabolites in feces and 35 metabolites in plasma were detected. Among them, 18 minor metabolites have not been reported previously and 6 minor metabolites were first detected in vivo. Several isomeric metabolites were well separated and differentiated in our strategy. These results suggested that this new strategy could be widely used for the detection and characterization of in vivo metabolites of TCMs. Copyright © 2018. Published by Elsevier B.V.

  2. Development of Quantitative Adverse Outcome Pathways Using Health-Protective Assumptions to Fill Data Gaps

    EPA Science Inventory

    In an adverse outcome pathway (AOP), the target site dose participates in a molecular initiating event (MIE), which in turn triggers a sequence of key events leading to an adverse outcome (AO). Quantitative AOPs (QAOP) are needed if AOP characterization is to address risk as well...

  3. Applying Aggregate Exposure Pathway and Adverse Outcome Pathway frameworks to link toxicity testing data to exposure-relevant and biologically-relevant responses

    EPA Science Inventory

    Hazard assessment for nanomaterials often involves applying in vitro dose-response data to estimate potential health risks that arise from exposure to products that contain nanomaterials. However, much uncertainty is inherent in relating bioactivities observed in an in vitro syst...

  4. ToxPlorerTM: A Comprehensive Knowledgebase of Toxicity Pathways Using Ontology-driven Information Extraction

    EPA Science Inventory

    Realizing the potential of pathway-based toxicity testing requires a fresh look at how we describe phenomena leading to adverse effects in vivo, how we assess them in vitro and how we extrapolate them in silico across chemicals, doses and species. We developed the ToxPlorer™ fram...

  5. Glabridin induces apoptosis and cell cycle arrest in oral cancer cells through the JNK1/2 signaling pathway.

    PubMed

    Chen, Chang-Tai; Chen, Yi-Tzu; Hsieh, Yi-Hsien; Weng, Chia-Jui; Yeh, Jung-Chun; Yang, Shun-Fa; Lin, Chiao-Wen; Yang, Jia-Sin

    2018-06-01

    Glabridin, a flavonoid extracted from licorice (Glycyrrhiza glabra), possesses various biological properties, including anticancer activities. However, the effect of glabridin on oral cancer cell apoptosis and the underlying molecular mechanisms has not been elucidated. In this study, we demonstrated that glabridin treatment significantly inhibits cell proliferation in human oral cancer SCC-9 and SAS cell lines. Flow cytometric assays demonstrated that glabridin induced several features of apoptosis, such as sub-G1 phase cell increase and phosphatidylserine externalization. Furthermore, glabridin induced apoptosis dose-dependently in SCC-9 cells through caspase-3, -8, and -9 activation and poly (ADP-ribose) polymerase cleavage. Moreover, glabridin increased the phosphorylation of the extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK) pathways in a dose-dependent manner. Moreover, the inhibition of the JNK1/2 inhibitor significantly reversed the glabridin-induced activation of the caspase pathway. In conclusion, our findings suggest that glabridin induces oral cancer cell apoptosis through the JNK1/2 pathway and is a potential therapeutic agent for oral cancer. © 2018 Wiley Periodicals, Inc.

  6. Mapping the Human Toxome by Systems Toxicology

    PubMed Central

    Bouhifd, Mounir; Hogberg, Helena T.; Kleensang, Andre; Maertens, Alexandra; Zhao, Liang; Hartung, Thomas

    2014-01-01

    Toxicity testing typically involves studying adverse health outcomes in animals subjected to high doses of toxicants with subsequent extrapolation to expected human responses at lower doses. The low-throughput of current toxicity testing approaches (which are largely the same for industrial chemicals, pesticides and drugs) has led to a backlog of more than 80,000 chemicals to which human beings are potentially exposed whose potential toxicity remains largely unknown. Employing new testing strategies that employ the use of predictive, high-throughput cell-based assays (of human origin) to evaluate perturbations in key pathways, referred as pathways of toxicity, and to conduct targeted testing against those pathways, we can begin to greatly accelerate our ability to test the vast “storehouses” of chemical compounds using a rational, risk-based approach to chemical prioritization, and provide test results that are more predictive of human toxicity than current methods. The NIH Transformative Research Grant project Mapping the Human Toxome by Systems Toxicology aims at developing the tools for pathway mapping, annotation and validation as well as the respective knowledge base to share this information. PMID:24443875

  7. Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages

    PubMed Central

    Woods, Courtney G.; Fu, Jingqi; Xue, Peng; Hou, Yongyong; Pluta, Linda J.; Yang, Longlong; Zhang, Qiang; Thomas, Russell S.; Andersen, Melvin E.; Pi, Jingbo

    2009-01-01

    Hypochlorous acid (HOCl) is potentially an important source of cellular oxidative stress. Human HOCl exposure can occur from chlorine gas inhalation or from endogenous sources of HOCl, such as respiratory burst by phagocytes. Transcription factor Nrf2 is a key regulator of cellular redox status and serves as a primary source of defense against oxidative stress. We recently demonstrated that HOCl activates Nrf2-mediated antioxidant response in cultured mouse macrophages in a biphasic manner. In an effort to determine whether Nrf2 pathways overlap with other stress pathways, gene expression profiling was performed in RAW 264.7 macrophages exposed to HOCl using whole genome mouse microarrays. Benchmark dose (BMD) analysis on gene expression data revealed that Nrf2-mediated antioxidant response and protein ubiquitination were the most sensitive biological pathways that were activated in response to low concentrations of HOCl (< 0.35 mM). Genes involved in chromatin architecture maintenance and DNA-dependent transcription were also sensitive to very low doses. Moderate concentrations of HOCl (0.35 to 1.4 mM) caused maximal activation of the Nrf2-pathway and innate immune response genes, such as IL-1β, IL-6, IL-10 and chemokines. At even higher concentrations of HOCl (2.8 to 3.5 mM) there was a loss of Nrf2-target gene expression with increased expression of numerous heat shock and histone cluster genes, AP-1-family genes, cFos and Fra1 and DNA damage-inducible Gadd45 genes. These findings confirm an Nrf2-centric mechanism of action of HOCl in mouse macrophages and provide evidence of interactions between Nrf2, inflammatory, and other stress pathways. PMID:19376150

  8. Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice.

    PubMed

    Shen, Zhenyu; Wang, Yu; Su, Zhenhui; Kou, Ruirui; Xie, Keqin; Song, Fuyong

    2018-02-25

    Acetaminophen (APAP) overdose can cause severe liver failure even death. Nearly half of drug-induced liver injury is attributed to APAP in the US and many European countries. Oxidative stress has been validated as a critical event involved in APAP-induced liver failure. p62/SQSTM1, a selective autophagy adaptor protein, is reported to regulate Nrf2-ARE antioxidant pathway in response to oxidative stress. However, the exact role of p62-keap1-Nrf2 antioxidant pathway in APAP-induced hepatotoxicity remains unknown. In the present study, the dose-response and time-course model in C57/BL6 mice were established by intraperitoneal injection of APAP. The results of serum alanine/aspartate aminotransferases (ALT/AST) and histological examination demonstrated that APAP overdose resulted in the severe liver injury. In the meantime, the levels of p62, phospho-p62 and nuclear Nrf2 were significantly increased by APAP in mice liver, suggesting an activation of p62-keap1-Nrf2 pathway. In addition, the expression of GSTA1 mRNA was increased in a dose-dependent manner, while the mRNA levels of HO-1 and GCLC were decreased with the increase of APAP dose. Our further investigation found that expression of HO-1 and GCLC peaked at 3 h∼6 h, and then were decreased gradually. Taken together, these results indicated that p62-keap1-Nrf2 antioxidant pathway was primarily activated in the early stage of APAP hepatotoxicity, which might play a protective role in the process of APAP-induced acute liver injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Pathway Model of the Kinetics of the TGFbeta Antagonist Smad7 and Cross-Talk with the ATM and WNT Pathways

    NASA Technical Reports Server (NTRS)

    Carra, Claudio; Wang, Minli; Huff, Janice L.; Hada, Megumi; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    Signal transduction controls cellular and tissue responses to radiation. Transforming growth factor beta (TGFbeta) is an important regulator of cell growth and differentiation and tissue homeostasis, and is often dis-regulated in tumor formation. Mathematical models of signal transduction pathways can be used to elucidate how signal transduction varies with radiation quality, and dose and dose-rate. Furthermore, modeling of tissue specific responses can be considered through mechanistic based modeling. We developed a mathematical model of the negative feedback regulation by Smad7 in TGFbeta-Smad signaling and are exploring possible connections to the WNT/beta -catenin, and ATM/ATF2 signaling pathways. A pathway model of TGFbeta-Smad signaling that includes Smad7 kinetics based on data in the scientific literature is described. Kinetic terms included are TGFbeta/Smad transcriptional regulation of Smad7 through the Smad3-Smad4 complex, Smad7-Smurf1 translocation from nucleus to cytoplasm, and Smad7 negative feedback regulation of the TGFO receptor through direct binding to the TGFO receptor complex. The negative feedback controls operating in this pathway suggests non-linear responses in signal transduction, which are described mathematically. We then explored possibilities for cross-talk mediated by Smad7 between DNA damage responses mediated by ATM, and with the WNT pathway and consider the design of experiments to test model driven hypothesis. Numerical comparisons of the mathematical model to experiments and representative predictions are described.

  10. Dosimetric feasibility of an “off-target isocenter” technique for cranial intensity-modulated radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo-Ortega, Juan Francisco, E-mail: jfcdrr@yahoo.es; Moragues, Sandra; Pozo, Miquel

    2015-01-01

    To evaluate the dosimetric effect of placing the isocenter away from the planning target volume (PTV) on intensity-modulated radiosurgery (IMRS) plans to treat brain lesions. A total of 15 patients who received cranial IMRS at our institution were randomly selected. Each patient was treated with an IMRS plan designed with the isocenter located at the target center (plan A). A second off-target isocenter plan (plan B) was generated for each case. In all the plans,100% of the prescription dose covered 99% of the target volume. The plans A and B were compared for the target dosage (conformity index [CI] andmore » homogeneity index) and organs-at-risk (OAR) dose sparing. Peripheral dose falloff was compared by using the metrics volume of normal brain receiving more than 12-Gy dose (V12) and CI at the level of the 50% of the prescription dose (CI 50%). The values found for each metric (plan B vs plan A) were (mean ± standard deviation [SD]) as follows—CI: 1.28 ± 0.15 vs 1.28 ± 0.15, p = 0.978; homogeneity index (HI): 1.29 ± 0.14 vs 1.34 ± 0.17, p = 0.079; maximum dose to the brainstem: 2.95 ± 2.11 vs 2.89 ± 1.88 Gy, p = 0.813; maximum dose to the optical pathway: 2.65 ± 4.18 vs 2.44 ± 4.03 Gy, p = 0.195; and maximum dose to the eye lens: 0.33 ± 0.73 vs 0.33 ± 0.53 Gy, p = 0.970. The values of the peripheral dose falloff were (plan B vs plan A) as follows—V12: 5.98 ± 4.95 vs 6.06 ± 4.92 cm{sup 3}, p = 0.622, and CI 50%: 6.08 ± 2.77 vs 6.28 ± 3.01, p = 0.119. The off-target isocenter solution resulted in dosimetrically comparable plans as the center-target isocenter technique, by avoiding the risk of gantry-couch collision during the cone beam computed tomography (CBCT) acquisition.« less

  11. Assessment of reaction intermediates of gamma radiation-induced degradation of ofloxacin in aqueous solution.

    PubMed

    Changotra, Rahil; Guin, Jhimli Paul; Varshney, Lalit; Dhir, Amit

    2018-06-01

    Gamma radiolytic degradation of an antibiotic, ofloxacin (OFX) was investigated under different experimental conditions. The parameters such as initial OFX concentration, solution pH, absorbed dose and the concentrations of inorganic (CO 3 2- ) and organic (t-BuOH) additives were optimized to achieve the efficient degradation of OFX. The degradation dose constant values of OFX were calculated as 2.364, 1.159, 0.776 and 0.618 kGy -1 for the initial OFX concentrations of 0.05, 0.1, 0.15 and 0.2 mM with their corresponding (G (-OFX)) values of 0.481, 0.684, 1.755 and 1.971, respectively. Degradation rate of OFX was significantly increased with increase in the absorbed dose and decrease in the initial OFX concentration under acidic condition when compared to neutral or alkaline condition. Reaction of OFX in the presence of CO 3 2- and t-BuOH showed that the degradation was primarily caused by the reaction of OFX with radiolytically generated reactive hydroxyl radicals. Mineralization extent of OFX was determined in terms of percentage reduction in total organic carbon (TOC) and results revealed that the addition of H 2 O 2 enhanced the mineralization of OFX from 29% to 36.1% with H 2 O 2 dose of 0.5 mM at an absorbed dose of 3.0 kGy. Based on the LC-QTOF-MS analysis, gamma radiolytic degradation intermediates/products of OFX were identified and the possible degradation pathways of OFX were proposed. Cytotoxicity study of the irradiated OFX solutions showed that gamma radiation has potential to detoxify OFX. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The effect of low dose rate on metabolomic response to radiation in mice

    PubMed Central

    Goudarzi, Maryam; Mak, Tytus D.; Chen, Congju; Smilenov, Lubomir B.; Brenner, David J.

    2014-01-01

    Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed γ-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual's exposure in a radiobiological event and thus would have utility for both triage and injury assessment. PMID:25047638

  13. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic.

    PubMed

    Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R Craig

    2015-10-07

    Exposure to antibiotics induces the expression of mutagenic bacterial stress-response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress-response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. © 2015 The Authors.

  14. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic

    PubMed Central

    Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R. Craig

    2015-01-01

    Exposure to antibiotics induces the expression of mutagenic bacterial stress–response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress–response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. PMID:26446807

  15. Continuing evaluation of bipolar linear devices for total dose bias dependency and ELDRS effects

    NASA Technical Reports Server (NTRS)

    McClure, Steven S.; Gorelick, Jerry L.; Yui, Candice; Rax, Bernard G.; Wiedeman, Michael D.

    2003-01-01

    We present results of continuing efforts to evaluate total dose bias dependency and ELDRS effects in bipolar linear microcircuits. Several devices were evaluated, each exhibiting moderate to significant bias and/or dose rate dependency.

  16. Approximating dose and risk for contaminants in groundwater from the underground nuclear test areas of the Nevada National Security Site (NNSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Jeffrey I.; Chapman, Jenny; Pohlmann, Karl F.

    As part of the Environmental Management Program at the Nevada National Security Site (NNSS), the Underground Test Area (UGTA) Activity investigates the potential impacts of radionuclides that were introduced into groundwater from the underground nuclear tests conducted near or below the NNSS water table between 1951 and 1992. Groundwater models are being used to simulate contaminant transport and forecast contaminant boundaries that encompass areas where the groundwater has a five percent or greater probability of containing contaminants above the Safe Drinking Water Act Maximum Contaminant Levels (SDWA MCLs) at any time during the next 1,000 years. Transport modeling conducted formore » the Frenchman Flat Corrective Action Unit (CAU) at the NNSS identified the beta/photon-emitting radionuclides tritium (3H), carbon-14 (14C), chlorine-36 (36Cl), technetium-99 (99Tc), and iodine-129 (129I) as having the greatest influence in defining the farthest extent of the modeled CAU contaminant boundary. These same radionuclides are assumed here as the contaminants of concern (COCs) for all underground nuclear tests at the NNSS because models are not yet complete for the other CAUs.Potential public exposure to the COCs will only occur and be of concern if the COCs migrate into the groundwater beneath public or private lands at levels that exceed either individual SDWA MCLs or dose and risk limits. Groundwater flow directions strongly suggest that any contaminant boundary predicted by contaminant fate and transport modeling to overlap public or private lands is more likely to occur to the west and/or southwest of the NNSS and the adjacent Nevada Test and Training Range (NTTR). Well-established, rural communities exist in these directions. Estimates of representative activity concentrations at the applicable SDWA MCL were developed for the five COCs. It is assumed that these COC concentrations may collectively occur at some public or private location in the future, but that situation does not exist today. These representative activity concentrations are evaluated with respect to conforming collectively to a modern annual committed effective dose (CED) and lifetime excess cancer morbidity risk for a hypothetical reasonably maximally exposed individual (RMEI). This approach goes beyond the SDWA MCL focus of the contaminant boundary because individual COC concentrations may comply with the SDWA MCL but not collectively meet the modern health-protection metrics and the SDWA language, especially if future modeling studies or monitoring activities show multiple radionuclides from different SDWA MCL categories to be COCs. For the drinking water exposure pathway alone, the annual committed effective dose (CED) for the RMEI from all five COCs that are collectively at estimated activity concentrations equal to their SDWA MCL is well below the U.S. Department of Energy health-protective CED limit of 100 millirem (mrem)/yr. This is consistent using both the NNSS unclassified, 1992 decay-corrected radionuclide atom inventory and the atom inventory based on radionuclides measured in groundwater obtained from the ALMENDRO cavity in 2009 to calculate the SDWA MCL activity concentrations in groundwater. The RMEI’s total lifetime excess cancer risk from the drinking water exposure pathway for both atom inventories is within the range of 1 × 10 -4 to ≤ 1 × 10 -6, which is considered health protective according to modern SDWA MCL regulatory language. The biosphere exposure pathways are drinking water, garden produce, animal products, inadvertent soil ingestion, and indoor and outdoor air inhalation. The exposure parameters for communities west and southwest of the NNSS were developed when the Yucca Mountain high-level, nuclear-waste disposal facility was under consideration. For all biosphere exposure pathways, calculations of the annual CED and lifetime excess cancer morbidity risk for the RMEI revealed that: 1) The annual CED is well within health-protective guidance (<< 100 mrem CED/yr) for the COC activity concentrations at the SDWA MCL, regardless of the atom inventory used. 2) The calculated 70-year lifetime excess cancer morbidity risk (6 x 10 -5) is within the health-protective range when the five COC activity concentrations are derived using the NNSS 1992 atom inventory, but it is at the upper limit of the acceptable range (1 x 10 -4) using the ALMENDRO 2009 atom inventory. 3) Tritium (3H) is the principal COC for producing annual dose and lifetime excess cancer risk, regardless of the atom inventory used. 4) Overall, the drinking water ingestion pathway is the dominant exposure pathway contributing to the total annual CED and lifetime excess cancer risk, followed by eating locally grown produce and animal products. 5) When tritium completely decays (after about 100 years), the RMEI’s lifetime risk will fall well within the health-protective range (i.e., 1 × 10-4 to ≤ 1 × 10 -6) and 36Cl will then become the most important contributor to the RMEI’s total annual CED and lifetime excess cancer morbidity risk from eating local produce and animal products. In the event that radionuclide concentrations begin to approach SDWA MCLs, a reasonable risk-management strategy for keeping lifetime risk more in compliance with regulatory guidance would be to use local sources of groundwater that are below SDWA MCLs or to limit the consumption of local produce and animal products that have ingested COC-contaminated groundwater. The viability of the latter strategy increases where the annual CED due to 36Cl approaches that of 3H.The dose and risk values calculated here for an RMEI are specific to the assumption that the five COCs occur in groundwater beneath public or private lands at concentrations that are collectively at the SDWA MCL. Currently, these COCs are essentially absent from groundwater beneath public or private lands beyond the boundaries of the NNSS and NTTR other than at very low, naturally occurring concentrations. The analyses presented here can be readily applied to determine dose and risk for COC concentrations actually measured in future monitoring samples.« less

  17. Nonmonotonic Dose Responses as They Apply to Estrogen, Androgen, and Thyroid Pathways and EPA Testing and Assessment Procedures

    EPA Pesticide Factsheets

    A state of the science document providing a judgment on the degree to which nonmonotonic dose-responses are evidenced in the scientific literature and to evaluate the extent to which they may impact U.S. EPA’s chemical testing and risk assessment.

  18. QUANTIFYING AGGREGATE CHLORPYRIFOS EXPOSURE AND DOSE TO CHILDREN USING A PHYSICALLY-BASED TWO-STAGE MONTE CARLO PROBABILISTIC MODEL

    EPA Science Inventory

    To help address the Food Quality Protection Act of 1996, a physically-based, two-stage Monte Carlo probabilistic model has been developed to quantify and analyze aggregate exposure and dose to pesticides via multiple routes and pathways. To illustrate model capabilities and ide...

  19. Experimental Design for Multi-drug Combination Studies Using Signaling Networks

    PubMed Central

    Huang, Hengzhen; Fang, Hong-Bin; Tan, Ming T.

    2017-01-01

    Summary Combinations of multiple drugs are an important approach to maximize the chance for therapeutic success by inhibiting multiple pathways/targets. Analytic methods for studying drug combinations have received increasing attention because major advances in biomedical research have made available large number of potential agents for testing. The preclinical experiment on multi-drug combinations plays a key role in (especially cancer) drug development because of the complex nature of the disease, the need to reduce development time and costs. Despite recent progresses in statistical methods for assessing drug interaction, there is an acute lack of methods for designing experiments on multi-drug combinations. The number of combinations grows exponentially with the number of drugs and dose-levels and it quickly precludes laboratory testing. Utilizing experimental dose-response data of single drugs and a few combinations along with pathway/network information to obtain an estimate of the functional structure of the dose-response relationship in silico, we propose an optimal design that allows exploration of the dose-effect surface with the smallest possible sample size in this paper. The simulation studies show our proposed methods perform well. PMID:28960231

  20. SITE SPECIFIC REFERENCE PERSON PARAMETERS AND DERIVED CONCENTRATION STANDARDS FOR THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, T.

    2013-03-14

    The purpose of this report is twofold. The first is to develop a set of behavioral parameters for a reference person specific for the Savannah River Site (SRS) such that the parameters can be used to determine dose to members of the public in compliance with Department of Energy (DOE) Order 458.1 “Radiation Protection of the Public and the Environment.” A reference person is a hypothetical, gender and age aggregation of human physical and physiological characteristics arrived at by international consensus for the purpose of standardizing radiation dose calculations. DOE O 458.1 states that compliance with the annual dose limitmore » of 100 mrem (1 mSv) to a member of the public may be demonstrated by calculating the dose to the maximally exposed individual (MEI) or to a representative person. Historically, for dose compliance, SRS has used the MEI concept, which uses adult dose coefficients and adult male usage parameters. Beginning with the 2012 annual site environmental report, SRS will be using the representative person concept for dose compliance. The dose to a representative person will be based on 1) the SRS-specific reference person usage parameters at the 95th percentile of appropriate national or regional data, which are documented in this report, 2) the reference person (gender and age averaged) ingestion and inhalation dose coefficients provided in DOE Derived Concentration Technical Standard (DOE-STD-1196-2011), and 3) the external dose coefficients provided in the DC_PAK3 toolbox. The second purpose of this report is to develop SRS-specific derived concentration standards (DCSs) for all applicable food ingestion pathways, ground shine, and water submersion. The DCS is the concentration of a particular radionuclide in water, in air, or on the ground that results in a member of the public receiving 100 mrem (1 mSv) effective dose following continuous exposure for one year. In DOE-STD-1196-2011, DCSs were developed for the ingestion of water, inhalation of air and submersion in air pathways, only. These DCSs are required by DOE O 458.1 to be used at all DOE sites in the design and conduct of radiological environmental protection programs. In this report, DCSs for the following additional pathways were considered and documented: ingestion of meat, dairy, grains, produce (fruits and vegetables), seafood, submersion in water and ground shine. These additional DCSs were developed using the same methods as in DOE-STD-1196-2011 and will be used at SRS, where appropriate, as screening and reference values.« less

  1. Dose and Time Dependencies in Stress Pathway Responses during Chemical Exposure: Novel Insights from Gene Regulatory Networks.

    PubMed

    Souza, Terezinha M; Kleinjans, Jos C S; Jennen, Danyel G J

    2017-01-01

    Perturbation of biological networks is often observed during exposure to xenobiotics, and the identification of disturbed processes, their dynamic traits, and dose-response relationships are some of the current challenges for elucidating the mechanisms determining adverse outcomes. In this scenario, reverse engineering of gene regulatory networks (GRNs) from expression data may provide a system-level snapshot embedded within accurate molecular events. Here, we investigate the composition of GRNs inferred from groups of chemicals with two distinct outcomes, namely carcinogenicity [azathioprine (AZA) and cyclophosphamide (CYC)] and drug-induced liver injury (DILI; diclofenac, nitrofurantoin, and propylthiouracil), and a non-carcinogenic/non-DILI group (aspirin, diazepam, and omeprazole). For this, we analyzed publicly available exposed in vitro human data, taking into account dose and time dependencies. Dose-Time Network Identification (DTNI) was applied to gene sets from exposed primary human hepatocytes using four stress pathways, namely endoplasmic reticulum (ER), NF-κB, NRF2, and TP53. Inferred GRNs suggested case specificity, varying in interactions, starting nodes, and target genes across groups. DILI and carcinogenic compounds were shown to directly affect all pathway-based GRNs, while non-DILI/non-carcinogenic chemicals only affected NF-κB. NF-κB-based GRNs clearly illustrated group-specific disturbances, with the cancer-related casein kinase CSNK2A1 being a target gene only in the carcinogenic group, and opposite regulation of NF-κB subunits being observed in DILI and non-DILI/non-carcinogenic groups. Target genes in NRF2-based GRNs shared by DILI and carcinogenic compounds suggested markers of hepatotoxicity. Finally, we indicate several of these group-specific interactions as potentially novel. In summary, our reversed-engineered GRNs are capable of revealing dose dependent, chemical-specific mechanisms of action in stress-related biological networks.

  2. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.

    2000-01-01

    PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.

  3. Comparison of three-dimensional vs. conventional radiotherapy in saving optic tract in paranasal sinus tumors.

    PubMed

    Kamian, S; Kazemian, A; Esfahani, M; Mohammadi, E; Aghili, M

    2010-01-01

    To assess the possibility of delivering a homogeneous irradiation with respect to maximal tolerated dose to the optic pathway for paranasal sinus (PNS) tumors. Treatment planning with conformal three-dimensional (3D) and conventional two-dimensional (2D) was done on CT scans of 20 patients who had early or advanced PNS tumors. Four cases had been previously irradiated. Dose-volume histograms (DVH) for the planning target volume (PTV) and the visual pathway including globes, chiasma and optic nerves were compared between the 2 treatment plannings. The area under curve (AUC) in the DVH of the globes on the same side and contralateral side of tumor involvement was significantly higher in 2D planning (p <0.05), which caused higher integral dose to both globes. Also, the AUC in the DVH of chiasma was higher in 2D treatment planning (p=0.002). The integral dose to the contralateral optic nerve was significantly lower with 3D planning (p=0.007), but there was no significant difference for the optic nerve which was on the same side of tumor involvement (p >0.05). The AUC in the DVH of PTV was not significant (201.1 + or - 16.23 mm(3) in 2D planning vs. 201.15 + or - 15.09 mm(3) in 3D planning). The volume of PTV which received 90% of the prescribed dose was 96.9 + or - 4.41 cm(3) in 2D planning and 97.2 + or - 2.61 cm(3) in 3D planning (p >0.05). 3D conformal radiotherapy (RT) for PNS tumors enables the delivery of radiation to the tumor with respect to critical organs with a lower toxicity to the optic pathway.

  4. PM2.5 promotes human bronchial smooth muscle cell migration via the sonic hedgehog signaling pathway.

    PubMed

    Ye, Xiuqin; Hong, Wei; Hao, Binwei; Peng, Gongyong; Huang, Lingmei; Zhao, Zhuxiang; Zhou, Yumin; Zheng, Mengning; Li, Chenglong; Liang, Chunxiao; Yi, Erkang; Pu, Jinding; Li, Bing; Ran, Pixin

    2018-03-02

    The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD.

  5. Transcriptional profiles in liver from mice treated with hepatotumorigenic and nonhepatotumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil.

    PubMed

    Ward, William O; Delker, Don A; Hester, Susan D; Thai, Sheau-Fung; Wolf, Douglas C; Allen, James W; Nesnow, Stephen

    2006-01-01

    Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study employing conventional toxicological bioassays (Allen et al., 2006), male CD-1 mice were fed triadimefon, propiconazole, or myclobutanil in a continuous oral-dose regimen for 4, 30, or 90 days. These conazoles were found to induce hepatomegaly, to induce high levels of hepatic pentoxyresorufin-O-dealkylase activity, to increase hepatic cell proliferation, to decrease serum cholesterol, and to increase serum triglycerides. Differentially expressed genes and pathways were identified using Affymetrix GeneChips. Gene-pathway associations were obtained from the Kyoto Encyclopedia of Genes and Genomes, Biocarta, and MetaCore compendia. The pathway profiles of each conazole were different at each time point. In general, the number of altered metabolism, signaling, and growth pathways increased with time and dose and were greatest with propiconazole. All conazoles had effects on nuclear receptors as evidenced by increased expression and enzymatic activities of a series of related cytochrome P450s (CYP). A subset of altered genes and pathways distinguished the three conazoles from each other. Triadimefon and propiconazole both altered apoptosis, cell cycle, adherens junction, calcium signaling, and EGFR signaling pathways. Triadimefon produced greater changes in cholesterol biosynthesis and retinoic acid metabolism genes and in selected signaling pathways. Propiconazole had greater effects on genes responding to oxidative stress and on the IGF/P13K/AKt/PTEN/mTor and Wnt-beta-catenin pathways. In conclusion, while triadimefon, propiconazole, and myclobutanil had similar effects in mouse liver on hepatomegaly, histology, CYP activities, cell proliferation, and serum cholesterol, genomic analyses revealed major differences in their gene expression profiles.

  6. Edaravone Improves Septic Cardiac Function by Inducing an HIF-1α/HO-1 Pathway

    PubMed Central

    He, Chao; Zhang, Wei; Li, Suobei; Ruan, Wei; Xu, Junmei

    2018-01-01

    Septic myocardial dysfunction remains prevalent and raises mortality rate in patients with sepsis. During sepsis, tissues undergo tremendous oxidative stress which contributes critically to organ dysfunction. Edaravone, a potent radical scavenger, has been proved beneficial in ischemic injuries involving hypoxia-inducible factor- (HIF-) 1, a key regulator of a prominent antioxidative protein heme oxygenase- (HO-) 1. However, its effect in septic myocardial dysfunction remains unclarified. We hypothesized that edaravone may prevent septic myocardial dysfunction by inducing the HIF-1/HO-1 pathway. Rats were subjected to cecal ligation and puncture (CLP) with or without edaravone infusion at three doses (50, 100, or 200 mg/kg, resp.) before CLP and intraperitoneal injection of the HIF-1α antagonist, ME (15 mg/kg), after CLP. After CLP, rats had cardiac dysfunction, which was associated with deformed myocardium, augmented lipid peroxidation, and increased myocardial apoptosis and inflammation, along with decreased activities of catalase, HIF-1α, and HO-1 in the myocardium. Edaravone pretreatment dose-dependently reversed the changes, of which high dose most effectively improved cardiac function and survival rate of septic rats. However, inhibition of HIF-1α by ME demolished the beneficial effects of edaravone at high dose, reducing the survival rate of the septic rats without treatments. Taken together, edaravone, by inducing the HIF-1α/HO-1 pathway, suppressed oxidative stress and protected the heart against septic myocardial injury and dysfunction. PMID:29765498

  7. Atorvastatin attenuates experimental contrast-induced acute kidney injury: a role for TLR4/MyD88 signaling pathway.

    PubMed

    Yue, Rongzheng; Zuo, Chuan; Zeng, Jing; Su, Baihai; Tao, Ye; Huang, Songmin; Zeng, Rui

    2017-11-01

    To investigate the protective effect of different atorvastatin doses on contrast-induced acute kidney injury and the related mechanism. Healthy male Sprague-Dawley (SD) rats were randomly divided into the blank control group, experimental control group and different-dose atorvastatin groups. A rat model of contrast-induced acute kidney injury was established. We detected changes in serum creatinine (Scr) and blood urea nitrogen (BUN) before and after model establishment, observed and scored renal tubular injury, analyzed rat renal cell apoptosis, and measure the expression of signal pathway proteins and downstream inflammatory factors. After contrast agent injection, the Scr and BUN levels of the experimental control group were significantly increased, the different doses applied in the atorvastatin group significantly reduced the Scr and BUN levels (p < .05) and ameliorated the contrast-induced acute kidney injury (p < .05) and significantly reduced Toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (Myd88), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein expression and relative mRNA expression levels (p < .05) and significantly decreased expression levels of downstream inflammatory factors (p < .05). Different atorvastatin doses have protective effects on contrast-induced acute renal tubular injury in rats, possibly by targeting TLR4, suppressing TLR4 expression, regulating the TLR4/Myd88 signaling pathway, and inhibiting the expression of downstream inflammatory factors.

  8. Glycyrrhizin, silymarin, and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells.

    PubMed

    Hsiang, Chien-Yun; Lin, Li-Jen; Kao, Shung-Te; Lo, Hsin-Yi; Chou, Shun-Ting; Ho, Tin-Yun

    2015-07-15

    Glycyrrhizin, silymarin, and ursodeoxycholic acid are widely used hepatoprotectants for the treatment of liver disorders, such as hepatitis C virus infection, primary biliary cirrhosis, and hepatocellular carcinoma. The gene expression profiles of HepG2 cells responsive to glycyrrhizin, silymarin, and ursodeoxycholic acid were analyzed in this study. HepG2 cells were treated with 25 µM hepatoprotectants for 24 h. Gene expression profiles of hepatoprotectants-treated cells were analyzed by oligonucleotide microarray in triplicates. Nuclear factor-κB (NF-κB) activities were assessed by luciferase assay. Among a total of 30,968 genes, 252 genes were commonly regulated by glycyrrhizin, silymarin, and ursodeoxycholic acid. These compounds affected the expression of genes relevant various biological pathways, such as neurotransmission, and glucose and lipid metabolism. Genes involved in hepatocarcinogenesis, apoptosis, and anti-oxidative pathways were differentially regulated by all compounds. Moreover, interaction networks showed that NF-κB might play a central role in the regulation of gene expression. Further analysis revealed that these hepatoprotectants inhibited NF-κB activities in a dose-dependent manner. Our data suggested that glycyrrhizin, silymarin, and ursodeoxycholic acid regulated the expression of genes relevant to apoptosis and oxidative stress in HepG2 cells. Moreover, the regulation by these hepatoprotectants might be relevant to the suppression of NF-κB activities. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2011-09-01

    The signaling mechanisms underlying the effects of angiotensin II in proximal tubules of the kidney are not completely understood. Here we measured signal protein phosphorylation in isolated proximal tubules using pathway-specific proteomic analysis in rats continuously infused with pressor or non-pressor doses of angiotensin II over a 2-week period. Of the 38 phosphoproteins profiled, 14 were significantly altered by the pressor dose. This included increased phosphorylation of the protein kinase C isoenzymes, PKCα and PKCβII, and the glycogen synthase kinases, GSK3α and GSK3β. Phosphorylation of the cAMP-response element binding protein 1 and PKCδ were decreased, whereas PKCɛ remained unchanged. By contrast, the phosphorylation of only seven proteins was altered by the non-pressor dose, which increased that of PKCα, PKCδ, and GSKα. Phosphorylation of MAP kinases, ERK1/2, was not increased in proximal tubules in vivo by the pressor dose, but was in proximal tubule cells in vitro. Infusion of the pressor dose decreased, whereas the non-pressor dose of angiotensin II increased the phosphorylation of the sodium and hydrogen exchanger 3 (NHE-3) in membrane fractions of proximal tubules. Losartan largely blocked the signaling responses induced by the pressor dose. Thus, PKCα and PKCβII, GSK3α and GSK3β, and cAMP-dependent signaling pathways may have important roles in regulating proximal tubular sodium and fluid transport in Ang II-induced hypertensive rats.

  10. Selective effects of two systemic fungicides on soil fungi.

    PubMed

    Abdel-Fattah, H M; Abdel-Kader, M I; Hamida, S

    1982-08-20

    BAS 317 00F was not toxic to the total count of fungi after 2 days but was regularly significantly toxic at the three doses after 5, 20 and 40 days and toxic at the low and the high doses after 80 days. In the agar medium, it was toxic to the counts of total fungi. Aspergillus, A. terreus, Rhizopus oryzae and Mucor racemosus at the high dose. Only the mycelial growth of Trichoderma viride which was significantly inhibited by the three doses when this fungicide was added to the liquid medium. Polyram-Combi induced two effects on the total population of soil fungi. One inhibitory and this was demonstrated almost regularly after 2, 10 and 40 days and the other stimulatory after 80 days of treatment with the low and the high doses. In the agar medium, this fungicide was very toxic to total fungi and to almost all fungal genera and species at the three doses. Several fungi could survive the high dose. In liquid medium, the test fungi showed variable degree of sensitivity and the most sensitive was Gliocladium roseum which was completely eradicated by the three doses.

  11. Total-dose radiation effects data for semiconductor devices: 1985 supplement, volume 1

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1985-01-01

    Steady-state, total-dose radiation test data are provided, in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 provides total-dose radiation test data on integrated circuits. Volume 1 of this 1985 Supplement contains new total-dose radiation test data generated since the August 1, 1981 release date of the original Volume 1. Publication of Volume 2 of the 1985 Supplement will follow that of Volume 1 by approximately three months.

  12. Special Analysis for the Disposal of the Sandia National Laboratory Classified Macroencapsulated Mixed Waste at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis B.

    This special analysis evaluates whether the Sandia National Laboratory (SNL) Classified Macroencapsulated Mixed Waste stream (ASLA000001007, Revision 4) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The SNL Classified Macroencapsulated Mixed Waste stream consists of debris from classified nuclear weapons components (SNL 2015). The SNL Classified Macroencapsulated Mixed Waste stream required a special analysis due to tritium (3H) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The SNL Classifiedmore » Macroencapsulated Mixed Waste stream had no significant effect on the maximum mean and 95th percentile results for the resident air pathway and all-pathways annual total effective dose (TED). The SNL Classified Macroencapsulated Mixed Waste stream increases the mean air pathway and all-pathways annual TED from approximately 100 to 200 years after closure. Addition of the SNL Classified Macroencapsulated Mixed Waste stream inventory shifts the maximum TED to approximately 100 years after closure and increases the TED for several alternative exposure scenarios. The maximum mean and the 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The SNL Classified Macroencapsulated Mixed Waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less

  13. Structural pathways and prevention of heart failure and sudden death.

    PubMed

    Pacifico, Antonio; Henry, Philip D

    2003-07-01

    We review the macroscopic and microscopic anatomy of myocardial disease associated with heart failure (HF) and sudden cardiac death (SCD) and focus on the prevention of SCD in light of its structural pathways. Compared to patients without SCD, patients with SCD exhibit 5- to 6-fold increases in the risks of ventricular arrhythmias and SCD. Epidemiologically, left ventricular hypertrophy by ECG or echocardiography acts as a potent dose-dependent SCD predictor. Dyslipidemia, a coronary disease risk factor, independently predicts echocardiographic hypertrophy. In adult SCD autopsy studies, increases in heart weight and severe coronary disease are constant findings, whereas rates of acute coronary thrombi vary remarkably. The microscopic myocardial anatomy of SCD is incompletely defined but may include prevalent changes of advanced myocardial disease, including cardiomyocyte hypertrophy, cardiomyocyte apoptosis, fibroblast hyperplasia, diffuse and focal matrix protein accumulation, and recruitment of inflammatory cells. Hypertrophied cardiomyocytes express "fetospecific" genetic programs that can account for acquired long QT physiology with risk for polymorphic ventricular arrhythmias. Structural heart disease associated with HF and high SCD risk is causally related to an up-regulation of the adrenergic renin-angiotensin-aldosterone pathway. In outcome trials, suppression of this pathway with combinations of beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, and mineralocorticoid receptor blockers have achieved substantial total mortality and SCD reductions. Contrarily, trials with ion channel-active agents that are not known to reduce structural heart disease have failed to reduce these risks. Device therapy effectively prevents SCD, but whether biventricular pacing-induced remodeling decreases left ventricular mass remains uncertain.

  14. Design, implementation, and quality control in the Pathways American-Indian multicenter trial

    PubMed Central

    Stone, Elaine J.; Norman, James E.; Davis, Sally M.; Stewart, Dawn; Clay, Theresa E.; Caballero, Ben; Lohman, Timothy G.; Murray, David M.

    2016-01-01

    Background Pathways was the first multicenter American-Indian school-based study to test the effectiveness of an obesity prevention program promoting healthy eating and physical activity. Methods Pathways employed a nested cohort design in which 41 schools were randomized to intervention or control conditions and students within these schools were followed as a cohort (1,704 third graders at baseline). The study’s primary endpoint was percent body fat. Secondary endpoints were levels of fat in school lunches; time spent in physical activity; and knowledge, attitudes, and behaviors regarding diet and exercise. Quality control (QC) included design of data management systems which provided standardization and quality assurance of data collection and processing. Data QC procedures at study centers included manuals of operation, training and certification, and monitoring of performance. Process evaluation was conducted to monitor dose and fidelity of the interventions. Registration and tracking systems were used for students and schools. Results No difference in mean percent body fat at fifth grade was found between the intervention and control schools. Percent of calories from fat and saturated fat in school lunches was significantly reduced in the intervention schools as was total energy intake from 24-hour recalls. Significant increases in self-reported physical activity levels and knowledge of healthy behaviors were found for the intervention school students. Conclusions The Pathways study results provide evidence demonstrating the role schools can play in public health promotion. Its study design and QC systems and procedures provide useful models for other similar school based multi- or single-site studies. PMID:14636805

  15. Bifidobacterium breve B-3 exerts metabolic syndrome-suppressing effects in the liver of diet-induced obese mice: a DNA microarray analysis.

    PubMed

    Kondo, S; Kamei, A; Xiao, J Z; Iwatsuki, K; Abe, K

    2013-09-01

    We previously reported that supplementation with Bifidobacterium breve B-3 reduced body weight gain and accumulation of visceral fat in a dose-dependent manner, and improved serum levels of total cholesterol, glucose and insulin in a mouse model of diet-induced obesity. In this study, we investigated the expression of genes in the liver using DNA microarray analysis and q-PCR to reveal the mechanism of these anti-obesity effects in this mouse model. Administration of B. breve B-3 led to regulated gene expression of pathways involved in lipid metabolism and response to stress. The results indicate that these regulations in the liver are related to the anti-metabolic syndrome effects of B. breve B-3.

  16. Final Environmental Impact Statement (EIS) for the Space Nuclear Thermal Propulsion (SNTP) Program. Sanitized Version. Appendices

    DTIC Science & Technology

    1991-09-19

    and lcom y (U) 3.2-32 3.2.2.1.2 Land Useand IW au (U) 3.2-32 3.2.2.1.3 Noise (U) 3.2-36 3.2.2.1.4 Historic and ArchaolosicAl lcaurves (U) 3.2-36 I, p...and inhalation shielding factor. The total organ dose is then determined ! y summing te component doprs received from each pathway and each...2.078E+01 Sr-90 5.307E+00 Ge-75 3.256E+02 Sr-91 2.247E+05 Ge-77 1.240E+02 Sr-92 9.517E+05 Ge-78 5.980E+03 Sr-93 1.559E+07 As-76 2.793E-03 Y -90 1.980E

  17. Toxicogenomics and cancer risk assessment: a framework for key event analysis and dose-response assessment for nongenotoxic carcinogens.

    PubMed

    Bercu, Joel P; Jolly, Robert A; Flagella, Kelly M; Baker, Thomas K; Romero, Pedro; Stevens, James L

    2010-12-01

    In order to determine a threshold for nongenotoxic carcinogens, the traditional risk assessment approach has been to identify a mode of action (MOA) with a nonlinear dose-response. The dose-response for one or more key event(s) linked to the MOA for carcinogenicity allows a point of departure (POD) to be selected from the most sensitive effect dose or no-effect dose. However, this can be challenging because multiple MOAs and key events may exist for carcinogenicity and oftentimes extensive research is required to elucidate the MOA. In the present study, a microarray analysis was conducted to determine if a POD could be identified following short-term oral rat exposure with two nongenotoxic rodent carcinogens, fenofibrate and methapyrilene, using a benchmark dose analysis of genes aggregated in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) biological processes, which likely encompass key event(s) for carcinogenicity. The gene expression response for fenofibrate given to rats for 2days was consistent with its MOA and known key events linked to PPARα activation. The temporal response from daily dosing with methapyrilene demonstrated biological complexity with waves of pathways/biological processes occurring over 1, 3, and 7days; nonetheless, the benchmark dose values were consistent over time. When comparing the dose-response of toxicogenomic data to tumorigenesis or precursor events, the toxicogenomics POD was slightly below any effect level. Our results suggest that toxicogenomic analysis using short-term studies can be used to identify a threshold for nongenotoxic carcinogens based on evaluation of potential key event(s) which then can be used within a risk assessment framework. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Phase I Study of the Hedgehog Pathway Inhibitor IPI-926 in Adult Patients with Solid Tumors

    PubMed Central

    Jimeno, Antonio; Weiss, Glen J.; Miller, Wilson H.; Gettinger, Scott; Eigl, Bernard J.C.; Chang, Anne Lynne S.; Dunbar, Joi; Devens, Shannon; Faia, Kerrie; Skliris, Georgios; Kutok, Jeff; Lewis, Karl D.; Tibes, Raoul; Sharfman, William H.; Ross, Robert W.; Rudin, Charles M.

    2013-01-01

    Purpose To conduct a first-in-human phase I study to determine the dose-limiting toxicities (DLT), characterize the pharmacokinetic profile, and document the antitumor activity of IPI-926, a new chemical entity that inhibits the Hedgehog pathway (HhP). Experimental Design Patients with solid tumors refractory to standard therapy were given IPI-926 once daily (QD) by mouth in 28-day cycles. The starting dose was 20 mg, and an accelerated titration schedule was used until standard 3 + 3 dose-escalation cohorts were implemented. Pharmacokinetics were evaluated on day −7 and day 22 of cycle 1. Results Ninety-four patients (32F, 62M; ages, 39–87) received doses ranging from 20 to 210 mg QD. Dose levels up to and including 160 mg administered QD were well tolerated. Toxicities consisted of reversible elevations in aspartate aminotransferase (AST), alanine aminotransferase (ALT) and bilirubin, fatigue, nausea, alopecia, and muscle spasms. IPI-926 was not associated with hematologic toxicity. IPI-926 pharmacokinetics were characterized by a slow absorption (Tmax = 2–8 hours) and a terminal half-life (t1/2) between 20 and 40 hours, supporting QD dosing. Of those HhP inhibitor-naïve patients with basal cell carcinoma (BCC) who received more than one dose of IPI-926 and had a follow-up clinical or Response Evaluation Criteria in Solid Tumors (RECIST) assessment, nearly a third (8 of 28 patients) showed a response to IPI-926 at doses ≥130 mg. Conclusions IPI-926 was well tolerated up to 160 mg QD within 28-day cycles, which was established as the recommended phase II dose and schedule for this agent. Single-agent activity of IPI-926 was observed in HhP inhibitor–naïve patients with BCC. PMID:23575478

  19. Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James

    2017-01-01

    The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).

  20. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro

    PubMed Central

    Leung, Ada W. Y.; Hung, Stacy S.; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A.; Aparicio, Samuel; Stirling, Peter C.; Steidl, Christian; Bally, Marcel B.

    2016-01-01

    Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both datasets, warranting further research into combinations of cisplatin and therapeutics targeting these pathways. PMID:26938915

  1. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro.

    PubMed

    Leung, Ada W Y; Hung, Stacy S; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A; Aparicio, Samuel; Stirling, Peter C; Steidl, Christian; Bally, Marcel B

    2016-01-01

    Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell's ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both datasets, warranting further research into combinations of cisplatin and therapeutics targeting these pathways.

  2. A three-tiered approach for linking pharmacokinetic ...

    EPA Pesticide Factsheets

    The power of the adverse outcome pathway (AOP) framework arises from its utilization of pathway-based data to describe the initial interaction of a chemical with a molecular target (molecular initiating event; (MIE), followed by a progression through a series of key events that lead to an adverse outcome relevant for regulatory purposes. The AOP itself is not chemical specific, thus providing the biological context necessary for interpreting high throughput (HT) toxicity screening results. Application of the AOP framework and HT predictions in ecological and human health risk assessment, however, requires the consideration of chemical-specific properties that influence external exposure doses and target tissue doses. To address this requirement, a three-tiered approach was developed to provide a workflow for connecting biology-based AOPs to biochemical-based pharmacokinetic properties (absorption, distribution, metabolism, excretion; ADME), and then to chemical/human activity-based exposure pathways. This approach included: (1) The power of the adverse outcome pathway (AOP) framework arisesfrom its utilization of pathway-based data to describe the initial interaction of a chemical with a molecular target (molecular initiating event; (MIE), followed by a progression through a series of key events that lead to an adverse outcome relevant for regulatory purposes. The AOP itself is not chemical specific, thus providing the biological context necessary for interpreti

  3. ELDRS Characterization for a Very High Dose Mission

    NASA Technical Reports Server (NTRS)

    Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Kenna, Aaron J.; Thorbourn, Dennis O.; Clark, Karla B.; Yan, Tsun-Yee

    2010-01-01

    Evaluation of bipolar linear parts which may have Enhanced Low Dose Rate Sensitivity (ELDRS) is problematic for missions that have very high dose radiation requirements. The accepted standards for evaluating parts that display ELDRS require testing at a very low dose rate which could be prohibitively long for very high dose missions. In this work, a methodology for ELDRS characterization of bipolar parts for mission doses up to 1 Mrad(Si) is evaluated. The procedure employs an initial dose rate of 0.01 rad(Si)/s to a total dose of 50 krad(Si) and then changes to 0.04 rad(Si)/s to a total dose of 1 Mrad(Si). This procedure appears to work well. No change in rate of degradation with dose has been observed when the dose rate is changed from 0.01 to 0.04 rad(Si)/s. This is taken as an indication that the degradation due to the higher dose rate is equivalent to that at the lower dose rate at the higher dose levels, at least for the parts studied to date. In several cases, significant parameter degradation or functional failure not observed at HDR was observed at fairly high total doses (50 to 250 krad(Si)) at LDR. This behavior calls into question the use of dose rate trend data and enhancement factors to predict LDR performance.

  4. Molecular effects of the phosphatidylinositol-3-kinase inhibitor NVP-BKM120 on T and B-cell acute lymphoblastic leukaemia.

    PubMed

    Pereira, João Kleber Novais; Machado-Neto, João Agostinho; Lopes, Matheus Rodrigues; Morini, Beatriz Corey; Traina, Fabiola; Costa, Fernando Ferreira; Saad, Sara Teresinha Olalla; Favaro, Patricia

    2015-09-01

    Constitutive activation of the PI3K pathway in T cell acute lymphoblastic leukaemia (T-ALL) has been reported and in a mouse model, PI3K activation, together with MYC, cooperates in Burkitt lymphoma (BL) pathogenesis. We investigated the effects of NVP-BKM120, a potent pan-class I PI3K inhibitor, in lymphoblastic leukaemia cell lines. Effects of NVP-BKM120 on cell viability, clonogenicity, apoptosis, cell cycle, cell signalling and autophagy were assessed in vitro on T-ALL (Jurkat and MOLT-4) and BL (Daudi and NAMALWA) cell lines. NVP-BKM120 treatment decreased cell viability and clonogenic growth in all tested cells. Moreover, the drug arrested cell cycling in association with a decrease in Cyclin B1 protein levels, and increased apoptosis. Immunoblotting analysis of cells treated with the drug revealed decreased phosphorylation, in a dose-dependent manner, of AKT, mTOR, P70S6K and 4EBP1, with stable total protein levels. Additionally, we observed a dose-dependent decrease in BAD phosphorylation, in association with augmented BAX:BCL2 ratio. Quantification of autophagy showed a dose-dependent increase in acidic vesicular organelles in all cells tested. In summary, our present study establishes that NVP-BKM120 presents an effective antitumour activity against T-ALL and BL cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Clinical dose effect and functional consequences of R92Q in two families presenting with a TRAPS/PFAPA-like phenotype.

    PubMed

    Grandemange, Sylvie; Cabasson, Sébastien; Sarrabay, Guillaume; Pène, Jérôme; Rittore, Cécile; Sanchez, Elodie; Chastang, Marie-Caroline; Guyon, Gaël; Pillet, Pascal; Touitou, Isabelle

    2017-03-01

    TNF receptor-associated syndrome (TRAPS) is a dominantly inherited autoinflammatory condition caused by mutations in the TNFRSF1A gene. The mechanism underlying the variable expressivity of the common variant R92Q (rs4149584; c.362G>A; p.Arg121Gln) is unclear and is of critical importance for patient care and genetic counseling. This study evaluated the impact of the number of R92Q mutations in two unique unrelated families. Two patients with undefined but clear autoinflammatory symptoms were referred for genetic diagnosis. Blood samples were collected from the available family members to screen autoinflammatory genes and assess key steps of the TNFR1-mediated signaling pathway using flow cytometry and ex vivo culture. R92Q homozygosity was demonstrated for the two probands. In family 1, the segregation analysis revealed TRAPS-like symptoms in all carriers, with a more severe presentation in the proband, whereas in family 2, the heterozygous parents were totally asymptomatic, suggesting recessive transmission. Functional studies revealed a nonclassical pathogenesis of TRAPS in the two probands and suggested a compensatory mechanism without clear dose effect. We observed for the first time a possible clinical dose effect of R92Q. This work highlights the importance of familial studies to reconcile the contradictory reports published on the pathogenicity of this variant.

  6. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  7. The Role of Thiol/Disulphide Homeostasis in Anthracycline Associated Cardiac Toxicity.

    PubMed

    Topuz, Mustafa; Şen, Omer; Kaplan, Mehmet; Akkus, Oguz; Erel, Ozcan; Gur, Mustafa

    2017-02-07

    The aim of the present study was to evaluate whether the baseline thiol/disulfide state can predict the occurrence of anthracycline induced cardiac toxicity. A total of 186 cancer patients receiving anthracycline (doxorubicin)-based chemotherapy were enrolled. All patients underwent 2-dimensional (2D) speckle tracking echocardiography (STE) to determine their left ventricular ejection fraction (LVEF) and blood samples for measuring thiol forms were obtained before treatment and 4 weeks after completion of the chemotherapy. The mean dose of doxorubicin exposure was 255 ± 39.2 mg/m 2 . Baseline native thiol was found to be lower whereas baseline disulfide and the disulfide/total thiol ratio were found to be higher in patients who had a decrease in LVEF after anthracycline therapy. Also, the amount of decrease in LVEF was well correlated with the delta value of the thiol forms. Logistic regression analysis revealed that changes in BNP and global longitudinal strain (GLS), baseline level of native thiol, disulfide, and the disulfide/total thiol ratio were strong predictors for a decrease in LVEF.The thiol/disulfide pathway may be a factor for predicting chemotherapy-induced cardiac toxicity as one of the oxidative stress mechanisms.

  8. Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system.

    PubMed

    He, Z X; Qiao, J Y; Yan, Q X; Tan, Z L; Wang, M

    2018-04-12

    Methane produced from formate is one of the important methanogensis pathways in the rumen. However, quantitative information of CH4 production from formate has been rarely reported. The aim of this study was to characterize the conversion rate (CR) of formic acid into CH4 and CO2 by rumen microorganisms. Ground lucerne hay was incubated with buffered ruminal fluid for 6, 12, 24 and 48 h. Before the incubation, 13C-labeled H13COOH was also supplied into the incubation bottle at a dose of 0, 1.5, 2.2 or 2.9 mg/g of DM substrate. There were no interactions (P>0.05) between dose and incubation time for all variables evaluated. When expressed as an absolute amount (ml in gas sample) or a relative CR (%), both 13CH4 and 13CO2 production quadratically increased (P<0.01) with the addition of H13COOH. The total 13C (13CH4 and 13CO2) CR was also quadratically increased (P<0.01) when H13COOH was added. Moreover, formate addition linearly decreased (P<0.031) the concentrations of NH3-N, total and individual volatile fatty acids (acetate, propionate and butyrate), and quadratically decreased (P<0.014) the populations of protozoa, total methanogens, Methanosphaera stadtmanae, Methanobrevibacter ruminantium M1, Methanobrevibacter smithii and Methanosarcina barkeri. In summary, formate affects ruminal fermentation and methanogenesis, as well as the rumen microbiome, in particular microorganisms which are directly or indirectly involved in ruminal methanogenesis. This study provides quantitative verification for the rapid dissimilation of formate into CH4 and CO2 by rumen microorganisms.

  9. Inhibition of Hepatocellular Carcinoma by Total Alkaloids of Rubus alceifolius Poir Involves Suppression of Hedgehog Signaling.

    PubMed

    Zhao, Jinyan; Liu, Liya; Wan, Yun; Zhang, Yuchen; Zhuang, Qunchuan; Zhong, Xiaoyong; Hong, Zhenfeng; Peng, Jun

    2015-07-01

    We evaluated the effects of total alkaloids of Rubus alceifolius Poir (TARAP) on the migration and invasion of hepatocellular carcinoma (HCC) and furthermore investigated the possible molecular mechanisms mediating its anticancer activity. We implanted nude mice with human HCC HepG2 cells and fed them with vehicle (physiological saline) or 3 g/kg/day dose of TARAP 5 days per week for 21 days. We determined the in vitro effect of TARAP on the migration and invasion of HepG2 cells by transwell assay. We evaluated SHH signaling components' (SHH, PTCH, SMO, and Gli1) expression levels by reverse transcriptase-polymerase chain reaction and immunohistochemistry. Activity of the matrix metalloproteinases (MMPs) in supernatants was analyzed by zymography. The expression of the MMPs and their specific tissue inhibitor (tissue inhibitor of matrix metalloproteinases, TIMP-1, 2) in HCC tissues was detected by immunohistochemistry. We discovered that TARAP inhibited hepatocellular migration and invasion in a dose-dependent manner in vitro. In addition, TARAP decreased the expression of SHH, PTCH, SMO, and Gli1 in HCC mouse tumors at both transcriptional and translational levels. Moreover, TARAP inhibited the activity of MMP2 and MMP9. We found that TARAP reduced the expression of MMP2 and MMP9, as well as the tissue inhibitor of MMPs. Our study showed that TARAP inhibits HCC migration and invasion likely through suppression of the hedgehog pathway. This may, in part, explain its anticancer properties. These results suggest that total alkaloids in Rubus alceifolius may have potential as a novel antimetastasis drug in the treatment of HCC. © The Author(s) 2015.

  10. Assessment of inhibitory potential of Pothos scandens L. on ovalbumin-induced airway hyperresponsiveness in balb/c mice.

    PubMed

    Gupta, Saurabh; Basavan, Duraiswamy; Muthureddy Nataraj, Satish Kumar; Raju, K Rama Satyanarayana; Babu, U V; L M, Sharath Kumar; Gupta, Renu

    2014-01-01

    Pothos scandens L. was used in Indian traditional medicine as an antiasthmatic drug. The ethanolic and aqueous extracts were prepared with aerial parts of P. scandens (PSE & PSA). ESI MS/MS of PSE ethanolic extract was carried out for the determination of chemical constituents. CP1 is isolated from the PSE, structurally confirmed with NMR and LCMS/MS. PSE, PSA and CP1 are evaluated against ovalbumin (OVA) induced airway hyperresponsiveness (AHR) in balb/c mice. The test drugs are administered p.o. prior to challenge with aerosolized 2.5% w/v OVA. Total and differential leucocyte count, nitrite (NO2), nitrate (NO3), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-13 (IL-13) are estimated in bronchoalveolar lavage fluid (BALF). Similarly, myeloperoxidase (MPO), malonaldehyde (MDA) and total lung protein (TLP) are estimated in the lungs. The results reveal a significant increase in total and differential leucocyte count, NO2, NO3, TNF-α, IL-6, and IL-13 in OVA induced AHR. However, these parameters are significantly decreased in PSE and PSA tested doses (PSE 100 & 200mg/kg). While, treatment with CP1 is less effective at 5 & 10mg/kg doses. Similar observations obtain for MPO and MDA in lungs. However, the mean value indicated that the PSE at 200mg/kg showed a significant restoration in all the parameters. Pro-inflammatory mediators are known to be responsible for AHR. Histopathology revealed justifies the effectiveness. The present investigations suggest PSE are interesting molecules for further research for asthma, with an approach through pro-inflammatory inhibitory pathway. P. scandens is a potential herbal medicine for allergy induced asthma. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Low-energy electron effects on tensile modulus and infrared transmission properties of a polypyromellitimide film

    NASA Technical Reports Server (NTRS)

    Ferl, J. E.; Long, E. R., Jr.

    1981-01-01

    Infrared (IR) spectroscopy and tensile modulus testing were used to evaluate the importance of experimental procedure on changes in properties of pyromellitic dianhydride-p,p prime-oxydianiline film exposed to electron radiation. The radiation exposures were accelerated, approximate equivalents to the total dose expected for a 30 year mission in geosynchronous Earth orbit. The change in the tensile modulus depends more on the dose rate and the time interval between exposure and testing than on total dose. The IR data vary with both total dose and dose rate. A threshold dose rate exists below which reversible radiation effects on the IR spectra occur. Above the threshold dose rate, irreversible effects occur with the appearance of a new band. Post-irradiation and in situ IR absorption bands are significantly different. It is suggested that the electron radiation induced metastable, excites molecular states.

  12. Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway.

    PubMed

    Wang, Yanni; Zhang, Han; Du, Guanhuan; Wang, Yufeng; Cao, Tianyi; Luo, Qingqiong; Chen, Junjun; Chen, Fuxiang; Tang, Guoyao

    2016-07-01

    Total glucosides of paeony (TGP) is a bioactive compound extracted from paeony roots and has been widely used to ameliorate inflammation in several autoimmune and inflammatory diseases. However, the anti-inflammatory effect of TGP on oral lichen planus (OLP), a chronic inflammatory oral condition characterized by T-cell infiltration and abnormal epithelial keratinization cycle remains unclear. In this study, we found that TLR4 was highly expressed and activation of the NF-κB signaling pathway was obviously observed in the OLP tissues. Moreover, there was significant higher mRNA expression of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in OLP keratinocytes than normal oral epithelial keratinocytes. With the help of the cell culture model by stimulating the keratinocyte HaCaT cells with lipopolysaccharides (LPS), we mimicked the local inflammatory environment of OLP. And we further confirmed that TGP could inhibit LPS-induced production of IL-6 and TNF-α in HaCaT cells via a dose-dependent manner. TGP treatment decreased the phosphorylation of IκBα and NF-κB p65 proteins, thus leading to less nuclear translocation of NF-κB p65 in HaCaT cells. Therefore, our data suggested that TGP may be a new potential candidate for the therapy of OLP. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. An application of the Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP) frameworks to mechanistically integrate data sources across multiple species into cumulative risk assessment (CRA)

    EPA Science Inventory

    Toxicologists use dose-response data from both in vivo and in vitro experiments to evaluate the effects of chemical contaminants on organisms. Cumulative risk assessments (CRAs) consider the effects of multiple stressors on multiple endpoints, and utilize environmental exposure ...

  14. Low‑dose radiation‑induced apoptosis in human leukemia K562 cells through mitochondrial pathways.

    PubMed

    Xin, Yong; Zhang, Hai-Bin; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Jiang, Guan; Zhang, Long-Zhen

    2014-09-01

    High‑dose total body irradiation (TBI) has an established role as preparative regimen for bone‑marrow transplantation in the treatment of chronic myelogenous leukemia (CML), but this regimen still has a relatively high rate of acute and late toxicity. Low‑dose radiation (LDR) induces apoptosis of tumor cells and has numerous beneficial effects on normal tissues, including radiation homeostasis and adaptive response. Based on the previous evidence, in the present study, K562 cells were exposed to LDR, high‑dose radiation (HDR), and LDR in combination with HDR to investigate the possible mechanism of the apoptotic effect and hypersensitivity induced by LDR. The apoptotic rate increased in all radiation groups in a time‑dependent manner. An upregulation of Bax protein expression and a downregulation of Bcl‑xl in a dose‑dependent manner in human leukemia K562 cells was observed. However, the expression of p53 protein did not change in all of the radiation cell groups. The mitochondrial membrane potential (ΔΨm) in K562 cells decreased in all of the radiation cell groups in a dose‑dependent manner. Furthermore, the decrease of ΔΨm was enhanced in the LDR/HDR group compared with that in the LDR or HDR groups. The activity of caspase‑3 was enhanced in all of the radiation groups. In the LDR/HDR group, the activity of caspase‑3 was higher than that in the HDR or LDR groups. The present study provided preliminary experimental evidence of LDR being beneficial in combination with TBI in the treatment of CML.

  15. Inhibition effects of total flavonoids from Scutellaria barbata D. Don on human breast carcinoma bone metastasis via downregulating PTHrP pathway

    PubMed Central

    Liu, Huihui; Guo, Shanyu

    2018-01-01

    It is abundantly clear that tumor-derived parathyroid hormone-related protein (PTHrP), receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) are central contributors in promoting osteolytic process of breast carcinoma bone metastasis. Forcusing on this molecular basis, the study was undertaken to explore the inhibition effects of total flavonoids from Scutellaria barbata D. Don (TF-SB) on human breast carcinoma bone metastasis. MDA-MB-231 cells and nude mouse models of breast cancer bone metastasis were given TF-SB in different concentrations. The proliferation, migration and invasion potentials of MDA-MB-231 cells were respectively tested. The effects of TF-SB on tumor weights and bone destruction were investigated. The mRNA and protein expression of PTHrP, OPG and RANKL were assessed by qPCR and western blot analysis. In vitro, TF-SB inhibited the proliferation, migration and invasion of MDA-MB-231 cells in a dose-dependent manner. In vivo, TF-SB prevented bone metastasis of breast cancer by decreasing the number of osteoclast cells per field in a dose-dependent manner, but not affecting tumor growth or mouse survival. Molecular analysis revealed that TF-SB controled the secretion of osteolysis-related factors PTHrP and its downstream RANKL/OPG. Together, by controlling the expression of PTHrP and its downstream OPG/RANKL, TF-SB has significant inhibition effects on breast cancer bone metastasis, which indicates a new therapeutic method. PMID:29512770

  16. A comprehensive study on the relationship between the image quality and imaging dose in low-dose cone beam CT

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Cervino, Laura; Jia, Xun; Jiang, Steve B.

    2012-04-01

    While compressed sensing (CS)-based algorithms have been developed for the low-dose cone beam CT (CBCT) reconstruction, a clear understanding of the relationship between the image quality and imaging dose at low-dose levels is needed. In this paper, we qualitatively investigate this subject in a comprehensive manner with extensive experimental and simulation studies. The basic idea is to plot both the image quality and imaging dose together as functions of the number of projections and mAs per projection over the whole clinically relevant range. On this basis, a clear understanding of the tradeoff between the image quality and imaging dose can be achieved and optimal low-dose CBCT scan protocols can be developed to maximize the dose reduction while minimizing the image quality loss for various imaging tasks in image-guided radiation therapy (IGRT). Main findings of this work include (1) under the CS-based reconstruction framework, image quality has little degradation over a large range of dose variation. Image quality degradation becomes evident when the imaging dose (approximated with the x-ray tube load) is decreased below 100 total mAs. An imaging dose lower than 40 total mAs leads to a dramatic image degradation, and thus should be used cautiously. Optimal low-dose CBCT scan protocols likely fall in the dose range of 40-100 total mAs, depending on the specific IGRT applications. (2) Among different scan protocols at a constant low-dose level, the super sparse-view reconstruction with the projection number less than 50 is the most challenging case, even with strong regularization. Better image quality can be acquired with low mAs protocols. (3) The optimal scan protocol is the combination of a medium number of projections and a medium level of mAs/view. This is more evident when the dose is around 72.8 total mAs or below and when the ROI is a low-contrast or high-resolution object. Based on our results, the optimal number of projections is around 90 to 120. (4) The clinically acceptable lowest imaging dose level is task dependent. In our study, 72.8 mAs is a safe dose level for visualizing low-contrast objects, while 12.2 total mAs is sufficient for detecting high-contrast objects of diameter greater than 3 mm.

  17. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA).

    PubMed

    Delistraty, Damon; Van Verst, Scott; Rochette, Elizabeth A

    2010-02-01

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from the Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA), as well as below a dose limit of 100 mrem/yr proposed by the International Commission on Radiation Protection (ICRP). Similarly, lifetime cancer risk (1.7E-5), calculated with median inputs, was below risk levels corresponding to these dose limits. However, our dose and risk estimates apply to only one pathway within a multidimensional exposure scenario for Native Americans. On the other hand, radiation dose and risk corresponding to onsite tissue concentrations were not significantly different from those corresponding to offsite (background) concentrations. Recognizing uncertainties in exposure and toxicity assessments, our results may facilitate informed decision making and optimize resource allocation within a risk assessment framework at the Hanford Site. (c) 2009 Elsevier Inc. All rights reserved.

  18. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delistraty, Damon, E-mail: DDEL461@ecy.wa.gov; Verst, Scott Van; Rochette, Elizabeth A.

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from themore » Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA), as well as below a dose limit of 100 mrem/yr proposed by the International Commission on Radiation Protection (ICRP). Similarly, lifetime cancer risk (1.7E-5), calculated with median inputs, was below risk levels corresponding to these dose limits. However, our dose and risk estimates apply to only one pathway within a multidimensional exposure scenario for Native Americans. On the other hand, radiation dose and risk corresponding to onsite tissue concentrations were not significantly different from those corresponding to offsite (background) concentrations. Recognizing uncertainties in exposure and toxicity assessments, our results may facilitate informed decision making and optimize resource allocation within a risk assessment framework at the Hanford Site.« less

  19. Cell Proliferation, Reactive Oxygen and Cellular Glutathione

    PubMed Central

    Day, Regina M.; Suzuki, Yuichiro J.

    2005-01-01

    A variety of cellular activities, including metabolism, growth, and death, are regulated and modulated by the redox status of the environment. A biphasic effect has been demonstrated on cellular proliferation with reactive oxygen species (ROS)—especially hydrogen peroxide and superoxide—in which low levels (usually submicromolar concentrations) induce growth but higher concentrations (usually >10–30 micromolar) induce apoptosis or necrosis. This phenomenon has been demonstrated for primary, immortalized and transformed cell types. However, the mechanism of the proliferative response to low levels of ROS is not well understood. Much of the work examining the signal transduction by ROS, including H2O2, has been performed using doses in the lethal range. Although use of higher ROS doses have allowed the identification of important signal transduction pathways, these pathways may be activated by cells only in association with ROS-induced apoptosis and necrosis, and may not utilize the same pathways activated by lower doses of ROS associated with increased cell growth. Recent data has shown that low levels of exogenous H2O2 up-regulate intracellular glutathione and activate the DNA binding activity toward antioxidant response element. The modulation of the cellular redox environment, through the regulation of cellular glutathione levels, may be a part of the hormetic effect shown by ROS on cell growth. PMID:18648617

  20. Distinct biological effects of low-dose radiation on normal and cancerous human lung cells are mediated by ATM signaling

    PubMed Central

    Li, Wei; Zhao, Yuguang; Wen, Xue; Liang, Xinyue; Zhang, Xiaoying; Zhou, Lei; Hu, Jifan; Niu, Chao; Tian, Huimin; Han, Fujun; Chen, Xiao; Dong, Lihua; Cai, Lu; Cui, Jiuwei

    2016-01-01

    Low-dose radiation (LDR) induces hormesis and adaptive response in normal cells but not in cancer cells, suggesting its potential protection of normal tissue against damage induced by conventional radiotherapy. However, the underlying mechanisms are not well established. We addressed this in the present study by examining the role of the ataxia telangiectasia mutated (ATM) signaling pathway in response to LDR using A549 human lung adenocarcinoma cells and HBE135-E6E7 (HBE) normal lung epithelial cells. We found that LDR-activated ATM was the initiating event in hormesis and adaptive response to LDR in HBE cells. ATM activation increased the expression of CDK4/CDK6/cyclin D1 by activating the AKT/glycogen synthase kinase (GSK)-3β signaling pathway, which stimulated HBE cell proliferation. Activation of ATM/AKT/GSK-3β signaling also increased nuclear accumulation of nuclear factor erythroid 2-related factor 2, leading to increased expression of antioxidants, which mitigated cellular damage from excessive reactive oxygen species production induced by high-dose radiation. However, these effects were not observed in A549 cells. Thus, the failure to activate these pathways in A549 cells likely explains the difference between normal and cancer cells in terms of hormesis and adaptive response to LDR. PMID:27708248

  1. Optimising the combination dosing strategy of abemaciclib and vemurafenib in BRAF-mutated melanoma xenograft tumours.

    PubMed

    Tate, Sonya C; Burke, Teresa F; Hartman, Daisy; Kulanthaivel, Palaniappan; Beckmann, Richard P; Cronier, Damien M

    2016-03-15

    Resistance to BRAF inhibition is a major cause of treatment failure for BRAF-mutated metastatic melanoma patients. Abemaciclib, a cyclin-dependent kinase 4 and 6 inhibitor, overcomes this resistance in xenograft tumours and offers a promising drug combination. The present work aims to characterise the quantitative pharmacology of the abemaciclib/vemurafenib combination using a semimechanistic pharmacokinetic/pharmacodynamic modelling approach and to identify an optimum dosing regimen for potential clinical evaluation. A PK/biomarker model was developed to connect abemaciclib/vemurafenib concentrations to changes in MAPK and cell cycle pathway biomarkers in A375 BRAF-mutated melanoma xenografts. Resultant tumour growth inhibition was described by relating (i) MAPK pathway inhibition to apoptosis, (ii) mitotic cell density to tumour growth and, under resistant conditions, (iii) retinoblastoma protein inhibition to cell survival. The model successfully described vemurafenib/abemaciclib-mediated changes in MAPK pathway and cell cycle biomarkers. Initial tumour shrinkage by vemurafenib, acquisition of resistance and subsequent abemaciclib-mediated efficacy were successfully captured and externally validated. Model simulations illustrate the benefit of intermittent vemurafenib therapy over continuous treatment, and indicate that continuous abemaciclib in combination with intermittent vemurafenib offers the potential for considerable tumour regression. The quantitative pharmacology of the abemaciclib/vemurafenib combination was successfully characterised and an optimised, clinically-relevant dosing strategy was identified.

  2. Decorporation Approach after Rat Lung Contamination with Plutonium: Evaluation of the Key Parameters Influencing the Efficacy of a Protracted Chelation Treatment.

    PubMed

    Grémy, Olivier; Coudert, Sylvie; Renault, Daniel; Miccoli, Laurent

    2017-11-01

    While the efficacy of a protracted zinc (Zn)- or calcium (Ca)-diethylenetriaminepentaacetic acid (DTPA) treatment in reducing transuranic body burden has already been demonstrated, questions about therapeutic variables remain. In response to this, we designed animal experiments primarily to assess both the effect of fractionation of a given dose and the effect of the frequency of dose fraction, with the same total dose. In our study, rats were contaminated intravenously with plutonium (Pu) then treated several days later with Ca-DTPA given at once or in various split-dose regimens cumulating to the same total dose and spread over several days. Similar efficacies were induced by the injection of the total dose or by splitting the dose in several smaller doses, independent of the number of doses and the dose level per injection. In a second study, rats were pulmonary contaminated, and three weeks later they received a Ca-DTPA dose 11-fold higher than the maximal daily recommended dose, administered either as a single bolus or as numerous multiple injections cumulating to the same dose, based on different injection frequency schedules. Independent of frequency schedule, the various split-dose regimens spread over weeks/months were as efficient as single delivery of the total dose in mobilizing lung plutonium, and had a therapeutic advantage for removal of retained hepatic and bone plutonium burdens. We concluded that cumulative dose level was a therapeutic variable of greater importance than the distribution of split doses for the success of a repeated treatment regimen on retained tissue plutonium. In addition, pulmonary administration of clodronate, which aims at killing alveolar macrophages and subsequently releasing their plutonium content, and which is associated with a continuous Ca-DTPA infusion regimen, suggested that the efficacy of injected Ca-DTPA in decorporating lung deposit is limited, due to its restricted penetration into alveolar macrophages and not because plutonium, as a physicochemical form, is unavailable for chelation.

  3. [Prevention of adriamycin-induced alopecia by scalp hypothermia with a deep-frozen Duncool-Cap].

    PubMed

    Konishi, Y; Kuroki, T

    1988-11-01

    In order to prevent Adriamycin (ADM)-induced alopecia, scalp hypothermia with a Duncool-Cap frozen in a freezer at -70 degrees C was carried out. Of the 18 patients studied, one patient given total ADM doses of 240 mg developed alopecia of moderate degree, and another patient treated with ADM at a dose level of 50 mg developed mild alopecia. Alopecia could be almost completely prevented in 10 of the 11 patients given total ADM doses of 100 mg or less, and in 6 of the 7 patients given total doses of 200 mg or more.

  4. Comparison of different glucocorticoid regimens in the management of classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency.

    PubMed

    Ajish, T P; Praveen, V P; Nisha, B; Kumar, Harish

    2014-11-01

    There are recommendations regarding the total dose of hydrocortisone to be administered in the treatment of classical congenital adrenal hyperplasia (CAH) to achieve the twin objectives of glucocorticoid replacement and control of hyperandrogenism. However, there is evidence gap regarding the breakup, timing and type of the steroid regimen. Efficacy of three different glucocorticoid regimens having the same total dose of steroid, differing in either the timing or type of evening steroid administered, in achieving biochemical control of the disease was assessed. The study was done in 13 prepubertal children with classical CAH over a 6-month period with 2 months devoted to each regimen. We used a prospective cross-over design using 10-15 mg/m(2) total dose of hydrocortisone. Two-fifths of the total dose of hydrocortisone was administered in the morning and one-fifth of the total dose was administered at noon in all the regimens. The regimens differed in the timing of the evening dose of hydrocortisone, 06.00-07.00 pm in regimen 1 and 09.00-10.00 pm in regimen 2. The third regimen had the evening dose of hydrocortisone replaced by an equivalent dose of prednisolone suspension which was administered at 10.00 pm. Serum 17-hydroxyprogesterone and testosterone levels were compared to assess the efficacy of treatment regimens. The three different regimens were found to be similar in their ability to control 17-hydroxyprogesterone and testosterone levels. The percentage of patients with predefined criteria for biochemically controlled disease was similar in all the three regimens. However, there was a trend toward better control of 17-hydroxyprogesterone levels in patients receiving evening dose of prednisolone. There is no significant advantage in administering the hydrocortisone dose late at night in patients with classical CAH.

  5. Long-term erythemal UV doses at Sodankylä estimated using total ozone, sunshine duration and snow depth

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Arola, A.; Kaurola, J.; Taalas, P.; Svenøe, T.

    2003-04-01

    A method for estimating daily erythemal UV doses using total ozone, sunshine duration and snow depth has been developed. The method consists of three steps: (1) daily clear-sky UV doses were simulated using the UVSPEC radiative transfer program, with daily values of total ozone as input data, (2) an empirical relationship was sought between the simulated clear-sky UV doses, the measured UV doses and the duration of bright sunshine, (3) daily erythemal UV doses were estimated using this relationship. The method accounts for the varying surface albedo by dividing the period of interest into winter and summer days, depending on the snow depth. Using this method, the daily erythemal UV doses at Sodankylä were estimated for the period 1950--99. This was done using Tromsø's total ozone together with Sodankylä's own sunshine duration and snow depth as input data. Although the method is fairly simple, the results are in good agreement, even on the daily scale, with the UV radiation measured with the Brewer spectrophotometer at Sodankylä. Statistically significant increasing trends in erythemal UV doses of a few percents per decade over the period 1950--99 were found for March and April, suggesting a connection to the stratospheric ozone depletion. For July, on the other hand, a significant decreasing trend of about 3% per decade, supported by the changes in both total ozone and sunshine duration, was found. The produced data set of erythemal UV doses is the longest time series of estimated UV known to the authors.

  6. The Impact of Dose Rate on the Accuracy of Step-and-Shoot Intensity-modulated Radiation Therapy Quality Assurance Using Varian 2300CD.

    PubMed

    Njeh, Christopher F; Salmon, Howard W; Schiller, Claire

    2017-01-01

    Intensity-modulated radiation therapy (IMRT) delivery using "step-and-shoot" technique on Varian C-Series linear accelerator (linac) is influenced by the communication frequency between the multileaf collimator and linac controllers. Hence, the dose delivery accuracy is affected by the dose rate. Our aim was to quantify the impact of using two dose rates on plan quality assurance (QA). Twenty IMRT patients were selected for this study. The plan QA was measured at two different dose rates. A gamma analysis was performed, and the degree of plan modulation on the QA pass rate was also evaluated in terms of average monitor unit per segment (MU/segment) and the total number of segments. The mean percentage gamma pass rate of 94.9% and 93.5% for 300 MU/min and 600 MU/min dose rate, respectively, was observed. There was a significant ( P = 0.001) decrease in percentage gamma pass rate when the dose rate was increased from 300 MU/min to 600 MU/min. There was a weak, but significant association between the percentage pass rate at both dose rate and total number of segments. The total number of MU was significantly correlated to the total number of segments ( r = 0.59). We found a positive correlation between the percentage pass rate and mean MU/segment, r = 0.52 and r = 0.57 for 300 MU/min and 600 MU/min, respectively. IMRT delivery using step-and-shoot technique on Varian 2300CD is impacted by the dose rate and the total amount of segments.

  7. Radiation doses for Marshall Islands Atolls affected by U.S. nuclear testing: all exposure pathways, remedial measures, and environmental loss of (137)Cs.

    PubMed

    Robison, William L; Hamilton, Terry F

    2010-01-01

    Radiation doses calculated for people resettling Bikini Island at Bikini Atoll, Enjebi Island at Enewetak Atoll, Rongelap Island at Rongelap Atoll, and Utrōk Island at Utrōk Atoll are presented. Residence is assumed to begin in 2010. In previous dose assessments it was shown that (137)Cs accounts for about 98% of the total dose for returning residents. About 85 to 90% (depending on the atoll) is via consumption of locally grown foods containing (137)Cs, and about 10 to 15% is due to external exposure from (137)Cs in the soil. These assessments were made using only the radiological half-life of (137)Cs (30.1 y). We have shown since that there is an environmental loss of (137)Cs from soil to groundwater that results in a more rapid loss of (137)Cs from the atoll ecosystem. The mean effective half-life of (137)Cs at the atolls is 8.5 y. Moreover, treatment of coconut trees with potassium (K) reduces (137)Cs concentration in drinking coconut meat at Bikini Atoll to about 5% of pretreatment concentrations. The magnitude of reduction is dependent on the concentration of (137)Cs in soil, and thereby in food crops, and is less for Enjebi and Rongelap Islands than for Bikini Island. Treatment of food crops and fruit trees with K and removal of the top 15 cm of soil around houses and community buildings prior to construction to reduce external exposure where people spend most of their time has been presented to the communities as a "Combined Option" remediation strategy. Doses presented here are calculated using the Combined Option, effective half-life of (137)Cs at the atolls, and a diet of both imported and local foods. The average natural background dose in the Marshall Islands, plus the anthropogenic nuclear test-related dose at Bikini, Enjebi, and Rongelap Islands, is less for each of the islands than the average background dose in the U.S. and Europe.

  8. Confidence Level Based Approach to Total Dose Specification for Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; Label, K. A.

    2017-01-01

    A confidence level based approach to total dose radiation hardness assurance is presented for spacecraft electronics. It is applicable to both ionizing and displacement damage dose. Results are compared to the traditional approach that uses radiation design margin and advantages of the new approach are discussed.

  9. Total Ionizing Dose Effects in Bipolar and BiCMOS Devices

    NASA Technical Reports Server (NTRS)

    Chavez, Rosa M.; Rax, Bernard G.; Scheick, Leif Z.; Johnston, Allan H.

    2005-01-01

    This paper describes total ionizing dose (TID) test results performed at JPL. Bipolar and BiCMOS device samples were tested exhibiting significant degradation and failures at different irradiation levels. Linear technology which is susceptible to low-dose dependency (ELDRS) exhibited greater damage for devices tested under zero bias condition.

  10. Stimulatory effect of insulin on 5alpha-reductase type 1 (SRD5A1) expression through an Akt-dependent pathway in ovarian granulosa cells.

    PubMed

    Kayampilly, Pradeep P; Wanamaker, Brett L; Stewart, James A; Wagner, Carrie L; Menon, K M J

    2010-10-01

    Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P<0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P<0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation.

  11. Effects of sublethal fenitrothion ingestion on cholinesterase inhibition, standard metabolism, thermal preference, and prey-capture ability in the Australian central bearded dragon (Pogona vitticeps, Agamidae).

    PubMed

    Bain, David; Buttemer, William A; Astheimer, Lee; Fildes, Karen; Hooper, Michael J

    2004-01-01

    The central bearded dragon (Pogona vitticeps) is a medium-sized lizard that is common in semiarid habitats in Australia and that potentially is at risk of fenitrothion exposure from use of the chemical in plague locust control. We examined the effects of single sublethal doses of this organophosphate (OP; low dose = 2.0 mg/kg; high dose = 20 mg/kg; control = vehicle alone) on lizard thermal preference, standard metabolic rate, and prey-capture ability. We also measured activities of plasma total cholinesterase (ChE) and acetylcholinesterase before and at 0, 2, 8, 24, 120, and 504 h after OP dosing. Predose plasma total ChE activity differed significantly between sexes and averaged 0.66 +/- 0.06 and 0.45 +/- 0.06 micromol/min/ml for males and females, respectively. Approximately 75% of total ChE activity was attributable to butyrylcholinesterase. Peak ChE inhibition reached 19% 2 h after OP ingestion in the low-dose group, and 68% 8 h after ingestion in high-dose animals. Neither OP doses significantly affected diurnal body temperature, standard metabolic rate, or feeding rate. Plasma total ChE levels remained substantially depressed up to 21 d after dosing in the high-dose group, making this species a useful long-term biomonitor of OP exposure in its habitat.

  12. Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells

    PubMed Central

    Choi, In-Wook; Ismail, Hassan Ahmed Hassan Ahmed; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Yuk, Jae-Min; Jo, Eun-Kyeong; Lee, Young-Ha

    2015-01-01

    Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells. PMID:26528819

  13. Benefits of online in vivo dosimetry for single-fraction total body irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, David J., E-mail: davideaton@nhs.net; Warry, Alison J.; Trimble, Rachel E.

    Use of a patient test dose before single-fraction total body irradiation (TBI) allows review of in vivo dosimetry and modification of the main treatment setup. However, use of computed tomography (CT) planning and online in vivo dosimetry may reduce the need for this additional step. Patients were treated using a supine CT-planned extended source-to-surface distance (SSD) technique with lead compensators and bolus. In vivo dosimetry was performed using thermoluminescent dosimeters (TLDs) and diodes at 10 representative anatomical locations, for both a 0.1-Gy test dose and the treatment dose. In total, 28 patients were treated between April 2007 and July 2013,more » with changes made in 10 cases (36%) following test dose results. Overall, 98.1% of measured in vivo treatment doses were within 10% of the prescribed dose, compared with 97.0% of test dose readings. Changes made following the test dose could have been applied during the single-fraction treatment itself, assuming that the dose was delivered in subportions and online in vivo dosimetry was available for all clinically important anatomical sites. This alleviates the need for a test dose, saving considerable time and resources.« less

  14. Fast method for in-flight estimation of total dose from protons and electrons using RADE Minstrument on JUICE

    NASA Astrophysics Data System (ADS)

    Hajdas, Wojtek; Mrigakshi, Alankrita; Xiao, Hualin

    2017-04-01

    The primary concern of the ESA JUICE mission to Jupiter is the harsh particle radiation environment. Ionizing particles introduce radiation damage by total dose effects, displacement damages or single events effects. Therefore, both the total ionizing dose and the displacement damage equivalent fluence must be assessed to alert spacecraft and its payload as well as to quantify radiation levels for the entire mission lifetime. We present a concept and implementations steps for simplified method used to compute in flight a dose rate and total dose caused by protons. We also provide refinement of the method previously developed for electrons. The dose rates values are given for predefined active volumes located behind layers of materials with known thickness. Both methods are based on the electron and proton flux measurements provided by the Electron and Proton Detectors inside the Radiation Hard Electron Monitor (RADEM) located on-board of JUICE. The trade-off between method accuracy and programming limitations for in-flight computations are discussed. More comprehensive and precise dose rate computations based on detailed analysis of all stack detectors will be made during off-line data processing. It will utilize full spectral unfolding from all RADEM detector subsystems.

  15. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care.

    PubMed

    Cherry, Simon R; Jones, Terry; Karp, Joel S; Qi, Jinyi; Moses, William W; Badawi, Ramsey D

    2018-01-01

    PET is widely considered the most sensitive technique available for noninvasively studying physiology, metabolism, and molecular pathways in the living human being. However, the utility of PET, being a photon-deficient modality, remains constrained by factors including low signal-to-noise ratio, long imaging times, and concerns about radiation dose. Two developments offer the potential to dramatically increase the effective sensitivity of PET. First by increasing the geometric coverage to encompass the entire body, sensitivity can be increased by a factor of about 40 for total-body imaging or a factor of about 4-5 for imaging a single organ such as the brain or heart. The world's first total-body PET/CT scanner is currently under construction to demonstrate how this step change in sensitivity affects the way PET is used both in clinical research and in patient care. Second, there is the future prospect of significant improvements in timing resolution that could lead to further effective sensitivity gains. When combined with total-body PET, this could produce overall sensitivity gains of more than 2 orders of magnitude compared with existing state-of-the-art systems. In this article, we discuss the benefits of increasing body coverage, describe our efforts to develop a first-generation total-body PET/CT scanner, discuss selected application areas for total-body PET, and project the impact of further improvements in time-of-flight PET. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  16. Photobiomodulation: phenomenology and its mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Jiao, Jian-Ling; Xu, Xiao-Yang; Liu, Xiao-Guang; Deng, Shu-Xun; Liu, Song-Hao

    2005-01-01

    There are two kinds of pathways mediating cellular photobiomodulation, the specific one is mediated by the resonant interaction of light with molecules such as cytochrome nitrosyl complexes of mitochondrial electron transfer chain, singlet oxygen, hemoglobin or photosensentor such as endogenous porphyrines, the non-specific one is mediated by the non-resonant interaction of light with membrane proteins. Some of specific pathways mediating photobiomodulation can damage membrane or cell compartments such as mitochondria, lysosomes, endoplasmic reticulum by photodynamic damage if the light intensity is very high so that photodynamic damage will limit the maximum intensity of the light of photobiomodulation although the non-specific pathways mediating photobiomodulation might not damage cells. As the reciprocity law, the rule of Bunsen and Roscoe, was not obeyed for almost all the studied photobiomodulation, and the light energy reaps the greatest benefit where it is most needed, photobiomodulation was thought to be dominantly mediated by the non-specific pathways although the specific pathways can act as a role, which is supported by the dose relationship research in which the photobiomodulation effects were found to be the SIN function of radiation time in many works on the dose relationship when the intensity is kept constant. The non-specific pathways were mainly mediated by membrane receptors and the ultraweak non-resonant interaction of light with membrane receptors can be physically amplified by the coherent state of membrane receptors and then chemically exemplified by signal transduction according to our biological information model of photobiomodulation supported by its successful cellular, animal and clinic applications.

  17. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Timothy E.; Wong, Jeffrey; Liu, An

    2007-03-15

    Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribsmore » and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk.« less

  18. Single-dose radiation therapy for prevention of heterotopic ossification after total hip arthroplasty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Healy, W.L.; Lo, T.C.; Covall, D.J.

    1990-12-01

    Single-dose radiation therapy was prospectively evaluated for its efficacy in prevention of heterotopic ossification in patients at high risk after total hip arthroplasty. Thirty-one patients (34 hips) were treated between 1981 and 1988. Risk factors for inclusion in the protocol included prior evidence of heterotopic ossification, ankylosing spondylitis, and diffuse idiopathic skeletal hyperostosis. Patients with hypertrophic osteoarthritis or traumatic arthritis with osteophytes were not included. Operations on 34 hips included 19 primary total and 11 revision total hip arthroplasties and 4 excisions of heterotopic ossification. All patients received radiotherapy to the hip after operation with a single dose of 700more » centigray. Radiotherapy is recommended on the first postoperative day. After this single-dose radiation treatment, no patient had clinically significant heterotopic ossification. Recurrent disease developed in two hips (6%), as seen on radiography (grades 2 and 3). This series documents a 100% clinical success rate and a 94% radiographic success rate in preventing heterotopic ossification in patients at high risk after total hip arthroplasty. Single-dose radiotherapy is as effective as other radiation protocols in preventing heterotopic ossification after total hip arthroplasty. It is less expensive and easier to administer than multidose radiotherapy.« less

  19. Evaluation of total-dose iron sucrose infusions in patients with iron deficiency anemia.

    PubMed

    Wall, Geoffrey C; Pauly, Rebecca A

    2008-01-15

    The safety and efficacy of a total-dose iron sucrose infusion protocol used in a large, tertiary care teaching hospital were studied. Nondialysis-dependent patients ages 18 years or older who received > or =250 mg of iron sucrose as a single i.v. infusion between January 2005 and January 2007 were eligible for study inclusion. The protocol for total-dose iron sucrose infusion was the same for all patients. The total dose of iron sucrose for each patient was calculated using an equation that included the desired hemoglobin (Hb) value, observed Hb level, ideal body weight, and sex. The calculated dose was divided into portions, rounded to the nearest 250 mg, and administered over four hours every other day. Outcomes measured included Hb, transferrin saturation, and serum ferritin values. A total of 26 patients met the inclusion criteria. The mean +/- S.D. Hb concentration before total-dose iron sucrose infusion was 9.37 +/- 0.9 g/dL, and the mean +/- S.D. corpuscular volume was 75 +/- 7.1 mum(3). The mean +/- S.D. postinfusion Hb concentration for 19 patients for whom follow-up Hb levels were available was 11.4 +/- 1.2 g/dL, significantly higher than the 9.45 +/- 0.8 g/dL measured before the first infusion (p = 0.03). No significant adverse effects were reported in 47 of 49 infusions, with 2 patients experiencing mild nausea. A treatment protocol consisting of alternate-day total-dose iron sucrose infusions was well tolerated and appeared to be effective in improving Hb concentrations in patients with iron deficiency anemia and without chronic kidney disease.

  20. Biological Relevance of Key Events (KE) in utero in The Androgen Adverse Outcome Pathway Network (AOPn) to Adverse Effects in F1 Male Rats

    EPA Science Inventory

    We are conducting studies to evaluate the biological relevance of changes in KEs and molecular initiating events (MIE) in AOPs to determine if these can accurately predict of the dose levels of chemicals that disrupt the androgen signaling pathway in utero. Herein, we focus on ch...

  1. Dose Transition Pathways: The Missing Link Between Complex Dose-Finding Designs and Simple Decision-Making.

    PubMed

    Yap, Christina; Billingham, Lucinda J; Cheung, Ying Kuen; Craddock, Charlie; O'Quigley, John

    2017-12-15

    The ever-increasing pace of development of novel therapies mandates efficient methodologies for assessment of their tolerability and activity. Evidence increasingly support the merits of model-based dose-finding designs in identifying the recommended phase II dose compared with conventional rule-based designs such as the 3 + 3 but despite this, their use remains limited. Here, we propose a useful tool, dose transition pathways (DTP), which helps overcome several commonly faced practical and methodologic challenges in the implementation of model-based designs. DTP projects in advance the doses recommended by a model-based design for subsequent patients (stay, escalate, de-escalate, or stop early), using all the accumulated information. After specifying a model with favorable statistical properties, we utilize the DTP to fine-tune the model to tailor it to the trial's specific requirements that reflect important clinical judgments. In particular, it can help to determine how stringent the stopping rules should be if the investigated therapy is too toxic. Its use to design and implement a modified continual reassessment method is illustrated in an acute myeloid leukemia trial. DTP removes the fears of model-based designs as unknown, complex systems and can serve as a handbook, guiding decision-making for each dose update. In the illustrated trial, the seamless, clear transition for each dose recommendation aided the investigators' understanding of the design and facilitated decision-making to enable finer calibration of a tailored model. We advocate the use of the DTP as an integral procedure in the co-development and successful implementation of practical model-based designs by statisticians and investigators. Clin Cancer Res; 23(24); 7440-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Platelet Inhibition by 81 and 325 mg Aspirin Daily in Men vs. Women without Clinically Apparent Cardiovascular Disease

    PubMed Central

    Qayyum, Rehan; Becker, Diane M.; Yanek, Lisa R.; Moy, Taryn F.; Becker, Lewis C.; Faraday, Nauder; Vaidya, Dhananjay

    2011-01-01

    Compared to men, women have greater platelet aggregation before and after low-dose aspirin. It is not known whether high-dose aspirin therapy brings residual platelet aggregation in women closer to men. Our objective was to compare the inhibition of platelet aggregation in women and men after low and high-dose aspirin. We enrolled healthy subjects (N=106) in a trial of 14 days of aspirin 81 mg/day followed by 14 days of 325 mg/day. Platelet function was measured at baseline and following both aspirin doses. Women had greater baseline platelet activation measures. After both aspirin doses, both sexes had near complete suppression of platelet aggregation to arachidonic acid in whole blood and in platelet-rich plasma (PRP), the direct cyclooxygenase-1 (COX-1) pathway affected by aspirin. For indirect pathways, women had significantly greater residual platelet activation to collagen and adenosine diphosphate (ADP) in whole blood after both aspirin doses and in response to collagen and ADP in PRP after aspirin 325 mg/day only. After aspirin 325 mg/day, women continued to have greater residual platelet aggregation compared to men after aspirin 81 mg/day in response to collagen (p=0.016 in whole blood and p=0.037 in PRP), ADP (p<0.001 in whole blood and p=0.012 in PRP), and epinephrine (p=0.03 in PRP). Excretion of urinary thromboxane metabolite (urinary 11-dehydro thromboxane B2) decreased after aspirin to a similar extent in both sexes. In conclusion, women continue to have greater residual platelet activity after high-dose aspirin even when compared to men treated with a lower dose of aspirin. PMID:18435972

  3. The low-dose combination preparation Vertigoheel activates cyclic nucleotide pathways and stimulates vasorelaxation.

    PubMed

    Heinle, H; Tober, C; Zhang, D; Jäggi, R; Kuebler, W M

    2010-01-01

    Vertigo of various and often unknown aetiologies has been associated with and attributed to impaired microvascular perfusion in the inner ear or the vertebrobasilar system. Vertigoheel is a low-dose combination preparation of proven value in the symptomatic treatment of vertigo. In the present study we tested the hypothesis that Vertigoheel's anti-vertiginous properties may in part be due to a vasodilatory effect exerted via stimulation of the adenylate and/or guanylate cyclase pathways. Thus, the influence of Vertigoheel or its single constituents on synthesis and degradation of cyclic nucleotides was measured. Furthermore, vessel myography was used to observe the effect of Vertigoheel on the vasoreactivity of rat carotid arteries. Vertigoheel and one of its constituents, Anamirta cocculus, stimulated adenylate cyclase activity, while another constituent, Conium maculatum, inhibited phosphodiesterase 5, suggesting that the individual constituents of Vertigoheel contribute differentially to a synergistic stimulation of cyclic nucleotide signalling pathways. In rat carotid artery rings, Vertigoheel counteracted phenylephrine-induced tonic vasoconstriction. The present data demonstrate a vasorelaxant effect of Vertigoheel that goes along with a synergistic stimulation of cyclic nucleotide pathways and may provide a mechanistic basis for the documented anti-vertiginous effects of this combination preparation.

  4. A randomized, first-in-human, healthy volunteer trial of BIVV009, a humanized antibody for the specific inhibition of the classical complement pathway.

    PubMed

    Bartko, Johann; Schoergenhofer, Christian; Schwameis, Michael; Firbas, Christa; Beliveau, Martin; Chang, Colin; Marier, Jean-Francois; Nix, Darrell; Gilbert, James C; Panicker, Sandip; Jilma, Bernd

    2018-05-08

    Aberrant activation of the classical complement pathway is the common underlying pathophysiology of orphan diseases such as bullous pemphigoid, antibody-mediated rejection of organ transplants, cold agglutinin disease and warm autoimmune haemolytic anaemia. Therapeutic options for these complement-mediated disorders are limited and BIVV009, a humanized monoclonal antibody directed against complement factor C1s, may be potentially useful for inhibition of the classical complement pathway. A phase-1, first-in-human, double-blind, randomized, placebo-controlled, dose-escalation trial of single and multiple doses of BIVV009 or placebo was conducted in 64 volunteers to evaluate safety, tolerability, pharmacokinetic, and pharmacodynamic profiles. Single and multiple infusions of BIVV009 were well tolerated without any safety concerns. BIVV009 exhibited a steep concentration-effect relationship with a Hill coefficient of 2.4, and an IC90 of 15.5 µg/mL. This study establishes the foundation for using BIVV009 as a highly selective inhibitor of the classical complement pathway in different diseases. This article is protected by copyright. All rights reserved. © 2018 American Society for Clinical Pharmacology and Therapeutics.

  5. High-dose alcohol intoxication differentially modulates cognitive subprocesses involved in response inhibition.

    PubMed

    Stock, Ann-Kathrin; Schulz, Tom; Lenhardt, Martin; Blaszkewicz, Meinolf; Beste, Christian

    2016-01-01

    Aside from well-known physiological effects, high-dose alcohol intoxication (a.k.a. binge drinking) can lead to aversive social and legal consequences because response inhibition is usually compromised under the influence of alcohol. Although the behavioral aspects of this phenomenon were reported on extensively, the underlying neurophysiological mechanisms mediating this disinhibition are unclear. To close this gap, we used both behavioral and neurophysiological measures (event-related potentials, ERPs) to investigate which subprocesses of response inhibition are altered under the influence of high-dose alcohol intoxication. Using a within-subject design, we asked young healthy participants (n = 27) to complete a GO/NOGO task once sober and once intoxicated (approximately 1.2‰). During intoxication, high-dose alcohol effects were highest in a condition where the participants could not rely on automated stimulus-response mapping processes during response inhibition. In this context, the NOGO-P3 (ERP), that likely depends on dopaminergic signaling within mesocorticolimbic pathways and is thought to reflect motor inhibition and/or the evaluation of inhibitory processes, was altered in the intoxicated state. In contrast to this, the N2 component, which largely depends on nigrostriatal dopamine pathways and is thought to reflect inhibition on a pre-motor level, was not altered. Based on these results, we demonstrate that alcohol-induced changes of dopaminergic neurotransmission do not exert a global effect on response inhibition. Instead, changes are highly subprocess-specific and seem to mainly target mesocorticolimbic pathways that contribute to motor inhibition and the evaluation of such. © 2014 Society for the Study of Addiction.

  6. RhoA/ROCK may involve in cardiac hypertrophy induced by experimental hyperthyroidism.

    PubMed

    Na, Wang; Peng, Guan; Jianping, Zhang; Yanzhong, Chang; Shengjiang, Guan; Li, Chu

    2012-10-01

    In this study, the role of the RhoA/Rho-kinase (RhoA/ROCK)-signaling pathway in cardiovascular dysfunction associated with hyperthyroidism was examined with the use of fasudil, a Rho-kinase inhibitor. Male Spraque-Dawley rats were treated with l-thyroxine (T(4)) alone, T(4) + low-dose fasudil (2 mg/kg/day) or T(4) + high-dose fasudil (10 mg/kg/day) and compared with control animals. Rats in the T(4) group showed an increase in the ratio of heart weight to body weight, which was ameliorated by fasudil at both low and high doses. Morphometric and hemodynamic parameters were also evaluated and confirmed that fasudil attenuated the cardiac hypertrophy induced by T(4). The extent of phosphorylation of the myosin phosphatase targeting subunit was quantified by Western blotting to evaluate the activity of Rho-kinase in the heart tissue. Both Western blotting and reverse transcriptase-polymerase chain reaction analyses revealed enhancement of Rho-kinase and activator protein 1 activity and reduction of c-FLIP(L) expression in the T(4) group, and this response was inhibited by fasudil in a dose-dependent manner. Furthermore, fasudil inhibited apoptosis induced by T(4) as evidenced by the detection of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and the expressions of bax and bcl-2. These results suggested that the RhoA/ROCK pathway is involved in the cardiac hypertrophy induced by experimental hyperthyroidism. The antagonism of this pathway may thus be useful as an alternative target in the treatment of hyperthyroid heart disease.

  7. Phytochemical composition and antinociceptive activity of Bauhinia glauca subsp. hupehana in rats.

    PubMed

    Xu, Jinlong; Zhao, Qizhi; Wei, Lei; Yang, Yu; Xu, Rui; Yu, Nengjiang; Zhao, Yimin

    2015-01-01

    In traditional medicine, Bauhinia glauca subsp. hupehana has long been used as an analgesic agent in China. The aim of this study was to evaluate the antinociceptive activity of the ethanol extract of the aerial parts of B. glauca subsp. hupehana (BHE) in rats and its chemical fingerprint. The antinociceptive activity of BHE was assessed in mice using chemically and heat-induced pain models, such as the acetic acid-induced writhing, hot plate, tail-flick and glutamate tests. Naltrexone hydrochloride, a non-selective opioid receptor antagonist, was utilized to determine the involvement of the opioid system. In addition to this, the involvements of the cGMP and ATP-sensitive K+ channel pathways were also detected using methylene blue and glibenclamide. The oral administration of BHE (at doses of 50, 100 and 200 mg/kg) produced significant and dose-related inhibitions in both the chemically and heat-induced pain models. Interestingly, in the abdominal constriction test, when the dose of BHE was increased to 800 mg/kg (p.o., n = 10), the inhibition rate was 100%. The antinociceptive mechanism may involve the cGMP pathway and ATP sensitive K+ channel pathway. The central antinociceptive effect was not antagonized by naltrexone. One phenolic acid, one lignin and five flavonoids were isolated from BHE. The antinociceptive activity of BHE was most likely due to the presence of the flavonoids. The acute toxicity results showed that BHE was safe at a high dose (2 g/kg, p.o.). The current investigation demonstrates that B. glauca subsp. hupehana is a potential candidate for the development of novel, non-opioid, analgesic phytomedicines.

  8. Evaluation of dose variation during total skin electron irradiation using thermoluminescent dosimeters.

    PubMed

    Weaver, R D; Gerbi, B J; Dusenbery, K E

    1995-09-30

    To determine acceptable dose variation using thermoluminescent dosimeters (TLD) in the treatment of Mycosis Fungoides with total skin electron beam (TSEB) irradiation. From 1983 to 1993, 22 patients were treated with total skin electron beam therapy in the standing position. A six-field technique was used to deliver 2 Gy in two days, treating 4 days per week, to a total dose of 35 to 40 Gy using a degraded 9 MeV electron beam. Thermoluminescent dosimeters were placed on several locations of the body and the results recorded. The variations in these readings were analyzed to determine normal dose variation for various body locations during TSEB. The dose to flat surfaces of the body was essentially the same as the dose to the prescription point. The dose to tangential surfaces was within +/- 10% of the prescription dose, but the readings showed much more variation (up to 24%). Thin areas of the body showed large deviations from the prescription dose along with a large amount of variation in the readings (up to 22%). Special areas of the body, such as the perineum and eyelid, showed large deviations from the prescription dose with very large (up to 40%) variations in the readings. The TLD results of this study will be used as a quality assurance check for all new patients treated with TSEB. The results of the TLDs will be compared with this baseline study to determine if the delivered dose is within acceptable ranges. If the TLD results fall outside the acceptable limits established above, then the patient position can be modified or the technique itself evaluated.

  9. Plasma metabolic profiling analysis of nephrotoxicity induced by acyclovir using metabonomics coupled with multivariate data analysis.

    PubMed

    Zhang, Xiuxiu; Li, Yubo; Zhou, Huifang; Fan, Simiao; Zhang, Zhenzhu; Wang, Lei; Zhang, Yanjun

    2014-08-01

    Acyclovir (ACV) is an antiviral agent. However, its use is limited by adverse side effect, particularly by its nephrotoxicity. Metabonomics technology can provide essential information on the metabolic profiles of biofluids and organs upon drug administration. Therefore, in this study, mass spectrometry-based metabonomics coupled with multivariate data analysis was used to identify the plasma metabolites and metabolic pathways related to nephrotoxicity caused by intraperitoneal injection of low (50mg/kg) and high (100mg/kg) doses of acyclovir. Sixteen biomarkers were identified by metabonomics and nephrotoxicity results revealed the dose-dependent effect of acyclovir on kidney tissues. The present study showed that the top four metabolic pathways interrupted by acyclovir included the metabolisms of arachidonic acid, tryptophan, arginine and proline, and glycerophospholipid. This research proves the established metabonomic approach can provide information on changes in metabolites and metabolic pathways, which can be applied to in-depth research on the mechanism of acyclovir-induced kidney injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Non-Genomic Effects of Xenoestrogen Mixtures

    PubMed Central

    Viñas, René; Jeng, Yow-Jiun; Watson, Cheryl S.

    2012-01-01

    Xenoestrogens (XEs) are chemicals derived from a variety of natural and anthropogenic sources that can interfere with endogenous estrogens by either mimicking or blocking their responses via non-genomic and/or genomic signaling mechanisms. Disruption of estrogens’ actions through the less-studied non-genomic pathway can alter such functional end points as cell proliferation, peptide hormone release, catecholamine transport, and apoptosis, among others. Studies of potentially adverse effects due to mixtures and to low doses of endocrine-disrupting chemicals have recently become more feasible, though few so far have included actions via the non-genomic pathway. Physiologic estrogens and XEs evoke non-monotonic dose responses, with different compounds having different patterns of actions dependent on concentration and time, making mixture assessments all the more challenging. In order to understand the spectrum of toxicities and their mechanisms, future work should focus on carefully studying individual and mixture components across a range of concentrations and cellular pathways in a variety of tissue types. PMID:23066391

  11. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    NASA Technical Reports Server (NTRS)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  12. Radiation exposures due to fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  13. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    PubMed

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  14. Bimodal regulation of p21waf1 protein as function of DNA damage levels

    PubMed Central

    Buscemi, G; Ricci, C; Zannini, L; Fontanella, E; Plevani, P; Delia, D

    2014-01-01

    Human p21Waf1 protein is well known for being transcriptionally induced by p53 and activating the cell cycle checkpoint arrest in response to DNA breaks. Here we report that p21Waf1 protein undergoes a bimodal regulation, being upregulated in response to low doses of DNA damage but rapidly and transiently degraded in response to high doses of DNA lesions. Responsible for this degradation is the checkpoint kinase Chk1, which phosphorylates p21Waf1 on T145 and S146 residues and induces its proteasome-dependent proteolysis. The initial p21Waf1 degradation is then counteracted by the ATM-Chk2 pathway, which promotes the p53-dependent accumulation of p21Waf1 at any dose of damage. We also found that p21Waf1 ablation favors the activation of an apoptotic program to eliminate otherwise irreparable cells. These findings support a model in which in human cells a balance between ATM-Chk2-p53 and the ATR-Chk1 pathways modulates p21Waf1 protein levels in relation to cytostatic and cytotoxic doses of DNA damage. PMID:25486478

  15. Low doses of Paclitaxel repress breast cancer invasion through DJ-1/KLF17 signalling pathway.

    PubMed

    Ismail, Ismail Ahmed; El-Sokkary, Gamal H; Saber, Saber H

    2018-04-27

    Paclitaxel (taxol) is an important agent against many tumours, including breast cancer. Ample data documents that paclitaxel inhibits breast cancer metastasis while others prove that paclitaxel enhances breast cancer metastasis. The mechanisms by which paclitaxel exerts its action are not well established. This study focuses on the effect of paclitaxel, particularly the low doses on breast cancer metastasis and the mechanisms that regulate it. Current results show that, paclitaxel exerts significant cytotoxicity even at low doses in both MCF-7 and MDA-MB-231 cells. Interestingly, paclitaxel significantly inhibits cell invasion and migration, decreases Snail and increases E-cadherin mRNA expression levels at the indicated low doses. Furthermore, paclitaxel-inhibiting breast cancer metastasis is associated with down-regulation of DJ-1 and ID-1 mRNA expression level with a concurrent increase in KLF17 expression. Under the same experimental conditions, paclitaxel induces KLF17 and concurrently represses ID-1 protein levels. Our results show for the first time that paclitaxel inhibits breast cancer metastasis through regulating DJ-1/KLF17/ID-1 signalling pathway; repressed DJ-1 and ID-1 and enhanced KLF17 expression. © 2018 John Wiley & Sons Australia, Ltd.

  16. Tumor Induction in Mice After Localized Single- or Fractionated-Dose Irradiation: Differences in Tumor Histotype and Genetic Susceptibility Based on Dose Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmondson, Elijah F., E-mail: elijah.edmondson@colostate.edu; Hunter, Nancy R.; Weil, Michael M.

    2015-07-15

    Purpose: To investigate differences in tumor histotype, incidence, latency, and strain susceptibility in mice exposed to single-dose or clinically relevant, fractioned-dose γ-ray radiation. Methods and Materials: C3Hf/Kam and C57BL/6J mice were locally irradiated to the right hindlimb with either single large doses between 10 and 70 Gy or fractionated doses totaling 40 to 80 Gy delivered at 2-Gy/d fractions, 5 d/wk, for 4 to 8 weeks. The mice were closely evaluated for tumor development in the irradiated field for 800 days after irradiation, and all tumors were characterized histologically. Results: A total of 210 tumors were induced within the radiation field in 788 mice. Anmore » overall decrease in tumor incidence was observed after fractionated irradiation (16.4%) in comparison with single-dose irradiation (36.1%). Sarcomas were the predominant postirradiation tumor observed (n=201), with carcinomas occurring less frequently (n=9). The proportion of mice developing tumors increased significantly with total dose for both single-dose and fractionated schedules, and latencies were significantly decreased in mice exposed to larger total doses. C3Hf/Kam mice were more susceptible to tumor induction than C57BL/6J mice after single-dose irradiation; however, significant differences in tumor susceptibilities after fractionated radiation were not observed. For both strains of mice, osteosarcomas and hemangiosarcomas were significantly more common after fractionated irradiation, whereas fibrosarcomas and malignant fibrous histiocytomas were significantly more common after single-dose irradiation. Conclusions: This study investigated the tumorigenic effect of acute large doses in comparison with fractionated radiation in which both the dose and delivery schedule were similar to those used in clinical radiation therapy. Differences in tumor histotype after single-dose or fractionated radiation exposures provide novel in vivo evidence for differences in tumor susceptibility among stromal cell populations.« less

  17. SU-E-T-540: Volumetric Modulated Total Body Irradiation Using a Rotational Lazy Susan-Like Immobilization System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X; Hrycushko, B; Lee, H

    2014-06-01

    Purpose: Traditional extended SSD total body irradiation (TBI) techniques can be problematic in terms of patient comfort and/or dose uniformity. This work aims to develop a comfortable TBI technique that achieves a uniform dose distribution to the total body while reducing the dose to organs at risk for complications. Methods: To maximize patient comfort, a lazy Susan-like couch top immobilization system which rotates about a pivot point was developed. During CT simulation, a patient is immobilized by a Vac-Lok bag within the body frame. The patient is scanned head-first and then feet-first following 180° rotation of the frame. The twomore » scans are imported into the Pinnacle treatment planning system and concatenated to give a full-body CT dataset. Treatment planning matches multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. VMAT fields of the torso are optimized to satisfy lung dose constraints while achieving a therapeutic dose to the torso. The multiple isocenter VMAT fields are delivered with an indexed couch, followed by body frame rotation about the pivot point to treat the lower body isocenters. The treatment workflow was simulated with a Rando phantom, and the plan was mapped to a solid water slab phantom for point- and film-dose measurements at multiple locations. Results: The treatment plan of 12Gy over 8 fractions achieved 80.2% coverage of the total body volume within ±10% of the prescription dose. The mean lung dose was 8.1 Gy. All ion chamber measurements were within ±1.7% compared to the calculated point doses. All relative film dosimetry showed at least a 98.0% gamma passing rate using a 3mm/3% passing criteria. Conclusion: The proposed patient comfort-oriented TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.« less

  18. Low-dose CT for quantitative analysis in acute respiratory distress syndrome

    DTIC Science & Technology

    2013-08-31

    noise of scans performed at 140, 60, 15 and 7.5 mAs corresponded to 10, 16, 38 and 74 Hounsfield Units , respectively. Conclusions: A reduction of...slice of a series, total lung volume, total lung tissue mass and frequency distribution of lung CT numbers expressed in Hounsfield Units (HU) were...tomography; HU: Hounsfield units ; CTDIvol: volumetric computed tomography dose index; DLP: dose length product; E: effective dose; SD: standard deviation

  19. LM193 Dual Differential Comparator Total Ionizing Dose Test Report

    NASA Technical Reports Server (NTRS)

    Topper, Alyson; Forney, James; Campola, Michael

    2017-01-01

    The purpose of this test was to characterize the flight lot of Texas Instruments' LM193 (flight part number is 5962-9452601Q2A) for total dose response. This test served as the radiation lot acceptance test (RLAT) for the lot date code (LDC) tested. Low dose rate (LDR) irradiations were performed in this test so that the device susceptibility to enhanced low dose rate sensitivity (ELDRS) was determined.

  20. Dose-Dependent Model of Caffeine Effects on Human Vigilance during Total Sleep Deprivation

    DTIC Science & Technology

    2014-05-20

    does not consider the absorption of caffeine . This is a reasonable approximation for caffeine when ingested via coffee , tea, energy drinks, and most...Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation Sridhar Ramakrishnan a, Srinivas Laxminarayan a, Nancy J...We modeled the dose-dependent effects of caffeine on human vigilance. The model predicted the effects of both single and repeated caffeine doses

  1. Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment.

    PubMed

    Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Campbell, Kerry S; MacFarlane, Alexander W; Olszanski, Anthony J; Cai, Kathy Q; Hensley, Harvey H; Ross, Eric A; Ralff, Marie D; Zloza, Andrew; Chesson, Charles B; Newman, Jenna H; Kaufman, Howard; Bertino, Joseph; Stein, Mark; El-Deiry, Wafik S

    2018-06-01

    ONC201 is a first-in-class, orally active antitumor agent that upregulates cytotoxic TRAIL pathway signaling in cancer cells. ONC201 has demonstrated safety and preliminary efficacy in a first-in-human trial in which patients were dosed every 3 weeks. We hypothesized that dose intensification of ONC201 may impact antitumor efficacy. We discovered that ONC201 exerts dose- and schedule-dependent effects on tumor progression and cell death signaling in vivo. With dose intensification, we note a potent anti-metastasis effect and inhibition of cancer cell migration and invasion. Our preclinical results prompted a change in ONC201 dosing in all open clinical trials. We observed accumulation of activated NK+ and CD3+ cells within ONC201-treated tumors and that NK cell depletion inhibits ONC201 efficacy in vivo, including against TRAIL/ONC201-resistant Bax-/- tumors. Immunocompetent NCR1-GFP mice, in which NK cells express GFP, demonstrated GFP+ NK cell infiltration of syngeneic MC38 colorectal tumors. Activation of primary human NK cells and increased degranulation occurred in response to ONC201. Coculture experiments identified a role for TRAIL in human NK-mediated antitumor cytotoxicity. Preclinical results indicate the potential utility for ONC201 plus anti-PD-1 therapy. We observed an increase in activated TRAIL-secreting NK cells in the peripheral blood of patients after ONC201 treatment. The results offer what we believe to be a unique pathway of immune stimulation for cancer therapy.

  2. Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway.

    PubMed

    Mohseni, Gholmreza; Ostadhadi, Sattar; Imran-Khan, Muhammad; Norouzi-Javidan, Abbas; Zolfaghari, Samira; Haddadi, Nazgol-Sadat; Dehpour, Ahmad-Reza

    2017-04-01

    Depression is one the world leading global burdens leading to various comorbidities. Lithium as a mainstay in the treatment of depression is still considered gold standard treatment. Similar to lithium another agent agmatine has also central protective role against depression. Since, both agmatine and lithium modulate various effects through interaction with NMDA receptor, therefore, in current study we aimed to investigate the synergistic antidepressant-like effect of agmatine with lithium in mouse force swimming test. Also to know whether if such effect is due to interaction with NMDA receptor. In our present study we found that when potent dose of lithium (30mg/kg) was administered, it significantly decreased the immobility time. Also, when subeffective dose of agmatine (0.01mg/kg) was coadministered with subeffective dose of lithium (3mg/kg), it potentiated the antidepressant-like effect of subeffective dose of lithium. For the involvement of NMDA receptor in such effect, we administered NMDA receptor antagonist MK-801 (0.05mg/kg) with a combination of subeffective dose of lithium (3mg/kg) and agmatine (0.001mg/kg). A significant antidepressant-like effect was observed. Furthermore, when subeffective dose (50 and 75mg/kg) of NMDA was given it inhibited the synergistic effect of agmatine (0.01mg/kg) with lithium (3mg/kg). Hence, our finding demonstrate that agmatine have synergistic effect with lithium which is mediated by NMDA receptor pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Arterial gastroduodenal infusion of cholecystokinin-33 stimulates the exocrine pancreatic enzyme release via an enteropancreatic reflex, without affecting the endocrine insulin secretion in pigs.

    PubMed

    Rengman, Sofia; Weström, Björn; Ahrén, Bo; Pierzynowski, Stefan G

    2009-03-01

    Cholecystokinin (CCK)-dependent exocrine pancreatic regulation seems to involve different pathways in different species. The aims were to explore the enteropancreatic reflex in the CCK-mediated regulation of the exocrine pancreas and to evaluate a possible involvement of this reflex in the endocrine insulin release. In anesthetized pigs, CCK-33 in increasing doses (4-130 pmol kg 10 min) was infused locally to the gastroduodenal artery, or systemically via the jugular vein. Also, a low CCK-33 dose (13 pmol kg) was injected to the duodenum/antrum area before and after a bilateral truncal vagotomy. Cholecystokinin-33 in the physiological dose range 4 to 32 pmol kg 10 min increased protein and trypsin outputs after local infusion to the antral-duodenal area, whereas it had no effect after systemic infusion. Cholecystokinin-33 in the pharmacological dose range 64 to 130 pmol kg 10 min further increased the secretion after both local and systemic infusions. Only CCK-33 infusions in the pharmacological dose range were able to elevate the plasma insulin levels. Vagotomy had no effect on CCK-33-mediated stimulation of the enzyme release, whereas it had a significant effect on the plasma insulin level. Cholecystokinin-33 in the physiological dose range 4 to 32 pmol kg 10 min stimulates the enzyme secretion but had no effect on the insulin release via a short enteropancreatic pathway in pigs.

  4. Determination of in vivo carbon monoxide production in laboratory animals via exhaled air.

    PubMed

    Dercho, Ryan A; Nakatsu, Kanji; Wong, Ronald J; Stevenson, David K; Vreman, Hendrik J

    2006-01-01

    In vitro assays play an important role in the understanding of the heme oxygenase (HO)/carbon monoxide (CO) pathway. However, because physiological roles for the products of this pathway are hypothesized, it is becoming increasingly important to perform in vivo studies. Since CO production is primarily mediated by HO and is excreted mainly by the lungs, measurements of total body CO excretion (VeCO) via the breath allow continuous, noninvasive monitoring of heme degradation and CO and bilirubin production. Here, we describe a modified flow-through method for the collection and quantitation of CO from small laboratory animals. Mice and rats were studied in gas-tight chambers supplied with a continuous flow of CO-free air. CO in the exhaust air was measured by gas chromatography with a reduction gas analyzer. After establishing baseline VeCO levels, animals were administered various xenobiotics known to alter HO activity and further monitored for changes in CO production for up to 12 h without observable distress. Administration of heme (substrate for HO) resulted in reproducible increases in CO production; whereas, prior administration of zinc protoporphyrin (ZnPP, HO inhibitor) or cobalt protoporphyrin (CoPP, HO inducer) resulted in respective dose-dependent decreases and increases in the heme-induced CO production. We have demonstrated that this noninvasive method of CO quantitation reliably estimates heme degradation with sensitivity to distinguish between different types of HO-manipulating xenobiotics in a dose-dependant manner in both mouse and rat models. Furthermore, VeCO measurements allow nearly real-time determinations of CO and bilirubin formation, which helps to illustrate the time course of drug action.

  5. Neonatal Maturation of Paracetamol (Acetaminophen) Glucuronidation, Sulfation, and Oxidation Based on a Parent-Metabolite Population Pharmacokinetic Model

    PubMed Central

    Cook, Sarah F.; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D.; Deutsch, Nina; Williams, Elaine F.; Wilkins, Diana G.; van den Anker, John N.

    2017-01-01

    Objectives This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CLformation) of oxidative pathway metabolites. Methods Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (<28 weeks’ gestation) or seven 15-mg/kg doses at 8-h intervals (≥28 weeks’ gestation). Plasma and urine were sampled throughout the 72-h study period. Concentration-time data for paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. Results The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CLformation for all metabolites increased with weight; CLformation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CLformation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038–0.062; 62 %) for glucuronidation, 0.21 L/h (0.17–0.24; 33 %) for sulfation, and 0.058 L/h (0.044–0.078; 72 %) for oxidation. Expression of individual oxidation CLformation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CLformation increased <15 % when plotted against weight or postnatal age. Conclusions The parent-metabolite model successfully characterized the pharmacokinetics of intravenous paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability. PMID:27209292

  6. Neonatal Maturation of Paracetamol (Acetaminophen) Glucuronidation, Sulfation, and Oxidation Based on a Parent-Metabolite Population Pharmacokinetic Model.

    PubMed

    Cook, Sarah F; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D; Deutsch, Nina; Williams, Elaine F; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N

    2016-11-01

    This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CL formation ) of oxidative pathway metabolites. Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (<28 weeks' gestation) or seven 15-mg/kg doses at 8-h intervals (≥28 weeks' gestation). Plasma and urine were sampled throughout the 72-h study period. Concentration-time data for paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CL formation for all metabolites increased with weight; CL formation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CL formation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038-0.062; 62 %) for glucuronidation, 0.21 L/h (0.17-0.24; 33 %) for sulfation, and 0.058 L/h (0.044-0.078; 72 %) for oxidation. Expression of individual oxidation CL formation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CL formation increased <15 % when plotted against weight or postnatal age. The parent-metabolite model successfully characterized the pharmacokinetics of intravenous paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability.

  7. Serum Amino Acids Profile and the Beneficial Effects of L-Arginine or L-Glutamine Supplementation in Dextran Sulfate Sodium Colitis

    PubMed Central

    Wu, Miaomiao; Liu, Gang; Yang, Guan; Xion, Yan; Su, Dingding; Wu, Li; Li, Tiejun; Chen, Shuai; Duan, Jielin; Yin, Yulong; Wu, Guoyao

    2014-01-01

    This study was conducted to investigate serum amino acids profile in dextran sulfate sodium (DSS)-induced colitis, and impacts of graded dose of arginine or glutamine supplementation on the colitis. Using DSS-induced colitis model, which is similar to human ulcerative colitis, we determined serum profile of amino acids at day 3, 7, 10 and 12 (5 days post DSS treatment). Meanwhile, effects of graded dose of arginine (0.4%, 0.8%, and 1.5%) or glutamine (0.5%, 1.0% and 2.0%) supplementation on clinical parameters, serum amino acids, colonic tight junction proteins, colonic anti-oxidative indicators [catalase, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px)], colonic pro-inflammatory cytokines [interleukin-1 beta (IL-1β), IL-6, IL-17 and tumor necrosis factor alpha (TNF-α)] in DSS-induced colitis were fully analyzed at day 7 and 12. Additionally, the activation of signal transduction pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), and myosin light chain kinase (MLCK)- myosin light chain (MLC20), were analyzed using immunoblotting. Serum amino acids analysis showed that DSS treatment changed the serum contents of amino acids, such as Trp, Glu, and Gln (P<0.05). Dietary arginine or glutamine supplementation had significant (P<0.05) influence on the clinical and biochemical parameters (T-SOD, IL-17 and TNF-α) in colitis model. These results were associated with colonic NF-κB, PI3K-Akt and MLCK signaling pathways. In conclusion, arginine or glutamine could be a potential therapy for intestinal inflammatory diseases. PMID:24505477

  8. Serum amino acids profile and the beneficial effects of L-arginine or L-glutamine supplementation in dextran sulfate sodium colitis.

    PubMed

    Ren, Wenkai; Yin, Jie; Wu, Miaomiao; Liu, Gang; Yang, Guan; Xion, Yan; Su, Dingding; Wu, Li; Li, Tiejun; Chen, Shuai; Duan, Jielin; Yin, Yulong; Wu, Guoyao

    2014-01-01

    This study was conducted to investigate serum amino acids profile in dextran sulfate sodium (DSS)-induced colitis, and impacts of graded dose of arginine or glutamine supplementation on the colitis. Using DSS-induced colitis model, which is similar to human ulcerative colitis, we determined serum profile of amino acids at day 3, 7, 10 and 12 (5 days post DSS treatment). Meanwhile, effects of graded dose of arginine (0.4%, 0.8%, and 1.5%) or glutamine (0.5%, 1.0% and 2.0%) supplementation on clinical parameters, serum amino acids, colonic tight junction proteins, colonic anti-oxidative indicators [catalase, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px)], colonic pro-inflammatory cytokines [interleukin-1 beta (IL-1β), IL-6, IL-17 and tumor necrosis factor alpha (TNF-α)] in DSS-induced colitis were fully analyzed at day 7 and 12. Additionally, the activation of signal transduction pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), and myosin light chain kinase (MLCK)-myosin light chain (MLC20), were analyzed using immunoblotting. Serum amino acids analysis showed that DSS treatment changed the serum contents of amino acids, such as Trp, Glu, and Gln (P<0.05). Dietary arginine or glutamine supplementation had significant (P<0.05) influence on the clinical and biochemical parameters (T-SOD, IL-17 and TNF-α) in colitis model. These results were associated with colonic NF-κB, PI3K-Akt and MLCK signaling pathways. In conclusion, arginine or glutamine could be a potential therapy for intestinal inflammatory diseases.

  9. Effect of a 5-lipoxygenase inhibitor and leukotriene antagonist (PF 5901) on antigen-induced airway responses in neonatally immunized rabbits.

    PubMed Central

    Herd, C. M.; Donigi-Gale, D.; Shoupe, T. S.; Burroughs, D. A.; Yeadon, M.; Page, C. P.

    1994-01-01

    1. The effect of a single intratracheal dose (10 mg) of PF 5901 (2-[3(1-hydroxyhexyl) phenoxymethyl] quinoline hydrochloride, a specific inhibitor of the 5-lipoxygenase pathway of arachidonic acid metabolism and a leukotriene D4 antagonist) on airway changes induced in response to Alternaria tenuis aerosol challenge was assessed in adult rabbits neonatally immunized. Leukotriene generation was determined in vivo by measuring leukotriene B4 (LTB4) levels in bronchoalveolar lavage (BAL) fluid and ex vivo by measuring calcium ionophore-stimulated production of LTB4 in whole blood. 2. While PF 5901 (10 mg) had no significant effect on the acute bronchoconstriction induced by antigen, this dose was sufficient to inhibit significantly the increase in airway responsiveness to inhaled histamine 24 h following antigen challenge (P < 0.05). 3. Total leucocyte infiltration into the airways induced by antigen, as assessed by bronchoalveolar lavage, was significantly inhibited by pretreatment with PF 5901 (10 mg). However, the pulmonary infiltration of neutrophils and eosinophils induced by antigen was unaltered by prior treatment with PF 5901 (10 mg). 4. PF 5901 (10 mg) had no effect on ex vivo LTB4 synthesis in whole blood. However, the antigen-induced increase in LTB4 levels in BAL 24 h following challenge was significantly inhibited (P < 0.05). 5. We suggest from the results of the present study that the antigen-induced airway hyperresponsiveness to inhaled histamine in immunized rabbits is mediated, at least in part, by products of the 5-lipoxygenase metabolic pathway, and is not dependent on the extent of eosinophil or neutrophil influx into the airway lumen. PMID:8032653

  10. Pharmacological countermeasures for the acute radiation syndrome.

    PubMed

    Xiao, Mang; Whitnall, Mark H

    2009-01-01

    The acute radiation syndrome (ARS) is defined as the signs and symptoms that occur within several months after exposure to ionizing radiation (IR). This syndrome develops after total- or partial-body irradiation at a relatively high dose (above about 1 Gy in humans) and dose rate. Normal tissue injuries induced by IR differ depending on the target organ and cell type. Organs and cells with high sensitivity to radiation include the skin, the hematopoietic system, the gut, the spermatogenic cells and the vascular system. Exposure to IR causes damage to DNA, protein, and lipids in mammalian cells, as well as increased mitochondria-dependent generation of reactive oxygen species (ROS), with subsequent cell cycle checkpoint arrest, apoptosis, and stress-related responses. DNA double strand breaks (DSBs) are a primary lethal lesion induced by IR. The cellular response to damage is complex and relies on simultaneous activation of a number of signaling networks. Among these, the activation of DNA non-homologous end-joining (NHEJ) and homologous recombination (HR), and signaling pathways containing ataxia telangiectasia mutated (ATM), play important roles. The transcription factor NFkappaB has emerged as a pro-survival actor in response to IR in ATM and p53-induced protein with a death domain (PIDD) cascades. Although radiation-induced ARS has been well documented at the clinical level, and mechanistic information is accumulating, successful prophylaxis and treatment for ARS is problematic, even with the use of supportive care and growth factors. There is a pressing need to develop radiation countermeasures that can be used both in the clinic, for small-scale incidents, and outside the clinic, in mass casualty scenarios. In this review we summarize recent information on intracellular and extracellular signaling pathways relevant to radiation countermeasure research.

  11. Effect of the transdermal low-level laser therapy on endothelial function.

    PubMed

    Szymczyszyn, Alicja; Doroszko, Adrian; Szahidewicz-Krupska, Ewa; Rola, Piotr; Gutherc, Radosław; Jasiczek, Jakub; Mazur, Grzegorz; Derkacz, Arkadiusz

    2016-09-01

    The effect of low-level laser therapy (LLLT) on the cardiovascular system is not fully established. Since the endothelium is an important endocrine element, establishing the mechanisms of LLLT action is an important issue.The aim of the study was to evaluate the effect of transdermal LLLT on endothelial function.In this study, healthy volunteers (n = 40, age = 20-40 years) were enrolled. N = 30 (14 female, 16 male, mean age 30 ± 5 years) constituted the laser-irradiated group (LG). The remaining 10 subjects (6 women, 4 men, mean age 28 ± 5 years) constituted the control group (CG). Participants were subjected to LLLT once a day for three consecutive days. Blood for biochemical assessments was drawn before the first irradiation and 24 h after the last session. In the LG, transdermal illumination of radial artery was conducted (a semiconductor laser λ = 808 nm, irradiation 50 mW, energy density 1.6 W/cm(2) and a dose 20 J/day, a total dose of 60 J). Biochemical parameters (reflecting angiogenesis: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiostatin; antioxidative status: glutathione (GSH) and the nitric oxide metabolic pathway: symmetric dimethylarginine (SDMA), asymmetric dimethylarginine (ADMA) and L-arginine) were assessed. In the LG, a significant increase in GSH levels and considerable decrease in angiostatin concentration following the LLLT were observed. No significant differences in levels of the VEGF, FGF, SDMA, ADMA were observed.LLLT modifies vascular endothelial function by increasing its antioxidant and angiogenic potential. We found no significant differences in levels of the nitric oxide pathway metabolites within 24 h following the LLLT irradiation.

  12. Hypertension management: rationale for triple therapy based on mechanisms of action.

    PubMed

    Neutel, Joel M; Smith, David H G

    2013-10-01

    An estimated 25% of patients will require 3 antihypertensive agents to achieve blood pressure (BP) control; combination therapy is thus an important strategy in hypertension treatment. This review discusses the triple-therapy combination of an angiotensin receptor blocker (ARB) or direct renin antagonist (DRI) with a calcium channel blocker (CCB) and a diuretic, with a focus on mechanisms of action. Multiple physiologic pathways contribute to hypertension. Combining antihypertensive agents not only better targets the underlying pathways, but also helps blunt compensatory responses that may be triggered by single-agent therapy. DRIs and ARBs target the renin-angiotensin-aldosterone system (RAAS) at the initial and final steps, respectively, and both classes lower BP by reducing the effects of angiotensin-2; however, ARBs may trigger a compensatory increase in renin activity. Dihydropyridine CCBs target L-type calcium channels and lower BP through potent vasodilation, but can trigger compensatory activation of the sympathetic nervous system (SNS) and RAAS. Thiazide diuretics lower BP initially through sodium depletion and plasma volume reduction, followed by total peripheral resistance reduction, but can also trigger compensatory activation of the SNS and RAAS. The combination of an agent targeting the RAAS with a CCB and diuretic is rational, and triple combinations of valsartan/amlodipine/hydrochlorothiazide, olmesartan/amlodipine/hydrochlorothiazide, and aliskiren/amlodipine/hydrochlorothiazide have demonstrated greater effectiveness compared with their respective dual-component combinations. In addition, single-pill, fixed-dose combinations can address barriers to BP control including clinical inertia and poor adherence. Fixed-dose antihypertensive combination products capitalize on complementary mechanisms of action and have been shown to result in improved BP control. © 2012 John Wiley & Sons Ltd.

  13. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weili; Xiao, Linlin; Dong, Chen

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cellsmore » Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.« less

  14. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics, and bioinformatics.

    PubMed

    Boone, Cory H T; Grove, Ryan A; Adamcova, Dana; Braga, Camila P; Adamec, Jiri

    2016-07-01

    Clinical usage of lidocaine, a pro-oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage-gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage-gated sodium channels, thus provides an ideal system to investigate lidocaine-induced protein and pathway alterations. Whole-proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (⩾ 1.5-fold alteration, p ⩽ 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Meeting The Joint Commission's Dose Incident Identification and External Benchmarking Requirements Using the ACR's Dose Index Registry.

    PubMed

    Bohl, Michael A; Goswami, Roopa; Strassner, Brett; Stanger, Paula

    2016-08-01

    The purpose of this investigation was to evaluate the potential of using the ACR's Dose Index Registry(®) to meet The Joint Commission's requirements to identify incidents in which the radiation dose index from diagnostic CT examinations exceeded the protocol's expected dose index range. In total, 10,970 records in the Dose Index Registry were statistically analyzed to establish both an upper and lower expected dose index for each protocol. All 2015 studies to date were then retrospectively reviewed to identify examinations whose total examination dose index exceeded the protocol's defined upper threshold. Each dose incident was then logged and reviewed per the new Joint Commission requirements. Facilities may leverage their participation in the ACR's Dose Index Registry to fully meet The Joint Commission's dose incident identification review and external benchmarking requirements. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. The effects of hot carrier and swift heavy ion irradiation on electrical characteristics of advanced 200 GHz SiGe HBTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinayakprasanna, N. H.; Praveen, K. C.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in

    The 200 GHz SiGe HBTs were irradiated with 80 MeV Carbon ions up to a total dose of 100 Mrad to understand the degradation in electrical characteristics. The degradation in the electrical characteristics of SiGe HBTs was also studied by mixed mode electrical stress up to 10,000 s. The electrical characteristics were measured before and after every total dose and after fixed stress time. The normalized peak h{sub FE} of the stressed and irradiated SiGe HBTs are compared to estimate the equivalent stress time for a particular total dose. These correlations are drawn for the first time and the resultsmore » will establish a systematic relation between stress time and total dose.« less

  17. Dosimetric Evaluation Between Megavoltage Cone-Beam Computed Tomography and Body Mass Index for Intracranial, Thoracic, and Pelvic Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanAntwerp, April E.; Raymond, Sarah M., E-mail: raymons9@ccf.org; Addington, Mark C.

    2011-10-01

    The aim of this study was to evaluate radiation dose for organs at risk (OAR) within the cranium, thorax, and pelvis from megavoltage cone-beam computed tomography (MV-CBCT). Using a clinical treatment planning system, CBCT doses were calculated from 60 patient datasets using 27.4 x 27.4 cm{sup 2} field size and 200{sup o} arc length. The body mass indices (BMIs) for these patients range from 17.2-48.4 kg/m{sup 2}. A total of 60 CBCT plans were created and calculated with heterogeneity corrections, with monitor units (MU) that varied from 8, 4, and 2 MU per plan. The isocenters of these plans weremore » placed at defined anatomical structures. The maximum dose, dose to the isocenter, and mean dose to the selected critical organs were analyzed. The study found that maximum and isocenter doses were weakly associated with BMI, but linearly associated with the total MU. Average maximum/isocenter doses in the cranium were 10.0 ({+-} 0.18)/7.0 ({+-} 0.08) cGy, 5.0 ({+-} 0.09)/3.5 ({+-} 0.05) cGy, and 2.5 ({+-} .04)/1.8 ({+-} 0.05) cGy for 8, 4, and 2 MU, respectively. Similar trends but slightly larger maximum/isocenter doses were found in the thoracic and pelvic regions. For the cranial region, the average mean doses with a total of 8 MU to the eye, lens, and brain were 9.7 ({+-} 0.12) cGy, 9.1 ({+-} 0.16) cGy, and 7.2 ({+-} 0.10) cGy, respectively. For the thoracic region, the average mean doses to the lung, heart, and spinal cord were 6.6 ({+-} 0.05) cGy, 6.9 ({+-} 1.2) cGy, and 4.7 ({+-} 0.8) cGy, respectively. For the pelvic region, the average mean dose to the femoral heads was 6.4 ({+-} 1.1) cGy. The MV-CBCT doses were linearly associated with the total MU but weakly dependent on patients' BMIs. Daily MV-CBCT has a cumulative effect on the total body dose and critical organs, which should be carefully considered for clinical impacts.« less

  18. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    NASA Astrophysics Data System (ADS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.

    2010-05-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  19. Calycosin improves cognitive function in a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway.

    PubMed

    Song, Lei; Li, Xiaoping; Bai, Xiao-Xue; Gao, Jian; Wang, Chun-Yan

    2017-11-01

    The major pathological changes in Alzheimer's disease are beta amyloid deposits and cognitive impairment. Calycosin is a typical phytoestrogen derived from radix astragali that binds to estrogen receptors to produce estrogen-like effects. Radix astragali Calycosin has been shown to relieve cognitive impairment induced by diabetes mellitus, suggesting calycosin may improve the cognitive function of Alzheimer's disease patients. The protein kinase C pathway is upstream of the mitogen-activated protein kinase pathway and exerts a neuroprotective effect by regulating Alzheimer's disease-related beta amyloid degradation. We hypothesized that calycosin improves the cognitive function of a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Various doses of calycosin (10, 20 and 40 mg/kg) were intraperitoneally injected into APP/PS1 transgenic mice that model Alzheimer's disease. Calycosin diminished hippocampal beta amyloid, Tau protein, interleukin-1beta, tumor necrosis factor-alpha, acetylcholinesterase and malondialdehyde levels in a dose-dependent manner, and increased acetylcholine and glutathione activities. The administration of a protein kinase C inhibitor, calphostin C, abolished the neuroprotective effects of calycosin including improving cognitive ability, and anti-oxidative and anti-inflammatory effects. Our data demonstrated that calycosin mitigated oxidative stress and inflammatory responses in the hippocampus of Alzheimer's disease model mice by activating the protein kinase C pathway, and thereby improving cognitive function.

  20. In vivo nuclear magnetic resonance studies of hepatic methoxyflurane metabolism. II. A reevaluation of hepatic metabolic pathways.

    PubMed

    Selinsky, B S; Perlman, M E; London, R E

    1988-05-01

    Methoxyflurane (2,2-dichloro-1,1-difluoro-ethyl methyl ether) is believed to be metabolized via two convergent metabolic pathways. The relative flux through these two metabolic pathways has been investigated using a combination of in vivo surface coil NMR techniques and in vitro analyses of urinary metabolites. Analysis of the measured concentrations of inorganic fluoride, oxalate, and methoxydifluoroacetate in the urine of methoxyflurane-treated rats for 4 days after anesthesia indicates that the anesthetic is metabolized primarily via dechlorination to yield methoxydifluoroacetate. The methoxydifluoroacetate is largely excreted without further metabolism, although a small percentage of this metabolite is broken down to yield fluoride and oxalate, as determined by urine analysis of rats dosed with synthetic methoxydifluoroacetate. At early times after methoxyflurane exposure, the relative concentrations of methoxyflurane metabolites indicate that a significant fraction of the metabolic flux occurs via a different pathway, presumably demethylation, to yield dichloroacetate as an intermediate. Direct analysis of dichloroacetate in the urine using water-suppressed proton NMR indicates that the level of this metabolite is below the detection threshold of the method. Measurements made on the urine of rats dosed directly with dichloroacetate indicate that this compound is quickly metabolized, and dichloroacetate levels in urine are again found to be below the detection threshold. These results demonstrate the quantitative importance of the dechlorination pathway in the metabolism of methoxyflurane in rats.

  1. Mechanism of Chemoprevention against Colon Cancer Cells Using Combined Gelam Honey and Ginger Extract via mTOR and Wnt/β-catenin Pathways.

    PubMed

    Wee, Lee Heng; Morad, Noor Azian; Aan, Goon Jo; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2015-01-01

    The PI3K-Akt-mTOR, Wnt/β-catenin and apoptosis signaling pathways have been shown to be involved in genesis of colorectal cancer (CRC). The aim of this study was to elucidate whether combination of Gelam honey and ginger might have chemopreventive properties in HT29 colon cancer cells by modulating the mTOR, Wnt/β-catenin and apoptosis signaling pathways. Treatment with Gelam honey and ginger reduced the viability of the HT29 cells dose dependently with IC50 values of 88 mg/ml and 2.15 mg/ml respectively, their while the combined treatment of 2 mg/ml of ginger with 31 mg/ml of Gelam honey inhibited growth of most HT29 cells. Gelam honey, ginger and combination induced apoptosis in a dose dependent manner with the combined treatment exhibiting the highest apoptosis rate. The combined treatment downregulated the gene expressions of Akt, mTOR, Raptor, Rictor, β-catenin, Gsk3β, Tcf4 and cyclin D1 while cytochrome C and caspase 3 genes were shown to be upregulated. In conclusion, the combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer through inhibiton of mTOR, Wnt/β catenin signaling pathways and induction of apoptosis pathway.

  2. Long-term erythemal UV doses at Sodankylä estimated using total ozone, sunshine duration, and snow depth

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Arola, A.; Kaurola, J.; Taalas, P.; SvenøE, T.

    2003-08-01

    A method for estimating daily erythemal UV doses using total ozone, sunshine duration, and snow depth has been developed. The method consists of three steps: (1) daily clear-sky UV doses were simulated using the UVSPEC radiative transfer program, with daily values of total ozone as input data, (2) an empirical relationship was sought between the simulated clear-sky UV doses, the measured UV doses, and the duration of bright sunshine, and (3) daily erythemal UV doses were estimated using this relationship. The method accounts for the varying surface albedo by dividing the period of interest into winter and summer days, depending on the snow depth. Using this method, the daily erythemal UV doses at Sodankylä were estimated for the period 1950-1999. This was done using Tromsø's total ozone together with Sodankylä's own sunshine duration and snow depth as input data. Although the method is fairly simple, the results are in good agreement, even on the daily scale, with the UV radiation measured with the Brewer spectrophotometer at Sodankylä. Over the period 1950-1999 a statistically significant increasing trend of 3.9% per decade in erythemal UV doses was found for March. The fact that this trend is much more pronounced during the latter part of the period, which is also the case for April, suggests a connection to the stratospheric ozone depletion. For July, on the other hand, a significant decreasing trend of 3.3% per decade, supported by the changes in both total ozone and sunshine duration, was found.

  3. Safety of an ED High-Dose Opioid Protocol for Sickle Cell Disease Pain.

    PubMed

    Tanabe, Paula; Martinovich, Zoran; Buckley, Barbara; Schmelzer, Annie; Paice, Judith A

    2015-05-01

    A nurse-initiated high dose, opioid protocol for vaso-occlusive crisis (VOC) was implemented. Total intravenous morphine sulfate equivalents (IVMSE) in mgs] and safety was evaluated. A medical record review was conducted for all ED visits in adult patients with VOC post protocol implementation. Opioids doses and routes administered during the ED stay, and six hours into the hospital admission were abstracted and total IVMSE administered calculated. Oxygen saturation (SPO2), respiratory rate (RR), administration of naloxone or vasoactive medications, evidence of respiratory arrest, or any other types of resuscitation effort were abstracted. A RR of <10 or SPO2 <92% were coded as abnormal. Descriptive statistics report the total dose. Logistic regression was used to predict abnormal events. Predictors were age, gender, ED dose (10 mg increments) administered, and time from 1st dose to discharge from ED. 72 patients, 603 visits, 276 admitted. The total (ED & hospital dose) mean (95% CI) mg IVMSE administered for all visits was 93 mg (CI 86, 100), ED visit 63 mg (CI 59, 67) and hospital 66 mg (CI 59, 72). The mean (SD) time from administration of 1st analgesic dose to discharge from the ED was 203 (143) minutes, (range = 30-1396 minutes). During two visits, patients experienced a RR <10; while 61 visits were associated with a SPO2 <92%. No medications were administered, or resuscitative measures required. Controlling for demographics and evaluated at the average total ED dose, the longer patients were in the ED, patients were 1.359 times more likely to experience an abnormal vital sign. Controlling for demographics and evaluated at the average total time in the ED, for every 10 mg increase in IVMSE, patients were 1.057 times more likely to experience an abnormal vital sign. The effect of ED dose on the odds of experiencing an abnormal vital sign decreased by a multiplicative factor of 0.0970 for every 1 hour increase in time until discharge. The larger the dose administered in less time, the more likely patients experienced an abnormal vital sign. High opioid doses were safely administered to patients with sickle cell disease. Copyright © 2015 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.

  4. Involvement of 2-C-methyl-D-erythritol-4-phosphate pathway in biosynthesis of aphidicolin-like tetracyclic diterpene of Scoparia dulcis.

    PubMed

    Nkembo, Marguerite Kasidimoko; Lee, Jung-Bum; Nakagiri, Takeshi; Hayashi, Toshimitsu

    2006-05-01

    Specific inhibitors of the MVA pathway (pravastatin) and the MEP pathway (fosmidomycin) were used to interfere with the biosynthetic flux which leads to the production of aphidicolin-like diterpene in leaf organ cultures of Scoparia dulcis. Treatment of leaf organs with fosmidomycin resulted in dose dependent inhibition of chlorophylls, carotenoids, scopadulcic acid B (SDB) and phytol production, and no effect on sterol production was observed. In response to the pravastatin treatment, a significant decrease in sterol and perturbation of SDB production was observed.

  5. Novel antioxidants' synthesis and their anti-oxidative activity through activating Nrf2 signaling pathway.

    PubMed

    Wu, Jianzhang; Ren, Jiye; Yao, Song; Wang, Jiabing; Huang, Lili; Zhou, Peng; Yun, Di; Xu, Qing; Wu, Shoubiao; Wang, Zhankun; Qiu, Peihong

    2017-04-01

    Novel structure compounds (WS) containing 3,4,5-trimethoxyphenyl and acyl pyrazole were designed and synthesized based combination principles. Among them, WS13 was screened out to possess desirable anti-oxidative activity in vitro. Cell survival assay and apoptosis experiment in H 2 O 2 induced PC12 cells injury model all showed that its cytoprotection exhibited a concentration-effect manner. WS13 at 10μM could remove ROS with equal effiency to edaravone. Further, it clearly activated Nrf2 nuclear translocation and upregulated GCLC mRNA transcription and protein expression in dose-dependent manner, and its cytoprotection was reversed by GCLC protein inhibitor. In total, WS13 with further promotion can serve as Nrf2-GCLC activator in anti-oxidative therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts Via Activation of the AKT-mTOR Pathway.

    PubMed

    Bakker, Astrid D; Gakes, Tom; Hogervorst, Jolanda M A; de Wit, Gerard M J; Klein-Nulend, Jenneke; Jaspers, Richard T

    2016-06-01

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts. © 2015 Wiley Periodicals, Inc.

  7. Oral Tranexamic Acid Reduces Transfusions in Total Knee Arthroplasty.

    PubMed

    Perreault, Roger E; Fournier, Christine A; Mattingly, David A; Junghans, Richard P; Talmo, Carl T

    2017-10-01

    Tranexamic acid (TXA) reduces intraoperative blood loss and transfusions in patients undergoing total knee arthroplasty. Although numerous studies demonstrate the efficacy of intravenous and topical TXA in these patients, few demonstrate the effectiveness and appropriate dosing recommendations of oral formulations. A retrospective cohort study was performed to evaluate differences in transfusion requirements in patients undergoing primary unilateral total knee arthroplasty with either no TXA (n = 866), a single-dose of oral TXA (n = 157), or both preoperative and postoperative oral TXA (n = 1049). Secondary outcomes included postoperative hemoglobin drop, total units transfused, length of stay, drain output, and cell salvage volume. Transfusion rates decreased from 15.4% in the no-oral tranexamic acid (OTA) group to 9.6% in the single-dose OTA group (P < .001) and 7% in the 2-dose group (P < .001), with no difference in transfusion rates between the single- and 2-dose groups (P = .390). In addition, postoperative hemoglobin drop was reduced from 4.2 g/dL in the no-OTA group to 3.5 g/dL in the single-dose group (P < .01) and to 3.4 g/dL in the 2-dose group (P < .01), without a difference between the single- and 2-dose groups (P = .233). OTA reduces transfusions, with greater ease of administration and improved cost-effectiveness relative to other forms of delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A risk assessment of direct and indirect exposure to emissions from a proposed hazardous waste incinerator in Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallinger, K.; Huggins, A.; Warner, L.

    1995-12-31

    An Indirect Exposure Assessment (IEA) was conducted, under USEPA`s RCRA Combustion Strategy, as part of the Part B permitting process for a proposed hazardous waste incinerator. The IEA involved identification of constituents of concern, emissions estimations, air dispersion and deposition modeling, evaluation of site-specific exposure pathways/scenarios, and food chain modeling in order to evaluate potential human health and environmental risks. The COMPDEP model was used to determine ambient ground level concentrations and dry and wet deposition rates of constituents of concern. The air modeling results were input into 50th percentile (Central) and 95th percentile (High-End) exposure scenarios which evaluated directmore » exposure via inhalation, dermal contact, and soil ingestion pathways, and indirect exposure through the food chain. The indirect pathway analysis considered the accumulation of constituents in plants and animals used as food sources by local inhabitants. Local food consumption data obtained from the Puerto Rico USDA were combined with realistic present-day and future-use exposure scenarios such as residential use, pineapple farming, and subsistence farming to obtain a comprehensive evaluation of risk, Overall risk was calculated using constituent doses and toxicity factors associated with the various routes of exposure. Risk values for each exposure pathway were summed to determine total carcinogenic and non-carcinogenic hazard to exposed individuals. A population risk assessment was also conducted in order to assess potential risks to the population surrounding the facility. Results of the assessment indicated no acute effects from constituents of concern, and a high-end excess lifetime cancer risk of approximately 6 in a million with dioxins (as 2,3,7,8-TCDD) and arsenic dominating the risk estimate.« less

  9. Ethanol Attenuates Histiotrophic Nutrition Pathways and Alters the Intracellular Redox Environment and Thiol Proteome during Rat Organogenesis

    PubMed Central

    Jilek, Joseph L.; Sant, Karilyn E.; Cho, Katherine H.; Reed, Matthew S.; Pohl, Jan; Hansen, Jason M.; Harris, Craig

    2015-01-01

    Ethanol (EtOH) is a reactive oxygen-generating teratogen involved in the etiology of structural and functional developmental defects. Embryonic nutrition, redox environment, and changes in the thiol proteome following EtOH exposures (1.56.0 mg/ml) were studied in rat whole embryo culture. Glutathione (GSH) and cysteine (Cys) concentrations with their respective intracellular redox potentials (Eh) were determined using high-performance liquid chromatography. EtOH reduced GSH and Cys concentrations in embryo (EMB) and visceral yolk sac (VYS) tissues, and also in yolk sac and amniotic fluids. These changes produced greater oxidation as indicated by increasingly positive Eh values. EtOH reduced histiotrophic nutrition pathway activities as measured by the clearance of fluorescin isothiocyanate (FITC)-albumin from culture media. A significant decrease in total FITC clearance was observed at all concentrations, reaching approximately 50% at the highest dose. EtOH-induced changes to the thiol proteome were measured in EMBs and VYSs using isotope-coded affinity tags. Decreased concentrations for specific proteins from cytoskeletal dynamics and endocytosis pathways (α-actinin, α-tubulin, cubilin, and actin-related protein 2); nuclear translocation (Ran and RanBP1); and maintenance of receptor-mediated endocytosis (cubilin) were observed. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis also identified a decrease in ribosomal proteins in both EMB and VYS. Results show that EtOH interferes with nutrient uptake to reduce availability of amino acids and micronutrients required by the conceptus. Intracellular antioxidants such as GSH and Cys are depleted following EtOH and Eh values increase. Thiol proteome analysis in the EMB and VYS show selectively altered actin/cytoskeleton, endocytosis, ribosome biogenesis and function, nuclear transport, and stress-related responses. PMID:26185205

  10. Changes in estrogen receptor signaling alters the timekeeping system in male mice.

    PubMed

    Blattner, Margaret S; Mahoney, Megan M

    2015-11-01

    Circadian rhythms are modulated by steroid hormones; however, the mechanisms of this action are not fully understood, particularly in males. In females estradiol regulates activity level, pattern of expression, and free running period (tau). We tested the hypothesis that activity level and distribution in male mice includes both classical and "non-classical" actions of estrogens at the estrogen receptor subtype 1 (ESR1). We used transgenic mice with mutations in their estrogen response pathways: ESR1 knock-out (ERKO) mice lack the ability to respond to estrogens via ESR1. "Non-classical" estrogen receptor knock-in (NERKI) mice have an inserted ESR1 receptor with a mutation in the estrogen-response-element binding domain, allowing activation via non-genomic and second messenger pathways. Gonadectomized male NERKI, ERKO, and wildtype (WT) littermates were given oil, or low or high dose estradiol and daily activity parameters were quantified. Estradiol shortened the ratio of activity in the light relative to dark (LD ratio), shortened tau, advanced the time of activity onset, and altered responsiveness to light cues administered in the late subjective night, suggesting modulation by an ESR1-independent mechanism. Estradiol treatment in NERKI but not WT males altered the timing of activity onset, LD ratio, and the behavioral response to light cues. These results may represent disruptions in the balance of genomic/nongenomic or ESR1/ESR2 signaling pathways. We also found a significant genotype effect on total activity, LD ratio, tau, and activity duration. These data provide new information about the role of ESR1-dependent and independent signaling pathways on the timekeeping system in male mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Gene Expression Profiling Confirms the Dosage-Dependent Additive Neuroprotective Effects of Jasminoidin in a Mouse Model of Ischemia-Reperfusion Injury.

    PubMed

    Li, Haixia; Wang, Jingtao; Wang, Pengqian; Zhang, Yingying; Liu, Jun; Yu, Yanan; Li, Bing; Wang, Zhong

    2018-01-01

    Recent evidence demonstrates that a double dose of Jasminoidin (2·JA) is more effective than Jasminoidin (JA) in cerebral ischemia therapy, but its dosage-effect mechanisms are unclear. In this study, the software GeneGo MetaCore was used to perform pathway analysis of the differentially expressed genes obtained in microarrays of mice belonging to four groups (Sham, Vehicle, JA, and 2·JA), aiming to elucidate differences in JA and 2·JA's dose-dependent pharmacological mechanism from a system's perspective. The top 10 enriched pathways in the 2·JA condition were mainly involved in neuroprotection (70% of the pathways), apoptosis and survival (40%), and anti-inflammation (20%), while JA induced pathways were mainly involved in apoptosis and survival (60%), anti-inflammation (20%), and lipid metabolism (20%). Regarding shared pathways and processes, 3, 1, and 3 pathways overlapped between the Vehicle and JA, Vehicle and 2·JA, and JA and 2·JA conditions, respectively; for the top ten overlapped processes these numbers were 3, 0, and 4, respectively. The common pathways and processes in the 2·JA condition included differentially expressed genes significantly different from those in JA. Seven representative pathways were only activated by 2·JA, such as Gamma-Secretase regulation of neuronal cell development. Process network comparison indicated that significant nodes, such as alpha-MSH , ACTH , PKR1 , and WNT , were involved in the pharmacological mechanism of 2·JA. Function distribution was different between JA and 2·JA groups, indicating a dosage additive mechanism in cerebral ischemia treatment. Such systemic approach based on whole-genome multiple pathways and networks may provide an effective and alternative approach to identify alterations underlining dosage-dependent therapeutic benefits of pharmacological compounds on complex disease processes.

  12. Transcriptional profiles in liver from rats treated with tumorigenic and non-tumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil.

    PubMed

    Hester, Susan D; Wolf, Douglas C; Nesnow, Stephen; Thai, Sheau-Fung

    2006-01-01

    Conazoles are a class of fungicides used as pharmaceutical and agricultural agents. In chronic bioassays in rats, triadimefon was hepatotoxic and induced follicular cell adenomas in the thyroid gland, whereas, propiconazole and myclobutanil were hepatotoxic but had no effect on the thyroid gland. These conazoles administered in the feed to male Wistar/Han rats were found to induce hepatomegaly, induce high levels of pentoxyresorufin-O-dealkylase, increase cell proliferation in the liver, increase serum cholesterol, decrease serum T3 and T4, and increase hepatic uridine diphosphoglucuronosyl transferase activity. The goal of the present study was to define pathways that explain the biologic outcomes. Male Wistar/Han rats (3 per group), were exposed to the 3 conazoles in the feed for 4, 30, or 90 days of treatment at tumorigenic and nontumorigenic doses. Hepatic gene expression was determined using high-density Affymetrix GeneChips (Rat 230_2). Differential gene expression was assessed at the probe level using Robust Multichip Average analysis. Principal component analysis by treatment and time showed within group sample similarity and that the treatment groups were distinct from each other. The number of altered genes varied by treatment, dose, and time. The greatest number of altered genes was induced by triadimefon and propiconazole after 90 days of treatment, while myclobutanil had minimal effects at that time point. Pathway level analyses revealed that after 90 days of treatment the most significant numbers of altered pathways were related to cell signaling, growth, and metabolism. Pathway level analysis for triadimefon and propiconazole resulted in 71 altered pathways common to both chemicals. These pathways controlled cholesterol metabolism, activation of nuclear receptors, and N-ras and K-ras signaling. There were 37 pathways uniquely changed by propiconazole, and triadimefon uniquely altered 34 pathways. Pathway level analysis of altered gene expression resulted in a more complete description of the associated toxicological effects that can distinguish triadimefon from propiconazole and myclobutanil.

  13. High dose psilocybin is associated with positive subjective effects in healthy volunteers.

    PubMed

    Nicholas, Christopher R; Henriquez, Kelsey M; Gassman, Michele C; Cooper, Karen M; Muller, Daniel; Hetzel, Scott; Brown, Randall T; Cozzi, Nicholas V; Thomas, Chantelle; Hutson, Paul R

    2018-06-01

    The aim of the current study was to investigate the relationship between escalating higher doses of psilocybin and the potential psilocybin occasioned positive subjective effects. Healthy participants ( n=12) were given three escalating doses of oral psilocybin (0.3 mg/kg; 0.45 mg/kg; 0.6 mg/kg) or (18.8-36.6 mg; 27.1-54.0 mg; 36.3-59.2 mg) a minimum of four weeks apart in a supervised setting. Blood and urine samples, vital signs, and electrocardiograms were obtained. Subjective effects were assessed using the Mystical Experience Questionnaire and Persisting Effects Questionnaire. There was a significant linear dose-related response in Mystical Experience Questionnaire total score and the transcendence of time and space subscale, but not in the rate of a complete mystical experience. There was also a significant difference between dose 3 compared to dose 1 on the transcendence of time and space subscale, while no dose-related differences were found for Mystical Experience Questionnaire total scores or rate of a mystical experience. Persisting Effects Questionnaire positive composite scores 30 days after completion of the last dose were significantly higher than negative composite scores. Persisting Effects Questionnaire results revealed a moderate increase in sense of well-being or life satisfaction on average that was associated with the maximum Mystical Experience Questionnaire total score. Pharmacokinetic measures were associated with dose but not with Mystical Experience Questionnaire total scores or rate of a mystical experience. High doses of psilocybin elicited subjective effects at least as strong as the lower doses and resulted in positive persisting subjective effects 30 days after, indicating that a complete mystical experience was not a prerequisite for positive outcomes.

  14. Dose commitments due to radioactive releases from nuclear power plant sites: Methodology and data base. Supplement 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    1996-06-01

    This manual describes a dose assessment system used to estimate the population or collective dose commitments received via both airborne and waterborne pathways by persons living within a 2- to 80-kilometer region of a commercial operating power reactor for a specific year of effluent releases. Computer programs, data files, and utility routines are included which can be used in conjunction with an IBM or compatible personal computer to produce the required dose commitments and their statistical distributions. In addition, maximum individual airborne and waterborne dose commitments are estimated and compared to 10 CFR Part 50, Appendix 1, design objectives. Thismore » supplement is the last report in the NUREG/CR-2850 series.« less

  15. Ionising Radiation Immediately Impairs Synaptic Plasticity-Associated Cytoskeletal Signalling Pathways in HT22 Cells and in Mouse Brain: An In Vitro/In Vivo Comparison Study

    PubMed Central

    Kempf, Stefan J.; Buratovic, Sonja; von Toerne, Christine; Moertl, Simone; Stenerlöw, Bo; Hauck, Stefanie M.; Atkinson, Michael J.; Eriksson, Per; Tapio, Soile

    2014-01-01

    Patients suffering from brain malignancies are treated with high-dose ionising radiation. However, this may lead to severe learning and memory impairment. Preventive treatments to minimise these side effects have not been possible due to the lack of knowledge of the involved signalling pathways and molecular targets. Mouse hippocampal neuronal HT22 cells were irradiated with acute gamma doses of 0.5 Gy, 1.0 Gy and 4.0 Gy. Changes in the cellular proteome were investigated by isotope-coded protein label technology and tandem mass spectrometry after 4 and 24 hours. To compare the findings with the in vivo response, male NMRI mice were irradiated on postnatal day 10 with a gamma dose of 1.0 Gy, followed by evaluation of the cellular proteome of hippocampus and cortex 24 hours post-irradiation. Analysis of the in vitro proteome showed that signalling pathways related to synaptic actin-remodelling were significantly affected at 1.0 Gy and 4.0 Gy but not at 0.5 Gy after 4 and 24 hours. We observed radiation-induced reduction of the miR-132 and Rac1 levels; miR-132 is known to regulate Rac1 activity by blocking the GTPase-activating protein p250GAP. In the irradiated hippocampus and cortex we observed alterations in the signalling pathways similar to those in vitro. The decreased expression of miR-132 and Rac1 was associated with an increase in hippocampal cofilin and phospho-cofilin. The Rac1-Cofilin pathway is involved in the modulation of synaptic actin filament formation that is necessary for correct spine and synapse morphology to enable processes of learning and memory. We suggest that acute radiation exposure leads to rapid dendritic spine and synapse morphology alterations via aberrant cytoskeletal signalling and processing and that this is associated with the immediate neurocognitive side effects observed in patients treated with ionising radiation. PMID:25329592

  16. Type I interferon (IFN-alpha/beta) rescues B-lymphocytes from apoptosis via PI3Kdelta/Akt, Rho-A, NFkappaB and Bcl-2/Bcl(XL).

    PubMed

    Badr, Gamal; Saad, Heba; Waly, Hanan; Hassan, Khadega; Abdel-Tawab, Hanem; Alhazza, Ibrahim M; Ahmed, Emad A

    2010-01-01

    Although IFN-alpha was reported to promote the survival of peripheral B-lymphocytes via the PI3-kinase-Akt pathway, the triggered signalling pathways involved in the protection of B cell from apoptosis need to be clarified. Using flow cytometry and western blot analysis, we have found that type 1 IFNs (IFN-alpha/beta) protect human B cells in culture from spontaneous apoptosis and from apoptosis mediated by anti-CD95 agonist, in a dose- and time-dependant manner. IFN-alpha/beta-mediated anti-apoptotic effect on human B cells was totally abrogated by blockade of IFNR1 chain. Our data indicate that PI3Kdelta, Rho-A, NFkappaB and Bcl-2/Bcl(XL) are active downstream of IFN receptors and are the major effectors of IFN-alpha/beta-rescued B cells from apoptosis. Furthermore, immunohistochemical results show marked reduction in numbers of CD20 positive B cell in both spleen and Peyer's patches from mice treated with anti-IFNR1 blocking antibody compared with control group. Moreover, ultrastructural observations of these organs show an obvious increase in apoptotic cells from mice treated with anti-IFNR1 blocking antibody. Our results provide more details about the triggered signalling pathways and the phosphorylation cascade which are involved in the protection of B cell from apoptosis after treatment with IFN-alpha/beta. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Sublethal Effects of the Neonicotinoid Insecticide Thiamethoxam on the Transcriptome of the Honey Bees (Hymenoptera: Apidae).

    PubMed

    Shi, Teng-Fei; Wang, Yu-Fei; Liu, Fang; Qi, Lei; Yu, Lin-Sheng

    2017-12-05

    Neonicotinoid insecticides are now the most widely used insecticides in the world. Previous studies have indicated that sublethal doses of neonicotinoids impair learning, memory capacity, foraging, and immunocompetence in honey bees (Apis mellifera, Linnaeus) (Hymenoptera: Apidae). Despite these, few studies have been carried out on the molecular effects of neonicotinoids. In this study, we focus on the second-generation neonicotinoid thiamethoxam, which is currently widely used in agriculture to protect crops. Using high-throughput RNA-Seq, we investigated the transcriptome profile of honey bees after subchronic exposure to 10 ppb thiamethoxam over 10 d. In total, 609 differentially expressed genes (DEGs) were identified, of which 225 were upregulated and 384 were downregulated. Several genes, including vitellogenin, CSP3, defensin-1, Mrjp1, and Cyp6as5 were selected and further validated using real-time quantitative polymerase chain reaction assays. The functions of some DEGs were identified, and Gene Ontology-enrichment analysis showed that the enriched DEGs were mainly linked to metabolism, biosynthesis, and translation. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that thiamethoxam affected biological processes including ribosomes, the oxidative phosphorylation pathway, tyrosine metabolism pathway, pentose and glucuronate interconversions, and drug metabolism. Overall, our results provide a basis for understanding the molecular mechanisms of the complex interactions between neonicotinoid insecticides and honey bees. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. 18α-Glycyrrhetinic Acid Induces Apoptosis of HL-60 Human Leukemia Cells through Caspases- and Mitochondria-Dependent Signaling Pathways.

    PubMed

    Huang, Yi-Chang; Kuo, Chao-Lin; Lu, Kung-Wen; Lin, Jen-Jyh; Yang, Jiun-Long; Wu, Rick Sai-Chuen; Wu, Ping-Ping; Chung, Jing-Gung

    2016-07-01

    In this study we investigate the molecular mechanisms of caspases and mitochondria in the extrinsic and intrinsic signal apoptosis pathways in human leukemia HL-60 cells after in vitro exposure to 18α-glycyrrhetinic acid (18α-GA). Cells were exposed to 18α-GA at various concentrations for various time periods and were harvested for flow cytometry total viable cell and apoptotic cell death measurements. Cells treated with 18α-GA significantly inhibited cell proliferation and induced cell apoptosis in a dose-dependent manner, with an IC50 value of 100 μM at 48 h. The cell growth inhibition resulted in induction of apoptosis and decreased the mitochondria membrane potential (ΔΨm) and increased caspase-8, -9 and -3 activities. Furthermore, cytochrome c and AIF were released from mitochondria, as shown by western blotting and confirmed by confocal laser microscopy. Western blotting showed that 18α-GA increased the levels of pro-apoptotic proteins such as Bax and Bid and decreased the anti-apoptotic proteins such as Bcl-2 and Bcl-xl, furthermore, results also showed that 18α-GA increased Fas and Fas-L which are associated with surface death receptor in HL-60 cells. Based on those observations, the present study supports the hypothesis that 18α-GA-induced apoptosis in HL-60 cells involves the activation of the both extrinsic and intrinsic apoptotic pathways.

  19. Controlled-release systemic delivery - a new concept in cancer chemoprevention

    PubMed Central

    2012-01-01

    Many chemopreventive agents have encountered bioavailability issues in pre-clinical/clinical studies despite high oral doses. We report here a new concept utilizing polycaprolactone implants embedded with test compounds to obtain controlled systemic delivery, circumventing oral bioavailability issues and reducing the total administered dose. Compounds were released from the implants in vitro dose dependently and for long durations (months), which correlated with in vivo release. Polymeric implants of curcumin significantly inhibited tissue DNA adducts following the treatment of rats with benzo[a]pyrene, with the total administered dose being substantially lower than typical oral doses. A comparison of bioavailability of curcumin given by implants showed significantly higher levels of curcumin in the plasma, liver and brain 30 days after treatment compared with the dietary route. Withaferin A implants resulted in a nearly 60% inhibition of lung cancer A549 cell xenografts, but no inhibition occurred when the same total dose was administered intraperitoneally. More than 15 phytochemicals have been tested successfully by this formulation. Together, our data indicate that this novel implant-delivery system circumvents oral bioavailability issues, provides continuous delivery for long durations and lowers the total administered dose, eliciting both chemopreventive/chemotherapeutic activities. This would also allow the assessment of activity of minor constituents and synthetic metabolites, which otherwise remain uninvestigated in vivo. PMID:22696595

  20. Nitrite exerts antioxidant effects, inhibits the mTOR pathway and reverses hypertension-induced cardiac hypertrophy.

    PubMed

    Guimaraes, Danielle A; Dos Passos, Madla A; Rizzi, Elen; Pinheiro, Lucas C; Amaral, Jefferson H; Gerlach, Raquel F; Castro, Michele M; Tanus-Santos, Jose E

    2018-05-20

    Cardiac hypertrophy is a common consequence of chronic hypertension and leads to heart failure and premature death. The anion nitrite is now considered as a bioactive molecule able to exert beneficial cardiovascular effects. Previous results showed that nitrite attenuates hypertension-induced increases in reactive oxygen species (ROS) production in the vasculature. Whether antioxidant effects induced by nitrite block critical signaling pathways involved in cardiac hypertrophy induced by hypertension has not been determined yet. The Akt/mTOR signaling pathway is responsible to activate protein synthesis during cardiac remodeling and is activated by increased ROS production, which is commonly found in hypertension. Here, we investigated the effects of nitrite treatment on cardiac remodeling and activation of this hypertrophic signaling pathway in 2 kidney-1 clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral nitrite at 1 or 15 mg/kg for four weeks. Nitrite treatment (15 mg/kg) reduced systolic blood pressure and decreased ROS production in the heart tissue from hypertensive rats. This nitrite dose also blunted hypertension-induced activation of mTOR pathway and cardiac hypertrophy. While the lower nitrite dose (1 mg/kg) did not affect blood pressure, it exerted antioxidant effects and tended to attenuate mTOR pathway activation and cardiac hypertrophy induced by hypertension. Our findings provide strong evidence that nitrite treatment decreases cardiac remodeling induced by hypertension as a result of its antioxidant effects and downregulation of mTOR signaling pathway. This study may help to establish nitrite as an effective therapy in hypertension-induced cardiac hypertrophic remodeling. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  2. A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Rui; Bernard, Damian; Turian, Julius

    2012-04-15

    Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lungmore » dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.« less

  3. How Long Can the Hubble Space Telescope Operate Reliably? A Total Dose Perspective

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2014-01-01

    The Hubble Space Telescope has been at the forefront of discoveries in the field of astronomy for more than 20 years. It was the first telescope designed to be serviced in space and the last such servicing mission occurred in May 2009. The question of how much longer this valuable resource can continue to return science data remains. In this paper a detailed analysis of the total dose exposure of electronic parts at the box level is performed using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are related to parts that have been proposed as possible total dose concerns. The spacecraft subsystem that appears to be at the greatest risk for total dose failure is identified. This is discussed with perspective on the overall lifetime of the spacecraft.

  4. 17α-ethinyl estradiol attenuates depressive-like behavior through GABAA receptor activation/nitrergic pathway blockade in ovariectomized mice.

    PubMed

    Saeedi Saravi, Seyed Soheil; Arefidoust, Alireza; Yaftian, Rahele; Saeedi Saravi, Seyed Sobhan; Dehpour, Ahmad Reza

    2016-04-01

    This study was performed to investigate the antidepressant-like effect of 17α-ethinyl estradiol (EE2) in ovariectomized (OVX) mice and the possible role of nitrergic and gamma aminobutyric acid (GABA)ergic pathways in this paradigm. Bilateral ovariectomy was performed in female mice, and different doses of EE2 were intraperitoneally injected either alone or combined with GABAA agonist, diazepam, GABAA antagonist, flumazenil, non-specific nitric oxide synthase (NOS) inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME), specific nNOS inhibitor, 7-nitroindazole (7-NI), a nitric oxide (NO) precursor, L-arginine, and selective PDE5I, sildenafil. After locomotion assessment, immobility times were recorded in the forced swimming test (FST) and tail suspension test (TST). Moreover, hippocampal nitrite concentrations were measured in the examined groups. Ten days after ovariectomy, a significant prolonged immobility times were observed. EE2 (0.3 and 1μg/kg and 0.03, 0.1, and 1mg/kg) caused antidepressant-like activity in OVX mice in FST and TST. Diazepam (1 and 5mg/kg), L-NAME (30mg/kg), and 7-NI (100mg/kg) significantly reduced the immobility times. Co-administration of minimal and sub-effective doses of EE2 and diazepam (0.3μg/kg and 0.5mg/kg, respectively) exerted a significant antidepressant-like effect. The same effect was observed in combination of minimal and sub-effective doses of EE2 and either L-NAME or 7-NI. Moreover, combination of minimal and sub-effective doses of EE2, diazepam either L-NAME, or 7-NI emphasized the significant robust antidepressant-like activity. The study has demonstrated that lowest dose of EE2 exerts a significant antidepressant-like behavior. It is suggested that suppression of NO system, as well as GABAA activation, may be responsible for antidepressant-like activity of EE2 in OVX mice. Moreover, GABAA activation may inhibit nitrergic pathway.

  5. Dosimetric evaluation of total marrow irradiation using 2 different planning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nalichowski, Adrian, E-mail: nalichoa@karmanos.org; Eagle, Don G.; Burmeister, Jay

    This study compared 2 different treatment planning systems (TPSs) for quality and efficiency of total marrow irradiation (TMI) plans. The TPSs used in this study were VOxel-Less Optimization (VoLO) (Accuray Inc, Sunnyvale, CA) using helical dose delivery on a Tomotherapy Hi-Art treatment unit and Eclipse (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) dose delivery on a Varian iX treatment unit. A total dose of 1200 cGy was prescribed to cover 95% of the planning target volume (PTV). The plans were optimized and calculated based on a single CT data and structure set using themore » Alderson Rando phantom (The Phantom Laboratory, Salem, NY) and physician contoured target and organ at risk (OAR) volumes. The OARs were lungs, heart, liver, kidneys, brain, and small bowel. The plans were evaluated based on plan quality, time to optimize the plan and calculate the dose, and beam on time. The resulting mean and maximum doses to the PTV were 1268 and 1465 cGy for VoLO and 1284 and 1541 cGy for Eclipse, respectively. For 5 of 6 OAR structures the VoLO system achieved lower mean and D10 doses ranging from 22% to 52% and 3% to 44%, respectively. Total computational time including only optimization and dose calculation were 0.9 hours for VoLO and 3.8 hours for Eclipse. These times do not include user-dependent target delineation and field setup. Both planning systems are capable of creating high-quality plans for total marrow irradiation. The VoLO planning system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing. VoLO's graphics processing unit (GPU)–based optimization and dose calculation algorithm also allowed much faster creation of TMI plans.« less

  6. Dose and Effect Thresholds for Early Key Events in a Mode of ...

    EPA Pesticide Factsheets

    ABSTRACT Strategies for predicting adverse health outcomes of environmental chemicals are centered on early key events in toxicity pathways. However, quantitative relationships between early molecular changes in a given pathway and later health effects are often poorly defined. The goal of this study was to evaluate short-term key event indicators using qualitative and quantitative methods in an established pathway of mouse liver tumorigenesis mediated by peroxisome proliferator-activated receptor-alpha (PPARα). Male B6C3F1 mice were exposed for 7 days to di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and n-butyl benzyl phthalate (BBP), which vary in PPARα activity and liver tumorigenicity. Each phthalate increased expression of select PPARα target genes at 7 days, while only DEHP significantly increased liver cell proliferation labeling index (LI). Transcriptional benchmark dose (BMDT) estimates for dose-related genomic markers stratified phthalates according to hypothetical tumorigenic potencies, unlike BMDs for non-genomic endpoints (liver weights or proliferation). The 7-day BMDT values for Acot1 as a surrogate measure for PPARα activation were 29, 370, and 676 mg/kg-d for DEHP, DNOP, and BBP, respectively, distinguishing DEHP (liver tumor BMD of 35 mg/kg-d) from non-tumorigenic DNOP and BBP. Effect thresholds were generated using linear regression of DEHP effects at 7 days and 2-year tumor incidence values to anchor early response molec

  7. Role of TGF Beta and PPAR Alpha Signaling Pathways in Radiation Response of Locally Exposed Heart: Integrated Global Transcriptomics and Proteomics Analysis.

    PubMed

    Subramanian, Vikram; Seemann, Ingar; Merl-Pham, Juliane; Hauck, Stefanie M; Stewart, Fiona A; Atkinson, Michael J; Tapio, Soile; Azimzadeh, Omid

    2017-01-06

    Epidemiological data from patients undergoing radiotherapy for thoracic tumors clearly show the damaging effect of ionizing radiation on cardiovascular system. The long-term impairment of heart function and structure after local high-dose irradiation is associated with systemic inflammatory response, contraction impairment, microvascular damage, and cardiac fibrosis. The goal of the present study was to investigate molecular mechanisms involved in this process. C57BL/6J mice received a single X-ray dose of 16 Gy given locally to the heart at the age of 8 weeks. Radiation-induced changes in the heart transcriptome and proteome were investigated 40 weeks after the exposure. The omics data were analyzed by bioinformatics tools and validated by immunoblotting. Integrated network analysis of transcriptomics and proteomics data elucidated the signaling pathways that were similarly affected at gene and protein level. Analysis showed induction of transforming growth factor (TGF) beta signaling but inactivation of peroxisome proliferator-activated receptor (PPAR) alpha signaling in irradiated heart. The putative mediator role of mitogen-activated protein kinase cascade linking PPAR alpha and TGF beta signaling was supported by data from immunoblotting and ELISA. This study indicates that both signaling pathways are involved in radiation-induced heart fibrosis, metabolic disordering, and impaired contractility, a pathophysiological condition that is often observed in patients that received high radiation doses in thorax.

  8. Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression.

    PubMed

    Assadi-Porter, Fariba M; Reiland, Hannah; Sabatini, Martina; Lorenzini, Leonardo; Carnicelli, Vittoria; Rogowski, Micheal; Selen Alpergin, Ebru S; Tonelli, Marco; Ghelardoni, Sandra; Saba, Alessandro; Zucchi, Riccardo; Chiellini, Grazia

    2018-05-22

    Obesity is a complex disease associated with environmental and genetic factors. 3-Iodothyronamine (T1AM) has revealed great potential as an effective weight loss drug. We used metabolomics and associated transcriptional gene and protein expression analysis to investigate the tissue specific metabolic reprogramming effects of subchronic T1AM treatment at two pharmacological daily doses (10 and 25 mg/kg) on targeted metabolic pathways. Multi-analytical results indicated that T1AM at 25 mg/kg can act as a novel master regulator of both glucose and lipid metabolism in mice through sirtuin-mediated pathways. In liver, we observed an increased gene and protein expression of Sirt6 (a master gene regulator of glucose) and Gck (glucose kinase) and a decreased expression of Sirt4 (a negative regulator of fatty acids oxidation (FAO)), whereas in white adipose tissue only Sirt6 was increased. Metabolomics analysis supported physiological changes at both doses with most increases in FAO, glycolysis indicators and the mitochondrial substrate, at the highest dose of T1AM. Together our results suggest that T1AM acts through sirtuin-mediated pathways to metabolically reprogram fatty acid and glucose metabolism possibly through small molecules signaling. Our novel mechanistic findings indicate that T1AM has a great potential as a drug for the treatment of obesity and possibly diabetes.

  9. Low-dose gamma-ray irradiation induces translocation of Nrf2 into nuclear in mouse macrophage RAW264.7 cells.

    PubMed

    Tsukimoto, Mitsutoshi; Tamaishi, Nana; Homma, Takujiro; Kojima, Shuji

    2010-01-01

    The transcription factor nuclear erythroid-derived 2-related factor 2 (Nrf2) regulates expression of genes encoding antioxidant proteins involved in cellular redox homeostasis, while gamma-ray irradiation is known to induce reactive oxygen species in vivo. Although activation of Nrf2 by various stresses has been studied, it has not yet been determined whether ionizing irradiation induces activation of Nrf2. Therefore, we investigated activation of Nrf2 in response to gamma-irradiation in mouse macrophage RAW264.7 cells. Irradiation of cells with gamma-rays induced an increase of Nrf2 expression. Even 0.1 Gy of gamma-irradiation induced a translocation of Nrf2 from cytoplasm to the nucleus, indicating the activation of Nrf2 by low-dose irradiation. Expression of heme oxygenase-1, which is regulated by Nrf2, was also increased at 24 h after irradiation with more than 0.1 Gy of gamma-rays. Furthermore, the activation of Nrf2 was suppressed by U0126, which is an inhibitor of the extracellular signal regulated protein kinase 1/2 (ERK1/2) pathway, suggesting involvement of ERK1/2-dependent pathway in the irradiation-induced activation of Nrf2. Our results indicate that low-dose gamma-irradiation induces activation of Nrf2 through ERK1/2-dependent pathways.

  10. Optimising the combination dosing strategy of abemaciclib and vemurafenib in BRAF-mutated melanoma xenograft tumours

    PubMed Central

    Tate, Sonya C; Burke, Teresa F; Hartman, Daisy; Kulanthaivel, Palaniappan; Beckmann, Richard P; Cronier, Damien M

    2016-01-01

    Background: Resistance to BRAF inhibition is a major cause of treatment failure for BRAF-mutated metastatic melanoma patients. Abemaciclib, a cyclin-dependent kinase 4 and 6 inhibitor, overcomes this resistance in xenograft tumours and offers a promising drug combination. The present work aims to characterise the quantitative pharmacology of the abemaciclib/vemurafenib combination using a semimechanistic pharmacokinetic/pharmacodynamic modelling approach and to identify an optimum dosing regimen for potential clinical evaluation. Methods: A PK/biomarker model was developed to connect abemaciclib/vemurafenib concentrations to changes in MAPK and cell cycle pathway biomarkers in A375 BRAF-mutated melanoma xenografts. Resultant tumour growth inhibition was described by relating (i) MAPK pathway inhibition to apoptosis, (ii) mitotic cell density to tumour growth and, under resistant conditions, (iii) retinoblastoma protein inhibition to cell survival. Results: The model successfully described vemurafenib/abemaciclib-mediated changes in MAPK pathway and cell cycle biomarkers. Initial tumour shrinkage by vemurafenib, acquisition of resistance and subsequent abemaciclib-mediated efficacy were successfully captured and externally validated. Model simulations illustrate the benefit of intermittent vemurafenib therapy over continuous treatment, and indicate that continuous abemaciclib in combination with intermittent vemurafenib offers the potential for considerable tumour regression. Conclusions: The quantitative pharmacology of the abemaciclib/vemurafenib combination was successfully characterised and an optimised, clinically-relevant dosing strategy was identified. PMID:26978007

  11. G2013 modulates TLR4 signaling pathway in IRAK-1 and TARF-6 dependent and miR-146a independent manner.

    PubMed

    Hajivalili, M; Pourgholi, F; Majidi, J; Aghebati-Maleki, L; Movassaghpour, A A; Samadi Kafil, H; Mirshafiey, A; Yousefi, M

    2016-04-30

    Inflammation is inseparable part of different diseases especially cancer and autoimmunity. During inflammation process toll like receptor 4(TLR4) responds to lipopolysaccharide (LPS), one of the bacterial components, and TLR4 signaling leads to interleukine-1 receptor associated kinase-1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor6 (TRAF6) activation which ultimately results in nuclear factor- ĸB (NF-ĸB) activation as the main transcription factor of inflammatory cytokines. Conversely, NF-ĸB over activation induces miR-146a in innate immune cells which can consequently reduce TRAF6, IRAK1, and NF-ĸB activation in a negative feedback. G2013 is a novel designed non-steroidal anti-inflammatory drug (NSAID) which was recently shown to be effective in experimental autoimmune encephalomyelitis (EAE) mouse model. The aim of this study was to evaluate G2013 effects on inflammatory (IRAK1 and TRAF6) and anti-inflammatory (miR-146a) factors of TLR4 signaling pathway. For this purpose, cytotoxicity of G2013 has been evaluated by MTT assay. Expression level of miR-146a in PBMCs and IRAK1 along with TRAF6 in HEK-293 TLR4 cells have been determined using real time PCR. Our results showed that IC50 of G2013 was 25μg/ml, thus 5 and 25 μg/ml concentrations used for further treatments as low dose and high dose concentrations. Our results showed that IRAK1 expression reduced between 5 to 8 fold after treatment by G2013 in a dose dependent manner (p<0.001). In parallel TRAF6 expression declined between 3 to 10 fold dose dependently (p<0.05). However, miR-146a expression was not affected after treatment with low dose and high dose of G2013. In conclusion our data showed that G2013 can regulate TLR4 signaling pathway during inflammation by reducing downstream signaling molecules, IRAK1 and TRAF6 without altering miR-146a expression.

  12. Physiologically based kinetic modeling of bioactivation and detoxification of the alkenylbenzene methyleugenol in human as compared with rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Subeihi, Ala' A.A., E-mail: ala.alsubeihi@wur.nl; BEN-HAYYAN-Aqaba International Laboratories, Aqaba Special Economic Zone Authority; Spenkelink, Bert

    2012-05-01

    This study defines a physiologically based kinetic (PBK) model for methyleugenol (ME) in human based on in vitro and in silico derived parameters. With the model obtained, bioactivation and detoxification of methyleugenol (ME) at different doses levels could be investigated. The outcomes of the current model were compared with those of a previously developed PBK model for methyleugenol (ME) in male rat. The results obtained reveal that formation of 1′-hydroxymethyleugenol glucuronide (1′HMEG), a major metabolic pathway in male rat liver, appears to represent a minor metabolic pathway in human liver whereas in human liver a significantly higher formation of 1′-oxomethyleugenolmore » (1′OME) compared with male rat liver is observed. Furthermore, formation of 1′-sulfooxymethyleugenol (1′HMES), which readily undergoes desulfonation to a reactive carbonium ion (CA) that can form DNA or protein adducts (DA), is predicted to be the same in the liver of both human and male rat at oral doses of 0.0034 and 300 mg/kg bw. Altogether despite a significant difference in especially the metabolic pathways of the proximate carcinogenic metabolite 1′-hydroxymethyleugenol (1′HME) between human and male rat, the influence of species differences on the ultimate overall bioactivation of methyleugenol (ME) to 1′-sulfooxymethyleugenol (1′HMES) appears to be negligible. Moreover, the PBK model predicted the formation of 1′-sulfooxymethyleugenol (1′HMES) in the liver of human and rat to be linear from doses as high as the benchmark dose (BMD{sub 10}) down to as low as the virtual safe dose (VSD). This study shows that kinetic data do not provide a reason to argue against linear extrapolation from the rat tumor data to the human situation. -- Highlights: ► A PBK model is made for bioactivation and detoxification of methyleugenol in human. ► Comparison to the PBK model in male rat revealed species differences. ► PBK results support linear extrapolation from high to low dose and from rat to human.« less

  13. Measurement and comparison of skin dose using OneDose MOSFET and Mobile MOSFET for patients with acute lymphoblastic leukemia

    PubMed Central

    Mattar, Essam H.; Hammad, Lina F.; Al-Mohammed, Huda I.

    2011-01-01

    Summary Background Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to bone marrow transplant. It is involved in the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore measuring and monitoring the skin dose during the treatment is important. Two kinds of metal oxide semiconductor field effect transistor (OneDose MOSFET and mobile MOSEFT) dosimeter are used during the treatment delivery to measure the skin dose to specific points and compare it with the target prescribed dose. The objective of this study was to compare the variation of skin dose in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using OneDose MOSFET detectors and Mobile MOSFET, and then compare both results with the target prescribed dose. Material/Methods The measurements involved 32 patient’s (16 males, 16 females), aged between 14–30 years, with an average age of 22.41 years. One-Dose MOSFET and Mobile MOSFET dosimetry were performed at 10 different anatomical sites on every patient. Results The results showed there was no variation between skin dose measured with OneDose MOSFET and Mobile MOSFET in all patients. Furthermore, the results showed for every anatomical site selected there was no significant difference in the dose delivered using either OneDose MOSFET detector or Mobile MOSFET as compared to the prescribed dose. Conclusions The study concludes that One-Dose MOSFET detectors and Mobile MOSFET both give a direct read-out immediately after the treatment; therefore both detectors are suitable options when measuring skin dose for total body irradiation treatment. PMID:21709641

  14. Measurement and comparison of skin dose using OneDose MOSFET and Mobile MOSFET for patients with acute lymphoblastic leukemia.

    PubMed

    Mattar, Essam H; Hammad, Lina F; Al-Mohammed, Huda I

    2011-07-01

    Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to bone marrow transplant. It is involved in the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore measuring and monitoring the skin dose during the treatment is important. Two kinds of metal oxide semiconductor field effect transistor (OneDose MOSFET and mobile MOSEFT) dosimeter are used during the treatment delivery to measure the skin dose to specific points and compare it with the target prescribed dose. The objective of this study was to compare the variation of skin dose in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using OneDose MOSFET detectors and Mobile MOSFET, and then compare both results with the target prescribed dose. The measurements involved 32 patient's (16 males, 16 females), aged between 14-30 years, with an average age of 22.41 years. One-Dose MOSFET and Mobile MOSFET dosimetry were performed at 10 different anatomical sites on every patient. The results showed there was no variation between skin dose measured with OneDose MOSFET and Mobile MOSFET in all patients. Furthermore, the results showed for every anatomical site selected there was no significant difference in the dose delivered using either OneDose MOSFET detector or Mobile MOSFET as compared to the prescribed dose. The study concludes that One-Dose MOSFET detectors and Mobile MOSFET both give a direct read-out immediately after the treatment; therefore both detectors are suitable options when measuring skin dose for total body irradiation treatment.

  15. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, Meeghan A., E-mail: meeghan.oconnor@boehringer-ingelheim.com; Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368; Koza-Taylor, Petra, E-mail: petra.h.koza-taylor@pfizer.com

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 h later with 600 mg APAP/kg. Livers were obtained 4 or 24 h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430{sub 2} GeneChip. Statistically significant genes were determined and gene expression changes weremore » also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. - Highlights: • Differential expression of genes in mice resistant to acetaminophen hepatotoxicity. • Increased gene expression of Flavin-containing monooxygenase 3 and Galectin-3. • Decrease in MAT1A expression and compensatory hepatocellular regeneration. • Two distinct gene expression patterns support contrasting Nrf2 responses. • Genomics identification of pathways relevant to resistance to APAP hepatotoxicity.« less

  16. 7A.06: MATERNAL OBESITY AND THE DEVELOPMENTAL PROGRAMMING OF HYPERTENSION: ALTERED LEPTIN SIGNALLING PATHWAY IN THE CENTRAL NERVOUS SYSTEM.

    PubMed

    Lim, J; Burke, S; Head, G A

    2015-06-01

    The prevalence of obesity in women among child baring age is increasing and this has been parallel to the increase in obesity in general population around the world. We investigated the trans-generational 'programming' of leptin signalling in the central nervous system (CNS) to increase blood pressure (BP), heart rate (HR) and renal sympathetic nerve activity (RSNA) following a high fat diet (HFD)feeding in mothers. Female New Zealand White rabbits were fed a high fat (13%) diet (mHFD) or a control diet (mCD) prior mating and during pregnancy. Kittens from mCD rabbits were subdivided and fed HFD for 10days (mCD10dHFD) at 15 weeks of age. All rabbits received an intracerebroventricular (ICV) catheter into the lateral ventricle and a recording electrode on the left renal nerve. Experiments were conducted in conscious rabbits and BP, HR and RSNA was measured. Rabbits received an increasing doses of ICV Melanocortin receptor antagonist (SHU9119),alpha-Melanocortin stimulating hormone (alpha-MSH) and a single dose of Leptin antagonist. ICV SHU9119 reduced BP (-5.8 ± 0.7mmHg and -4.1 ± 0.9mmHg) and RSNA (-2.4 ± 0.3 nu and -0.7 ± 0.3 nu) in mHFD and mCD10dHFD rabbits (P < 0.001). Leptin antagonist reduced BP and RSNA only in mHFD rabbits (-2.1 ± 0.5mmHg and -2.7nu, respectively). alpha-MSH injection increased BP, HR and RSNA in both mHFD and mNFD10dHFD rabbits (P < 0.05). Total % fat was increased (50%) in all rabbits that had HFD. Obesity during pregnancy 'programs' leptin signalling pathway in the CNS of the offspring during development. Leptin via activation of melanocirtin pathway plays a key role in the CNS contributing to the pressor and tachycardic effects as well as renal sympathetic nerve activity in the pathophysiology of obesity.

  17. Technical Review of SRS Dose Reconstrruction Methods Used By CDC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpkins, Ali, A

    2005-07-20

    At the request of the Centers for Disease Control and Prevention (CDC), a subcontractor Advanced Technologies and Laboratories International, Inc.(ATL) issued a draft report estimating offsite dose as a result of Savannah River Site operations for the period 1954-1992 in support of Phase III of the SRS Dose Reconstruction Project. The doses reported by ATL differed than those previously estimated by Savannah River Site SRS dose modelers for a variety of reasons, but primarily because (1) ATL used different source terms, (2) ATL considered trespasser/poacher scenarios and (3) ATL did not consistently use site-specific parameters or correct usage parameters. Themore » receptors with the highest dose from atmospheric and liquid pathways were within about a factor of four greater than dose values previously reported by SRS. A complete set of technical comments have also been included.« less

  18. Effect of Localizer Radiography Projection on Organ Dose at Chest CT with Automatic Tube Current Modulation.

    PubMed

    Saltybaeva, Natalia; Krauss, Andreas; Alkadhi, Hatem

    2017-03-01

    Purpose To calculate the effect of localizer radiography projections to the total radiation dose, including both the dose from localizer radiography and that from subsequent chest computed tomography (CT) with tube current modulation (TCM). Materials and Methods An anthropomorphic phantom was scanned with 192-section CT without and with differently sized breast attachments. Chest CT with TCM was performed after one localizer radiographic examination with anteroposterior (AP) or posteroanterior (PA) projections. Dose distributions were obtained by means of Monte Carlo simulations based on acquired CT data. For Monte Carlo simulations of localizer radiography, the tube position was fixed at 0° and 180°; for chest CT, a spiral trajectory with TCM was used. The effect of tube start angles on dose distribution was investigated with Monte Carlo simulations by using TCM curves with fixed start angles (0°, 90°, and 180°). Total doses for lungs, heart, and breast were calculated as the sum of the dose from localizer radiography and CT. Image noise was defined as the standard deviation of attenuation measured in 14 circular regions of interest. The Wilcoxon signed rank test, paired t test, and Friedman analysis of variance were conducted to evaluate differences in noise, TCM curves, and organ doses, respectively. Results Organ doses from localizer radiography were lower when using a PA instead of an AP projection (P = .005). The use of a PA projection resulted in higher TCM values for chest CT (P < .001) owing to the higher attenuation (P < .001) and thus resulted in higher total organ doses for all investigated phantoms and protocols (P < .001). Noise in CT images was lower with PA localizer radiography than with AP localizer radiography (P = .03). The use of an AP projection allowed for total dose reductions of 16%, 15%, and 12% for lungs, breast, and heart, respectively. Differences in organ doses were not related to tube start angles (P = .17). Conclusion The total organ doses are higher when using PA projection localizer radiography owing to higher TCM values, whereas the organ doses from PA localizer radiography alone are lower. Thus, PA localizer radiography should be used in combination with reduced reference tube current at subsequent chest CT. © RSNA, 2016 Online supplemental material is available for this article.

  19. Issue Paper on Metal Exposure Assessment

    EPA Pesticide Factsheets

    This paper explores the best approaches for characterizing exposure pathways and routes, estimating the most relevant exposure concentrations, linking exposure to dose, and coping with natural or background concentrations.

  20. Implementation and evaluation of a clinical pathway for TRAM breast reconstruction.

    PubMed

    Hwang, T G; Wilkins, E G; Lowery, J C; Gentile, J

    2000-02-01

    Among strategies recently proposed to reduce practice variation, promote quality, and control costs in health care delivery, the concept of the clinical pathway has received considerable attention. Because transverse rectus abdominis musculocutaneous (TRAM) breast reconstruction is a common and often costly intervention, this institution sought to evaluate cost and quality outcomes of a clinical pathways program for this procedure. The TRAM reconstruction clinical pathway was implemented in April of 1996 to standardize postoperative care in this patient population. Outcomes of consecutive pathway cases for the first 14 months of the program were assessed in a retrospective cohort design, by using all nonpathway TRAM cases from the 18 months immediately before pathway implementation as controls. Outcomes assessed included length of hospital stay, postoperative complications, total postoperative charges, and total postoperative costs in relative value units. Data on these dependent variables were collected from hospital charts and billing records. The effects of pathway implementation on the outcomes of interest were analyzed by using analysis of covariance to control for potential confounding by other independent variables, including surgical site (unilateral versus bilateral reconstructions), technique (pedicle versus free TRAMs), timing (immediate versus delayed reconstructions), and patient age. Finally, a comparison of variances in the outcomes of interest between the two groups was analyzed by using an Ftest. For all statistical tests, p values of < or = 0.05 were considered significant. Twenty-nine patients were treated in the TRAM pathway group, whereas the control population included 40 nonpathway patients. After implementation of the TRAM pathway, length of stay decreased from 6.0 to 5.2 days; total postoperative charges were reduced from $8587 to $7744; and total postoperative relative value unit utilization declined from 1686 to 1104. Analysis of covariance showed that the decreases in length of hospital stay and relative value units in the TRAM pathway were statistically significant (p = 0.05 and p = 0.007, respectively). By contrast, no significant increase in complications was observed after pathway implementation. Variability in the TRAM pathway group, as measured by SD, decreased significantly for both length of hospital stay (p = 0.039) and relative value units (p = 0.023). Implementation of the TRAM reconstruction clinical pathway resulted in significant declines in length of hospital stay and total costs. These decreases in resource utilization had no significant effect on postoperative complication rates. Although additional research is needed to further assess the impact of clinical pathways, this approach offers considerable promise for improving the cost-effectiveness of health care.

  1. Total Ionizing Dose Test of Microsemi's Silicon Switching Transistors JANTXV2N2222AUB and 2N2907AUB

    NASA Technical Reports Server (NTRS)

    Campola, M.; Freeman, B.; Yau, K.

    2017-01-01

    Microsemi's silicon switching transistors, JANTXV2N2222AUB and 2N2907AUB, were tested for total ionizing dose (TID) response beginning on July 11, 2016. This test served as the radiation lot acceptance test (RLAT) for the lot date code (LDC) tested. Low dose rate (LDR) irradiations were performed in this test so that the device susceptibility to enhanced low dose rate sensitivity (ELDRS) could be determined.

  2. Enhanced anticancer effects of Scutellaria barbata D. Don in combination with traditional Chinese medicine components on non-small cell lung cancer cells.

    PubMed

    Wang, Qian; Acharya, Narayan; Liu, Zhongwei; Zhou, Xianmei; Cromie, Meghan; Zhu, Jia; Gao, Weimin

    2018-05-10

    Experience-based herbal medicine as a complementary to modern western medicine has triggered an array of studies in quest of novel anticancer drugs. Scutellaria barbata D. Don (SB) is commonly used to treat different types of cancers, but its molecular mechanism of action is not clearly understood. In this study, we attempted to elucidate the mode of action of a traditional Chinese medicine prescription with a total of 14 components, named Lian-Jia-San-Jie-Fang (LJSJF, in Chinese), where SB works as the "principle" against non-small cell lung cancer (NSCLC) cells. Four different NSCLC cell lines (A549, H460, H1650, and H1975) were used. Cytotoxicity, in vitro tumorigenicity, gene expression, and protein expression were analyzed by MTT assay, soft agar assay, real-time PCR, and Western blots, respectively. Among the 14 components in LJSJF, SB was the only one to possess cytotoxic effects at its pharmacologically relevant doses. Additionally, we observed synergistically dose-dependent cytotoxic effects of SB in combination with other LJSJF components. After SB or LJSJF treatment, significant reductions in colony number and/or size were observed in A549 and H460; a notable dose-dependent decrease in EGFR was observed in A549, H460, and H1650; significant downregulation in EGFR and its downstream signaling targets mTOR and p38MAPK were also observed in A549 and H460; and p53 and p21 were significantly increased while survivin, cyclin D1, and MDM2 were significantly decreased in A549. Additionally, p53, p21, and Mettl7b were decreased, but p73 was increased in H460. Neither EGFR nor p53 was changed in H1975. Therefore, SB or LJSJF may induce cytotoxic effects by regulating multiple and/or distinct apoptotic pathways in different NSCLC cells. LJSJF exerts more pronounced cytotoxic effects against NSCLC cells than SB does by synergistically regulating the underlining molecular mechanisms including EGFR and/or p53 signaling pathways. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The dissipation and microbial ecotoxicity of tebuconazole and its transformation products in soil under standard laboratory and simulated winter conditions.

    PubMed

    El Azhari, Najoi; Dermou, Eftychia; Barnard, Romain L; Storck, Veronika; Tourna, Maria; Beguet, Jérémie; Karas, Panagiotis A; Lucini, Luigi; Rouard, Nadine; Botteri, Lucio; Ferrari, Federico; Trevisan, Marco; Karpouzas, Dimitrios G; Martin-Laurent, Fabrice

    2018-05-12

    Tebuconazole (TBZ) is a widely used triazole fungicide at EU level on cereals and vines. It is relatively persistent in soil where it is transformed to various transformation products (TPs) which might be environmentally relevant. We assessed the dissipation of TBZ in soil under contrasting incubation conditions (standard vs winter simulated) that are relevant to its application scheme, determined its transformation pathway using advanced analytical tools and 14 C-labeled TBZ and assessed its soil microbial toxicity. Mineralization of 14 C-triazole-ring-labeled TBZ was negligible but up to 11% of 14 C-penyl-ring-labeled TBZ evolved as 14 CO 2 within 150 days of incubation. TBZ persistence increased at higher dose rates (×10 compared to the recommended agronomical dose ×1) and under winter simulated conditions compared to standard incubation conditions (at ×1 dose rate DT 50 of 202 and 88 days, respectively). Non-target suspect screening enabled the detection of 22 TPs of TBZ, among which 17 were unknown. Mass spectrometry analysis led to the identification of 1-(4-chlorophenyl) ethanone, a novel TP of TBZ, the formation of which and decay in soil was determined by gas chromatography mass spectrometry. Three hypothetical transformation pathways of TBZ, all converging to 1H-1,2,4-triazole are proposed based on suspect screening. The ecotoxicological effect of TBZ and of its TPs was assessed by measuring by qPCR the abundance of the total bacteria and the relative abundance of 11 prokaryotic taxa and 4 functional groups. A transient impact of TBZ on the relative abundance of all prokaryotic taxa (except α-proteobacteria and Bacteroidetes) and one functional microbial group (pcaH-carrying microorganisms) was observed. However the direction of the effect (positive or negative) varied, and in certain cases, depended on the incubation conditions. Proteobacteria was the most responsive phylum to TBZ with recovery observed 20 days after treatment. The ecotoxicological effects on the soil microorganisms were not correlated with 1-(4-chlorophenyl) ethanone. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Involvement of l-arginine-nitric oxide pathway in anxiolytic-like effects of zinc chloride in rats.

    PubMed

    Navabi, Seyedeh Parisa; Eshagh Harooni, Hooman; Moazedi, Ahmad Ali; Khajepour, Lotfolah; Fathinia, Kosar

    2016-10-01

    Zinc is crucial for normal development of the brain, and Zinc deficiency has been shown to associate with neurological disorders (e.g. anxiety) through interactions with several neurotransmitter systems such as nitric oxide (NO). In this regard, our study aimed to evaluate the possible involvement of l-arginine NO pathway on anxiolytic effects of zinc in adult male rats. Zinc chloride at doses of 2.5 and 10mg/kg (intraperitoneal or ip) or saline (1ml/kg, ip) were injected 30min before the anxiety test. Zinc administrated rats (10mg/kg) were pre-treated with intra-CA1 microinjection of l-arginine in sub-effective dose of 1μg/rat (dorsal hippocampus, vehicle: saline1μl/rat). In addition, zinc chloride and NG-nitro-l-arginine methyl ester (l-NAME) were intraperitoneally co-administrated in sub-effective doses of 2.5mg/kg and 80mg/kg, respectively. The percentage of open arm time (OAT%), percentage of open arm entry (OAE%), as measures of anxiety, and total number of arm entries, as measures of locomotor activity, were recorded. Treatment with zinc (10mg/kg) markedly produced an increase in OAT% and OAE% in the Elevated plus maze test (EPM). A decrease of OAT% and OAE% was shown in groups which received zinc (10mg/kg) and l-arginine (1μg/rat) concomitantly as compared to the control group. Moreover, an increase of OAE% was revealed in the group exposed to Zinc (2.5mg/kg) and l-NAME (80mg/kg) co-administration. Although, Two-way ANOVA showed no significant differences of anxiety indices in rats received drug+zinc chloride in compare to the zinc pretreated with saline group. Anxiolytic- like effect of zinc reversed by nitric oxide precursor l-arginine. Additionally, the synergistic effects of l-NAME and ZnCl 2 were shown in the EPM. Thus our findings suggest that at least in part the anxiolytic effects of zinc can be mediated through the nitric oxide system. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Effect of bucladesine, pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain.

    PubMed

    Salehi, Forouz; Hosseini-Zare, Mahshid S; Aghajani, Haleh; Seyedi, Seyedeh Yalda; Hosseini-Zare, Maryam S; Sharifzadeh, Mohammad

    2017-08-01

    The aim of this study was to determine the effects of cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  6. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  7. PBDE exposure from food in Ireland: optimising data exploitation in probabilistic exposure modelling.

    PubMed

    Trudel, David; Tlustos, Christina; Von Goetz, Natalie; Scheringer, Martin; Hungerbühler, Konrad

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants added to plastics, polyurethane foam, electronics, textiles, and other products. These products release PBDEs into the indoor and outdoor environment, thus causing human exposure through food and dust. This study models PBDE dose distributions from ingestion of food for Irish adults on congener basis by using two probabilistic and one semi-deterministic method. One of the probabilistic methods was newly developed and is based on summary statistics of food consumption combined with a model generating realistic daily energy supply from food. Median (intermediate) doses of total PBDEs are in the range of 0.4-0.6 ng/kg(bw)/day for Irish adults. The 97.5th percentiles of total PBDE doses lie in a range of 1.7-2.2 ng/kg(bw)/day, which is comparable to doses derived for Belgian and Dutch adults. BDE-47 and BDE-99 were identified as the congeners contributing most to estimated intakes, accounting for more than half of the total doses. The most influential food groups contributing to this intake are lean fish and salmon which together account for about 22-25% of the total doses.

  8. Risk assessment during transport of radioactive materials through the Suez Canal

    NASA Astrophysics Data System (ADS)

    Sabek, M. G.; El-Shinawy, R. M. K.; Gomaa, M.

    1997-03-01

    In this paper a study for risk assessment of the impact of transporting radioactive materials, during the period 1986-1992, through the Suez Canal of Egypt is given. The code RADTRAN-IV was used for this study. The results of the code, for a normal case, show that the transportation of low activity materials such as uranium (U 3O 8) represent the main items that contribute significantly to the collective dose within the Suez Canal area (Port-Said, Ismailia and Suez). The values of the annual collective dose due to transportation of all radionuclide materials was found to be at a maximum in Suez town and is equal to 5.04 × 10 -8 Man-Sv for the whole populations. If we only consider the workder at the harbour (estimated to be 50 persons), the value of the annual collective dose is about 3.33 × 10 -4 Man-Sv. These values are less than the exemption value of 1 Man-Sv recommended by the IAEA. For the accident case, the following pathways are considered by the code: ground-shine, direct inhalation, inhalation of resuspended material and cloud-shine. The total values of the estimated risks for each radionuclide material are presented in table form and, in addition, health effects (genetic effects, GE, and latent cancer fatality), LCF) are discussed. The calculated values of the radiological risks are very low for the three towns, showing that no radiation-induced early deaths are to be expected.

  9. Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial

    PubMed Central

    Motzer, Robert J.; Rini, Brian I.; McDermott, David F.; Redman, Bruce G.; Kuzel, Timothy M.; Harrison, Michael R.; Vaishampayan, Ulka N.; Drabkin, Harry A.; George, Saby; Logan, Theodore F.; Margolin, Kim A.; Plimack, Elizabeth R.; Lambert, Alexandre M.; Waxman, Ian M.; Hammers, Hans J.

    2015-01-01

    Purpose Nivolumab is a fully human immunoglobulin G4 programmed death–1 immune checkpoint inhibitor antibody that restores T-cell immune activity. This phase II trial assessed the antitumor activity, dose-response relationship, and safety of nivolumab in patients with metastatic renal cell carcinoma (mRCC). Patients and Methods Patients with clear-cell mRCC previously treated with agents targeting the vascular endothelial growth factor pathway were randomly assigned (blinded ratio of 1:1:1) to nivolumab 0.3, 2, or 10 mg/kg intravenously once every 3 weeks. The primary objective was to evaluate the dose-response relationship as measured by progression-free survival (PFS); secondary end points included objective response rate (ORR), overall survival (OS), and safety. Results A total of 168 patients were randomly assigned to the nivolumab 0.3- (n = 60), 2- (n = 54), and 10-mg/kg (n = 54) cohorts. One hundred eighteen patients (70%) had received more than one prior systemic regimen. Median PFS was 2.7, 4.0, and 4.2 months, respectively (P = .9). Respective ORRs were 20%, 22%, and 20%. Median OS was 18.2 months (80% CI, 16.2 to 24.0 months), 25.5 months (80% CI, 19.8 to 28.8 months), and 24.7 months (80% CI, 15.3 to 26.0 months), respectively. The most common treatment-related adverse event (AE) was fatigue (24%, 22%, and 35%, respectively). Nineteen patients (11%) experienced grade 3 to 4 treatment-related AEs. Conclusion Nivolumab demonstrated antitumor activity with a manageable safety profile across the three doses studied in mRCC. No dose-response relationship was detected as measured by PFS. These efficacy and safety results in mRCC support study in the phase III setting. PMID:25452452

  10. Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial.

    PubMed

    Motzer, Robert J; Rini, Brian I; McDermott, David F; Redman, Bruce G; Kuzel, Timothy M; Harrison, Michael R; Vaishampayan, Ulka N; Drabkin, Harry A; George, Saby; Logan, Theodore F; Margolin, Kim A; Plimack, Elizabeth R; Lambert, Alexandre M; Waxman, Ian M; Hammers, Hans J

    2015-05-01

    Nivolumab is a fully human immunoglobulin G4 programmed death-1 immune checkpoint inhibitor antibody that restores T-cell immune activity. This phase II trial assessed the antitumor activity, dose-response relationship, and safety of nivolumab in patients with metastatic renal cell carcinoma (mRCC). Patients with clear-cell mRCC previously treated with agents targeting the vascular endothelial growth factor pathway were randomly assigned (blinded ratio of 1:1:1) to nivolumab 0.3, 2, or 10 mg/kg intravenously once every 3 weeks. The primary objective was to evaluate the dose-response relationship as measured by progression-free survival (PFS); secondary end points included objective response rate (ORR), overall survival (OS), and safety. A total of 168 patients were randomly assigned to the nivolumab 0.3- (n = 60), 2- (n = 54), and 10-mg/kg (n = 54) cohorts. One hundred eighteen patients (70%) had received more than one prior systemic regimen. Median PFS was 2.7, 4.0, and 4.2 months, respectively (P = .9). Respective ORRs were 20%, 22%, and 20%. Median OS was 18.2 months (80% CI, 16.2 to 24.0 months), 25.5 months (80% CI, 19.8 to 28.8 months), and 24.7 months (80% CI, 15.3 to 26.0 months), respectively. The most common treatment-related adverse event (AE) was fatigue (24%, 22%, and 35%, respectively). Nineteen patients (11%) experienced grade 3 to 4 treatment-related AEs. Nivolumab demonstrated antitumor activity with a manageable safety profile across the three doses studied in mRCC. No dose-response relationship was detected as measured by PFS. These efficacy and safety results in mRCC support study in the phase III setting. © 2014 by American Society of Clinical Oncology.

  11. Hazelwood Interim Storage Site: Annual site environment report, Calendar year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-11-01

    The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE Derived Concentration Guides (DCGs) and radiation protection standards. During 1985, annual average radon concentrations ranged from 10 to 23% of the DCG. The highest external dose rate at the HISS was 287 mrem/yr. The measured background dose rate for the HISS area is 99 mrem/yr. The highest average annual concentration of uranium in surface water monitored in the vicinity of the HISS was 0.7% of the DOE DCG; for /sup 226/Ra itmore » was 0.3% of the applicable DCG, and for /sup 230/Th it was 1.7%. In groundwater, the highest annual average concentration of uranium was 12% of the DCG; for /sup 226/Ra it was 3.6% of the applicable DCG, and for /sup 230/Th it was 1.8%. While there are no concentration guides for stream sediments, the highest concentration of total uranium was 19 pCi/g, the highest concentration of /sup 226/Ra was 4 pCi/g, and the highest concentration of /sup 230/Th was 300 pCi/g. Radon concentrations, external gamma dose rates, and radionuclide concentrations in groundwater at the site were lower than those measured in 1984; radionuclide concentrations in surface water were roughly equivalent to 1984 levels. For sediments, a meaningful comparison with 1984 concentrations cannot be made since samples were obtained at only two locations and were only analyzed for /sup 230/Th. The calculated radiation dose to the maximally exposed individual at the HISS, considering several exposure pathways, was 5.4 mrem, which is 5% of the radiation protection standard.« less

  12. Interrogating two schedules of the AKT inhibitor MK-2206 in patients with advanced solid tumors incorporating novel pharmacodynamic and functional imaging biomarkers

    PubMed Central

    Yap, Timothy A.; Yan, Li; Patnaik, Amita; Tunariu, Nina; Biondo, Andrea; Fearen, Ivy; Papadopoulos, Kyriakos P.; Olmos, David; Baird, Richard; Delgado, Liliana; Tetteh, Ernestina; Beckman, Robert A.; Lupinacci, Lisa; Riisnaes, Ruth; Decordova, Shaun; Heaton, Simon P.; Swales, Karen; deSouza, Nandita M; Leach, Martin O.; Garrett, Michelle D.; Sullivan, Daniel M.; de Bono, Johann S.; Tolcher, Anthony W.

    2014-01-01

    Purpose Multiple cancers harbor genetic aberrations that impact AKT signaling. MK-2206 is a potent pan-AKT inhibitor with a maximum tolerated dose (MTD) previously established at 60mg on alternate days (QOD). Due to a long half-life (60-80h), a weekly (QW) MK-2206 schedule was pursued to compare intermittent QW and continuous QOD dosing. Experimental Design Patients with advanced cancers were enrolled onto a QW dose-escalation phase I study to investigate the safety and pharmacokinetic-pharmacodynamic profiles of tumor and platelet-rich plasma (PRP). The QOD MTD of MK-2206 was also assessed in patients with ovarian and castration-resistant prostate cancers, and patients with advanced cancers undergoing multiparametric functional magnetic resonance imaging (MRI) studies, including dynamic contrast-enhanced MRI, diffusion-weighted imaging, magnetic resonance spectroscopy and intrinsic susceptibility-weighted MRI. Results Seventy-one patients were enrolled; 38 patients had 60mg MK-2206 QOD, while 33 received MK-2206 at 90mg, 135mg, 150mg, 200mg, 250mg, and 300mg QW. The QW MK-2206 MTD was established at 200mg following dose-limiting rash at 250mg and 300mg. QW dosing appeared to be similarly tolerated to QOD, with toxicities including rash, gastrointestinal symptoms, fatigue, and hyperglycemia. Significant AKT pathway blockade was observed with both continuous QOD and intermittent QW dosing of MK-2206 in serially-obtained tumor and PRP specimens. The functional imaging studies demonstrated that complex multiparametric MRI protocols may be effectively implemented in a phase I trial. Conclusions MK-2206 safely results in significant AKT pathway blockade in QOD and QW schedules. The intermittent dose of 200mg QW is currently used in phase II MK-2206 monotherapy and combination studies. PMID:25239610

  13. Concizumab, an anti-tissue factor pathway inhibitor antibody, induces increased thrombin generation in plasma from haemophilia patients and healthy subjects measured by the thrombin generation assay.

    PubMed

    Waters, E K; Sigh, J; Friedrich, U; Hilden, I; Sørensen, B B

    2017-09-01

    Concizumab, a humanized monoclonal antibody against tissue factor pathway inhibitor (TFPI), is being developed as a subcutaneously (s.c.) administered treatment for haemophilia. It demonstrated a concentration-dependent procoagulant effect in functional TFPI assays; however, global haemostatic assays, such as the thrombin generation assay (TGA), offer a more complete picture of coagulation. We investigated how concizumab affects thrombin generation following ex vivo spiking in plasma from haemophilia patients using the TGA, and if the assay can detect the effect of multiple s.c. concizumab doses in healthy subjects. For the ex vivo spiking study, platelet-poor plasma (PPP) from 18 patients with severe haemophilia was spiked with 0.001-500 nm concizumab. For the multiple-dosing study, four healthy males received concizumab 250 μg kg -1 s.c. every other day for eight doses; blood was collected before and after dosing and processed into PPP. In both studies, thrombin generation was measured using a Calibrated Automated Thrombogram ® system with 1 pm tissue factor. In spiked samples from haemophilia patients, peak thrombin and endogenous thrombin potential (ETP) increased concentration dependently, reaching near-normal levels at concizumab concentrations >10 nm. Repeated s.c. doses of concizumab in healthy subjects increased both peak thrombin and ETP; these effects were sustained throughout the dosing interval. Thrombin generation assay demonstrated increased thrombin generation with concizumab after ex vivo spiking of haemophilia plasma and multiple s.c. doses in healthy subjects, supporting both the utility of the TGA in evaluating concizumab treatment and the potential of s.c. concizumab as a novel haemophilia therapy. © 2017 The Authors. Haemophilia Published by John Wiley & Sons Ltd.

  14. Analyzing the dose-dependence of the Saccharomyces cerevisiae global transcriptional response to methyl methanesulfonate and ionizing radiation.

    PubMed

    Benton, Michael G; Somasundaram, Swetha; Glasner, Jeremy D; Palecek, Sean P

    2006-12-01

    One of the most crucial tasks for a cell to ensure its long term survival is preserving the integrity of its genetic heritage via maintenance of DNA structure and sequence. While the DNA damage response in the yeast Saccharomyces cerevisiae, a model eukaryotic organism, has been extensively studied, much remains to be elucidated about how the organism senses and responds to different types and doses of DNA damage. We have measured the global transcriptional response of S. cerevisiae to multiple doses of two representative DNA damaging agents, methyl methanesulfonate (MMS) and gamma radiation. Hierarchical clustering of genes with a statistically significant change in transcription illustrated the differences in the cellular responses to MMS and gamma radiation. Overall, MMS produced a larger transcriptional response than gamma radiation, and many of the genes modulated in response to MMS are involved in protein and translational regulation. Several clusters of coregulated genes whose responses varied with DNA damaging agent dose were identified. Perhaps the most interesting cluster contained four genes exhibiting biphasic induction in response to MMS dose. All of the genes (DUN1, RNR2, RNR4, and HUG1) are involved in the Mec1p kinase pathway known to respond to MMS, presumably due to stalled DNA replication forks. The biphasic responses of these genes suggest that the pathway is induced at lower levels as MMS dose increases. The genes in this cluster with a threefold or greater transcriptional response to gamma radiation all showed an increased induction with increasing gamma radiation dosage. Analyzing genome-wide transcriptional changes to multiple doses of external stresses enabled the identification of cellular responses that are modulated by magnitude of the stress, providing insights into how a cell deals with genotoxicity.

  15. Transcriptomics analysis and hormonal changes of male and female neonatal rats treated chronically with a low dose of acrylamide in their drinking water.

    PubMed

    Collí-Dulá, Reyna Cristina; Friedman, Marvin A; Hansen, Benjamin; Denslow, Nancy D

    2016-01-01

    Acrylamide is known to produce follicular cell tumors of the thyroid in rats. RccHan Wistar rats were exposed in utero to a carcinogenic dose of acrylamide (3 mg/Kg bw/day) from gestation day 6 to delivery and then through their drinking water to postnatal day 35. In order to identify potential mechanisms of carcinogenesis in the thyroid glands, we used a transcriptomics approach. Thyroid glands were collected from male pups at 10 PM and female pups at 10 AM or 10 PM in order to establish whether active exposure to acrylamide influenced gene expression patterns or pathways that could be related to carcinogenesis. While all animals exposed to acrylamide showed changes in expected target pathways related to carcinogenesis such as DNA repair, DNA replication, chromosome segregation, among others; animals that were sacrificed while actively drinking acrylamide-laced water during their active period at night showed increased changes in pathways related to oxidative stress, detoxification pathways, metabolism, and activation of checkpoint pathways, among others. In addition, thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were increased in acrylamide-treated rats sampled at night, but not in quiescent animals when compared to controls. The data clearly indicate that time of day for sample collection is critical to identifying molecular pathways that are altered by the exposures. These results suggest that carcinogenesis in the thyroids of acrylamide treated rats may ensue from several different mechanisms such as hormonal changes and oxidative stress and not only from direct genotoxicity, as has been assumed to date.

  16. Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews

    PubMed Central

    Meyers, Kelly; Lim, Audrey; Dye, Matthew; Pak, Diana; Rinaman, Linda; Yates, Bill J.

    2014-01-01

    Signals from the vestibular system, area postrema, and forebrain elicit nausea and vomiting, but gastrointestinal (GI) vagal afferent input arguably plays the most prominent role in defense against food poisoning. It is difficult to determine the contribution of GI vagal afferent input on emesis because various agents (e.g., chemotherapy) often act on multiple sensory pathways. Intragastric copper sulfate (CuSO4) potentially provides a specific vagal emetic stimulus, but its actions are not well defined in musk shrews (Suncus murinus), a primary small animal model used to study emesis. The aims of the current study were 1) to investigate the effects of subdiaphragmatic vagotomy on CuSO4-induced emesis and 2) to conduct preliminary transneuronal tracing of the GI-brain pathways in musk shrews. Vagotomy failed to inhibit the number of emetic episodes produced by optimal emetic doses of CuSO4 (60 and 120 mg/kg ig), but the effects of lower doses were dependent on an intact vagus (20 and 40 mg/kg). Vagotomy also failed to affect emesis produced by motion (1 Hz, 10 min) or nicotine administration (5 mg/kg sc). Anterograde transport of the H129 strain of herpes simplex virus-1 from the ventral stomach wall identified the following brain regions as receiving inputs from vagal afferents: the nucleus of the solitary tract, area postrema, and lateral parabrachial nucleus. These data indicate that the contribution of vagal pathways to intragastric CuSO4-induced emesis is dose dependent in musk shrews. Furthermore, the current neural tracing data suggest brain stem anatomical circuits that are activated by GI signaling in the musk shrew. PMID:24430885

  17. Total Ionizing Dose and Displacement Damage Compendium of Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Chen, Dakai; Oldham, Timothy R.; Sanders, Anthony B.; Kim, Hak S.; Campola, Michael J.; Buchner, Stephen P.; LaBel, Kenneth A.; Marshall, Cheryl J.; Pellish, Jonathan A.; hide

    2010-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  18. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.; Phifer, M.

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (Whitemore » and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.« less

  19. Functional role for mouse cerebellar NO/cGMP/KATP pathway in ethanol-induced ataxia.

    PubMed

    Saeed Dar, M

    2014-01-01

    We have previously shown that brain adenosine A1 receptors and nitric oxide (NO) play an important role in ethanol (EtOH)-induced cerebellar ataxia (EICA) through glutamate/NO/cGMP pathway. I now report possible modulation of EICA by the cerebellar NO/cGMP/K(ATP) pathway. EICA was evaluated by Rotorod in CD-1 male mice. All drugs (K(ATP) activators pinacidil, 0.05, 0.1, 0.5 nmol; minoxidil, 0.01, 0.1, 1.0 pmol; antagonists glipizide/glibenclamide, 0.01, 0.05, 0.1 nmol; NO donor l-arginine, 20 nmol; NOS inhibitors [iNOS] inhibitor L-NAME, 50 nmol; glutamate, 1.5 nmol; adenosine A1 receptor agonist N(6) -cyclohexyladenosine [CHA], 6, 12 pmol; antagonist DPCPX, 0.1 or 0.4 nmol) were given by direct intracerebellar microinfusion via stereotaxically implanted guide cannulas, except EtOH (2 g/kg, i.p.). Pinacidil and minoxidil dose-dependently accentuated, whereas glipizide and glibenclamide markedly attenuated EICA, indicating tonic participation of K(ATP) channels. Glipizide abolished the pinacidil potentiation of EICA, which confirmed both drugs acted via K(ATP) channels. A possible link between K(ATP) channels and glutamate/NO pathway was suggested when (i) CHA (12 pmol) totally abolished l-arginine-induced attenuation of EICA; (ii) L-NAME abolished l-arginine-induced attenuation of EICA associated with further increase in EICA; and (iii) the combined l-arginine and glutamate infusion virtually abolished EICA. Also, whereas CHA abolished glibenclamide-induced attenuation and potentiated pinacidil/minoxidil-induced accentuation of EICA, the effects of DPCPX were just the opposite to those of CHA. The results with CHA therefore suggest a functional link between K(ATP) and A1 receptors and between K(ATP) and glutamate/NO and as an extension may involve participation of NO/cGMP/K(ATP) pathway in EICA. Copyright © 2013 by the Research Society on Alcoholism.

  20. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway.

    PubMed

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-11-07

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal-regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway.

Top